section b — abstracts

1. GENERAL (INCLUDING LAND USE)

6810 Institut Sénégalais de Recherches Agricoles, 1990. Présentation du Laboratoire National de l’Elevage et de Recherches Vétérinaires. [Introduction to the National Laboratory of Livestock Rearing and Veterinary Research.] Dakar, Senegal; ISRA. Ref. no. 011/DOC. 11 pp. LNERV, B.P. 2057, Dakar-Hann, Senegal. The research activities of LNERV are listed and include three trypanosomiasis control projects: diagnosis using ELISA; therapeutics and tsetse control; pathology and productivity of trypanotolerant livestock.

6811 International Laboratory for Research on Animal Diseases, 1990. ILRAD 1989 (annual report). Nairobi; ILRAD. 103 pp. ILRAD, P.O. Box 30709, Nairobi, Kenya. Trypanosomiasis research is being carried out on a broad front. Trials have shown ELISA to be sensitive and reliable for detecting the three major tsetse-transmitted species infecting livestock and Trypanosoma evansi in pigs and camels. DNA probes are being developed as alternative diagnostic techniques. Laboratory culture systems have been improved and the dividing mammal-adapted form of T. b. brucei can now be cultured indefinitely. Studies on trypanosome biology, to identify parasite-specific mechanisms that can be targeted for drug or immunological attack, and the genetic control of trypanosome life cycle stages are in progress. A gene that appears to be active only in the rapidly dividing mammalian form of T. b. brucei has been cloned. Comparative studies of susceptible (Boran) and resistant (N’Dama) cattle are increasing the understanding of immune and pathogenic responses, and cross-breeding experiments using embryo-transfer are under way to identify markers of genes that control trypanotolerance. Tests for levels of drug resistance are being developed and the genetic mechanisms of trypanosome resistance are being investigated. Breeding colonies of six species of Glossina are maintained. Studies have demonstrated the cyclical development of T. vivax in G. morsitans centralis and that the susceptibility of G. m. centralis to T. congolense infection is not associated with the presence of rickettsia-like organisms in the fly midgut, as previously believed.

6812 International Livestock Centre for Africa, 1990. ILCA annual report 1989. Addis Ababa; ILCA. 144 pp. ILCA, P.O. Box 5689, Addis Ababa, Ethiopia. The ILCA Trypanotolerance Thrust continues to pursue its objective of improved livestock production in four
main research areas: epidemiology, trypanotolerance, genetics of trypanotolerance, and biological and economic evaluation of productivity responses to interventions. The relationships between trypanosome prevalence, tsetse challenge and animal productivity in susceptible and trypanotolerant cattle have been quantified, and demonstrate the need for major reductions in tsetse populations before significant decreases in trypanosome incidence can be achieved. The ability to control anaemia in trypanotolerant cattle, measured in terms of average and lowest PCV, is related to increased productivity and has a greater effect on weight gain than the ability to control parasitaemia. High genetic correlations between average PCV and growth rate suggest that selection for PCV values would appear to offer an effective strategy for the rapid genetic improvement of trypanotolerant cattle. A tsetse control programme in northern Côte d'Ivoire, using cypermethrin-impregnated biconical traps, is continuing and mean trypanosome prevalence in 1989 was about one quarter of that in 1987. The introduction of N'Dama cattle for beef production in central Zaire showed positive but not outstanding returns. Lists of staff, publications, meetings attended and research collaborators are appended.

TRL, Langford House, Langford, Bristol BS18 7DU, UK. The TRL was opened in December 1962 with the initial objective of developing techniques for rearing tsetse flies on a large scale outside Africa. The main species colonised is Glossina morsitans morsitans, which is fed in vitro on fresh defibrinated pig blood through silicone rubber membranes. Methods of determining nutritional status by measuring fat and haematin content and ageing by measuring the pteridine content of the head capsule have been developed. Metabolic processes have been studied with a view to selecting specific compounds which could block their action, such as the juvenile hormone mimic pyriproxyfen which acts as a chemosterilant on both sexes. Preliminary tests with pyriproxyfen-treated traps in Zimbabwe suggest that tsetse populations can be reduced to one millionth of their original levels in one year. Behavioural studies associated with the development of traps and targets have included the role of vision, olfactory stimuli and mating behaviour. Factors affecting the susceptibility
of tsetse to trypanosomiasis infection have also been studied.

TDR, WHO, CH-1211 Geneva 27, Switzerland.

Between 1977 and 1986, TDR spent US $12.6 million on 166 projects concerned with African trypanosomiasis. These included investigations into the epidemiology of *Trypanosoma brucei gambiense* and *T. b. rhodesiense*, tsetse fly control, parasitological and serological diagnosis, immunology, pathology and drug development. Future priorities for the Scientific Working Group on the African Trypanosomiasis are identified.

TDR, WHO, CH-1211 Geneva 27, Switzerland.

African trypanosomiasis affects both man and his domestic animals, and is fatal if untreated. The risk of epidemics makes the disease a major public health problem in 36 sub-Saharan African countries, where some 50 million people are at risk of contracting the disease. Continued suppression of the disease through medical surveillance is indispensable to prevent epidemics which are difficult and costly to control. Recent epidemics and flare-ups have occurred in certain countries due to breakdown in medical surveillance occasioned by political, social and economic factors. The development of new tools through research over the last decade has improved the diagnosis of patients and vector control. The development of eflornithine (DFMO) for the treatment of *gambiense* sleeping sickness is a major breakthrough in view of its safety compared with current treatment alternatives, and it has been nicknamed the `resurrection drug'. In spite of these achievements, however, there is no radical solution to the problem of sleeping sickness. The use by the endemic countries of improved tools for disease control depends upon the availability of resources from national, bilateral and multilateral sources, and commitment of the countries concerned.

This book tells the story of the life and work of Colonel Jamot of the French Colonial Medical Service.
whose pioneering spirit and phenomenal energy transformed campaigns against the devastating epidemics of sleeping sickness in French West Africa in the 1920s and 1930s. Jamot created mobile teams for rapid deployment where needed. These surveyed the whole population of a given area to discover all infected persons and treat them with arsenicals. His career ended tragically when he was suspended from duty following an incident in which 500 patients lost their sight when overdosed by an inexperienced young medical officer during Jamot's temporary absence. He retired, returned to France and died the following year at the age of 56, a lonely and bitter man.
Epidemics of *Trypanosoma brucei gambiense* human trypanosomiasis in the Belgian Congo (Zaire) early in this century are related to the social and environmental changes that resulted from colonial conquest. Economic interests provided the main incentive for colonial medical activity. Before 1905 and the development of an effective trypanocide patients were segregated in special camps or *lazarets*, but during the 1920s the authorities were undertaking mass surveillance with chemotherapy. By 1931 over 2.5 million people had been screened for sleeping sickness in the Congo, although many Africans were reluctant to accept European medical provision. Socio-economic factors, such as diet and nutrition, fatigue and stress, social rank, occupation and sex, affect susceptibility to disease. The analysis of epidemic diseases, such as human trypanosomiasis, can therefore be used to explain aspects of social history.

This article presents a brief history of sleeping sickness epidemics in colonial Africa. Human trypanosomiasis, long known to be endemic, became progressively epidemic during the late 19th century due to colonial disruption of African societies and consequent changes in human ecology, including famine, exhaustion and disease, which resulted in increased stress and lowered resistance. This led to an upsurge of competitive research by the colonial authorities and prompted the development of the Belgian colonial medical service, which was used as propaganda for Belgian imperialism in the Congo (Zaire). Successive epidemics killed thousands of people in the Congo but the disease was gradually reduced. In 1925, 1,500,000 people were examined and 100,000 victims identified and treated; by 1955 there were 6,600,000 examinations but only 12,117 victims. The success of the Belgian medical service has been described as one of the major benefits of imperialism in the Congo, but first of all...
imperialism had transformed an endemic disease into a major epidemic.

ILRAD, P.O. Box 30709, Nairobi, Kenya.

Control of trypanosomiasis on a large scale is at present largely achieved through insecticide application to reduce or eliminate the tsetse fly population and is frequently accompanied by the administration of chemotherapeutic and/or chemoprophylactic drugs. Increased knowledge of tsetse ecology and greatly improved techniques for more effective aerial application of insecticides at low doses have resulted in substantially reduced environmental pollution. The development of synthetic pyrethroid insecticides represents a further advance in this respect. With their high toxicity for tsetse, good persistence and minimal environmental impact they appear to possess distinct advantages, although aerial spraying of u.l.v. endosulfan is at present still the insecticide of choice. The additional use of deltamethrin-impregnated traps and screens as simple, economic tools will effectively support the insecticidal aerial spraying operations. Incorporation of attractants in traps or screens will enhance their efficacy. Availability of improved drug formulations and new tools for diagnosis and epidemiological investigations should facilitate a more judicious and rational application of chemotherapy and chemoprophylaxis. The prospects for the development of new methodologies for prevention or control of the disease by immunological means still appear distant. No common protective antigen has yet been identified. The use of trypanotolerant livestock would appear to be a pragmatic approach but further studies are needed to identify the genetic markers that correlate with this trait to facilitate selective breeding.

