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Foreword

These guidelines are a product of the Livestock Environmental Assessment and 
Performance (LEAP) Partnership, a multi-stakeholder initiative whose goal is to 
improve the environmental sustainability of livestock supply chains through better 
methods, metrics and data.

The aim of the methodology developed in these guidelines is to introduce a har-
monized international approach for measuring and modelling soil carbon stocks and 
stock changes from grasslands and rangelands so that environmental assessments of 
livestock supply chains take also into consideration carbon sequestration or losses. 
The methodology strives to increase understanding of carbon sequestration and to 
facilitate improvement of livestock systems’ environmental performance.

While representing a signi�cant contributor to human-induced GHG emissions, 
the livestock sector has the potential to reduce the sector’s emissions through soil 
carbon sequestration in grasslands and rangelands, which cover circa 70% of the 
global agricultural land. 

Carbon sequestration corresponds to an increase in the stock of soil carbon, 
which can be measured at farm level or estimated in different ways from balances 
of carbon �uxes. 

This work aimed at building consensus for measuring and modelling soil carbon 
stock changes in order to correctly report carbon sequestration. Overlooking or 
miscounting carbon sequestration has often resulted in misinterpretation of the en-
vironmental footprint of livestock products and also in setting sustainable dietary 
recommendations. Furthermore, measuring soil carbon stock changes is essential 
to monitor progress towards national targets set in the context of both the Paris 
Agreement’s Intended Nationally Determined Contributions (INDCs) and the 
Agenda 2030 for Sustainable Development. 

The objectives of these guidelines are:
•	To develop a harmonized, science-based approach resting on a consensus 

among the sector’s stakeholders;
•	To recommend a scientific, but at the same time practical, approach that builds 

on existing or developing methodologies;
•	To promote harmonised approaches to measuring an modelling soil carbon 

stocks and stock changes, relevant for global livestock supply chains;
•	To identify the principal areas where ambiguity or differing views exist con-

cerning the methodological framework.
During the development process, these guidelines were submitted for technical 

review and public review. The purpose was to strengthen the advice provided and 
ensure the technical document meets the needs of those seeking to improve soil 
carbon sequestration and environmental performance through sound assessment 
practice. This document is not intended to remain static. It will be updated and im-
proved as the sector evolves and more stakeholders become involved in LEAP, and 
as new methodological frameworks and data become available.

The guidelines developed by the LEAP Partnership gain strength because they rep-
resent a multi-actor coordinated cross-sectoral and international effort to harmonize 
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assessment approaches. Ideally, the harmonization leads to greater understanding, 
transparent application and communication of metrics, and, not least, real and measur-
able improvement in environmental performance.

Ruy Fernando Gil, Uruguay (LEAP chair 2018)
Pablo Manzano, International Union for Conservation of Nature (IUCN)
(LEAP chair 2017)
Hsin Huang, International Meat Secretariat (IMS) (LEAP chair 2016)
Henning Steinfeld, Food and Agriculture Organization of the United Nations 

(FAO) (LEAP co-chair)



viii

Acknowledgements

AUTHORSHIP AND DEVELOPMENT PROCESS
The Technical Advisory Group, (TAG) on soil carbon stock changes, hereafter 
called Soil Carbon TAG, is composed of experts from various backgrounds and 
areas of research and extension services, including soil science, ecology, livestock 
production systems, animal science, agriculture science, capacity development, and 
Life Cycle Assessment (LCA). The Soil Carbon TAG was formed by the Livestock 
Environmental Assessment and Performance (LEAP) Partnership.

These LEAP guidelines can be used in conjunction with other LEAP guidelines 
depending on goal and scope of the assessment.

These guidelines are a product of the Livestock Environmental Assessment and 
Performance (LEAP) Partnership. The following groups contributed to their de-
velopment:

The Soil Carbon TAG conducted the background research and developed the 
core technical content of the guidelines. The TAG was composed of 37 experts: Pete 
Millard (co-chair, Manaaki Whenua Landcare Research, New Zealand), Fernando 
A. Lattanzi (co-chair, Instituto Nacional de Investigación Agropecuaria - INIA, 
Uruguay), Aaron Simmons (Department of Primary Industries NSW, Australia), 
Amanullah  (Dept Agronomy, The University of  Agriculture Peshawar, Parkistan), 
Beáta Emoke Madari (EMBRAPA, Brazil), Bernard Lukoye Fungo (National Ag-
ricultural Research Organisation, Uganda), Beverley Henry (Queensland Uni-
versity of Technology, Australia), Bhanooduth Lalljee (University of Mauritius, 
Mauritius), Brian McConkey (Agriculture and Agri-Food Canada, Swift Current, 
Canada), Carolyn Hedley (Manaaki Whenua Landcare Research, New Zealand), 
Chiara Piccini (Council for Agricultural Research and Economics, Italy), Christo-
pher Poeplau (Thünen Institute of Climate-Smart Agriculture, Germany), Daniel 
Rasse (Norwegian Institute of Bioeconomy Research - NIBIO, Norway), Dario 
Arturo Fornara (Agri-Food & Biosciences Institute, UK), Denis Angers (Agricul-
ture and Agri-Food Canada, Canada), Ermias Aynekulu (World Agroforestry Cen-
tre, Kenya), Esther Wattel (National Institute for Public Health and the Environ-
ment, Netherlands), Francisco Arguedas Acuna (Instituto Nacional de Innovación 
y Transferencia en Tecnología Agropecuaria - INTA, Costa Rica), Gary John 
Lanigan (TEAGASC, Ireland), Guillermo Peralta (National Institute of Agricul-
tural Technology, Argentina), Johnny Montenegro Ballestero (Costa Rican Gov-
ernment, Costa Rica), Jorge Álvaro-Fuentes (Spanish National Research Council, 
Spain), Katja Klumpp (INRA, France), Martine J. J. Hoogsteen (National Institute 
for Public Health and the Environment, Netherlands), Mia Lafontaine (Friesland 
Campina, Netherlands), Miguel A. Taboada (National Institute of Agricultural 
Technology, Argentina), Miguel Mendonça Brandão (Royal Institute of Technol-
ogy, Sweden), Otgonsuren Avirmed (Wildlife Conservation Society of Mongolia, 
Mongolia), Prakaytham Suksatit (National Metal and Materials Technology Cen-
tre, Thailand), Roberta Farina (Council for Agricultural Research and Econom-
ics, Italy), Roland Kroebel (Agriculture and Agri-Food Canada, Canada), Tantely 
Raza�mbelo (University of Antananarivo, Madagascar), Valério D. Pillar (Federal 



ix

University of Rio Grande Do Sul, Brazil), Vegard Martinsen (Norwegian Univer-
sity of Life Sciences – NMBU, Norway), Viridiana Alcantara Cervantes (Food and 
Agriculture Organization of the United Nations / Federal Of�ce for Agriculture 
and Food, Germany), Xiying Hao (Agriculture and Agri-Food Canada, Canada), 
and Yuying Shen (Lanzhou University, China).

The LEAP Secretariat coordinated and facilitated the work of the TAG, guided 
and contributed to the content development and ensured coherence between the 
various guidelines. The LEAP secretariat, hosted at FAO, was composed of: Ca-
millo De Camillis (LEAP manager), Carolyn Opio (Technical of�cer and Coordi-
nator), Félix Teillard (Technical of�cer), Aimable Uwizeye (Technical of�cer) and 
Juliana Lopes (Technical of�cer, until December 2017). Viridiana Alcantara Cer-
vantes (Food and Agriculture Organization of the United Nations) supported the 
Secretariat and was in charge of this LEAP work stream from the FAO Climate, 
Biodiversity, Land and Water Department (CB) under supervision of Ronald Var-
gas (Technical of�cer and Secretary of the Global Soil Partnership).

The LEAP Steering Committee provided overall guidance for the activities of the 
Partnership and helped review and cleared the guidelines for public release. During 
development of the guidelines the LEAP Steering Committee was composed of: 
Steering committee members
Douglas Brown (World Vision, until December 2016), Angeline Munzara (World 
Vision, since November 2016, South Africa), Richard de Mooij (European Live-
stock And Meat Trading Union, EUCBV; International Meat Secretariat, IMS), 
Matthew Hooper (Embassy of New Zealand, Italy, until 2018), Don Syme (Em-
bassy of New Zealand, Italy, since May 2018), Alessandro Aduso (Ministry for Pri-
mary Industries, New Zealand, since 2018), Victoria Hatton (Ministry for Primary 
Industries, New Zealand, since January 2017), Peter Ettema (Ministry for Primary 
Industries, New Zealand), Hsin Huang (IMS, France, LEAP Chair 2016), Gaelle 
Thyriou (Beef + Lamb, IMS, New Zealand), Ben O’ Brien (Beef + Lamb, New Zea-
land, IMS, from January to December 2017), Jean-Pierre Biber (International Union 
for Conservation of Nature, IUCN, Switzerland), María Sánchez Mainar (Interna-
tional Dairy Federation, IDF, since January 2018, Belgium), Caroline Emond (IDF, 
Belgium, since January 2018), Lionel Launois (Ministère de l’Agriculture, France), 
Pablo Manzano (IUCN, Kenya, LEAP Chair 2017), Nicolas Martin (European 
Feed Manufacturers’ Federation, FEFAC, Belgium; International Feed Industry 
Federation, IFIF), Frank Mitloehner (University of California, Davis, IFIF, the 
United States of America, LEAP Chair 2013), Anne-Marie Neeteson-van Nieu-
wenhoven (International Poultry Council, IPC, the Netherlands, until May 2018), 
Peter Bradnock (IPC, since May 2018), Edwina Love (Department of Agriculture, 
Food and the Marine, Ireland), Frank O’Mara (Teagasc –Agriculture and Food 
Development Authority, Ireland), Lara Sanfrancesco (IPC, Italy), Nicoló Cinotti 
(IPC, Italy, since May 2018), Marilia Rangel Campos (IPC, Brazil), Alexandra de 
Athayde (IFIF, Germany), Julian Madeley (International Egg Commission, IEC, 
United Kingdom), Dave Harrison (Beef + Lamb, New Zealand, IMS, until De-
cember 2016), Paul McKiernan (Department of Agriculture, Food and the Marine, 
Ireland, until December 2016, LEAP Co-chair 2015), Representatives of the Inter-
national Planning Committee for World Food Sovereignty, Jurgen Preugschas (Ca-
nadian Pork Council, Canada, IMS), Nico van Belzen (IDF, Belgium, until Decem-
ber 2017), Elsbeth Visser (Ministerie van Economische Zaken en Klimaat, EZK, the 



x

Netherlands, from July 2015 to July 2016), Niek Schelling (EZK, the Netherlands, 
from July 2017 until July 2018), Henk Riphagen (EZK, the Netherlands, from July 
2016 until July 2017,), Kim van Seeters (Ministry of Agriculture, the Netherlands, 
since July 2018), Hans-Peter Zerfas (World Vision, until December 2017), Gianina 
Müller Pozzebon (Permanent representation of Brazil to FAO, Italy, since March 
2018), Felipe Heimburguer (Division of Basic Commodities, Ministry of Foreign 
Affairs, Brazil, since September 2017), Eric Robinson (Alternate Permanent Rep-
resentative of Canada to FAO, until September 2017), Tim McAllister (Agricul-
ture and Agri-Food Canada), Robin Mbae (State Department of Livestock, Kenya), 
Julius Mutua (State Department of Livestock, Kenya), Mauricio Chacón Navarro 
(Ministero de Agricultura y Ganadería, MAG, Costa Rica), Fernando Ruy Gil (In-
stituto Nacional de Carnes, INAC, Uruguay, LEAP Chair 2018), Walter Oyhant-
cabal (Ministerio de Ganadería, Agricultura y Pesca, Uruguay), Francois Pythoud 
(Permanent representative of Switzerland at FAO), Alwin Kopse (Swiss Federal 
Of�ce for Agriculture, FOAG, Switzerland), Jeanine Volken (FOAG, Switzer-
land), Martin Braunschweig (Agroscope, Switzerland, until December 2017), Jen-
nifer Fellows (Permanent Representation of Canada to FAO), Emmanuel Coste 
(Interbev, France, IMS), Beverley Henry (International Wool and Textile Organi-
zation, IWTO, Australia, from January 2016 to December 2017), Dalena White 
(IWTO, Belgium), Paul Swan (IWTO, Australia, since March 2018), Sandra Vijn 
(World Wildlife Fund, WWF, the United States of America), Pablo Frere (World 
Alliance of Mobile Indigenous Peoples, WAMIP, Argentina), Henning Steinfeld 
(FAO - LEAP Vice-Chair), Carolyn Opio (FAO, Italy, LEAP Secretariat Coor-
dinator since Jan 2015), and Camillo De Camillis (LEAP manager, FAO), Damien 
Kelly (Irish Embassy in Italy, until June 2018), Gary John Lanigan (Teagasc–Agri-
culture and Food Development Authority, Ireland), Paul McKiernan (Department 
of Agriculture, Food and the Marine, DAFM, Ireland, until December 2016, LEAP 
Co-Chair 2015), Roberta Maria Lima Ferreira (Permanent representation of Brazil 
to FAO, Italy, until October 2017), Renata Negrelly Nogueira (from October 2017 
until March 2018), Delanie Kellon (IDF, until December 2017), Aimable Uwizeye 
(FAO), Felix Téillard (FAO), Juliana Lopes (FAO, until December 2017).

OBSERVERS
Margarita Vigneaux Roa (Permanent representation of Chile to FAO), Zoltán 
Kálmán (Hungarian Embassy in Italy), István Dani (Ministry of Agriculture, Hun-
gary, since December 2017), Of�cers of the Permanent Representation of Italy to 
the UN Organizations in Rome, Yaya Adisa Olaitan Olaniran (Embassy of Nigeria 
in Italy), Of�cers of the United States of America Embassy in Italy and of USDA, 
the United States of America, Ian Thompson (Sustainable Agriculture, Fisheries 
and Forestry Division, Australia), Rosemary Navarrete (Sustainable Agriculture, 
Fisheries and Forestry Division, Australia), Mark Schipp (Department of Agri-
culture and Water Resources, Australia), María José Alonso Moya (Ministerio de 
Agricultura, Alimentación y Medio Ambiente, Spain), Wang Jian (Department of 
Livestock Production, Ministry of Agriculture, People’s Republic of China), Li 
Qian (Department of International Cooperation, Ministry of Agriculture, People’s 
Republic of China), Tang Liyue (Permanent Representation of People’s Repub-
lic of China to the United Nations Agencies for Food and Agriculture in Rome), 
Nazareno Montani (Permanent Representation of Argentina to FAO), Margarita 



xi

Vigneaux Roa (Embassy of Chile in Italy), Keith Ramsay (Department of Agricul-
ture, Forestry and Fisheries, South Africa), Madan Mohan Sethi (Embassy of India 
in Italy), Lucia Castillo-Fernandez (European Commission, Directorate-General 
for International Cooperation and Development, Belgium), Rick Clayton (Health 
for Animals, Belgium), Eduardo Galo (Novus International), Coen Blomsma (Eu-
ropean Union vegetable oil and protein meal industry association, Fediol, Belgium), 
Jean-Francois Soussana (INRA, France), Fritz Schneider (Global Agenda For Sus-
tainable Livestock), Eduardo Arce Diaz (Global Agenda for Sustainable Livestock), 
Harry Clark (Global Research Alliance), Angelantonio D’Amario (EUCBV, Bel-
gium, IMS), Brenna Grant (Canadian Cattlemen’s Association, IMS), Philippe Bec-
quet (DSM, Switzerland, IFIF), Maria Giulia De Castro (World Farmers Organiza-
tion, WFO, Italy), Danila Curcio (International Co-operative Alliance, Italy), Mat-
thias Finkbeiner (International Organization for Standardization, ISO; TU Berlin, 
Germany), Michele Galatola (European Commission, Directorate-General for 
Environment, Belgium), James Lomax (UN Environment), Llorenç Milà i Canals 
(Life Cycle Initiative, UN Environment), Paul Pearson (International Council of 
Tanners, ICT, United Kingdom), Primiano De Rosa (Unione Nazionale Industria 
Conciaria, ICT, Italy), Christopher Cox (UN Environment), Gregorio Velasco Gil 
(FAO), James Lomax (UN Environment), Franck Berthe (World Bank), Patrik 
Bastiaensen (OIE), An de Schryver (European Commission, Directorate-General 
for Environment, Belgium), and Brian Lindsay (Global Dairy Agenda for Action), 
Judit Berényi-Üveges (Ministry of Agriculture, Hungary), Csaba Pesti (Agriecon-
omy research institute, Hungary), María José Alonso Moya (Ministerio de Agricul-
tura, Alimentación y Medio Ambiente, Spain), Pierre Gerber (World Bank), Rogier 
Schulte (Wageningen University, the Netherlands, LEAP Co-Chair 2015 on behalf 
of Ireland), Peter Saling (ISO, since February 2018; BASF), Erwan Saouter (Eu-
ropean Food Sustainable Consumption and Production Roundtable), Ana Freile 
Vasallo (Delegation of the European Union to the Holy See, Order of Malta, UN 
Organisations in Rome and to the Republic of San Marino, until September 2016).

Although not directly responsible for the preparation of these guidelines, the 
other Technical Advisory Groups of the LEAP Partnership indirectly contributed 
to this technical document.

The team composed of Pete Millard (Manaaki Whenua Landcare Research, New 
Zealand) and Camillo De Camillis, Enrico Masci, Ginevra Virgili and Claudia Ciar-
lantini (FAO) was in charge of editing, proofreading, formatting, �gures design and 
layout for this publication.



xii

Multi-step review process

The initial draft guidelines developed by the TAG over 2017 and 2018 went through 
an external peer review before being revised and submitted for public review. Mat-
thew Brander (ISO, The University of Edinburgh), Jean-Baptiste Dollé (IDELE, 
France), Wim de Vries (Wageningen University), Marie Trydeman Knudsen (Aar-
hus University, Denmark), Budiman Minasny (University of Sydney), Bruno José 
Rodrigues Alves (Embrapa, Brazil) and the Intergovernmental Technical Panel on 
Soils peer reviewed these guidelines in early 2018. 

The LEAP Secretariat reviewed this technical guidance before its submission for 
both external peer review and public review. The LEAP Steering Committee also 
reviewed the guidelines at various stages of their development and provided addi-
tional feedback before clearing their release for public review. The FAO Climate, 
Biodiversity, Land and Water Department (CB), WWF, Agriculture and Agri-Food 
Canada, Hungary, and Costa Rica provided feedback.  The public review started 
from May, 23rd 2018 and lasted until August, 22nd 2018. The review period was also 
announced to the public through an article published on the FAO website. The 
scienti�c community working on life cycle assessment and the accounting of green-
house gas (GHG) emissions and removals from livestock was alerted through na-
tional networks of  the Global Research Alliance, “the 4 per 1000” initiative, and 
through the Livestock and Climate Change Mitigation in Agriculture Discussion 
group on the forum of the Mitigation of Climate Change in Agriculture (MICCA) 
Programme, the Global Alliance for Climate-Smart Agriculture (GACSA), IDF 
Scenv, and the LCA list held by PRé Consultants. Experts in soil carbon stocks 
assessment, carbon sequestration were informed through mailing lists, announce-
ments, articles in social networks, and newsletters.  

FAO of�cers were encouraged to participate in the public review through the 
FAO Livestock Technical Network Newsletter and through invitations to the FAO 
Climate, Biodiversity, Land and Water Department (CB) and the Secretariat of the 
Global Soil Partnership and its Intergovernmental Technical Panel on Soils. The 
LEAP Secretariat also publicized the 2018 LEAP public review through invitations 
to the Life Cycle Initiative and oral speeches in international scienti�c conferenc-
es and meetings, including those arranged by the Global Agenda for Sustainable 
Livestock, European Food Sustainable Consumption and Production Roundtable, 
World Farmers’ Organization, and the European Commission’s Product Environ-
mental Footprint. The following have participated in the public review and contrib-
uted to improving the quality of this technical document: Brenna Grant (Canfax Re-
search Services, Canadian Cattlemen’s Association), Amanullah (Dept Agronomy, 
The University of Agriculture Peshawar, Parkistan), María Sánchez Mainar (IDF), 
and Hans Blonk (Blonk Consultants). The latter was invited to check consistency 
with other LEAP guidelines and reference technical guidance documents recom-
mending approaches to account for GHG emissions from direct land use change.



xiii

Sponsors, advisors and networking

FAO is very grateful for all valuable contributions provided at various levels by 
LEAP partners.  articular gratitude goes to the following countries that have con-
tinually supported the Partnership through funding and often in-kind contribu-
tions: France, Ireland, the Netherlands, New Zealand, Canada, Switzerland, and 
Uruguay. Appreciation also goes to the French National Institute for Agriculture 
Research (INRA) for in-cash and in-kind contribution to LEAP Partnership. Par-
ticularly appreciated were the in-kind contributions from the following civil soci-
ety organizations and non-governmental organizations represented in the Steering 
Committee: the International Planning Committee for Food Sovereignty, the Inter-
national Union for Conservation of Nature (IUCN), The World Alliance of Mobile 
Indigenous People (WAMIP), World Vision and the World Wildlife Fund (WWF). 
The following international organizations and companies belonging to the LEAP 
private sector cluster also played a major role by actively supporting the project via 
funding and/or in-kind contributions: the International Dairy Federation (IDF), 
the International Egg Commission (IEC), the International Feed Industry

Federation (IFIF), the International Meat Secretariat (IMS), the International 
Poultry Council (IPC), the International Council of Tanners (ICT), the Interna-
tional Wool and Textile Organization (IWTO), European Union vegetable oil and 
protein meal industry association (Fediol), Health for Animals, Global Feed LCA 
Institute (GFLI), DSM Nutritional Products AG and Novus International. Sub-
stantial in-kind contribution came from the Intergovernmental Technical Panel on 
Soils (ITPS) of the Global Soil Partnership and New Zealand. Last but not least, 
the LEAP Partnership is also grateful for the advisory provided by the Interna-
tional Organization for Standardization (ISO), UN Environment and the Euro-
pean Commission, is glad to network with the Global Research Alliance, Life Cycle 
Initiative, Global Soil Partnership, 4 per 1000 initiative, the Global Alliance for 
Climate-Smart Agriculture (GACSA), and to share achievements in the context of 
Global Agenda for Sustainable Livestock.



xiv

Abbreviations and acronyms

C carbon

ESM equivalent soil mass

GHG greenhouse gas

IPCC Intergovernmental Panel on Climate Change

LCA life cycle assessment

MDD minimum detectable difference

MRV monitoring, reporting and veri�cation

OC organic carbon

SIC soil inorganic carbon

SOC soil organic carbon

SOM soil organic matter

UNFCCC United Nations Framework Convention on Climate Change
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Glossary

Bias In general terms, deviation of results or inferences from 
the truth, or processes leading to such deviation. More 
speci�cally, the extent to which the statistical method 
used in a study does not estimate the quantity thought to 
be estimated or does not test the hypothesis to be tested.

Carbon estimation 
area (CEA)

The area, composed of strata, for which SOC stocks will 
be estimated.

Con�dence interval A range of values, calculated from the sample observa-
tions, that is believed with a particular probability, to 
contain the true parameter value. A 95% con�dence in-
terval, for example, implies that where the estimation pro-
cess was repeated again and again, 95% of the calculated 
intervals would be expected to contain the true param-
eter value. Note that the stated probability level refers to 
properties of the interval and not to the parameter itself 
which is not considered a random variable. 

Grazing intensity Grazing intensity can be considered as a combination of 
the number of animals per unit area, coupled with the 
duration of their presence. So, the de�nition you might 
use for a steppe, with wide areas over which animals can 
move, might well be different than for an intensively 
managed farm with high stock numbers per unit area and 
frequent rotation of animals.

Measurement error Errors in reading, calculating or recording a numerical 
value. The difference between observed values of a vari-
able recorded under similar conditions and some �xed 
true value.

Random sampling Either a set of n independent and identically distributed 
random variables, or a sample of n individuals selected 
from a population in such a way that each sample of the 
same size is equally likely.

Sample A set of sampling units, that is, a selected subset of a 
population, chosen by some process usually with the ob-
jective of investigating particular properties of the par-
ent population. In these Guidelines, samples refer to soil 
cores taken in the �eld.



xvi

Sample size The number of sampling units to be included in an inves-
tigation. Usually chosen so that the study has a particular 
power of detecting an effect of a particular size.

Composite sample A sample in which the sampling units are pooled together 
and homogenised. Thus, a composite sample is taken as a 
sampling unit in a sample comprising several composite 
samples.

Sampling The process of selecting some part of a population to ob-
serve, to estimate something of interest about the whole 
population. To estimate the amount of recoverable oil in a 
region, for example, a few sample holes might be drilled, 
or to estimate the abundance of a rare and endangered bird 
species, the abundance of birds in the population might be 
estimated on the pattern of detections from a sample of 
sites in the study region. Some obvious questions are how 
to obtain the sample and make the observations and, once 
the sample data are to hand, how best to use them to esti-
mate the characteristic of the whole population.

Sampling design The procedure by which a sample of units is selected from 
the population.

Sampling error The difference between the sample result and the popula-
tion characteristic being estimated. In practice, the sam-
pling error can rarely be determined because the popula-
tion characteristic is not usually known. With appropriate 
sampling procedures, however, it can be kept small and 
the investigator can determine its probable limits of mag-
nitude.

Sampling frames The portion of the population from which the sample is 
selected. They are usually de�ned by geographic listings, 
maps, directories, or membership lists.

Soil The upper layer of earth in which plants grow, typically 
consisting of a mixture of organic remains, silt, sand, clay, 
and rock particles.

Soil organic carbon 
content

The amount of carbon in a soil sample relative to the total 
mineral content of the sample. Soil organic carbon con-
tent is expressed as a (mass) percentage. 
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Soil organic carbon 
stocks

The mass of carbon in a sample of known bulk density. 
Soil organic carbon stocks are generally expressed in 
tonnes or Mg per hectare for a nominated depth and com-
monly restricted to the fraction <2mm in size. 

Standard error The standard deviation of the sampling distribution of a 
statistic. For example, the standard error of the sample 
mean of n observations is, where σ2 is the variance of the 
original observations.

Strata The areas of a carbon estimation area that results from the 
strati�cation process

Strati�cation The division of a population into parts known as strata, 
particularly for the purpose of accounting for variation 
for a drawn sample.

Strati�ed random 
sampling

Random sampling from each strata of a population after 
strati�cation.

Stratum Each subpopulation of strata.
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EXECUTIVE SUMMARY

These guidelines aim to give a harmonised, international approach for estimating soil 
organic carbon (SOC) stock and stock changes in livestock production systems. De-
spite the attention given to SOC, current knowledge remains limited regarding SOC 
baselines and changes, the detection of vulnerable hot spots for SOC losses and op-
portunities for SOC gains under both climate and land management changes. Accu-
rate baselines are still missing for many countries and estimates of carbon �uxes due to 
changes in SOC stocks in the global carbon cycle are associated with large uncertainties. 
Global SOC stocks estimates do exist, but there is high variability in reported values 
among authors, caused by the diversity of data sources and methodologies. 

The intended uses of this document are wide, due to the range of objectives and 
scales for SOC stock change studies, for example:

•	Global or regional accounting for GHG emissions and removals from the land 
sector as a component of climate change accounting

•	Monitoring, reporting and verification obligations for the United Nations 
Framework Convention on Climate Change 

•	Analysis of the climate change impact of livestock products
•	Evaluation of the environmental impacts of grazing land management for 

animal agriculture
•	Assessment of the mitigation potential of agricultural practices at an industry, 

region or farm scale
•	Implementing mitigation options in an emissions trading or other market 

mechanism where payments for SOC sequestration depend on accurate and 
verifiable quantification

•	Research into soil and biological processes affecting SOC stocks and dynamics
In principle, anyone who has an interest in quantifying soil carbon stocks or stock 

changes should �nd these guidelines helpful. A set of methods and approaches are rec-
ommended for use by individual farmers or land managers, by those undertaking life 
cycle assessment of livestock products, policy makers, or regulators at local, regional 
or national scales. The guidelines are a product of the Livestock Environmental As-
sessment and Performance (LEAP) Partnership, a multi-stakeholder initiative whose 
goal is to improve the environmental sustainability of the livestock sector through 
better methods, metrics and data.

The table below summarises the major recommendations of the technical advisory 
group for measuring soil C stocks and stock changes and for integrating these changes 
into lifecycle assessments to evaluate SOC stock changes in reporting environmental 
performance of livestock production on rangelands and grasslands. It is intended to 
provide a condensed overview and information on the location of speci�c guidance 
within the document. LEAP guidance uses a precise language to indicate which provi-
sions of the guidelines are requirements, which are recommendations and which are 
permissible or allowable options, that intended users may choose to follow. The term 
“shall” is used in this guidance to indicate what is required. The term “should” is used 
to indicate a recommendation, but not a requirement. The term “may” is used to indi-
cate an option that is permissible or allowable.
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DETERMINATION OF SOIL ORGANIC CARBON STOCKS

Minimum measurement 
requirements

To determine SOC stocks, the user shall quantify within a speci�c soil sam-
pling depth: (i) SOC content of the �ne earth mass (< 2 mm size), (ii) coarse 
mineral fraction content (> 2 mm size) and, (iii) soil bulk density. Sampling 
depth shall be at least 30 cm, and should be as deep as possible where soil 
depth is greater than 30 cm. All samples shall be georeferenced. Appropri-
ate error and uncertainty should be reported.

2.1

Soil sampling strategy To identify the most appropriate approach for soil sampling, the user shall 
make key decisions considering: (i) purpose and linked requirements, (ii) 
strati�cation and representativeness, (iii) soil depth, and (iv) land manage-
ment. The sampling strategy should be based on a decision tree, such as the 
one provided in Figure 2.

2.2

Sampling strategy 
in relation to the 
environment

To sample a study area in a representative way, the user shall identify a 
minimum of three sampling strata (relatively homogeneous units) based on 
the main environmental factors determining SOC variability, including –
depending on the scale– climate, soil type, hydrology, topography, land use 
and management and land use history, amongst others.

2.2.1.1

Composite sampling Within each homogeneous unit (stratum) at least 5 soil cores should be col-
lected to form a composite sample. Composite samples should represent 
the total area of the unit/strata and be collected in the same day. 

2.2.2

Report SOC stocks to 30 
cm depth

Soil organic carbon stocks should be reported for the 0–30 cm layer to com-
ply with IPCC recommendations, and appropriate error and uncertainty 
should be reported. Soils less than 30 cm deep should be sampled as deep 
as possible and stocks extrapolated to 30 cm. Soils more than 30 cm deep 
should be sampled as deep as possible, and the SOC stock in the 0–30 cm 
layer shall be reported separately. Sampling to depths greater than 30 cm 
or subsampling the 0-30 layer may be warranted, however the impact of 
increased costs and potential increase in uncertainty need to be considered. 

2.2.3

Estimation of error The sampling approach shall be consistent with standard operating proce-
dures to reduce the variability originating from the sampling itself. Suf�cient 
laboratory duplicates and randomising the order of sample analysis should 
be carried out to allow quanti�cation of combined �eld and laboratory mea-
surement errors. Whenever suf�cient data and resources are available, an 
uncertainty analysis may be performed following the 2006 IPCC guideline.

2.3

Soil processing Soil processing for SOC analysis shall follow standard procedures. Con-
sistency control of procedures shall be observed during the project and if 
the analyses are done in more than one laboratory, or more than one equip-
ment/machine is measuring the same soil property, consistency check shall 
be carried out between them.

2.4

Sample storage Fresh soil samples should not be stored at temperatures higher than 4°C 
or for more than 28 days after collection. Soil samples shall be thoroughly 
homogenized. SOC content analysis shall be done in the �ne earth (< 2mm) 
fraction. For archiving, dried soil samples should be stored in a dark, cool 
and dry room for potential future use and veri�cation.

2.4.1

Bulk density 
measurements

Soil bulk density should be determined in the same core in which SOC 
concentration is measured. For estimating bulk density, direct measurement 
methods should be used, speci�cally the undisturbed (intact) core method 
and the excavation method, because these can provide the most accurate 
determination of bulk density. The clod method should not be used because 
for SOC stock measurements the bulk density of soil layers or horizons has 
to be represented.

2.4.2

SOC and SIC 
measurements

To measure the SOC correctly, contributions from SIC shall be removed. 
A small-scale acidi�cation technique using HCl followed by automated 
dry combustion is recommended. In some soils SIC could represent a sig-
ni�cant and dynamic portion of soil carbon (e.g. calcareous, irrigated, and 
amended soils), and may be quanti�ed by direct determination of total in-
organic carbon or by the difference between total soil C and SOC.

2.4.4

Laboratory 
accreditation

SOC content analysis shall be performed in a laboratory that has well estab-
lished quality control and assurance systems.

2.5

(Cont.)



xx

Topic Summary Section

SOC measurement The dry combustion method shall be used for measuring SOC content 
when possible. If not available, wet oxidation may be used, except on 
weathered soils or when charcoal is present. If dry combustion is not avail-
able, loss-on-ignition may be used on organic soils.

2.5.3

Spectroscopic 
measurements

Spectroscopic techniques -which show promise for estimating the SOC 
content and which enable the analysis of large numbers of samples- may 
be used when technical capacities for adequate chemometric calibration are 
available.

2.5.4

MONITORING SOIL ORGANIC CARBON CHANGES

Identi�cation of errors In planning a SOC stock change study, a process of identi�cation of poten-
tial sources of error and bias in SOC stock estimation shall be undertaken 
and steps should be taken to minimise their impact, as described in Chapter 
2. Consistent methodologies and practices should be used to minimise the 
minimum detectable difference (Eq. 8) and the number of samples required 
to obtain it (Eq. 9).

3.2.1

Design of a sampling 
strategy

To analyse lateral and vertical spatial variability of SOC stock, a pre-sam-
pling (5 to 10 cores per strata) of the area of interest may be undertaken 
to get an indication of the SOC stocks mean value and variability in SOC 
stocks and, therefore, attainable minimum detectable difference for a given 
sampling effort. This information should be used to guide estimation of the 
number of samples needed to determine SOC stock change with an accept-
able level of uncertainty. Based on estimated SOC stocks and variability 
from the pre-sampling and the maximum number of analyses that can be 
afforded, a decision on whether individual or composite sample cores are 
analysed should be made.

3.1.1

Minimal detectable 
difference

Minimum detectable difference calculations shall be used to estimate the 
number of samples needed to detect the expected SOC stock change (or 
alternatively the number of years required for a given rate of change in SOC 
to produce a statistically detectable change). The number of samples may 
differ between sampling campaigns (repeated measurements with baseline 
at t0) or treatments (paired plots with assumed business-as-usual baseline). 
This reduces sampling effort when the baseline was estimated with a large 
sampling size.

3.3.2

Frequency of repeated 
measures

For repeated measurements to capture SOC stock change related to man-
agement activities, sampling shall typically occur 4 to 5 years apart. Sam-
pling strategies shall always consider the estimated minimum detectable 
difference (Eq. 8) and corresponding number of required samples (Eq. 9). 
A sampling campaign should take no longer than 60 days within the same 
season, i.e. all sampling should occur no more than 30 days before/after the 
median day and month of the baseline sampling round. The record of each 
sampling round shall include the day (or days), the month (or months), the 
year (or years), and the median day.

3.4

Equivalent soil mass To consider possible changes in bulk density over time or due to manage-
ment, comparisons of SOC stocks shall be made on an equivalent soil mass 
basis (ESM). Samples from at least three discrete, contiguous and successive 
soil layers should be available to describe how bulk density and SOC con-
centrations change from the surface layer downward. Only the lowermost 
layer in any nominated ESM must be based on assumed rather than directly 
measured bulk density and SOC concentration. An exception may be made 
only when estimating SOC stock changes for a relatively small and uniform 
area without strati�cation, in which case ESM may be neglected and the 
lowest mass of all samples may be taken at baseline. When using ESM for 
repeated SOC measurements or point-in-time comparisons, estimates shall 
be made for the same point (i.e. spatial and depth) or area over time. For 
sampling schemes where individual samples are taken, these should be ag-
gregated to ensure they represent the same point or area. The method for 
calculating ESM shall remain consistent across all sampling times.

3.5.1

(Cont.)
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Comparisons of land use 
or management change

To calculate changes in SOC stock, soil samples shall be collected and ana-
lysed with a consistent sampling protocol (Chapter 2). Further, a baseline 
that corresponds to the aim of the study should be chosen using Figure 7. (i) 
Changes in SOC stocks estimated over time shall be calculated in accordance 
with recommended methods and use of statistical tools (e.g. regression analy-
sis), and in some cases knowing the ‘natural’ baseline might be necessary. (ii) 
Changes in SOC stocks estimated from paired-plot comparisons of new land 
use or management conditions against a business-as-usual baseline shall only 
be made when the starting point is consistent (i.e. same soil properties, cli-
mate, and prior land use and management); the conditions de�ning the land 
use or management states shall be thoroughly described. In both cases, esti-
mated relationships should not be extrapolated beyond the period of the last 
measurement, as changes in SOC cannot be assumed to be constant over time

3.5.2

DATA MANAGEMENT AND REPORTING

Complementary data The geographical coordinates of the sampling location and of the boundar-
ies of the represented area shall always be documented. When planning the 
assessment of SOC stock changes, possible complementary data from the 
�eld, such as net primary productivity, soil texture and pedoclimatic data, 
should be considered and collected as required.

4.1.1

Data storage Data shall be stored in a suitable format, such as the template (tab- or com-
ma-delimited text, .txt. csv), and include all necessary data for identi�cation 
(e.g., year, �eld, replicates, soil layers, etc.), variables for estimates (coarse 
fragment, roots, residual humidity), sample treatments (CaCO3, sieving, 
drying, etc.).

4.1.4

Data reporting Data/results reporting shall include a detailed description of methods in-
cluding site of stored data and metadata. Reported results should be accom-
panied by an estimate of error or uncertainty.

4.2

MONITORING CARBON CHANGES – NET BALANCE OF ATMOSPHERIC CARBON FLUXES

The use of eddy 
covariance 
measurements

When using a full-system carbon budget approach as an alternative to re-
peated physical measurement methods to determine SOC stock changes, 
it shall �rstly be established that adequate funds and equipment and a re-
search team with the required expertise can be dedicated to the project. For 
eddy covariance measurements to determine SOC stock changes, assess-
ment of site suitability shall be undertaken to determine that the spatial area 
is suf�ciently large (4 to 8 hectares, minimum, depending of wind direc-
tion) to fully quantify contributions to �uxes of all material carbon sinks 
and sources (e.g. harvest, leaching, animal products). Established research 
groups and networks (e.g. Fluxnet, Ameri�ux, NEON, ICOS) with experi-
ence in use of eddy covariance methods should be consulted when seeking 
to set up instrumentation and programs using full carbon budget methods.

5.0

MODELLING SOIL ORGANIC CARBON CHANGES

Use of models Models shall be used when the objective is to estimate or extrapolate chang-
es in carbon stocks in or to conditions in which they have not been mea-
sured e.g. soil type, climate and management. As a guiding principle, the 
complexity of the model should be aligned to the context.

6.1.1

Use of level 1 models Level 1 modelling without modi�cation may provide a �rst indication to 
predict the magnitude or direction of carbon stock changes. Level 1 model-
ling should be used when there is access to data-based factors that have been 
speci�cally determined for the system of interest (e.g. IPCC factors that 
can be adapted based on region-speci�c experiments). Users should note 
that Level 1 models can be used for reporting or claims but the simplicity 
of these models translate into limited accuracy if region speci�c factors are 
not used. 

6.2.1

Use of level 2 models Level 2 modelling should be used when regional factors for SOC change 
and factors affecting the change (e.g. humi�cation coef�cients) are not 
available, but data about plant carbon inputs and environmental parameters 
affecting carbon losses, that are needed to feed the model, are available.  

6.2.2

(Cont.)
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Use of level 3 models Level 3 modelling shall be used when the objective is to integrate the feed-
backs from multiple soil-plant-atmospheric processes on SOC dynamics. 
They should be used to investigate multiple impacts between agricultural 
management, crops and soils and to estimate the impacts of climate change 
feedbacks between crop productivity and SOC dynamics. They may be 
used to estimate the trade-offs between SOC change and other environ-
mental indicators.

6.2.3

Choice of model The choice of modelling approach should consider the purpose and spa-
tial scale of the study, as well as the availability of quality data to run the 
model. The complexity of the model should be aligned to the context, but 
the simplest, locally validated model is preferred. Internal calibration of a 
model (based on region-speci�c data), where model “factors” are adapted 
based on experiments, leads to more accurate results, regardless of the level 
of assessment.

6.3

Modelling requires a 
signi�cant investment

Signi�cant investment should be made in improving and engaging exist-
ing modelling expertise in making decisions for validation, calibration and 
implementation of selected models. This includes setting up input data to 
reduce uncertainty for sound scienti�c practice for the speci�c application. 
Users should recognise that without this investment, using a model carries a 
large risk that project results will not be accepted upon professional review.  

6.3.1

Check data availability Data availability for both model input parameters and to test model outputs 
shall be investigated before choosing a modelling approach.

6.4.1

Preliminary data The amount and type of SOC shall be used to initialise the model to pro-
duce reliable estimates of SOC amount over the simulation period. Good 
estimates of the SOC and C input from the vegetation and land use and 
conditions for many decades prior to the simulation period should be used 
to improve the ability to accurately predict the initial SOC, by calibrating 
model parameters where needed.

6.4.2.1

Preliminary check of the 
model

Before any other evaluation, preliminary model results should be graphed 
to see if they look approximately similar to the measured values. Once the 
model output appears to give a good simulation of the measured data, a full 
evaluation should be performed.   

6.4.3

Model validation and 
calibration

To minimize model uncertainty, the model shall be validated for the condi-
tions (e.g. country or climatic zone) in which it will be applied when pos-
sible. If a model is not validated for the region of interest, the model should 
be calibrated using local time series of SOC stocks. Thereby, only a limited 
number of parameters should be modi�ed and only those that do not have 
many interdependencies with other parameters. Guidance on model cali-
bration and validation and advanced methods of sensitivity and uncertainty 
analysis can be found in the appendices of this document. Because soil car-
bon turnover models are most sensitive to initial SOC stocks and carbon 
inputs, a measured baseline of SOC stock shall be used whenever available, 
and C inputs should be estimated as accurately as possible.

6.5.1

Sensitivity analysis A model sensitivity analysis and uncertainty assessment should be conduct-
ed to inform decisions about the suitability of the model, and provide valu-
able information on which model inputs and processes are most important. 

6.5.4

SPATIAL INTERPRETATION AND UPSCALING OF SOIL ORGANIC CARBON

Geostatistical sampling 
design

There is no universally best sampling design approach. For geostatistical 
analyses, collecting samples on a regular grid allows directional variograms 
over several different directions to be calculated easily, mostly along the 
axes of the grid (for regular grids, where the lag distances and directions 
are known and the number of pairs per lag interval is a function of grid 
spacing). A rule of thumb is not to estimate semivariances for lags greater 
than half the maximum distance of the sampled area. The main disadvantage 
of regular grids is that resolution is limited by grid spacing. We strongly 
recommend adding more closely spaced pairs of points at some randomly 
selected grid nodes, so that the form of the variogram at the most critical 
short distances and the nugget variance can both be better estimated.

7.2

(Cont.)
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Suitability of data When using kriging to perform a geostatistical interpolation, it should be 
checked that the data used follows a normal distribution and are spatially 
auto-correlated.

7.4

Digital soil mapping There is no spatial prediction method which is generally best for any case. 
The best method for SOC mapping should be selected on a case by case 
basis.

7.5

Reporting geostatistical 
analyses

When up-scaling SOC stock change estimates, an overview of the data in-
tegration and spatial modelling procedure as well as the related uncertainty 
should be documented and reported together with the produced maps.

7.5
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1. Introduction

1.1 OBJ ECTIVES AND INTENDED USERS 
Estimation of greenhouse gas emissions for livestock production systems world-
wide is critical for evaluating climate change mitigation options. Livestock pro-
duction systems are responsible for a large portion of the global carbon footprint 
(Ripple et al., 2014). However, they are most often based on grazed rangelands, 
grasslands and pastures, which offer signi�cant potential for carbon sequestration 
in the soil to offset greenhouse gas emissions (Conant, 2010). Nevertheless, that 
potential has been neglected in life cycle assessments of the sector (Nijdam et al., 
2012). Here, we offer guidelines for estimating soil organic carbon (SOC) stock 
changes in livestock production systems. Despite the attention given to SOC, 
knowledge about SOC baselines and changes and the detection of vulnerable hot 
spots for SOC losses and gains under climate change and changed land manage-
ment is still limited. Accurate baselines are still missing for many countries and 
estimates of SOC within the global carbon cycle are still associated with large 
uncertainties. Global SOC estimates exist, but there is high variability in reported 
values among authors, caused by the diversity of data sources and methodologies 
(Henry et al., 2009).

SOC measurements are highly variable in space, while changes over time depend 
on a multitude of factors, for which detailed information and understanding is not 
always available. There is a need to estimate benchmarks and potential changes, 
which, depending on the purpose will require different levels of data precision. The 
recommended methods provided in this document aim to align with the intended 
use and available data. Uncertainty levels thus depend on the method and the in-
tended use. 

The intended uses of this document are wide: anyone who has an interest 
in estimating SOC or stock changes should �nd these guidelines helpful. A set 
of methods and approaches are recommended to be used by individual farmers 
or land managers, or by those undertaking life cycle assessment studies, policy 
makers or regulators at local, regional or national scales. A decision-tree is pre-
sented to help the user identify and align the available data and intended use with 
a measurement or modelling method. A series of case studies is also presented to 
illustrate how to use many of the techniques and approaches that are described 
herein. 

1.Ϯ SCOPE 
The focus of these guidelines is on measuring SOC and monitoring change in SOC 
stocks in response to management practices in grasslands and rangelands. While it 
is recognised that some management practices e.g. adding manure or chemical N 
fertiliser may affect net greenhouse gas emissions of livestock production systems 
through changes in nitrous oxide emissions as well as SOC sequestration, the scope 
of these Guidelines is restricted to SOC stock changes. Further information on ac-
counting for net change in greenhouse gas emissions may be found in LEAP guide-
lines for large ruminants, small ruminants and feed.
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Measuring and modelling soil carbon stocks and stock changes in livestock production systems

1.2.1 Land use systems
These guidelines consider soils from all land use systems that directly support 
livestock production, which include lands with vegetation suitable for grazing 
or browsing use, predominantly composed of grasses, grass-like plants, forbs, or 
shrubs. These may be grasslands, savannas, steppes, wetlands, some woodland, 
some deserts, tundra, and certain forb and shrub communities, or cultivated pas-
tures on converted land. Some of these land cover types may be extensively man-
aged through �re and the control of livestock stocking, while others by practices 
such as plant species introduction, fertilization, mowing, and irrigation.

Other systems that support livestock production considered in scope for these 
guidelines include cropland producing forage that is mowed for hay or silage, or 
croplands that are producing other feed for livestock. 

1.2.2 Soil carbon
The soil C stock consists of two components: SOC and soil inorganic C (SIC). SOC 
is the carbon component of soil organic matter (SOM), a heterogeneous pool of C 
comprised of diverse materials including �ne fragments of litter, roots and soil fauna, 
microbial biomass C, products of microbial decay and other biotic processes (i.e. 
such as particulate organic matter), and simple compounds such as sugar and poly-
saccharides (Jansson et al., 2010). Soil inorganic C comprises pedogenic carbonates 
and bicarbonates, which are particularly abundant in alkaline soils. These guidelines 
consider only SOC in relation to measuring soil C stocks and stock changes, and the 
standard operational de�nition of SOC is used – organic carbon present in the frac-
tion of the soil that passes through the 2 mm sieve (Whitehead et al., 2012).

The methods described in these guidelines will focus on estimating SOC stocks 
and stock changes, considering the �ne fraction of the soil (< 2 mm). However, it 
is acknowledged that coarse fragments of belowground biomass at varying levels 
of decomposition form an important C pool associated with the soil, which should 
not be neglected. Therefore, general guidance will also be offered for measuring 
organic C stock changes considering the coarse (> 2 mm) fraction of belowground 
biomass by applying, on the same collected cores, procedures that are complemen-
tary to the ones used for the �ne soil fraction.

1.3 SOIL ORGANIC MATTER AND SOIL ORGANIC CARBON
Soil organic matter (SOM) encompasses all organic components in the soil and is 
traditionally divided into “dead” and “living” components. The living component 
includes plant roots and microorganisms and the dead component root and leaf 
litter, water soluble organic compounds, soil enzymes and the so-called humic sub-
stances (Stevenson, 1994). The dead SOM is far bigger than the living and within 
the it the humic substances are the biggest component. Dead SOM comprises the 
largest pool of recalcitrant organic carbon in the terrestrial environment. Recent 
research, including the development of new analytical and molecular techniques 
(Simpson et al., 2007) has changed our thinking about the composition of SOM. 
The majority of operationally de�ned humic material in soils is a very complex 
mixture of microbial and plant biopolymers and their degradation products, but 
not a distinct chemical category (Kelleher and Simpson, 2006; Simpson et al., 2007). 
The various compound classes and individual structures within these classes re�ect, 
to a large extent, the chemical composition within the speci�c soil microenviron-
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ment (Simpson et al., 2007). A wide range of ecosystem properties that drive inter-
actions among different soil components will ultimately de�ne the pool of persis-
tent organic residues in soil (Masoom et al., 2016; Yu et al., 2017). 

The use of comprehensive multiphase nuclear magnetic resonance (NMR) to inves-
tigate SOM in its natural state has further con�rmed that organic matter is a mixture 
of molecules, which result from the decomposition of biomass. The positioning of 
these molecules within the soil microstructure depends on molecular characteristics 
including the presence of bipolar molecules, such as carbohydrates and lipids which 
occupy the solid-water interface in the soil matrix, while lignin and most microbes 
are found in more hydrophobic inner places (Masoom et al., 2016). Lignin usually 
can be strongly associated with clay minerals and the silt fraction. The accessibil-
ity, availability, solubility and reactions of these molecules largely depend, besides 
molecular characteristics, on their position within the soil matrix, which character-
izes physical and chemical protection. Lehmann and Kleber (2016) proposed a “con-
solidated view” of SOM turnover, the so-called soil continuum model. According to 
this, SOM is controlled by parallel biotic and abiotic processes, including continuous 
decomposition of plant and animal debris and oxidation that enables solubilisation, 
or to the contrary, stabilization through chemical linkage to minerals, depending on 
the characteristics of the soil ecosystem. The persistence of SOM cannot be primar-
ily attributed to chemical recalcitrance (Marschner et al., 2008; Schmidt et al., 2011; 
Dungait et al., 2012) and is likely due in part to the capacity of the soil to stabilise C 
through the availability of charged mineral surfaces (Yu et al., 2017).

