Weedy rices – origin, biology, ecology and control
Weedy rices – origin, biology, ecology and control

by
James C. Delouche
Nilda R. Burgos
David R. Gealy
Gonzalo Zorrilla de San Martín
and
Ricardo Labrada
with the collaboration of
Michael Larinde
and
Cadmo Rosell
The mention or omission of specific companies, their products or brand names does not imply any endorsement or judgement by the Food and Agriculture Organization of the United Nations.

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Communication Division, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to copyright@fao.org

© FAO 2007
Contents

Acknowledgements x
Preface xi
List of acronyms xiii

1. Introduction 1

2. The weedy rice problem 3
 What weedy rices are 3
 Where weedy rices are a problem 5
 The origins and sources of weedy rices 9
 Why weedy rices are so successful as weeds 13

3. Diversity of weedy rice populations 17
 Early and general observations on the diversity and variability of red rice 18
 Louisiana – an early study of variability in red rice 19
 Mississippi – a case study of diversity and variability in red rice 20
 Texas – comparative study of diversity in red rices from four states 28
 Arkansas – phenotypic and genetic diversity of red rice 30
 Hybrid swarms 34
 Hybridization of red and cultivated rice in the United States of America 37

4. Seed shattering and dormancy in weedy rices 45
 Early and heavy seed shattering 45
 Intense and persistent seed dormancy 51

5. Vigour and competitiveness of weedy rices 63
 Economic losses from weedy rices 63
 Competitive traits of red rices compared with cultivated rices 64
 Effects of red rice density and period of interference 67
 Overall effects of competition 70
 The physiology and competitiveness of red rices in the United States of America 70

6. Ecological relationships 79
 Seed shattering and dormancy 79
 Variation in maturity 81
 Protracted emergence 82
 Environmental interactions on and in the soil 85
 Ecological model of red rice germination 92
 Further discussion on hybrid swarms from cultivated rice / red rice crosses 93
7. Strategies for controlling weedy rices
 Recognition of weedy rices 97
 Preventing infestations 99
 Depletion of the weedy rice soil seed bank 104
 Suppression of weedy rice germination (water management and chemicals) 106
 Destruction or removal of weedy rice plants in the rice crop 108
 Alternation of rice with other crops or field uses to change environment 109
 Biotechnological strategy – herbicide-resistant varieties 111
 Requisites for effective weedy rice control programmes 113

8. Examples of weedy rice control campaigns 115
 South America – combat and control of red rice in Uruguay 115
 Central America and the Caribbean – management and control of weedy rices 121
 North America 124

9. Conclusions 127

References 131
List of tables

1. Major characteristics of the spikelets and grains in 1 084 panicles 19
2. Characteristics of 42 red rice contaminants from commercial rice fields in Mississippi and Texas, USA, 1978–1990 as compared with four cultivated varieties 22
3. Mean values for three traits influencing competitiveness 24
4. Characteristics of progeny from the 78/21 red rice segregate collected in a field of Starbonnet rice in Mississippi, USA, in 1978 27
5. Characteristics of progeny from the 79/16 red rice segregate collected in a field of the Starbonnet rice in Mississippi, USA, in 1979 29
6. Characterization of red rice in Arkansas, USA 33
7. Outcrossing from rice to rice and from rice to red rice under conditions in the United States of America 39
8. Estimated outcrossing rates between Clearfield rice (CL161) and different biotypes of red rice in commercial fields, Arkansas, USA 41
9. Shattering time and sees moisture content of 14 rice phenotypes 46
10. Time-course of seed shattering in selected red rice phenotypes and moisture content of seed in the upper third of the panicle at the first evidence of shattering 47
11. Time and degree of shattering of five weedy rice lines compared with variety IR 64 48
12. Intensity of seed dormancy for cultivated varieties and RR phenotypes harvested at 24 days past anthesis and dried for 9 days at 22–24 °C and after 6 months storage 53
13. Initial level of dormancy in 54 randomly selected SHR segregates 54
14. Variation in the persistence of dormancy in seeds of two cultivated varieties and five red rice phenotypes in open storage at 30 °C 54
15. Effects of storage of fully imbibed non-dormant and dormant seeds (circa 28-percent moisture content) of two red rice types at 30 °C on dormancy and germination 55
16. Differential germinative responses of non-dormant and dormant seeds of red rice ecotypes after accelerating ageing for periods up to 24 days 56
17. Effects of low temperatures and period of exposure on germination responses of fully imbibed non-dormant and dormant seeds (27–30-percent moisture content) of the Nato variety and the BLKH and SHA+ red rice phenotypes 56
18. Temperature ranges for germination for cultivated varieties and red rice ecotypes at intervals during a 14-day period 66
19. Comparison of seedling vigour for the Maybelle and Lemont varieties and the SHA- and BLKH red rice phenotypes during an 8-day period at 25 °C in dark conditions 67
20. Effects of season-long competition between the Starbonnet variety and the SHA- and BLKH red rice types in a 1:1 ratio on the time of 50-percent anthesis, harvest maturity, tiller number, plant dry weight, and grain yield 68
21. Effects of season-long competition between the Maybelle and Lemont varieties and the SHA- and BLKH red rice types in transplant and direct seeded culture on biomass and some yield components of the two varieties