This is an English translation by Mira Shah-Fischer and Ralph Say of the tenth in the series *Manuels et précis d'élevage*, compiled by IEMVT and published in 1981 (see TTIQ, 5: no. 2241). It consists of three parts: Helminths of livestock and poultry in tropical Africa by P.M. Troncy, African animal trypanosomoses by J. Itard, and Tick-borne diseases of livestock in Africa.
by P.C. Morel. The part on trypanosomiasis (pp. 177-297) includes sections on the parasites (morphology, biology, hosts and geographic distribution), the vectors (morphology, biology, distribution), the pathology of animal trypanosomiases, epizootiology, diagnosis, vector surveys, treatment and prophylaxis, and tsetse control.

This report summarises some of the results of TDR-assisted projects. Current research on diagnosis of trypanosomiasis focuses on the development of antigen-detection methods, and new techniques being adapted for field evaluation include ELISA and the procyclic agglutination trypanosomiasis test (PATT). At present (1989) 30 million people are under active medical surveillance. Potential new drugs include DL-α-monofluoromethylornithine (MFMO) and inhibitors of the glycolytic pathway of trypanosomes. Possible vaccine targets include receptors for transferrin and low-density lipoprotein (LDL) in the flagellar pocket of bloodstream forms. The possibility that HIV-induced immunosuppression accelerates the progress of symptomless Trypanosoma brucei gambiense infection to overt sleeping sickness is also being investigated. The use of 40,000 deltamethrin-impregnated traps and screens for vector control over 1300 km² in the endemic focus of Vavoua, Côte d'Ivoire, resulted in a 99.9% reduction in flies in villages after 18 weeks. A similar approach is being adopted in Uganda, using 10,000 pyramidal traps to control flies in an area of 2000 km². The TDR programme included a budget of US $3.187 million for African human trypanosomiasis projects during 1988-89.

TDR, WHO, CH-1211 Geneva 27, Switzerland.
The WHO Division of Control of Tropical Diseases (CTD) was established in January 1990 and collaborates closely with the Special Programme for Research and Training in Tropical Diseases (TDR) to evaluate control technologies and strategies, concentrating its efforts on the countries in greatest need. This joint report
summarises the causative agents, estimated number of cases and mortality rate, number of people considered at risk, number of countries affected, transmission, clinical symptoms, prevention and treatment of the major tropical diseases, including African human trypanosomiasis. This is mainly caused by *Trypanosoma brucei rhodesiense* in eastern and southern Africa and *T. b. gambiense* in western and central Africa. Thirty-six countries are affected with 50 million people at risk and 25,000 new cases reported each year. Research priorities include improving diagnosis and patient care, chemotherapy and vector surveillance techniques. Control priorities are regular medical surveillance, diagnosis and treatment, and developing and applying methods to reduce contact between humans and tsetse flies, such as trapping, use of insecticides, vegetation clearance and land use.

2. Tsetse biology
(a) REARING OF TSETSE FLIES
ILRAD, P.O. Box 30709, Nairobi, Kenya.
The first successful large-scale rearing of *G. longipennis* is described. A total of 174 pupae were produced by 48 wild females caught in mid-1987 in Nguruman, Kenya. Flies emerging from these pupae formed the parental stock of the colony which increased to reach the target of 1500 breeding females in December 1988. Adults and pupae are kept in a climate-controlled room at 25\(^\circ\)C and 80-85% r.h. in wire-framed cages covered with 4 mm mesh black Terylene netting. Flies are fed daily except weekends on the ears of lop-eared rabbits. A mating period of 72 h is used.

(b) TAXONOMY, ANATOMY, PHYSIOLOGY, BIOCHEMISTRY
Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
Labella of 35 families of flies were examined, primarily by scanning electron microscopy techniques. The ability to evert the labellar lobes beyond Stage IV to the Stage VI position was positively correlated with presence of prestomal teeth. Much variation in
prestomal tooth numbers and structure was seen, and the rasps of *Glossina* were determined to be prestomal teeth. Pseudotracheal ring tips were highly modified and variable and were represented in *Glossina* by denticles. Pseudotracheal diameter was measured and considered to be an important reflection of diet in nature. Families were characterised using the above adaptations, but these labial structures had many convergences and parallelisms and, therefore, were often unreliable taxonomic characters. Diet was correlated, wherever possible, with structural variations; most fly diets, however, remain unknown, so postulations were presented using morphological evidence.

Department of Physiological Sciences, University of Manchester, Stopford Building, Manchester M13 9PT, UK. Following successful escape from the puparium (eclosion), sets of muscles in all three segments of *Glossina morsitans* degenerate. Whereas the head and abdominal muscles degenerate in response to hormonal triggers released before and immediately after eclosion, the thoracic muscles require a specific neural trigger encountered following eclosion. Evidence is presented for the role of neural activity in the activation of immunocytes that destroy the thoracic muscles. Removal of the neural input by severing the nerve to any particular muscle results in survival of the muscle and inactivation of the immunocyte. The destruction process can be stopped at any time by severing the nerve, and the muscle fibres that remain continue to show normal physiology and response to stimulation. Electrophysiological recordings of the response to lethal attack are presented, together with ultrastructural evidence demonstrating the invasion of muscle fibres by processes of the immunocyte.

Robert, Delbecque: Laboratoire de Zoologie, CNRS, UA 674, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France; C. and A. Strambi: CNRS, LNB 5, B.P. 71, 13402 Marseille Cedex 9, France.
The data presented here document the variations of ecdysteroids in different tissues during the life-span of the tsetse fly. HPLC analyses were performed to
determine the nature of immunoreactive compounds detected by RIA. In milk glands, uterus and ovaries at the beginning of vitellogenesis, 20-hydroxyecdysone appeared as the main free ecdysteroid. However, conjugation occurred in mature ovaries where 85% of the immunoreactivity was found in highly polar fractions. During embryogenesis and larval development, the ecdysteroids detected in crude extracts mainly corresponded to polar or apolar metabolites. The nature of the high polarity products differed between adult tissues and developing flies. Similarly the apolar compounds, unchanged after hog liver esterase action in the 3rd larval instar, could liberate some free ecdysone and 20-hydroxyecdysone together with polar and unknown compounds especially in mature ovaries. In the haemolymph collected either during vitellogenesis or just before larviposition, polar and apolar conjugates could be evidenced together with authentic 20-hydroxyecdysone and ecdysone. At the time of parturition an increase in ecdysone occurred, which possibly may be related to stimulation of uterus contraction.

(c) DISTRIBUTION, ECOLOGY, BEHAVIOUR, POPULATION STUDIES
[See also 14: no. 6833.]
Orientation of tsetse flies to wind, within and outside host odour plumes in the field. *Physiological Entomology*, 16 (1): 47-56.
Gibson, Steullet: Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Packer: Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Papua New Guinea; Brady: Imperial College, Silwood Park, Ascot, Berks, SL5 7PY, UK.
Free-flying wild tsetse flies, *Glossina pallidipes* and *G. m. morsitans*, were video recorded in Zimbabwe as they flew within an artificial host odour plume at 3, 7 or 15 m from the source, or in no odour, with and without a 0.75 m² vertical, black visual target present aligned with the wind. With no visual target present, flights in odour were strongly biased upwind, and in the absence of odour strongly biased downwind. With the target present, between 16% and 40% of the upwind approaching flies responded visually as they passed the target, by circling it, in proportion to the proximity
of the source (taken to be proportional to the mean odour concentration). Crosswind approaching flies (for whom the target will have been visible for some metres away) circled more frequently (34-56%), but without obvious correlation with the odour concentration. Circling flies also responded orthokinetically, by slowing down as they passed the target. The departure directions relative to the wind of flies leaving the target were significantly affected by the odour concentration. At 3 m they left the target in all directions, except possibly avoiding due upwind. At 7 m they left with an obliquely upwind bias, but at 15 m and also in no odour, they left with a strong crosswind bias.

c/o Tsetse and Trypanosomiasis Control Branch, Department of Veterinary Services, P.O. Box 8283, Causeway, Zimbabwe.