SOC is the carbon component of SOM. The theoretical C content of the different 
organic matter pools varies considerably. Despite the wide range in C concentrations 
of the different SOM pools, a single multiplication factor may be used to convert 
SOM to SOC. The most often used factor, known as the Van Bemmelen factor, is 0.58 
(Van Bemmelen, 1891). Over time, empirically found values varied from 6 to 74%. 
However, theoretically, the SOC content of SOM ranges from 40% (simple carbohy-
drates) to 71% (on the assumption that SOM consists of 80% of humins and 20% lip-
ids with C contents of 70 and 80%, respectively). A detailed literature survey on the 
SOM to SOC conversion factor by Pribyl (2010) showed a median value 51% based 
on 481 observations. For this reason, a SOM to SOC multiplication factor of around 
0.50 instead of 0.58 would result, in most cases, in a more accurate estimate of soil C 
content based on SOM measurements. For estimating changes in SOC, the carbon 
component of the SOM only is measured by quantifying C directly and reported as 
carbon stocks (Mg SOC ha-1). Therefore, for the purposes of these guidelines, conver-
sion factor from SOM to SOC is unnecessary.

1.4 LIVESTOCK SYSTEMS AND SOIL ORGANIC CARBON
Grazed livestock production systems are an integral part of the cultural, social and 
economic identity of many nations worldwide. Key agricultural commodities such 
as milk and meat come from ruminant (cud-chewing) animals, predominantly cows, 
goats and sheep (Eisler et al., 2014). Overall, livestock consume about 6 billion Mg of 
feed material in dry matter annually, including one-third or more of the world’s cereal 
grain, with 40% of such feed going to ruminants, mainly cattle, while grazed herbage 
represents 46 to 57% of the ruminants’ intake (FAO, 2002; Opio et al., 2011). 

The livestock sector has been charged as responsible for approximately 14.5% of 
all anthropogenic greenhouse gas emissions worldwide (Gerber et al., 2013) including 
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methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions. Thus, live-
stock production systems are often considered not sustainable and practical solutions 
have been sought to reduce the carbon footprint of these human-managed systems. 
Mitigation solutions include reducing emissions from enteric fermentation, better ma-
nure management and improved feed quality to optimise weight gains and reduced nu-
trient losses. Grassland management optimization to increase SOC stocks is a further 
option. However, the above cited estimations of emissions by the livestock sector do 
not consider C losses and gains in the soil.

Grasslands are of particular importance for the global carbon cycle due to their 
extent and relatively high SOC stocks, compared to equivalent croplands in tem-
perate regions. Globally, grasslands and rangelands cover 68% of the total agri-
cultural area (Leifeld et al., 2015) with estimated associated SOC stocks of 245 Gt 
(Bolin and Sukumar, 2000). Large areas of the world’s grasslands are under intensive 
environmental pressure due to degradation by overgrazing, resulting in potential 
changes in SOC stocks (Oldeman, 1994). However, at the landscape scale, differ-
ences in SOC stocks result from complex interactions among multiple variables, in-
cluding climate, land management and inherent soil biophysical attributes, such as 
soil texture and/or chemical properties (Dalal and Mayer, 1986; Grace et al., 2006; 
Badgery et al., 2014; Luo et al., 2016; Pringle et al., 2011). For example, Figure 
1 shows the relationship between rainfall and SOC at a landscape scale. Thus, to 
quantify management effects on SOC stocks, which are usually small as compared 
to effects of abiotic site conditions, long-term plot experiments are indispensable. 
Long-term �eld experiments are also important because the effect of management 
generally declines through time. This is illustrated with long-term experiments, 
stretching back to the middle of the nineteenth century (1843), which show that the 
C sequestration levels off within several decades (Poulton et al., 2018).

Major anthropogenic interventions and their potential effects on SOC dynamics 
are described below. For most of these interventions, existing studies are few in a 
global context and results often contradictory. In a comprehensive list of agricul-
tural long-term experiments of the world, only 49 out of >600 experiments were 
conducted on permanent grasslands (Debreczeni and Körschens, 2003).

Grazing intensity. In the literature, the effects of grazing on SOC stocks range 
from strongly negative (Golluscio et al., 2009) to strongly positive (Pei et al., 2008). 
McSherry and Ritchie (2013) conducted a global meta-analysis trying to explain the 
observed variation in the SOC stock response to grazing. The authors of this meta-
analysis found only a total of 17 studies and 47 individual fertilization contrasts 
(pairs), indicating the limited number of available datasets. They found that 85% 
of the variation associated with SOC was explained by key variables including soil 
texture, precipitation, grass type, grazing intensity, study duration and sampling 
depth. The abiotic and biotic context of the system in which grazing management 
occurs, is thus important to predict the direction of SOC change with grazing. For 
example, in the Central Asian dry steppe, a region with low annual precipitation, 
the risk of overgrazing and subsequent loss of vegetation cover associated with soil 
erosion and a decrease in biomass production is high (Steffens et al., 2008). Poten-
tially, livestock systems may culminate in major changes in geomorphology (soil 
erosion and deposition) with massive effects on soil carbon stocks. The elemen-
tary protocols to assess SOC change discussed in this guidance are best applied to 
landscapes with negligible contemporary erosion. McSherry and Ritchie (2013) also 
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found a strong in�uence of biotic factors, i.e. grass type and grazing intensity. For 
C3 grasses, a slightly positive response of SOC was found to light grazing, while 
moderate to heavy grazing caused a decline in SOC stocks (Reeder and Schuman, 
2002). This is in line with a more recent meta-analysis (Zhou et al., 2017), which 
mainly summarized studies conducted in China. The opposite trend was observed 
for mixed C3/C4 grasslands and C4-dominated grasslands, in which SOC stocks 
showed a positive response to increasing grazing intensity (Frank et al., 1995; Dern-
er and Schuman, 2007; López-Mársico et al., 2015). In conclusion, grazing effects on 
SOC stocks are certainly site speci�c, but might be best described by an optimum 
curve with SOC gains in light to moderate grazing intensities (depending on the 
abundance of C4 species) due to stimulated productivity and root turnover (Zhou 
et al., 2017) and the risk of SOC losses via overgrazing. According to Oldeman 
(1994), approximately 7.5% of global grassland soils are degraded by overgrazing.

Fertilization. Livestock systems receive either organic (e.g. farmyard manure, 
slurry or sewage sludge), or mineral fertilizers, which contain a combination of 
macronutrients such as nitrogen (N), phosphorus (P) and potassium (K), to stimu-
late plant growth. Nutrient availability is one of the most critical factors affecting 
the build-up of SOM, especially the formation of more stable fractions (Kirkby  
et al., 2013). Nitrogen availability is essential for enhancing the accumulation of 
SOC (Boddey et al., 2010) and it has been shown that the presence of N2-�xing 
legume plants can signi�cantly contribute to improve soil SOC stocks (Tarré et al., 
2001; Fornara and Tilman, 2008).

Figure 1 
Rainfall and SOC at a landscape scale

Sources: Soil organic carbon pools to 30 cm depth across a mean annual precipitation gradient in the North 
American Great Plains.
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Increased plant biomass following fertilisation tends to result in greater carbon 
inputs to the soil, with associated positive effects on SOC stocks (Kätterer et al., 
2012). Furthermore, organic fertilizer application is an additional source of carbon 
input, leading to increased SOC stocks. Recently, Fornara et al., (2016) showed that 
in after 43 years of liquid manure applications at one site, SOC stocks had increased 
by ~21 Mg ha-1 as compared to unfertilized control soils. In a literature review, 
Conant et al. (2001) found a signi�cantly positive effect of fertilization (both or-
ganic and inorganic fertilization combined) on SOC stocks with an annual seques-
tration rate of 0.3 Mg ha-1y-1. However, fertilization effects on SOC dynamics are 
certainly more complex than a mere change in carbon inputs. For example, Bélanger 
et al. (1999) found no difference in belowground biomass after long-term NPK 
fertilization, but a strong negative correlation of SOC stocks and soil pH, with 
the latter declining upon fertilization. Unchanged belowground biomass despite 
higher aboveground biomass upon fertilization can be explained by altered plant 
C allocation with higher investment into aboveground biomass due to light rather 
than nutrient limitation (Poeplau, 2016). Sochorová et al. (2016) found a signi�cant 
decrease in SOC stocks with CaNP fertilization as compared to Ca or no fertil-
ization, despite much higher aboveground biomass in the CaNP treatments. This 
was explained by decreased colonization of arbuscular mycorrhiza fungi (AMF) 
following CaNP fertilization, which play an important role in SOC build up and 
stabilization. 

Spohn et al. (2016) found a strong positive effect of NK, NP and NPK fertiliza-
tion on microbial carbon use ef�ciency, which is considered a key factor for carbon 
sequestration (Manzoni et al., 2012). Altered nutrient availability can thus in�uence 
SOC cycling in various ways, which are not entirely understood and thus dif�cult 
to predict. However, the repeated addition of animal slurries or manure will signi�-
cantly impact on C and N coupling with potential implications for changes in soil 
C (and N) stocks. Soils receiving either liquid slurries or manure have the ability 
to retain some of the C added through these animal wastes. For example, recent 
�ndings from a long-term grassland study showed a cattle slurry-C retention ef-
�ciency of grassland soils of 15% (Fornara et al., 2016). Similarly, �ndings from a 
meta-analysis study show a global manure-C retention coef�cient of 12% (Maillard 
and Angers, 2014). These studies suggest that the long-term addition of organic 
nutrients to soils within livestock-production systems can increase SOC stocks. 
However, the actual role of animal manure application in sequestering atmospheric 
C and mitigating climate change depends on the alternate fate of the manure (Powl-
son et al., 2011). 

Cutting frequency. In areas of intensive livestock production, animals may not 
spend much time outside the stable and are fed by hay from surrounding meadows. 
The frequency of cutting events on these meadows might in�uence SOC stocks 
due to changed net primary production (NPP) via changed canopy properties and 
plant species composition (Klimeš and Klimešová, 2002; Wohlfahrt et al., 2008). In 
addition, root turnover may be affected by cutting frequency (Volder et al., 2007). 
However, the direct effect of cutting frequency on SOC stocks is not well under-
stood and dif�cult to separate from the effect of fertilization, since more frequently 
cut meadows usually receive higher doses of fertilizer. After 19 years of cutting 
frequency contrasts ranging from 12-weekly to 2-weekly intervals with unchanged 
fertilization, Kramberger et al. (2015) found no difference in SOC stocks. While the 
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direct effect of cutting frequency might not be of signi�cance, the indirect effect via 
increased NPP might be positive for SOC accumulation, especially when a propor-
tion of the assimilated C is returned to the soil, e.g. via manure or plant residues. 
For example, Poeplau et al. (2016) found signi�cantly higher SOC stocks in fre-
quently mown urban lawns as compared to lawns that were cut only once or twice 
and explained this by higher aboveground NPP, with biomass not being removed 
but left as clippings on the lawn.

Reseeding. Reseeding is a popular and common management practice where 
grasslands are improved with newer and more desirable cultivars e.g. Lolium pe-
renne L. (perennial ryegrass) and/or Trifolium repens L. (white clover). Re-seeding 
will increase plant yields and thus the economic income from farmed grasslands. 
Re-seeding can occur via spreading of seed or through the mechanical prepara-
tion of a seedbed followed by sowing of seed into the seedbed. Where mechanical 
preparation is used, re-seeding will be associated with a great deal of physical soil 
disruption. Re-seeding has been previously linked to signi�cant changes in soil C 
and nutrient cycling in grasslands (Bhogal et al., 2000; Soussana and Lemaire, 2014). 
Other common practices associated with re-seeding such as fertilisation and liming 
help maintain plant yields (Allard et al., 2007), but their net effects on SOC stocks 
when combined with re-seeding remain poorly understood. A recent study shows 
how management-induced effects on key soil physical properties (i.e. bulk density) 
may have signi�cantly greater implications for C sequestration in permanent grass-
land soils than high disturbance (but infrequent) re-seeding events (Carolan and 
Fornara, 2016). 

Species selection. Improving grassland also comprises the choice of grass species. 
In general, species rich grasslands tend to have a higher aboveground NPP (Hooper 
et al., 2005) and to penetrate larger soil volumes due to more diverse and comple-
mentary root traits, both of which have potentially positive effects on SOC stocks. 
Experimental evidence shows how increased species richness has positive effects on 
SOC stocks (Fornara and Tilman, 2008; Steinbeiss et al., 2008; Chen et al. 2018). 
Species richness, however, may potentially negatively affect SOC if N availability 
in soils is reduced through increased complementary uptake by higher diverse plant 
communities (Niklaus et al., 2001). The introduction of N-�xing leguminous spe-
cies is generally considered positive for SOC accumulation (Conant et al., 2001; 
Conrad et al., 2017). Furthermore, the introduction of deep-rooting grass species 
can have positive effects on SOC storage (Fisher et al., 1994).

A general problem of long-term experiments on SOC responses to grassland 
management is the isolated and mostly incomplete view on those management op-
tions and thus the transferability to real life situations. For example, when the effect 
of mineral fertilization in mown grasslands on SOC stocks is assessed, this might 
not resemble the total effect of mineral fertilization. The additional mown plant 
biomass will �nd its way back to the soil, where it will further increase SOC stocks, 
which is not accounted for. More holistic, potentially farm-scale experiments would 
thus be desirable but are expensive to maintain in the long-term. Ultimately, the ef-
fect on SOC of e.g. grazing, fertilization, cutting frequency etc. all depends on how 
much extra C is given to the soil in the form of roots, crop residues or manure. If 
the practice increases plant and root growth and even deposits manure, compared to 
earlier practice SOC will increase. If the practice removes more C from the system 
than before, then SOC will decrease (Petersen et al., 2013).
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1.5 LAND USE CHANGE, LAND MANAGEMENT AND SOIL ORGANIC CARBON STOCKS 
Changes in land use and/or land management can signi�cantly affect soil C stocks 
associated with different livestock-production systems. Humans have modi�ed 
many natural and semi-natural habitats to support and develop, for example, grass-
land-based livestock economies. The signi�cant expansion of either extensively 
grazed rangelands or improved grassland systems has been often accompanied by 
important changes in ecosystem structure and function including changes in the 
ability of soils to accumulate organic C. Potentially, livestock systems may culmi-
nate in major changes in geomorphology (soil erosion and deposition) with massive 
effects on soil carbon stocks. The protocols to assess SOC change discussed in these 
Guidelines are best applied to landscapes with negligible contemporary erosion.

Soil C response to land use change or management will likely depend, at least par-
tially, on previous land uses and will thus show a ‘legacy effect’ (Foster et al., 2003), 
which could help explaining changes in soil C stocks (Guo and Gifford, 2002). For 
example, a generally held view is that C accumulation will be faster when the land 
use change involves a shift from cultivated (disturbed) soils to permanent grassland 
soils. It is assumed that, under constant agricultural practices (e.g. 50 to 100 years 
after a land use/management change) and at 0-30cm depth, grassland soil C will 
eventually reach a steady state and that as the C content approaches this steady 
state, rates of C accumulation will decline (Smith, 2014). It is not clear, however, 
when soil C accumulation might reach a new steady state, mainly because this will 
depend on the interaction between climatic factors and the combination of multiple 
management practices (i.e. grazing, nutrient fertilization, liming, re-seeding etc.). 
For example, results from a recent study in the UK show that permanent grass-
land soils have not yet reached C steady state after 43 years of intensive manage-
ment (Fornara et al., 2016). Other studies have shown continuing changes in SOC 
stocks over the long-term (e.g. Bellamy et al., 2005; Klumpp et al., 2011). Signi�cant 
knowledge gaps remain in relation to how past and present management might in-
�uence soil C (and N) content through changes in soil biogeochemical properties. 

Diversi�cation of agricultural landscapes may bene�t both ecosystem service de-
livery (including soil C sequestration) and biological diversity (Isbell et al., 2017). 
As an example, one possibility for landscape diversi�cation includes the adoption 
of both grazed grasslands and silvopastoral systems where livestock graze between 
widely spaced trees (Mosquera-Losada et al., 2009). The combination of grazed 
grasslands and silvopastoral systems can provide a wide range of ecosystem services 
including the regulation of nutrient and water in soils, aboveground sequestra-
tion of atmospheric CO2 in woody plants and in soils (Montagnini and Nair, 2009; 
Torralba et al., 2016). Evidence from meta-analysis studies suggest, however, that 
tree planting on permanent grassland may only have limited impact or even reduce 
rather than increase SOC content and stocks (Guo and Gifford, 2002; Laganière  
et al., 2010). Similar meta-analyses as well as long-term �eld studies show no evi-
dence of signi�cant soil C accumulation following planting trees in grasslands 
across different climatic regions (Poeplau et al., 2011; Hoogmoed et al., 2012; Bár-
cena et al., 2014; Fornara et al., 2017). More experimental studies are needed at the 
landscape level (or farm level) to be able to quantify the soil C sequestration contri-
bution of different soils within these agricultural landscapes.
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carb on stocks 

2.1 INTRODUCTION:  THE NEED TO MEASURE  
SOIL ORGANIC CARBON STOCKS 
The actual size of SOC stocks associated with different livestock systems ultimate-
ly depends on: (1) the rate of C gain or loss during a speci�c period and, (2) the 
maximum amount of C that can be stored by soils until they reach relatively stable 
SOC levels (Smith, 2014). In general, the conversion of semi-natural or natural eco-
systems to human-managed agro-ecosystems determines a decline in SOC stocks 
(Hüttl et al., 2008; Schlesinger and Bernhardt, 2013). The use of default SOC values 
(such as those determined by IPCC Guidelines 2006) or of measured SOC values 
from pristine ecosystems may not be suitable for estimating SOC stock changes 
across human-managed ecosystems. For example, the conversion of forest to pas-
ture may result, over the long-term in similar or even higher SOC stocks, despite an 
initial decline of SOC stocks (Cerri et al., 2007). 

A baseline of SOC stocks can be estimated by physical sampling and measure-
ment, modelled estimation, or assumed values. A key challenge when measuring 
SOC stocks is how to deal with the high spatial variability in SOC content and in 
soil biogeochemical properties associated with different soil and vegetation types, 
climate, land use and management (Conant et al., 2011). The initial choice of the 
method to be used will determine how robust the baseline SOC value is, which will 
then determine the possibility to detect potential changes in SOC stocks. At this 
early stage the main objective should be the selection of the most rigorous method 
possible considering the available �nancial resources and the aim of the assessment, 
which could vary depending on what spatial scale and land use and management are 
of particular interest.

Physical sampling is the required approach to quantify baseline SOC stocks 
when the main objective is to estimate SOC temporal changes. Any soil physical 
sampling needs to be well planned at the outset to ensure that main objectives will 
be met. This means considering a series of environmental factors that cause het-
erogeneity in SOC content and which are discussed in more detail in the sections 
below. Also, physical sampling methods need to ful�l standard methodology crite-
ria that will ensure con�dence in results. For example, it is essential that sampling 
methods allow parameters such as soil bulk density to be estimated.

The basic approach of physical sampling involves the collection of soil samples 
within a speci�c soil depth increment (e.g. 0-30 cm depth) using a soil corer tool of 
known volume with a diameter between 5 and 10 cm, which will allow determination 
of soil C content and bulk density (adjusted for coarse mineral fraction content, see 
section 2.4.2) or soil mass. Vertical soil coring and excavated pits are well accepted 
practices to soil sampling. The former allows a larger number of samples as it is less 
time consuming, but the latter can be a good choice to readily reveal soil pro�le char-
acteristics, reducing uncertainties of vertical soil coring related to soil compression or 
accounting for coarse mineral fragments like large gravel (Davis et al., 2018). 
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The internationally accepted operational de�nition of SOC is the organic carbon 
present in the fraction of the soil that passes through the 2 mm sieve (Whitehead  
et al., 2012), which is the �ne earth fraction. For inventory purposes, therefore, the 
measurement of SOC in the �ne soil fraction (<2mm) should be adequate. How-
ever, beyond occasionally containing mineral coarse fragments (see section 2.4.2), 
soils include macroscopic organic matter such as root fragments (see section 2.4.3). 
These are greatly variable spatially and quantitatively in the soil, ephemeral in na-
ture, and can contribute disproportionately to total organic carbon in soils. How-
ever, the assessment of the coarse organic matter may provide important ancillary 
information if done in the same soil cores (see section 2.4.3). If it is retained and 
quanti�ed as an additional source of information, it shall be separated from SOC 
quanti�cation. This will entail careful, systematic identi�cation, separation and op-
tionally quanti�cation of organic layers (�eld inspection of the soil pro�le) and 
coarse organic matter fractions separated from the �ne mineral fraction by system-
atic dry sieving and from the coarse mineral fraction by hand sorting.

In �elds where biochar has been applied particles with diameter larger than 2 mm 
could be present. In such cases, the accounting for the SOC in the coarse fraction 
may be necessary. 

Thus, to determine SOC stocks, the following measurements are essential:
•	Quantification of the fine earth (< 2 mm) and coarse mineral fraction (> 2 mm) 

of the soil
•	Quantification of SOC concentration in the fine earth (< 2 mm) soil fraction
•	Soil bulk density or fine earth mass
Additionally, the same soil cores can be used to measure the coarse fraction of 

belowground organic carbon (see section 2.4.3).
After these parameters are measured the SOC stock can be calculated using this 

formula for each depth increment (i): 

Equation 1:

SOCi stock (Mg C ha-1) = OCi x BD�nei x (1 – vGi) x ti x 0.1

where,
SOCi = soil organic carbon stock (in Mg C ha-1) of the depth increment i 
OCi = organic carbon content (mg C g soil-1) of the �ne soil fraction (< 2 mm) in 

the depth increment i
BD�nei = the mass of the �ne earth per volume of �ne earth of the depth incre-

ment i (g �ne earth cm-3 �ne earth = dry soil mass [g] – coarse mineral fragment 
mass [g]) / (soil sample volume [cm3] – coarse mineral fragment volume [cm3])

vGi = the volumetric coarse fragment content of the depth increment i
ti = thickness (depth, in cm), of the depth increment i
0.1 = conversion factor for converting mg C cm-2 to Mg C ha-1

See section 2.4.2 for further details on the calculation of soil bulk density and 
alternative formulae for SOC stocks.

To obtain the �ne earth dry matter weight, the residual water content after soil 
drying must be subtracted from the measured weight. 

Soil coring is a seemingly simple method to use. However, it requires careful 
consideration of: (i) factors that cause heterogeneity (e.g. soil type, topography, 
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hydrology, management), (ii) the core diameter and the speci�c depth of sampling 
and, (iii) the number of cores needed to provide a statistically meaningful sample 
size. Effective soil sampling can be carried out only when homogeneous sites are 
identi�ed within the heterogeneous landscape and then a suitable number of soil 
cores are collected (see section 2.2.1, for the concept of strati�cation). 

It is highly recommended that the same methods and the same calculations are 
repeated across multiple sites to reduce uncertainty and errors. Further, when as-
sessing SOC stock changes, the equivalent soil mass principle must be considered to 
enable the identi�cation and correct quanti�cation of changes when a bulk density 
change occurs (see section 3.5.1). In this respect, it is important to remember that 
changes in coarse fragment content will increase variability in the estimation of 
SOC stocks.

RECOMMENDATION 1. To determine SOC stocks, the user 
shall quantify within a speci�c soil sampling depth: (i) SOC content 
of the �ne earth mass (< 2 mm size), (ii) coarse mineral fraction 
content (> 2 mm size) and, (iii) soil bulk density. Sampling depth 
shall be at least 30 cm, and should be as deep as possible where soil 
depth is greater than 30 cm. All samples shall be georeferenced. 
Appropriate error and uncertainty should be reported.

Ϯ.Ϯ PLANNING THE SAMPLING
The quanti�cation of SOC stocks for the assessment of SOC stock changes across 
livestock-based production systems is of great interest to a wide range of end-users, 
who might, however, have different ambitions and be motivated by different goals. 
The �owchart below (Figure 2) aims to assist end-users in the process of making in-
formed decisions about the correct way to proceed in the estimation of SOC stocks. 
It refers the user to further sections within this Chapter for further information and 
clari�cation.

RECOMMENDATION 2. To identify the most appropriate 
approach for soil sampling, the user shall make key decisions 
considering: (i) purpose and linked requirements, (ii) strati�cation 
and representativeness, (iii) soil depth, and (iv) land management. 
The sampling strategy should be based on a decision tree, such as 
the one provided in Figure 2.

2.2.1 Site heterogeneity and strati�cation
The heterogeneous nature of the soil environment affects SOC dynamics and its 
variability in space and time. At the �ne, process scale, the degree of heterogeneity 
depends on the soil physical structure, that is the spatial arrangement of solid par-
ticles (mineral particles, SOM) and pores in which �uids, decomposers and soluble 
compounds circulate (Dignac et al., 2017). At larger scales, some determinants have 
been identi�ed that signi�cantly alter the rate and direction of soil change (in past 
and present). Thus, at the landscape scale, SOC heterogeneity is driven by soil tex-
ture (Figure 3), pH, mineralogy, topology and land-use. At the plot scale, changes 
in land management (agricultural) practices and in plant species diversity and com-
position can increase SOC heterogeneity. 
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START HERE
Estimate spatial

variability of SOC stocks
with a pre-sampling

study (3.3.1)

Is the sampling
conducted for 
UNFCCC/IPCC 
accounting 

and reporting?

YES

Continue

Continue

Continue

YES

YES

Is the area to be 
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in either soil type,
climate, topography,

land use or management?

Sample at least down to
30 cm depth ideally separating

severaldepth increments 
(2.2.3), for instance the 0-5 cm 

depth increment

Sample as deep as
possible dividing in as 
many depth increments
as budget allows (2.2.3)
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Will organic amendments
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any parts of the 
sampling area?

Does the maximum number of
SOC stock measurements 

as restricted by available budget
require sample compositing?

After sample preparation (2.4.1),
can SOC content be measured

via dry combustion?

Use minimum detectable
difference calculation to 

estimate the number 
of samples needed to detect 

the expected SOC stock
change (3.3.2)

NO

NO

NO

Continue

YES

The number of (composite)
samples should be such that
the difference between two

samples taken from the same
plot at the sametimes is smaller

than the minimum 
detectable difference

Measure SOC content via wet
oxidation (2.5.2), loss on ignition

(2.5.3) or with spectropopic
techniques, when chemometric

calibration is possible (2.5.4)

When compositing samples, it should be 
ensured that, if the composite samples

is fully homogenised, SOC concentration
should equal the average SOC

value of individual cores as if each of
them was analysed separately (2.2.2)

NO

NO

Continue

Continue

YES Measure SOC content
via dry combustion

(2.5.1)

Figure 2 
Decision tree to guide the process of SOC stock measurement

Note: Green arrows following a question indicate a positive answer, red arrows a negative one. Black dashed arrows 
lead to the next question. Underlined numbers in brackets refer to subsequent sections in this Chapter, where further 
details can be found. 
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Soils used for livestock production, can show a great spatial heterogeneity in 
their properties, due to the superimposed effects of the activities of animals (graz-
ing, excreta deposition, treading).

There is also a distinct vertical distribution of C in soils, primarily associated 
with the vertical variability in organic matter input to soils and the uneven decom-
position and downward transport of SOC within a soil pro�le. The vertical distri-
bution of SOC is thus mainly controlled by climate and cultivation (Jobbágy and 
Jackson, 2000). The amount of carbon located deeper in the pro�le is negatively 
correlated with temperature and positively correlated with rainfall. With increas-
ing depth, clay content becomes the main controlling factor (Jobbágy and Jackson, 
2000). For Central and Eastern European soils, about 44 % of the total C pool 

10

10 90

20

20 80

30

30

405060
60 40

70

70 30

80

80 20

90

90 10

100

100

Percent sand
Pe

rc
en

t 
cl

ay

40 60

70

50 50

10

10 90

20

20 80

30

30

405060

60 40

70

70 30

80

80 20

90

90 10

100

100

40 60

70

50 50

10

10 90

20

20 80

30

30

405060

60 40

70
70 30

80

80 20

90

90 10

100

100

40 60

70

50 50

Pe
rc

en
t 

cl
ay

Pe
rc

en
t 

cl
ay

Percent sand

Median Upper decile

<2
2 – 3
3 – 4
4 – 5
5 – 6
6 – 7
7 – 8
8 – 9
9 – 10
10 – 11
11 – 12
12 – 13
>13

First decile C stocks (kg m–2)

Percent silt

Percent silt

Percent silt

Figure 3 
SOC stocks and soil texture

Note: Example of SOC stock variability in Central Europe dependent on soil texture. Median and decile values were 
calculated for each sub-triangle delineated by 4% classes of particle-size fractions (Arrouays et al., 2006).
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down to 1 m soil depth is located within the top 0.3 m of the soil (Batjes, 2002; 
Soussana and Lemaire, 2014).

Considering heterogeneity and spatial variability is essential when measuring 
soil carbon stocks and stock changes (see Chapter 3). In general, variability in soil 
properties becomes greater with increasing study area and considered soil depth. 
It is hard to overemphasize how critical is the consideration of spatial variability 
in SOC stocks in designing sampling schemes. Spatial variability of SOC can rise 
sevenfold when scaling up from point sample to landscape scales, resulting in high 
uncertainties in calculations of SOC stocks. This hinders the ability to accurately 
measure changes in stocks at scales relevant to emissions trading schemes (Hobley 
and Willgoose, 2010).

2.2.2 Sampling strategies
Different approaches can be distinguished when it comes to monitoring and sam-
pling. Two main sampling approaches are:

•	A design-based (classical) statistical approach, in which a randomized sam-
pling procedure is important to avoid bias;

•	A model-based (geo-statistical) approach for which randomization is not a 
prerequisite (Brus and de Gruiiter, 1997; Brus, 2014).

A combination of approaches can also be applied (Viscarra Rossel et al., 2016). 
The strategy depends primarily on the aim of the study, but also on the scale (cost): 
on a �eld level a more intensive sampling scheme might be �nancially feasible, while 
on a regional or national scale, a combination of sampling and (geo)statistical in-
ter- and extrapolation is more likely to be useful (Conant et al., 2011). As these 
guidelines target a broad audience, we will here focus on the classical design-based 
approach as it is considered easier and more commonly applied.

Well-known design-based approaches are non-strati�ed random sampling and 
strati�ed random sampling. In general, grid sampling is applied when no prior in-
formation is available in an area, while strati�ed sampling is used when prior infor-
mation is available and can be used in strati�cation. Indeed, there is a continuum 
between a grid and strati�ed sampling design (de Gruijter et al., 2016). 

The design of a sampling scheme can be determined by the indicator to be moni-
tored and the output and precision required for that indicator. If maps are required, 
a systematic grid would be appropriate for monitoring (Bellamy et al., 2005), for 
speci�c threats in certain areas (e.g. the decline of organic matter), a strati�ed ap-
proach would be more appropriate (Van Camp et al., 2004; European Commission, 
2006). Both will be brie�y explained below. 

Non-strati�ed sampling: The study area is considered a unit, sampled in a sys-
tematic or random manner. For instance, as a systematic approach, a grid or linear 
sampling pattern can be applied. When working randomly, the sample locations are 
selected at random from the area, with equal probabilities of selection and indepen-
dently from each other (Carter and Gregorich, 2007). This is done by taking the 
geographical coordinates of each sampling location from a random number genera-
tor or from a table of random numbers (Brus and De Gruijter, 1997). This method 
is not recommended here as results often have a relatively high uncertainty.

Strati�ed sampling: the study area is �rst divided into several relatively homo-
geneous units, called strata, and then random sampling is applied within each stra-
tum. We recommend using this method to determine changes in carbon stocks as 



15

Determination of soil organic carbon stocks

it is a promising strategy to reduce uncertainty (Maillard et al., 2017). Stratifying 
the study area in terms of factors that in�uence SOC stocks will normally reduce 
errors associated with project-scale estimates of SOC stocks. Indeed, at landscape/
regional scales strati�cation is crucial to reduce the uncertainties with which SOC 
stocks and changes can be estimated, as well as to enable meaningful comparison 
and integration with other inventories. Scaling up of SOC stocks from plot or farm 
level to landscape level is a critical step, and uncertainties are especially related to 
whether calculations are based on reliable spatial data.

The homogenous units are expected to have similar SOC stocks. For this reason, 
strati�cation is based on factors affecting SOC content and changes in SOC stocks, 
such as soil type (partly determined by texture), land use, topography (e.g. slope 
position), hydrology, and (micro)climate. The criteria to select strata depends on 
the scale, e.g. at a continental level, climate and soil properties tends to explain more 
variation in SOC than other factors (Jobbágy and Jackson, 2000; Ren et al., 2011). 
Local historic land use – which may not be well re�ected by current land use – often 
has a dominant in�uence at smaller scale (Vågen et al., 2006; Setiawan and Yoshino, 
2014). Stratifying on too many variables can rapidly become unmanageable in terms 
of the number of strata produced. The World Reference Base for Soil Resources of 
the FAO can be helpful in choosing different strata. More information can be found 
on the FAO website (FAO, 2019a).

Example of strati�cation
An example of strati�ed sampling followed by random sampling approach is given 
in Table 1. For the Dutch National Soil Quality monitoring program, eight main 
strata were de�ned, based on land use and soil type information derived from an 
annual agricultural census. In this census, all Dutch farmers are obliged by law to 
share information with the government on the number and type of livestock, the 
plots they own or lease, land use and management practices (such as the use of fer-
tilizers and manure). Based on the entire population of farmers, Wageningen Eco-
nomic Research creates strata of the most common combinations of land use and 
soil type (Table 1; see Wattel-Koekkoek et al., 2012 for the exact de�nition of each 
stratum).

Within each stratum, 20 farms were randomly selected and the farmers were 
asked to participate in the monitoring program. Thus, farm selection is not strictly 
random, as farmers participate voluntarily - randomly selected farmers cannot be 
forced to allow �eld workers on their land. Per stratum, 20 farms (or forests plots) 
were sampled. Over 300 small soil samples were taken for each farm, considering 
plot/paddock size when taking the samples. They were thoroughly mixed and ho-
mogenized and from this large composite sample, subsamples were taken for analy-
ses (see section 2.2.3, for more information on compositing samples). These sub-
samples are assumed to be representative for an entire farm, and the median values 
of the 20 sampled farms were assumed to be representative for the entire stratum.

Sample size (=Number of composite samples, see de�nitions in the Glossary): 
To determine the variability in the area needing to be sampled, it is recommended to 
take 5 to 10 composite samples prior to sampling (pre-sampling, see section 3.3.1). 
In case of a strati�ed sampling method we recommend a minimum of three samples 
per stratum, preferably �ve or more, depending on budget. The number of samples 
taken affects the minimum change in C stock that can be detected. For instance, 
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Conant and Paustian (2002) found that SOC changes related to grassland manage-
ment could only be veri�ed after 5-10 years by collecting 34, 224 and 501 samples 
at the county, state and national scales, respectively (USDA data). The number of 
samples in a stratum can be chosen to be proportional to its area but does not have 
to. Vanguelova (2016) recommend using 4 to a maximum of 25 samples per 0.25 ha 
plot, and at least 5 m between sampling points to eliminate spatial auto correlation. 
Quantifying SOC changes at national or regional scales require more modest sam-
pling densities (Mäkipää et al., 2008; Conant et al., 2011). More information on the 
recommended sample size can be found see section 3.3).

Where to sample, and where not to sample? Within a stratum, the sampling 
locations where soil cores are taken should be determined randomly to avoid bias. 
However, certain areas shall be excluded in grazed lands, such as patches with ani-
mal excreta, animal pathways, driveways to enter/leave �elds, very near watering 
points.

Geo-referencing: GPS coordinates of each sampling location shall be recorded, 
so that the site can always be revisited. Also, geospatial upscaling requires georefer-
enced SOC stock values (see also Chapter 7).

Volume of cores: For bulk density, the core diameter should be between 50- and 
100-mm. Cores with diameter smaller than 50 mm may hamper, if present, proper 
representation of coarse roots and coarse mineral fragments in the sample and cores 
with diameter larger than 100 mm may be dif�cult to handle. Cores with a 100 cm3 
volume (53 mm diameter, 51 mm height) are recommended by ISO 11272:2017 (Soil 
quality - Determination of dry bulk density). Ideally bulk density will be estimated 
for the same core used to collect the sample for SOC analysis (Ellert et al., 2008; 
Walter et al., 2016).

Table 1: Area and number of farms for which each stratum is representative in the Dutch 
National soil quality monitoring program (2006-2010)

Year Farm type and soil type

Number oĨ Ĩarms Ĩor 
which the sampled 

Ĩarms in a stratum is 
representative  

;й oĨ totalΎͿ

Area Ĩor wŚicŚ tŚe 
locations in a stratum is 

representative ;in 1000 ŚaͿ 
;й oĨ total area land  

in TŚe NetŚerlandsΎΎͿ

2006 Dairy cattle (low and high intensity) on sandy soils 10609 13% 405 21%

2007 Cattle breeding and dairy cattle on sandy soils 533 1% 12 1%

2007 Forest/heath on sandy soils - - 235 12%

2008 Arable farming on sandy soils 1160 2% 81 4%

2008 Dairy cattle on peat soils 3695 5% 178 9%

2009 Arable farming on sea clay 4545 6% 279 15%

2009 Dairy cattle on river clay 1223 2% 60 3%

2010 Dairy cattle on sea clay 3065 4% 170 9%

 Total   1420 74%

Source: Agricultural Census, CBS/Wageningen Economic Research, several years, in year of soil sampling of the given stratum 
(Wattel-Koekkoek et al., 2012).

* the exact number of farms is determined per year via the agricultural census. The percentages in the table were calculated based 
on the exact number of farms in the sampling year. The Netherlands on average had approximately 75.000 farms during the 
sampling period (2006-2010).

**Approximately 1.9 million ha.
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RECOMMENDATION 3. To sample a study area in a 
representative way, the user shall identify a minimum of three 
sampling strata (relatively homogeneous units) based on the main 
environmental factors determining SOC variability, including – 
depending on the scale – climate, soil type, hydrology, topography, 
land use and management and land use history, amongst others.

2.2.3 Compositing 
Compositing (or bulking) refers to the procedure of pooling together several soil 
cores (subsamples) into one homogeneous composite (or bulked) sample, which is 
then analysed for SOC content. If the composite sample is fully homogenised, SOC 
concentration should equal the average SOC value of individual cores (had each of 
them been analysed separately). Soil compositing is important for reducing both spa-
tial variability and the overall costs related to the analysis of multiple soil samples. 

The processing and analysis of a composite sample is recommended in most cases 
except when the main goal is to estimate variation of soil properties at small spatial 
scales (e.g. few meters). As a rule, the number of subsamples should be such that two 
composite samples taken from the same plot at a given point in time are no more dif-
ferent between each other than the minimum detectable change (Chapter 3). That is, 
the change in space shall not be confounded with the change in time. There is some 
evidence in the literature that this precision may be achieved by including from 4 to 6 
soil cores per composite sample (see Vanguelova et al., 2016 for details).

It is recommended that the number of homogeneous sites (i.e. number of strata) 
and soil composite samples are increased to the maximum that can be afforded to 
ensure that the:

•	Composite samples are representative of the total area,
•	Variance between composite samples collected at any individual time is 

reduced,
•	End-user’s ability to detect temporal changes in SOC stocks is increased.

RECOMMENDATION 4. Within each homogeneous unit 
(stratum) at least 5 soil cores should be collected to form a composite 
sample. Composite samples should represent the total area of the 
unit/strata and be collected in the same day.

2.2.4 Sampling depth
The depth to which soil is collected to estimate SOC stocks requires careful consid-
eration. If temporal SOC stock changes are to be used for national or global carbon 
accounting purposes under the IPCC, then stocks shall be reported for at least the 
0-30 cm pro�le (Eggleston, 2006). 

Sub-sampling within the 0-30 cm layer is sometimes desirable. But if IPCC rec-
ommendations are to be followed, the 0-30 cm sample must be collected and ana-
lysed separately. Likewise, proponents are encouraged to sample deeper, however 
following IPCC recommendations the 0-30 cm sample needs to be analysed sepa-
rately. Further, when sampling below 30 cm, the 0-30 cm and below-30 cm samples 
shall be taken from the same core, as short-range spatial variability means that us-
ing samples taken from different holes will increase error and, therefore, the ability 
to detect temporal changes. As a rule, the deeper a sample is taken the greater the 
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chances of a textural change through the pro�le and more dif�culty in homogenis-
ing the sample for analysis (see section 2.4.1).

RECOMMENDATION 5. Soil organic carbon stocks should 
be reported for the 0–30 cm layer to comply with IPCC 
recommendations, and appropriate error and uncertainty should 
be reported. Soils less than 30 cm deep should be sampled as deep 
as possible and stocks extrapolated to 30 cm. Soils more than 30 
cm deep should be sampled as deep as possible, and the SOC stock 
in the 0–30 cm layer shall be reported separately. Sampling to 
depths greater than 30 cm or subsampling the 0-30 layer may be 
warranted, however the impact of increased costs and potential 
increase in uncertainty need to be considered.

Notwithstanding the IPCC recommendations, a large proportion of SOC stocks 
is found below 30 cm, as just about 40% of SOC is in the topsoil (Soussana and Le-
maire, 2014; Orgill et al., 2014). While shorter-term changes in SOC mostly appear in 
the top of the pro�le (Conant et al., 2001), longer-term stabilization of SOC can oc-
cur in the deeper soil layers. These stores may be important for global C budgets and 
for C sequestration strategies (Batjes 1996, IGBP 1998 in Jobbágy and Jackson, 2000). 

Survey type studies have shown that short term differences in SOC stocks be-
tween land uses are more likely to occur in the upper pro�le (Badgery et al., 2014), 
while changes in deeper soil layers appear after several years (> 10 years) following 
a land use/management change (Stahl et al., 2016; Knops and Bradley, 2009). Thus, 
depending on the objectives of the programme, management and production sys-
tem applied, and the time scale considered, lower soil depths may be considered for 
SOC stock change assessment. If because of the desired sampling depth associated 
cost of analysis cannot be consolidated using standard methods of SOC analysis, 
alternative faster and cheaper SOC quanti�cation techniques may be considered 
(see sections 2.5.1 and 2.5.4).

Subsoil C frequently has a high radiocarbon age, which suggests that a high pro-
portion of this C is stable at longer timescales (Paul et al., 1997). SOC stabilization 
at depth may occur due to its interaction with the mineral phase (e.g. sorption on 
amorphous Al and Fe oxides in acid (Gu et al., 1994) or complexation with Ca2+ 
(Muneer and Oades, 1989) and organo-mineral interaction with reactive, positively 
charged minerals in near neutral soils (Grunewald et al., 2006) and occlusion in soil 
aggregates (Rasmussen et al., 2005). 

Organic C input into deeper soil horizons occurs mainly in the form of dissolved 
organic carbon via preferential �ow pathways (Kaiser and Guggenberger, 2000; Mi-
chalzik et al., 2001) or through biological disturbance (Wilkinson et al., 2009) and 
by the root system (Lorenz and Lal, 2005). Introducing deep rooting vegetation into 
shallow-rooting systems, for example, will affect the vertical distribution of SOC 
fractions (Heile et al., 2010) and potentially store C in deeper soil layers. Examples 
of this are shrub encroachment in grasslands (Jobbágy and Jackson, 2000; Allen et al., 
2016), introduction of pasture in annual crop systems or trees in annual crop systems 
or pastures/grasslands (Oliveira et al., 2017; Cardinael et al., 2017). 

SOC in deeper soil horizons, however, may be destabilized by adding more la-
bile C forms, for example through the addition of fertilizing materials (Fontaine 
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et al., 2007, Kuzyakov et al., 2000). Therefore, land use and soil management that 
affect these processes will likely in�uence subsoil C pools (Guo and Gifford, 2002; 
Wright et al., 2007; Follett et al., 2009; Strahm et al., 2009). 

2.3 ERRORS AND UNCERTAINTIES
Because the absolute true mean value of SOC stocks of a certain spatial unit is not 
possible to determine, it is good practice to report the average (usually as statisti-
cal mean or median) value and a measure for uncertainty. Uncertainty is de�ned as 
the description of the lack of knowledge of the true value of a variable based on its 
probability (IPCC, 2006). Uncertainty is often reported as the standard error of the 
mean, which accounts for the two factors that determine it: the standard deviation 
(or in a relative manner, the coef�cient of variation, also known as relative standard 
deviation) and the number of samples. In general, increasing sample size will enable 
a more precise approximation to the average resulting in smaller uncertainties.

One source of variability, and thus uncertainty, is that SOC distribution in a de-
�ned spatial unit is heterogeneous, even at �eld or plot scale. Collecting and analys-
ing several soil samples within one spatial unit (or stratum) will, therefore, always 
produce unequal values for the respective SOC stocks. Larger scales have usually a 
larger variability, especially in grasslands. For instance, in a national scale study of 
Belgium, the main source of SOC stock variability in grasslands was found to be the 
variability in the thickness of the �rst horizon (Goidts et al., 2009). Also, in stony 
soils, the rock fragment tends to largely in�uence SOC stock variability.

The intrinsic variability cannot be altered and is a given property of a certain 
spatial unit, but through optimization of sampling schemes the sampling variance 
can be effectively reduced (Pitard, 1993; De Gruijter et al., 2006). Thus, the sam-
pling strategy is of large in�uence on the sampling variance and can be evaluated 
beforehand. Arbitrary sampling or haphazard sampling is not recommended be-
cause the inclusion probabilities are unknown (Brus, 2014). The purpose of the 
SOC stock assessment shall be the driver for determining a sampling strategy (see 
section 2.2.2). In BOX 1 a case study illustrates this last point.

In addition to such intrinsic or fundamental variability of SOC stocks, further 
uncertainties arise from sampling and analytical procedures (Pitard, 1993). Such 
uncertainty of measurements can be reduced when undertaking the SOC stock as-
sessments by adequate sampling protocol and effective quality control. Errors to 
be considered include those related to sampling depth, complete removal of the 
organic layer, mix-up of sampling bags, proper mixing of composite samples as 
well as differences between laboratories in indoor-climate among other conditions 
(FAO, 2017b). 

Analytical errors are those related to the determination of SOC content or bulk 
density. A speci�c error is attached to each method and used equipment. The deter-
mination of SOC content (see also section 2.5) generally generates larger errors for 
samples with low SOC contents (Goidts et al., 2009) because most of the available 
techniques are not calibrated for low values. The use of standards for calibrating 
equipment is an essential element of good laboratory practices. Bulk density deter-
mination by the core method (see section 2.4.2) has different errors depending on 
the size of the sampling rings and the stone content of the soil, but in general smaller 
errors than estimation via pedotransfer functions (Walter et al., 2016). The analyti-
cal errors can be estimated by taking suf�cient duplicates and can be minimized by 
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randomizing the order of analysis. If block or strati�ed sampling was used, the 
randomization of the order of analysis should occur within the block.

There exist different approaches to perform a full uncertainty analysis in which 
all errors involved in the determination of SOC stocks are considered. Whenever 
suf�cient data and resources are available, uncertainties should be quanti�ed. A 
detailed guideline with worksheets is available in Chapter 3 “Uncertainties” of the 
2006 IPCC Guidelines for National Greenhouse Gas Inventories. Presented ap-
proaches include the calculation of error propagation, Monte Carlo Simulation and 
combinations of both approaches. Uncertainty quanti�cation is especially relevant 
when relatively small SOC stock changes are expected and the uncertainty is pos-
sibly larger than the detectable change (see section 3.3.2).

To order the potential sources of uncertainty at various scales, and possibilities to 
reduce them, Table 2 – a summary of sources of errors in SOC evaluation at sample, 
pro�le, plot and landscape scales by Vanguelova (2016) – should be helpful.

RECOMMENDATION 6. The sampling approach shall be 
consistent with standard operating procedures to reduce the 
variability originating from the sampling itself. Suf�cient 
laboratory duplicates and randomising the order of sample 
analysis should be carried out to allow quanti�cation of 
combined �eld and laboratory measurement errors. Whenever 
suf�cient data and resources are available, an uncertainty 
analysis may be performed following the 2006 IPCC guideline. 

Table 2: Sources of errors in SOC evaluation at sample, pro�le, plot and landscape scales.  
The sources likely to produce high errors are in bold (Vanguelova et al., 2016)
Sample Soil composite samples are not homogenised

Different analytical procedures for C applied

Bulk density is not assessed correctly

Coarse fragments volume not assessed

Separation of soil horizons and layers not done accurately

Pro�le Sampling by horizon versus soil depth depending on research aims

Sampling at not full soil depth to account for vertical variability

Plot Micro-spatial variability not accounted for (not appropriate sampling strategy)

Statistical sampling error due to different sampling schemes

Different inventory teams are not harmonised

Lacking quality of the geo-referenced (or the reported values)

Not adequate numbers of sampling points

Bulk density and coarse fraction content not analysed

Analytical (measurement) errors including sample preparation

Missing values, recording and truncation errors

Model errors (e.g. from the selection of inadequate pedotransfer rules or functions, 
inadequate model constants and conversion factors, etc. not site/soil speci�c calibrated)

Landscape 
/National

Lack of local and regional representativeness of sampling plots
Important strata are underrepresented (e.g. wet mineral soils or peat soils)

Lack of tree species/forest cover maps

Lack of accurate soil/hydrology maps

Landscape insuf�cient resolution of climatic data
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Box 1: Farm scale soil carbon auditing

Overview͗ A soil carbon auditing protocol has been developed and tested at farm-scale. It is 
designed to be appropriate for land owners to earn regulated carbon credits if a changed land 
management, e.g. a changed grazing practice, could be shown to sequester soil carbon. 

Approach:  Where national scale soil carbon maps are available, it makes sense to use them to 
guide the development of a finer scale map. Therefore, existing national scale digital soil carbon 
maps for Australia and New Zealand were downscaled (disaggregated) with local high-resolution 
environmental data, to derive fine scale soil carbon maps for a target area, maintaining mass 
balance. The fine scale soil carbon map effectively stratified the area and formed the basis for 
assigning sampling positions to collect soil samples for: (i) deriving a mean weighted estimate of 
soil carbon stocks for the target area and, (ii) associated statistical confidence of the measure-
ment. The method used a Value of Information approach, deriving an optimal sample size by 
balancing data value and data cost (taking into consideration the financial gain expected from a 
carbon trading scheme). Once the baseline carbon stocks have been established, subsequent soil 
sampling campaigns become the soil carbon monitoring programme. 

