Fertilizer use by crop in India

Land and Plant Nutrition Management Service
Land and Water Development Division

Food and Agriculture Organization of the United Nations
Rome, 2005
Contents

Preface vii
Acknowledgements viii
Abstract ix
Abbreviations and symbols xi

1. Introduction 1
 Agro-ecological zones 3
 Major soil groups 4
 Alluvial soils 4
 Black soils 4
 Red soils 9
 Laterite and lateritic soils 9
 Desert (arid) soils 9
 Forest and hill soils 9
 Saline and sodic soils 10
 Peaty and marshy soils 10
 Soil fertility status 10
 Farm sizes 11

2. The Fertilizer Sector 13
 Production 14
 Imports 14
 Consumption 15
 Consumption at state level 15
 NPK consumption ratio 16
 Consumption by product 17

3. Organic manures and biofertilizers 19

4. Fertilizer use by crop 21
 Fertilizer use by agro-ecological zone 21
 Arid ecosystem 23
Semi-arid ecosystem 23
Subhumid ecosystem 24
Humid-perhumid Ecosystem 24
Coastal ecosystem 25
Island ecosystem 25
Fertilizer use by crop 25
Paddy rice 27
Wheat 27
Sorghum 27
Pearl millet 27
Maize 28
Pigeon pea 28
Rapeseed and mustard 28
Groundnut 29
Sugar cane 29
Cotton 29
Jute 29
Other crops 30
Rice–wheat system 30

5. Prices and Profitability of Fertilizers 33
 Prices of fertilizers 33
 Prices of agricultural products 34
 Profitability of fertilizer use 34
 Fertilizer subsidy 35

6. Fertilizer distribution and credit 39
 Components of marketing costs 40
 Credit 41

7. Future prospects 43

References 45
List of tables

1. Distribution of area according to annual rainfall 1
2. Important features of agro-ecological zones of India 5
3. Extent of macronutrient deficiency in India 10
4. Extent of micronutrient deficiency in India 11
5. Number, area covered and average size of landholdings 11
6. Chronology of fertilizer production in India 13
7. Production by product 2003/04 14
8. Production, importation and consumption of fertilizers 15
9. Consumption of fertilizers by state 2003/04 16
10. Growth in biofertilizer production 20
11. Growth in fertilizer consumption in India 21
12. Fertilizer consumption in agro-ecological zones of India, 2003/04 22
13. Fertilizer use on important crops, 2003/04 26
14. Fertilizer-use pattern under the rice–wheat cropping system in the Indo-Gangetic Plains 30
15. Maximum retail prices of fertilizers, by product 33
16. Maximum retail prices of fertilizers, nutrient basis 34
17. Procurement/minimum support prices of agricultural products 34
18. Physical returns 35
19. Profitability of mineral fertilization for selected crops 2004/05 36
20. Subsidies on fertilizers 37
21. Credit flow by type of agency for agriculture and allied activities 42
List of figures

1. Crop groups by cropped area ... 2
2. Agro-ecological zones of India .. 3
3. Dominant soil map of India .. 8
4. Share of fertilizers in total N and P_2O_5 consumption, 2003/04 .. 17
5. Fertilizer marketing and distribution channels 40
6. Share of various components in marketing cost of urea 41
Preface

This study, commissioned by the Food and Agriculture Organization of the United Nations (FAO), is one of a series of publications on fertilizer use on crops in different countries.

The aim of the series is to examine the factors underlying present fertilizer usage. These factors include the agro-ecological conditions, the structure of farming, cropping patterns, the availability and use of mineral and organic plant nutrients, the economics of fertilizers, and research and advisory requirements. The reports examine those factors that will or should determine the future development of plant nutrition on a country-by-country basis.

In the past two decades, there has been an increasing focus on the adverse environmental impact of both the underuse and the overuse of plant nutrients. The efficient use of plant nutrients, whether from mineral fertilizers or from other sources, involves the shared responsibility of many segments of society including international organizations, governments, the fertilizer industry, agricultural research and advisory bodies, traders and farmers. The publications in the series are addressed to all these parties.

Fertilizer use is not an end in itself. Rather, it is a means of achieving increased food and fibre production. Increased agricultural production and food availability can, in turn, be seen as an objective for the agriculture sector in the context of contributing to the broader macroeconomic objectives of society. The FAO/IFA 1999 publication Fertilizer strategies provides a review of the options available to policy-makers.

The contents of the series of studies differ considerably from country to country in view of their different structures, histories and food situation. However, in each case the aim is to arrive at a better understanding of crop nutrition in the country concerned.
Acknowledgements

Dr. R.K. Tewatia, Chief Agricultural Sciences of the Fertiliser Industry of India (FAI) and Mr. T.K. Chanda, Chief Statistics and Information Technology, FAI, compiled this report.

The study benefited from the contributions of K. Isherwood (consultant FAO), J. Poulisse and T. van den Bergen (FAO).

Cover photographs (wheat – background – paddy, cotton and litchi) provided by the FAI.
Abstract

In India, agriculture accounts for about 22 percent of gross domestic product. There are about 116 million farmholdings with an average size of 1.4 ha. The cultivated area is about 141 million ha and has remained constant for the past 30 years although the cropping intensity has increased from 118 to 135 percent during this period. The area of land receiving irrigation from different sources is almost 55 million ha.

The country has been divided into 20 agro-ecological zones and the soils classified into 8 major groups. The organic carbon content of most Indian soils is very low and nitrogen deficiency is universal. Most of the soils are low to medium in phosphorus and potassium, and sulphur deficiencies have developed over time. Soil fertility depletion and the increasing deficiencies of certain micronutrients are causes of concern.