Ovarian ages were obtained for tsetse flies Glossina morsitans morsitans and G. pallidipes caught in Zimbabwe using a stationary bait ox, an odour-baited trap in the presence or absence of humans, a mobile ox fly-round and a vehicle-mounted electric net. The biggest daily catches were obtained from the electric net and the unaccompanied trap, but while for G. m. morsitans the ratio of the catches from these two methods was 7:1, for G. pallidipes it was 0.7:1. Evening catches were 1.3-5.5 and 2.9-18.8 times higher than morning catches for the two species, respectively; the differences were greater for stationary than for mobile baits. The sample age structures differed significantly ($P < 0.05$: χ^2) between methods in six of the ten possible contrasts between pairs of methods in G. m. morsitans and for all ten in G. pallidipes. The differences in age distribution and mean catch levels are attributed to increases in flight activity with age; at each age G. pallidipes is more active than G. m. morsitans. Man's presence in the trapping system reduced catches significantly ($P < 0.05$: t test) but this effect was small in the youngest and oldest flies. Odour-baited traps are biased in favour of G. pallidipes and, for both species, in favour of older flies; mortalities calculated from age distributions of trap samples therefore underestimate the true value.

In the early 1970s the Egbe area of Nigeria was known to be one of high trypanosomiasis risk, with four *Glossina* species, *G. m. submorsitans*, *G. longipalpis*, *G. palpalis palpalis* and *G. tachinoides*, present. Grazing by Fulani pastoralists used to be short-term and only in the dry season. In recent years these pastoralists have grazed their cattle in the area throughout the year and this has prompted a reappraisal of the tsetse situation. Tsetse populations were sampled for 3 years using hand-net catches from man or an ox and biconical traps. Resident livestock, slaughter cattle and some of the flies were examined for trypanosome infection. Of the four tsetse species previously reported from the area, only the riverine species, *G. p. palpalis* and *G. tachinoides*, were encountered during the investigation. None of the 152 *G. p. palpalis* and 52 *G. tachinoides* examined was infected with trypanosomes. No infection was detected in 101 slaughtered cattle, 65 live Muturu, 12 goats and two pigs by wet film examination. However, a 14.3% *Trypanosoma vivax* infection rate was detected by HCT examination in 21 slaughtered cattle. Increased human activities over the years had destroyed much of the vegetation and depleted the wildlife population to an extent that resulted in the disappearance of *G. m. submorsitans* and *G. longipalpis*, resulting in turn in a greatly reduced trypanosomiasis risk. It is likely that a similar trend is occurring in other areas of the Derived Savanna and Forest zones of West Africa as the human population expands. As a result, more cattle are resident in these zones now than in the past and a reappraisal of cattle distribution in Nigeria is required.

The behaviour of tsetse (mainly *Glossina pallidipes*) around odour-baited targets, with or without a coating of ox sebum, was recorded in the field using video. The addition of sebum increased the total time a fly was in...
contact with the target, as well as the time spent flying around and landing on it. When carbon dioxide was released as part of the attractant odour plume, the presence of sebum on the target increased the number of landings made by each fly, but did not significantly affect the duration of each contact. When carbon dioxide was absent from the odour plume, sebum did not affect the number of landings made by flies but the duration of each contact with the target did increase. Evidence for an interactive effect of sebum and carbon dioxide was obtained. In addition, the presence of sebum on the target increased the percentage of landed flies which walked on its surface; such behaviour may represent an 'inspection' of the artificial host. The potential tsetse control application of the current findings is discussed.

3. TSETSE CONTROL (INCLUDING ENVIRONMENTAL SIDE-EFFECTS)

[See also 14: nos. 6812, 6821, 6853.]

Child: Department of National Parks and Wild Life Management, P.O. Box 8365, Causeway, Harare, Zimbabwe.

This paper provides detailed records of hunting operations in Zimbabwe and assesses their effectiveness in eliminating the wild vertebrate hosts of tsetse. Over 57,000 animals representing more than 36 species were shot in the period 1919-33 and a further 602,041 from 1933-58. A rapid fall-off in kills in the late 1950s reflects an increased emphasis at that time on fence-building to create game- and cattle-free corridors, the destruction of tsetse habitats and use of insecticides. The only species apparently eliminated were wildebeest in the Sebungwe area and black rhino generally. Some species actually increased in population in spite of being hunted, especially the four tsetse-preferred hosts, warthog and bushpig (contributing 64.8% of blood meals analysed) and kudu and bushbuck (11.5%). Habitat changes, especially regular burning of grazing early in the dry season, may have had more effect on wild animal populations than hunting. Also, if hunting influenced the behaviour of host species making them less accessible to tsetse, then the potential availability of these hosts would have increased when hunting ceased and normal behaviour
patterns were resumed. This study underlines the need for clearly-defined objectives and systematic monitoring. In this case, protracted and costly hunting over 26 years may have compounded the problem it sought to alleviate.

A number of tsetse control campaigns were carried out in Senegal. Initial efforts were made in the 1970s in Les Niayes (vestiges of the Guinean forest, the habitat of *Glossina palpalis gambiensis*), based on a campaign of ground spraying with dieldrin. This chemical control was reinforced at the beginning of the 1980s with the use of insecticide-impregnated traps and screens. By 1983, the tsetse fly levels had decreased below detection levels in the region. An evaluation of insecticide-impregnated screens and traps was carried out in Kolda (southwestern Senegal), with a 98% reduction in *G. p. gambiensis*.

Senegal is at the northern limit of tsetse distribution. Three regions are affected. Les Niayes, a swampland depression on the coast between 14°30′ and 15°N, is infested with *Glossina palpalis gambiensis*. This species and *G. morsitans submorsitans* are found in the southeast and in the southern part of the peanut-growing area, and in the Casamance region in the south where *G. longipalpis* also has a localised distribution around Ziguinchor and Oussouye. Recent droughts may have seriously disturbed tsetse ecology and distribution and new surveys are needed. Control campaigns are carried out by LNERV. In Les Niayes region 2% dieldrin sprays were applied and 6000 head of livestock were treated with diminazene aceturate from 1970–72. Nevertheless, some parts remained infested and reinestation of other areas was confirmed in 1983. Spraying with 3% e.c. of
endosulfan was then combined with biconical traps and decamethrin (0.5% Decis) impregnated screens. Spray applications were made at 5 week intervals to kill newly-emerged adults and surveys carried out in February and April 1984 failed to capture any flies. Future control campaigns will use SIT and will concentrate on Les Niayes, which is of particular agropastoral importance.

During tsetse control operations near Bouaflé, Côte d'Ivoire, a study was made of environmental side-effects of helicopter sprayings with permethrin and deltamethrin on a riverine forest. Terrestrial and aquatic arthropod populations and fish were observed for acute effects. The abundance of the species was assessed by various trapping devices before, during and after the spraying cycle. Populations of mayfly larvae and small shrimps (*Caridina africana*) were virtually eliminated after the spraying cycle. The Ephemeroptera recovered within the same season. Caddis fly and *Simulium* larvae populations were affected but they recovered within each spraying interval. Large shrimps (*Macrobrachium vollenhovenii*) were paralysed by the insecticide. Recovery occurred within 48 h. Among the terrestrial arthropods, the hymenopteran and dipteran populations were significantly affected. No effect was observed on bottom dwelling spiders. The ability of the ecosystems to recover from the disturbance is discussed.

Adult *G. m. morsitans* exposed to wet conidia of *Beauveria bassiana* and *Metarhizium anisopliae* suffered high mortalities ranging from 90 to 100% by 2 weeks post-exposure. Infected males maintained in the same cages with non-infected females throughout the experimental period transmitted the fungal infection to the females resulting in mortalities of 65% with *B. bassiana* and 55% with *M. anisopliae*. Likewise, infected females maintained together with non-infected males transmitted the
infection to the males resulting in mortalities of 75% with *B. bassiana* and 45% with *M. anisopliae*. Female tsetse flies infected with *B. bassiana* and *M. anisopliae* and maintained in the same cages with non-infected females also transmitted infection to the non-infected tsetse resulting in mortalities of 62% and 48% with *B. bassiana* and *M. anisopliae* respectively. Infected tsetse exposed to non-infected tsetse of the opposite sex for only 30 min were also able to transmit the fungal infection. Pupae produced by female tsetse infected with *B. bassiana* and *M. anisopliae* exhibited higher pupal mortality than those produced by non-infected females. However, pupae exposed directly to dry spores of *B. bassiana* and *M. anisopliae* had no increase in pupal mortality but adults emerging from the *B. bassiana*-exposed pupae had markedly reduced longevity.

Chapter nine of this book, entitled `Reserves and the tsetse controversy', describes the establishment of game reserves in colonial Africa despite the fact that wild ungulates were known to be reservoir hosts for trypanosomiasis. The first decades of European rule facilitated tsetse expansion through a series of disasters (disease, drought and war) which resulted in depopulation and bush regeneration. The main concern to white settlers was the spread of nagana in cattle and the elimination of game became a favoured control policy, despite a strong conservationist lobby. In particular, Southern Rhodesia (Zimbabwe) adopted a hunting policy which effectively removed tsetse from 10,000 square miles of the Zambezi Valley between 1930 and 1950. Shooting policies were also started in Natal, Bechuanaland (Botswana) and Northern Rhodesia (Zambia) but were rarely pursued in East Africa, where tsetse mainly affected areas of African settlement. The depopulation of remote areas through rinderpest and human trypanosomiasis facilitated the establishment of reserves, although game continued to be shot in areas of white settlement until 1967. Overall, the clearance of land by white farmers was more effective in ridding areas of tsetse than deliberate control.