Case study:  The method was used for a 476-ha New Zealand hill country sheep and beef sta-
tion, to provide a SOC stock estimate for Time One (figure below). A national soil carbon map, at 
a nominal resolution of 1-km was disaggregated using: (i) LiDAR survey data and derived terrain 
attribute layers at 10-m resolution, and (ii) a legacy soil map. The fine scale map was then clas-
sified into four strata, to guide the soil sampling campaign. Volumetric soil carbon content was 
estimated for fifty soil cores to 0.3-m soil depth.

Summary:  The method described above stratifies an area for on-going monitoring, to estab-
lish whether carbon is being sequestered or lost from the soils. We expect soil carbon auditing 
to play a role in the future of agriculture to meet: (i) international monitoring commitments of 
greenhouse gas emissions, and (ii) regulations placed on landowners to sustain the soil resource. 

Sources: de Gruijter, J.J. (2016), Malone, B.P. (2012; 2018).

National estimate
of SCS
93.77 (54.40 − 
133.15) t C/ha 
to 0.3 m

Downscaled map:
93.26 (84.19 − 
102.32) t C/ha 
to 0.3 m

Stratification for
soil sampling
(4 strata)

A New Zealand soil carbon 
map was disaggregated 
to farm scale, using high 
resolution local data, and 
then stratified to guide a 
soil sampling campaign. 
The method is designed to 
monitor any changes in soil 
carbon stocks through time.
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Ϯ.4 SOIL PROCESSING AND ANALYSIS
Adequate sample processing is of great importance to avoid bias in SOC stock as-
sessment. During the collection and handling of samples for SOC content analysis 
(see section 2.4.1), losses of organic compounds may occur due to microbial deg-
radation, sample drying, oxidation, volatilization, and selective removal of carbon-
bearing components (Schumacher, 2002). 

The internationally accepted operational de�nition of SOC is the organic carbon 
present in the fraction of the soil that passes through the 2 mm sieve (Whitehead  
et al., 2012). For inventory purposes, therefore, the measurement of SOC in the �ne 
soil fraction (<2mm) should be adequate. However, beyond occasionally contain-
ing coarse mineral fragments (see section 2.4.2), soils include macroscopic organic 
matter such as root fragments (see section 2.4.3). These are greatly variable spatially 
and quantitatively in the soil, ephemeral in nature, and can contribute dispropor-
tionately to total organic carbon in soils. Assessment of the coarse organic matter 
may provide important ancillary information. If it is retained and quanti�ed as an 
additional source of information, it shall be separated from SOC quanti�cation.

It is of great importance that standard procedures are set up and followed over 
the whole process of �eld sampling, soil processing and laboratory analysis of SOC 
stocks (consistency control) to diminish the in�uence of occasional differences or 
errors during sample processing. If analyses are carried out by different laborato-
ries a consistency check shall be carried out before processing soil samples. Peri-
odic quality control and quality assurance of analyses and procedures (e.g. based 
on samples with known value) is highly recommended (Klesta and Bartz, 1996; 
Mäkipää et al., 2012). 

RECOMMENDATION 7. Soil processing for SOC analysis shall 
follow standard procedures. Consistency control of procedures 
shall be observed during the project and if the analyses are done in 
more than one laboratory, or more than one equipment/machine is 
measuring the same soil property, consistency check shall be carried 
out between them. 

2.4.1 Drying, grinding, sieving, homogenizing and archiving
Soil samples should be collected into airtight plastic bags (LDPE plastic), and most 
of the air should be removed immediately after sampling (Whitehead et al., 2012). 

Soil samples should not be stored wet as this may quantitatively affect SOC. If 
drying is not possible immediately after sampling, soil samples should be stored at 
4°C in the dark to reduce microbial activity (Nelson and Sommers, 1996), prefer-
ably for less than 28 days (Schumacher, 2002), as microbial degradation does not 
completely stop at 4°C and could lead to loss of organic materials. Freezing is not 
recommended. When large amounts of roots or macrofauna (e.g. earthworms) are 
present in the sample, it should be processed within a week, so that SOC concentra-
tion is not altered by decomposition of those components (Whitehead et al., 2012).

Sample transport, unpacking and transfer to other containers in the labora-
tory may produce particle sorting via different particle densities, shapes, sizes, 
and resistance of certain minerals to mixing (Schumacher et al., 1990a). There-
fore, care should be taken during the subsampling phase of soil preparation to 
eliminate this bias.
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If SOC and bulk density determination are performed in the same sample, then 
�eld-moist samples of known volume should be weighed �rst, and then spreading it 
out as a thin layer in a shallow tray and air-dried in a ventilated room, a custom-made 
solar dryer, or a forced-air oven at 40°C. Large clods should be broken up to acceler-
ate the drying process, avoid soil aggregation and to separate roots from �ne soil to 
avoid contamination at sieving. Samples should then be crumbled and the fraction 
that passes through a 2 mm sieve separated for SOC analysis. It is essential at this 
stage to avoid loss or contamination from dust or other potential contaminants.

At sieving the > 2 mm size rocks and pebbles (coarse fraction or gravel) should 
be separated and weighed for correcting the bulk density (see section 2.4.2). Roots 
and other organic soil constituents that are > 2 mm generally have negligible mass 
compared to the mineral phase, but the varying level of its fragmentation may be a 
source of uncertainty in the estimation of C stock changes, for roots that are more 
fragmented, either naturally or in the processing, will become part of the �ne soil 
fraction. When the assessment of the coarse organic matter carries important an-
cillary information, the coarse fraction of belowground C may be separated and 
quanti�ed separately as additional source of information (see also section 2.4.3).

The �ne earth fraction shall be thoroughly homogenized, which is best achieved by 
milling the sample. Homogeneity is the degree that the material under investigation is 
mixed resulting in the random distribution of all particles in the sample. Completely 
homogenous materials are rare, yet it is essential to aim for as homogenous a sample 
as possible to minimize error attributable to sample heterogeneity (Schumacher et al., 
1990b). Poor sample homogenisation can lead to greater uncertainty in values there-
fore making temporal changes in SOC stocks more dif�cult to detect.

An aliquot of around 5 to 10 g should be used to determine the gravimetric wa-
ter content of the air-dried, homogenised sample. To ensure representative sub-
sampling, a sample splitter is optimal, but also other manual techniques are avail-
able. Standard procedures for the determination of soil moisture are available (ISO 
11465: 1993 Soil quality - Determination of dry matter and water content on a mass 
basis - Gravimetric method; ASTM D4959-16). Further preparation and weighing 
of the soil samples will depend on the type of analyses for SOC determination (see 
section 2.5). For instance, for the analyses of total N and C by dry combustion a 
sub-sample of �ne earth shall be further ground to a �ne powder (<0.15 mm) to 
improve accuracy as such equipment generally works with small soil aliquots (200 
mg or less). Smith and Myung (1990) describe a roller grinder that is inexpensive 
and easily constructed, eliminating the potential for cross contamination by using 
individual sample containers. 

Archiving soil samples will allow their re-analysis, either to con�rm or correct 
questionable results, or to obtain additional attributes of a speci�c sample to aug-
ment the original results. For long-term �eld studies, analytical methodologies of-
ten improve over time and the archived samples may also be used to validate a new 
method and relate the results to the old method (Sheppard and Addison, 2008). 
The samples should be stored in an inert, airtight container (ideally, glass jars or 
LDPE bags) with proper labels. Preferentially, archived samples should be kept at 
a maximum temperature of 4 °C, even if samples are dry. If it is not possible, they 
should be stored in a cool, ventilated and dark space, free from moisture and dust. 
In addition, proper archive documentation is important and should include sample 
identi�cation (e.g. barcode), collection details, preparation and storage conditions, 
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links to the researcher, and primary analysis that researcher completed (Sheppard 
and Addison, 2008). See Chapter 4 for detailed guidance on data handling.

The diagram in Figure 4 represents essential steps of sample processing for SOC 
analysis.

RECOMMENDATION 8. Fresh soil samples should not be stored 
at temperatures higher than 4°C or for more than 28 days after 
collection. Soil samples shall be thoroughly homogenized. SOC 
content analysis shall be done in the �ne earth (< 2mm) fraction. 
For archiving, dried soil samples should be stored in a dark, cool 
and dry room for potential future use and veri�cation.

2.4.2 Bulk density
Soil bulk density is the mass per unit volume of the soil (FAO, 2006). The soil vol-
ume includes solids and pores, which may contain air, water, or both. Bulk density 
re�ects soil structure and depends on the proportion and quality of the mineral and 
organic soil components. Thus, particle size distribution (texture), mineralogy, soil 
chemical composition and organic matter content and quality all in�uence bulk 
density, which is �nally a result of complex interactions of soil constituents com-
bined with the effect of soil forming processes and soil use and management.

Dry and
record
total sample 
mass

Mix to
create 
a composite 
sample 
(Chapter 
2.2.2)

Crush
sample 
to break-up 
aggregates 

Sieve 
sample
to <2mm
(fine earth)

Weight and
record the 
mass of
the gravel 
(>2mm)

Archive soil
sample 
(Chapter 4.1)

Optional:
weigh and 
record the 
mass of 
roots >2mm

Weigh 
and 
homogenize 
<2mm soil

    Subsample 
soil for lab 
analysis, 
determine 
gravimetric 
content of 
water and 
SOC
(Chapter 2.5)

Soil core 1 Soil core 2 Soil core 3

Figure 4 
General steps of soil sample preparation for laboratory SOC analysis
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Bulk density is usually expressed in Mg m3 or the numerically equivalent g cm-3 
(Cresswell and Hamilton, 2002). It is a soil property that typically has high spatial 
variability and it is particularly sensitive to non-representativeness of the samples 
(e.g. presence of coarse fragments, cracks, roots, etc.). If possible, analyses should 
always be in triplicate for one sample (Blake and Hartge, 1986). As bulk density 
changes with water content, the water status of the soil at sampling must be speci-
�ed (Blake and Hartge, 1986). Small errors in bulk density can lead to relatively 
high SOC stock variability. 

The soil bulk density used in calculating SOC stocks (and Equivalent Soil Mass, 
Chapter 3) should be the density of the same core in which SOC concentration is 
measured. This is because the sampling of soils by coring almost invariably results 
in some compaction (Ellert et al., 2001). Thus, for example, the true depth of sam-
pling when a 0-30 cm core is extracted almost always exceeds 30 cm and, therefore, 
the soil density in the core removed exceeds the actual �eld bulk density. This can 
lead to serious errors when later calculating soil carbon stock on an equivalent mass 
basis using bulk density and SOC concentration measured in independently taken 
samples. Ideally, soil compaction during sampling will be minimized, but informa-
tion on the soil mass per volume sampled is more crucial than true bulk density 
(that may be required for detailed characterization of in situ gas and water transmis-
sion, but not of SOC stocks). 

The most well-known, direct methods to determine soil bulk density are the 
undisturbed (intact) core method and the excavation method. 

The undisturbed (intact) core method: The most common method of measur-
ing soil bulk density is by collecting a known volume of soil using a metal ring 
pressed into the soil (intact core) and determining the weight after drying (Blake 
and Hartge, 1986; Grossman and Reinsch, 2002). This method works best for moist 
soils without coarse fragments. If the soil is too dry, it is possible to wet the soil 
manually to keep the core intact. To do this, a bottomless drum should be placed on 
the soil and �lled with water, allowing the soil to wet naturally for 24 hours. Then, 
a �at horizontal surface should be prepared in the soil with a spade at the depth of 
sampling. A steel ring is push or gently hammered into the soil. A block of wood 
may be used to protect the ring. Avoid pushing the ring in too far or the soil will 
compact. Excavate around the ring without disturbing or loosening the soil it con-
tains and carefully remove it with the soil intact. Remove any excess soil from the 
outside of the ring and cut any plants or roots off at the soil surface with scissors. 
Pour the soil into the plastic bag and seal the bag. Common sources of error when 
measuring bulk density are: disrupting the soil while sampling, inaccurate trim-
ming, and inaccurate measuring of the volume of the ring. 

Excavation method: This method has been found useful for loose soils, espe-
cially surface soils, when it is impossible to collect an intact soil sample applying 
the undisturbed core method, or for soils with abundant coarse fragments. Bulk 
density is determined by excavating a quantity of soil, drying and weighing it, and 
determining the volume of the excavation by �lling the hole with sand of known 
volume per unit mass or water (Blake and Hartge, 1986; Grossman and Reinsch, 
2002; Aynekulu et al., 2011). A special apparatus called sand-funnel can be used. 
After levelling the soil surface, a hole should be excavated using the template of the 
apparatus. The size of the hole will depend on the apparatus, but a larger (approxi-
mately 12 cm in diameter) hole will likely result in smaller error in bulk density 
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estimation. The depth of the hole will depend on the depth of the evaluated layer. 
All the excavated soil should be retained in a container to determine its dry weight 
as described in the undisturbed core method. The volume of the hole should be 
determined by �lling it up with clean, dry, free-�owing sand (standard sand with 
uniform particle-size 0.841-0.25 mm is recommended). The level of the sand should 
be adjusted to the level of the bottom of the template. An error of 1 mm in adjust-
ing the sand level may result in an error of 0.01 in the bulk density. Using a funnel 
placed on the template to avoid this error is highly desirable. To estimate the soil 
volume a mass-to-volume ratio is used. For this reason, the mass-to-volume ratio of 
the sand must be pre-calibrated by letting the sand fall from a similar height and at 
a similar rate of �ow as in the procedure of measuring bulk density. Thus:

Equation 2:

Soil sample volume (cm3) = Mass of the sand (g) / Density of the sand (g cm-3)

Core size (=sampled volume): the suitable sample size will depend on soil bulk 
density and size and characteristics of the coarse fraction. Therefore, it is dif�cult 
to standardize sample size. Sample sizes used to determine the bulk density of soils 
containing only or mainly �ne earth are typically 100 cm3. Since coarse fragments 
are usually underrepresented in small samples. Thus, small samples will likely lead 
to sub-estimation of the bulk density of gravelly soils.

To determine the bulk density of the �ne-earth fraction of soil layers that contain 
many coarse fragments (around 30%), Vincent and Chadwick (1994) suggested that 
representative �eld-sample volume may be smaller than 0.1 dm3, but for gravelly to 
extremely gravelly soils �eld samples between 0.2 and 1 dm3 were recommended. 
In fact, for a soil horizon containing around 30% coarse fragments by volume, the 
same authors reported representative sample volumes of 4 dm3 or larger and, for a 
soil horizon containing around 50% coarse fragment by volume, the representa-
tive volume was at least 5 dm3. Typically, core diameter will be greater than 50 mm 
(smaller than this and collection of coarse roots and gravel may be hampered) and 
less than 100 mm (larger than this and problems associated with machinery, logis-
tics, site disruption become insurmountable).

Indirect methods of determining bulk density may be useful after suitable cali-
bration. Among those are radiation methods, for example gamma radiation trans-
mission or scattering techniques, requiring special equipment (gamma source and 
detector), and pedotransfer functions (PTFs).

Pedotransfer functions (PTFs) are based on the fact that soil bulk density is in-
�uenced by several other soil properties. To reduce time and costs, PTFs use more 
easily measurable soil properties, i.e. soil clay content and SOC content to predict 
soil bulk density (e.g. de Vos et al., 2005; Benites et al., 2007; Shiri et al., 2017). They 
are usually developed based on existing datasets. Using PTFs often increases the 
variance and uncertainty of estimated SOC stocks if the error associated with the 
application of the function is not correctly accounted for. This may lead to a sys-
tematic bias of calculated SOC stock (Schrumpf et al., 2011) and high uncertainty 
in SOC estimation at regional scales (Xu et al., 2015). 
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RECOMMENDATION 9. Soil bulk density should be determined 
in the same core in which SOC concentration is measured. For 
estimating bulk density, direct measurement methods should be 
used, speci�cally the undisturbed (intact) core method and the 
excavation method, because these can provide the most accurate 
determination of bulk density. The clod method should not be used 
because for SOC stock measurements the bulk density of soil layers 
or horizons has to be represented.

Bulk density and the calculation of SOC stocks
There are three different approaches to calculate SOC stock (Mg C ha-1), de-

pending on the basis for estimating bulk density:

1) Using the bulk density of the whole soil:

Equation 3:

SOCi stock [Mg C ha-1] = OCi x BDi x (1 – gGi) x ti x 0.1

where, 
SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i 
OCi (mg C g-1 �ne earth) is the organic carbon content of the �ne earth fraction 

(< 2 mm) of the depth increment i
BDi (g soil cm-3 soil) is the mass of soil per total volume of the soil sample of the 

depth increment i 
gGi (g coarse fragment g-1 soil) is the mass fraction of coarse mineral fragment, thus 

(1-gGi) is the mass fraction �ne earth (g �ne earth g-1 soil) of the depth increment i
ti is the thickness (depth, in cm) of the depth increment i
0.1 is a factor for converting mg C cm-2 to Mg C ha-1

2) Using the bulk density of the �ne earth (BD�ne1), as in IPCC (2003, p. 90) and 
Equation 1 of the present guidelines:

Equation 4:

SOCi stock (Mg C ha-1) = OCi x BD�ne1i x (1- vGi) x ti x 0.1

where,
SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i 
OCi (mg C g-1 �ne earth) is the organic carbon content of the �ne earth fraction 

(< 2 mm) in the depth increment i
BD�ne1i (g �ne earth cm-3 �ne earth) is the mass of �ne earth per volume of �ne 

earth = (dry soil mass [g] – coarse fragment mass [g]) / (soil sample volume [cm3] – 
coarse fragment volume [cm3]) in the depth increment i

volume fraction �ne earth (cm3 �ne earth cm-3 soil) = 1 – volume fraction coarse 
fragment [cm3 coarse fragment cm-3 soil] 

t is the thickness (depth, in cm) of the depth increment i
0.1 is a factor for converting mg C cm-2 to Mg C ha-1
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3) Using bulk density of the �ne earth expressed per total volume of the soil 
sample (BD�ne2), as in Poeplau (et al., 2017):

Equation 5:

SOCi stock (Mg C ha-1) = OCi x BD�ne2i x ti x 0.1

where,
SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i 
OCi (mg C g-1 �ne earth) is the organic carbon content of the �ne earth fraction 

(< 2 mm) in the depth increment i
BD�ne2i (g �ne earth cm-3 soil) is the mass of �ne earth per total volume of the 

soil sample = mass (g) of �ne earth / total volume of soil sample (cm3) in the depth 
increment i

ti is the thickness (depth, in cm) of the depth increment i
0.1 is a factor for converting mg C cm-2 to Mg C ha-1

It is recommended to use the well-known IPCC formula described in Equation 
4. However, Equation 5 is a simpler calculation for which fewer measurements are 
needed and less uncertainty is involved, as there is no need to determine or assume the 
volume of the coarse fraction. A disadvantage is that the user may still want to know 
the ‘regular’ bulk density as a diagnostic soil property. In this case, weighing the soil 
before and after sieving away the stones, BD, BD�ne1 and BD�ne2 can be calculated. 
Importantly, uncertainties must be properly propagated through the calculations.

Coarse mineral fraction and �ne earth masses: The coarse mineral fraction (e.g. 
gravel, stones, boulders or artifacts) is any mineral particle that has a diameter > 2 
mm (FAO, 2006); the �ne earth fraction is all material < 2 mm. The coarse fraction 
of the soil has negligible capacity to store carbon, therefore, it is removed before 
analysis and SOC content is measured in the �ne-earth fraction Therefore, the �ne 
earth and coarse fractions shall be separated before SOC content analysis. This is 
done by removing particles larger than 2 mm from the sample by wet screening. 
The coarse fraction should be washed to remove �ne earth (secondary carbonate 
rinds shall not be removed), oven-dried until constant weight, and then weighed. 

Coarse mineral fraction volume: To determine the volume of the coarse frac-
tion the following procedure can be followed. The oven-dried coarse fraction is 
submerged under water inside a bell jar that was placed under vacuum for 40 h. Af-
ter the pores within the coarse fraction are saturated by this procedure, the surface 
of the coarse fraction should be dried using a towel and then it should be quick-
ly weighed and placed into a calibrated container for volume determination. The 
saturation of pores assures precise measurement of the bulk volume of the coarse 
fragment (Vincent and Chadwick, 1994). This method is accurate but very time 
demanding. The volume of the coarse fraction may also be estimated by assuming a 
certain bulk density of the coarse fraction. Thus, volume coarse fraction = mass of 
the coarse fraction / assumed bulk density of the coarse fraction. 

Artifacts: In speci�c cases very �ne artifacts with diameters < 2 mm may be pres-
ent in the soil (e.g. Anthrosols or Technosols). Artifacts do not play role in SOC 
accumulation and storage. Hence, if making up more than 5 % of the total soil mass, 
artifacts should be quanti�ed to correct �ne soil mass.



29

Determination of soil organic carbon stocks

2.4.3 Coarse fraction of belowground organic carbon
Soil C stock in the coarse (> 2mm) belowground biomass may be estimated by using 
the same soil cores with known volume extracted for estimating SOC stocks in the 
�ne soil fraction. The biomass retained in the 2 mm sieve (mostly roots, rhizomes, 
and bulbs) should be cleaned from attached soil, dried at 60 °C to 80 °C, and then 
weighed. The C content of this fraction can be measured by using the dry combustion 
technique (see below) after grinding and homogenizing or estimated by assuming a 
C concentration taken from the literature. The carbon stock in the coarse fraction of 
belowground organic carbon (for simplicity, referred here as “Root C”) shall be cal-
culated by using the following formula (adapted from Poeplau et al., 2017):

Equation 6:

Root Ci = Root OCi x Root Mi x ti / Vi x 0.1

where,
Root Ci is the root organic stock of the depth increment i, in Mg C ha-1

Root OCi is the carbon content, as mg C g-1 of oven dry root mass, for the depth 
increment i

Root Mi is the oven dry mass of roots in the depth increment i, in g
ti is the thickness of the depth increment i, in cm
Vi is the volume of the soil sample from which roots were extracted, in cm3

2.4.4 Inorganic carbon
The soil C pool is composed of two major compartments, SOC and SIC. The SIC 
forms are primarily carbonates derived from geologic or soil parent material sourc-
es. The two most common carbonate minerals found in soils and sediments are 
the slightly soluble calcite (CaCO3) and dolomite [CaMg(CO3)2] although other 
forms may also be present (e.g. siderite, FeCO3) depending on where the soils were 
formed or where the sediment source was located. Dissolved carbonate can be 
found in higher concentrations in sodic soils (Na2CO3) or in microenvironments of 
high microbial activity (Loeppert and Suarez, 1996). 

Soil organic carbon (SOC) is considered the more active and most abundant ter-
restrial C pool. However, calcareous soils (soils high in CaCO3) cover over 30% 
of the Earth’s land surface, mainly in arid and semi-arid regions. Besides, soils that 
contain sodium carbonates (e.g. Solonchaks, Solonetz) and other soil classes with 
variable CaCO3 content (e.g. Chernozems) are also common. In soils of humid 
tropical regions (e.g. Ferralsols, Acrisols etc) the predominant form of carbon is 
organic, but they may also contain SIC, temporarily, for example if liming occurs.

SIC is no longer seen as a merely static C pool. Biological activities and climate 
change can impact the factors that control dissolution and precipitation of CaCO3 
and thus modify the equilibrium between the different dissolved, gaseous and solid 
inorganic carbon species leading to the emission of CO2 or precipitation of calcite 
(Chevallier et al., 2017). In soils in which SIC is predominant, quantifying it can 
render useful ancillary information. Quantitative methods for total carbonate de-
termination were described by Loeppert and Suarez (1996).

If SOC is estimated by measuring total carbon of a sample, it is important to 
remove all SIC before analysis. To determine if carbonates are present, a test is 
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performed by adding few drops of hydrochloric acid to the soil and observing ef-
fervescence. 

If carbonates are to be eliminated as CO2 by acidi�cation, prior to analysis of re-
maining organic carbon, care must be taken to ensure a thorough reaction of all soil 
carbonates with the acid, while minimizing losses and dilution of SOC. A small-
scale acidi�cation approach using HCl, such as that described by Ellert and Rock 
(2008) is recommended because SOC remaining after acidi�cation is related back 
to the original un-acidi�ed subsample taken for dry combustion analysis. Acidi�-
cation should not be required if wet oxidation (not recommended) without CO2 
determination is used. Loss-on-ignition techniques (also not recommended) are not 
reliable in carbonate-containing soils. 

Carbonates can be removed by the following techniques:
•	Adding hydrochloric acid (1M HCl) and waiting till effervescences stops. The 

limitation of this method is that HCl can destroy some of the organic carbon 
compounds and interference of Cl- in case of wet oxidation techniques

•	Adding a combination of H2SO4 and FeSO4 (Nelson and Sommers, 1996).

RECOMMENDATION 10. To measure the SOC correctly, 
contributions from SIC shall be removed. A small-scale acidi�cation 
technique using HCl followed by automated dry combustion is 
recommended. In some soils SIC could represent a signi�cant and 
dynamic portion of soil carbon (e.g. calcareous, irrigated, and amended 
soils), and may be quanti�ed by direct determination of total inorganic 
carbon or by the difference between total soil C and SOC.

Ϯ.5 ANALYTICAL METHODS FOR TOTAL SOIL ORGANIC CARBON 
DETERMINATION
Soil organic carbon content is expressed as gravimetric percentage of dry (105 °C) 
soil [g SOC kg-1 dry (105 °C) soil]. Standard procedures for the determination of 
soil moisture are available (see section 2.4.1). Soil organic carbon may be estimated 
as the difference between total carbon and inorganic carbon, directly after removal 
of inorganic carbon, or by dichromate oxidation-titration methods. In all cases, 
SOC content shall be quanti�ed in the �ne-earth fraction which is obtained by 
passing the soil through a 2 mm mesh size. In most cases, soil samples are further 
ground and reduced to powder (<0.2mm) to allow adequate homogenization. 

To reduce analytical error to a minimum, soil sample preparation and analyti-
cal standard procedures should be set up, strictly followed, and be carried out by 
trained laboratory staff. Equipment should be regularly calibrated, including ana-
lytical balances of adequate precision. It is desirable that the laboratory that carries 
out SOC analyses participates in a quality control programme. Minimally, in-house 
quality control should be applied to ensure precision. For comparative purposes, 
the same method of SOC analysis shall always be used for all measurements and 
consistency control should be applied (see also section 2.4).

RECOMMENDATION 11. SOC content analysis shall be 
performed in a laboratory that has well established quality control 
and assurance systems.
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The most important SOC methods are presented below.

2.5.1 Dry combustion method
Dry combustion is a direct chemical method to measure SOC content based on the 
combustion of soil samples containing carbon. It uses �nely ground soils samples 
(<0.2 mm) burned at elevated temperatures, generally around 1000°C (Nelson and 
Sommers, 1996). The combustion of the soil sample is achieved in the presence of 
pure oxygen which ensures complete combustion of the sample and acts as a cata-
lyst or accelerator. Other catalysts and accelerants are also used including vanadium 
pentoxide, Cu, CuO, and aluminium oxide. The end-product of the combustion 
(CO2) is quanti�ed by gas chromatography using a thermal conductivity or a �ame 
ionization detector. Results from dry combustion are taken directly from the in-
strument readout and reported to three signi�cant �gures. 

Since carbonates will be also be measured, it is essential to remove them before 
SOC determination (see section 2.4.4). Some equipment is designed to measure to-
tal soil carbon in two steps; �rst SOC is quanti�ed at 600°C, and then the rest of 
the carbon (basically inorganic carbon) is quanti�ed at 1000 - 1400°C. Caution has 
to be taken when soils contain highly stable organic carbon compounds which de-
compose at temperatures higher than the temperature set in the �rst step, leading 
to underestimation of SOC (and overestimation of SIC). An example are soils that 
are submitted to natural or man-made �res resulting in the presence of recalcitrant 
carbon containing compounds in the �ne earth fraction (e.g. charcoal/black car-
bon; Roscoe et al., 2001). In the Brazilian savanna for example, as much as 40% of 
SOC can be in the form of char (Jantalia et al., 2007). Stable carbon containing soil 
amendments (e.g. biochar) may also lead to similar bias in SOC analysis.

The main advantages of the dry combustion method are that it: (i) ensures a com-
plete combustion of all SOC present in the sample (in contrast to wet oxidation, 
see below) and, (ii) allows a relatively large number of samples to be processed per 
unit time. The main disadvantage of the dry combustion method is the high initial 
economic investment associated with the purchase of speci�c instruments (readily 
available on the market). A potential disadvantage may be very small sample mass 
that is analysed (from 8-10 mg to a few grams, depending on the equipment). Great 
attention has, therefore, to be given to adjust sample mass to the detection limits 
of the equipment and to ensure representative sample composition during sample 
preparation (see section 2.4.1).

Automated dry combustion using commercially available instruments is widely 
accepted as the standard method for soil C determination. Since most of these in-
struments also quantify total N simultaneously, there is potential for such instru-
ments to provide additional crucial information.

2.5.2 Wet digestion/oxidation of organic carbon compounds by  
dichromate ions (Cr2O7

2-)
The wet oxidation method directly measures SOC concentration on �nely ground 
soil (<0.2 mm) based on a rapid wet oxidation of organic C compounds by dichro-
mate ions (Cr2O7

2-) followed by the determination of unreduced dichromate by 
oxidation-reduction titration with ferrous (Fe+2) ammonium sulphate in the pres-
ence of common indicators, such as ortho-phenanthroline ferrous complex, barium 
diphenylamine sulfonate (Walkley and Black, 1934) or photometric determination 
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of Cr3+ (Souza et al., 2016). Potassium dichromate and concentrated sulphuric acid 
are used to extract organic carbon present in the soil. Orthophosphoric acid may 
be added to help eliminate interferences from the ferric iron that may be present in 
the sample.

The Walkley and Black (1934) procedure (and its modi�ed versions) require 
minimal equipment, is simple and rapid to carry out, and it has thus been com-
monly used worldwide. Further, this method also requires relatively small sample 
mass (normally 0.3 to 0.5 grams of soil) that must be adjusted to the SOC content 
of the sample. However, the oxidation of SOC is incomplete, with a recovery rate of 
SOC ranging from 60 to 86 %. Average recovery is estimated to be 75 % (Walkley 
and Black, 1934) and, therefore, a correction factor of 1.33 is commonly used to 
adjust the results. Further, this method is labour-intensive, requires a great deal of 
analytical skill, employs strong oxidants and acids that must be heated, and gener-
ates hazardous waste (Essington, 2004). 

Another disadvantage of this method is that, apart from recalcitrant material, 
such as charcoal, the presence of iron and manganese oxides in weathered soils can 
be source of errors. Depending on soil type and C content, underestimation can be 
large (Davis et al., 2018). Where charcoal is present, comparison of soil C stocks 
between pristine areas and sown pasture in which soil is homogenised by ploughing 
can be misleading as correction factors may be erroneously established. Therefore, 
for weathered soils or when charcoal is present, the wet oxidation method is not 
recommended.

2.5.3 Loss-on-ignition method
The loss-on-ignition method gives an estimate of SOM content, but does not give 
direct information on SOC content, which is a proportion of SOM that ranges 
between 43 and 58 %. It is based on the oxidation of soil at temperatures close to 
550°C for at least 3 hours. SOM content is the difference between the soil mass 
before and after ignition: 

Equation 7:

SOM (%) = (soil mass at 105°C – soil mass at 550°C) / soil mass at 105°C x 100

The main drawback of this method is that it overestimates the amount of organic 
matter due to the loss of structural water, mainly by hydrated aluminosilicates, be-
cause heating to temperatures above 150 °C drives off hygroscopic H2O and in-
tercrystalline H2O from crystalline clays and allophane. Potential overestimation 
errors are also due to CO2 release from the decomposition of carbonate minerals 
and some hydrated salts and from the loss of H2O from hydroxyl groups in ses-
quioxides (Goldin, 1987). A clay correction factor should always be used, to avoid 
overestimating the SOM content by correcting for structural water loss. 

Samples should be left to equilibrate with ambient temperature in a desiccator to 
avoid uptake of moisture before weighing. An analytical balance with a precision of 
0.1 mg should be used to weigh the samples. 

Analytical errors are dependent on differences in important soil properties, such 
as the amount and type of clay and the amount of carbonates and sesquioxides. 
Such differences make the standardization of the loss-on-ignition method quite 
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dif�cult. For instance, special precautions should be taken when the method is 
applied to strongly carbonaceous soils and soils containing free iron. Hoogsteen 
(2015) found that different furnace types (in terms of pre-heating air) did not in-
�uence results for a variety of soils representing a large range of clay content and 
different clay minerals. Turning soil trays halfway through the analysis reduced 
variability associated with uneven heating and overcame the effects on heat losses 
near the furnace door (Hoogsteen et al., 2015). 

The advantage of this method is that it only requires basic laboratory facilities: 
a furnace that reaches 600°C stable temperature and an analytical balance with a 
0.1 mg precision. Further, loss-on-ignition measurements are simple to carry out 
and do not require the use of reagents, thus having low environmental impact with 
no need for laboratory waste treatment (Nelson and Sommers, 1996). Another ad-
vantage is that large sample masses can be analysed –40 to 2000 times larger than 
in dry combustion or wet oxidation– that may reduce analytical error due to more 
representative sample mass. Indeed, a sample mass of at least 20 g should be used to 
minimize variation in loss-on-ignition measurements. 

Although the loss-on-ignition method does not provide direct measurement of 
SOC content, it could be used to assess SOC stock change if the above-mentioned 
minimum criteria are observed and other methods are not available

RECOMMENDATION 12. The dry combustion method shall be 
used for measuring SOC content when possible. If not available, 
wet oxidation may be used, except on weathered soils or when 
charcoal is present. If dry combustion is not available, loss-on-
ignition may be used on organic soils.

2.5.4 Spectroscopic techniques for soil organic carbon determination
Soil organic carbon determination with the dry combustion and wet oxidation 
methods is often time and cost intensive and laborious, especially if large number of 
samples must be analysed. This can be the case in SOC stock change projects in live-
stock production systems that evaluate extensive land areas over years, or in long-
term monitoring of soil properties. In fact, depending on the cost of the analysis and 
the number of samples necessary to detect SOC stock change, the viability of the 
project may be compromised. Having a large amount of SOC data could also help 
reduce measurement uncertainties due to high spatial variability in SOC content. 

Spectroscopy offers a relatively rapid, low-cost, non-destructive alternative to 
conventional SOC testing (Reeves III, 2010; Bellon-Maurel and McBratney, 2011; 
Viscarra Rossel et al., 2016). Soil spectroscopy uses the interaction of electromag-
netic radiation with matter to characterize the physical and biochemical composi-
tion of soil sample. The principle is that light is shone on a soil sample and prop-
erties of the re�ected light (visible-near-infrared, near infrared, or mid-infrared) 
are representatives of molecular vibrations that respond to the mineral and organic 
composition of soils. Re�ected or absorbed light is collected at different wave-
lengths by a detector. The resulting pattern is referred to as a spectrum (Figure 
5). Spectral signatures thus provide both an integrated signal of functional proper-
ties as well as the ability to predict several conventionally measured soil properties 
(Nocita et al., 2015).
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There are numerous mathematical methods and their combinations that have 
been tested for the development of models that estimate SOC and other soil prop-
erties (Gobrecht et al., 2014). Chemometric models can be developed for different 
scales, from regional to local, of SOC determination (Madari et al., 2005; Clairotte 
et al., 2016; Lucà et al., 2017). Depending on the scale, representativeness of the 
calibration sample set, spectral pre-treatment and the chemometric methods and 
sampling approach (Jiang et al., 2017; Guo et al., 2017; Roudier et al., 2017), an extra 
error will be included in the determination, the error of prediction. This error shall 
be considered when deciding on the SOC prediction method applied.

Other emerging and promising techniques are laser-induced breakdown spec-
troscopy (LIBS) (Senesi and Senesi, 2016; Knadel et al., 2017) and neutron in-
duced gamma-ray spectroscopy (Wielopolski et al., 2010, 2011). LIBS is a cost-
effective technique with potential for rapid analysis of elements present in the 
soil. It has been successfully tested for total carbon measurement in combination 
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Spectroscopy and SOC determination

Note: Example of soil spectral signatures of four samples from the Ethiopia LASER study with different levels of soil 
organic carbon.
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with multivariate calibration (da Silva et al., 2008; Belkov et al., 2009) as well as 
for differentiating organic and inorganic carbon (Martin et al., 2013). Portable 
equipment is also available (da Silva et al., 2008; Rakovský et al., 2014).

RECOMMENDATION 13. Spectroscopic techniques -which show 
promise for estimating the SOC content and which enable the 
analysis of large numbers of samples- may be used when technical 
capacities for adequate chemometric calibration are available.
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3. Monitoring soil organic carb on stock 
changes –  Repeated measurements 
against a b ase period, and 
measurements against a  
b usiness-as-usual b aseline

Soil organic carbon is a controlling factor in ecosystems services and agricultur-
al productivity, landscape function, and climate change (Bispo et al., 2017; FAO, 
2017a). There is now an extensive body of research demonstrating that human use 
of land for livestock production has affected SOC stocks. In much of this land, 
there are good opportunities for management practices to increase SOC stocks 
while maintaining or increasing productivity. 

Increasing SOC stocks can contribute a range of bene�ts, including greenhouse 
gas (GHG) mitigation (e.g. Rumpel et al., 2015; Paustian et al., 2016; FAO, 2017b). 
However, implementing effective strategies to realise this potential requires the ca-
pacity to monitor SOC stock change with acceptable accuracy and uncertainty, and 
at an acceptable cost.

To quantify changes in SOC due to human management activities, it is necessary 
to monitor change in carbon stocks against a baseline through consistent measure-
ment or modelling over time and space. This Chapter offers guidance for designing 
and implementing a sampling and measurement protocol. Chapter 6 provides guid-
ance on modelling approaches.

3.1 PLANNING AND IMPLEMENTING A MONITORING STRATEGY FOR 
SOIL ORGANIC CARBON STOCK CHANGE 
Selecting the method to monitor SOC stock change should consider the purpose of 
the investigation and the skills, capacity and budget available to the project. There are 
a range of objectives and scales possible for a SOC stock change study, for example:

•	Global or regional accounting for GHG emissions and removals from the land 
sector as a component of climate change accounting

•	Monitoring, Reporting and Verification (MRV) obligations for the United 
Nations Framework Convention on Climate Change (UNFCCC)

•	Analysis of the climate change impact of livestock products
•	Evaluation of the environmental impacts of grazing land management for 

animal agriculture
•	Assessment of the mitigation potential of agricultural practices at an industry, 

region or farm scale
•	Implementing mitigation options in an emissions trading or other market 

mechanism where payments for SOC sequestration depend on accurate and 
verifiable quantification

•	Research into processes affecting SOC stocks and dynamics
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 After deciding on the goal and scope of the monitoring project, the proponent 
may answer a series of questions regarding existing data and knowledge, along with 
the skills and capacity available to guide planning. A decision framework is valu-
able to guide systematic decisions on the monitoring approach and requirements to 
achieve accuracy and consistency levels aligned to the goals of the study. Figure 6 
depicts one such decision tree to guide the development of a sampling and measure-
ment or modelling plan.

3.2 INTRODUCTION TO SOIL ORGANIC CARBON STOCK CHANGE 
ASSESSMENT BY MEASURING AGAINST A BASELINE
Where a measurement approach is used to assess changes in SOC stocks, planning 
the sampling and analysis protocol is critical. There are two types of change in 
SOC stocks that can be measured: a change over time relative to a base period (or 
reference period), or a change relative to an alternative scenario associated with a 
speci�c baseline. While the term ‘baseline’ will be used for both cases throughout 
these Guidelines, the type of baseline that should be used depends on the study 
(Brander, 2016). 
If the study is an inventory of anthropogenic GHG emissions/removals, then it is 
necessary to account for changes in SOC stocks that occur naturally, and a ‘natural’ 
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Figure 6 
A decision tree to guide the selection of a SOC stock change monitoring approach
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baseline is required (Figure 7). If the study is an assessment of the change in emis-
sions/removals caused by a speci�ed intervention, then the appropriate baseline 
is the business-as-usual scenario that would have occurred in the absence of the 
intervention in question.

Repeated measurements over time against a measured base period. This ap-
proach is most suitable where sampling sites can be revisited every 1 to 10 years to 
monitor change and where additional data is available, such as seasonal climate and 
speci�c management practices. Results are commonly analysed as t1 vs. base period 
(t0) or using statistical tools such as regression analysis to detect trends in SOC 
stocks over time when several measurement times are available.

Point-in-time measurements against an assumed business-as-usual baseline. 
This approach does not require a ‘before management change’ baseline measure-
ment. Instead, it compares SOC stocks at different sites at one single time after a 
contrasting management was implemented in one of them. The underlying assump-
tion is that the business-as-usual site and the differently managed sites were the 
same prior to the change in management (e.g. in terms of soil type, climate, land use, 
productivity). Further, the interpretation of management effects is direct if SOC 
at t0 was at a steady state. If SOC was on a trajectory from a prior management 
practice, the interpretation of management effects becomes less straightforward 
(Figure 7, see Van den Bygaart and Angers, 2006). These assumptions introduce un-
certainty, as the lack of a ‘before practice change’ baseline means SOC stock change 
estimate will have lower con�dence than repeated sampling over time with a known 
baseline. However, these scenarios are often encountered when farm management 
practices diverged sometime in the past but with no baseline data collected at that 
time, and the approach underpins approaches used in IPCC (2014) and UNFCCC 
(2014) accounting.

`Natural´
baseline

With intervention
BAU scenario

Change due to 
intervention

Change compared 
to base period

Net anthropogenic 
effect

TIME
Year 1

base period
Year 20

SOC 

STOCK

Figure 7 
A schematic representation of the different SOC stock baselines  

and the associated changes that can be measured
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3.2.1 Sources of error and bias in soil organic carbon stock change 
monitoring
According to the Marrakesh Accords, uncertainties in measuring GHG in offset-
ting projects should be quanti�ed and IPCC (2003) has recommended using con-
�dence intervals as a quantitative estimate of uncertainty. Determining SOC stock 
changes associated with changes in management can be dif�cult because of the large 
spatial variability in SOC stock and uncertainties related to sampling and analytical 
error during �eld sampling, sample processing and laboratory measurements. Ad-
dressing these heterogeneities and uncertainties is a key challenge when monitoring 
changes to SOC stocks through measurements.

Uncertainties generally mean that monitoring needs to occur over long time pe-
riods, ideally decades. However, the overall design of a soil sampling strategy to 
estimate SOC stock changes is often determined by time and budgetary constraints 
(Smith, 2004; De Gruijter et al., 2006). Hence, a sampling strategy requires careful 
planning to ensure harmonized data collection (to gather relevant �eld information) 
and data processing (appropriate statistical method to analyse the data). De Gruijter 
et al. (2006) provide a detailed list of basic design criteria for site survey (baseline 
scenario) and monitoring of natural resources that includes balancing the sources 
of variation.

Chapter 2 provides a detailed account of sources of error when estimating SOC 
stocks and strategies to minimize these errors. Table 2 lists the major sources of 
uncertainties in measuring SOC (Vanguelova et al., 2016). Here, the focus will be 
on SOC stock changes, including determining the minimum detectable difference 
(MDD), that is, the smallest difference, or change, that can be statistically detected. 
As MDD de�nes the difference between two means, increased errors result in dis-
proportionally larger MDD values. All recommendations given in Chapter 2 are, 
therefore, relevant.

RECOMMENDATION 14. In planning a SOC stock change 
study, a process of identi�cation of potential sources of error and 
bias in SOC stock estimation shall be undertaken and steps should 
be taken to minimise their impact, as described in Chapter 2. 
Consistent methodologies and practices should be used to minimise 
the minimum detectable difference (Eq. 8) and the number of 
samples required to obtain it (Eq. 9).

3.3 SAMPLE SI�E
3.3.1 Pre-sampling for soil organic carbon stocks and variability to guide 
sample size
Soil organic carbon stocks can have considerable spatial variation with increasing 
variation from �eld to regional, continental, and global extent (Minasny et al., 2017). 
For instance, SOC stocks �uctuate with latitude, with greater stocks at higher lati-
tudes due to the lower temperature regimes, decreases in the mid-latitudes, and 
increases in the humid tropics. When estimating SOC stock changes it is important 
to consider the likely variability in space and depth to determine the best sampling 
design and minimum detectable difference. To assist in the process of making deci-
sions, pre-sampling may provide valuable guiding information.
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Depending on the spatial scale at which SOC stock change is to be estimated (i.e. 
�eld, regional, landscape), a pre-sampling may comprise 5 to 10 soil cores per strata 
or area of interest to 30 cm depth and possibly up to a depth of 60 cm, taken along a 
transect or spaced several meters apart. To estimate the variance in SOC stocks per 
soil layer, several soil samples should be taken from each of multiple distinguished 
layers. If the IPCC procedure is to be followed, the 0-30 cm depth should be ana-
lysed separately. 

RECOMMENDATION 15. To analyse lateral and vertical spatial 
variability of SOC stock, a pre-sampling (5 to 10 cores per strata) 
of the area of interest may be undertaken to get an indication 
of the SOC stocks mean value and variability in SOC stocks 
and, therefore, attainable minimum detectable difference for a 
given sampling effort. This information should be used to guide 
estimation of the number of samples needed to determine SOC 
stock change with an acceptable level of uncertainty. Based on 
estimated SOC stocks and variability from the pre-sampling and 
the maximum number of analyses that can be afforded, a decision 
on whether individual or composite sample cores are analysed 
should be made.

3.3.2 Using minimum detectable difference to determine sample size
Spatial variation of SOC is often large, making long monitoring periods or large 
sample sizes imperative for evaluating treatment effects on SOC stocks (Gregorich 
et al., 1995; Smith, 2004; Yang et al., 2008). A statistical approach to determine 
the smallest difference in SOC stock that can be detected as statistically signi�cant 
between two monitoring moments in time or treatments is based on the minimum 
detectable difference (MDD) (Zar, 1999). This is to minimize the risk of Type II er-
ror, that is, the risk of not detecting a true difference because there was insuf�cient 
power (Van den Bygaart and Allen, 2011; Kravchenko and Robertson, 2011). 

Power analysis can be conducted a priori, given a certain variance and ɲ-level 
(i.e. signi�cance level). The MDD for paired observations is calculated as following:

Equation 8:

 ≥
√

× ( , + , ) 

 where,
MDD is the minimum detectable difference
S is the standard deviation of the difference in SOC stocks between t0 and t1

n is the number of replicates
v = n – 1 is the degrees of freedom for the relevant t-distribution
t are the values of the t-distribution given a certain power level (1-ɴ) and ɲ level.
The minimum number of samples required can then be determined as:
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Equation 9:

≥
× + 2

 
( )( )

where,
n is the number of samples, 
MDD is the minimum detectable difference
S is the estimated standard deviation, 
tɲ is the two-sided critical value of the t-distribution at a given signi�cance level (ɲ) 
frequently taken as 0.05 (5%), and 
tɴ is the one-sided quartile of the t-distribution corresponding to a probability of 
type II error ɴ (e.g. 90%).

The following hypothetical case illustrates the calculation procedure: 
In a 3-year �eld experiment the number of replicates is 5 and the initial SOC con-
tent varies from 40 to 46 Mg C ha-1. Due to annual organic C additions, SOC is 
expected to increase by about 0.8 Mg C ha-1 y-1. Thus, after a period of 3 years the 
expected increase is 2.4 Mg C ha-1. The initial standard deviation is 2.39 and after 3 
years is 2.77. The standard deviation of the paired differences after an experimental 
period of 3 years is 1.34 (Table 3). 

If we set the chance of detecting a signi�cant difference (the power) at 90 % and 
we use an ɲ-level of 0.05, we �nd t values of 2.776 and 1.533 (df = 4). In that case, 
MDD would be: 

√1.342

5
× (2.776 + 1.533) = 2.58 

So, a sample number of 5 would be large enough to be able to detect differences in 
SOM of 2.58 Mg ha-1 after a period of 3 years, with a probability of 90%. In this case, 
the MDD value is larger than the expected change of 2.4 Mg C ha-1, thus the number 
of samples needs to be increased. With a sample number of 10, MDD would be: 

√ 342

10
× (2.262 + 1.383) = 1.55

In this case, the MDD value is smaller than the expected change in SOC stock. 
Hence, a sample size of 10 would be large enough to be able to detect signi�cant 
differences at the end of the experiment.

Table 3: Data for a hypothetical �eld experiment with a duration of 3 years to illustrate the 
calculation procedure of the minimum detectable difference

Sample numb er SOC stock at t0  
( Mg ha-1Ϳ

SOC stock at t3  
( Mg ha-1Ϳ

Change in SOC  
( Mg ha-1Ϳ

1 46 50 4
2 41 44 3
3 43 44 1
4 40 43 3
5 44 45 1

Average 42.80 45.20 2.40
S 2.39 2.77 1.34
S2 5.70 7.70 1.80
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Figure 8 
Sample points, minimum detectable difference (MDD) and spatial scale 

Note: Relationship between sample points required (i.e. intensity) and minimum detectable difference (power of 90%, signi�cant 
level of 0.05) as a function of spatial scales for the 0-10cm, 0-30cm and 0-100cm layer (adapted from Maillard et al., 2017)
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Box 2: Monitoring SOC dynamics in temporary grasslands: how large should the 
sample size be to detect signi�cant changes over time?

Overview͗ Grassland management options targeting increases in root biomass inputs could be 
a promising strategy to increase the soil organic carbon (SOC) content of grassland soils. Farm-
ers can influence root biomass and thus SOC inputs by grazing management and plant species 
composition (Deinum, 1985; McNally et al., 2015). Detecting significant changes is, however, a 
challenging exercise as spatial variation of SOC is often thought to be large. This makes long moni-
toring periods or a large number of replicates imperative for evaluating experimental treatment 
effects on C storage under field conditions (Smith, 2004). 

Approach:  statistical approach to determine the smallest significant difference in SOC that can 
be detected between two monitoring moments in time or between treatments gives the minimum 
detectable difference (MDD), (Zar, 1999). Power analysis can be conducted a priori, given a certain 
initial variation and α-level. The MDD for paired observations was calculated using Equation 8.