22. Comparative agronomic and physiological traits of rice and weedy rice grown in non-competitive conditions at the Rice Research and Extension Center, Stuttgart, Arkansas, between May and August in 2000 and 2001

23. Comparative growth between rice and red rice under non-competitive condition, with optimal soil fertility level, in pot experiments conducted outdoors, May–September 2001, at Main Agricultural Research and Extension Center, University of Arkansas, Fayettev

24. Cumulative emergence percentages over an 8-month period of three cultivated varieties and four red rice types planted on 28 September 1981

25. Effects of planting depth for two different dates on emergence and seedling height of the Starbonnet variety and the SHA-, SHA+ and BLKH red rices 20 and 30 days after planting

26. Germination and dormancy of seeds after air storage in the field and buried 15 cm deep in soil under rainfed and flooded conditions

27. Germination and dormancy percentages of dormant and non-dormant seeds after periods of submergence 20 cm deep in water under ambient conditions

28. Effects of periods of constant and alternating temperatures on germination and dormancy of seeds of the SHA+ red rice ecotype

29. Effects of storage temperature and seed moisture content on the induction of dormancy in seeds of the SHA+ red rice phenotype

30. Effect of temperature regime in releasing induced dormancy in seeds of the SHA+ red rice phenotype

31. Seed testing laboratory standards for red rice in Uruguay

32. Survey of analyses of incoming rice received by the main rice mills of Uruguay
List of figures

1. Red rice distribution by hull colour in commercial fields in Arkansas, United States of America, summer 2002 and 2003 10
2. Rice production areas in the United States of America, 2005 18
3. Multidimensional scale diagram (using GD values derived from RAPD markers) of genotypic clustering of red rice accessions and cultivated rice 32
4. Effects of storage temperature on the rate of dormancy release in seeds of the Nato variety and five red rice phenotypes 59
5. Mean lengths of the mesocotyl, coleoptile, and exserted plumule for two rice varieties and two red rice phenotypes after 10 days at 25 °C 66
6. Mean lengths of the mesocotyl, coleoptile, and exserted plumule for two rice varieties and two red rice phenotypes after 8 days at 30 °C 67
7. Relative shoot dry weights of rice cultivar and red rice ecotypes at 70 days after emergence 74
8. Comparative response of Drew rice and strawhull red rice to fertilizer N in terms of biomass production and N-use efficiency, two weeks after heading 75
9. Cumulative field emergence over a 15-month period of the Starbonnet variety and three red rice phenotypes planted after 0, 2, 4 and 6-week simulated delays in shattering in 1983 80
10. Cumulative emergence over a 13-month period of seeds of the Labelle variety and three red rice phenotypes planted on 15 September 1982 83
11. Cumulative emergence over a 13-month period of seeds of the Labelle variety and three red rice phenotypes planted on 9 June 1983 83
12. Seasonal variation of dormancy and germination in deeply buried seeds of the Nato variety and three red rices 88
14. Evolution of the total planted area and the area planted with certified seeds in Uruguay, 1988–1998 117
15. National system for the production of rice seed in Uruguay 118
List of plates

1. Typical strawhull-red (SHR) and blackhull-red (BHR) rices collected in Mississippi in 1978 and 1979. Note lax and loose panicle branches and spikelets (seeds) lined up like beads on the branches. Seeds are shown in inserted photos.