The pyrethroid insecticide λ-cyhalothrin was evaluated in field trials against *Glossina f. fuscipes* and sleeping sickness transmission in Iyolwa sub-county, Tororo District, Uganda. The insecticide was applied selectively to the resting-sites of tsetse, by bush-spraying, using 10% wettable powder (10WP) formulation at an application rate of 11.6 g a.i./ha over an area of 28 km2, or by a 2% Electrodyn formulation (2ED) applied at 0.9 g a.i./ha over 30 km2. In a third trial area of 32 km2, 215 pyramidal traps treated with λ-cyhalothrin 100 mg/m2 were set. The best impact was obtained with 10WP λ-cyhalothrin which eliminated tsetse within 1–2 months, whereas *G. f. fuscipes* persisted at very low density in part of the area treated with 2ED λ-cyhalothrin. In both treated areas the numbers of human sleeping sickness cases fell to no more than one per month, compared with four to twelve per month previously. The overall rate of cattle trypanosomiasis (*Trypanosoma brucei* and *T. vivax*) was also reduced slightly. Insecticide-treated traps remained fully effective for at least 6 months under field conditions and catches were reduced 20–90-fold. These results in the control of tsetse and trypanosomiasis transmission lead us to recommend λ-cyhalothrin for tsetse control operations.

A *G. pallidipes* population in the Lambwe Valley, western Kenya, was monitored monthly from July 1983 to December 1987. During this time, the population was subjected to dieldrin and cypermethrin spraying campaigns. The population was markedly suppressed when the campaigns were regular, but quickly recovered when the operations were relaxed and became irregular. Before the operations started there was a preponderance of younger flies in the catch, but when the spraying operations were intensified the age structure changed and older flies became predominant. With regular spray operations, it took 6 months for the prevalence of cattle trypanosomiasis to drop from 5% to 2%, but only 2 months to revert to 5%, when the operations were relaxed. The change in sex ratio observed suggests
that insecticide operations were more effective against male than female populations.

WHO, CH-1211 Geneva 27, Switzerland.
The new edition of this book, first published in 1964, includes information on new types of equipment and describes improvements in aerial spraying techniques. Cone or swirl nozzles are used extensively for residual spraying of trees for tsetse control; a 60° or smaller spray cone angle is preferred for selective spraying of resting sites. Biconical (Challier and Laveissière), monoconical (Lancien) and monopyramidal (Lancien-Gouteux) traps and flat screens for trapping tsetse flies are described and illustrated. Recommended aerial control methods for tsetse include residual spraying by helicopter using a medium spray of 150–250 μm and space spraying with fixed-wing aircraft (helicopters for riverine species) using an aerosol of 30 μm v.m.d. Windmill-driven atomisers have been used for applying aerosols in tsetse control. An introductory chapter describes the principal methods of pesticide application for integrated vector control, and a series of annexes provide practical information and guidelines but with no specific reference to tsetse.

4. EPIDEMIOLOGY: VECTOR-HOST AND VECTOR-PARASITE INTERACTIONS

[See also 14: nos. 6811, 6812, 6857, 6872.]

The article briefly discusses the problem of wild and domestic animal reservoirs in the control of *gambiense* and *rhodesiense* sleeping sickness.

Gilles: Ecole des Hautes Etudes en Sciences Sociales, Marseille, France.

This article reviews the epidemiology of *Trypanosoma brucei gambiense* sleeping sickness in West Africa. There are four main sections which consider the historical background, the bioecology of the parasite and its vectors *Glossina palpalis* and *G. tachinoides*, factors favouring
the spread of the disease, and control. The last epidemic was first reported in Senegal in 1876 and by the 1920s affected most of West Africa, resulting in a 50% reduction of the human population in some areas. The main foci were associated with the Volta river system and Upper Volta (Burkina Faso) was severely affected, with 110,000 cases and 20,000 deaths in 1932. Improved methods of control after 1940 helped bring this epidemic to an end but the disease was not completely eradicated. The important role of both vector and human ecology in its occurrence and distribution is stressed. One of the main factors affecting the spread and/or resurgence of the disease is human population movement. The efficacy and limitations of various control measures, including prophylactic drugs, habitat alteration and insecticides, are discussed.

Results obtained in experiments testing the efficacy of anti-procyclic-form rabbit sera on the development of homologous and heterologous stocks of *T. b. brucei* in *Glossina morsitans morsitans* indicated that this development was affected little, or not at all, by such sera. The absence of effect of anti-procyclic stage antibodies can be explained by the failure to detect by either direct or indirect fluorescent antibody methods the presence of antibodies acquired *in vivo* by either the midgut procyclic forms or by uncoated salivary gland forms.

The significance of *G. fusca* group tsetse flies as vectors of cattle trypanosomiasis was examined using biconical traps to survey tsetse populations at one site in Gabon and two sites in Zaire. Mean trypanosome infection rates in *G. tabaniformis* over the study period ranged from a minimum of 8.9% at one site to a maximum of 17.7% at another. The mean infection rate in *G. nashi* was 6.0%. Up to 49% of bloodmeals of *G. tabaniformis* were from cattle. Trypanosome prevalence in cattle where *G. tabaniformis* appeared to be the main vector was 9.5% and 5.4% at the Mushie and OGAPROV ranches, respectively. A highly significant positive correlation was found between tsetse challenge and trypanosome prevalence in N'Dama cattle across sites. Tsetse challenge was defined as the product of tsetse relative densities, trypanosome infection rates in the flies and the proportion of feeds taken by them from cattle. Thus, *G. tabani-formis* can be an important vector of pathogenic *Trypanosoma* species in cattle.

6844 Makumi, J.N. and Moloo, S.K., 1991. *Trypanosoma vivax* in *Glossina palpalis gambiensis* do not appear to affect feeding behaviour, longevity or reproductive performance of the vector. *Medical and Veterinary Entomology*, 5 (1): 35–42. KETRI, P.O. Box 362, Kikuyu, Kenya; ILRAD, P.O. Box 30709, Nairobi, Kenya. (Correspondence to Moloo.)

Feeding behaviour of *G. p. gambiensis* infected with *T. vivax* was studied and compared with that of uninfected control tsetse. The parameters measured were: total number of probes into the ear-skin of rabbits; rate of bloodmeal engorgement; weight of freshly ingested blood; survival; and mean weight of pupae. The results showed that the rosettes of *T. vivax* parasites in the labrum did not interfere with the feeding behaviour of the vectors. Furthermore, mean survival of *T. vivax*-infected males was significantly higher (82.2 ± 4.2 days) compared with that of uninfected ones (70.5 ± 3.1 days). However, with the female tsetse, mean survival of those infected was lower (98.8 ± 4.0 days) compared to the uninfected controls (102.2 ± 5.6 days), but the difference was not significant. A few infected males and females lived a little longer than the uninfected ones. Fecundity of the female tsetse remained unaffected by the infection, and furthermore the mean weight of pupae from the infected females was not significantly different from that of pupae from the uninfected control group. Thus, the physiology of pregnant female tsetse in terms of nourishment of the intra-uterine larva was unaffected by *T. vivax* infection.
Two successive probes into the skin of two different goats followed by feeding on a third goat by each of four infected tsetse resulted in successful transmission of the infection to 11 out of 12 goats. Thus probing alone into the skin of this host can result in the transmission of *T. vivax* infection.

Factors affecting the remarkably low trypanosome infection rates observed in wild tsetse populations are evaluated in this review article. They include: temperature, age of the fly, age structure of fly populations, fly sex and species, availability of infected hosts, fly feeding preferences, infectivity of different trypanosome species, and susceptibility of individual flies to infection. Immunological studies show that trypanosomes are killed by a lectin secreted by the tsetse midgut. This lectin exists at very low levels in teneral flies, which are more susceptible to trypanosome infection. Lectin secretion is increased in response to blood serum and infection rates are low in flies that have taken a blood meal. The amount of midgut lectin secreted varies according to species of fly and those which secrete more, such as *Glossina palpalis palpalis*, are relatively poor vectors. Notwithstanding, haemolymph lectin stimulates the maturation of established infections. A maternally-inherited extrachromosomal factor that increases the susceptibility of flies to infection has been identified as rickettsia-like organisms.