An ex ample:  Here we demonstrate how to calculate the MDD for a field experiment investi-
gating the effects of different simulated stocking systems (continuous (CS), rotational (RS) and 
lenient (LS) strip stocking) on SOC dynamics in a five year field experiment on a sandy soil in The 
Netherlands (Hoogsteen et al., unpublished). An α-level of 0.05 was chosen and the chance to 
detect a significant difference was set at 80%. The corresponding t values were 1.860 and 0,889 
(n=9).

Stocking system Initial SOC content Final SOC content Diīerence SD CV MDD

CS 60.9 63.8 2.9 1.4 0.5 1.3

LS 60.7 63.8 3.1 2.1 0.7 1.9

RS 62.9 64.8 1.9 2.1 1.1 2.0

The MDD values of CS and LS were smaller than the measured differences between the initial and 
final SOC contents. Thus, a sample size of 9 was large enough to detect significant changes in SOC 
after a monitoring period of five years. However, in the case of RS the number of samples was not suf-
ficient to detect a significant change. This is a consequence of the larger variability (CVRS > CVLS, CVCS). 
The minimum number of required samples calculated using Equation 9 for the RS treatment was 10. 

MDD increases with spatial scale for a �xed soil depth and with soil depth, for 
a �xed spatial scale (Figure 8; adapted from Maillard et al., 2017). For example, for 
depth of 30cm MDD with n = 50 samples was 14, 16, 20 and 29 % at 0.1, 1, 10 and 
10 000 km2, respectively. Whereas for a �xed scale of 0.1 km2 MDD as 12, 14 and 18 
% for depths 0–10, 0–30 and 0–100 cm, respectively. 

It is sobering to consider that with an initial SOC stock of 60 Mg C ha-1 and a C 
sequestration rate of 0.5 Mg C ha-1 y-1, a statistically signi�cant change after 5 years 
would be detected only with 516, 730, 1051, and 2260 samples at 0.1, 1, 10 and 10 
000 km2, respectively. At the same scales, 135, 190, 273, and 586 samples would be 
necessary to detect the change as statistically signi�cant after 10 years. This high-
lights that it may be dif�cult and costly to detect signi�cant changes within times-
cales of less than 10 years. A further case study example is given in BOX 2.
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RECOMMENDATION 16. Minimum detectable difference 
calculations shall be used to estimate the number of samples needed 
to detect the expected SOC stock change (or alternatively the 
number of years required for a given rate of change in SOC to 
produce a statistically detectable change). The number of samples 
may differ between sampling campaigns (repeated measurements 
with baseline at t0) or treatments (paired plots with assumed 
business-as-usual baseline). This reduces sampling effort when the 
baseline was estimated with a large sampling size.

3.4 SAMPLING FREYUENCY
Determining sampling frequency is important when SOC stock changes are esti-
mated by repeated measurements against a baseline obtained at the onset of land use 
or management change. More frequent sampling, that is shorter time periods be-
tween samplings, will increase the precision (as a larger number of samples will re-
duce sampling error) and will also allow detection of variations in the rate at which 
SOC stocks changes as it might not be constant. 

In general, the expected change in SOC stock should be greater than the MDD, 
so lower rates of expected change will correspond to less frequent samplings, al-
lowing more time for the change to occur. Likewise, methods that have greater 
precision will lower the detectable limit and will allow more frequent sampling. 
Similarly, �elds with large variability may require longer time intervals between 
measurements to accurately assess changes in SOC stock.

It is common to let at least three years pass between the baseline and the �rst 
resampling or paired treatment (Donovan, 2013). More conservatively, Smith 
(2004) pointed out that if C inputs increase by a maximum of 20 to 25%, SOC 
stock changes could be detected with 90 % con�dence only after 6 to 10 years. In 
addition to changes in C input, climate and seasonal weather can in�uence SOC 
accumulation or loss. Therefore, under variable weather conditions a longer time 
interval is recommended to increase the possibility of detecting SOC stock changes.

When measuring SOC changes over time, intra-annual variability of SOC stocks 
shall be considered and its impact on stock change assessment shall be minimised. 
Seasonal variability of SOC stocks is dependent on SOC decomposition and plant 
growth and organic matter inputs. In livestock production systems, the intra-annual 
variability of organic matter input can be related to the grazing regime, forage har-
vesting, fertilizer application rate and dates but also to weather conditions. On the 
other hand, decomposition of SOC is affected by environmental conditions, mainly 
moisture and temperature (Paul, 2007). As these vary throughout the year, the de-
composition conditions for SOC are not constant. For example, enhanced drying 
and shrinking of organo-mineral complexes in the summer can lead to higher SOC 
decomposition rates (Leinweber et al., 1994). Water logging and cold temperatures 
may also hamper the activity of SOC decomposers (Paul, 2007). 

Intra-annual variations shall be considered when sampling at two different years, 
especially when these are expected to be higher than the detectable change caused 
by management over a certain assessment period. This can be done by ensuring that 
repeated sampling in different years occurs during the same season (Allen et al., 2010; 
Pringle et al., 2011), or through monitoring of the SOC stocks throughout the year 
when comparing two or more years. When evaluating different management practices 
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through a paired plot approach, the relationship between seasonality effects on SOC 
stocks and treatment should be veri�ed (Wuest, 2014). In a grazing intensity study in 
Alberta (Canada), SOC stocks were measured at four seasons at two sites and for two 
grazing intensity treatments (Dormaar et al., 1977). In �ve out of eight measurements, 
SOC stock differences were higher between two subsequent seasons than the differ-
ences between treatments. 

RECOMMENDATION 17. For repeated measurements to capture 
SOC stock change related to management activities, sampling shall 
typically occur 4 to 5 years apart. Sampling strategies shall always 
consider the estimated minimum detectable difference (Eq. 8) and 
corresponding number of required samples (Eq. 9). A sampling 
campaign should take no longer than 60 days within the same 
season, i.e. all sampling should occur no more than 30 days before/
after the median day and month of the baseline sampling round. 
The record of each sampling round shall include the day (or days), 
the month (or months), the year (or years), and the median day.

3.5 CALCULATING SOIL ORGANIC CARBON STOCK CHANGE
3.5.1 Equivalent soil mass
Soil bulk density can change over time in response to climate and/or management, 
including mechanical (e.g. trampling from animals; Willat and Pullar, 1984; Zhao 
et al., 2007), biophysical (e.g. soil moisture; Dasog et al., 1988; Blanco-Canqui  
et al., 2009) and/or chemical factors (e.g. change in SOC content; Périé and Ouimet, 
2008). If changes in bulk density over time are not considered when estimating a 
temporal change in SOC stocks then the SOC stock change estimates will not be 
accurate (Figure 9). 
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Differences in bulk density and induced error bias

Note: Example for the uses of equivalent mass and the error bias induced by quantifying soil SOC stocks at �xed depths 
when differences in bulk density occur  (Wendt and Hauser 2013)
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For example, if the carbon content of the soil remained the same but bulk density 
increased from 1.3 to 1.5 g cm-3 then a calculation to a nominated depth would show 
an increase of approximately 15% of the SOC stock. This increase merely re�ects that 
there is now more soil in the volume sampled, not because SOC stocks increased. Hence, 
tracking changes in SOC stocks over time requires that the SOC stocks are compared for 
the same mass of soil, that is, by estimating SOC stocks on an equivalent soil mass (ESM) 
basis. The actual ESM selected is largely immaterial, so long as it is 0.3 Mg m-2 or more.

Estimating SOC stocks for a �xed, uniform or equivalent soil mass will entail as-
sumptions about how SOC content and bulk density change with increasing soil 
depth. If only one value for SOC content and bulk density is given for a given soil 
layer, the assumption must be that their distribution within the soil layer is homoge-
neous. Correcting the soil mass, i.e. mathematically reducing the sampling depth of a 
respective layer, poses the risk of over-correction. Thus, SOC and bulk density infor-
mation from discrete, contiguous and successive soil layers will assure a more precise 
SOC stock correction (Poeplau and Don, 2013). This is especially true for grassland 
topsoils, in which steep SOC gradients are common. Thereby, only the lowermost 
layer shall be corrected using ESM. A detailed description on SOC stock correction 
with multiple soil layers along with an excel sheet to �t a spline function for mini-
mizing the error associated with the above-mentioned assumption was published by 
Wendt and Hauser (2013). However, multiple layer sampling might not always be 
affordable and the problem minimizes with increasing sampling depth.

In general, several methods for calculating SOC stock changes on an ESM basis are 
available that differ in their approach to the calculation of the reference mass and/or the 
depth at which the mass of soil is adjusted (Wendt and Hauser, 2013; Gifford and Roder-
ick, 2003; Ellert and Bettany, 1995; Sisti et al., 2004). The method provided here uses the 
soil mass of the baseline as the reference to correct SOC stocks of subsequent samplings. 
The equations are constructed so that users can correct SOC stocks for any depth.

If the sampled area is strati�ed or uses a sampling design where points or areas 
in space are represented (see section 2.2.1), then ESM shall only be adjusted for 
samples that represent the same point or area (Murphy et al., 2013). This can be 
done by aggregating samples either by physically compositing samples in the �eld 
or through data calculations. The calculations use the sum of the masses and vol-
umes of the samples for a point or area to calculate the ESM used to correct SOC 
stocks. This is because the volume of the implement used to collect soil samples 
may change between sampling periods, or the numbers of samples for a given point 
or area may change over time. 

The equation for calculating the ESM to correct SOC stocks is:

Equation 10:

=
1

×
σ
σ × × 100 

Where:
ESM (Mg soil ha-1) is the equivalent soil mass (to be used in Equation 11)
n is the number of samples being aggregated
∑ Mbi (Mg) is the sum of the masses of all samples being aggregated
∑ Vbi (m3) is the sum of the volumes of all samples being aggregated 
ti (cm) is the thickness of the samples
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RECOMMENDATION 18. To consider possible changes in bulk 
density over time or due to management, comparisons of SOC stocks 
shall be made on an equivalent soil mass basis (ESM). Samples from 
at least three discrete, contiguous and successive soil layers should 
be available to describe how bulk density and SOC concentrations 
change from the surface layer downward. Only the lowermost layer in 
any nominated ESM must be based on assumed rather than directly 
measured bulk density and SOC concentration. An exception may be 
made only when estimating SOC stock changes for a relatively small 
and uniform area without strati�cation, in which case ESM may be 
neglected and the lowest mass of all samples may be taken at baseline. 
When using ESM for repeated SOC measurements or point-in-time 
comparisons, estimates shall be made for the same point (i.e. spatial 
and depth) or area over time. For sampling schemes where individual 
samples are taken, these should be aggregated to ensure they represent 
the same point or area. The method for calculating ESM shall remain 
consistent across all sampling times.

3.5.2 Calculating soil organic carbon stock changes
To calculate the change in SOC stocks, samples of soil shall be collected and anal-
ysed consistently with the baseline sampling protocol described in Chapter 2. SOC 
stock estimation, and a measure of the variance in the estimate, shall also be carried 
out in accordance with methods described in Chapter 2. 

Changes in SOC stocks can be estimated either (a) between a base period es-
tablished at t0 and another sampling at t1, or (b) between paired-plots assuming a 
business-as-usual baseline. In both cases, three steps are involved:

Step 1. Calculating the soil organic carbon stocks in a sample
Volumetric SOC stocks may be calculated for any layer represented by a discrete 

sample. The SOCi for each aggregated sample i that represent a point or area in 
space is calculated as:

Equation 11:

SOCi (in Mg C ha-1) = OCi x ESM x (1 – vGi) x 1,000,000

Where:
OCi (mg C g-1 soil) is the organic carbon content of the soil �ne fraction of 

sample i (see Chapter 2)
ESM (in Mg soil ha-1) is the equivalent soil mass calculated for each study area 

(see Equation 10)
vGi is the volumetric coarse fragment content of the sample layer of the sample 

i, as a percentage of oven dry soil mass (see Chapter 2).

Step 2. Calculating the soil organic carbon stocks and variance in a study area
If IPCC recommendations are followed (see section 2.2.4), the average SOC 

stock should be calculated separately for the 0 – 30 cm soil layer. The average SOC 
stock for the study area, and corresponding sampling variance, for each relevant 
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area and each sampling round shall be calculated as described below. 
Where equal area strata and compositing of samples apply, SOC stocks for a 

stratum are calculated as:

Equation 12:

SOCAij = SOCi x Aj

where,
SOCAij is the SOC stock for the depth increment i, for strata with area j
SOCi is the ESM adjusted SOC stock for the depth increment i
Aj is the area of strata j
 
Where strata are of equal area, the SOC stock for the “carbon estimated area” is 

calculated as:

Equation 13:

SOCCEA = (∑ SOCAij) / n

where,
SOCCEA is the mean SOC stock for the “carbon estimation area”
SOCAij is the carbon stock for strata j of area A, for the depth increment i
n is the number of strata in the CEA

The between strata variance is then calculated by:

Equation 14:

S2 SOCCEA = [∑ (SOCAij - SOCCEA)2] / (n – 1)

Where:
S2 SOCCEA is the sample variance for SOC stock of the “carbon estimated area”
n is the number of strata

Where strata are of unequal area, the weighted mean SOC stocks for the “carbon 
estimation area” shall calculated as:

Equation 15:

SOCCEA = [∑ (Aj /At x SOCAij)] / n

where,
SOCCEA is the mean SOC stock for the “carbon estimation area”
SOCAij is the carbon stock for strata j of area A, for the depth increment i
Aj is the area of stratum j
At is the total area of the “carbon estimation area”
The variance is then calculated as:
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Equation 16:

S2 SOCCEA = [∑ (Aj /At x (SOCAij - SOCCEA)2)] / (n – 1)

Step 3. Calculating the soil organic carbon stock change
Several statistical tests (t-test, mixed effects models, etc.) exist to determine 

whether the SOC stocks are different: (a) between t0 and t1 when using repeated 
measurements over time and, (b) at carbon estimation areas 1 and 2 (at a time x) 
when using paired-plot comparison against a business-as-usual baseline.

(a) repeated measurements at t0 and t1

The Welch’s t-test shall be used to test whether the SOC stocks at t0 and t1 are 
different. To do this, the t-statistic of the difference between the SOC stocks is 
calculated as:

Equation 17:

t∆ SOC = (SOCCEA at t0 – SOCCEA at t1) / √ [(S2 SOCCEA at t0 + S2 SOCCEA at t1) / n]

where:
t∆ SOC is the Welch’s t-test statistics
SOCCEA at t0 is the total SOC stock for the “carbon estimation area” as baseline
SOCCEA at t1 is the total ESM-corrected SOC stock for the sampling period com-

pared back to the baseline
S2 SOCCEA at t0 is the variance of SOC stock for the “carbon estimation area” 

baseline
S2 SOCCEA at t1 is the variance of ESM-corrected SOC stock for the sampling 

period compared back to the baseline
n is the number of strata in the “carbon estimation area”

The degrees of freedom (df) of the Welch’s t-statistic are calculated as:

Equation 18:

df = {[(S2 SOCCEA at t0 + S2 SOCCEA at t1) / n]2} / {[(S2 SOCCEA at t0)2 + (S2 SOCCEA at t1)2] / (n-1)}

The respective t value (tɲ(df)) for an appropriate alpha level (e.g. 0.9) for the calcu-
lated df needs to be derived from an appropriate table. If ඥt∆ SOCඥ > tɲ(df), then we can 
consider that the observed change in SOC stocks is statistically signi�cant.

(b) paired-plot comparison against an assumed business-as-usual baseline 
When using paired-plot comparison against a business-as-usual baseline, SOC-

CEA at t0 and t1 are replaced by SOCCEA1 and SOCCEA2, which are the total EMS-
corrected SOC for the “carbon estimation area” of the business-as-usual treatment 
and the plot of comparison, respectively (both measured at tx, the year of measure-
ment after the implementation of contrasting management). This assumes that at t0 
the SOC of both plots was identical. Further, the interpretation of treatment effects 
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is direct if SOC at t0 was at a steady state. If SOC was on a trajectory from a prior 
management practice, the interpretation of the effect of the new management be-
comes less straightforward (see Van den Bygaart and Angers, 2006).

RECOMMENDATION 19. To calculate changes in SOC stock, 
soil samples shall be collected and analysed with a consistent 
sampling protocol (Chapter 2). Further, a baseline that corresponds 
to the aim of the study should be chosen using Figure 7. (i) 
Changes in SOC stocks estimated over time shall be calculated in 
accordance with recommended methods and use of statistical tools 
(e.g. regression analysis), and in some cases knowing the ‘natural’ 
baseline might be necessary. (ii) Changes in SOC stocks estimated 
from paired-plot comparisons of new land use or management 
conditions against a business-as-usual baseline shall only be made 
when the starting point is consistent (i.e. same soil properties, 
climate, and prior land use and management); the conditions 
de�ning the land use or management states shall be thoroughly 
described. In both cases, estimated relationships should not be 
extrapolated beyond the period of the last measurement, as changes 
in SOC cannot be assumed to be constant over time.
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Box 3: The effects of grazing in mountains of southern Norway on soil carbon stock

Overview͗ Norway, approximately 2.2 million sheep graze in mountains during the summer. 
Sheep grazing has a strong impact on plant ecology and biomass, therefore possibly affecting soil 
C stocks. 

Approach:  Long-term experiments with different levels of sheep grazing (decreased; 0 sheep 
km−2, maintained; 25 sheep km−2 and increased; 80 sheep km−2) were conducted in a non-fer-
tilized alpine pasture of moderate productivity in southern Norway. Soil was sampled by genetic 
horizon and C-stocks calculated by multiplying horizon depth, bulk density and C concentration 
(Martinsen et al., 2011). Total ecosystem C-stocks were calculated including C in vegetation and 
surface soil horizon.

Impact oĨ graǌing on C stocks͗ After seven years, soil organic C stocks in surface horizons were 
lowest at sites with increased sheep density (Martinsen et al., 2011). In contrast, maintained 
sheep density caused a slight increase in soil C stocks. The set of studies also showed that C 
sequestration in the alpine landscape in S. Norway is strongly affected by the tree-line, which in 
addition to climatic conditions, is determined by the management of herbivore densities (Aus-
trheim et al., 2016).
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Box 4: SOC stocks under two grazing patterns in alpine meadows  
of Qilian Mountain, China

Overview͗ Increased grazing intensity can correlate with depletion of SOC, so the long-term im-
pact of grazing pattern and management on SOC stocks was estimated. The study area was in 
Gansu Province, China (38.8°N, 99.6°E), where grassland is classified as Alpine Typical Steppe. 
Livestock farming here has a history of more than a thousand years, with seasonal grazing being 
important to local herdsmen.
 

Approach:  Fifteen Wapiti deer (5–6 years old) grazed in winter pasture (WP) and in spring and 
in autumn pastures (SAP). Soil samples for depths of 0-10, 10-20, 20-30, and 30-40 cm were col-
lected in 1999 and 2012. Gravel, loose vegetative debris and visible roots were removed, soil sam-
ples were air dried, sieved, and soil organic carbon (SOC) was determined using the Walkley–Black 
method (Nelson and Sommers, 1996). 

W hat the study showed:  SOC content was strongly reduced with increasing grazing intensity 
under two grazing patterns, and more strongly on SAP than WP. Soil organic carbon stock changes 
responded to grazing activity, there is no lower threshold of grazing intensity below which SOC loss 
does not occur.

Graǌing season Year

distance Ĩrom nigŚt pen ;mͿ

0 1200 1500

Spring and Autumn pasture (SAP)
1999 225 428 446

2012 196 363 370

Winter pasture (WP)
1999 156 163 167

2012 138 145 152

Summary:  The evidence based on this case study helps in determination of a sustainable stock 
rate setting for a longer scale in a high attitude and cold environment.

Source: Yuan, H. and Hou, F. (2015). 
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4 .1 HANDLING DATA
A plan for research data handling speci�es how data will be acquired, processed 
and stored within the scope of research projects. It should ensure the integrity of 
research data and a high quality and accessible dataset. Data handling addresses 
concerns related to con�dentiality, security, and preservation/retention of research 
data. Proper planning for data handling results in ef�cient and economical storage 
and retrieval of data. In the case of data handled electronically, data integrity is a 
primary concern to ensure that recorded data is not altered, erased, lost or accessed 
by unauthorized users.

Data traceability, error checking and data quality, storage and backup are all inte-
gral parts of data handling. Data handling should be considered when planning �eld 
soil sampling, sample preparation and analysis, and anticipate the expected reports 
once �nal results are generated. Thus, data handling requires adequate planning, 
development of procedures that simplify data management, as well as training and 
supervision of research staff to ensure that data is stored and archived in a safe and 
secure manner.

4.1.1 Data gathering 
Data gathering for assessing SOC stock change starts with �eld sampling, then pro-
cessing and analysis and �nally recording the results of analyses in a spreadsheet or 
database. Some equipment will export data directly to computers for storage. All 
other data should be initially recorded in notebooks (i.e. neither post-it notes nor 
loose pieces of paper), then manually entered into a computer for data handling. To 
promote data standardization and ensure that experiments are fully described, sam-
pling protocols and a spreadsheet-based data-entry template should be developed. 

In addition to SOC measurements, Del Grosso et al. (2014) suggested that addi-
tional data, such as site descriptors (e.g. weather, soil class, spatial attributes), exper-
imental design (e.g. factors manipulated, measurements performed, plot layouts), 
management information (e.g. planting and harvesting schedules, fertilizer types 
and amounts, biomass harvested, grazing intensity, pest and weed controls), should 
also be recorded. Documenting the geographical coordinates of the position where 
the sample was taken is always recommended, as it is indispensable information for 
any (additional) kind of spatial analysis, including digital soil mapping. 

Such complementary data is often needed for modelling, inventory, interpreta-
tion and reporting. The type and level of detail of �eld complementary data depends 
on the level of complexity of the approach to be used when assessing SOC stock 
change. For Tier 1 models (e.g. IPCC) the relative stock change factors are based on 
land use, land management and climatic region. Tier 2 and simple soil models (e.g. 
ROTH-C) require monthly weather data (monthly rainfall, evaporation and air 
temperature) and �eld data such as soil cover (0 or 1), monthly input of plant resi-
dues and livestock dung/manure. The net primary production (NPP) can be used 
to estimate the monthly plant residue input, while the type and number of livestock 
on a grazed pasture can be used to estimate the livestock dung/input. Tier 2 and 3 
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approaches use country-speci�c coef�cients and/or �ner scale area disaggregation 
(e.g. high-resolution activity data at sub-national to �ne grid scales), which will re-
duce uncertainty in estimates. Depending on the selected model for the assessment, 
complementary data such as root biomass, SOC fractions for model initialization, 
carbon to nitrogen ratio (C:N) and soil moisture may be required. For fodder crop 
systems, information such as whether crop residues are retained in the �eld will 
improve estimates of C input.

When studying SOC stock changes, nitrogen dynamics is often an important 
driver of change because the nitrogen availability often determines biomass produc-
tion and rates of SOC decomposition (Piñeiro et al., 2010). Therefore, quanti�ca-
tion of soil nitrogen stocks may be of use depending on the purpose of the assess-
ment. The presented recommendations in this Chapter apply in the same way when 
sampling to measure nitrogen stocks. 

RECOMMENDATION 20. The geographical coordinates of the 
sampling location and of the boundaries of the represented area 
shall always be documented. When planning the assessment of SOC 
stock changes, possible complementary data from the �eld, such as 
net primary productivity, soil texture and pedoclimatic data, should 
be considered and collected as required. 

4.1.2 Data processing
Most data can be processed and stored in a spreadsheet (e.g. Microsoft Excel, Ope-
nOf�ce, LibreOf�ce). Larger and more complex datasets may require the use of a 
relational database (e.g. Microsoft Access, Oracle, MySQL). In both cases, unique 
identi�ers should be attached to all items (e.g. each soil sample). Unique identi�-
ers are crucial to ensure data traceability and error checking and so are integral to 
proper database design.

Proper data storage in spreadsheets begins with using a logical name for each 
workbook and sheet within the workbook, or for the database and its tables, queries, 
and reports. Each workbook shall have metadata (e.g. a “readme sheet”). The meta-
data should note: a brief description of the data, equipment used for analysis, brief 
description of analytical method, dates when samples were collected and analysed, 
names of persons who collected, prepared, analysed or entered the data, and any-
thing else pertinent (mistakes or equipment problems). Each sheet shall have column 
titles and units (if applicable). Data in workbooks shall show calculation �ows and 
checks and be cross-referenced with reference logbooks (which indicate usage of in-
struments/equipment). Finally, data should be in formats that will make later retrieval 
and analysis ef�cient. This includes using commonly available software formats (e.g. 
.xlsx, .accdb) or even comma separated value (.csv) �les. There may be opportunities 
decades in the future to compare results and to present �ndings.

4.1.3 Data storage and retrieval
Storing data is very important to ensure that all the information needed for inter-
pretation is available and can be retrieved in a variety of ways. Without proper data 
storage, reporting and publishing will be dif�cult in the future. Most projects start 
with storing data in a spreadsheet (e.g. Microsoft Excel). An example of SOC stock 
change after cultivated crops were converted to native pasture is provided in Annex 
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4.1. When data collected exceeds the capacity of an Excel workbook, databases are 
typically used to store large data sets. Databases can also handle more complex rela-
tionships among data tables and offer better reporting capabilities than spreadsheets.

Soil carbon databases exist for countries and are being developed globally. An ex-
ample of a soil carbon database is the Northern Circumpolar Soil Organic Carbon 
Database (Agriculture and Agri-Food Canada, 2019a). The databases are in .dbf for-
mat, using the old dBASE PC program, but Microsoft Access can import the tables.

Stored data should be backed-up regularly, either using an organization’s internal 
system or with an online external data storage company (often referred to as “storage 
in the cloud”). Personal backups (e.g. taking a copy home after work on a USB drive) 
are insuf�cient. Further, it may violate organizational policies if the data is considered 
con�dential. USB sticks and DVDs seem ubiquitous today, but �fty years ago data 
was stored on computer cards and tapes that are very dif�cult to read today. Dedi-
cated backup services minimize problems associated with technological change.

Whatever backup method is used, it should be suf�ciently well documented that 
even in an extreme case (e.g. all team members leave the project) someone can �nd 
and access the backup and understand how to interpret the data. Some countries 
have policies allowing accounting and human resources data to be deleted after a 
certain period, but that policy should not be applied to research data. 

“Open Notebook Science” (Wikipedia, 2019), proposed by Jean-Claude Brad-
ley, advocates not only that scienti�c data should be preserved but that it must be 
publicly available so that “all of the information available to the researchers to make 
their conclusions is equally available to the rest of the world”.

4.1.4 Data quality control
To ensure the integrity of the data collected, standard operating procedures shall be 
followed at every step with proper Quality Control/Quality Assurances in place. 
Soil organic carbon may be estimated by different methods. To obtain accurate and 
comparable data, the use of standardized protocols and instruments which have 
undergone Quality Assurance and Quality Control are recommended. Quality 
Control uses established protocols to achieve standards of measurement based on 
the three principle components of quality: precision, accuracy and reliability. Qual-
ity Assurance is a system of activities designed to better ensure that the Quality 
Control is done properly. As part of the SOC stock assessment, laboratories that 
analyse soil samples should have their Quality Assurance/Quality Control in place 
to ensure that data quality and integrity is achieved. A good example of Quality 
Assurance/Quality Control can be found in the UC Davis Analytical Lab Quality 
Manual (UC Davis, 2019). While using an International Organization for Standard-
ization (ISO/IEC 17025:2005 General requirements for the competence of testing 
and calibration laboratories) certi�ed laboratory for soil analyses is preferred, quite 
often the laboratory QA/QC practices of academic and research organizations will 
meet or exceed the ISO standard despite not being ISO certi�ed.

Hand-written data must be neat and readable (not always easy under �eld condi-
tions). The data should be entered into a computer as soon as practical, and particu-
larly while the person who made the entries remains available to answer any ques-
tions. Data entry can be a boring job and prone to high error rates, so double entry 
with an independent comparison and resolution of any differences is worthwhile 
if resources permit. If possible, limiting data entry activity to one-hour periods 
with other activities in-between can be helpful to limit boredom fatigue. Very large 
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projects might consider using dedicated data entry staff or even optical character 
recognition (OCR) to improve accuracy and ef�ciency. Databases and spreadsheets 
facilitate basic validity checks for errors (e.g. a quantity of 5r.3 is clearly incorrect) 
or reasonableness. For example, if the pH value in an experiment is expected to 
be between 4.0 and 7.0 at least 95% of the time, the exceptions can be �agged and 
checked to ensure they are valid. When the analysis generates unexpected results, 
this may also indicate data quality issues.

RECOMMENDATION 21. Data shall be stored in a suitable 
format, such as the template (tab- or comma-delimited text, .txt. 
csv), and include all necessary data for identi�cation (e.g. year, �eld, 
replicates, soil layers, etc.), variables for estimates (coarse fragment, 
roots, residual humidity), sample treatments (CaCO3, sieving, 
drying, etc.).

In cases, where spreadsheets are not enough for the purpose, relational databases 
should be used to store data. In addition to collecting the data required for physical 
determination of SOC stock, all relevant metadata from sampling sites shall be pre-
served. These include the sites’ past history (fertilisation, sowing, grazing, tillage, 
manure, etc.) and georeferenced location.

4.Ϯ REPORTING RESULTS
The level and scope of data/results reporting depends on for whom the �nal report 
is intended, e.g., funders, scienti�c community, the public, etc. All key members of 
the team involved in the data collection and analyses should have a chance to care-
fully review and discuss the reports. 

Results can be presented in several different ways, including graphs, tables, maps, 
etc. They should always be accompanied by estimates of error. Reporting results 
shall include a description of methods used in data collection and data processing, 
as well as storage location of data and metadata (along with contacts). Every part of 
the process should be described, not just the statistical, sampling or lab procedures. 

It is good practice to log all data from the exercise in an internal or public archive. 
This allows the project to keep data secure for follow up and allows others to make 
use of it for further analyses and to link it with other data.

RECOMMENDATION 22. Data/results reporting shall include 
a detailed description of methods including site of stored data and 
metadata. Reported results should be accompanied by an estimate 
of error or uncertainty. 
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cŚanges ʹ Net balance oĨ atmospŚeric 
carbon Ňuǆes

An alternative to the physical determination of C stocks at repeated times, is to 
draw up a full carbon budget. Such an approach accounts for the initial uptake of 
carbon through photosynthesis (Gross Primary Production), its subsequent partial 
losses through respiration (soil, plant and litter) to give net ecosystem exchange 
or net ecosystem production, and further C inputs and outputs to and from the 
system. Measurements of the net balance of C �uxes exchanged (i.e. estimating net 
ecosystem exchange) can be achieved by chamber measurements or by the eddy 
covariance method (Aubinet et al., 2012). Both these approaches are used more as 
research tools than for routine monitoring as both are relatively labour intensive 
and, in the case of eddy-covariance highly specialised and expensive to operate.

Soil chambers are the simplest method of measuring uptake and soil ef�ux but 
have a small spatial footprint, cannot be used for long-term studies and, if manual, 
may suffer from poor temporal resolution (see Smith et al., 2010). Due to these 
constraints, chamber measurements of net ecosystem exchange should be limited to 
plot scale only. Ideally, CO2 �uxes should be measured dynamically, allowing sev-
eral measurements to be recorded during the day and night and periods of optimal 
vegetation growth (e.g. Mitchell et al., 2016). 

The eddy covariance method can measure the net exchange of CO2 over areas of 
several hundred square metres to hectares depending on the sensor height (i.e. 2-3m 
over grassland) and horizontal wind speed, and provides a high temporal resolution 
allowing detection of SOC stock changes within one year (Ammann et al., 2007; 
Klumpp et al., 2011).

The eddy covariance technique analyses the covariance between rapid �uctua-
tions in vertical wind-speed measured with a three-dimensional ultrasonic an-
emometer and simultaneous measurements of the rapid �uctuations (10-20 Hz) in 
the CO2 concentration, as measured by a fast-response gas analyser (Aubinet et al., 
2012, Figure 10).

The main limitations of the eddy covariance technique are related to the fact 
that this is a point-in-space measurement. Thus, the relationship between this point 
measurement of a �ux and the upwind measure area (i.e. footprint) requires certain 
atmospheric conditions to be considered at set up of the tower. These involve: (i) 
well-developed and continuous turbulence, (ii) stationary wind �eld and turbu-
lence conditions and, (iii) a homogeneous distribution of sources and sinks of CO2 
in the footprint area.

The eddy covariance provides the most robust measure of not only net ecosys-
tem exchange but also allows for the partitioning into GPP and total ecosystem 
respiration. GPP is not easily measured at large scales but can be estimated from the 
net ecosystem exchange measured by eddy covariance, by extrapolating night-time 
ecosystem respiration (see Reichstein et al., 2005).
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To determine the net carbon storage (NCS) via the eddy covariance technique, 
further C inputs and outputs to the �eld need to be considered (see Soussana et 
al., 2010). These include: (i) trace gases comprising C compounds exchanged with 
the atmosphere (i.e. CH4, volatile organic compounds, VOC, and emissions during 
�res), (ii) organic C imports (manures) and exports (harvests, animal products), (iii) 
dissolved C lost in waters (dissolved organic and inorganic C) and lateral transport 
of soil C through erosion. By considering these variables, NCS (g C m-2 per year) is 
the mass balance of these �uxes (Equation 19):

Equation 19:

NCS = (FCO2
 – F CH4-C - FVOC - F�re) + (Fmanure - Fharvest – F animal-products)  

- (Fleach + Ferosion)

Where:
FCO2

 is the net ecosystem exchange of CO2 between the ecosystem (plant and soil) 
and the atmosphere, including CO2 (digestive + metabolic CO2) from grazing ani-
mal. FCO2 is conventionally positive for a C gain by the ecosystem. 
FCH4-C, FVOC and F�re are trace gas C losses from the ecosystem as methane, volatile 
organic compounds and through �re, respectively (g C m-2 y-1). 
Fmanure, Fharvest and Fanimal-products are lateral organic C �uxes which are either import-
ed or exported from the system (g C m-2 y-1). 
Fleach and Ferosion are organic (and/or inorganic) C losses through leaching and ero-
sion, respectively (g C m-2 y-1). 

Depending on the studied system (i.e. climatic zone) and management, some of 
the �uxes in Equation 19 can be neglected for NCS calculations: 

•	Fire emissions (Ffire) by grasslands are very low in humid temperate regions 
(i.e. below 1 g C m-2 per year over 1997-2004 in Europe), while they reach 10 
and 100 g C m-2 per year in Mediterranean and in tropical grasslands, respec-
tively (Van der Werf et al., 2006). 

Wind

IR Gas
Analyzer

Sonic
Anemometer

Flux
Tower

Air Parcels

Figure 10 
Measurement principle of the eddy covariance method*

*  (Hu et al., 2014)



61

Monitoring soil organic carbon changes – Net balance of atmospheric carbon fluxes

•	Erosion (Ferosion) is rather insignificant in permanent grasslands (e.g. in 
Europe), but can be increased by tillage in the case of sown grasslands. The 
global map of Ferosion created by Van Oost et al. (2007) indicates that grassland 
C erosion rates are usually below 5 g C m-2 per year, even in tropical, dry 
grasslands. 

•	Volatile Organic C emissions (FVOC) by grassland systems are usually very 
small, and can thus be easily neglected (Davison et al., 2008). 

In many grasslands systems, Equation 19 above can be simpli�ed to (Allard et al., 
2007):

Equation 20:

NCS = (FCO2
 - FCH4-C) + (Fimport – Fexport – Fanimal-products) – Fleach

Some studies have compared repeated SOC stock measurements with C balance 
obtained by the eddy covariance technique (e.g. Leifeld et al., 2011; Skinner and 
Dell, 2014; Stahl et al., 2017) showing that methods match well for long-term com-
parison (i.e. > 5yrs), but not in the short term due to the uncertainty of eddy covari-
ance measurements linked to instrumentation and data processing. Nonetheless, the 
strength of this method compared to repeated SOC measurements, is that it allows 
for the annual assessment of C sinks and related principal drivers (e.g. manage-
ment, climate) of source/sink strength to be elaborated (Jones and Donnelly, 2004; 
Skinner and Dell, 2014; Klumpp et al., 2011). This may be the case for management 
systems that are newly imposed (less than ten years old). Even so, analysing net 
ecosystem exchanges is quite costly and labour intensive in terms of instrument 
set up, maintenance and data processing, making it necessary to dedicate a whole 
research team to this approach. A case study showing the strengths of the approach 
as well as the technology and expertise required by the eddy covariance technique 
is shown in BOX 6.

RECOMMENDATION 23. When using a full-system 
carbon budget approach as an alternative to repeated physical 
measurement methods to determine SOC stock changes, it shall 
�rstly be established that adequate funds and equipment and a 
research team with the required expertise can be dedicated to the 
project. For eddy covariance measurements to determine SOC 
stock changes, assessment of site suitability shall be undertaken 
to determine that the spatial area is suf�ciently large (4 to 8 
hectares, minimum, depending of wind direction) to fully quantify 
contributions to �uxes of all material carbon sinks and sources (e.g. 
harvest, leaching, animal products). Established research groups and 
networks (e.g. Fluxnet, Ameri�ux, NEON, ICOS) with experience 
in use of eddy covariance methods should be consulted when 
seeking to set up instrumentation and programs using full carbon 
budget methods.
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Box 5: Soil carbon storage of old permanent pastures in Amazonia

Ov erv iew:  Amazonian forests accumulate carbon (C) in biomass and in soil, representing a car-
b on s ink  of  0. 4 2- 0. 6 5  Gt  C y r - 1.  In r ec ent  dec ades , mor e t h an 15 %  of  Amaz onian f or es t s  h av e b een 
converted into pastures, resulting in net C emissions (~200 Mg C ha - 1) due to biomass burning 
and litter mineralization in the first years after deforestation. However, little is known about the 
c ap ac it y  of  t r op ic al  p as t u r es  t o r es t or e a f or es t  C s ink .  

Approach:  To estimate C stock changes of pastures and native forests in French Guiana, two 
independent approaches were applied: (i) a chronosequence study including the inventory of 
soil C and N stocks to a depth of 100 cm in 24 pastures from 0.5 to 36 years old and four native 
forests distributed across French Guiana and, (ii) measurement of NEE by eddy covariance in one 
young (4-year-old) and one old (33-year-old) pasture included in the chronosequence study, and 
one native forest.

tŚat tŚe study sŚowed͗ The combination of chronosequence study and eddy covariance 
measurements showed that pastures stored between 1.3 ± 0.37 and 5.3 ± 2.08 Mg C ha- 1 y r - 1 
whilst the nearby native forest stored 3.2 ± 0.65 tC ha-1 yr- 1. Data showed that French Amazonia 
tropical pastures could partly restore the C stocks observed in native forest, when maintained 
longer than 24 years. Carbon was mainly sequestered in the humus of deep soil layers (20-100 
cm), whereas no C storage was observed in the top 0-20 cm layer. C storage in C4 tropical pasture 
was related to the installation and development of C3 species (e.g. legumes, weeds), which in -
crease either N input to the ecosystem or the C:N ratio of SOM. 

Changes in soil carbon stocks to a depth of 1 metre under pastures ≤ 24 and ≥24 years old (A), 
and soil carbon stock changes originating from C3 and C4 plants (B), along the chronosequence. 
The C4 plant (black circles) planted when the pastures were established. The C3 plant signature 
(white circles) from C native forest and C from new plants such as shrubs legumes. 

Summary͗ Efforts to curb deforestation in Amazonia remain an obvious priority to preserve 
forest C stocks and biodiversity. However, these results show that under sustainable manage-
ment (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 
species), tropical pastures can ensure a continuous C sequestration, which adds to the current C 
s ink  of  Amaz onian f or es t s .

References: Stahl, C. et al., 2017.
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6.1 INTRODUCTION
6.1.1 What is modelling and who is it intended for: decision support and 
reporting
Modelling is an approach used to infer SOC stocks and distributions in conditions 
where they have not been measured, such as: (1) under future climatic conditions, 
(2) at locations or for soil types or regions where no measurement exists, (3) for 
pasture management scenarios that have not yet been tested, e.g. use of new grass 
species or changes in fertilization or grazing regime. The inability to measure SOC 
stocks directly can have various causes, such as dif�cult access to representative 
sampling points, lack of equipment or that the number of samples needed to rep-
resentatively cover a certain area of interest exceeds those affordable. Furthermore, 
the information obtained by direct measurements is not always suf�cient to answer 
all relevant questions related to SOC stock and dynamics.

In the last decades, numerical models have been developed, including mathemati-
cal representations that quantitatively describe soil characteristics and processes. The 
breadth of these approaches can be illustrated by the recent compilation of 90 math-
ematical models describing SOC changes and biogeochemical related soil processes 
developed in the last 80 years (Falloon and Smith, 2009; Manzoni and Porporato, 
2009, and Campbell and Paustian, 2015). However, according to their structure, num-
ber of input variables required and temporal and spatial resolution, not all available 
C models are suitable for all studies (Manzoni and Porporato, 2009). Additionally, 
due to bias in previous studies towards particular ecosystems, there are notable gaps 
in our understanding. For instance, currently, most of the modelling efforts have fo-
cused on forests and croplands, while grasslands have received less attention.

Grassland models have been developed with different research foci to model soil 
C, N, P, and S dynamics at monthly and daily time-steps (e.g. CENTURY, Day-
Cent). Some have aimed at improving representation of biochemical, biophysical 
and ecosystem processes in natural grasslands (e.g. Grassland Ecosystem Model, 
GEM) or describing C, N and water cycles in grazed systems (e.g. Hurley Pas-
ture Model of Thornley (1998), PaSim) or simulating multiple grass species which 
compete for water and nutrients (e.g. DNDC, Li et al., 2012) and other process-
based models. Because modelling grassland systems is complex, both individual 
and ensemble models perform poorly in predicting above-ground grass produc-
tion, whereas model ensembles perform adequately for predicting yields of annual 
crops (Ehrhardt et al., 2018). Grassland systems are characterized by features that 
are absent in arable cropping systems. These add complexity to process-based mod-
elling of grassland systems compared to annual cropping systems and thus present 
signi�cant challenges to model developers and users. These features include: (i) 
pastures are botanically diverse (e.g. perennials, legumes, C3/C4 species); (ii) there 
are substantial interactions between management practices (e.g. grazing animals, 
grazing practices, �re regimes, fertilization, harvests, etc.) and vegetation responses 
and; (iii) the whole farm management is more complex and at the same time more 
important for grasslands than for arable systems.
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Models of SOC in pasture systems, developed and tested by scientists, are used 
by extension specialists and consultants for making practical recommendations 
towards climate smart agricultural practices. Extension specialists use models to 
predict long-term changes in SOC for speci�c farms and communicate this infor-
mation to farmers, in terms of best practices for grazing land management. Consult-
ants and public sector advisors apply a similar approach, using models to evaluate 
the sustainability of grazing land management at different scales to facilitate deci-
sion making in public and private sectors. Decision makers are interested in identi-
fying pasture management options that provide an optimal balance between carbon 
sequestration and reduction in greenhouse gas emissions and broader effects on 
ecological health, resiliency and productivity.

Reporting is another main application of SOC models. Once there is a policy 
decision to sustainably increase carbon storage in pasture soils and measures to 
implement this have been agreed upon, there is a long-term requirement to report 
on progress towards this goal. Modelling can be an important tool in the report-
ing process, providing a method for estimating soil C gains resulting from the new 
management. Reporting can be performed at various scales, from the individual 
�eld to entire countries or continents. For example, a livestock farmer might need 
to report to funding agencies changes in SOC stocks due to crop rotations, stocking 
rates and fertilizer practices. He might not have the technical and �nancial capac-
ity to conduct soil analyses after every cropping season, so a modelling approach is 
needed to account for potential changes. Also, many countries are obliged to report 
greenhouse gas emissions from different sectors in national inventory reports. Soil 
carbon stock changes can be an important part of such inventories in the agricul-
tural sector. While some countries have measured baseline SOC stocks and some 
might even repeat measurements in certain intervals, models are commonly used to 
annually account for changes in SOC stocks on the national scale.

RECOMMENDATION 24. Models shall be used when the 
objective is to estimate or extrapolate changes in carbon stocks in or 
to conditions in which they have not been measured e.g. soil type, 
climate and management. As a guiding principle, the complexity of 
the model should be aligned to the context.

ϲ.Ϯ THE DIFFERENT MODELLING APPROACHES 
Three modelling approaches are usually recognized, referred to here as three differ-
ent levels of assessment. Following the ‘tier’ structure proposed by the IPCC (2003, 
2006), a three (1-3) level approach is proposed to estimate SOC stocks and SOC 
dynamics using simulation models. The level and method selection will depend on 
the speci�c purpose of the study, the spatial scale, and data availability (see section 
6.3), among other factors. Although the level structure is not hierarchical, moving 
to a higher level should improve the accuracy of the estimation and reduce uncer-
tainties, as the complexity and data resources required for modelling SOC changes 
also increase. The approaches are not mutually exclusive, and a mix of approaches 
may be applied for different calculation needs or local circumstances. 

The following three levels represent different methodological modelling ap-
proaches and range from the use of default data and empirical equations to the 
use of more complex, speci�c, locally validated functional or mechanistic models. 
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These three levels are:
•	Level 1: ‘Empirical’ Models
•	Level 2: ‘Soil’ Models
•	Level 3: ‘Ecosystem’ Models

6.2.1 Level 1. Empirical models
SOC stocks and changes in this level may be estimated using an empirical approach, 
which usually represent the observed relationships between SOC stocks or SOC 
changes and de�ned environments, or environmental and management variables, 
such as soil clay content, temperature, precipitation or land use (Grigal and Bergu-
son, 1998; Davidson and Janssens, 2006; Milne et al., 2007).

One of the best-known empirical approaches is the computational method for 
estimating SOC stock changes developed by The Intergovernmental Panel on 
Climate Change (IPCC, 2003, 2006). This empirical approach computes projected 
net SOC stock changes over a 20 year period. This is assumed to be the default 
period for SOC stocks to attain a new steady state (referred to as ‘equilibrium’) 
although this may take much longer, even more than 100 years (e.g. Poulton et 
al 2018). This approach estimates change in SOC stocks by assigning a reference 
SOC stock value, which varies depending on climate, soil type and other factors. 
This reference value is then multiplied by factors representing the quantitative 
effect of changing grassland management on SOC storage. The method can use 
default climatic, soil and land use/management information given by the IPCC or, 
if available, country-speci�c data. For each period, SOC stocks are estimated for 
the �rst and last year, based on multiplying a reference C stock found under na-
tive vegetation (for a speci�c climate and soil type) by stock change factors (land 
use, management, organic matter inputs, and land area). Annual rates of carbon 
stock change are estimated as the difference in stocks at two points in time divided 
by the time dependence of the stock change factors. For an example of this ap-
proach, see the case study in BOX 6.

This approach may be used for systems with a limited availability of historic 
climatic data, soil databases, and/or productive registers (management practices and 
its effects on net primary production, or estimations of biomass returns and exports, 
etc.). These types of approach have been used to estimate C sequestration potentials 
for rangelands and pastures and the potential effects of management practices on 
SOC stocks and stock changes (Ogle et al., 2004; Grace et al., 2004; Easter et al., 
2007; Milne et al., 2007; Kamoni et al., 2007; Petri et al., 2010; Berhongaray and 
Alvarez, 2013) at global, national and regional scales. The method may, however, 
have limitations for sub-national or sub-regional assessments (Milne et al., 2007).

One main drawback of the IPCC approach is that it considers, as do other re-
gression approaches, that SOC changes linearly (Milne et al., 2007) and reaches 
equilibrium in 20 years (Goglio et al., 2015). This may cause important deviations 
in some types of environment (Berhongaray and Alvarez, 2013). Another drawback 
is that much of the data available for deriving the empirical factors in the IPCC 
default approach are from studies in North America and Europe. For this reason, 
there is a signi�cant lack of data from grasslands in other environments, which may 
result in bias of the estimations of default reference SOC values, or in land use or 
management factors (Petri et al., 2010). An adjustment of these parameters with lo-
cal data may be required to improve estimations (Berhongaray and Alvarez, 2013). 
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Finally, regression-based estimates may be also limited in their ability to predict 
long-term soil C dynamics in a changing environment (Peng et al., 1998).

Simple carbon balance equations, that consider decay and humi�cation rates, de-
veloped for a speci�c region or environment based on empirical functions, may be 
included at this level. In these types of models, SOC decomposes according to �rst 
order kinetics with a rate constant represented by an empiric coef�cient of miner-
alisation k2 (year-1), which is assumed to be a characteristic of soil and climatic con-
ditions. The amount of carbon that becomes part of SOC stocks is estimated from 
plant carbon inputs (CI), as a function of another empiric parameter, k1 or ‘iso-
humic coef�cient’, which represents the yield of the transformation into humi�ed 
carbon of the crop residues and is generally characteristic of the type of residues 
(Andriulo et al., 1999). SOC changes in these models follow the Hénin and Dupuis 
(1945) two compartment approach, and may be summarised as:

Equation 21:
∆SOC/∆t = k1 x CI - k2 x SOC

Box 6: Extending the lifetime of temporary sown grasslands to increase  
soil C sequestration – French case study

Overview͗ Soil C sequestration by the world’s grasslands could offset GHG emissions. These offsets 
can be partly achieved by grazing management and restoration of degraded lands. However, there are 
considerable effects of climate and management linked to C sequestration potential. In grasslands C 
accumulation mainly happens in the top soil layers (first 30cm), which account for 80 to 90% of the 
variations in the stock. Thus, the nature, frequency and intensity of soil disturbance are key factors 
determining C sequestration potential. In France, cultivated grassland have become an important part 
of agricultural systems in recent decades (e.g. steady decline of permanent grasslands; 12.8 Mha per-
manent and 2.7 Mha temporary in 1980 compared to 7.4 Mha and 3.2 Mha in 2010). However, these 
grasslands submitted to frequent cultivation are more vulnerable to C losses compared to permanent 
grasslands; approximately 20–30% of top SOC (0-30cm) is susceptible to rapid losses due to tillage 
in the first years after grassland installation (0.6 to 1.2 Mg C ha-1 year-1 after ploughing). Limiting the 
frequency of grassland renewal may thus improve carbon sequestration by reducing soil disturbance.