2. Common weed seed contaminants in machine-harvested rice seed in the USA. Top: A: long-grain and medium-grain rices, B: BHR, C: Sesbania exaltata, D: Caperonia castaneifolia, E: weedy species of Poaceae. Bottom: A: long-grain and medium-grain rices, B: Rott

3. Top, left to right: Starbonnet long-grain, Nato medium-grain, BHR, and SHR rices; note typical pubescence on hulls of the RR. Bottom, left to right: SHR and BHR rices with and without hulls. The SHR is a short-grain type.

4. Variation in RR phenotypes as compared with the variety Starbonnet. The variety Starbonnet (SB) is on the left and an RR is on the right in each picture. A: SHR, 79/8; B: SHR, R-6; C: BHR, R-13; D: BHR, R-1; E and F: RR segregates.

5. Typical variation in spikelet (seed) type among BHR (top) and SHR (bottom) phenotypes.

6. Variation in spikelet (seed) characteristics of 21 of the progeny produced by the 79/16 (R-16) segregate collected in 1979.

7. Starbonnet (SB) type RR lines developed by selection from progeny of the 78/21 segregate. Top, left to right: non-shattering panicles of two RR lines and SB. Bottom, left to right: SB, two RR glabrous lines, one RR pubescent line.

9. Variation in grain length, awns, and awn colour in white-pericarp blackhull rices from segregating populations.

10. Variation in grain length, awns, spikelet type, and pericarp colour of progeny from the 78/21 segregate collected in a Mississippi Starbonnet rice field in 1978. Note variation in grain length from short to extra long.

11. Types of grains from weedy (red rice) plants in Arkansas, USA, collected between 2002 and 2003.

12. Representative weedy rice types in Arkansas, USA. A: short, compact; B: short, open; C: intermediate height, compact; D: intermediate height, open; E: tall, compact; F: tall, open canopy.

13. Typical F1 phenotype of hybrids between Clearfield rice and red rice. Regardless of red rice parent, F1 are generally taller, more vigorous, and more erect compared with the red rice parent.

14. Expected phenotypes from crosses between herbicide resistant Clearfield rice and strawhull red rice. A: F1 phenotype; B and C: segregation of F2 plants into a wide range of plant heights and maturity periods. An extremely early plant and an extremely late
15. Top: seed shattering of four RR phenotypes compared with the non-shattering variety Starbonnet (left). Bottom: vigour of RR manifested in tillering as compared with the Starbonnet variety (middle).

16. Top two rows: A sample of the diversity of RR in plant stature, foliage and panicle characteristics compared with cultivated varieties. A, left to right: Nato, Lamont, a semi-dwarf SHR, Starbonnet, a Starbonnet-like RR, and the SHA- SHR. B, left to right:

17. A: Small rice huller used in seed testing for examining rice seed samples for the presence of RR. B: Seed sample with hulls on. C: Seed sample with hulls removed.

18. Top: Immature caryopses (seeds) suspected of being RR but without any discernible pigmentation in pericarp (red and white pericarp seeds shown in centre for comparison). Bottom: The KOH test for positive identification of caryopses of RR.
Acknowledgments

The FAO Plant Production and Protection Division (AGP) wishes to acknowledge James Curt Delouche, Professor Emeritus of the University (Mississippi State University, United States of America), the main author of this publication for his interest and availability to lead in the collection and collation of information, as well as, writing and preparing the publication. AGP also express sincere thanks to the Co-authors Professor Nilda R. Burgos (University of Arkansas, United States of America), David R. Gealy (United States Department of Agriculture, Agricultural Research Services, United States of America), Gonzalo Zorrilla de San Martín (Instituto Nacional de Investigación Agropecuaria, Uruguay), Ricardo Labrada (FAO Plant Protection Service) and Michael Larinde (FAO Seed and Plant Genetic Resources Service), who gave many hours of their time to provide updated and comprehensive information on the subject. Their dedication, knowledge and experience have been critical to make this publication a reality.

The critical contributions of largely unpublished dissertations and theses of graduate students of Mississippi State University on research they undertook and completed are also appreciated. In particular, we gratefully acknowledge the works of A.C.S.A. Barros, M.J. Constantin, A.A. Do Lago, E.F. Eastin, E. García-Quiroga, L.G. Howard-Kandakai, M.A. Larinde, O.J. Moreno, J.A. Noldin, K. Paquiot, N. Pitty, V.K. Shrivain, E.N. Stiers, T. Teekachunhatean, R.D. Veras and K. Wague. The assistance of K.D. Gordon for the computer elaboration of most of the tables, figures and photographic material is also gratefully acknowledged.