Trypanosomes from 36 midgut infections were isolated in procyclic culture from *Glossina morsitans submorsitans* and *G. palpalis gambiensis* in The Gambia. Twenty-eight stocks (78%) were identified using DNA probes specific for: (a) *Trypanosoma (Nannomonas) congolense* savanna type, (b) *T. (N.) congolense* riverine-forest type, (c) *T. (N.) simiae* and (d) *Trypanozoon*. *T. simiae* and savanna type *T. congolense* were found only in *G. m. submorsitans* while the riverine-forest
type *T. congolense* was restricted to populations of *G. p. gambiensis* from two isolated areas of relict forest; one *Trypanozoon* stock was isolated from *G. m. submorsitans*. *T. congolense* accounted for only 17% of all *Nannomonas* infections, as identified by dissection, in *G. m. submorsitans*. This re-emphasises the importance of differentiating infections below the subgeneric level when estimating challenge to domestic animals. *T. simiae* could not be distinguished from *T. congolense* by the arrangement of trypanosomes in the fly proboscis. The eight stocks which were not identified by DNA probes were separated into two groups on the basis of hybridisation with total DNA probes and the cycle of development in experimental tsetse. One group of four isolates, all from *G. m. submorsitans*, was a new kind of *Nannomonas* which appeared to be common and widespread in The Gambia. The second group, which was found only in *G. p. gambiensis*, had a stercorarian cycle of development, maturing in the hindgut, and was morphologically similar to insect forms of the crocodile parasite *T. grayi*.

ITC, P.M.B. 14, Banjul, Gambia; ABOS, Belgian Medical Development Cooperative, Brussels, Belgium; ibid. and Institute of Tropical Medicine, B-2000 Antwerp, Belgium.

In an area of endemic *gambiense* sleeping sickness in southern Sudan, the vegetation around 40 wells was categorised in terms of potential habitat for the vector, *G. fuscipes*, and the probability of repeated man/fly contact. These observations were related to the results of sleeping sickness surveys including the use of serodiagnostic (ICHA and CATT) tests which allowed the detection of the great majority of cases. Riverine woodland and gallery forest were the primary habitat of *G. fuscipes* and 1286 people using wells in this vegetation had an 11.1% infection rate including parasitological, clinical and serological cases. In contrast, 638 people using wells in open situations, where the presence of *G. fuscipes* was unlikely, showed a significantly lower (4.5%) infection rate. These observations provide a basis for planning localised tsetse control, using, for example, insecticide-
impregnated targets, coordinated with mass survey and treatment of the human population.

5. human trypanosomiasis
(a) SURVEILLANCE
[See also 14: nos. 6818, 6873.]

CUSS, University of Yaoundé, Yaoundé, Cameroon; OCEAC, Yaoundé, Cameroon; ibid.; Directorate of Preventive Medicine, Ministry of Health, Yaoundé, Cameroon.

We report the reactivation of an old sleeping sickness focus in Mamfe (Cameroon). Screening of 9827 people using the Testryp CATT gave a total of 137 positive cases (1.4%). The prevalence of CATT positivity was significantly linked to sex, age, place of residence and type of occupation of the people. Twenty-six of these immunological suspects were later confirmed as sleeping sickness patients, giving a morbidity index of 0.26%. Only 44% of 16 sera from these confirmed patients were CATT positive on serum while only 31% of the sera had a positive IFAT reaction, supporting the hypothesis of the existence of a new *Trypanosoma brucei gambiens* serodeme in this region. The reasons for the reactivation of this old sleeping sickness focus are discussed.

Pathology Division, NITR, P.M.B. 2077, Kaduna, Nigeria.
In recent surveys of Bauchi, Benue, Gongola, Kaduna, Kano, Niger and Plateau States of Nigeria, sleeping sickness was identified in all communities visited. This followed the introduction of an improved sensitive immunological technique, the Cellognost indirect haemagglutination (IHA) test, to support the conventional parasitological methods of diagnosis. A high infection rate of 41% was recorded by the IHA test in a definitive assay, instead of the 0.36% rate observed by the parasitological methods. The results highlight the inadequacies of the conventional parasitological methods. A great concern is hereby expressed for the welfare of the rural farming
communities among whom the devastating consequences of this disease are manifested.

The countries covered are Benin, Burkina Faso, Côte d'Ivoire, Mali, Niger, Senegal and Togo. Data for Togo are available only since 1964. A short description is given of the situation in each country, supported by numerous tables, maps and other figures. The last case in Niger was reported in 1973 and in Senegal in 1977. In Togo there have been only eight cases since 1982 but it is feared that there may be problems ahead. In the other countries the position is regarded as encouraging but eradication is unlikely because of the number of technical, social and political-economic problems.

National Sleeping Sickness Control Programme, P.O. Box 1241, Jinja, Uganda.

During the period October to December 1990 68 cases of *rhodesiense* sleeping sickness were detected and treated in the Busoga region, 69 in Tororo district and 20 in Mukono district. The male/female ratio was 1.5, 2.0 and 0.5 respectively. During the same period 323 cases of *gambiense* sleeping sickness were reported in north-western Uganda with a male/female ratio of 0.8. Some of these cases (144) were Sudanese refugees. Compared with the previous quarter (July-September 1990), these figures represent reductions in the incidence of *rhodesiense* sleeping sickness in south-east Uganda of 43.3% in the Busoga region and 36.7% in Tororo district and an increase of 33.3% in Mukono district. The incidence of *gambiense* sleeping sickness in north-western Uganda decreased by 27.9%. The report describes the activities of the National Sleeping Sickness Control Programme (NSSCP) during the period under review: the main constraints are lack of funds, trained staff and equipment. An appendix lists the incidence of sleeping sickness per 100,000 persons in the counties and subcounties of south-eastern Uganda for which current population figures are available.

The Moissala focus in southern Chad, an ancient focus which was considered to be almost extinct in 1963, flared up again in 1965 and has produced new cases regularly ever since. On 1 January 1988 there were 41 known cases of trypanosomiasis in the focus. From March to April 1988 a survey was undertaken in 16 villages in the two worst affected cantons, Dembo and Gon, which border on the Central African Republic. A total of 2947 agglutination card tests (CATT) were carried out; 184 of them were positive, of which 176 were new suspects and eight old cases. Only 66 of the suspects had enlarged cervical lymph nodes: of the 51 it was possible to examine, two showed trypanosomes. A further 17 cases were confirmed by mAEC. The possible reasons for the large number of serologically positive cases which were not confirmed parasitologically (157) are discussed.

The control of human trypanosomiasis caused by Trypanosoma brucei gambiense in Equatorial Guinea presents several difficulties, namely the lack of symptoms in the latent phase of the infection, the low sensitivity of the classical diagnostic methods, and the difficult access to health centres experienced by part of the population. A strategy has therefore been developed which is based on the mobile unit as the operative method and on the indirect immunofluorescent antibody technique as the method of diagnosis. Details are given of the different phases of the strategy. Vector control is based on monopyramidal traps which the local communities help to maintain. At present the Trypanosomiasis Control Centre (CCT) in Bata coordinates all the action but it is planned to
integrate all aspects of trypanosomiasis control into a revised primary health care programme.

(b) PATHOLOGY AND IMMUNOLOGY

[See also 14: no. 6860.]

Projet de Recherche sur la Trypanosomiase, Zone de Santé Rurale, B.P. 186, Kasongo, Zaire.

Twin girls were born in Kasongo hospital to a woman suffering from first-stage trypanosomiasis. Physical examination of the first twin revealed abnormal archaic reflexes and a slight lack of tonus while the second twin appeared normal. Laboratory tests on the first twin gave a positive serological result (immunofluorescence) and showed trypanosomes by thick smear and buffy coat examination; the second twin's results were negative. One month after delivery the mother and the first twin received trypanocidal treatment. The second twin was followed up with weekly serological examination, the results of which became positive in the sixth week after delivery. This observation shows that a child born from a mother with trypanosomiasis should be considered at high risk of developing the disease, whatever the results of the serological and parasitological examinations at birth.

WHO, CH-1211 Geneva 27, Switzerland.

Trypanosoma cruzi can infect the placenta, with or without transmission to the foetus. Risk of congenital infections is less important in African trypanosomiasis and leishmaniasis. African trypanosomiasis frequently causes amenorrhoea, so pregnancy is rare, and if it does occur the foetus is often aborted. However, in the small proportion of patients whose pregnancies go to term, congenital infection is likely and should be borne in mind by physicians, especially when considering infection of the new-born in the first 5 days after birth when a tsetse bite is a less probable cause. The clinical picture for new-born infections is
similar to that for adults. Many cases have been successfully treated with melarsonyl-potassium.

We report the case histories of 12 patients infected by *Trypanosoma brucei gambiense* seen between 1967 and 1979. The course of the disease follows two stages, with the lymphatic and haematologic stage preceding invasion of the CNS. The following cutaneous lesions were recorded: five patients had trypanomas or chancres which are inflammatory nodules on uncovered areas; five patients showed trypanosomal skin rashes with erythematous, infiltrated, transient and recurring trypanids; five patients had soft transient oedema, affecting mainly the face; three patients experienced pruritis, which was usually mild and limited to small areas; three patients had cutaneous lesions induced by melarsoprol. Thus dermatologic features are common in human African trypanosomiasis; they were found in 75% of the patients in our department.