Approach:  The C sequestration potential of temporary grasslands (TG) by extending “life time” 
to 5 years (Pellerin et al., 2013) was estimated. At present, French temporary grasslands are divided 
into six age classes occupying 31% (1 year), 17% (2 year), 17% (3 year), 16% (4 year), 13% (5 year) and 
6% (6 year) of the total TG area (3.14M ha vs. permanent 9.8Mha). Without increasing the surface 
area of TG, we increased TG life-time to five years, for all TGs >4 years, for 80% of the TG 3yrs, 65% 
of the TG 2 yrs and 50% of TG 1yrs. Potential C sequestration was estimated by using a Tier 2 (IPCC 
2006) approach for C stock changes (i.e. SOC (t) = SOCref x FLU x FMG (t) x FI (t)) in the 0-30 cm soil layer, 
where SOCref was the mean soil C stock of the French administrative region in 2013, FLU is the land 
use factor (1 for temperate grassland), FMG the management factor (0.7 to 1.14 from highly degraded 
to improved grassland) and Fi the input factor (1 to 1.11 for moderate to improved). To simulate an 
extension of “life time” mission factors (FLU x FMG x FI ) were combined varied according to grassland 
age (table below).

(cont.)
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Combined “life time” mission factors (FLU x FMG x FI ) according to grassland age 

W hat the study showed:  A lifetime extension of temporary grasslands (i.e. 16% of the TG 
area) increased mean C sequestration potential by 0.26±0.03 t C ha-1yr-1 (-0.002 to 0.5 tC ha-
1yr-1 depending on regional initial SOC stock, % of sown grassland within the total grassland area 
and partitioning of grassland ages).
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These kinds of approaches are still widely used to describe or predict carbon 
evolution in different environments and scales (Minasny et al., 2013), and have been 
the basis for other more complex models. However, it has long been recognized that 
SOC has many components or pools varying in stability and turnover rates, and 
that the value of the mineralisation and humi�cation parameters change over time. 
Hence, the main drawback of using this empiric type of approach is that generally 
these equations are generated for speci�c conditions (soil, climate, management, 
type of carbon inputs), so they will not necessarily perform adequately in different 
environments or under changes in these variables.
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RECOMMENDATION 25. Level 1 modelling without 
modi�cation may provide a �rst indication to predict the magnitude 
or direction of carbon stock changes. Level 1 modelling should 
be used when there is access to data-based factors that have been 
speci�cally determined for the system of interest (e.g. IPCC factors 
that can be adapted based on region-speci�c experiments). Users 
should note that Level 1 models can be used for reporting or claims 
but the simplicity of these models translate into limited accuracy if 
region speci�c factors are not used. 

6.2.2 Level 2. Soil process models
Soil organic carbon stocks and changes may be estimated at this level by using models 
that simulate SOC dynamics through time, considering the effects of climatic and 
soil factors together with land use and management variables. Models at this level 
take account of underlying dynamic processes and variables determining SOC stocks 
and changes by using mathematical functions that describe in detail the physical and 
chemical processes involved, or by using robust empirical functions based on general 
physical-chemical principles to simulate and integrate different processes.

Many types of models can predict and integrate a variety of variables other than 
SOC (such as soil moisture and temperature) and simulate its impacts on SOC dy-
namics. They are generally used to predict SOC dynamics based on different con-
ceptual C pools or compartments that vary in size via inputs, decomposition rates 
and stabilization mechanisms (each compartment or pool being a fraction of SOC 
with similar chemical and physical characteristics; Stockmann et al., 2013). The 
�ows of carbon within most of these models represent a sequence of carbon going 
from plant and animal debris to the microbial biomass, then to soil organic pools of 
increasing stability. The output �ow from an organic pool is usually split and gen-
erally directed to some type of microbial biomass pool, another organic pool and, 
under aerobic conditions, to CO2 (Falloon and Smith, 2009).

At this second level, dynamic, process-oriented, ‘soil-centred’ models are pro-
posed. These models take into account previously mentioned SOC processes, but 
do not simulate other complex processes such as plant above or below ground bio-
mass growth, or nutrient dynamics. So, in these cases, incoming carbon from plant 
and animal residues must be estimated elsewhere. YASSO (Liski et al., 2005), ICBM 
(Andren and Kätterer, 1997) C-TOOL (Taghizadeh-Toosi et al., 2014), CANDY 
(Franko et al., 1997) or Roth-C (Jenkinson et al., 1990; Coleman et al., 1997) are 
some examples of this type of models. RothC has been one of the most widely 
used SOC models in the last 20 years (Campbell and Paustian, 2015). Although it 
was originally developed and parameterized to model the turnover of organic C 
in arable topsoils, it was later extended to model turnover in other biomes, and to 
operate in different soils and under different climates (Coleman et al., 1997). It has 
been widely used to simulate C dynamics in livestock systems, including grasslands, 
pastures, savannas and shrublands (e.g. Falloon et al., 1998; Cerri et al., 2003, 2007; 
Martí-Roura et al., 2011; Liu et al., 2011)

Although these models are more complex than empirical approaches, they have 
relatively few data requirements and it is relatively easy to obtain climatic, soil and 
productivity data inputs to run them. Soil carbon inputs from plant residues and 
animal excreta need to be estimated, but they may be derived from above-ground 
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net primary production, root: shoot ratios, livestock ef�ciencies and harvest, and 
plant material digestibility (Liu et al., 2011; Poeplau, 2016). However, by exclud-
ing simulations of plant biomass growth, plant interactions with climatic variables, 
soil water budgets, nutrient dynamics, or GHG emissions other than CO2, these 
models may have limitations for application to speci�c purposes. For an example of 
their use, see the case study in BOX 7.

RECOMMENDATION 26. Level 2 modelling should be used 
when regional factors for SOC change and factors affecting the 
change (e.g. humi�cation coef�cients) are not available, but data 
about plant carbon inputs and environmental parameters affecting 
carbon losses, that are needed to feed the model, are available. 

Box 7: Using Models to analyse management strategies in the Flooding Pampa, Argentina

Overview͗ he Flooding Pampa is the main beef cattle breeding region of Argentina, occupying 9 Mil-
lion hectares of grasslands, characterized by a mild, temperate humid climate. This lowland region 
is covered mainly by different kind of saline sodic soils, which remain waterlogged during winter-
spring and often experience summer droughts. Vegetation consists of native grassland extensively 
and continuously grazed by cattle. SOC levels as high as 60 -75 t C ha-1 can be found in the top 30 cm 
in pristine situations or by long term grazing exclusion (enclosures). Since the introduction of cattle 
more than 400 years ago, it has been estimated that SOC stocks have decreased by 15-30% (Piñeiro 
et al., 2006). With appropriate grazing systems established, not only is plant community structure 
improved, but NPP is also increased in these grassland soils (Di Bella et al., 2015). Grazing manage-
ment could be a viable option to improve soil quality and SOC stocks in the region. 

Approach:  A combination of SOC measurements and simulation models was used to analyse 
current and possible future trends in SOC levels under different management strategies at a field 
scale in these ecosystems. Production data (easily accessible to farmers) were used to estimate 
carbon inputs (Soussana and Lemaire, 2014; Liu et al., 2011) for the Roth-C Model, which simu-
lated expected SOC stock changes under different management regimes. 

(cont.)
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6.2.3 Level 3. Ecosystem models
At this level, the use of dynamic, process oriented, more complex and locally cali-
brated SOC models is proposed. As in ‘level 2’ models, SOC changes in time are 
simulated considering the effects of climate, soil, land use and management vari-
ables on SOC dynamics. However, ‘Ecosystem Models’ also integrate these vari-
ables to simulate soil processes other than carbon turnover that may have a direct 
or indirect impact on SOC dynamics. Thus, ‘Ecosystem Models’, using different 
sub-models, simulate above and belowground plant biomass growth and carbon 
inputs, soil water dynamics, nutrient dynamics and their interactions. Models at 
this level generally simulate carbon �uxes through different organic pools in the 
soil: soil active carbon (plant litter or residues, microbial biomass), slow organic 
carbon and passive or inert carbon. Each pool has different speci�c decomposition 
rates, regulated by the pool size, soil characteristics, nutrient availability, soil tem-
perature, and soil moisture, which in turn depend on the plant growth, soil water 
budget and nutrient dynamics simulated by the model.

There are a range of existing Ecosystem models for estimating SOC includ-
ing: EPIC (Williams et al., 1984), CENTURY (Parton, 1996), DNDC (Li, 1996), 
DAISY (Svendsen et al., 1995) and SOCRATES (Grace et al., 2006). There are also 
examples of ‘level 2’ models which have been incorporated into ecosystem or farm 
models, such as ICBM in HOLOS (Kröbel et al., 2016), which was developed to 
estimate SOC changes and whole-farm greenhouse gas emissions (see case study in 
BOX 8). Other widespread ecosystem models like DSSAT (Jones et al., 2003) and 
APSIM (McCown et al., 1996) have also incorporated SOC subroutines. Finally, 
there are different examples of ecosystem simulation models, speci�cally oriented 
to livestock systems, able to simulate SOC dynamics, such as the ECOMOD Suit 

W hat the study showed:  The figure shows simulated SOC evolution after 20 years under native 
vegetation (a typical livestock system), and ‘improved’ management (with phosphorus addition and 
a grazing-legume rotation). Average SOC levels in Natraquoll soils, measured in commercial produc-
tion farms are shown as a reference. After increasing NPP, ‘improved’ systems may raise C stocks 
by nearly 160 kg C ha-1 y-1, even when grazed at high stocking rates. However, at a broader scale, 
this kind of approach should be complemented with Life Cycle Assessment (LCA) methods when-
ever possible, to properly account for CO2 and other GHG flows associated with each management 
regime. 
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(including EcoMod, DairyMod, and SGS Pasture models; Johnson et al., 2008) and 
PaSIM (Riedo et al., 1998; 2000).

Tested using long-run data sets and locally calibrated, these ‘ecosystem models’ 
generally show a good ability for predicting SOC dynamics across a range of land 
use, soil types and climatic regions (Smith et al., 1997). However, model calibra-
tion and validation of the different subroutines or parameters play a major role in 
in�uencing their predictive ability, but auxiliary data can sometimes be dif�cult 
to measure, costly, time consuming and highly variable. Models at this level have 
higher soil, climatic and management data requirements, which may be dif�cult to 
obtain. Moreover, carbon pools or compartments simulated by these models are 
usually theoretical without measurable counterparts, making it dif�cult to initialize 
the models and validate model-calculated results (Falloon and Smith, 2009). Eco-
system models offer the potential to simulate SOC stocks and SOC dynamics for a 
wide range of purposes, but they are not always the most appropriate tool, thereby 
requiring careful consideration when deciding on the approach. 

RECOMMENDATION 27. Level 3 modelling shall be used when 
the objective is to integrate the feedbacks from multiple soil-plant-
atmospheric processes on SOC dynamics. They should be used to 
investigate multiple impacts between agricultural management, 
crops and soils and to estimate the impacts of climate change 
feedbacks between crop productivity and SOC dynamics. They may 
be used to estimate the trade-offs between SOC change and other 
environmental indicators.

ϲ.3 DECIDING ON THE APPROACH
In general, the choice for a speci�c modelling approach may depend on the pur-
pose, available resources (time, computer capacity and data) and expertise of the 
agent. Most models are freely downloadable or can be obtained from the developer, 
usually together with useful handbooks. Thus, the model as such should not be a 
limiting factor. As a rule, the level of complexity of the chosen modelling approach 
chosen should be aligned with the overall context. For example, if SOC is only one 
component that needs to be considered in holistic multi-component budgets, such 
as whole-farm greenhouse gas budgets (see the case study of the Holos model in 
BOX 8) (Bolinder et al., 2006), a level 3 approach might not be the most feasible 
solution. This is because: (i) SOC stock changes are not the major part in such a 
budget and thus less accurate prediction of SOC stock changes might not be critical 
for the overall budget and, (ii) the level of detail of input data in the overall context 
is most likely not good enough to achieve more realistic results using a level 3 ap-
proach as compared to lower level approaches. 

Level 3 approaches have the potential to be most accurate, but for that they re-
quire detailed site-speci�c calibration data. In many cases, this will not be available. 
Therefore, often a level 2 approach may be more suitable. On the other hand, one 
major feature of level 3 approaches is indispensable in certain situations: the abil-
ity to simulate vegetation dynamics. In general, as a stand-alone, only level 3 ap-
proaches can simulate climate change scenarios, since not only processes in the soil 
are modi�ed by climate, but also responses of the vegetation need to be considered 
(Parton et al., 1995). For the same reason, it may make sense to use a level 3 model 
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when trends in SOC dynamics are to be estimated without having any information 
on the productivity, i.e. plant-derived carbon inputs to the soils, at a speci�c site. 
Again, �lling such essential data gaps with simulations should however only be 
considered when suf�cient data (for example climate and soil data) are available to 
parameterize the ecosystem model. Otherwise a rough estimate of carbon inputs, 
i.e. derived from agricultural statistics in combination with average allocation coef-
�cients might be just as accurate (Andrén et al., 2004).

Box 8: Including soil carbon change assessment in whole-system footprint analysis of a 
Canadian dairy farm

Overview͗ A new carbon model approach was used in a whole-farm dairy as-
sessment to evaluate the effect of forage source on the GHG intensity of milk 
production (Little et al., 2017). In a companion research study, feeding corn 
silage rather than alfalfa silage to dairy cows lowered enteric CH4 emissions. 
This prompted us to investigate the net effects of a change in forage manage-
ment on total GHG emissions for a 60 cow dairy farm. Holos, a whole-farm 
GHG model developed by Agriculture and Agri-Food Canada (2019b), was 
used to estimate net emissions of CO2, CH4, and N2O (in CO2 equivalents).

Approach:  To estimate effects on soil carbon change, we used the Introductory Carbon Bal-
ance model (Andrén and Kätterer, 1997) with carbon simulations beginning at equilibrium (in 
1985 before Canadian cropping systems started to diversify), thus providing an estimate for the 
effect of the management decision.

W hat the study showed:  The study showed that total GHG emissions were slightly greater with 
corn silage, and thus milk GHG intensity was slightly lower with alfalfa than with corn silage (1.11 vs. 
1.12 kg CO2eq/kg fat and protein corrected milk, respectively). However, alfalfa silage required 5 ha 
more land. When taking the carbon modelling approach into account (comparing 4 year corn silage 
– 4 year mixed hay versus 4 year alfalfa silage – 1 year barley silage rotations), the corn silage based 
system kept losing soil carbon (~2000 kg C ha-1 30yr-1), thus adding about ~23 Mg CO2eq yr-1 to the 
>2000 Mg CO2eq yr-1 whole-farm GHG emissions. The alfalfa silage system, however, stored carbon 
(~1.9 Mg C ha-1 30yr-1), thus reducing the whole-farm GHG emissions by ~320 Mg CO2eq yr-1 (16%). 

This simulated carbon change will, however, diminish over time, which is why it is reported 
separately from the total of GHG emissions. 
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The following two tables provide guidance in deciding which modelling ap-
proach might be most suitable for a certain purpose at a certain scale. In the �rst 
table, several purposes, which might be the most relevant, are listed. For each pur-
pose, a measure of validity of the modelling approach is assigned to each of the three 
levels of complexity. 

In Table 4, red indicates that the respective level should not be considered at all, 
yellow indicates a general validity of the level with limited accuracy and potentially 
limited acceptance and green indicates that the level is valid and common practice 
for the respective purpose.  

For both level 2 and level 3 approaches, it should be noted that the most com-
monly applied models (as listed in Table 4) were parameterized and calibrated in a 
temperate climate, often only at one experimental site. Thus, especially when ap-
plied in a subtropical or tropical context, the user should ensure that the model 
has been validated for those conditions, by searching for alternative parameter sets 
or recalibrating and/or validating the model. As an example, (Shirato et al., 2004) 
changed the decomposition rate of one SOC pool of the RothC model to improve 
the model performance for Japanese Andosols. More detailed guidance on model 
calibration, validation and uncertainty, notably with the use of Monte Carlo ap-
proaches, can be found in the Appendix 2. Recently, Brilli et al. (2017) have re-
viewed the strength and weaknesses of many agro-ecosystem models and give ad-
ditional guidance for deciding on the approach.

RECOMMENDATION 28. The choice of modelling approach 
should consider the purpose and spatial scale of the study, as well as the 
availability of quality data to run the model. The complexity of the 
model should be aligned to the context, but the simplest, locally validated 
model is preferred. Internal calibration of a model (based on region-
speci�c data), where model “factors” are adapted based on experiments, 
leads to more accurate results, regardless of the level of assessment.

Table 5 summarizes frequently-applied spatial scales and uses of well-known 
SOC models used for livestock systems, as well as their data requirements, as a 
guide for the decisions on the approach. More information on the advantages, 

Table 4: List of modelling purposes with the validity of the three modelling approaches (levels) 
indicated by different colours

Model purpose Level 1 Level Ϯ Level 3

National accounting
Comparing management practices
Optimizing ecosystem services
Climate change Scenarios
Benchmarking
Life Cycle Assessments
Cross Compliance (including other GHGs)
2-3D modelling (depth pro�le, lateral �uxes)
Upscaling
Commercial farm assessment

Note: Red= invalid, yellow= limited accuracy and limited acceptance, green= valid and common practice.
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potential uses, and disadvantages / limitations of each type of approach is men-
tioned in sections 6.2.1—6.2.3.

6.3.1 Technical capacity and activity data
A model of a system must balance the conceptual understanding the model is in-
tended to represent, the mathematical approach that best represents that under-
standing and the data available to inform and evaluate how the model functions, 
within the constraints of available computational capacity (Campbell and Paustian, 
2015). Precision of models relies heavily on the quality and quantity of data used 
in executing them. Often, the datasets for running models are not collected for that 
speci�c purpose but taken from previous or ongoing studies. In many cases the 
format and amount of data may be inappropriate for the models. A lot of data are 
collected that cannot be integrated to support testing models, partly because they 
are collected at different times and are not available to other parties. The absence 
of meta-data in most datasets, make it near impossible to use beyond the project it 
was intended for.

Availability of data notwithstanding, there are situations where data shortages 
can be addressed by using proxy data variables. The technical capacity to identify 

Table 5: An overview of the most common models used in livestock systems

Sample numb er
Level 1 approacŚ͗
Empirical models

Level Ϯ approacŚ͗
Soil process models

Level 3 approacŚ͗
Ecosystem models

Models used in livestock systems IPCC (Tiers 1-2) ROTH- C

ICBM

CANDY

C-TOOL

CENTURY-DAYCENT

DNDC

EPIC-APEX

DAISY

SOCRATES

APSIM

PASIM
Frequently used spatial scale Farm

Regional

National

Global

Research plots

Field/Farm

Regional

National

Research plots

Field/Farm (experimental)

Landscape

Regional

National
General data requirements Climatic Region

Soil type

Land use 
(management 
coef�cient or 
factors)

Initial SOC stock 
(may be estimated)

Climatic variables (e.g. 
monthly precipitation, 
air temperature, PAN 
evaporation)

Basic Soil parameters 
(e.g. % Clay, bulk 
density)

Initial SOC stock 
(may be estimated)

Management variables 
(e.g. carbon inputs, 
residue quality, soil 
cover, manure inputs, 
type of tillage)

Climatic variables (e.g. rainfall, 
max /min air temperature)

Soil parameters (e.g. % clay, 
silt, sand, bulk density, pH. 
Some models may require 
water constants and CEC).

Initial SOC stock (may be 
estimated) 

Initial nitrogen or other 
nutrient contents

Management variables (e.g. 
rotation, tillage, fertilizers, 
manure, irrigation, residue 
management / crop cover, 
grazing management) 

Note: The spatial scale at which the different approaches are usually applied and a summary of the minimum data requirements for 
running the models.
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and process these alternative sources of data is a frequent limitation. Modelling re-
quires complex and often expensive software, which limits interest and capacity in 
conducting modelling studies. In many developing economies, power outages can 
make it dif�cult for researchers to execute modelling operations. This is further 
compounded by the tendency to make policy decisions that give no priority to data. 
This makes funding for data collection extremely dif�cult and hence the tendency 
to rely on secondary data sources.

Networks for collaborative data sharing can improve data access and, therefore, 
model predictions. North-South collaborative programmes between experts and 
young scientists can offset some of the limitations associated with inappropriate 
data from different studies or locations.

RECOMMENDATION 29. Signi�cant investment should be made 
in improving and engaging existing modelling expertise in making 
decisions for validation, calibration and implementation of selected 
models. This includes setting up input data to reduce uncertainty 
for sound scienti�c practice for the speci�c application. Users should 
recognise that without this investment, using a model carries a large 
risk that project results will not be accepted upon professional review. 

ϲ.4 IMPLEMENTATION
6.4.1 Data availability
Several international soil and climate databases are available for model input. A few 
key examples are provided in Table 6. Availability of data is an important factor to 
consider when deciding on implementing a modelling approach for terrestrial eco-
systems. For some situations, local data may be available.

Guidance on the different types of data that will be needed should be considered. 
Some categories are listed below.

Table 6: A few international soil and climate databases are available for model input

Type oĨ data Source Comments

Soil data Solid Grids – Global Soil Data 
Facility (ISRIC, 2019a)

Web app that provide free access to soil data across borders

Soil data The World Soil Information Service 
(WoSIS) and datasets (ISRIC, 
2019b; 2019c)

WoSIS aims to serve the user with a selection of standardised/ 
harmonised soil data

Soil data FAO Global Soil Organic Carbon 
Map (GSOC) (FAO, 2019c)

A 30 arc-second raster database with over 15,000 soil mapping 
units combing existing regional and national updates of soil 
information worldwide (SOTER, ESD, Soil Map of China, 
WISE) with the information contained within the 1:5 000 000 
scale FAO-UNESCO Soil Map of the World

Soil data U.S. General Services 
Administration(2019)

Climate data FAO CLIMWAT Databases A very large repository of dataset sorted by themes
Climate data (FAO, 2019d) A climatic database to be used in combination with the 

computer program CROPWAT allowing the calculation of 
crop water requirements and irrigation scheduling for various 
crops for a range of climatological stations worldwide.
CLIMWAT provides long-term monthly mean values of 
seven climatic parameters

Climate data Cru (Climate Research Unit) 
databases (UEA, 2019)

Gives monthly gridded data on temperature and precipitation 
at global scale or the period 1901-2016 (temperature since 
1850) on a 0.5° × 0.5° grid basis
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1. Input data. The input data, sometimes referred to as forcing data (referencing 
climate forcing), are the data that a model is fed with to predict an outcome. 
a. Environmental data. The most obvious set of environmental data is mete-
orological forcing data, with another main one being spatially explicit soil 
properties. One must consider if there are sufficient meteorological data for a 
given model application. Registered meteorological data may be incomplete 
and so implementing gap-filling procedures may be necessary. The model 
may also be used in predictive mode, in which case simulated climate data 
from General Circulation Models must be downscaled to the proper spatial 
and temporal resolution before being used in models (e.g. Rasse et al., 2001). 
Therefore, environmental input data may be either directly measured, or 
gap-filled with simpler models, or simulated.
b. Management Data. In the case of managed ecosystems, the history of site 

management is crucial for accurate simulation of environmental responses. 
Are C �uxes and stocks in equilibrium with current management prac-
tices? For example, recent land-use change will have a critical impact for 
many years on the C dynamics of grasslands. Similarly, scenario/data on 
the planned future management of the grasslands shall be clearly de�ned 
for predictive simulation exercises. Management data speci�c to pasture in-
clude e.g., �rst date of grazing, grazing frequency, proportion left ungrazed 
at each grazing event, animal stocking rate (i.e. LSU/ha, heads/area), fertili-
zation rate, fertilizer type (mineral vs organic) and harvest dates (if mown). 

c. Initialization data. Dynamic mechanistic models are generally based on 
simulating the evolution of “pools”, e.g. C pools (SOC in each horizon, 
root C, above-ground biomass, etc.). In most cases, when a simulation is 
conducted, these pools need to be given an initial value. It is, therefore, criti-
cal that these pools are correctly quanti�ed for initializing the simulations.

2. Parameters are data needed to adapt the model equations to describe the 
ecosystem. In practice, different grass species (i.e. fertile productive to poor 
unproductive, tall grass vs short grass, legume fraction, C4/C3) and cultivars 
grow differently under the same set of environmental conditions. A classic 
example of the need for parameterization of model equations is the photo-
synthesis model of Farquhar et al. (1980). This model, and its later re�ne-
ments (de Pury and Farquhar, 1997), describe photosynthetic CO2 uptake as 
a function of a mechanistic understanding of photosynthesis at the molecular 
level as it happens in the leaf. This model, quoted more than 4300 times as 
of 2017, is the CO2 uptake engine of numerous ecosystem models. How-
ever, speci�c parameters are needed for individual species and possibly for 
local populations. For example, Rasse et al. (2003) modelling the effects of 
elevated CO2 on wetland vegetation in Maryland needed 19 parameters for 
parameterizing the photosynthesis model, out of which 7 were from general 
literature and 12 speci�cally measured at the site. In practice, the question is 
generally to assess if the prede�ned parameters in the model are suf�cient to 
generate accurate simulations of plant and soil C pools. If not, speci�c model 
parameters might need to be measured, or more generally, �tted with existing 
calibration data.

3. Test data are the data being predicted by the model, in our case SOC stock 
and changes. Test data may be divided into calibration data that have been 
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used in the parameter estimation and validation data that are independent 
and different from calibration data. Both data are of the same type but may 
be for different sites or periods. To suf�ciently calibrate a model, it is impor-
tant that the calibration data be chosen carefully to cover the range of condi-
tions/stresses over which the model will be used, for instance the range of 
seasonal precipitation or temperature. When satisfactory calibration runs are 
obtained, the model needs to be validated on an independent dataset. 

Availability of any of these three main categories of data may be the limiting 
element in applying a given modelling approach. Application of a full ecosystem 
model for pasture with the aim of modelling soil C requires an interdisciplinary 
approach where data from different sources are used. In many instances, meteoro-
logical data and soil-property maps may be available, but parameters may not be 
available for plant growth and biomass production for local varieties of the pasture 
species. A minimum amount of soil carbon data are also necessary to calibrate and 
validate the model before it can be safely used to extrapolate the effect of pasture 
management on soil carbon content in the farm / region / country of interest.

RECOMMENDATION 30. Data availability for both model 
input parameters and to test model outputs shall be investigated 
before choosing a modelling approach.

6.4.2 Initialization of the model 
6.4.2.1 Initialisation challenges and approaches
Initialisation refers to setting the initial SOC condition at the start of the period 
over which SOC stocks will be estimated for level 2 and 3 models. The goal of ini-
tialisation is to have the appropriate SOC amount at the start of the simulation so 
that further simulated results are a realistic estimate of SOC stock in response to the 
input vegetation characteristics, land management and weather.

When the initial SOC amount is known, either from measurement or from as-
sumptions based on soil survey or other soil information, model initialisation in-
volves having the model start with the known initial SOC. For common models, 
one does not know the exact distribution of initial SOC among the different pools 
in the model. If the pools are not in coherent proportion with past SOC dynamics, 
there will be rapid changes to SOC while the pools adjust to a coherent proportion. 
To avoid this artefact of initialization, the standard procedure is to have a spin-up 
(or warm-up) period of model operation so the pools are in approximate equilib-
rium with the initial conditions regarding vegetation and land management. The 
length of the spin-up period needed to approach a steady state pool distribution 
varies depending on the model but typically is from 10 to 100s of simulated years. 
If the SOC after the spin-up period is substantially different from the known initial 
SOC, then some calibration is warranted. Often, the C input is adjusted so that 
the modelled initial SOC matches known SOC. Available information of C input 
from the vegetation from similar situations is useful to help set the limits of possible 
C inputs. If adjusting C input is not successful, the next option is to calibrate the 
fundamental model parameters affecting C dynamics so that modelled initial SOC 
equals known SOC. Calibration of C-dynamics parameters is more challenging. 
If the model C-parameters are changed, these new values shall be used for further 
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modelling from that initial SOC and would warrant further validation. 
If the initial SOC is not known, the only option is to have the model estimate 

the initial SOC. In this case, the spin-up period will typically be 1000s of years. The 
estimated C input will be critical to determining the modelled SOC amount. There-
fore, available information of C input from the vegetation from similar situations is 
useful to help either set the C input (level 2 model) or adjust the vegetation growth 
parameters to match C input for the modelled situation (level 3 model).

An assumption of the above initialization schemes is that the baseline condi-
tion is at or approaching steady state. However, the soil may not be near steady 
state in the baseline condition (Wutzler and Reichstein, 2007). Basso et al. (2011) 
advocated using C inputs and land management to follow known land use and 
management history. These may be most practically estimated from general his-
torical information and expert opinion (Ogle et al., 2007). Knowledge of distant 
history is likely limited, but it is the more recent history that is of greater impor-
tance to pool sizes. Therefore, an option is to initialise with a multi-thousand-year 
equilibrium model spin-up based on estimated historic land use conditions to the 
point in time when there is suf�cient knowledge of land use change and manage-
ment history to include in the later period of the spin-up modelling until reaching 
the desired baseline year. 

Finally, in some cases it can make sense to initialize the model with measured 
SOC pools as obtained by means of SOC fractionation (Wiesmeier et al., 2016). 
This has the advantage, that the steady-state assumption is not necessary, but has the 
disadvantages that i) obtaining the initial pool distribution is very elaborate and can 
only be performed for a limited number of samples and ii) a direct ‘functional’ link 
between measured and modelled does not exist for many models (Zimmermann et 
al., 2007). 

Further details of approaches to model initialization are given in Appendix 1. 

RECOMMENDATION 31. The amount and type of SOC shall 
be used to initialise the model to produce reliable estimates of SOC 
amount over the simulation period. Good estimates of the  SOC 
and C input from the vegetation and land use and conditions 
for many decades prior to the simulation period should be used 
to improve the ability to accurately predict the initial SOC, by 
calibrating model parameters where needed.

 6.4.3 Validation of results
Model validation is the process of determining the degree to which a simulation 
model is capable of accurately representing the real world for a set of model appli-
cations. Thus, the term validation is used here for the comparison of model output 
with measurements. A valid model is one that generates predictions that are con-
sistent with real-world observations (Oreskes et al. 1994) or lies within acceptable 
limits or errors (Refsgaard et al., 2005). Validation of models is a continuous pro-
cess in which the model is checked in different conditions, with newly developed 
knowledge and needs. Bellocchi et al. (2010) identi�ed the following issues to be 
considered when performing the model validation:

1. Validation purpose: there may be different purposes for model validation. 
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These could include the assessment of the accuracy of the estimates with re-
spect to the reality, how con�dent we can be in model results, or the behav-
iour of the model in speci�c applications (e.g. how the model responds if we 
change conditions of simulation).

2. Model predictions: the use of models for prediction involves a series of prob-
lems for validation, as data required to quantify the accuracy of the estimates 
do not yet exist. Predictions become increasingly uncertain as we look at a 
time horizon in the distant future. Nonetheless, predictive models can be val-
idated if they explain past events (ex-post validation) (Bellocchi et al., 2010). 
Validation assumes a fundamental importance in the de�nition of the limits 
and conditions in which the model can be con�dently applied.

3. Model complexity: the level of complexity of the models in�uences the type 
of assessment that can be carried out. Often the comparison of the model 
with the measured data only applies to certain output (e.g. yield or SOC). 
However, when the complexity of the model is high, and it consists of many 
sub-models, each of which simulates a part of the process, the assessment 
should take account of this and the individual sub-models should be vali-
dated. The other way to deal with this is to give models a penalty for each 
variable (e.g., Akaike information criterion). Validating all sub-models could 
be very onerous and is not recommended.

4. Data accuracy and quality: accurate data is a fundamental requirement in 
modelling. In fact, the con�dence in simulation results depends not only on 
the accuracy with which the algorithms of the model are able to predict the 
behaviour of the studied process, but also on the quality of both the input 
data and the data used for validation of outputs. Random errors arise from 
data sampling, i.e. data may not adequately represent temporal and spatial 
variability, and sample handling. Systematic errors may be due to incorrect 
calibration of instruments used to collect input data, inadequate sampling de-
sign (i.e. lack of representativeness of data) or using proximal data. All these 
factors shall be considered in the process of validation.

5. Robustness of model results: the capability of a model to preserve its accu-
racy under different experimental conditions.

Common measures of model performance used for validation include the coef-
�cient of determination (R2), the Nash-Sutcliffe model ef�ciency (ME) (Nash and 
Sutcliffe, 1970), the d-index of agreement (Willmott, 1982), average relative error 
fraction (ARE), and the root mean square error (RMSE) determined using Equa-
tions 22-26:
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Equation 24:
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Where:
Pi is the predicted (modelled) value, 
Oi is the observed value, 
n is the number of measured values, 
O is the average of the observed values, and 
P is the average of the predicted values.

Frequently, several measures are considered together for validation: 
•	The R2 is a representation of the success of predicting the dependent variable 

from the independent variables using regression analysis (Nagelkerke, 1991). 
•	The ME has a maximum value of one (perfect agreement), and a value below 

zero indicates that the model does not explain any part of the initial variance. 
•	The d-index is a dimensionless measure between 0 and 1 and with the follow-

ing recommended criteria: d ≥ 0.9 indicates there is “very good” agreement; 
0.8 ≤ d < 0.9 is considered as “good” agreement; 0.7 ≤ d < 0.8 equates to “mod-
erate” agreement; and, d < 0.7 suggests there is “poor” agreement between 
measured and predicted values (Willmott and Matsuura, 2005). 

•	ARE% can be used to determine whether the model overestimates or under-
estimates measured values (Yang et al., 2014). 

•	The RMSE is useful to compare the divergence between model-produced esti-
mates with independent, reliable observations and is one of the most widely 
reported error measures in environmental literature (Willmott and Matsuura, 
2005). The RMSE, expressed as percentage of the mean of the observed values, 
should be within the 95% confidence interval from the measurement. If the 
simulation is within this interval, the accuracy of the model can be considered 
good. If the RMSE% is outside the 95% confidence interval, the model should 
be improved.

The model performance for the data used to calibrate model parameters or 
inputs (see section 6.5.3) is invariably affected by adjustment of the parameter 
values to account for the idiosyncrasies of speci�c site characteristics, as well as 
those of the measured input and output data. Therefore, the model performance 
against the calibration data is considered biased positively. To protect against the 
potential bias of better model performance for observations used for calibration 
observations, it is common practice to use only part of the available data for cali-
bration. The remainder of the data is used for validation only, to assess quality 
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of the model performance and to estimate its uncertainty. Where there is limited 
observed data (such as when data from only one site are available), then the ob-
served data may be divided into one period for calibration and another period for 
validation. Furthermore, uncertainties of the measured values used for validation 
are often neglected and modelled values are validated against measured means. 
Guest et al. 2017 thus proposed to account for measurement uncertainty when 
evaluating model performance. 

RECOMMENDATION 32. Before any other evaluation, 
preliminary model results should be graphed to see if they look 
approximately similar to the measured values. Once the model 
output appears to give a good simulation of the measured data, a 
full evaluation should be performed. 

ϲ.5 UNCERTAINTY AND SENSITIVITY ANALYSIS 
6.5.1 Sensitivity and uncertainty - Introduction
A model is an abstraction of the real world. Therefore, imprecision in input and 
within the model itself leads to estimation uncertainty. There are two main sources 
of uncertainty: uncertainty of modelled system inputs and model uncertainty. 

Uncertainty of modelled system inputs can be quanti�ed as the deviation be-
tween a “true” input value (that we don’t usually know with certainty) and the 
value used for input. This uncertainty includes measurement error and natural 
variability. Due to natural variability we have imprecise knowledge of the value 
of natural inputs (weather, plant growth, animal behaviour, etc.) throughout the 
physical and time dimensions of the modelled system. Consequently, the input data 
has inevitable uncertainty. Our knowledge comes from measurements but there are 
errors in those measurements. These errors may not always be random, so that our 
knowledge from measurements can be biased. Similarly, we have imperfect knowl-
edge of the initial system state (SOC, vegetation, animals, etc.) that is an important 
input to model the real system. 

Model uncertainty can be quanti�ed as the deviation between “true” output val-
ue (that we don’t usually know with certainty) and the estimated output value from 
the model with all inputs without error. This uncertainty arises from model struc-
tural uncertainty and from model parameter value uncertainty. Structural uncer-
tainty is the imperfect knowledge that the real system is adequately represented in 
the model conceptualization. Parameter value uncertainty is the imprecise knowl-
edge of the correct value for the parameters that determine that model estimations. 
Observed system behaviour, such as SOC stocks over time, that is used for model 
parameterization also has an uncertainty. Observed system outputs are subject to 
both measurement error and natural variability. Output uncertainty contributes to 
the imprecision in our knowledge of model performance and so is a component of 
model uncertainty (Ogle et al., 2010). 

Structural uncertainty is the most troubling uncertainty because, if the processes 
are not correctly represented, reducing the uncertainty of inputs will not substan-
tively improve the estimation. Parameter calibration alone cannot be expected to 
overcome incorrect process representations for all potential model applications. In 
practice, there is no way to know exactly the amount of structural uncertainty. The 
model computer code can be veri�ed to determine that it truthfully implements the 
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model as conceptualized, but that does not verify the truthfulness of the conceptual-
ization itself (Refsgaard and Henriksen, 2004). The conceptualization, as represented 
by the parameterized model, can be validated to the extent that it has been substanti-
ated that the “model, within its domain of applicability, possesses a satisfactory range 
of accuracy consistent with the intended application of the model” (Refsgaard and 
Henriksen, 2004). Therefore, the decision as to whether a model has been success-
fully validated is inherently subjective. Further, there is no universal validation for all 
potential model applications, only for speci�c domains. The degree of con�dence in 
the credibility of the model increases with the number of successful site validations 
that meet or exceed the desired performance criteria for the desired domain of appli-
cation (Hansen et al., 2012). Therefore, all other considerations equal, it is best to use 
the model that has the most successful site validations for conditions similar to the 
intended domain of model application. 

Model prediction uncertainty includes all sources of uncertainty that affect pre-
dictions, including model structural uncertainty and input data uncertainties, in-
cluding those of initial conditions.

A particular concern for applying SOC models to grazing systems is that our 
estimates of C inputs are typically uncertain. Using the RothC model, it has re-
cently been demonstrated for grasslands that plant-derived carbon input is the most 
uncertain parameter and the parameter to which the model is most sensitive (Po-
eplau, 2016). The major part of plant-derived carbon inputs in grassland systems is 
derived from roots. Due to dif�culties in determining this parameter directly, it has 
to be estimated, which is usually done by literature-derived, above-ground yield-
based allocation coef�cients (Bolinder et al., 2007). However, yield or aboveground 
net primary production is a typically highly uncertain parameter in grassland eco-
systems. In a global modelling study, the performance of models was tested for 
simulating NPP of grasslands and it was found that the model ensemble was highly 
uncertain, in part due to uncertainty of observations (Ehrhardt et al., 2018) but 
also due to the dif�culty in characterizing diverse grassland systems. In contrast to 
croplands, farmers are usually not speci�cally interested in grassland yields. Fur-
thermore, the coef�cients to estimate belowground carbon allocation in relation 
to aboveground carbon allocation can strongly vary and are thus highly uncertain. 
Finally, the proportion of belowground biomass that turns over annually, as well as 
the amount of carbon that is released by roots as exudates, are highly uncertain. The 
grazing management effects are also not always easy to quantify but may stimulate 
or damage plant growth, and/or change the species composition of the pasture. The 
grazing regime itself can also change the amount of NPP and its partitioning and 
this effect is hard to include in C input estimates for level 2 models or for vegeta-
tion growth characteristics for level 3 models. Thus, the probability of estimating 
correct C inputs is very low, even if data for aboveground NPP is present. In turn, 
carbon inputs do strongly determine simulated trends in SOC stocks. Calibration 
of C inputs during initialization, so that a known amount of initial SOC is modelled 
may be a useful means to improve estimates of C input (see Appendix 1), or at least 
can improve the estimated amount of C input relative to the modelled C losses from 
decomposition. An important consequence of the relatively poorer information on 
C input for grazing systems than cropping systems is that SOC models well vali-
dated for modelling cropping systems cannot be assumed to be valid for modelling 
nearby grazing systems.



83

Modelling soil organic carbon changes

Figure 11 depicts uncertainty of, and model sensitivity to, basic parameters need-
ed to run most SOC turnover models. An intermediate spatial scale such as one or 
several farms was chosen, for which initial SOC stocks have been determined at 
representative points. It indicates, that not all parameters that are highly uncertain 
necessarily have a high potential to cause mis�ts. The different colours were chosen 
to illustrate the relevance of the combination of uncertainty and sensitivity for the 
model result with red being very relevant, yellow being intermediately relevant and 
green being less relevant. An example might be the timing of carbon input. Most 
models need this information, while especially for livestock systems it might not be 
available (high uncertainty). However, the long-term trend in SOC stocks (>1 year) 
is not in�uenced by how the total carbon input is distributed between months. 
Therefore, this highly uncertain parameter is not very relevant for the model result. 
The opposite example is climate data. Depending on the area, the nearest weather 
station might be within a few kilometres, so data that come close to the actual site 
conditions can be obtained. The uncertainty of climate data is thus relatively small, 
while the model sensitivity to climate parameters is very high. Together with carbon 
inputs and climate data, SOC models are most sensitive to initial SOC stocks. In 
the example, the latter have been measured as a baseline. If this is not the case, this 
parameter would be shifted into the “red area”.

Technical guidance on advanced Monte Carlo methods to estimate the uncer-
tainty of model predictions can be found in Appendix 2.

RECOMMENDATION 33. To minimize model uncertainty, the 
model shall be validated for the conditions (e.g.: country or climatic 
zone) in which it will be applied when possible. If a model is not 
validated for the region of interest, the model should be calibrated 
using local time series of SOC stocks. Thereby, only a limited 
number of parameters should be modi�ed and only those that do 
not have many interdependencies with other parameters. Guidance 
on model calibration and validation and advanced methods of 
sensitivity and uncertainty analysis can be found in the Appendices 
of this document. Because soil carbon turnover models are most 
sensitive to initial SOC stocks and carbon inputs, a measured 
baseline of SOC stock shall be used whenever available, and C 
inputs should be estimated as accurately as possible.

6.5.2 Sensitivity analysis
Sensitivity analysis is usually done initially using the one-at-a-time (OAT) approach 
where only one variable is changed and all others held constant at their assumed most 
representative value (Wang et al., 2016). Sensitivity analysis by OAT is useful to iden-
tify the subset of most in�uential variables and parameters for further analysis.

Sensitivity analysis requires that model output is produced over the range of 
the variation in input or parameters. If the variation is overestimated, the sensitiv-
ity will also typically be overestimated while underestimation of the range under-
estimates the sensitivity. Therefore, care is needed in selecting the range. For input 
variables that are widely measured, such as meteorological variables, there is of-
ten a good understanding of the expected variation. Consequently, the sensitivity 
analysis forces the model user to describe the uncertainty of those variables. The 
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more uncertain variables and parameters have a higher relative variation, though 
that does not necessarily infer that the model is most sensitive to more uncertain 
variables and parameters. For example, processes that are supply limited, such as 
total annual decomposition of very labile organic matter, may have an uncertain 
rate constant over short periods but the annual C stock estimate may be quite 
insensitive to that rate constant. The range of values for many model parameters 
is often poorly understood because they are not easily measured. Inspection of 
those parameter values that were used in other studies with the model is a good 
starting point to estimate parameter uncertainty. The population of expected val-
ues can be estimated from the parameter values used across a range of successful 
site validations combined with expert knowledge. Soliciting advice for experi-
enced users of the model can also provide suggestions for the reasonable range of 
these target parameters values. This range is also useful to set up the range over 
which to calibrate a parameter.
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Figure 11 
Uncertainty of, and model sensitivity to, basic parameters needed  

to run most SOC turnover models

Note: Scatter plot showing uncertainty of, and model sensitivity to, basic parameters needed to run most soil organic carbon 
turnover models. In the scale from one to ten, one indicates very low, ten indicates very high. Parameters in the green �elds 
are thereby most often less problematic, while parameters in the red area are often problematic due to high uncertainty and 
high model sensitivity. Model sensitivity estimation is based on the RothC model (modi�ed from Poeplau, 2016).
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6.5.3 Calibration
Some of the uncertainty of an uncalibrated model can be reduced by calibrat-
ing in�uential model parameters. Frequently, a limited number of parameters are 
manually calibrated to improve model �t, based on criteria such as minimizing 
root mean square error or maximizing modelling ef�ciency. Judgement is re-
quired in deciding which parameters to calibrate and order of calibration. For 
established models, there is invariably experience regarding which of the sensitive 
parameters are most effective to calibrate to improve model performance. Gener-
ally, it is sound practice to calibrate the parameters that affect independent re-
sponses before calibrating those for responses that have many interdependencies. 
For example, vegetation growth is less dependent on total SOC than total SOC 
is on vegetation growth, so it is recommended to calibrate the vegetation growth 
parameters before SOC parameters.

6.5.4 Uncertainty estimates from calibration and validation 
As described above (section 6.4.3) model validation compares model estimates with 
observation and, thereby, provides an important assessment of inaccuracy or un-
certainty of the model. Inspection of the �t between estimates and observations 
provides important insight into model structural problems such as greater apparent 
problems simulating some conditions than others. If there appear to be serious de�-
ciencies in model performance such as grossly over- or underestimating effects that 
cannot be recti�ed with calibrated parameters, the model user needs to decide if the 
model, as it will be applied to the modelling domain, is appropriate (i.e. uncertainty 
is acceptable) for using at all.

The calibration procedure provides validation for the observed situations used for 
calibration. Since the uncertainty from input conditions and the parameters optimize 
model performance for those conditions, the deviation between predictions and ob-
servations provides a useful estimate of model uncertainty. If the model is to be only 
applied to a prediction domain that closely adheres to conditions used for parameter 
calibration (e.g. using a model to estimate a SOC value within a time-series of meas-
ured SOC values for single paddock), the model performance against the data used 
for calibration may be considered a valid estimate of prediction uncertainty. 

RECOMMENDATION 34. A model sensitivity analysis and 
uncertainty assessment should be conducted to inform decisions 
about the suitability of the model and provide valuable information 
on which model inputs and processes are most important. 

6.5.5 Model prediction uncertainty
In using models to estimate SOC for life cycle assessment purposes, it is the model 
prediction uncertainty over the application domain that is of greatest importance. 
This requires validation using the types of input data and initialization data derived 
from the sources and methods that will be used for prediction. In prediction mode, 
the model inputs may not be measured on site and will be estimated. For example, 
application does not rely on measured data at the site and could, for example, have 
C inputs estimated from general empirical relationships, soils data derived from 
coarse-resolution soil maps, and meteorological data extracted from a location 
nearby but not at the site to be modelled. 
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Validation comparing observations for an actual site but using inputs and initial 
values that would be used if there had been no observation provides a fairer assess-
ment of model prediction uncertainty than validation using site measurements for 
inputs and initial values. 

Several approaches can be used to estimate prediction uncertainty, including 
Monte Carlo methods. Further details are given in Appendix 2.

6.5.6 General guidance
The uncertainty of SOC models for grazed grassland will likely be large, probably 
larger than for models applied to cropland (Ehrhardt et al., 2018). Therefore, it is 
important to carefully estimate the prediction uncertainty to determine if the model 
is appropriate for the use and, if appropriate, then to properly interpret model re-
sults. The recommended steps for sensitivity and uncertainty analysis are:

•	Conduct a sensitivity of model input variables, initial variable values, and 
parameters to identify the most influential variables and parameters.

•	Calibrate influential model parameters, identified from sensitivity analysis 
(and expert model users when possible) for the model application domain

•	Validate the calibrated model for the intended application domain to gain 
understanding of uncertainty including evidence of structural problems. 
Unless the model application domain coincides exactly with the calibration 
data, the validation should not be based on solely the calibration dataset.

•	Estimate the model prediction uncertainty for the method and data that will 
be used for its application domain.

In BOX 9 a case study that combines measurements and modelling is shown. 
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Box 9: Effects of improved management on SOC stocks using a combined measurement  
and modelling approach

Overview͗ The study site was a 250 ha self-replacing sheep farming enterprise in south-eastern 
Australia (34_570S, 149_100E) with an average annual rainfall of 625 mm. The farm specialises 
in ultrafine Merino wool, with supplementary income from grazing beef cattle and farm forestry 
(Ive and Ive, 2007). Since settlement in 1860, loss of soil organic carbon and land degradation 
has occurred due to unsuitable management practices. Clearing of the original Eucalyptus spp. 
woodlands and over-grazing led to erosion, dryland salinity with poor pasture growth and plant 
survival until 1980 when new owners started regenerative management practices. This case 
study discusses the improvement in farm carbon balance for the period 1980 to 2012.

Soil carb on stock change approach:  On-farm soil C measurements were used in combination 
with modelling with the Roth-C based FullCAM model used in the Australian National Green-
house Gas Inventory to determine soil organic carbon (SOC) stocks and stock change. The com-
bined approach gave a more accurate site-specific 1980 baseline to assess SOC stock change 
under management change. Measurements under pasture areas for 0 – 30 cm depth gave SOC 
of 0.8% in 1980 and 1.4% in 2011 and these measured values were used to tune the model. 
Although the approach in this study did not allow full statistical analysis, insights of the manage-
ment impacts were gained from comparisons between the long-term average model output for 
the 50-year period from 1963 to 2012 and the period from 1980 to 2012 since commencement 
of improved practices. SOC stocks in a dry year (2006) and a high rainfall year (2012) were also 
compared to examine climate impacts. 

W hat the case study showed:  The model indicated that between 1980 and 2012 there was a 
total increase in SOC stocks (0 – 30 cm) equivalent to sequestration of 11800 Mg CO2e across the 
farm. Over the same period re-establishment of trees on previously cleared land sequestered an 
additional 19300 Mg CO2e. The research estimated that increase in soil carbon stocks alone was 
sufficient to offset all greenhouse gas emissions from livestock and farm activities on the case 
study farm.  

Time sequence images showing the impact of seasonal conditions (e.g. dry in 2006; wet in 2007) and improved manage-

ment on the case study farm. SOC stocks showed an overall farm average increase from 0.8% in 1980 to 1.4% in 2011.

Summary:  This case study used long-term modelling and soil carbon measurements at two 
times more than 30 years apart, to show that substantial gains can be made in SOC stocks where 
initial soil carbon is depleted due to degradation and topsoil erosion. Practices to improve land 
condition included introduction of perennial pastures, strategic tree plantings and managing 
stocking rate, increased SOC stocks under pastures and enhanced livestock productivity.
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7. Spatial interpretation and upscaling 
oĨ SOC

7.1 INTRODUCTION
Spatial analysis is the process by which we turn raw data into useful information. 
Spatial analysis deals with two different types of information: one concerns the 
attribute of the spatial object (e.g. SOC content) and the other concerns location 
information (position on map or geographic coordinates). The spatial objects con-
cerned in most analysis are polygons (i.e. zones, statistical census areas) or sampling 
points. Spatial analysis deals with the degree to which attributes are similar to those 
located nearby. If objects similar in location are also similar in attributes, then there 
is a spatial autocorrelation or association (spatial patterns due to cluster of high and 
low values), whilst the opposite situation indicates that there is not a pattern linked 
with the position.