Fertilizer consumption has increased from less than 1 million tonnes of total nutrients in the mid-1960s to almost 17 million tonnes today. The introduction of high-yielding varieties in the 1960s boosted fertilizer use. The high grain and fertilizer prices on the international markets during the oil crisis of 1973–74 provided a further impetus to policies aimed at improving the country’s fertilizer supplies and food security. The production of nitrogen and phosphate increased from 1.8 million tonnes of nutrients in 1975/76 to 14.2 million tonnes (K₂O) in 2003/04. In the absence of domestic natural resources, all potash fertilizers are imported; the imports in 2003/04 were to 2.6 million tonnes K₂O compared with 0.4 million tonnes in the mid-1970s.

The intensity of fertilizer consumption varies greatly between the regions, from 40.5 kg/ha of total nutrients in Rajasthan to 184 kg/ha in Punjab. Urea accounts for 82 percent of total nitrogen consumption and di-ammonium phosphate for 63 percent of phosphate consumption.

Organic manures make a significant contribution to the supply of plant nutrients and soil fertility. However, a substantial proportion of cattle manure is used for purposes other than fertilization and the share available for crop nutrition is shrinking. The use of biofertilizers has
increased in recent years although inconsistent crop responses to these products remains a constraint.

Six crops (rice, wheat, cotton, sugar cane, rapeseed and mustard) consume about two-thirds of the fertilizer applied. The irrigated area, accounting for 40 percent of the total agricultural area, receives 60 percent of the fertilizer applied.

The Government of India fixes minimum support prices for the main crops, controls the farm price of urea and issues indicative selling prices of other fertilizers. The prices of fertilizers are subsidized. The Government’s aim is that farmers should receive a price for their crops and pay a price for fertilizers that makes the use of fertilizers acceptable and remunerative. The subsidy on fertilizers is channelled through the fertilizer production industry, being calculated to ensure a reasonable return to the industry.

Fertilizer distribution is effected through private channels, cooperatives and certain institutions. There are 283,000 sales outlets in the country.

The population of India exceeds 1,000 million people. It is estimated that it will reach 1,400 million by 2025, requiring 300 million tonnes of foodgrain. Little extra land is available and the increase in production will have to come from higher yields, for which there is ample scope. In order to reach the required yield levels, fertilizer use will need to increase and improve. Present application rates are relatively low in many areas. The efficiency of fertilizer use could be improved through fertilization practices that include an application of macronutrients and micronutrients according to crop requirements. An adequate supply of credit for farmers and distributors is necessary to ensure the availability of fertilizers when and where they are required.
Abbreviations and symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEZ</td>
<td>Agro-ecological zones</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>B</td>
<td>Boron</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>ECA</td>
<td>Essential Commodities Act</td>
</tr>
<tr>
<td>FAI</td>
<td>Fertiliser Association of India</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>GCA</td>
<td>Gross cropped area</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GPS</td>
<td>Group Pricing Scheme</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HYV</td>
<td>High-yielding variety</td>
</tr>
<tr>
<td>ICAR</td>
<td>Indian Council of Agricultural Research</td>
</tr>
<tr>
<td>IGP</td>
<td>Indo-Gangetic Plains</td>
</tr>
<tr>
<td>INSS</td>
<td>Integrated nutrient supply systems</td>
</tr>
<tr>
<td>KCC</td>
<td>Kisan (farmer) credit card scheme</td>
</tr>
<tr>
<td>LGP</td>
<td>Lower Gangetic Plain</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>MSP</td>
<td>Minimum Support Price</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NBSS&LUP</td>
<td>National Bureau of Soil Survey and Land Use Planning</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
</tbody>
</table>
Phosphate and potash may be expressed as their elemental forms P and K or as their oxide forms \(\text{P}_2\text{O}_5 \) and \(\text{K}_2\text{O} \). Nitrogen is expressed as N. In this study, phosphate and potash are expressed in their oxide forms.

PET Potential Evapotranspiration

PSB Phosphate-solubilizing bacteria

RPS Retention Pricing Scheme

A Sulphur

TGP Trans-Gangetic Plain

VCR Value-cost ratio

Zn Zinc

Fertilizers

- **ACl** Ammonium chloride
- **AN** Ammonium nitrate
- **AS** Ammonium sulphate
- **CAN** Calcium ammonium nitrate
- **DAP** Diammonium phosphate
- **KNO_3** Potassium nitrate
- **MAP** Mono-ammonium phosphate
- **MOP** Muriate of potash (potassium chloride)
- **SOP** Sulphate of potash (potassium sulphate)
- **SSP** Single superphosphate
- **TSP** Triple superphosphate
- **NPK** Compound fertilizer containing N, \(\text{P}_2\text{O}_5 \) and \(\text{K}_2\text{O} \)
- **NP** Compound fertilizer containing N and \(\text{P}_2\text{O}_5 \)
- **PK** Compound fertilizer containing \(\text{P}_2\text{O}_5 \) and \(\text{K}_2\text{O} \)

N: Nitrogen

\(\text{P}_2\text{O}_5 \) or P: Phosphate*

\(\text{K}_2\text{O} \) or K: Potash*

* Phosphate and potash may be expressed as their elemental forms P and K or as their oxide forms \(\text{P}_2\text{O}_5 \) and \(\text{K}_2\text{O} \). Nitrogen is expressed as N. In this study, phosphate and potash are expressed in their oxide forms.