(c) TREATMENT

6. ANIMAL TRYPANOSOMIASIS

(a) SURVEY AND DISTRIBUTION

[See also 14: no. 6873.]

Two trypanosomiasis control projects were carried out in 1989. The ELISA technique was used to detect the incidence of trypanosomiasis in Zebu-N'Dama crossbred cattle in the Diakore area. A preliminary survey suggested that trypanosomes were rare in cattle from January to April, which is the dry season in Senegal. *Trypanosoma congolense* was most frequent in June at the start of the rainy season, which affects vector density. *T. vivax*, *T. brucei* and *T. theileri* were virtually absent. There was some discrepancy between the results obtained by microscopic examination and serological tests: only two of seven cases of *T. congolense* infection were confirmed serologically and some apparently
trypanosome-free animals were sero-positive. This is attributed to trypanosome antigenic variation and ELISA is envisaged as a test to supplement and not replace microscopic examination. The second project was an ongoing study of livestock trypanotolerance. In the study area (the villages of Yassiriba, Salamata and Tabendinta) tsetse were more frequently infected with *T. vivax* than with *T. congolense*, although *T. congolense* infections were more frequent in cattle. The relationships between size of infections, treatment given and herd dynamics are being assessed.

Micro-ELISA serological detection of antibodies was carried out on 89 N'Dama cattle sera in the department of Kolda, southern Senegal. The results indicate that most cattle in this area have antibodies for *Trypanosoma congolense*, *T. vivax* and, to a lesser extent, for *T. brucei brucei*. The widespread use of this serological technique is recommended for sero-epidemiological monitoring of the various ecological zones, particularly in tsetse-liberated regions.

The complement fixation test (CFT), indirect fluorescent antibody test (IFAT), card agglutination test for trypanosomiasis (CATT) and enzyme-linked immunosorbent assay (ELISA) were compared in their application to the serological diagnosis of *Trypanosoma equiperdum* infection in 43 horses. The CFT remains a reliable test for dourine, especially in countries where other members of the subgenus *Trypanozoon* do not occur. The IFAT is a good `back-up' test, but, requiring skilled operators, it has the disadvantage of making it labour-intensive, and interpretation of results subjective. This makes it more suited to small numbers of samples. The ELISA is suitable for large numbers of samples and could readily be used in routine
diagnostic procedures. The CATT could be of value in field situations, although it does not appear to be as sensitive as the CFT. Its possible application under these conditions should be further investigated.

(b) PATHOLOGY AND IMMUNOLOGY

Reproductive Biology Unit, College of Biological and Physical Sciences, University of Nairobi, P.O. Box 30197, Nairobi, Kenya.

Endocrine disturbances resulting from human and animal trypanosomiasis are briefly reviewed. Hypothyroidism is one of the earliest symptoms recorded in sleeping sickness patients and thyroid malfunction has also been reported from cattle, sheep and goats. Effects on reproduction resulting from reduced hormone levels include abortion, infertility, stillbirths, delayed sexual maturity and impaired ovarian and testicular function in livestock. The menstrual cycle may be affected in humans. Adrenal changes have not been extensively studied but pathological changes and hypertrophy have been reported from cattle, goats, sheep and voles (*Microtus montanus*). Pituitary damage is found in both blood borne and tissue type trypanosomiasis and it is suggested that this is mediated through impaired hypothalamic function, since replacement therapy with luteinising releasing hormone can restore gonadal function.

Zweygarth: P.O. Box 29231, Nairobi, Kenya.

The pathogenicity of the East African agents of nagana was examined in camels (*C. dromedarius*) following experimental infection. Three camels each were injected intravenously with either *Trypanosoma (T.) b. brucei*, *T. (N.) congolense* or *T. (D.) vivax*. *T. (T.) b. brucei* could be detected in the blood of infected camels 2-4 days post-infection. Parasitaemia persisted and could be demonstrated almost daily, up to the end of the observation period of 3 months. An initial rise in fever and declining values in PCV and haemoglobin content, combined with an absence of serious clinical symptoms, is for *T. (T.) b. brucei* infections very similar to
the course of subacute to chronic *T. (T.) b. evansi* infections. *T. (N.) congolense* infection of camels resulted in an acute disease leading to death between days 22 and 37 after infection. The course of the illness was characterised by fever, gravitational oedema, general weakness, extravasations into the body cavities and haemorrhages on the serous membranes. Attempts to infect camels with two different strains of *T. (D.) vivax* failed.

CTVM, Easter Bush, Roslin, Midlothian, EH25 9RG, UK; Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria.

This paper describes the investigation of a disease outbreak among ten adult pigs in Nsukka, Anambra State, Nigeria. Prior to the investigation one sow died of the disease. Trypanosomes were later detected in the blood of two of the nine pigs subsequently investigated. All the pigs were then treated with deep intramuscular injection of 8 mg/kg diminazene aceturate (Berenil). Thirty-six days after treatment a boar and a sow relapsed with signs similar to the ones shown previously. Further examination of their blood and faeces revealed nothing of parasitological significance. Following deteriorating condition and development of nervous signs the boar was salvaged while the sow died of the infection. Brain impression smears taken from both animals during post-mortem examination revealed numerous trypanosome parasites identified by morphology and blood incubation infectivity test (BIIT) as *T. b. brucei*. The clinical and economic significance of the outbreak are discussed.

Department of Veterinary Medicine, Haryana Agricultural University, Hisar-125004, India.

Twenty-four male buffalo calves were divided into four groups of six animals each. Group I animals were left as uninfected controls and animals in Groups II, III and IV were each inoculated subcutaneously with 8-10^6 *Trypanosoma evansi* trypomastigotes. Group II animals were used as infected, untreated controls and animals in Groups III and IV were treated with Gilpol (suramin) intravenously at 0.5 g/45 kg bodyweight or Tribexin
prosalt (quina-pyramine) subcutaneously as a 10% suspension at 1.3 ml/45 kg bodyweight respectively. The study was conducted for 70 days. A significant decrease in PCV, haemoglobin, mean corpuscular volume and mean corpuscular haemoglobin was seen in Group II calves. Haematological values in animals in Groups III and IV returned to pre-infection levels after treatment. Blood urea nitrogen (BUN) values significantly increased in Group II animals, while no significant alterations in blood glucose and serum creatinine levels occurred. In Group III animals, a non-significant decrease in BUN levels and a slight increase in serum creatinine levels were seen, while in Group IV animals, a significant fall in BUN levels and a slight increase in serum creatinine levels were observed.

Regional Veterinary Research Laboratory, P.O. Box 237, Kassala, Sudan.

Single and concurrent natural infections of camels with T. evansi and H. longistipes were studied in 642 camels of varying ages. The concurrent infection was found to induce the most highly significant changes in haematological parameters of infected camels: PCV (17.4%), Hb (8.5 g/100 ml), neutrophils (43.9%), eosinophils (2.9%) and lymphocytes (51.0%). This was followed by single T. evansi infection: PCV (19.6%), Hb (9.4 g/100 ml), neutrophils (43.9%), eosinophils (2.1%) and lymphocytes (51.8%); then camels positive for both H. longistipes and the mercuric chloride test: PCV (24.0%), Hb (11.2 g/100 ml), neutrophils (46.5%), eosinophils (4.5%) and lymphocytes (46.9%). Camels singly infected with Haemonchus showed significant changes in their Hb (11.9 g/100 ml) and eosinophils (7.2%) only. Those camels positive for the mercuric chloride test only had no significant changes in their PCV (24.2%) and Hb (12.1 g/100 ml) but their neutrophils (46.3%) were significantly decreased together with the increase in their lymphocytes (47.4%). The mean haematological values for apparently healthy camels were found to be: PCV (25.9%), Hb (13.1 g/100 ml), neutrophils (53.2%), eosinophils (5.7%), basophils (0.2%), lymphocytes (39.5%) and monocytes (1.4%). The data obtained from infected camels were statistically compared to those of healthy ones. Treatment of infected camels before and
after the rainy season is suggested as a practical means of control under nomadic conditions.

(c) TRYPANOTOLERANCE

[See also 14: no. 6812.]

Slotsdalen 135, 2980 Kokkedal, Denmark; ILRAD, P.O. Box 30709, Nairobi, Kenya.

As part of an embryo transfer project to produce N'Dama cattle for trypanotolerance studies in Kenya, five N'Dama heifers were superovulated with follicle stimulating hormone (FSH-P or Folltropin) six times each. The superovulations were carried out between ongoing experimental *Trypanosoma congolense* infections. Twenty-four (80%) of the 30 superovulations resulted in a good ovarian response, with 21 (70%) producing an average of 2.7 ± 0.4 embryos. The highest embryo production was achieved at the third and fourth superovulations, after which the number of embryos and their quality declined. It is recommended that, after four superovulations, the heifers are allowed to go through a normal pregnancy before being superovulated again. The overall pregnancy rate after transfer to Boran recipients was 50.9%.