Soil properties are characterized by strong spatial heterogeneity and spatial de-
pendence, at a great range of scales. Emergence of Geographic Information Systems 
(GIS) and geostatistical modelling approaches (Burgess and Webster, 1980; Chiles 
and Del�ner, 1999; López-Granados et al., 2005) has improved our predictive ca-
pacity for soil properties over larger scales, especially the continuous variables such 
as SOC. To understand how SOC stocks and environmental factors are connected, 
the characterization of their spatial variability is essential. Any sampling in a �nite 
number of locations will inevitably give an incomplete description of natural varia-
tions. Thus, to produce a continuous map of soil properties we need to use an inter-
polation method to estimate them in un-sampled points, that is, a model of spatial 
dependence of soil data is necessary (Goovaerts, 1998). 

The concept of scale - or resolution, in case of digital mapping - is central to 
geography; some mappers rely on data obtained from satellites, yet others depend 
on data regarding soil particles obtained through electronic microscopes. Hence, 
the need to address spatial problems from multiple scales and resolutions is always 
of primary importance. This variation in scales can be regarded both as a strength 
and weakness of the spatialization procedure. Analyzing spatial phenomena using a 
range of scales offers a special view and methodology enhancing mapping’s strength. 
To the contrary, the massive amount of data needed for analysis of spatial phe-
nomena at various scales, coupled with the possibility of applying an inappropriate 
methodology, often leads to a meaningless study (Lam and Quattrochi, 1992). With 
appropriate methodology and suf�cient attention to the problem of scale, the spa-
tial perspective derived from analyses using different scales can contribute in many 
ways to an understanding of various spatial phenomena, such as SOC content.

With regards to SOC, estimates of stocks and their variability at different spatial 
scales are essential to identify the potential C sink capacity of different land uses 
and management and the more promising sequestration strategies. Some modelling 
approaches such as CENTURY and RothC can provide relatively good estimates 
of soil properties into the landscape. However, the accuracy and reliability of these 
estimates can be signi�cantly improved by integrating spatial information in the 
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modelling. Therefore, coupling conventional C models with geospatial information 
is a powerful approach for upscaling SOC measurements. In BOX 10 a case study 
that illustrates this modelling approach is shown.

7.Ϯ SAMPLING FOR SPATIAL INTERPOLATION
Inevitably, sampling will always be partial and will thus lead to an imperfect knowl-
edge of reality; furthermore, any sampling is subject to different sources of error 
(sample collecting, measurement, recording, transfer function, modelling, spatial-
ization and so on), which globally produce a sampling error. The complexity and 

Box 10: Application of Carbon Models to estimate SOC changes in grazing lands in Kenya

Overview͗ Kamoni et al. (2007) used the Global Environment Facility Soil Organic Carbon (GEFSOC) 
System, which links the CENTURY and the RothC models to a GIS to estimate national C stock changes 
for Kenya. They simulated grasslands, savannas, and shrub/grasslands as tropical grassland domi-
nated by C4 grasses. The aim of the study was to provide estimates of changes in SOC to contribute 
to the national GHG emissions accounting.

Approach:  Estimates of SOC stocks and changes were made for grasslands, savannas, and shrub/
grasslands in Kenya using the GEFSOC Modelling System. The tool couples Century general ecosystem 
model, RothC soil C decomposition model and the IPCC method for assessing SOC at regional scales. 
Datasets of measured SOC were used to evaluate and refine the simulation capacity of Roth-C and 
CENTURY models. Data from these models were coupled to a soils, climate and land-use GIS data at 
national and sub national level. The GIS interpolated the data over un-sampled locations and devel-
oped SOC coverage needed to run the GEFSOC Modelling System.

W hat the study showed:  The study estimated a decline in SOC stocks for Kenya 1,415 Tg in 
2000 to 1,311 Tg in 2030, suggesting a predicted national loss of 104 Tg C. When the estimates 
were made using each of the models separately, comparable results were obtained. 

Summary:  The study shows how large-scale (national and even regional) SOC changes can 
be estimated to support GHG inventory. Using this approach can significantly reduce sampling  
efforts but needs to be supported with periodic field sampling to validate the results.
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costs of most sampling projects require the de�nition of an optimum sampling de-
sign to obtain maximum information at a given cost.

In any realistic sampling design, the amount of information required, the 
type of data to be collected and the criterion of optimization to be used are 
fundamental parameters which depend on several factors, but above all on the 
speci�c objectives of the problem at hand. The location of sampling points is 
critical for subsequent analysis and several approaches can be used as shown in 
Figure 12. In principle, sampling for spatial analysis should follow the guide-
lines provided in section 2.2. Ideally, for interpolation purposes, samples should 
be located evenly over the target area. A completely regular sampling network 
can be biased, however, it it coincides in frequency with a regular pattern in the 
landscape (e.g. regularly spaced drains). The drawbacks of completely random 
location of sample points are the large sampling effort and the likelihood of hav-
ing uneven distribution of points unless a very large number of samples can be 
collected, which is usually limited by associated costs. Cluster (or nested) sam-
pling can be used to examine spatial variation at several different scales. There 
is no general approach to sampling; therefore, it is important to clearly de�ne 
the aims, the support and the resolution needed before sampling. If geostatistics 
are used as an interpolation method, sampling is a crucial topic for an accurate 
modelling. 

a) Regular Sampling b) Random Sampling c) Transect Sampling

d) Stratifield random
    Sampling

e) Cluster Sampling f) Contour Sampling

Figure 12 
Different kinds of sampling nets used to collect spatial data from point locations 

Source: Burrough and McDonnell, 1998.
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RECOMMENDATION 35. There is no universally best sampling 
design approach. For geostatistical analyses, collecting samples on 
a regular grid allows directional variograms over several different 
directions to be calculated easily, mostly along the axes of the 
grid (for regular grids, where the lag distances and directions are 
known and the number of pairs per lag interval is a function of grid 
spacing). A rule of thumb is not to estimate semivariances for lags 
greater than half the maximum distance of the sampled area. The 
main disadvantage of regular grids is that resolution is limited by 
grid spacing. We strongly recommend adding more closely spaced 
pairs of points at some randomly selected grid nodes, so that the 
form of the variogram at the most critical short distances and the 
nugget variance can both be better estimated.

7.3 INTERPOLATING METHODS FOR SOIL ORGANIC CARBON 
PREDICTIONS
There is often a need to map soil properties at a location where the soil has not been 
sampled and the property measured. Interpolation involves either inference from 
an assumed similarity, given the biophysical environment (based on Boolean logic), 
or on mathematical functions (e.g. arithmetic, logarithmic, trigonometric, power 
functions, etc.). Estimation requires the application of certain models to the real 
world. There is a huge variety of models that can be grouped into two main sectors:

•	Mechanistic models, physically based and deterministic in prediction;
•	Statistical models, recognizing the intrinsic uncertainty associated with estimation.
Conventional soil mapping was originally developed as a means of spatially 

characterizing soil properties from discrete soil classes. Using these classes, average 
values of soil properties are applied spatially and as a result abrupt changes in prop-
erties occur at the soil class boundary (Watt and Palmer, 2012). This method has 
several weaknesses that often include poor correlation between soil properties and 
the mapped classes, the misrepresentation of gradual change by abrupt boundaries, 
and the treatment of within-class variation as spatially uncorrelated (Campbell et 
al., 1989; Nortcliff, 1978). Furthermore, these techniques are also time-consuming 
and generally do not provide complete and updated information.

Interpolation involves: (i) De�ning a search area or neighbourhood around a 
point, (ii) de�ning the point to be predicted, (iii) �nding the data points within this 
neighbourhood, (iv) choosing a mathematical function to represent the variation 
over this limited number of points and, (v) evaluating the value for the point on a 
regular grid. Approaches for estimating soil properties in non-sampled locations 
using mathematical functions include the following (Figure 13):

•	Neighbourhood operations: use data from surrounding locations to determine 
output value at corresponding location;

•	Zonal operations: use a selection of one or more nearby data points 
•	Global operations: use all data points over the whole area.
 With global interpolation, all available data are used to provide predictions for 

the whole area of interest. Global interpolators are not usually used for direct inter-
polation, but for examining and possibly removing the effects of large-scale (global) 
variations, caused by major trends or the presence of various classes of land that 
may indicate areas that have different average values. Once the global effects have 
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been taken care of, the residuals from the global variation can be interpolated lo-
cally. These global interpolation techniques are described below.

A relatively simple global approach is trend surface analysis, whereby polyno-
mial and sometimes trigonometric functions are �tted by least squares regression 
on the spatial coordinates used as predictors. It is commonly used as a preliminary 
step in the study of data structure before the application of advanced mathemati-
cal interpolation techniques for de-trending data and determining the stochastic 
residuals. This simple approach has several shortcomings:

•	Distortion of the results owing to occurrence of data clusters and or outliers;
•	Instability caused by outliers or observational errors or when enough terms 

are included in the function to retain local detail;
•	Loss of detail because of powerful smoothing;
•	Variation of one part of the region affecting the fit of the surface everywhere;
•	Lack of physical meaning of the regression coefficients.
Among the local techniques, the simplest approach uses only one data point per 

interpolation point, which is considered as representative for an area delineated by 
a polygon. The assumption in such a method is that the environmental properties 
within the polygon are homogeneous and the values change abruptly at the polygon 
boundaries. If the variation of the data values is gradual, the results may be plau-
sible. However, the only advantage of this method is that the amount of calculation 
is quite small (Castrignanò and Lopez, 2004).

A quite simple method is the drawing of Thiessen polygons, i.e. each interpolation 
point assumes the value of the nearest data point. If gradients of spatial variation are 
smooth and the data points are not too far apart, the method may be plausible enough. 
Nevertheless, when the data points are situated in different zones which differ due to 
their elevation, position to mountain ranges or to coast lines, type of soil and vegeta-
tion, climate and so on, this method creates �ctitious, abrupt discontinuities.

An alternative to Thiessen polygons is location-specifying zoning, which is delin-
eating a zone around each data point. This delineation is often drawn by eyeballing 
and is based on expert knowledge of the relationship between geography and land-
scape properties. Owing to its intuitive character, it is quite subjective and not repro-
ducible, unless formal rules for zoning have been previously de�ned and then applied.
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Figure 13 
Different approaches for estimating soil properties at non-sampled locations
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The basic prescription for moving average interpolation is to use all the data 
points within a circle centred on the interpolation point and the interpolated values 
are calculated as the average of these sample data. As the circle moves around over 
interpolation points, the selected data points change and depending on the radius 
of the circle the short-range variations can be emphasized or levelled off. The basic 
assumption is that for all interpolation points placed on a line between two sample 
points, the data values change continuously and smoothly. Variations to the ap-
proach are possible by introducing a weighing factor, a method called weighted 
moving averages. The advantage of this modi�cation is that it allows us to give a 
different degree of in�uence on the interpolation point by the neighbouring data. 
The most commonly used weighing factor is inverse distance and inverse squared 
distance (Castrignanò and Lopez, 2004).

Thin plate splines depend on an a priori assumption of smoothness, which im-
plies that the variable is not completely local - in the sense that the value at one loca-
tion depends on nearby values. Splines have been widely applied in spatial statistics. 
The main reasons for this are that splines are computationally ef�cient and there are 
software packages available which implement them freely. Moreover, they are rela-
tively robust and the smoothness parameter, which is the only parameter which can 
be adjusted on the splines, can be determined automatically. Nevertheless, splines 
are rather restrictive in the choice of basic functions.

Each of the interpolation methods described has its own disadvantages but the 
following ones apply to all traditional methods:

•	Spatial dependence in data is assumed a priori and there is no statistical test to 
validate the assumption;

•	It is not possible to describe and model the structure of spatial variation to 
take into account during interpolation;

•	Many of the outcomes look rather crude and prone to fluctuation.
No theoretical estimation variance can be computed and so any evaluation of 

the interpolation must involve a posteriori validation. Even if trend surface analysis, 
which is a form of regression, seems to estimate error in interpolated values, it is, in 
fact, somewhat misleading. The reason is that the regression model assumes among 
other things that the residuals from the �tted surface are independent of each other; 
this assumption is almost always violated, so no true estimation variance can be 
calculated (Castrignanò and Lopez, 2004). 

7.4 GEOSTATISTICS
As soil varies at both spatial and temporal scales with great complexity, we deem that 
no deterministic model can capture the full extension of its variations. Geostatistical 
methods for interpolation recognize that the spatial variation of any continuous attri-
bute is often too irregular to be modelled by a simple, smooth mathematical function, 
and provide ways to deal with the limitations of deterministic interpolation methods. 
Estimation and simulation of probable scenarios using statistical models are adopted 
to deal with the limits and dif�culties of traditional soil mapping. The power of geo-
statistics to derive relationships between soil and landscape properties can be used at 
various scales, from �eld to global, depending on the level of precision targeted.

Estimation of variables by geostatistical techniques through moving average 
interpolation has been applied extensively since the 1980s (Burgess and Webster, 
1980). More recently, speci�c theories for soil science were developed (Goovaerts, 
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1997, 1999; Webster and Oliver, 2001). Classical geostatistical approaches allow 
modelling of the spatial variability of a target variable and to perform an estimation 
of non-sampled locations. Geostatistics is based on the spatial autocorrelation of 
data, providing an estimate of a variable in each point applying a well-de�ned mod-
el of spatial autocorrelation (Goovaerts, 1997; McBratney et al., 2003). Basically, 
geostatistics recognizes the continuous nature of soils and can account for random 
variation through modelling the spatial correlation in soil properties often present 
in the landscape. Once the spatial behaviour and spatial distribution of a parameter 
is characterized, this information is used to predict the value of the variable be-
tween sampled points and to minimize estimation error (Webster and Oliver, 2001). 
Geostatistical approaches have generally improved our predictive capacity for soil 
properties, especially the continuous ones like SOC. The underlying principle is 
that values at points close together in space are more likely to be similar than points 
further apart. Geostatistical methods are optimal when data are: (i) normally-dis-
tributed and, (ii) stationary (mean and variance do not vary signi�cantly in space).

Spatial variation of soil properties contains systematic and random components 
(Figure 14). Systematic variability is a gradual or distinct change (trend) in soil 
properties that can be understood in terms of soil-forming factors or processes at 
a given scale of observation (topography, lithology, climate, biological activity, age 
of soils, physical and chemical composition). In addition to this component of soil 
variation there are differences that cannot be related to a known cause. This unex-
plained heterogeneity is called random variability.

The theory of regionalized variables represents the basis of geostatistics. It as-
sumes that a spatial variation of any variable can be expressed as the sum of three 
major components:

•	A deterministic component associated with a constant mean value or a long-
range trend;

•	A spatially correlated random component;
•	A white noise or residual error term that is spatially uncorrelated.
De-trending in geostatistics is used to satisfy the stationarity assumptions, mean-

ing that modelling is conducted on the random short-range variation in the residu-
als. The trend is automatically added back before the �nal continuous surface is 
created, to obtain reasonable predictions.

Compared to the classical statistics which examine the statistical distribution of 
a set of sampled data, geostatistics incorporates both the statistical distribution of 
the sample data and the spatial correlation among the sample data. While in classi-
cal statistics, observations are assumed to be independent (no correlation between 
observations), information on spatial locations in geostatistics allows us to compute 
distances between observations and to model autocorrelation as a function of dis-
tance. Spatial autocorrelation is a de�ning feature of geostatistics: this spatial rela-
tionship is described by the semivariance. The semivariance ɶ(h) describes the spa-
tially dependent component of the random function Z. It is equal to the expected 
squared distance between sample values separated by given h.
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Equation 27:

2ɶ(h) = ∑ [ Zx - Zx+h ]2

Where: 
ɶ(h) is the semivariance (as a function of h)
Zx value of a random function Z at position x
Zx+h value a random function Z at position x+h, where h is a distance

The semivariance for a given direction is usually displayed as a plot of semivariance 
ɶ(h) versus distance h, called a semivariogram or simply variogram (Figure 15). A var-
iogram cloud is produced plotting all the semivariances versus their distances, and an 
experimental variogram is obtained averaging the values for a standard distance (lag).

In the variogram the spatial dependence of the data is typically expressed by a 
monotonic increase from the origin with increasing lag distance; the variogram is 
hence a function of the spatial autocorrelation of the sample. The semivariances are 
typically smaller at shorter distance, and may reach, or asymptotically approach, 
an upper bound (sill) at a �nite distance (range), beyond which there is no longer 
spatial autocorrelation (Heuvelink and Webster, 2001). In fact, the values of a target 
variable are more similar at a shorter distance, up to a certain distance where the 
differences between the pairs are equal to the global variance (Hengl, 2009).

Ideally, the experimental variogram should pass through the origin when the 
distance between the samples, and then variation, is zero. However, many soil 
properties have non-zero variance when h tends to zero. The nugget variance is a 
positive intercept on the ordinate, representing an uncorrelated component and 

(a) Mean level

(i)

(ii)

(iii)

X

Z

(b) Trend

Figure 14
Elements of spatial variation: (a) mean, and (b) trend*

* (Burrough and McDonnell, 1998).
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indicator of short distance variation which includes measurement error, sampling 
error, inter-sample error and unexplained and inherent variability. The experi-
mental variogram exhibits pure nugget effect when ɶ(h) equals the sill at all values 
of h. It rises when there is a large point-to-point variation at short distances of 
separation and indicates a total absence of spatial correlation at the sampling scale 
used. It rarely signi�es lack of spatial correlation. In fact, increasing the detail of 
sampling will often reveal structure in the apparently random effects of the pure 
nugget effect.

The experimental variogram is, by its construction, a series of discrete points. To 
obtain a smooth, continuous function, a model is to be �tted to these points (Goo-
vaerts, 1997). Not any mathematical function can be used. A variogram model must 
ful�l the condition that no linear combination of variables can result in a negative 
variance of the derived variable. There are only a few models known to obey this 
condition. The most common ones are listed in standard texts, such as Webster and 
Oliver (2001): Spherical, Exponential, Gaussian, Power, Periodic, etc.

The choice of variogram model is very important because each type yields quite 
different values for the nugget variance and range, both of which are critical pa-
rameters for interpolation. In fact, geostatistical interpolation uses the variogram 
to optimize prediction by kriging, using the parameters of the variogram model to 
assign optimal weights for interpolation.

Ordinary Kriging (OK) is by far the most common type of kriging, consisting in 
a form of weighted averaging, in which the unknown value in a point is predicted 
from the known values (Heuvelink and Webster, 2001). The weights are chosen in 
such a way that the estimator is unbiased. Kriging has many useful properties:

•	The interpolated value is the most precise possible from the data available;
•	The interpolated value can be used with a degree of confidence, because an 

error term is calculated together with the estimation;
•	The estimation variance depends only on the variogram model and on the 

configuration of the data locations in relation to the interpolated point and not 
on the observed values themselves;
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Theoretical semivariogram and its parameters
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•	The condition of unbiasedness ensures that kriging is an exact interpolator, 
because the estimated values are identical to the observed values when a kriged 
location coincides with a sample location. In this case, the weights within the 
neighbourhood are all zero and the estimation variance equals the nugget vari-
ance of the variogram model;

•	Only the nearest few samples are spatially correlated to the kriged location 
and, therefore, they are the most weighted. Two important advantages become 
clear: firstly, the variogram needs to be accurate only on the first few lags; 
secondly, whatever is gained from introducing distant points is limited also 
because sample locations interposed between the kriged point and more dis-
tant samples screen the distant ones reducing their weights.

The appropriateness of the chosen variogram model and the kriging assumptions 
of unbiasedness and minimum estimation variance can be tested by cross-valida-
tion. This involves deleting each sample in turn and then kriging it independently 
from all other points in the estimation neighbourhood. In addition, the kriging pro-
cedure produces the variance of this estimation.

Considering the support of estimation, we can distinguish Point Kriging, applied to 
areas or volumes of the same size as that of the original sampling unit, and Block Kriging, 
applied to areas or volumes that are larger than the units that were originally sampled. 
Block kriging modi�es punctual kriging equations to obtain an average estimate over 
a discrete area/volume or block. Both punctual and block estimates can be mapped. In 
the �rst case, values are kriged at numerous points on a �ne grid through which contour 
lines are threaded to display the result. In block kriging the domain to be mapped is sub-
divided into small blocks and the estimates are displayed as blocks, or they are assigned 
to the centres of the blocks and contoured as for punctual kriging (Figure 16).

Other commonly used Kriging algorithms are:
•	Co-kriging, a kriging algorithm in which the distribution of a second, highly 

correlated variable (covariate) is used along with the primary variable to 
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Example of punctual kriging map (left) and block kriging map (right)  

(Castrignanò A., personal communication)
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provide interpolation estimates. Co-kriging can improve estimates if the 
primary variable is difficult, impossible, or expensive to measure, and the 
second variable is sampled more intensely than the primary variable.

•	Universal Kriging (also called regression kriging), a kriging method often used 
on data with a significant spatial trend, such as a sloping surface. In universal 
kriging the expected values of the sampled points are modelled as a polyno-
mial trend. Kriging is carried out on the difference between this trend and the 
values of the sampled points.

•	Indicator Kriging (IK) is a non-parametric form of kriging, which uses a bina-
ry variable (0,1); predictions from IK can be interpreted as probabilities of the 
variable being 1 or being in the class that is indicated by 1. If a threshold was 
used to create the indicator variable, the resulting interpolation map would 
show the probabilities of exceeding (or being below) the threshold.

•	Empirical Bayesian Kriging (EBK) is an interpolation method that accounts 
for the error in estimating the underlying variogram through repeated simula-
tions. EBK creates a large number of variograms and the result is a distribu-
tion of variograms.

Differing from traditional methods of interpolation, kriging, with its probabil-
ity model, allows us to calculate the uncertainty of predictions. In geostatistical 
practice, as we mentioned above, the usual method of testing is cross-validation. 
However, its results are actually biased and somewhat too optimistic (Creutin and 
Obled, 1982), because it retains the same variogram, whereas the variogram should 
be recomputed and �tted every time that an observation is removed (Laslett et al., 
1987). Moreover, cross-validation is not a true validation, because the same sample 
data set is used for both estimation and validation.

All these shortcomings can be avoided by using a separate independent set of 
data for validation. The values are estimated at the sites in the second data set and 
then the predicted and the measured values are compared. As for cross-validation, 
different indices can be computed from the observed and predicted values of the 
sites belonging to the validation sample. These are the:

•	Mean error, which measures the bias of the prediction and should be close to 
0 for unbiased methods;

•	Mean square error, which measures the precision of the predictions and 
should be as small as possible;

•	Variance of the standardised estimation error, which measures the goodness of 
the theoretical estimate - the better the estimate is, the closer it is on average to 1.

RECOMMENDATION 36. When using kriging to perform a 
geostatistical interpolation, it should be checked that the data used 
follows a normal distribution and are spatially auto-correlated.

7.5 DIGITAL SOIL MAPPING
Geostatistical methods are based uniquely on the position of one point in respect to 
the others. This kind of estimation often tends to smooth the details of soil spatial 
variability and to underestimate the short-range variability to some extent (Curran 
and Atkinson, 1998; Ping and Dobermann, 2006). The quality of the estimation of 
soil properties can be improved and the spatial sampling intensities may be reduced 
by incorporating secondary information, provided that the primary and secondary 
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variables are well correlated (McBratney et al., 2003; Marchetti et al., 2008), such as 
those derived from morphometry and remotely sensed data.

The use of environmental covariates has improved several aspects of soil sur-
veying in many parts of the world (Boettinger, 2010). Thus, hybrid geostatistical 
procedures that account for environmental correlation have become increasingly 
popular in recent years. These methods allow utilization of ancillary information 
that is often available at �ner spatial resolution than the sampled values of a primary 
target variable (McBratney et al., 2000).

Digital Soil Mapping (DSM) consists in a set of hybrid methods for producing 
digital estimated maps of soil properties through geostatistical regression techniques, 
using measured data combined with auxiliary information from environmentally 
based variables and remotely sensed images. DSM was developed as a substitute for 
the traditional polygon soil maps (McBratney et al., 2003). The Working Group of 
the International Union of Soil Sciences (IUSS) on Digital Soil Mapping de�nes digi-
tal soil mapping as “the creation and the population of a geographically referenced 
soil database, generated at a given resolution by using �eld and laboratory observa-
tion methods coupled with environmental data through quantitative relationships” 
(IUSS, 2019). According to Lagacherie and McBratney (2006) the input for digital 
soil mapping are �eld and laboratory observations (both legacy soil observation or 
maps and newly collected samples using statistical sampling techniques). Processing 
of data implies building statistical or mathematical models which relate soil observa-
tions with their environmental covariates to upscale point data to a full spatial extent. 
The ultimate output is an updatable spatial soil information system including raster 
representations of prediction along with the uncertainty of prediction. There is an in-
creasing interest in using DSM to predict SOC worldwide, since this is an important 
issue to decrease costs and subjectivity of maps.

An ef�cient scaling up approach is Regression Kriging (RK), one of the most wide-
ly used hybrid spatial interpolation techniques, which generally produces realistic 
spatial representations, as the smoothing effect is much smaller than other interpola-
tion methods. RK is a kind of Best Linear Unbiased Prediction (BLUP) technique for 
spatial data, which adds together the regression value of the covariates or exhaustive 
variables and the kriging value of the residuals of the regression (Sun et al., 2012). 
BLUP assumes that the local mean varies continuously into each neighbourhood and 
can be estimated, using in association, both data from direct measurements and cor-
related auxiliary information (Goovaerts, 1997; Hengl et al., 2007; Odeh et al., 1994). 
Auxiliary information can be derived from the Digital Elevation Model (DEM), that 
is an optimal source of topographic information and an important data base for terrain 
attributes calculation, and from satellite imagery, easily available at relatively low cost.

In comparison with other methods, RK offers some advantages: analysis of rep-
resentativeness of the plot inventory, analysis of uncertainties, regional soil C as-
sessment and connections to other inventories, and allows the monitoring of land 
management factors. The strength of RK becomes better visible if high resolution 
data are available, re�ecting the landscape scale predictors from the SOC distribu-
tion model. Accordingly, DSM offers a more accurate expression of the variation 
of a certain soil property, including a spatial quanti�cation of the prediction error, 
which is why it is recommended, whenever possible (FAO, 2017).
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 RECOMMENDATION 37. There is no spatial prediction method 
which is generally best for any case. The best method for SOC 
mapping should be selected on a case by case basis.

7.ϲ PRACTICAL APPLICATION OF INTERPOLATION TECHNIYUES
As part of the activities of the Global Soil Partnership, a Global Soil Organic Car-
bon Map was released on December 5th 2017 (FAO, 2019c)). This map consists of 
nationally produced maps, developed as 1 km soil grids, covering a depth of 0-30 
cm. Within this framework, a technical guideline to produce soil property grids by 
digital soil mapping techniques, based on local samplings and measurements, has 
been published (FAO, 2017). Reference is made to this document for users, such as 
country representatives, who are engaged in e.g. determining SOC stock baselines. 
The instructions provide detailed guidance in preparing local soil data and envi-
ronmental covariates, up-scaling data via regression-kriging and data mining and 
analysing uncertainties. 

RECOMMENDATION 38. When up-scaling SOC stock change 
estimates, an overview of the data integration and spatial modelling 
procedure as well as the related uncertainty should be documented 
and reported together with the produced maps.
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carbon into liĨe cycle assessment

8.1 INTRODUCTION
Life Cycle Assessment (LCA) is a tool that quanti�es impacts associated with the 
provision of goods and services over their full life cycle. The LCA approach is 
comprehensive and has been formalized by ISO 14044:2006 (Environmental man-
agement - Life cycle assessment - Requirements and guidelines) and is generally 
accepted by the industry and stakeholders as being the most robust approach for 
comparing alternatives across their environmental impacts. Conversely, an alterna-
tive approach that does not consider the life cycle of a product could lead to burden 
shifting between life cycle phases – i.e. a decision made to reduce impact in manu-
facturing, for example, could lead to a change in materials which would ultimately 
cause more impact upstream in the material production phase. 

There are two different types of LCA, attributional LCA and consequential 
LCA. UNEP/ SETAC (2011) de�nes attributional LCA as a “modelling approach 
in which inputs and outputs are attributed to the functional unit of a product sys-
tem by linking and/or partitioning the unit processes of the system according to a 
normative rule”. Attributional LCA is, therefore, an inventory-type method, as it 
provides an inventory of emissions/removals within a de�ned inventory bound-
ary. Consequential LCA is de�ned as a “modelling approach in which activities in 
a product system are linked so that activities are included in the product system to 
the extent that they are expected to change as a consequence of a change in demand 
for the functional unit”. Consequential LCA therefore provides an assessment of 
change in emissions/removals caused by a speci�ed decision or intervention.

In terms of scope, LCA has traditionally focused on environmental impacts, but 
can also include economic and social impacts, particularly on human health (us-
ing endpoint LCA methods such as ReCiPe, Impact 2002+, etc.). Conducting an 
LCA involves creating an inventory, consisting of a balance sheet of estimated and 
measured emissions to air, soil and water which subsequently are classi�ed into 
the impacts of interest, whose results are the product of applying pre-established 
characterisation factors that allow the summing of all �ows (e.g. emissions) that 
contribute to an impact. For example, for the climate change impact category, kg 
of nitrous oxide and methane emissions will be converted into kg CO2-equivalent 
emissions, so that a total impact on climate change can be estimated. 

Changes in SOC levels are relevant to the environmental performance assess-
ment of livestock product systems, primarily due to its effects on the balance of 
emissions of GHGs in the system, which affects climate change impacts. Moreover, 
SOC is an indicator for soil quality, re�ecting its ability to provide ecosystem ser-
vices, such as biotic production and climate change mitigation. Changes in SOC 
stock of grasslands supporting livestock production, as well as other LU and LUC 
directly or indirectly linked to livestock production (e.g. soybean) should be in-
cluded in the evaluation, so that the industry’s impact can be estimated comprehen-
sively, avoiding burden shifting. 
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LCA studies should follow the recommendations given in the ISO standards. 
The structure of an LCA report includes the sections illustrated in Figure 17: (i) 
goal and scope de�nition, (ii) life cycle inventory analysis, (iii) life cycle impact as-
sessment and, (iv) interpretation.

One of the most contentious issues with the inclusion of SOC stock changes 
in LCA is the temporal aspect. SOC levels in agricultural production systems are 
typically either steady-state (balanced inputs and outputs) or batch systems. In ei-
ther system, the time reference of the production system does not usually present 
a challenge. In livestock production systems, a reference of one year is usually suf-
�cient to account for temporal variations (e.g. related to variable feed composition 
throughout the year). The reference system may be extended when production (e.g. 
growth) happens over multiple years, in distinct phases (e.g. meat production from 
one animal over its full lifetime). Alternatively, one can look at a greater system with 
continuous inputs and outputs (e.g. meat production from one farm over a year).

However, when agricultural practices change, SOC levels will change according-
ly. This change is usually rapid soon after the introduction of the new practice and 
eventually stabilises when a new equilibrium is approximated (Petersen et al., 2013). 
Since this process varies depending on the region’s climate, soil type, agricultural 
practice or initial SOC levels, it is challenging to give an approximate indication of a 
representative time interval. Furthermore, SOC is known to follow a “slow in, fast 
out” pattern (Poeplau et al., 2011), making the assumption of a same time horizon 
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for sequestration and loss overly simplistic. Finally, determining an unambiguous 
SOC stock change associated with the new equilibrium also requires a decision that 
may be fraught with practical dif�culties.

An approach used in other recommendations (IPCC, 2006; PAS 2050, 2011) is 
to allocate the bene�ts of carbon sequestration (or the burden of carbon emissions) 
linearly throughout a �xed period (e.g. equally over 20 years of production). 

Petersen et al. (2013) showed that the choice of time perspective has a consider-
able impact upon the LCA results. While IPCC (2006) Tier 1 methodology pro-
poses a time period of 20 years, as used in many LCA’s modelling land use change, 
many have argued and shown (e.g. Vellinga et al., 2013; Poeplau et al., 2011) that 
carbon stocks may not reach an equilibrium after 20 years. In the methodology for 
the FeedPrint tool (Vellinga et al., 2013), it is claimed that following 200 years after 
conversion, carbon is still accumulating in grasslands and decreasing in arable land. 
The time perspective should correspond to the time perspective most commonly 
used for the global warming potential in LCAs, which is 100 years (Petersen et al., 
2013).

The calculation of a carbon footprint - a speci�c calculation for climate change 
impact with a life cycle approach - is reported in terms of CO2-equivalents (all 
GHG are converted to CO2-equivalents using Global Warming Potentials as char-
acterisation factors) for a unit of reference. This reference usually is known as the 
Functional Unit in LCA, e.g. 1 tonne of milk. In this case, the carbon sequestered 
in and emitted from soils could be included in the balance of GHG emitted and se-
questered if the methodology allows for it. The conversion from livestock reference 
(weight of meat or milk) to surface of grassland required shall also be made explicit.

8.Ϯ IMPLICATIONS OF INCLUDING SOC STOCK CHANGES IN LCA
8.2.1 System boundaries and cut-off criteria
An LCA report requires a clearly de�ned and communicated system boundary that 
is relevant to the goal and scope of the study. For modelling climate change from 
land use and land use change, all GHG emissions should be included, not only car-
bon dioxide. Furthermore, when estimating the environmental impact of livestock 
production systems (in the LCA of beef or milk, for example), it is also necessary 
to account for effects of soil carbon changes elsewhere in the system. For example, 
SOC changes associated with additional feed crop production on arable land, or 
SOC changes due to the application of manure. An incomplete system boundary 
can generate burden shifting, where the bene�ts of the action of focus (e.g. change 
in management practice) cause a greater burden (e.g. emissions of CO2) elsewhere 
in the supply chain. An assessment with limited boundaries can therefore be mis-
leading and contrary to the rationale for using an LCA approach, which is to avoid 
shifting burdens.

Figure 18 shows a system boundary for livestock systems. All life cycle stages 
where material C and N �ows occurs shall be accounted for, and other signi�cant 
emissions for these stages shall also be estimated in a full LCA. Depending on the 
goal of the LCA study, one may also include additional steps of packaging, storage, 
distribution, retail, use (i.e. cooking) and waste management. These stages may be 
relevant for some intended uses only (e.g. for customer education but not for agri-
cultural land management regulation).
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8.2.2 Representativeness and appropriateness of LCI data (SOC data or model)
In most LCA studies that include estimates of changes in SOC stocks, accounting 
is only for land use changes (see review of multiple LCA studies by Goglio et al., 
2015), either counting only direct or also including indirect land use change. Emis-
sion modelling is typically based on IPCC (2006) emission factor guidelines. This 
is in line with the European LCA framework (EU-JRC, 2010). While this highly 
applicable but low precision tool (Goglio et al., 2015) is regarded as appropriate 
for large scale soil carbon changes occurring after a land use change, it is recom-
mended to use a �ner model (Level 2 or 3) to model emissions occurring because 
of land management change. Most dynamic crop-climate-soil models (Level 3) are 
considered of medium certainty (Goglio et al., 2015), based on classi�cation criteria 
derived from JRC (2011). BOX 11 shows a case study using models to include SOC 
stock changes in LCA. When a study context does not allow speci�c data collection, 
model Level 1 could be used with speci�c factors adapted to the production context 
to provide a �rst estimate of the expected SOC change direction or amplitude.

8.2.3 Types, quality and sources of required data and information
SOC stock changes can be estimated by measurements or modelling. Please refer to 
the relevant sections in this document for details (Chapters 3, 5 and 6).

At present time, little to no information concerning SOC stock changes is available 
or included in the databases usually used in LCA software and studies, except those 
related to LUC (especially for soybean meal from South America). Explicit mention 
of inclusion or exclusion of SOC changes should be made in the communication of 
results whenever possible, specifying if related to LUC only or LU as well.

8.2.4 Comparisons between systems 
The inclusion of net soil carbon sequestration in the overall balance of GHG has the 
potential to reduce the overall footprint of a livestock product, until a new steady-
state is achieved. The potential for carbon sequestration in grasslands used for live-
stock production depends on current SOC stocks and the history of management. 
More degraded land that has lost more carbon due to past poor management has 
the potential for higher carbon sequestration to approach the native SOC state. 
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  (N2O, NO3+, etc.)

- Land Management
  (CO2,N2O, etc.)
- Enteric Fermentation (CH4)
- Manure Management
  (CH4, N2O, NH3)
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  (milk & meat, skin, etc.)

Figure 18 
Minimum Life Cycle Stages linked to livestock production in an LCA approach
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Hence, different rates of SOC stock change increase between farms at a point in 
time does not give a measure of the longer-term sustainability of farm management. 
The UNEP/SETAC Life Cycle Initiative has produced guidelines for conducting 
the Life Cycle Inventory analysis and Life Cycle Impact Assessment phases of an 
LCA study (See Koellner et al., 2012; 2013). For assessing the impacts of land use 
and land use change on climate change, see Müller-Wenk and Brandão (2010). 

8.2.5 Identifying critical review needs
Since the inclusion of SOC in estimates of net GHGs emissions can have a signi�-
cant importance to the results, a critical review should be made before reporting the 
results of a single or comparative LCA including this source. The goal of the review 
will be to assess if the model and data chosen are the best to represent the situation 
evaluated.

8.2.6 Emerging reporting requirements
Currently, common LCA reporting platforms refer to the importance of SOC 
without clearly including it in the overall balance (PAS, 2011; European Commis-
sion, 2013). The latest version of the PAS 2050: 2011 states: “Soils are important in 
the carbon cycle, both as a source and a sink for carbon, and it is acknowledged that 
scienti�c understanding is improving regarding the impact of different techniques 
in agricultural systems. For this reason, provision is made for future supplementary 
requirement or revision to the PAS 2050 requirements that could facilitate the inclu-
sion of emissions and removals arising from changes in soil carbon”. 

The EU’s Product Environmental Footprint (PEF) rules (European Commis-
sion, 2013) suggest an ad-hoc calculation for C sequestration that can be mentioned 
separately from the total (in line with ISO 14067:2018 Carbon footprint of prod-
ucts). Meanwhile, it is also deemed by many stakeholders to be an important miti-
gation method that should be included in the balance of emissions, which would 
provide the holistic view that is characteristic of LCA. For this reason, it is expect-
ed that once consensus is reached on a method of estimating and reporting SOC 
changes, they could rapidly be accepted within the boundaries of life cycle carbon 
footprinting.
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Box 11: Quantifying SOC sequestration in a LCA study of a livestock system

Overview͗ Practices to manage native vegetation and to improve soil health and carbon stocks 
are increasingly being adopted for production and environmental benefits on Australian pastoral 
lands. However, the greenhouse gas (GHG) benefits of these activities are commonly overlooked 
in life cycle assessment (LCA) studies, affecting the accuracy of climate change impact assess-
ment. This case study sought to estimate sequestration in soils and vegetation in a cradle to farm-
gate LCA study (Henry et al., 2015) of the potential climate change impact of wool production in 
the region around Armidale (30o31’S, 151o40’E), Australia. 

Approach:  The life cycle inventory used regional production data and on-farm surveys to 
model the net greenhouse gas emissions per kg greasy wool at the farm-gate. A simple Tier 2 
approach used a Level 1 model to estimate SOC stock change due to pasture management. Emis-
sion factors were derived from regionally relevant research conducted over the past ten years. 
A conservative approach was adopted with zero SOC stock change assumed for activities where 
research results were variable and/or close to zero. In the study region, where nutrient deficiency 
was addressed through application of phosphate fertiliser and introduction of legumes, more 
consistent gains in SOC stocks had been measured and an average rate of sequestration of 0.1 Mg 
C ha–1 year–1 was modelled in the LCA. Net annual GHG emissions per kg wool was calculated as 
total farm emissions less sequestration in vegetation and soil annualised over two timeframes, 20 
years and 100 years, used in LCA studies and national accounts. Impacts were allocated between 
wool and sheep-meat using a biophysical approach.. 

W hat the case study showed:  While the rate of SOC per hectare was low, over the large area 
of farm production in this region the increase in carbon stocks in soils was close to that in tree 
biomass. Over a 100-year period, total sequestration offset about 10% of all farm emissions.

Carbon sequestration for reforestation and soil management in a sheep grazing region, calculated using an LCA approach 

and expressed as equivalent CO2 (kg CO2-e) per kg greasy wool produced at the farm gate, assuming a 100-year 

amortisation period to simulate permanent sequestration.

Summary: This case study illustrates an approach for assessing sequestration in SOC and veg-
etation biomass using modelling and survey information and including results in livestock LCA. 
The LCA results demonstrated that land use and direct land-use change practices on sheep farms 
may result in significant and quantifiable GHG removals. Modelling SOC stock change in LCA is 
important for accurate impact assessment, and to recognise and encourage good practice.

SeƋuestration Activity
Cradle-to-Ĩarm-gate LCA 
modelling scenario

GHG intensity  
( kg CO2-e/ kg 

greasy woolͿΎ

Biomass (Mixed native & 
exotic tree planting)

National inventory model -1.6

Biomass (Mixed native & 
exotic tree planting) plus 
SOC stock change under 
fertilised pasture

National inventory model 
SOC stock change = 0.1 tC 
ha-1 yr-1

-2.4

* A negative value indicates CO2 removals from the atmosphere 
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Appendix 1

TecŚnical inĨormation on model 
initialiǌation

INITIALISATION CHALLENGES AND APPROACHES
Peltoniemi et al. (2006) studied effects of various factors on modelled SOC changes 
and found that soil initial state has the greatest impact on subsequent modelled val-
ues. Initialisation of SOC in levels 2 and 3 models is inherently complex because it 
involves subdividing total SOC into various largely conceptual SOC pools that differ 
in rates of turnover. Figure 19 illustrates some of the problems that arise from incor-
rect initial pool sizes using the simple level 2 Introductory Carbon Balance Model. 

Compared to continual equilibrium (Figure 19a), overestimating baseline SOC 
(Figure 19b) imposes a disequilibrium that forces SOC to decrease from baseline over 
time while the disequilibrium from underestimating baseline SOC Figure 19d will 
force SOC to increase. Underestimating or overestimating the proportion of C in 
model C pools with fast turnover (Figure 19c and Figure 19e, respectively) causes 
rapid changes in these pools over few years but it reaches values similar to equilibrium 
within 10 years. Conversely, underestimating or overestimating the proportion of C 
in model C pools with slow turnover (Figure 19e and Figure 19c, respectively) intro-
duces slow changes to SOC that requires many centuries to reach equilibrium values.

The two most frequently used schemes are to have a spin-up (or warm-up) pe-
riod for the model to estimate the pool sizes at steady state. The modelled situation 
for the spin-up period is that representing the baseline condition. The �rst option, 
scheme 1, runs the soil to equilibrium over a long spin-up period of up to 10,000 
years. With such long spin-up the model not only estimates the relative pool dis-
tribution but also the total SOC, as it will be essentially unaffected by the initial 
input SOC values. The second option, scheme 2, is to use general ratios to partition 
known total SOC. Then from these input pools, a shorter spin-up period of 10 to 
30 years is used to let the model modify the pool sizes to be more consistent with 
modelled SOC behaviour for the modelled baseline condition. For pools with fast 
turnover, such as the decomposable plant material and slow and fast biomass pools 
in RothC, the model will estimate the steady values within a few years of spin-up. 
Skjemstad et al. (2004) found that initialising these values to small non-zero values 
had no effect on pool size after model spin-up of just two years. 

There are several variants to the above two initialisation schemes that involve 
some calibration of the model. One variant of scheme 1, for the level 2 RothC model, 
adjusted C-input so equilibrium C matched measured total SOC at the end of the 
spin-up period (Jenkinson et al., 1999; Nemo et al., 2017). This variant is useful for 
grassland systems where exact C input may be uncertain. Another effective variant 
for scheme 1 for the RothC model was to calibrate the change rate of slowest carbon 
pool so that the modelled total SOC stock matches the measured value at the end of 
the long spin-up period (Hansen et al., 2012). Paustian et al. (1992) used the scheme 2 
for level 3 Century modelling but modi�ed the initial ratios for original pool partition 
of total SOC so that the modelled C dynamics better matched observations. 
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An assumption of the above initialization schemes is that the baseline condition 
is at or approaching steady state. However, the soil may not be near steady state in 
the baseline condition (Wutzler and Reichstein, 2007). Basso et al. (2011) advocated 
using C inputs and land management to follow known land use and management 
history. These may be most practically estimated from general historical informa-
tion and expert opinion (Ogle et al., 2007). Knowledge of distant history is likely 
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limited and it is the most recent history that is most important to pool sizes. There-
fore, an option is to initialise with a multi-thousand-year equilibrium model spin-
up. This approach uses estimated earlier land use conditions until there is enough 
knowledge of land use change and management history to include in the later pe-
riod of the spin-up modelling.

Several process models, most notably RothC, allow for an inert organic matter 
pool that does not change in the scale of several centuries. Coleman et al. (1997) 
used the 1960 14C pulse from atmospheric nuclear weapon testing to develop an 
estimate of inert organic matter. Falloon et al. (1998) developed an empirical rela-
tionship of inert organic matter from total SOC for RothC.

There has been a continual drive to match model SOC pools with measureable 
pools. Then initial SOC pools could be input from measurements. Smith et al. 
(2002) argue that measurable pools not only have to be shown to match the mod-
elled pools but must also be unique and non-composite (i.e. cannot be divided into 
different sub-pools). They found that these conditions were dif�cult to achieve in 
practice. Having long-term experimental results to test and/or validate results is 
necessary to knowing how well the modelled results using measured pool initializa-
tion match observed performance.

Skjemstad et al. (2004) developed a procedure that matched the largest modelled 
C pools in RothC with measured pools. However, they changed the turnover rate 
of the resistant plant material pool based on calibration to have a good �t of mod-
elled to measure SOC for sites in Australia. Zimmermann et al. (2007) developed a 
procedure for matching RothC pools to measured pools. They could not subdivide 
the resistant and decomposable plant material pools so split a measured plant mate-
rial pool into these two pools based on the pool ration from a 1000-year spin-up 
equilibrium model run. They had a good relationship between measured pools and 
modelled pools for a range of land uses in Switzerland. Xu et al. (2011) also used 
the pool differentiation procedure of Zimmerman et al. (2007) and found that the 
resistant plant material pool was underestimated compared to measured value. This 
was attributed to wet soil conditions in Irish grasslands. Shirato et al. (2013) used 
a similar scheme to that of Zimmerman et al. (2007). They used ɷ14C values to esti-
mate the amount of inert organic matter. Although they were able to obtain good 
estimates of total SOC over a time scale of decades, the ɷ14C did not agree with 
observations. They cautioned that the accuracy of long-term (multi-century) mod-
elled results is suspect.

Other procedures for initialisation rely on probabilistic calibration. Yeluripati 
et al. (2009) used Bayesian calibration (Van Oijen et al., 2005) to estimate the vari-
ability of pool sizes and model parameters for the level 3 Daycent model. Kwon and 
Grunwald (2015) deconstructed level 3 Century and rewrote the SOC estimation 
portion into statistical software and performed inverse modelling to �t observed 
CO2 evolution from incubation studies to initialise soil SOC state and calibrate 
model parameters.

INITIALISATION OF SOIL POOL SI�ES IS LESS IMPORTANT FOR 
COMPARISONS BETtEEN TtO OR MORE CONCURRENT SCENARIOS
Initialisation of soil pool sizes is less important for comparisons between two or more 
concurrent scenarios. For some uses, the information required is the difference in 
SOC between a baseline condition and a modi�ed condition over the same period.  
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A GHG offset is an example, because standards such as ISO 14064-1: 2018 only re-
quire the difference between the SOC stocks over time for the offset action and those 
for the business-as-usual management. A comparative LCA may be constructed so 
only the difference in SOC change between compared systems is required. Similarly, 
a consequential LCA to investigate the effect of a change to a system may be con-
structed so it only needs the difference between the SOC stock changes for the modi-
�ed system compared with those for the original system.

For level 2 models where there is no modelled feedback between SOC change 
and C input, the initial soil pool sizes generally do not have a large effect on the dif-
ference between two different concurrent scenarios. For example, using the Intro-
ductory Carbon Balance Model, the difference in total SOC stocks between base-
line C input for and stocks for a 10% increase in C input scenario was essentially 
identical for all the �ve initial SOC cases (Figure 19). However, when the level 2 
model parameters are changed in a scenario, then there may be important deviations 
between the modi�ed and baseline scenario depending on initial soil states. Figure 
20 shows the difference for changing the model parameters of humi�cation factor 
for above and below ground for the �ve initial SOC cases described in Figure 19. 
The variation of modi�ed humi�cation and the baseline scenario was substantively 
different for case (e) of Figure 19 where the initial model C pool ratio deviated 
markedly from typical equilibrium values.

For level 3 models (such as Century) there is usually a feedback between SOC 
change and plant C input. A substantial disequilibrium between the baseline con-
dition and initial SOC pool sizes will cause rapid changes in SOC, in turn causing 
either a source or sink of mineral N that will affect plant growth and, thereby, C 
input. Nevertheless, the comparison between two concurrent scenarios will not be 
affected greatly by various reasonable initial soil C pool states.
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The recommended method remains to have the initial SOC pools as close as can 
be judged to appropriate values for actual initial soil conditions to provide the best 
estimate of the difference between two concurrent scenarios. However, the initial 
soil state for the above will not be required with the same accuracy as for a model 
use, such as for SOC stock change for attributional LCA, where the SOC trend 
for single scenario needs to be estimated as accurately as possible. Importantly, the 
relative insensitivity for initial SOC state for comparing concurrent scenarios does 
not extend to model parameters such as rate constants for which SOC stock change 
remains very sensitive to inaccuracies.

It is recommended not to change model C fate parameters for initialisation un-
less changes are done as part of broader calibration exercise.