ILCA, P.O. Box 46847, Nairobi, Kenya; ibid.; OGAPROV, Moanda, Gabon; ibid.

One hundred and forty-eight one-year-old N'Dama cattle, progeny of 29 sires, were exposed for 92 days to a medium natural tsetse-trypanosome challenge in Gabon, Central Africa. Matching health and performance data were recorded on 11 occasions. Average PCV and lowest PCV reached during the period were evaluated as measures of ability to control the development of anaemia. Attempts were made systematically to control other possible causes of anaemia. In animals detected as parasitaemic, those with above-average PCV values or above-average lowest PCV reached had 34% and 35% respectively higher daily weight gains than those with below-average. Even when not detected as parasitaemic, those with above-average average PCV values or above-average lowest PCV reached had 14% and 12% respectively higher gain indicating that a proportion of these
animals actually were parasitaemic. When all environmental and parasitaemia information was taken into account, the heritability of growth, average PCV and lowest PCV reached was 0.39 ± 0.31, 0.64 ± 0.33 and 0.50 ± 0.32 respectively. The genetic correlation between average PCV and growth was 0.70 ± 0.42 and between lowest PCV reached and growth was 0.28 ± 0.55. While the standard errors are large, the higher heritabilities of PCV measures compared to animal growth and the positive genetic correlations between PCV and growth do indicate an opportunity for selection on PCV when animals can be detected as parasitaemic. All heritabilities and genetic correlations increased in size when parasitaemia information was utilised in the analysis. Thus more sensitive field tests for trypanosome detection, and early onset of parasitaemia through very high natural infection or an acceptable experimental alternative, could speed up selection for ability to control the development of anaemia.

(d) TREATMENT

Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
Future research at ILRAD will include studies to determine the pharmacokinetics and urinary excretion of diminazene aceturate (Berenil) in Zebu cattle and the efficacy of various Berenil therapeutic protocols in treating *Trypanosoma congolense* infections in goats that are resistant to diminazene.

Department of Veterinary Pharmacology, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
Current research at the Glasgow University Department of Veterinary Pharmacology on the use of isometamidium chloride (Samorin) to control bovine trypanosomiasis is briefly outlined. Aspects examined include pharmacokinetics using high-performance liquid chromatographic and radioimmunoassay techniques, adverse reactions in cattle, and the toxicology of isometamidium residues in meat.

The pharmacokinetics of the antitrypanosomal drug isometamidium were studied in lactating goats after intravenous and intramuscular administration at a dose of 0.5 mg/kg bodyweight, in a crossover design at an interval of 6 weeks. Following intravenous administration, the half-life of the disappearance of the drug from plasma during the terminal phase was 3.2 h, and the mean residence time was 2.4 h. The apparent volume of distribution averaged 1.52 l/kg, and the mean total body clearance was 0.308 l/kg/h. After intramuscular administration, the absolute bioavailability was low, averaging 27%. This was consistent with a low mean maximum concentration of 24 ng/ml which occurred after 6 h. No drug was detectable (< 10 ng/ml) in milk samples collected over a period of 14 days following drug administration by either the intravenous or intramuscular route. In tissues analysed when the goats were killed 6 weeks after administration of the second dose, no drug was detectable (< 0.4 µg/g wet tissue) in the liver, kidney and muscle. However, at the injection site, drug concentrations varied from < 0.4 to 18.8 µg/g wet tissue.

Peregrine, A.S., Moloo, S.K. and Whitelaw, D.D., 1991. Differences in sensitivity of Kenyan Trypanosoma vivax populations to the prophylactic and therapeutic actions of isometamidium chloride in Boran cattle. Tropical Animal Health and Production, 23 (1): 29-38. ILRAD, P.O. Box 30709, Nairobi, Kenya; ibid.; Department of Veterinary Parasitology, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.

Isometamidium chloride was administered as a single prophylactic dose of 0.5 mg kg⁻¹ bodyweight to each of ten Boran (Bos indicus) steers. At monthly intervals following drug administration, groups of five cattle each were challenged with one of two different T. vivax populations transmitted by infected Glossina morsitans centralis; one with a stock (IL 2982) from Galana, Kenya and the other with a stock (IL 2986) from Likoni, Kenya. Prophylaxis was afforded for less than one month against the Galana T. vivax and for one month...
against the Likoni *T. vivax*. In a therapeutic study a further ten Boran steers were similarly infected with either of the *T. vivax* populations; five steers per population. Eleven days after infection all animals were treated with 0.5 mg kg\(^{-1}\) isometamidium chloride and all were cured. These findings demonstrate that, as defined in the field, the two Kenyan *T. vivax* populations express a high level of resistance to the prophylactic action of isometamidium yet a low level of resistance to the therapeutic action of the drug. The results also indicate that differences in drug resistance between different isolates play a major role in determining the apparent period of prophylaxis afforded by isometamidium chloride.

Peregrine, Jamnadass, Codjia, Mamman, Moloo, Murphy: ILRAD, P.O. Box 30709, Nairobi, Kenya; Sutherland: Department of Veterinary Physiology, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, UK; Mutharia: Department of Biochemistry, Nairobi University, P.O. Box 30197, Nairobi, Kenya; Gray: KETRI, P.O. Box 362, Muguga, Kenya; Aliu: Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria; Silayo: Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania; d'Ieteren: ILCA, P.O. Box 46847, Nairobi, Kenya.

The long-term efficacy of diminazene, homidium and isometamidium as trypanocidal drugs for cattle is being studied, with reference to their mode of action and pharmacokinetics, the phenotypic and genetic basis of resistance, and field-usable techniques for quantifying drug resistance. Current research falls into eight broad categories: the development of *in vitro* culture techniques for identifying and quantifying drug resistance; the efficacy of isometamidium chloride and diminazene aceturate in Zebu cattle; the mode of uptake of isometamidium by clones of *Trypanosoma congolense*; the epidemiology and molecular biology of drug resistance; the development of drug assays; studies on the productivity of trypanotolerant livestock by ILCA; and training and outreach.
7. EXPERIMENTAL TRYPANOSOMIASIS
(a) DIAGNOSTICS

Laboratory of Eukaryotic Gene Expression, National Cancer Institute, Frederick Cancer Research Facility, Building 539, P.O. Box B, Frederick, MD 21701, USA.

The use of recombinant DNA probes for the identification of parasitic protozoa is reviewed. Repetitive DNA sequences from cultured organisms are isolated, identified, cloned in plasmids and propagated in bacteria. The recombinant plasmid can be used as a probe to identify any organism containing similar DNA sequences. This method may be used in large-scale surveys and has a high sensitivity. Unlike ELISA it is not susceptible to antigenic variation. It can identify trypanosomes whatever their developmental stage and morphology and can distinguish between *Trypanosoma simiae* and *T. congolense*, which are morphologically identical. Recombinant DNA probes have confirmed the intra-specific division of *T. congolense* into three genetically distinct types: Kilifi type, West African forest/riverine type and savanna type. DNA probes should soon be available for routine epidemiological studies.

Federal Department of Livestock and Pest Control Services, P.O. Box 3557, Kaduna, Nigeria.

Current non-immunological methods of diagnosing African trypanosomiasis were investigated in mice and rats experimentally infected with *Trypanosoma brucei brucei*, *T. b. gambiense* and *T. congolense*. In the mouse system, the haematocrit centrifugation technique (HCT) was the most sensitive, detecting the parasite on day 2, followed by buffy coat method (BCM) on day 3, while the standard trypanosome detection method (STDM) detected the parasite on day 5. In the rat system, the HCT and BCM were consistently more sensitive than the STDM. Crude antigens of *T. b. brucei*, *T. b. gambiense* and *T. congolense* were prepared from locally isolated strains and tested by counterimmunoelectrophoresis (CIE) adapted in this study from Ouchterlony's immunodiffusion test. This system, with the crude trypanosomal antigens, was used to investigate the prevalence of human sleeping sickness and animal trypanosomiasis in Plateau State,
Nigeria. *T. b. gambiense* antigen detected multiple antibodies in sera of 74 (38.74%) of suspected sleeping sickness cases out of 191 sera tested. The positive sera were those obtained from Keffi (14), Pankshin (5), Obi (24), Akwanga (17), Keana (7), Shendam (2), Toto (3) and Dengi (2). The remaining 117 (61.26%) sera from Lafia, Barkin Ladi and Jos were negative. In the animal survey, antibody activities to *T. b. gambiense* varied from high seropositive values of 19 (59.37%) in sheep, to low values of 10 (31.25%) in cattle and 0 in domestic chicken. The CIE test detected a total of 139 (24.13%) seropositive cases while the indirect haemagglutination test was less sensitive with only 82 (14.23%) positive cases. A simple direct haemagglutination test was used to follow up immunological changes in infected rats when immunised with an innocuous antigen such as sheep red blood cells (SRBC). Control animals, Group A, immunised with SRBC only, showed remarkable antibody responses which were detectable on day 5, with a mean titre of 1:32 and reaching a maximum titre of 1:256 by day 19. Another group of rats, Group C, immunised and challenged simultaneously with *T. b. brucei*, showed severe immunodepression. Antibodies were detected on day 5, with a mean titre of 1:21 which was the highest recorded in this group. Infection was patent on day 7 in rat C3, with \(2 \times 10^6\) trypanosomes per ml. The trypanosomal antigens prepared in this study recognised specific antibodies. The CIE test, as well as the haemagglutination test, proved to be a simple, relatively cheap immunodiagnostic tool for the detection and follow-up of host-parasite immunological changes during African trypanosomiasis.