GUIDANCE FOR INITIALISATION
If there is limited knowledge regarding baseline SOC, including no estimate of initial 
total SOC, the best option is to use scheme 1 model spin-up to equilibrium for the 
baseline conditions. If it is judged that there are good estimates of C inputs, then level 2 
models can be used. Good estimates of C inputs can also be used to help parameterize 
vegetation growth in level 3 models so modelled C input matches known C input. If 
there is limited knowledge of C inputs, then level 3 models that estimate plant growth 
can provide initial estimates of SOC stock based on the input data including vegetation 
growth parameters and site variables such as weather and soil texture. Without knowl-
edge of the C inputs, the accuracy of vegetation growth parameters will be critical so it 
is important to choose a parameter set that has been shown to perform well for similar 
vegetation characteristics and growing conditions to the modelled situation. If there is 
good knowledge of past land use and management history, particularly histories that 
would likely cause baseline soil to be not at steady state, then including that history for 
the last years of the model spin-up is recommended. This requires the availability of 
good estimates of C input for level 2 models or vegetation growth parameters and soil 
erosion for level 3 models for that history. Checking initial SOC stock estimates with 
any available SOC data, such as general soil information from soil surveys, is useful to 
determine if the model estimated SOC values are reasonable.

If there is knowledge of baseline total SOC, then scheme 2 of partitioning total 
SOC into pools based on generic or modelled equilibrium C pool ratios followed 
by a spin-up period of 10-30 years is a feasible option. The option exists to calibrate 
either carbon input or pool turnover rates to improve match between initial mod-
elled and measured total SOC. If there is knowledge of past land use and manage-
ment history, particularly histories that would likely cause the baseline soil to not 
be far from steady state, then including the effects of that in initial C pool ratios at 
start of the model spin-up is recommended good practice. This would be done by 
using the initial pool ratio from a scheme 1 spin-up that includes that history for 
the last years of the model spin-up providing it is judged there are good estimate for 
the C input for level 2 models or vegetation growth parameters and soil erosion for 
level 3 models for that history. 

If the primary purpose of model use is to estimate the difference between two 
concurrent scenarios, additional effort beyond the above options may not improve 
the results signi�cantly. However, if a SOC stock change for a single scenario is 
needed then the additional effort for initialisation should be considered.
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If there is detailed fractionation of SOC for baseline condition and con�dence 
that the measured pools will match model pools for the modelled situations, and 
then the initial pool sizes can be adjusted based on measured fractions for scheme 
2 initialisation outlined above. Testing the suitability of this modi�cation against a 
range of soil data relevant to the modelled situations and/or for long term measured 
SOC stock time series is recommended before application.

If there are good measurements of SOC over many years, preferably several de-
cades for a site with conditions similar to the modelling objective, then there is an 
opportunity to calibrate C input and/or model parameters to provide a good match 
between observed and modelled SOC. The calibrated values can then be used to 
make estimates of initial soil SOC through: 

1. scheme 1 as outlined above where there is no knowledge of baseline SOC 
2. scheme 2 as outlined above where there is knowledge of initial total SOC. 
It is a large investment in time to calibrate a process SOC model. Some review-

ers of calibrated modelling may require rigorous documentation of the calibration 
procedure to show that the model was not deliberately or inadvertently calibrated 
to produce a particular result when used to make an estimate of SOC stocks for the 
target model application. If no calibration is done, it is recommended that long-
term data be used to assess the appropriateness of the chosen soil C pool initialisa-
tion method and model parameters. 
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TecŚnical details oĨ model calibration 
and uncertainty evaluation using 
Monte Carlo approaches

Monte Carlo methods, that draw random values from the probability distribution 
functions for inputs and parameters, are an ef�cient and �exible way to estimate 
the whole uncertainty of the modelled estimation, including those from input and 
model uncertainty (VandenBygaart et al., 2004; Stamati et al., 2013). It also does not 
require the use of a data set of observed system performance. The major reluctance 
to use this approach is the challenge of selecting justi�able probability distribution 
functions of in�uential inputs and parameters (Verbeeck et al., 2006). 

As an example of the Monte Carlo approach, Ogle et al. (2010) made an esti-
mate of structural uncertainty of the Century model. Their study included a Monte 
Carlo implementation of an empirical mixed model of �xed effects for major factors 
of SOC change and random effects to include the spatiotemporal dependencies in 
the United States (Ogle et al., 2007). They found that there were systematic errors 
for Century regarding the effect of tillage and the effect of soil texture on SOC 
stock. Through Monte Carlo simulation this empirical model was used to estimate 
the uncertainty in SOC stocks that arises from the use of Century. This allowed the 
authors to make SOC stock estimates for these �xed effects, for application in the 
United States (for which the empirical model is valid). 

The variables and parameters that make the greatest contribution to model-esti-
mated output uncertainty are those with the largest combinations of their own un-
certainty and modelled output sensitivity. It is dif�cult to know which is most im-
portant. Several procedures are available to subdivide total model output variance 
into components to gain an understanding of uncertainty from individual factors 
and their variance. The simplest of these use the most sensitive variables from OAT 
analysis in form suitable for Monte Carlo estimation. The results are structured for 
Analysis of Variance (ANOVA) with uncertain variable as factors and with model 
output as the response variable (Wang et al., 2006; Tang et al., 2007; Nishina et al., 
2015). Interactions between in�uential factors are also included. The variable con-
tributing most to the variance are those having greatest impact on uncertainty. 

A more-advanced method to use a Monte Carlo approach is to condition the pa-
rameter uncertainties, based on differences between observation and modelled out-
puts. The Markov Chain Monte Carlo is a powerful and computationally ef�cient 
method, that uses random selection to continually improve the likelihood of the 
probability distribution function of variables and parameters based on comparing 
model output with observed values (Ricciuto et al., 2008; Tuomi et al., 2009; Ren 
et al., 2013). The General Linearized Uncertainty Estimation (GLUE) is a related 
method to Markov Chain Monte Carlo, in that it also uses Monte Carlo methods and 
Bayesian inference to simultaneously estimate the uncertainty of parameters and of 
the model estimation (Wang et al., 2005; Causarano et al., 2007; Juston et al., 2010; 
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Salazar et al., 2011). These methods provide good characterization of the uncertainty 
and the contribution of different inputs and parameters to that uncertainty. However, 
to provide good estimates of model prediction uncertainty, the observations to which 
the model output is compared need to represent the range of conditions in the ap-
plication domain. This can be a limitation for applying these advanced methods to 
estimate the model prediction uncertainty for grazed grassland systems as there are 
usually few studies with observations of SOC.



119

ReĨerences

Agriculture and Agri-Food Canada. 2019a. Northern Circumpolar Soil Organic 
Carbon Database. In: Government of Canada, Canadian Soil Information Ser-
vice, Soil Interpretations and Derived Map Products [online]. Ottawa. [Cited 07 
February 2019]. sis.agr.gc.ca/cansis/interpretations/carbon/index.html

Agriculture and Agri-Food Canada. 2019b. Holos software program In: Agricul-
ture and Agri-Food Canada, Science and innovation, Agricultural research results 
[online]. Ottawa. [Cited 07 February 2019]. http://www.agr.gc.ca/holos-ghg

Allard, V., Soussana, J.-F., Falcimagne, R., Berbigier, P., Bonnefond, J.M., Ce-
schia, E., D’hour, P., Hénault, C., Laville, P., Martin, C. & Pinarès-Patino, C. 
2007. The role of grazing management for the net biome productivity and green-
house gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture, 
Ecosystems and Environment, 121: 47-58.

Allen, D.E., Pringle, M.J., Page, K.L. & Dalal, R.C. 2010. A review of sampling 
designs for the measurement of soil organic carbon in Australian grazing lands. 
Rangeland Journal, 32: 227-246.

Allen D.E., Pringle M.J., Butler D.W., Henry B.K., Bishop T.F.A., Bray S.G., Orton 
T.G. & Dalal R.C. 2016. Effect of land-use change and management on soil C and 
N in the Brigalow Belt, Australia: I. Overview and inventory. The Rangeland 
Journal, 38: 443-452

Ammann, C., Flechard, C.R., Leifeld, J., Neftel, A. & Fuhrer, J. 2007. The carbon 
budget of newly established temperate grassland depends on management inten-
sity. Agriculture, Ecosystems and Environment, 121: 5-20. 

Andrén, O. & Kätterer, T. 1997. ICBM: the introductory carbon balance model for 
exploration of soil carbon balances. Ecological Applications, 7: 1226-1236.

Andrén, O., Kätterer, T. & Karlsson, T. 2004. ICBM regional model for estima-
tions of dynamics of agricultural soil carbon pools. Nutrient Cycling in Agroeco-
systems, 70: 231-239.

Andriulo, A., Mary, B. & Guerif, J. 1999. Modelling soil carbon dynamics with 
various cropping sequences on the rolling pampas. Agronomie, 19 : 365-377.

Arrouays, D., Saby, N., Walter, C., Lemercier, B. & Schvartz, C. 2006. Relation-
ships between particle-size distribution and organic carbon in French arable top-
soils. Soil Use and Management, 22: 48-51.

ASTM D4959-16 2016. Standard Test Method for Determination of Water Content 
of Soil by Direct Heating, ASTM International, West Conshohocken, PA, [ac-
cessed July 5, 2017] www.astm.org

Aubinet, M., Vesala, T. & Papale D. (Eds.) 2012. Eddy Covariance - A practical 
guide to measurement and data analysis. Springer, Heidelberg, Germany, 437 pp. 

Austrheim, G., Speed, J.D.M., Evju, M., Hester, A., Holand, Ø., Loe, L.E., Mar-
tinsen, V., Mobæk, R., Mulder, J., Steen, H., Thompson, D.B.A. & Mysterud, 
A. 2016. Synergies and trade-offs between ecosystem services in an alpine ecosys-
tem grazed by sheep–an experimental approach. Basic and Applied Ecology, 17: 
596-608



120

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Aynekulu, E., Vågen, T.-G., Shephard, K. & Winowiecki, L. 2011. A protocol for 
modeling, measurement and monitoring soil carbon stocks in agricultural land-
scapes. Version 1.1. World Agroforestry Centre, Nairobi. 19 pp.

Badgery, W.B., Simmons, A.T., Murphy, B.W., Rawson, A., Andersson, K.O. & 
Lonergan, V.E. 2014. The in�uence of land use and management on soil carbon 
levels for crop-pasture systems in Central New South Wales, Australia. Agricul-
ture, Ecosystems and Environment, 196: 147-157.

Bárcena, T.G., Kiær L.P., Vesterdal, L, Stefánsdóttir, H.M., Gundersen, P. & Sig-
urdsson, B.D. 2014. Soil carbon stock change following afforestation in Northern 
Europe: a meta-analysis. Global Change Biology,20: 2393-2405.

Basso, B., Gargiulo, O., Paustian, K., Robertson, G.P., Porter, C., Grace, P.R. 
& Jones, J.W. 2011. Procedures for initializing soil organic carbon pools in the 
DSSAT-CENTURY model for agricultural systems. Soil Science Society of Amer-
ica Journal, 75: 69-78.

Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European 
Journal of Soil Science, 47: 151-163.

Batjes, N.H. 2002. Carbon and nitrogen stocks in the soils of Central and Eastern 
Europe. Soil Use and Management, 18: 324-329.

Bélanger, G., Richards, J.E. & Angers, D.A. 1999. Long-term fertilization effects 
on soil carbon under permanent swards. Canadian Journal of Soil Science 79: 
99-102.

Belkov, M.V., Burakov, V.S., De Giacomo, A., Kiris, V.V., Raikov, S.N. & Tarasen-
ko N.V. 2009. Comparison of two laser-induced breakdown spectroscopy tech-
niques for total carbon measurement in soils, Spectrochimica Acta Part B: Atomic 
Spectroscopy 64, 899-904.

Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M. & Kirk, G.J.D. 2005. Car-
bon losses from all soils across England and Wales 1978-2003. Nature, 437: 245-
248.

Bellocchi, G., Rivington, M., Donatelli, M. & Matthews K. 2010. Validation of 
biophysical models: issues and methodologies. A review. Agronomy for Sustain-
able Development, 30: 109-130. 

Bellon-Maurel, V. & McBratney, A. 2011. Near-infrared (NIR) and mid-infrared 
(MIR) spectroscopic techniques for assessing the amount of carbon stock in soils 
- Critical review and research perspectives. Soil Biology and Biochemistry, 43: 
1398-1410. 

Benites, V.M., Machado, P.L.O.A., Fidalgo, E.C.C., Coelho, M.R. & Madari, B.E. 
2007. Pedotransfer functions for estimating soil bulk density from existing soil 
survey reports in Brazil. Geoderma, 139: 90-97. 

Berhongaray, G. & Alvarez, R. 2013. The IPCC tool for predicting soil organic 
carbon changes evaluated for the Pampas, Argentina. Agriculture, Ecosystems 
and Environment, 181: 241-245.

Bhogal, A., Murphy, D.V., Fortune, S., Shepherd, M.A., Hatch, D.J., Jarvis, S.C., 
Gaunt, J.L. & Goulding, K.W.T. 2000. Distribution of nitrogen pools in the soil 
pro�le of undisturbed and reseeded grasslands. Biology and Fertility of Soils, 30: 
356-362.

Bispo, A., Andersen, L., Angers, D.A., Bernoux, M., Brossard, M., Cécillon, L., Co-
mans, R.N., Harmsen, J., Jonassen, K., Lamé, F. & Lhuillery, C. 2017. Accounting 



121

References

for carbon stocks in soils and measuring GHGs emission �uxes from soils: do we have 
the necessary standards? Frontiers in Environmental Science, 5: Article 41.

Blake, G.R. & Hartge, K.H. 1986. Bulk density. In KLute, A., Gaylon, S., Camp-
bell, R. D. & Jackson, R.D. (Eds) Methods of Soil Analysis, Part 1, Physical and 
mineralogical methods. Second edition. SSSA/ASA Madison, Wisconsin, USA. pp. 
363-382. 

Blanco-Canqui, H., Stone, L.R., Schlegel, A.J., Lyon, D.J., Vigil, M.F., Mikha, 
M.M., Stahlman, P.W. & Rice, C.W. 2009. No-till induced increase in organic 
carbon reduces maximum bulk density of soils. Soil Science Society of America 
Journal, 73: 1871-1879.

Boddey, R.M., Jantalia, C.P., ConceiC¸ ao, P.C., Zanatta, J.A., Bayer, C., Miel-
niczuk, J., Dieckow, J., Dos Santos, H.P., Denardin, J.E., Aita, C., Giacomini, 
S.J., Alves, B.J.R. & Urquiaga, S. 2010. Carbon accumulation at depth in Ferra-
sols under zero-till subtropical agriculture. Global Change Biology, 16: 784-795.

Boettinger, J.L. 2010. Environmental Covariates for Digital Soil Mapping in the 
Western USA. In: J.L. Boettinger et al. (eds.), Digital Soil Mapping: Bridging 
Research, Environmental Application, and Operation, Progress in Soil Science 2, 
ed. Springer, 17-27.

Bolin, B. & Sukumar R. 2000. Global perspective. In: Watson, R.T., Noble, I.R., 
Bolin, B., Ravindranath, N.H., Verardo, D.J. & Dokken, D.J. (Eds.) Land use, 
land use change, and forestry. Cambridge University Press, Cambridge, UK.

Bolinder, M.A., VandenBygaart, A.J, Gregorich, E.G., Angers, D.A. & Janzen, 
H.H. 2006. Modelling soil organic carbon stock change for estimating whole-
farm greenhouse gas emissions. Canadian Journal of Soil Science, 86: 419-429.

Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A. & Van den Bygaart, 
A.J. 2007. An approach for estimating net primary productivity and annual car-
bon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosys-
tems and Environment, 118: 29-42.

Brander, M. 2016. Conceptualising attributional LCA is necessary for resolving 
methodological issues such as the appropriate form of land use baseline. Interna-
tional Journal of Life Cycle Assessment, 21: 1816–1821. 

Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R., Dorich, 
C.D., Doro, L., Ehrhardt, F. & Farina, R. 2017. Review and analysis of strengths 
and weaknesses of agro-ecosystem models for simulating C and N �uxes. Science 
of the Total Environment, 598: 445-470.

Brus, D.J. 2014. Statistical sampling approaches for soil monitoring. European Jour-
nal of Soil Science, 65: 779-791.

Brus, D.J. & De Gruijter, J.J. 1997. Random sampling or geostatistical modelling? 
Choosing between design-based and model-based sampling strategies for soil 
(with discussion). Geoderma, 80: 1-44.

Burgess, T.M. & Webster, R. 1980. Optimal interpolation and isarithmic mapping 
of soil properties: 1. The semivariogram and punctual kriging. Journal of Soil Sci-
ence, 31: 315-331.

Burrough, P.A. & McDonnell, R.A. 1998. Principles of GIS, Oxford University Press.
Campbell, D., Kinniburgh, D. & Beckett, P. 1989. The soil solution chemistry of 

some Oxfordshire soils: temporal and spatial variability. Journal of Soil Science, 
40: 321–339.



122

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Campbell, E.E. & Paustian, K. 2015. Current developments in soil organic matter 
modeling and the expansion of model applications: a review. Environmental Re-
search Letters, 10: 123004.

Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B.G., Dupraz, C., 
Durand, C., Kouakoua, E. & Chenu, C. 2017. Increased soil organic carbon 
stocks under agroforestry: a survey of six different sites in France. Agriculture, 
Ecosystems and Environment, 236: 243-255.

Carolan, R. & Fornara, D.A. 2016. Soil carbon cycling and storage along a chro-
nosequence of re-seeded grasslands: do soil carbon stocks increase with grassland 
age? Agriculture, Ecosystems and Environment, 218: 126-132.

Carter, M.R. & Gregorich, E.G. 2007. Soil sampling and methods of analysis, Sec-
ond Edition, CRC Press.

Castrignanò, A. & Lopez R. 2004. GIS e Geostatistica, una combinazione vincente 
per l’analisi spaziale. In: “L’evoluzione della Geogra�a. Dalla carta geogra�ca al 
digitale in nove passi descritti dai maggiori esperti del settore”. Ed. MondoGIS, 
Roma, 125-147.

Causarano, H.J., Shaw, J.N., Franzluebbers, A.J., Reeves, D.W., Raper, R.L., 
Balkcom, K.S., Nor�eet, M.L. & Izaurralde, R.C. 2007. Simulating �eld-scale 
soil organic carbon dynamics using EPIC. Soil Science Society of America Jour-
nal, 71: 1174-1185.

Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R. & Cerri, 
C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, 
Brazil. Soil Science Society of America Journal, 67: 1879-1887.

Cerri, C.E.P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., 
Fallon, P., Powlson, D.S., Batjes, N., Milne, E.& Cerri, C.C. 2007. Simulating 
SOC changes in 11 land use change chronosequences from the Brazilian Amazon 
with RothC and Century models. Agriculture, Ecosystems and Environment, 
122: 46-57.

Chen S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen D., Tang, Z., et al. 2018. 
Plant diversity enhances productivity and soil carbon storage. Proceedings of 
the National Academy of Sciences, 115 (16): 4027-4032.

Chevallier, T., Cournac, L., Bernoux, M., Cardinael, R., Cozzi, T., Girardin, C. 
& Chenu, C. 2017. Soil inorganic carbon and climate change in drylands. An 
emerging issue? In: Proceedings of the Global Symposium on Soil Organic Car-
bon. FAO, Rome, Italy. pp. 482-485.

Chiles, J.P. & Del�ner, P. 1999. Geostatistics—Modelling spatial uncertainty. John 
Wiley & Sons, New York, 695 pp.

Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby, N.P.A., Bernoux, 
M. & Barthès, B.G. 2016. National calibration of soil organic carbon concentra-
tion using diffuse infrared re�ectance spectroscopy. Geoderma, 276: 41-52.

Coleman, K., Jenkinson, D.S., Crocker, G.J., Grace, P.R., Klír, J., Körschens, M., 
Poulton, P.R. & Richter, D.D. 1997. Simulating trends in soil organic carbon in 
long-term experiments using RothC-26.3. Geoderma, 81: 29-44.

Conant, R.T., Paustian, K. & Elliott, E.T. 2001 Grassland management and con-
version into grassland: effects on soil carbon. Ecological Applications, 11: 343-355.

Conant, R.T. & Paustian, K. 2002. Potential soil carbon sequestration in overgrazed 
grassland ecosystems. Global Biogeochemical Cycles, 16: 1143.



123

References

Conant, R.T. 2010. Challenges and opportunities for carbon sequestration in grass-
land systems: A technical report on grassland management and climate change 
mitigation (Plant-Production-and-Protection-Division, Ed.). FAO, Rome. 

Conant, R. T., Ogle, S. M., Paul, E. A. & Paustian, K. 2011. Measuring and moni-
toring soil organic carbon stocks in agricultural lands for climate mitigation. 
Frontiers in Ecology and the Environment, 9: 169-173.

Conrad, K.A., Dalal, R.C., Dalzell, S.A., Allen, D.E. & Menzies, N.W. 2017. The 
sequestration and turnover of soil organic carbon in subtropical leucaena-grass 
pastures. Agriculture, Ecosystems and Environment, 248:38-47.

Cresswell, H.P. & Hamilton, G.J. 2002. Bulk density and pore space relations. In: 
McKenzie, N., Coughlan, K. & Cresswell , H. (Eds.) Soil physical measurement 
and interpretation for land evaluation. CSIRO Publishing: Melbourne. pp. 35-58.

Creutin, J. & Obled, C. 1982. Objective analysis and mapping techniques for rain-
fall �elds. An objective comparison. Water Resources Research, 18: 413-431.

Curran, P.J.& Atkinson, P.M. 1998. Geostatistics and remote sensing. Progress in 
Physical Geography, 22: 61–78.

da Silva, R.M., Milori, D.M.B.P., Ferreira, E.C., Ferreira, E.J., Krug, F.J. & Mar-
tin-Neto L. 2008. Total carbon measurement in whole tropical soil sample, Spec-
trochimica Acta Part B: Atomic Spectroscopy, 63: 1221-1224. 

Dalal, R.C. & Mayer, R.J. 1986. Long term trends in fertility of soils under continu-
ous cultivation and cereal cropping in southern Queensland. II. Total organic 
carbon and its rate of loss from the soil pro�le. Soil Research, 24: 281-292.

Dasog, G.S., Acton, D.F., Mermut, A.R. & Jong, E.D. 1988. Shrink-swell poten-
tial and cracking in clay soils of Saskatchewan. Canadian Journal of Soil Science, 
68: 251-260.

Davidson, E.A. & Janssens, I.A. 2006 Temperature sensitivity of soil carbon decom-
position and feedbacks to climate change. Nature, 440: 165-73.

Davis, M.R., Alves, B.J.R., Karlen, D.L., Kline, K.L., Galdos, M. & Abulebdeh, 
D. 2018. Review of soil organic carbon measurement protocols: A US and Brazil 
comparison and recommendation. Sustainability, 10: 53

Davison, B., Brunner, A., Ammann, C., Spirig, C., Jocher, M. & Neftel, A. 2008. 
Cut-induced VOC emissions from agricultural grasslands. Plant Biology, 10: 76-85.

Debreczeni, K. & Körschens, M. 2003. Long-term �eld experiments of the world. 
Archives of Agronomy and Soil Science, 49: 465-483.

de Gruijter, J.J., Brus, D., Bierkens, M. & Knotters, M. 2006. Sampling for natural 
resource monitoring. Springer: Berlin.

de Gruijter, J.J., McBratney, A.B., Minasny, B., Wheeler, I., Malone, B.P., Stock-
mann, U. 2016. Farm-scale soil carbon auditing. Geoderma, 265: 120-130.

De Pury, D.G.G. & Farquhar, G.D. 1997. Simple scaling of photosynthesis from 
leaves to canopies without the errors of big-leaf models. Plant, Cell and Environ-
ment, 20 : 537-557. 

De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J. & Muys, B. 2005. There 
are predictive quality of pedotransfer functions for estimating bulk density of for-
est soils. Soil Science Society of America Journal, 69: 500-510.

Del Grosso, S.J., White, J.W., Wilson, G., Vandenberg, B., Karlen, D.L., Follett, R.F., 
Johnson, J.M., et al. 2014. Introducing the GRACEnet/REAP data contribution, 
discovery, and retrieval system. Journal of Environmental Quality, 42: 1274-1280.



124

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Deinum, B. 1985. Root mass of grass swards in different grazing systems. Nether-
lands Journal of Agricultural Science, 33: 377-384.

Derner, J.D. & Schuman, G.E. 2007. Carbon sequestration and rangelands: A syn-
thesis of land management and precipitation effects. Journal of Soil and Water 
Conservation, 62: 77-85.

Di Bella, C.E., Rodriguez, A.M., Jacobo, E., Golluscio, R.A. & Taboada, M.A. 
2015. Impact of cattle grazing on temperate coastal salt marsh soils. Soil Use and 
Management, 31: 299-307.

Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Cheval-
lier, T., et al. 2017. Increasing soil carbon storage: mechanisms, effects of agricul-
tural practices and proxies. A review. Agronomy for Sustainable Development, 
37: 14.

Donovan, P. 2013. Measuring soil carbon change: A �exible, practical, local method 
[online]. [07 January 2019] https://soilcarboncoalition.org/�les/MeasuringSoil-
CarbonChange.pdf

Dormaar, J., Johnston, A. & Smoliak, S. 1977. Seasonal variation in chemical 
characteristics of soil organic matter of grazed and ungrazed mixed prairie and 
fescue grassland. Journal of Range Management, 30: 195-198.

Dungait, J.A.J., Hopkins, D.W., Gregory, A.S. & Whitmore, A.P. 2012. Soil or-
ganic matter turnover is governed by accessibility not recalcitrance. Global 
Change Biology, 18: 1781-1796.

Easter, M., Paustian, K., Killian, K., Williams, S., Feng, T., Al-Adamat, R. & Cer-
ri, C.E.P. 2007. The GEFSOC soil carbon modelling system: a tool for conducting 
regional-scale soil carbon inventories and assessing the impacts of land use change 
on soil carbon. Agriculture, Ecosystems and Environment, 122: 13-25. 

Eisler, M.C. & Lee, M.R.F. 2014. Agriculture: Steps to sustainable livestock. Nature 
507: 32-34.

Ellert, B.H. & Bettany, J.R. 1995. Calculation of organic matter and nutrients 
stored in soils under contrasting management regimes. Canadian Journal of Soil 
Science, 75: 529-538.

Ellert, B.H. & Rock, L. 2008. Stable Isotopes in Soil and Environmental Research. 
In MR Carter & EG Gregorich (eds), Soil Sampling and Methods of Analysis, 
second edition. Taylor and Francis, pp. 693-711.

Ellert, B.H. 2001. Measuring and comparing soil carbon storage. In: Lal et al. (eds) 
Assessment methods for soil carbon. Lewis Publ. pp. 131-145

Ehrhardt, F., Ehrhardt, F., Soussana, J.F., Bellocchi, G., Grace, P., McAuliffe, R., 
Recous, S., Sándor, R., Smith, P., Snow, V., de Antoni Migliorati, M., Basso, B., 
Bhatia, A., Brilli, L., Doltra, J., Dorich, C.D., Doro, L., Fitton, N., Giacomini, 
S.J., Grant, B., Harrison, M.T., Jones, S.K., Kirschbaum, M.U.F., Klumpp, K., 
Laville, P., Léonard, J., Liebig, M., Lieffering, M., Martin, R., Massad, R.S., 
Meier, E., Merbold, L., Moore, A.D., Myrgiotis, V., Newton, P., Pattey, E., 
Rolinski, S., Sharp, J., Smith, W.N., Wu, L. & Zhang, Q. 2018. Assessing uncer-
tainties in crop and pasture ensemble model simulations of productivity and N2O 
emissions. Global Change Biology 24(2): e603-e616.

Essington, M.E. 2004. Soil and water chemistry: an integrative approach. CRC 
Press, Ney York. 534 pp.



125

References

European Commission. 2013. Product Environmental Footprint (PEF) Guide. An-
nex II to the Recommendations of the Commission on the use of common meth-
ods to measure and communicate the life cycle environmental performance of 
products and organizations. European Commission Joint Research Centre. Lux-
emburg, Publications Of�ce of the European Union.

European Commission. 2006. Thematic Strategy for Soil Protection. Communica-
tion from the Commission to the Council, the European Parliament, the Eco-
nomic and Social Committee and the Committee of the Regions. COM(2006)231 
�nal. 231 pp.

EU JRC. 2010. ILCD Handbook - General guide for life cycle assessment - De-
tailed guidance. Publication Of�ce of the European Union, Luxembourg.

Falloon, P., Smith, P., Coleman, K. & Marshall, S. 1998. Estimating the size of the 
inert organic matter pool from total soil organic carbon content for use in the Ro-
thamsted carbon model. Soil Biology and Biochemistry 30: 1207-1211.

Falloon, P. & Smith, P. 2009. Modelling soil carbon dynamics. In: Kutsch, W.L., 
Bahn, M. & Heinemeyer, A. (Eds.) Soil carbon dynamics: an integrated method-
ology. Cambridge University Press.

FAO. 2002. World Agriculture: Towards 2015/2030. FAO, Rome, Italy.
FAO. 2006. Guidelines for soil description. Fourth edition. FAO, Rome, Italy. 
FAO. 2017a. Proceedings of the Global Symposium on Soil Organic Carbon. FAO, 

Rome, Italy.
FAO. 2017b. Soil Organic Carbon: the hidden potential. FAO, Rome, Italy.
FAO. 2019a. Soil Classi�cation - World Reference Base. In: FAO Soils Portal [on-

line]. Rome. [Cited 07 January 2019]. www.fao.org/soils-portal/soil-survey/soil-
classi�cation/en/

FAO. 2019b. Harmonized World Soil Database. In: FAO, FAO Soils Portal [on-
line]. Rome. [Cited 07 January 2019] www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/harmonized-world-soil-database-v12/en/

FAO. 2019c. Global Soil Organic Carbon Map (GSOC). In: FAO Global Soil Part-
nership [online]. Rome. [Cited 07 January 2019] www.fao.org/global-soil-part-
nership/pillars-action/4-information-and-data/global-soil-organic-carbon-gsoc-
map/en/

FAO. 2019d. CLIMWAT. In: FAO Land & Water [online]. Rome. [Cited 07 Janu-
ary 2019] http://www.fao.org/land-water/databases-and-software/climwat-for-
cropwat/en/

Farquhar G.D., von Caemmerer S. & Berry J.A. 1980. A biochemical model of 
photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.

Fisher, M.J., Tao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J. & 
Vera, R.R. 1994. Carbon storage by introduced deep-rooted grasses in the South 
American savannas. Nature 371: 236-238.

Follett, R.F., Varvel, G.E., Kimble, J.M. & Vogel, K.P. 2009. No-till corn after 
bromegrass: effect on soil carbon and soil aggregates. Agronomy Journal, 101: 
261-268.

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. & Rumpel, C. 2007. Stabil-
ity of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 
450: 277-281.



126

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Fornara, D.A. & Tilman, D. 2008. Plant functional composition in�uences rates of 
soil carbon and nitrogen accumulation. Journal of Ecology, 96: 314-322. 

Fornara, D.A., Wasson, E.-A., Christie, P. & Watson, C.J. 2016. Long-term nutri-
ent fertilization and the carbon balance of permanent grassland: any evidence for 
sustainable intensi�cation? Biogeosciences, 13: 4975-4984.

Fornara, D.A., Olave, R., Burgess, P., Delmer, A., Upson, M., McAdam, J.H. 
2017. Land use change and soil carbon pools: evidence from a long-term silvo-
pastoral experiment. Agroforestry Systems doi: 10.1007/s10457-017-0124-3

Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D. & Knapp, A. 
2003. The importance of land-use legacies to ecology and conservation. Biosci-
ence, 53: 77-88.

Frank, A.B., Tanaka, D.L., Hofmann, L. & Follett R.F. 1995. Soil carbon and ni-
trogen of northern great plains grasslands as in�uenced by long-term grazing. 
Journal of Range Management 48, 470-474.

Franko, U., Crocker, G.J., Grace, P.R., Klir, J., Körschens, M., Poulton, P.R. & 
Richter, D.D. 1997. Simulating trends in soil organic carbon in long-term experi-
ments using the CANDY model. Geoderma, 81: 109-120.

Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Fal-
cucci, A. & Tempio, G. 2013. Tackling climate change through livestock - A 
global assessment of emissions and mitigation opportunities. FAO, Rome. 115 pp.

Gifford, R.M. & Roderick, M.L. 2003. Soil carbon stocks and bulk density: spatial 
or cumulative mass coordinates as a basis of expression? Global Change Biology, 
9: 1507-1514.

Gobrecht, A., Roger, J.-M. & Bellon-Maurel, V. 2014. Major issues of diffuse re-
�ectance NIR spectroscopy in the speci�c context of soil carbon content estima-
tion: A review. Advances in Agronomy, 123: 145-175.

Goglio, P., Smith, W.N., Grant, B.B., Desjardins, R.L., McConkey, B.G., Camp-
bell, C.A. & Nemecek, T. 2015. Accounting for soil carbon changes in agricul-
tural life cycle assessment (LCA): A review. Journal of Cleaner Production, 104: 
23-39.

Goidts, E., van Wesemael, B. & Cruci�x, M. 2009. Magnitude and sources of un-
certainties in soil organic carbon (SOC) stock assessments at various scales. Euro-
pean Journal of Soil Science, 60: 723-739.

Goldin, A. 1987. Reassessing the use of loss-on-ignition for estimating organic mat-
ter content in noncalcareous soils. Communications in Soil Science and Plant 
Analysis, 18: 1111-1116.

Golluscio, R.A., Austin, A.T., García Martínez, G.C., Gonzalez-Polo, M., Sala, 
O.E. & Jackson, R.B. 2009. Sheep grazing decreases organic carbon and nitrogen 
pools in the Patagonian steppe: combination of direct and indirect effects. Ecosys-
tems 12: 686-697.

Goovaerts, P. 1997. Geostatistics for Natural Resource Evaluation. Oxford Univer-
sity Press, New York.

Goovaerts, P. 1998. Geostatistical tools for characterizing the spatial variability 
of microbiological and physico-chemical soil properties. Biology and Fertility of 
Soils, 27: 315-334.

Goovaerts, P. 1999. Geostatistics in soil science: state-of-the-art and perspectives. 
Geoderma, 89: 1–45.



127

References

Grace, P.R., Antle, J., Aggarwal, P.K., Andren, O., Ogle, S., Conant, R., Long-
mire, J., Ashkalov, K., Baethgen W.E., Valdivia, R., Paustian, K. & Davison, J. 
2004. Assessment of the costs and enhanced global potential of carbon sequestra-
tion in soil. International Energy Agency, IEA/CON/03/95. 130 pp.

Grace, P.R., Ladd, J.N., Robertson, G.P. & Gage, S.H. 2006. SOCRATES—a 
simple model for predicting long-term changes in soil organic carbon in terrestrial 
ecosystems. Soil Biology and Biochemistry, 38: 1172-1176. 

Gregorich, E.G., Monreal, C.M. & Ellert, B.H. 1995. Turnover of soil organic mat-
ter and storage of corn residue carbon estimated from natural 13C abundance. 
Canadian Journal of Soil Science, 75:161-167.

Grigal, D.F. & Berguson, W.E. 1998. Soil carbon changes associated with short-
rotation systems. Biomass and Bioenergy, 14: 371-377.

Grossman, R.B. & Reinsch, T.G. 2002. Bulk density and linear extensibility. In: 
Dane, J.H. & Topp, G.C. (Eds.) Methods of Soil Analysis, Part 4, Physical Meth-
ods. Soil Science Society of America, Madison, USA. pp. 201-228.

Grunewald, G., Kaiser, K., Jahn, R. & Guggenberger, G. 2006. Organic matter 
stabilization in young calcareous soils as revealed by density fractionation and 
analysis of lignin derived constituents. Organic Geochemistry, 37: 1573-1589.

Gu, B.H., Schmitt, J., Chen, Z., Liang, L. & McCarthy, J.F. 1994. Adsorption and 
desorption of natural organic matter on iron-oxide-mechanisms and models. En-
vironmental Science and Technology, 28: 38-46.

Guest, G., Kröbel, R., Grant, B., Smith, W., Sansoulet, J., Pattey, E., Desjardins, 
R., Jégo, G., Tremblay, N. & Tremblay, G. 2017. Model comparison of soil pro-
cesses in eastern Canada using DayCent, DNDC and STICS. Nutrient Cycling 
in Agroecosystems 109(3): 211–232.

Guo, L.B. & Gifford, R.M. 2002. Soil carbon stocks and land use change: a meta-
analysis. Global Change Biology, 8: 345-360.

Guo, L., Zhao, C., Zhang, H., Chen, Y., Linderman M., Zhang, Q. & Liu, Y. 2017. 
Comparisons of spatial and non-spatial models for predicting soil carbon content 
based on visible and near-infrared spectral technology. Geoderma, 285: 280-292.

Hansen, S., Abrahamsen, P., Petersen, C.T. & Styczen, M. 2012. Daisy: Model use, 
calibration, and validation. Transactions of the American Society of Agricultural 
and Biological Engineers, 55: 1315-1333.

Heile, S.G., Nair, V.D. & Ramachandran Nair, P.K. 2010. Contribution of trees to 
carbon storage in soils of silvopastoral systems in Florida, USA. Global Change 
Biology, 16: 427-438.

Hengl, T. 2009. A Practical Guide to Geostatistical Mapping, 2nd ed. University of 
Amsterdam, Amsterdam.

Hengl, T., Heuvelink, G.B.M., & Rossiter, D.G. 2007. About regression kriging: 
from equations to case studies. Computers & Geosciences, 33 : 1301–1315.

Hénin, S. & Dupuis, M. 1945. Essai de bilan de la matière organique des sols. An-
nales Agronomie, 15: 17-29.

Henry, M., Valentini, R. & Bernoux, M. 2009. Soil carbon stocks in ecoregions of 
Africa, Biogeosciences Discussions, 6:797-823.

Henry B., Butler D., Wiedemann S. 2015. Quantifying carbon sequestration on 
land managed for sheep grazing in Australia in life cycle assessment studies. 
Rangelands Journal, 37: 379-388.



128

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Heuvelink, G.B.M. & Webster, R. 2001. Modelling soil variation: past, present and 
future. Geoderma, 100: 269–301.

Hobley, E. & Willgoose, G. 2010. Measuring soil organic carbon stocks-issues and 
considerations. In: Proceedings of the 19th World Congress of Soil Science: Soil 
solutions for a changing world. Brisbane, Australia. IUSS, Vienna, Austria. pp. 
62-65.

Hoogmoed, M., Cunningham, S.C., Thomson, J.R., Baker, P.J., Beringer, J. & 
Cavagnaro, T.R. 2012. Does afforestation of pastures increase sequestration of 
soil carbon in Mediterranean climates? Agriculture, Ecosystems and Environ-
ment, 159: 176-183.

Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groota, J.C.J. & Tittonel, P.A. 
2015. Estimating soil organic carbon through loss on ignition: effects of ignition 
conditions and structural water loss. European Journal of Soil Science, 66: 320-328.

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Law-
ton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Sym-
stad, A.J., Vandermeer, J. & Wardle, D.A. 2005. Effects of biodiversity on eco-
system functioning: a consensus of current knowledge. Ecological Monographs, 
75: 3-35.

Hu, E., Babcock, E.L., Bialkowski, S.E., Jones, S.B. & Tuller, M. 2014. Methods 
and techniques for measuring gas emissions from agricultural and animal feeding 
operations. Critical Reviews in Analytical Chemistry, 44, 200-219.

Hüttl, R., Prechtel, A. & Bens, O. 2008. Humusversorgung von Böden in Deutsch-
land. Berlin. 203 pp. [accessed 07 January 2019] www.umweltbundesamt.de/
publikationen/humusversorgung-von-boeden-in-deutschland.

IPCC. 2003. Good practice guidance for land use, land-use change and forestry. 
Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buen-
dia, L., Miwa, K., Ngara, T., Tanabe, K. & Wagner, F. (Eds.) Intergovernmental 
Panel on Climate Change. IGES, Hayama, Japan. 593 pp.

IPCC. 2006. IPCC guidelines for national greenhouse gas inventories. Prepared by 
the National Greenhouse Gas Inventories Programme. Eggleston, H.S., Buen-
dia, L., Miwa, K., Ngara, T. & Tanabe, K. (Eds.). IGES, Japan. 

IPCC. 2014. Climate Change 2014: Synthesis, Report Contribution of Working 
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Geneva, IPCC. 104 pp.

Isbell, F., Adler, P.R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., Le-
tourneau, D.K., Liebman, M., Polley, H.W., Quijas, S. & Scherer-Lorenzen, 
M. 2017. Bene�ts of increasing plant diversity in sustainable agroecosystems. 
Journal of Ecology, 105: 871-879.

ISO. 1993. ISO 11465: 1993 Soil quality - Determination of dry matter and water 
content on a mass basis - Gravimetric method. International Organization for 
Standardization (ISO). Geneva.

ISO. 2006. ISO: 14044:2006 Environmental management - Life cycle assessment - 
Requirements and guidelines. International Standardization Organization for 
Standardization (ISO). Geneva.

ISO. ISO 14067:2018 Greenhouse gases - Carbon footprint of products - Require-
ments and Guidelines for quanti�cation. International Standardization Organi-
zation for Standardization (ISO). Geneva.



129

References

ISO. ISO 14064-1:2018 Greenhouse gases - Part 1: Speci�cation with guidance at 
the organization level for quanti�cation and reporting of greenhouse gas emis-
sions and removals. International Standardization Organization for Standard-
ization (ISO). Geneva.

ISO/IEC. 2017. ISO/IEC 17025: 2017 - General requirements for the competence 
of testing and calibration laboratories. International Standardization Organiza-
tion for Standardization (ISO). Geneva.

ISRIC. 2019a. Solid Grids. In: ISRIC World Soil Information [online]. Wageningen 
[Cited 07 January 2019] https://www.soilgrids.org/#!/?layer=TAXNWRB_250
m&vector=1

ISRIC. 2019b. The World Soil Information Service (WoSIS). In: ISRIC World Soil 
Information, WoSIS Soil Pro�le Database [online]. Wageningen. [Cited 07 Janu-
ary 2019] https://www.isric.org/explore/wosis

ISRIC. 2019c. Accessing WoSIS-derived datasets. In: ISRIC World Soil Informa-
tion, WoSIS Soil Pro�le Database [online]. Wageningen. [Cited 07 January 2019] 
https://www.isric.org/explore/wosis/accessing-wosis-derived-datasets

IUSS. 2019. Digital Soil Mapping. In: International Union of Soil Sciences (IUSS) 
[online]. Aarhus. [Cited 07 January 2019] www.digitalsoilmapping.org

Ive, J. & Ive, R. 2007. Achieving production and environmental bene�ts in a chal-
lenging landscape. In: Garden, D., Dove, H. & Bolger, T. (Eds.) Proceedings of 
the 22nd Annual Conference of the Grassland Society of NSW. Queanbeyan, 
NSW. pp. 26-33.

Jansson, C., Wullschleger, S., Kalluri, U. & Tuskan, G. 2010. Phytosequestration: 
Carbon biosequestration by plants and the prospects of genetic engineering. Bio-
science, 60: 685-696.

Jantalia, J.P., Resck, D.V.S., Alves, B.J.R., Zotarelli, L., Urquiaga, S. & Boddey, 
R.M. 2007. Tillage effect on C stocks of a clayey Oxisol under a soybean-based 
crop rotation in the Brazilian Cerrado region. Soil and Tillage Research, 95: 97-
109.

Jenkinson, D.S., Andrew, S.P.S., Lynch, J.M., Goss, M.J. & Tinker, P.B. 1990. The 
turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the 
Royal Society of London B: Biological Sciences, 329: 361-368. 

Jenkinson, D.S., Meredith, J., Kinyamario, J.I., Warren, G.P., Wong, M.T.F., 
Harkness, D.D., Bol, R. & Coleman, K. 1999. Estimating net primary produc-
tion from measurements made on soil organic matter. Ecology, 80: 2762-2773.

Jiang, Q., Li, Q., Wang, X., Wu, Y., Yang, X. & Liu F. 2017. Estimation of soil or-
ganic carbon and total nitrogen in different soil layers using VNIR spectroscopy: 
Effects of spiking on model applicability. Geoderma, 293: 54-63.

Jobbágy, E.G. & Jackson, R. 2000. The vertical distribution of soil organic carbon 
and its relation to climate and vegetation. Ecological Applications, 10: 423-436. 

Johnson, I.R., Chapman D.F., Snow V.O., Eckard R.J., Parsons A.J., Lambert 
M.G. & Cullen B.R. 2008. DairyMod and EcoMod: biophysical pasture-simula-
tion models for Australia and New Zealand. Australian Journal of Experimental 
Agriculture, 48: 621-631.

Jones, M. & Donnelly, A. 2004. Carbon sequestration in temperate grassland eco-
systems and the in�uence of management, climate and elevated CO2. New Phy-
tologist, 164: 423-439.



130

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, 
L.A., & Ritchie, J.T. 2003. The DSSAT cropping system model. European Jour-
nal of Agronomy 18, 235-265.

Juston, J., Andrén, O., Kätterer, T. & Jansson, P.E. 2010. Uncertainty analyses for 
calibrating a soil carbon balance model to agricultural �eld trial data in Sweden 
and Kenya. Ecological Modelling, 221: 1880-1888.

Kaiser, K. & Guggenberger, G. 2000. The role of DOM sorption to mineral surfaces 
in the preservation of organic matter in soils. Organic Geochemistry, 31: 711-725.

Kamoni, P.T., Gicheru P.T., Wokabi S.M., Easter M., Milne E., Coleman K., Falloon 
P. & Paustian K. 2007. Predicted soil organic carbon stocks and changes in Kenya 
between 1990 and 2030. Agriculture, Ecosystems and Environment, 122: 105-113.

Kätterer, T., Bolinder, M., Berglund, K. & Kirchmann, H. 2012. Strategies for 
carbon sequestration in agricultural soils in northern Europe. Acta Agriculturae 
Scandinavica, Section A–Animal Science, 62: 181-198.

Kelleher, B.P. & Simpson, A.J. 2006. Humic Substances in Soils: Are They Really 
Chemically Distinct? Environmental Science and Technology, 40: 4605-4611.

Kirkby, C.A., Richardson, A.E., Wade, L.J., Batten, G.D., Blanchard, C. & 
Kirkegaard J.A. 2013 Carbon-nutrient stoichiometry to increase soil carbon se-
questration. Soil Biology and Biochemistry, 60: 77–86.

Klesta, E.J. & Bartz, J.K. 1996. Quality Assurance and Quality Control. In. Sparks, 
D.L. et al. (Eds) Methods of Soil Analysis, Part 3, Chemical Methods. SSSA/ASA 
Madison, Wisconsin, USA, pp. 19-48.

Klumpp, K., Tallec, T., Guix, N. & Soussana, J.-F. 2011. Long-term impacts of 
agricultural practices and climatic variability on carbon storage in a permanent 
pasture. Global Change Biology, 17: 3534-3545.

Klimeš, L. & Klimešová, J. 2002 The effects of mowing and fertilization on carbohy-
drate reserves and regrowth of grasses: do they promote plant coexistence in species-
rich meadows? Ecology and Evolutionary Biology of Clonal Plants, 15 (4-6): 363–382.

Knadel, M., Gislum, R., Hermansen, C., Peng, Y., Moldrup, P., de Jonge, L.W. 
& Greve, M.H. 2017. Comparing predictive ability of laser-induced breakdown 
spectroscopy to visible near-infrared spectroscopy for soil property determination. 
Biosystems Engineering, 156: 157-172.

Knops, J.M.H. & Bradley, K.L. 2009. Soil carbon and nitrogen accumulation and 
vertical distribution across a 74-year chronosequence. Soil Science Society of 
America Journal, 73: 2096-2104.

Koellner, T., de Baan, L, Beck, T, Brandão, M., Civit, B., Goedkoop, M., Margni, 
M., Milà i Canals, Ll., Müller-Wenk, R., Weidema, B. & Wittstock, B. 2012. 
Principles for life cycle inventories of land use on a global scale. The International 
Journal of Life Cycle Assessment, 18: 1-13.

Koellner, T., de Baan, L., Beck, T., Brandão, M., Civit, B., Margni, M., Milà i Ca-
nals, L., Saad, R., & Maia de Souza, D. 2013 UNEP-SETAC guideline on global 
land use impact assessment on biodiversity and ecosystem services in LCA. The 
International Journal of Life Cycle Assessment, 18: 1188-1202.

Kramberger, B., Podvršnik, M., Gselman, A., Šuštar, V., Kristl, J., Muršec, M., 
Lešnik, M. & Škorjanc, D. 2015. The effects of cutting frequencies at equal fer-
tiliser rates on bio-diverse permanent grassland: Soil organic C and apparent N 
budget. Agriculture, Ecosystems and Environment, 212: 13-20.



131

References

Kravchenko, A. N. & Robertson, G.P. 2011. Whole-pro�le soil carbon stocks: The 
danger of assuming too much from analyses of too little. Soil Science Society of 
America Journal, 75: 235-240.

Kröbel, R., Bolinder. M.A., Janzen, H.H., Little, S.M., Vandenbygaart, A.J. & 
Kätterer T. 2016. Canadian farm-level soil carbon change assessment by merging 
the greenhouse gas model Holos with the Introductory Carbon Balance Model 
(ICBM). Agricultural Systems, 143: 76-85.

Kuzyakov, Y., Friedel, J.K. & Stahr, K. 2000. Review of mechanisms and 
quanti�cation of priming effects. Soil Biology & Biochemistry, 32: 1485–1498.

Kwon, H. & Grunwald, S. 2015. Inverse modeling of CO2 evolved during labo-
ratory soil incubation to link modeled pools in CENTURY with measured soil 
properties. Soil Science 180, 28-32.

Lagacherie, P. & McBratney, A.B. 2006. Spatial soil information systems and spa-
tial soil inference systems: perspectives for digital soil mapping. In: Lagacherie, 
P., McBratney, A.B. & Voltz M. (Eds.) Developments in soil science. Elsevier. pp. 
3-22.

Laganière, J., Angers, D.A. & Paré, D. 2010. Carbon accumulation in agricultural 
soils after afforestation: a meta-analysis. Global Change Biology, 16: 439-453.

Lam, N.S. & Quattrochi, D.A. 1992. On the issues of scale, resolution and fractal 
analysis in the mapping sciences. Professional Geographer, 44: 88-98.

Laslett, G.M., McBratney, A.B., Pahl, P.J. & Hutchison, M.F. 1987. Comparison of 
several spatial methods for soil pH. European Journal of Soil Science, 38, 325-341.

Lehmann, J. & Kleber, M. 2016. The contentious nature of soil organic matter. Na-
ture, 528: 60-68.