(b) PATHOLOGY AND IMMUNOLOGY

Amole: Department of Medical Microbiology and Parasitology, Faculty of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

Frommel: Department of Genetics (M/C 669), University of Illinois, 808 S. Wood Street, Chicago, IL 60612, USA.

Baumann: Neurobiology INSEERM Unit 134, University Hospital La Salpêtrière, 47 boulevard de l'Hôpital, 75651 Paris Cedex, France.

Kageruka: Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.

Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.

Departamento de Parasitologia, Instituto Biocênse do `Campus do Botucatu', UNESP, 18600 Botucatu SP, Brazil.

Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

Wiesenfeld-Hallin: Department of Clinical Physiology, Section of Neurophysiology, Huddinge Hospital, S-141 86 Huddinge, Sweden.

The inhibition of polyamine synthesis in Trypanosoma brucei brucei, T. b. gambiense and T. b. rhodesiense by DL-α-difluoromethylornithine (DFMO), the specificity and efficacy of this drug in controlling trypanosomes, the susceptibility of T. b. rhodesiense to DFMO and arsenical drugs, and trypanosome resistance to DFMO and arsenical drugs are briefly reviewed.

This brief review summarises some of the major developments which have taken place during the last decade. These include research on trypanosome metabolic pathways as targets for new drugs, host-related and parasite-related drug resistance, and drug-delivery systems.

By inducing fusion between viral and cellular membranes, a virus acts as a 'transport vesicle' for delivering its contents into the host cell. The mechanism by which viral fusion proteins promote membrane fusion and the potential use of viruses in the chemotherapy of trypanosomes are briefly reviewed.

ILRAD, P.O. Box 30709, Nairobi, Kenya.

Kaminsky: ILRAD, P.O. Box 30709, Nairobi, Kenya.

City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA.

The antimalarial drugs chloroquine and qinghaosu act as a DNA intercalating agent and as an activated oxygen generator, respectively. Since African trypanosomes are known to be sensitive to intercalators and activated oxygen generators, many of the techniques used to study the pharmacology of these drugs in malaria may aid in the development of new anti-trypanosomal agents.

School of Biology and Tropical Diseases, Chemotherapy Research Unit, Sunderland Polytechnic, Sunderland SR1 3SD, UK.

KETRI, P.O. Box 362, Kikuyu, Kenya.

Research at KETRI includes studies of chemoprophylaxis and treatment of cattle, camels and goats on the local ranch under different levels of tsetse and trypanosomiasis challenge, pharmacokinetic studies in cattle and the screening of novel trypanocidal compounds in culture and in rodents and monkey models.

ILRAD, P.O. Box 30709, Nairobi, Kenya.
See also 14: nos. 6867, 6868, 6871, 6882, 6883, 6887-90, 6892-94, 6897-99, 6913, 6927, 6936, 6941, 6943.
ILRAD, P.O. Box 30709, Nairobi, Kenya.
Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
Current research on chemotherapy for trypanosomiasis control at the Central Veterinary Laboratory, Temeke, Dar es Salaam; the Centre for Tropical Veterinary Medicine, Edinburgh, UK; and Sokoine University of Agriculture, Morogoro, Tanzania is briefly outlined.
Sukanto: Research Institute for Veterinary Science, Jl.R.E. Martadinata 30, P.O. Box 52, Bogor, West Java, Indonesia.
Vellieux: BIOSON Research Institute, Department of Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, Netherlands.
Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.
Bacchi: Haskins Laboratories, Pace University, New York, NY 10038, USA.
Brun: Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland.

Zweygarth: P.O. Box 29231, Nairobi, Kenya.

8. TRYPANOSOME RESEARCH
(a) CULTIVATION OF TRYPANOSOMES
Research Unit for Tropical Diseases, International Institute of Cellular and Molecular Pathology, avenue Hippocrate 74, B-1200 Brussels, Belgium.

Yabu: ILRAD, P.O. Box 30709, Nairobi, Kenya.

Zweygarth: KETRI, P.O. Box 29231, Nairobi, Kenya.

(b) TAXONOMY, CHARACTERISATION OF ISOLATES
TRL, Department of Veterinary Medicine, University of Bristol, Langford House, Langford, Bristol BS18 7DU, UK. (Correspondence to Godfrey.)
Professor Kershaw's encouragement of the development of anion-exchange separation of African trypanosomes from blood led to two decades of activity when, for the first time, considerable progress was made in the intrinsic characterisation of these parasites. Such characterisation depended on establishing high infections in laboratory rodents. However, the
A collection of samples from the field was restricted by the failure of certain trypanosomes either to infect, or to multiply adequately in, rodents. More recently, in vitro culture has come to play an increasingly important role in producing material. By obtaining procyclic forms directly from wild tsetse flies, or by transforming low numbers of bloodstream forms in field samples to the procyclic phase in experimental tsetse, trypanosomes of poor or nil infectivity to rodents were readily cultured in the large amounts required for biochemical characterisation. A number of specimens of a new kind of Nannomonas, of Trypanosoma simiae, of T. grayi, and of an antigenically distinct T. brucei gambiense were found. Evidence is presented that many other kinds of trypanosome may be eluding isolation by their inability to infect rodents.

(c) LIFE CYCLE, MORPHOLOGY, BIOCHEMICAL AND MOLECULAR STUDIES

Clarkson: Department of Medical and Molecular Parasitology, New York University Medical Center, 341 East 25th Street, New York, NY 10010, USA.

Department of Biology, Northeastern University, Boston, MA 02115, USA.

Clarkson: Department of Medical and Molecular Parasitology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA.

Pays: Department of Molecular Biology, University of Brussels, 67 rue des Chevaux, B-1640 Rhode St Genève, Belgium.

Craig: Department of Pharmaceutical Chemistry, S-926, University of California, San Francisco, CA 94143, USA.

Boothroyd: Department of Microbiology and Immunology, D305 Fairchild Building, Stanford University School of Medicine, Stanford, CA 94305-5402, USA.

Köhler: Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.

Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

Florent: Fred Hutchinson Cancer Research Center, M-723 Genetics, 1124 Columbia Street, Seattle, WA 98104, USA.

Institut für Veterinär-Biochemie, Freie Universität Berlin, 1000 Berlin, Germany.

Clayton: ZMBH, Im Neuenheimer Feld 282, Postfach 106249, D-6900 Heidelberg 1, Germany.

Gibson: Department of Pathology and Microbiology, University of Bristol Veterinary School, Langford, Bristol BS18 7DU, UK.

Pays: Department of Molecular Biology, University of Brussels, 67 rue des Chevaux, B-1640 Rhode St Genèse, Belgium.

Research Unit for Tropical Diseases, International Institute of Cellular and Molecular Pathology, avenue Hippocrate 74, B-1200 Brussels, Belgium.

Lonsdale-Eccles: ILRAD, P.O. Box 30709, Nairobi, Kenya.

Research Unit for Tropical Diseases, International Institute of Cellular and Molecular Pathology, ICP/TROP 74.39, avenue Hippocrate 74, B-1200 Brussels, Belgium.

Ogawa: Institute of Physical and Chemical Research, Wako-shi, Saitama 35101, Japan.

Pamer: Department of Immunology, SL15, Health Sciences Building I-604, University of Washington, Seattle, WA 98195, USA.

155

kinase into the glycosomes of Trypanosoma brucei. (Meeting abstract no. 1090.) Journal of Cell Biology, 111 (5ii): 196a.
Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.

Walsh: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Sweeney: Division of Biological Sciences, Hatfield Polytechnic, College Lane, Hatfield AL10 9AB, UK.

Thon: Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA.

Toulmé: Laboratoire de Biophysique, INSERM U201, Muséum National d'Histoire Naturelle, 43 rue Cuvier, F-75005 Paris, France.

Meharry Medical College, Nashville, TN 37208, USA.

Department of Chemistry and Biochemistry, College of Physical Science, University of Guelph, Ontario NIG 2W1, Canada.

Protein methylases in Trypanosoma brucei brucei: activities and
Yarlett: Haskins Laboratories, Pace University, New York, NY 10038, USA.