Leifeld, J., Ammann, C., Neftel, A. & Fuhrer, J. 2011. A comparison of repeated 
soil inventory and carbon �ux budget to detect soil carbon stock changes after 
conversion from cropland to grasslands. Global Change Biology, 17: 3366-3375.

Leifeld, J., Meyer, S., Budge, K., Sebastia, M.T., Zimmermann, M. & Fuhrer, J. 
2015. Turnover of grassland roots in mountain ecosystems revealed by their radio-
carbon signature: role of temperature and management. PloS ONE 10, e0119184.

Leinweber, P., Schulten, HR. & Körschens, M. 1994. Seasonal variations of soil or-
ganic matter in a long-term agricultural experiment. Plant and Soil, 160: 225-235.

Li, C. 1996. The DNDC model. In: Evaluation of soil organic matter models. Sprin-
ger Berlin Heidelberg. pp. 263-267.

Li, C., Salas, W., Zhang, R., Krauter, C., Rotz, A. & Mitloehner, F. 2012. Manure-
DNDC: a biogeochemical process model for quantifying greenhouse gas and am-
monia emissions from livestock manure systems. Nutrient Cycling in Agroecosys-
tems, 93: 163–200.

Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen, R. 2005. Carbon and decomposi-
tion model Yasso for forest soils. Ecological Modelling, 189: 168-182. 

Little, S.M., Benchaar, C., Janzen, H.H., Kröbel, R., McGeough, E.J. & Beau-
chemin, K.A. 2017. Demonstrating the effect of forage source on the carbon 
footprint of a Canadian dairy farm using whole-systems analysis and the Holos 
model: Alfalfa silage vs. Corn silage. Climate 5, 87.

Liu, D., Chan, K.Y., Conyers, M.K., Li, G. & Poile, G.J. 2011. Simulation of soil 
organic carbon dynamics under different pasture managements using the RothC 
carbon model. Geoderma 165, 69-77. 



132

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Loeppert, R.H. & Suarez, D.L. 1996. Carbonate and gypsum. In: Sparks, D.L. et al. 
(Eds) Methods of soil analysis, Part 3, Chemical methods. SSSA Book Series, SSSA/
ASA, Madison, Wisconsin, USA. pp. 437-474.

López-Granados, F., Jurado-Expósito, M., Peña-Barragán, J.M. & García-
Torres L. 2005. Using geostatistical and remote sensing approaches for mapping 
soil properties. European Journal of Agronomy, 23: 279-289.

López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P. & Paruelo, J.M. 
2015. Grazing increases below-ground biomass and net primary production in a 
temperate grassland. Plant and Soil, 392: 155-162.

Lorenz, K. & Lal, R. 2005. The depth distribution of soil organic carbon in relation 
to land use and management and the potential of carbon sequestration in subsoil 
horizons. Advances in Agronomy, 88: 35-66.

Lucà, F., Conforti, M., Castrignanò, A. M., Matteucci, G. & Buttafuoco, G., 
2017. Effect of calibration set size on prediction at local scale of soil carbon by 
Vis-NIR spectroscopy. Geoderma, 288: 175-183.

Luo, Y., Ahlström, A.D., Allison S., Batjes N., Brovkin V., Carvalhais N., Chap-
pell A., Ciais P., Davidson E., Finzi A., Georgiou K., Guenet B., Hararuk O., 
Harden J., He Y., Hopkins F., Jiang L., Koven C., B. Jackson R. & Zhou T. 
2016. Towards more realistic projections of soil carbon dynamics by earth system 
models. Global Biogeochemical Cycles, 30: 40-56.

Mäkipää, R., Lehtonen, A. & Peltoniemi, M. 2008. Monitoring carbon stock chang-
es in European forests using forest inventory data. In: Dolman, A.J., Valentini, R. 
& Freibauer, A. (Eds.) The Continental-scale greenhouse gas balance of Europe. 
Springer, Berlin. pp. 191-210.

Mäkipää, R., Liski, J., Guendehou, S., Malimbwi, R. & Kaaya, A. 2012. Soil car-
bon monitoring using surveys and modelling - General description and applica-
tion in the United Republic of Tanzania. In: Soil carbon monitoring based on 
repeated measurements. FAO Forestry Paper 168, pp. 5-13.

Madari, B.E., Reeves III, J.B., Coelho, M.R., Machado, P.L.O.A., De-Polli, H., 
Coelho, R.M., Benites, V.M., Souza, L.F. & McCarty, G.W. 2005. Mid- and 
near-infrared spectroscopic determination of carbon in a diverse set of soils from 
the Brazilian National Soil Collection. Spectroscopy Letters, 38: 721-740.

Maillard, É. & Angers, D.A. 2014. Animal manure application and soil organic 
carbon stocks: a meta-analysis. Global Change Biology, 20: 666-679.

Maillard, É., McConkey, B.G. & Angers, D.A. 2017. Increased uncertainty in soil 
carbon stock measurement with spatial scale and sampling pro�le depth in world 
grasslands: A systematic analysis. Agriculture, Ecosystems and Environment, 236: 
268-276.

Malone, B.P., McBratney, A.B., Minasny, B. & Wheeler, I., 2012. A general method 
for downscaling earth resource information. Computers & Geosciences, 41: 119-
125.

Malone, B., Hedley, C., Roudier, P., Minasny, B., McBratney, A. & Jones, E. 2018 
Feasibility of strati�ed random sampling of downscaled national soil carbon map-
ping for auditing on-farm carbon stocks: examples from Australia and New Zea-
land. Geoderma Regional, 13: 1-14.

Manzoni, S. & Porporato, A. 2009. Soil carbon and nitrogen mineralization: theory 
and models across scales. Soil Biology and Biochemistry, 41: 1355-1379.



133

References

Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G.I. 2012. Envi-
ronmental and stoichiometric controls on microbial carbon-use ef�ciency in soils. 
New Phytologist 196, 79-91.

Marchetti, A., Piccini, C., Francaviglia, R., Santucci, S. & Chiuchiarelli, I. 2008. 
Evaluation of soil organic matter content in Teramo province, Central Italy. Ad-
vances in Geoecology, 39: 345–356.

Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., 
Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., 
Leinweber, P., Rethemeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L. & 
Wiesenberg, G.L.B. 2008. How relevant is recalcitrance for the stabilization of 
organic matter in soils? Journal of Plant Nutrition and Soil Science, 171: 91-110.

Martí-Roura, M., Casals, P. & Romanyà, J. 2011. Temporal changes in soil organic 
C under Mediterranean shrublands and grasslands: impact of �re and drought. 
Plant and Soil, 338: 289-300.

Martin, M.Z., Mayes M.A., Heal, K.R., Brice, D.J. & Wullschleger, S.D. 2013. 
Investigation of laser-induced breakdown spectroscopy and multivariate analysis 
for differentiating inorganic and organic C in a variety of soils. Spectrochimica 
Acta Part B - Atomic Spectroscopy, 87: 100-107.

Martinsen, V., Mulder, J., Austrheim, G. & Mysterud, A. 2011. Carbon storage in 
low-alpine grassland soils: effects of different grazing intensities of sheep. Euro-
pean Journal of Soil Science, 62: 822-833.

Masoom, H., Courtier-Murias, D., Farooq, H., Soong, R., Kelleher, B.P. Zhang, 
C., Maas, W.E., Fey, M., Kumar, R., Monette, M., Stronks, H.J., Simpson, M.J. 
& Simpson, A.J. 2016. Soil organic matter in its native state: unravelling the 
most complex biomaterial on Earth. Environmental Science and Technology, 50: 
1670−1680.

McBratney, A.B., Mendonca Santos, M.L. & Minasny, B. 2003. On digital soil 
mapping. Geoderma, 117: 3-52.

McBratney, A.B., Odeh, I.O.A., Bishop, T., Dunbar, M. & Shatar, T. 2000. An 
overview of pedometric techniques for use in soil survey. Geoderma, 97: 293–327.

McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P. & Free-
bairn, D.M. 1996. APSIM: a novel software system for model development, 
model testing and simulation in agricultural systems research. Agricultural Sys-
tems, 50: 255-271.

McNally, S. R., Laughlin, D. C., Rutledge, S., Dodd, M. B., Six, J., & Schipper, L. 
A. 2015. Root carbon inputs under moderately diverse sward and conventional 
ryegrass-clover pasture: implications for soil carbon sequestration. Plant and Soil, 
392: 289-299.

McSherry, M.E. & Ritchie, M.E. 2013. Effects of grazing on grassland soil carbon: 
a global review. Global Change Biology, 19: 1347-1357.

Michalzik, B., Kalbitz, K., Park, J.H., Solinger, S. & Matzner, E. 2001. Fluxes and 
concentrations of dissolved organic carbon and nitrogen—a synthesis for temper-
ate forests. Biogeochemistry, 52: 173-205.

Milne, E., Al-Adamat, R., Batjes, N.H., Bernoux, M., Bhattacharyya, T., Cerri, 
C.C. & Feller, C. 2007. National and sub-national assessments of soil organic car-
bon stocks and changes: the GEFSOC modelling system. Agriculture, Ecosystems 
and Environment, 122: 3-12.



134

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Minasny, B., McBratney, A.B., Malone, B.P. & Wheeler, I. 2013. Digital mapping 
of soil carbon. Advances in Agronomy, 118: 1-47.

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Cham-
bers, A., Chaplot, V., Chen, Z.S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., 
Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, 
B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, 
J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., 
Sulaeman, Y., Tsui, C.C., Vägen, T.G., van Wesemael, B. & Winowiecki, L. 
2017. Soil carbon 4 per mille. Geoderma, 292: 59-86.

Mitchell, E., Scheer, C., Rowlings, D. W., Conant, R. T., Cotrufo, M. F., van 
Delden, L. & Grace, P. R. 2016. The in�uence of above-ground residue input 
and incorporation on GHG �uxes and stable SOM formation in a sandy soil. Soil 
Biology and Biochemistry, 101: 104-113.

Montagnini, F. & Nair, P.K.R. 2009. Carbon sequestration: An underexploited en-
vironmental bene�t of agroforestry systems. Agroforestry Systems, 61: 281-295.

Mosquera-Losada, M.R., McAdam, J.H., Romero-Franco, R., Santiago-Frei-
janes, J.J. & Rigueiro-Rodríguez, A. 2009. De�nitions and components of agro-
forestry practices in Europe. In: Rigueiro-Rodríguez, A., McAdam, J. & Mos-
quera-Losada, M.R. (Eds.) Agroforestry in Europe - Current Status and Future 
Prospects. Springer Science + Business Media B.V., Dordrecht. pp. 3-19.

Müller-Wenk, R. & Brandão, M. 2010 Climatic impact of land use in LCA—car-
bon transfers between vegetation soil and air. The International Journal of Life 
Cycle Assessment, 15: 172–182.

Muneer, M., & Oades, J.M. 1989. The role of Ca-organic interactions in soil aggre-
gate stability. III. Mechanisms and models. Soil Research, 27: 411-423.

Murphy, B., Badgery, W., Simmons, A., Rawson, A., Warden, E. & Andersson, 
K. 2013. Soil testing protocols at the paddock scale for contracts and audits - Mar-
ket-based instrument for soil carbon. New South Wales Department of Primary 
Industries, Australia.

Nagelkerke, N.J.D. 1991. A note on a general de�nition of the coef�cient of deter-
mination. Biometrika, 78: 691-692.

Nash, J.E. & Sutcliffe, J.V. 1970. River �ow forecasting through conceptual models 
part I — A discussion of principles. Journal of Hydrology, 10: 282-290.

Nelson, D.W. & Sommers, L.E. 1996. Total carbon, organic carbon, and organic 
matter. In: Sparks, D.L., et al. (Eds.) Methods of soil analysis. Part 3. Chemical 
Methods, SSSA Book Series No. 5, SSSA and ASA, Madison, WI. pp. 961-1010.

Nemo, Klumpp, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A., 
Jones, M.B., Leifeld, J., Osborne, B., Saunders, M., Scott, T., The, Y. A. & 
Smith, P. 2017. Soil organic carbon (SOC) equilibrium and model initialisation 
methods: an application to the Rothamsted carbon (RothC) model. Environmen-
tal Modeling and Assessment, 22: 215-229.

Nijdam, D., Rood, T. & Westhoek, H. 2012. The price of protein: Review of land 
use and carbon footprints from life cycle assessments of animal food products and 
their substitutes. Food Policy, 37: 760-770.

Niklaus, P.A., Kandeler, E., Leadley, P.W., Schmid, B., Tscherko, D. & Körner, C. 
2001. A link between plant diversity, elevated CO2 and soil nitrate. Oecologia, 
127: 540-548.



135

References

Nishina, K., Ito, A., Falloon, P., Friend, A.D., Beerling, D.J., Ciais, P., Clark, D.B., 
Kahana, R., Kato, E., Lucht, W., Lomas, M., Pavlick, R., Schaphoff, S., Warsza-
waski, L. & Yokohata, T. 2015. Decomposing uncertainties in the future terrestrial 
carbon budget associated with emission scenarios, climate projections, and ecosys-
tem simulations using the ISI-MIP results. Earth System Dynamics, 6: 435-445.

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., 
Barthès, B., Ben Dor, E., Brown, D.J., Clairotte, M., Csorba, A., Dardenne, 
P., Demattê, J.A.M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., 
Noon, C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-Disla, J.M., 
Shepherd, K.D., Stenberg, B., Towett, E.K., Vargas, R. & Wetterlind, J. 2015. 
Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In: Sparks, 
D.L. (Ed) Advances in Agronomy. Academic Press. pp. 139-159.

Nortcliff, S. 1978. Soil variability and reconnaissance soil mapping: a statistical 
study in Norfolk. Journal of Soil Science, 29: 403–418.

Odeh I.O.A., McBratney A.B., & Chittleborough D.J. 1994. Spatial prediction of 
soil properties from landform attributes derived from a digital elevation model. 
Geoderma, 63: 197–214.

Ogle, S.M., Breidt, F.J., Easter, M., Williams, S. & Paustian, K. 2007. An empiri-
cally based approach for estimating uncertainty associated with modelling carbon 
sequestration in soils. Ecological Modelling, 205: 453-463.

Ogle, S.M., Jay Breidt, F., Easter, M., Williams, S., Killian, K. & Paustian, K. 2010. 
Scale and uncertainty in modelled soil organic carbon stock changes for US crop-
lands using a process-based model. Global Change Biology, 16: 810-822.

Ogle, S.M., Conant, R.T. & Paustian, K. 2004. Deriving grassland management 
factors for a carbon accounting method developed by the intergovernmental pan-
el on climate change. Environmental Management, 33: 474-484.

Oldeman, L.R. 1994. The global extent of soil degradation. In: Greenland, D.J. & 
Szabolcs, I. (Eds.) Soil resilience and sustainable use, CAB International, Wallin-
ford, UK, pp. 99-118.

Oliveira, J.M., Madari, B.E., Carvalho, M.T.M., Assis, P.C.R., Silveira, A.L.R., 
Lima, M.L., Wruck, F.J., Medeiros, J.C. & Machado, P.L.O.A. 2017. Integrated 
farming systems for improving soil carbon balance in the southern Amazon of 
Brazil. Regional Environmental Change, 18: 105-116.

Opio, C., Gerber, P. & Steinfeld, H. 2011. Livestock and the environment: address-
ing the consequences of livestock sector growth. Advances in Animal Biosciences, 
2: 601–607.

Oreskes, N., Shrader-Frechette, K. & Belitz, K. 1994. Veri�cation, validation, and 
con�rmation of numerical models in the earth sciences. Science, 263: 641-646.

Orgill, S.E., Condon, J.R., Conyers, M.K., Greene, R.S.B., Morris, S.G. & Mur-
phy, B.W. 2014. Sensitivity of soil carbon to management and environmental 
factors within Australian perennial pasture systems. Geoderma, 214: 70-79.

Parton, W.J. 1996. The CENTURY model. In: Powlson, D.S., Smith, P. & Smith, J.U. 
(Eds.) Evaluation of soil organic matter models. NATO ASI Series (Series I: Global 
Environmental Change), Vol. 38. Springer, Berlin, Heidelberg. pp. 283-291.

Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Schimel, D.S., Hall, D.O. & Scope-
gram Group Members 1995. Impact of climate change on grassland production 
and soil carbon worldwide. Global Change Biology, 1: 13-22. 



136

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

PAS. 2011. PAS 2050: 2011. Speci�cation for the assessment of the life cycle green-
house gas emissions of goods and services. British Standards (BSI). 38 pp. 

Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A. & Lyon, 
D.J. 1997. Radiocarbon dating for determination of soil organic matter pool sizes 
and dynamics. Soil Science Society of America Journal, 61: 1058-1067.

Paul, E.A. 2007. Soil Microbiology, Ecology and Biochemistry. Third edition. Aca-
demic Press. 532 pp.

Paustian, K., Parton, W.J. & Persson, J. 1992. Modeling soil organic matter in or-
ganic-amended and nitrogen-fertilized long-term plots. Soil Science Society of 
America Journal, 56: 476-488.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P. & Smith, P. 2016. 
Climate-smart soils. Nature, 532: 49-57.

Pei, S., Fu, H. & Wan, C. 2008. Changes in soil properties and vegetation following 
exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. 
Agriculture, Ecosystems and Environment, 124: 33-39.

Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoît, M., Butault, J.P., Chenu, 
C., Colnenne-David, C., De Cara, S., Delame, N., Doreau, M., Dupraz, P., 
Faverdin, P., Garcia-Launay, F., Hassouna, M., Hénault, C., Jeuffroy, M.H., 
Klumpp, K., Metay, A., Moran, D., Recous, S., Samson, E., Savini, I. & Par-
don, L. 2013. Optimisation of grassland management. In: How can French ag-
riculture contribute to reducing greenhouse gas emissions? Abatement potential 
and cost of ten technical measures. INRA, France. 92 pp.

Peltoniemi, M., Palosuo, T., Monni, S. & Mäkipää, R. 2006. Factors affecting the 
uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. 
Forest Ecology and Management, 232: 75-85.

Peng, C., Apps, M.J., Prince, D.T., Nalder, I.A. & Halliwell, D.H. 1998. Simu-
lating carbon dynamics along the Boreal Forest Transect Case Study BFTCS in 
central Canada. 1. Model testing. Global Biogeochemical Cycles, 12: 381-392.

Périé, C. & Ouimet, R. 2008. Organic carbon, organic matter and bulk density 
relationships in boreal forest soils. Canadian Journal of Soil Science, 88: 315-325.

Petersen, B.M., Knudsen M., Hermansen J.E. & Halberg, N. 2013. An approach 
to include soil carbon changes in life cycle assessments. Journal of Cleaner Pro-
duction, 52: 217-224.

Petri, M., Batello, C., Villani, R. & Nachtergaele, F. 2010. Carbon status and car-
bon sequestration potential in the world’s grasslands. In: Abberton, M., Conant, 
R. & Batello, C. (Eds.) Grassland carbon sequestration: management, policy and 
economics. FAO, Rome. pp. 19-31.

Piñeiro, G., Paruelo, J.M. & Oesterheld, M. 2006. Potential long-term impacts of 
livestock introduction on carbon and nitrogen cycling in grasslands of Southern 
South America. Global Change Biology, 12: 1267-1284.

Piñeiro, G., Paruelo, J.M., Oesterheld, M. & Jobbágy, E.G. 2010. Pathways of 
grazing effects on soil organic carbon and nitrogen. Rangeland Ecology and 
Management, 63: 109-119.

Ping, J.L. & Dobermann, A. 2006. Variation in the precision of soil organic carbon 
maps due to different laboratory and spatial prediction methods. Soil Science, 
171: 374–387.



137

References

Pitard, F.F. 1993. Pierre Gy’s sampling theory and sampling practice: heterogeneity, 
sampling correctness, and statistical process control. CRC press.

Poeplau, C. 2016. Estimating root: shoot ratio and soil carbon inputs in temperate 
grasslands with the RothC model. Plant and Soil, 407: 293-305.

Poeplau, C. & Don, A. 2013. Sensitivity of soil carbon stocks and fractions to differ-
ent land-use changes across Europe. Geoderma, 192: 189–201.

Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., VanWesemael, B., Schumacher, 
J. & Gensior, A. 2011. Temporal dynamics of soil organic carbon after land-use 
change in the temperate zone - carbon response functions as a model approach. 
Global Change Biology, 17: 2415-2427.

Poeplau, C., Vos, C. & Don, A. 2017. Soil organic carbon stocks are systematically 
overestimated by misuse of the parameters bulk density and rock fragment con-
tent. Soil, 3: 61-66.

Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, D. 2018. Major 
limitations to achieving “4 per 1000” increases in soil organic carbon stock in tem-
perate regions: Evidence from long-term experiments at Rothamsted Research, 
United Kingdom. Global Change Biology, 24(6): 2563-2584 

Powlson, D.S., Whitmore, A.P. & Goulding, K.W.T. 2011. Soil carbon sequestra-
tion to mitigate climate change: a critical re-examination to identify the true and 
the false. European Journal of Soil Science, 62: 42-55.

Pribyl D.W. 2010. A critical review of the conventional SOC to SOM conversion 
factor. Geoderma, 156 (3-4): 75-83.

Pringle, M.J., Allen, D.E., Dalal, R.C., Payne, J.E., Mayer, D.G., O’Reagain, P. 
& Marchant, B.P. 2011. Soil carbon stock in the tropical rangelands of Australia: 
Effects of soil type and grazing pressure, and determination of sampling require-
ment. Geoderma, 167-168: 261-273.

Rakovský, J. �ermák, P. Musset, O. & Veis, P. 2014. A review of the development 
of portable laser induced breakdown spectroscopy and its applications. Spectro-
chimica Acta Part B: Atomic Spectroscopy, 101: 269-287.

Rasmussen, C., Torn, M.S. & Southard, R.J. 2005. Mineral assemblage and aggre-
gates control carbon dynamics in a California conifer forest. Soil Science Society 
of America Journal, 69: 1711-1721.

Rasse, D.P., Li, J. & Drake, B.G. 2003. Carbon dioxide assimilation by a wetland 
sedge canopy exposed to ambient and elevated CO2: measurements and model 
analysis. Functional Ecology, 17: 222-230. 

Rasse, D.P., Nemry, B. & Ceulemans, R. 2001. Stand-thinning effects on C �uxes 
in 20th and 21st-century Scots pine forests: a sensitivity analysis with ASPECTS. 
Workshop IEFC, Bordeaux France, 7 - 9 September 2000. European Forest Insti-
tute Proceedings, pp. 18-30.

Reeder, J.D., Schuman, G.E. 2002. In�uence of livestock grazing on C sequestra-
tion in semi-arid mixed-grass and short-grass rangelands. Environmental Pollu-
tion, 116: 457-463.

Reeder, J.D., Schuman, G.E., Morgan, J.A. & Lecain, D.R. 2004. Response of or-
ganic and inorganic carbon and nitrogen to long-term grazing of the short grass 
steppe. Environmental Management, 33: 485-495. 



138

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Reeves III, J.B. 2010. Near- versus mid-infrared diffuse re�ectance spectroscopy for 
soil analysis emphasizing carbon and laboratory versus on-site analysis: Where 
are we and what needs to be done? Geoderma, 158: 3-14.

Refsgaard, J.C. & Henriksen, H.J. 2004. Modelling guidelines - Terminology and 
guiding principles. Advances in Water Resources, 27: 71-82.

Refsgaard, J.C., Henriksen, H.J., Harrar, W.G., Scholten, H. & Kassahun, A. 
2005. Quality assurance in model based water management - review of existing 
practice and outline of new approaches. Environmental Modelling and Software, 
20: 1201-1215.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., 
Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., 
Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., 
Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pump-
anen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vac-
cari, F., Vesala, T., Yakir, D. & Valentini, R. 2005. On the separation of net 
ecosystem exchange into assimilation and ecosystem respiration: review and im-
proved algorithm. Global Change Biology, 11: 1424-1439.

Ren, C.Y., Wang, Z.M., Song, K.S., Zhang, B., Liu, D.W., Yang, G.A. & Liu, 
Z.M. 2011. Spatial variation of soil organic carbon and its relationship with en-
vironmental factors in the farming-pastoral ecotone of northeast china. Fresenius 
Environmental Bulletin, 20: 253-261.

Ren, X., He, H., Moore, D.J.P., Zhang, L., Liu, M., Li, F., Yu, G. & Wang, H. 
2013. Uncertainty analysis of modeled carbon and water �uxes in a subtropi-
cal coniferous plantation. Journal of Geophysical Research: Biogeosciences, 118: 
1674-1688.

Ricciuto, D.M., Butler, M.P., Davis, K.J., Cook, B.D., Bakwin, P.S., Andrews, A. 
& Teclaw, R.M. 2008. Causes of interannual variability in ecosystem-atmosphere 
CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration. 
Agricultural and Forest Meteorology, 148: 309-327.

Riedo, M., Grub, A., Rosset, M. & Fuhrer, J. 1998. A pasture simulation model for 
dry matter production, and �uxes of carbon, nitrogen, water and energy. Ecologi-
cal Modelling, 105: 141-183.

Riedo, M., Gyalistras, D., & Fuhrer, J. 2000. Net primary production and carbon 
stocks in differently managed grasslands: simulation of site-speci�c sensitivity to 
an increase in atmospheric CO2 and to climate change. Ecological Modelling, 
134: 207-227.

Ripple, W.J., Smith, P., Haberl, H., Montzka, S.A., Mcalpine, C. & Boucher, D.H. 
2014. Ruminants, climate change and climate policy. Nature Climate Change, 4: 2-5.

Roscoe, R., Buurman, P., Velthorst, E.J. & Vasconcellos, C.A. 2001. Soil organic 
matter dynamics in density and particle size fractions as revealed by the 13C:12C 
isotopic ratio in a Cerrado’s oxisol. Geoderma, 104: 185-202.

Roudier, P., Hedley, C.B., Lobsey, C.R., Viscarra Rossel, R.A. & Leroux C. 2017. 
Evaluation of two methods to eliminate the effect of water from soil vis-NIR 
spectra for predictions of organic carbon. Geoderma, 296: 98-107.

Rumpel, C., Crème, A., Ngo, P. T., Velásquez, G., Mora, M. L. & Chabbi, A. 2015. 
The impact of grassland management on biogeochemical cycles involving carbon, 
nitrogen and phosphorus. Journal of Soil Science and Plant Nutrition, 15: 353-371.



139

References

Salazar, O., Casanova, M. & Kätterer, T. 2011. The impact of agroforestry com-
bined with water harvesting on soil carbon and nitrogen stocks in central Chile 
evaluated using the ICBM/N model. Agriculture, Ecosystems and Environment 
140, 123-136.

Schlesinger, W.H. & Bernhardt, E.S. 2013. Biogeochemistry: an analysis of global 
change. Third Edition. Academic Press, New York.

Schmidt, M.W., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, 
I.A.., Kleber, M., Kögel-Knabner, Io, Lehmann, J., Manning, D.A., Nannip-
ieri, P., Rasse, D.P., Weiner, S. & Trumbore, S.E. 2011. Persistence of soil organic 
matter as an ecosystem property. Nature, 478, 49-56.

Schrumpf, M., Schulze, E.D., Kaiser, K., & Schumacher, J. 2011. How accurately 
can soil organic carbon stocks and stock changes be quanti�ed by soil inventories? 
Biogeosciences, 8:1193-1212.

Schumacher, B.A. 2002. Methods for the determination of total organic carbon 
(TOC) in soils and sediments. Ecological Risk Assessment Support Center, Of-
�ce of Research and Development, U.S. Environmental Protection Agency, Las 
Vegas. 23 pp.

Schumacher, B.A., Shines, K.C., Burton, J.V. & Papp, M.L. 1990a. A comparison 
of soil sample homogenization techniques. Environmental Monitoring Systems 
Laboratory, Of�ce of Research and Development, U.S. Environmental Protec-
tion Agency, Las Vegas. 40 pp.

Schumacher, B.A., Shines, K.C., Burton, J.V. & Papp, M.L. 1990b. Comparison of 
three methods for soil homogenization. Soil Science Society of America Journal, 
54: 1187-1190.

Schuman, G.E., Reeder, J.D., Manley, J.T., Hart, R.H. & Manley, W.A. 1999. Im-
pact of grazing management on the carbon and nitrogen balance of a mixed-grass 
rangeland. Ecological Applications, 9: 65-71.

Senesi G.S. & Senesi N. 2016. Laser-induced breakdown spectroscopy (LIBS) to 
measure quantitatively soil carbon with emphasis on soil organic carbon. A re-
view. Analytica Chimica Acta, 938: 7-17.

Setiawan, Y. & Yoshino, K. 2014. Detecting land-use change from seasonal vegeta-
tion dynamics on regional scale with MODIS EVI 250-m time-series imagery. 
Journal of Land Use Science, 9: 304-330.

Sheppard, S.C. & Addison, J.A. 2008. Chapter 4. Soil sampling handling and stor-
age. In: M.R. Carter and E.G. Gregorich (Eds.) Soil sampling and methods of 
analysis, 2nd Edition. CRC Press and Taylor & Francis Group. pp. 39-49.

Shirato, Y., Hakamata, T. & Taniyama, I. 2004. Modi�ed Rothamsted carbon 
model for Andosols and its validation: changing humus decomposition rate con-
stant with pyrophosphate-extractable Al. Soil Science and Plant Nutrition, 50: 
149-158.

Shirato, Y., Jomura, M., Wagai, R., Kondo, M., Tanabe, K. & Uchida, M. 2013. 
Deviations between observed and RothC-simulated ∆14C values despite im-
proved IOM initialization. European Journal of Soil Science, 64: 576-585.

Shiri, J., Keshavarzi, A., Kisi, O., Karimi, S. & Iturraran-Viveros, U. 2017. Mod-
eling soil bulk density through a complete data scanning procedure: Heuristic 
alternatives. Journal of Hydrology, 549: 592-602. 



140

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Simpson, A.J., Song, G., Smith, E., Lam, B., Novotny, E.H. & Hayes, M.H.B. 2007. 
Unraveling the structural components of soil humin by use of solution-state nuclear 
magnetic resonance spectroscopy. Environmental Science & Technology, 41: 876-883.

Sisti, C.P.J., dos Santos, H.P., Kohhann, R., Alves, B.J.R., Urquiaga, S. & Boddey, 
R.M. 2004. Change in carbon and nitrogen stocks in soil under 13 years of conven-
tional or zero tillage in southern Brazil. Soil and Tillage Research, 76: 39-58.

Skinner, R.H. & Dell, C.J. 2014. Comparing pasture C sequestration estimated 
from eddy covariance and soil cores. Agriculture, Ecosystems and Environment, 
199: 52-57.

Skjemstad, J.O., Spouncer, L.R., Cowie, B. & Swift, R.S. 2004. Calibration of the 
Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable 
soil organic carbon pools. Australian Journal Soil Research, 42: 79-88.

Smith, J.U., Smith, P., Monaghan, R. & MacDonald, J. 2002. When is a measured 
soil organic matter fraction equivalent to a model pool? European Journal of Soil 
Science, 53: 405-416.

Smith, K.A., McTaggart, I.P. & Tsuruta, H. 1997. Emissions of N2O and NO as-
sociated with nitrogen fertilization in intensive agriculture, and the potential for 
mitigation. Soil Use and Management, 13: 296-304. 

Smith, P. 2004. How long before a change in soil organic carbon can be detected. 
Global Change Biology, 10: 1878-1883. 

Smith, P., Lanigan, G., Kutsch, W. L., Buchmann, N., Eugster, W., Aubinet, M., 
Ceschia, E., Béziat, P., Yeluripati, J. B., Osborne, B., Moors, E. J., Brut, A., 
Wattenbach, M., Saunders, M. & Jones, M. 2010. Measurements necessary for 
assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems 
& Environment, 139(3): 302-315.

Smith, P. 2014. Do grasslands act as a perpetual sink for carbon? Global Change 
Biology, 20: 2708-2711.

Smith, J.L. & Myung, H.U. 1990. Rapid procedures for preparing soil and KCl 
extracts for 15N analysis. Communications in Soil Science and Plant Analysis, 21: 
2273–2279.

Sochorová, L., Jansa, J., Verbruggen, E., Hejcman, M., Schellberg, J., Kiers, E.T. 
& Johnson, N.C. 2016. Long-term agricultural management maximizing hay 
production can signi�cantly reduce belowground C storage. Agriculture, Ecosys-
tems and Environment, 220: 104-114.

Soussana, J.-F., Tallec, T. & Blanfort, V. 2010. Mitigating the greenhouse gas bal-
ance of ruminant production systems through carbon sequestration in grasslands. 
Animal, 4(3), 334-350. 

Soussana, J.-F. & Lemaire, G. 2014. Coupling carbon and nitrogen cycles for envi-
ronmentally sustainable intensi�cation of grasslands and crop-livestock systems. 
Agriculture, Ecosystems and Environment, 190: 9-17.

Souza, D.M., Morais, P.A.O., Matsushige, I. & Rosa, L.A. 2016. Development 
of alternative methods for determining soil organic matter. Revista Brasilera de 
Ciência do Solo, 40, http://dx.doi.org/10.1590/18069657rbcs20150150.

Spohn, M., Pötsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W. & Richter, A. 
2016. Soil microbial carbon use ef�ciency and biomass turnover in a long-term 
fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 
97: 168-175.



141

References

Stahl, C., Fontaine, S., Klumpp, K., Picon-Cochard, C., Grise, M. M., Dezécache, 
C., Ponchant, L., Freycon, V., Blanc, L., Bonal, D., Burban, B., Soussana, J.-F. 
& Blanfort, V. 2017. Continuous soil carbon storage of old permanent pastures 
in Amazonia. Global Change Biology, 23: 3382-3392.

Stahl, C., Freycon, V., Fontaine, S., Dezécache, C., Ponchant, L., Picon-Cochard, 
C., Klumpp, K., Soussana, J.-F. & Blanfort, V. 2016. Soil carbon stocks after 
conversion of Amazonian tropical forest to grazed pasture: importance of deep 
soil layers. Regional Environmental Change, 16: 2059-2069.

Stamati, F.E., Nikolaidis, N.P. & Schnoor, J.L. 2013. Modelling topsoil carbon 
sequestration in two contrasting crop production to set-aside conversions with 
RothC - Calibration issues and uncertainty analysis. Agriculture, Ecosystems and 
Environment, 165: 190-200.

Steffens, M., Kölb. A., Totsche, K.U. & Kögel-Knabner, I. 2008. Grazing effects 
on soil chemical and physical properties in a semiarid steppe of Inner Mongolia 
(PR China). Geoderma, 143: 63-72.

Steinbeiss, S., Beßles, H., Engels, C., Temperton, V. M., Buchman, N., Roscher, 
C., Kreutziger, Y., Baade, J., Habekost, M. & Gleixner, G. 2008. Plant diver-
sity positively affects short-term soil carbon storage in experimental grasslands. 
Global Change Biology, 14: 2937-2949.

Stevenson, F.J. 1994. Humus chemistry: Genesis, composition, reactions. Second 
Edition, John Wiley, New York.

Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., 
Jenkins, M. & Wheeler, I. 2013. The knowns, known unknowns and unknowns 
of sequestration of soil organic carbon. Agriculture, Ecosystems and Environ-
ment, 164: 80-99.

Strahm, B.D., Harrison, R.B., Terry, T.A., Harrington, T.B., Adams, A.B. & 
Footen, P.W. 2009. Changes in dissolved organic matter with depth suggest the 
potential for postharvest organic matter retention to increase subsurface soil car-
bon pools. Forest Ecology and Management, 258: 2347-2352.

Sun, W., Minasny, B. & McBratney, A. 2012. Analysis and prediction of soil proper-
ties using local regression-kriging. Geoderma, 171-172: 16–23.

Svendsen, H., Hansen, S. & Jensen, H.E. 1995. Simulation of crop production, 
water and nitrogen balances in two German agro-ecosystems using the DAISY 
model. Ecological modelling, 81: 197-212.

Taghizadeh-Toosi, A., Christensen, B.T., Hutchings, N.J., Vejlin, J., Kätterer, T., 
Glendining, M. & Olesen, J.E. 2014. C-TOOL: A simple model for simulating 
whole-pro�le carbon storage in temperate agricultural soils. Ecological model-
ling, 292: 11-25.

Tang, Y., Reed, P., Wagener, T. & Van Werkhoven, K. 2007. Comparing sensitivity 
analysis methods to advance lumped watershed model identi�cation and evalua-
tion. Hydrology and Earth System Sciences, 11: 793-817.

Tarré, R., Macedo, R., Cantarutti, R.B., de Rezende, C.P., Pereira, J.M., Ferreira, 
E., Alves, B.J.R., Urquiaga, S. & Boddey, R.M. 2001. The effect of the presence 
of a forage legume on nitrogen and carbon levels in soils under Brachiaria pas-
tures in the Atlantic forest region of the South of Bahia, Brazil. Plant and Soil, 
234: 15–26. 



142

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Thornley, J. 1998. Grassland dynamics: an ecosystem simulation model. 241 pp. 
CAB International, UK.

Torralba, M., Fagerholm, N., Burgess, P.J., Moreno, G. & Plieninger, T. 2016. Do 
European agroforestry systems enhance biodiversity and ecosystem services? A 
meta-analysis. Agriculture, Ecosystems and Environment: 230: 150-161.

Tuomi, M., Thum, T., Jarvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofy-
mow, J.A., Sevanto, S. & Liski, J. 2009. Leaf litter decomposition - estimates of 
global variability based on Yasso07 model. Ecological Modeling. 220: 3362-3371.

UC Davis. 2019. Analytical Laboratory Quality Manual. In: UC Davis, Analytical 
Lab, QA/QC [online]. Davis. [Cited 07 January 2019]. https://anlab.ucdavis.
edu/Pages/qa-qc

UEA. 2019. Climate Research Unit (CRU) Databases. In: University of East An-
glia. [Cited 07 January 2019]. Norwich. http://www.cru.uea.ac.uk/data

UNFCCC. 2014. Handbook on Measurement, Reporting and Veri�cation for de-
veloping countries. Bonn. 

UNEP & SETAC. 2011. Global Guidance Principles for Life Cycle Assessment Da-
tabases, UN Environment, Paris. [Accessed on 07 January 2019]. http://www.
unep.org/pdf/Global-Guidance-Principles-for-LCA.pdf 

U.S. General Services Administration. 2019. Climate - Data Catalog. In: Data.
Gov Federal government’s open data site [Cited 07 January 2019]. USA. https://
catalog.data.gov/dataset?groups=climate5434&#topic=climate_navigation

Vanguelova, E.I., Bonifacio, E., De Vos, B., Hoosbeek, M.R., Berger, T.W., Ve-
sterdal, L., Armolaitis, K., Celi, L., Dinca, L., Kjønaas, O.J., Pavlenda, P., Pu-
mpanen, J., Püttsepp, Ü., Reidy, B., Simon�i�, P., Tobin, B. & Zhiyanski, M. 
2016. Sources of errors and uncertainties in the assessment of forest soil carbon 
stocks at different scales - review and recommendations. Environmental Monito-
ring and Assessment, 188: 630.

van Bemmelen, J.M. 1891. Ueber die Bestimmungen des Wassers, des Humus, des 
Schwefels, der in den Colloidalen Silikaten gebunden Kieselsaeuren, des man-
gans, u.s.w. im Ackerboden. Landwirtschaftliche Versuch Station, 37: 279-290.

van Camp, L., Bujjarabal, B., Gentile, A.R., Jones, R.J.A, Montanarella, L., Ola-
zabal, C. & Selvaradjou, S.K. 2004. Reports of the technical working groups es-
tablished under the thematic strategy for soil protection. EUR 21319 EN/1, 872pp. 
Of�ce for Of�cial Publications of the European Communities, Luxembourg.

van den Bygaart, A.J. & Allen, O.B. 2011. Experiment design to achieve desired 
statistical power. Canadian Journal of Soil Science, 91: 309-310. 

van den Bygaart, A.J. & Angers, D.A. 2006. Towards accurate measurements of 
soil organic carbon stock change in agroecosystems. Canadian Journal of Soil Sci-
ence, 86: 465-471.

van den Bygaart, A.J., Gregorich, E.G., Angers, D.A. & Stoklas, U.F. 2004. Un-
certainty analysis of soil organic carbon stock change in Canadian cropland from 
1991 to 2001. Global Change Biology, 10: 993-994.

van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S. & 
Arellano, A.F. 2006. Interannual variability in global biomass burning emissions 
from 1997 to 2004. Atmospheric chemistry and Physics, 6: 3423-3441.

van Oijen, M., Rougier, J. & Smith, R. 2005. Bayesian calibration of process-based for-
est models: Bridging the gap between models and data. Tree Physiology, 25: 915-927.



143

References

van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., 
Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., da 
Silva, J.R.M. & Merckx, R. 2007. The impact of agricultural soil erosion on the 
global carbon cycle. Science 318, 626.

Vågen, T.G., Shepherd, K.D. & Walsh, M.G. 2006. Sensing landscape level change 
in soil fertility following deforestation and conversion in the highlands of Mada-
gascar using vis-NIR spectroscopy. Geoderma, 133: 281-294.

Vellinga, T.V., Blonk, H., Marinussen, M., Zeist, W.J.V. & Starmans, D.A.J. 2013. 
Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of 
feed production and utilization. Wageningen UR Livestock Research.

Verbeeck, H., Samson, R., Verdonck, F. & Lemeur, R. 2006. Parameter sensitivity 
and uncertainty of the forest carbon �ux model FORUG: a Monte Carlo analy-
sis. Tree Physiology, 26: 807-817.

Vincent, K.R. & Chadwick, O.A. 1994. Synthesizing bulk density for soils with 
abundant rock fragments. Soil Science Society of America Journal, 58: 455-464.

Viscarra Rossel R.A., Brus D.J., Lobsey C., Shi Z. & McLachlan G. 2016. Baseline 
estimates of soil organic carbon by proximal sensing: Comparing design-based, 
model-assisted and model-based inference. Geoderma, 265: 152-163.

Volder, A., Gifford, R.M. & Evans, J.R. 2007. Effects of elevated atmospheric 
CO2, cutting frequency, and differential day/night atmospheric warming on root 
growth and turnover of Phalaris swards. Global Change Biology, 13: 1040-1052.

Walkley, A. & Black, I.A. 1934. An examination of the Degtjareff method for deter-
mining organic carbon in soils: Effect of variations in digestion conditions and of 
inorganic soil constituents. Soil Science, 63: 251-263.

Walter, K., Don, A., Tiemeyer, B. & Freibauer, A. 2016. Determining soil bulk 
density for carbon stock calculations: A systematic method comparison. Soil Sci-
ence Society of America Journal, 80: 579-591. 

Wang, X., He, X., Williams, J.R., Izaurralde, R.C. & Atwood, J.D. 2005. Sensi-
tivity and uncertainty analyses of crop yields and soil organic carbon simulated 
with EPIC. Transactions of the American Society of Agricultural and Biological 
Engineers, 48: 1041-1054.

Wang, J.Y., Li, A.N. & Jin, H.A. 2016. Sensitivity analysis of the DeNitri�cation 
and Decomposition model for simulating regional carbon budget at the wetland-
grassland area on the Zoige Plateau, China. Journal of Mountain Science, 13: 
1200-1216.

Wang, X., Potter, S.R., Williams, J.R., Atwood, J.D. & Pitts, T. 2006. Sensitivity 
analysis of APEX for national assessment. Transactions of the American Society 
of Agricultural and Biological Engineers, 49: 679-688.

Watt, M.S. & Palmer, D.J. 2012. Use of regression kriging to develop a 
Carbon:Nitrogen ratio surface for New Zealand. Geoderma: 183-184: 49–57.

Wattel-Koekkoek, E.J.W., van Vliet, M.E., Boumans, L.J.M., Ferreira, J., Spijker, 
J. & van Leeuwen, T.C. 2012. Soil quality in the Netherlands for 2006-2010 and 
the change compared with 1993-1997): Results of the National Soil Quality Mon-
itoring Network (in Dutch). RIVM 680718003. Bilthoven, The Netherlands.

Webster, R.& Oliver, M.A. 2001. Geostatistics for Environmental Scientists. Wiley 
& Sons Ltd., Chichester.



144

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

Wendt, J.W. & Hauser, S. 2013. An equivalent soil mass procedure for monitoring soil 
organic carbon in multiple soil layers. European Journal of Soil Science, 64: 58-65.

Whitehead, D., Baisden, T., Beare, M., Campbell, D., Curtin, D., Davis, M., Hed-
ley, C., Hedley, M., Jones, H., Kelliher, F., Saggar, S., Shipper, L. 2012. Review 
of soil carbon measurement methodologies and technologies, including nature 
and intensity of sampling, their uncertainties and costs. Ministry for Primary In-
dustries, Technical Paper by Landcare Research No. 2012/36. ISBN No: 978-0-
478-40450-0 (online)

Wielopolski, L., Chatterjee, A., Mitra, S. & Lal, R. 2011. In situ determination of 
soil carbon pool by inelastic neutron scattering: Comparison with dry combus-
tion, Geoderma, 160: 394-399.

Wielopolski, L., Yanai, R.D., Levine, C.R., Mitra, S. &Vadeboncoeur, M.A. 2010. 
Rapid, non-destructive carbon analysis of forest soils using neutron-induced 
gamma-ray spectroscopy. Forest Ecology and Management, 260: 1132-1137.

Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., 
Kühnel, A., Spörlein, P., Geuß, U., & Hangen, E. 2016. Projected loss of soil 
organic carbon in temperate agricultural soils in the 21st century: effects of climate 
change and carbon input trends. Scienti�c reports, 6: 32525.

Wikipedia. 2019. Open-notebook science In: Wikipedia [online]. [Cited 07 January 
2019]. San Francisco. en.wikipedia.org/wiki/Open notebook science

Wilkinson, M.T., Richards, P.J. & Humphreys, G.S. 2009. Breaking ground: pedo-
logical, geological and ecological implications of soil bioturbation. Earth Science 
Review, 97: 257-272.

Willat, S.T. & Pullar, D.M. 1984. Changes in soil physical properties under grazed 
pastures. Australian Journal of Soil Research, 22: 343-348.

Williams, J.R., Jones, C.A. & Dyke, P.T. 1984. The EPIC model and its application. 
In: Proceedings of International Symposium on minimum data sets for agrotech-
nology transfer. pp. 111-121.

Willmott, C.J. 1982. Some Comments on the Evaluation of Model Performance. 
Bulletin of the American Meteorological Society, 63: 1309-1313.

Willmott, C.J. & Matsuura, K. 2005. Advantages of the mean absolute error 
(MAE) over the root mean square error (RMSE) in assessing average model per-
formance. Climate Research, 30: 79-82.

Wohlfahrt, G., Anderson-Dunn, M., Bahn, M., Balzarolo, M., Berninger, F., 
Campbell, C., Carrara, A., Cescatti, A., Christensen, T., Dore, S., Eugster, 
W., Friborg, T., Furger, M., Gianelle, M., Gimeno, C., Hargreaves, K., Hari, 
P., Haslwanter, A., Johansson, T., Marcolla, B., Milford, C., Nagy, Z., Nemitz, 
E., Rogiers, N., Sanz, M.J., Siegwolf, R.T.W., Susiluoto, S., Sutton, M., Tuba, 
Z., Ugolini, F., Valentini, R., Zorer, R. & Cernusca A. 2008. Biotic, abiotic, and 
management controls on the net ecosystem CO2 exchange of European mountain 
grassland ecosystems. Ecosystems, 11: 1338. 

Wright A.L., Dou F. & Hons F.M. 2007. Crop species and tillage effects on carbon 
sequestration in subsurface soil. Soil Science, 172: 124-131.

Wuest, S. 2014. Seasonal Variation in Soil Organic Carbon. Soil Science Society of 
America Journal, 78: 1442-1447. 

Wutzler, T. & Reichstein, M. 2007. Soils apart from equilibrium - Consequences for 
soil carbon balance modelling. Biogeosciences, 4: 125-136.



145

References

Xu, L., He, N.P., Yu, G.R., Wen, D., Gao, Y. & He, H.L. 2015. Differences in pedo-
transfer functions of bulk density lead to high uncertainty in soil organic carbon 
estimation at regional scales: Evidence from Chinese terrestrial ecosystems. Jour-
nal of Geophysical Research: Biogeosciences, 120: 1567–1575.

Xu, M., Lou, Y., Sun, X., Baniyamuddin M. & Zhao K. 2011. Soil organic carbon 
active fractions as early indicators for total carbon change under straw incorpora-
tion. Biology and Fertility of Soils, 47: 745.

Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J. & Zhu, B. 2008. Storage, 
patterns and controls of soil organic carbon in the Tibetan grasslands. Global 
Change Biology 14, 1592-1599.

Yang, J.M., Yang, J.Y., Liu, S. & Hoogenboom, G. 2014. An evaluation of the sta-
tistical methods for testing the performance of crop models with observed data. 
Agricultural Systems, 127: 81-89.

Yeluripati, J.B., van Oijen, M., Wattenbach, M., Neftel, A., Ammann, A., Parton, 
W.J. & Smith, P. 2009. Bayesian calibration as a tool for initialising the carbon 
pools of dynamic soil models. Soil Biology and Biochemistry, 41: 2579-2583.

Yuan, H. & Hou, F. 2015. Grazing intensity and soil depth effects on soil properties 
in alpine meadow pastures of Qilian Mountain in northwest China. Acta Agri-
culturae Scandinavica, Section B-Soil & Plant Science, 65: 222–232.

Yu, G., Xiao, J., Hu, S., Polizzotto, M.L., Zhao, F., McGrath, S.P., Li, H., Ran, W. 
& Shen, Q. 2017. Mineral Availability as a Key Regulator of Soil Carbon Stor-
age. Environmental Science & Technology, 51: 4960−4969.

Zar, J.H. 1999. Biostatistical Analysis. Fourth Edition. Prentice-Hall, New Jersey.
Zhao, Y., Peth, S., Krümmelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, 

C. & Peng, X. 2007. Spatial variability of soil properties affected by grazing in-
tensity in Inner Mongolia grassland. Ecological Modelling, 205: 241-254.

Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., Zhou, H. & Hosseinibai 
S. 2017. Grazing intensity signi�cantly affects belowground carbon and nitro-
gen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23: 
1167-1179.

Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P. & Fuhrer, J. 2007. 
Measured soil organic matter fractions can be related to pools in the RothC mod-
el. European Journal of Soil Science, 58: 658-667.







http://www.fao.org/partnerships/leap

CA2934EN/1/04.19

ISBN 978-92-5-131408-1 

9 7 8 9 2 5 1 3 1 4 0 8 1