This document was circulated for peer review to Nguu Nguyen and Elcio Guimaraes, (FAO/AGPC), Tom Osborn and Robert Guei (FAO/AGPS) whose comments are greatly appreciated.

We also wish to thank Shrivaji Pandey, Director, Plant Production and Protection Division and Arturo Martinez, Chief, Seed and Plant Genetic Resources Service (AGPS) for their continuous support.

Finally, we wish to recognize the edition made by Julian Plummer, the preparation and formatting of the final text by Lynette Chalk and the administrative assistance of Liliana Lazzerini.
Preface

Weedy rices, especially types with a red pericarp, are globally well known as a problem in the rice industry. The economic and environmental problems they pose include those related to rice crop production, rice milling for commerce, quarantine regulations and seed trade. Each stakeholder in the rice industry has a different perception of the problem posed by weedy rice. For instance, red kernels of red rice detract from market value of marketed rice. Red rice is a Plant Quarantine object in many countries and various seed certification programmes, including the OECD seed scheme.

Various national and international stakeholders, including public and private institutions recognize weedy rices as serious pests that need concerted and coordinated efforts to bring it under control. In this context, the 21st Session of the International Rice Commission (IRC) observed *inter alia* in 2004 that: i) weedy rice, which is a product of the natural hybridization between cultivated varieties and wild rice relatives, has become a serious problem due to wider adoption of direct seeding as a result of the labour shortages and high costs in several countries; and, ii) weedy rice is not easy to control since it is a weed which has the same genome as cultivated rice. Normally the best way to combat weedy rice is through the use of clean rice seeds and pre-planting treatment - for example stale seed bed preparation, removing the germinated weedy rice mechanically or in some cases using a suitable herbicide before rice planting.

On the control of weedy rices, the IRC noted that the major issues related to weed management are resistance to herbicides/species shifts; mitigation of gene flow from cultivated rice with enhanced traits to weedy rice; herbicide drift; water scarcity (the most serious issue); emerging aquatic weed complex including invasive species; and input costs. In conclusion, the Commission recommended that *Integrated and diversified strategies for weed management should be urgently developed for sustainable rice production under the changing environment of high labour costs, increased adoption of direct seeding in crop establishment and water scarcity.*

This publication is proposed by FAO’s Plant Production and Protection Division (AGP) as commitment to tasks aimed at meeting the mandate of FAO as it relates to diffusion of valuable technical information on agriculture, using its diverse expertise and partnership arrangements. It provides the latest information on the origin, biology, ecology and control of weedy rices with the hope of providing a basis for strategies to control this problem. AGP is using its partnership with outstanding experts, academics from renowned universities and collaborators of the FAO network to collect valuable information which will enhance the capability of stakeholders to deal with the problems created by weedy rice and thereby help them to meet the high standards of the global rice trade.

We are grateful to the senior author, James C. Delouche, Professor Emeritus of the Mississippi State University, for his outstanding contribution to this publication based on his over 40 years experience in the area of seed technology and his pioneer work on detailed studies of red rice species. Equally, we express our sincere thanks to Nilda Burgos, Associate Professor, Weed Physiology of the University of Arkansas and
her colleague David R. Gealy for their invaluable contribution to this publication. We also recognize the inputs of Gonzallo Zorilla de San Martin.

Shivaji Pandey
Director
Plant Production and Protection Division
List of acronyms

ACA Asociación de Cultivadores de Arroz
AOSA Association of Official Seed Analysts
AOSCA Association of Official Seed Certifying Agencies
BHR Blackhull red rice
BLKH Blackhull
BrHR Brownhull (or bronzhull) red rice
DAP Days after planting
DNA Deoxyribonucleic acid
FFS Farmers field school
GA Gibberellic acid
GD Genetic distance
GMA Gremial de Molinos Arroceros
HYV High yielding variety
IMI Imidazolinone
INASE Instituto Nacional de Semillas
INIA Instituto Nacional de Investigación Agropecuaria
IRRI International Rice Research Institute
KOH Potassium hydroxide
N Nitrogen
NRRC National Rice Research Center
OECD Organisation for Economic Co-operation and Development
PP Pentose phosphate
PVC Polyvinyl chloride
RAPD Random amplified polymorphic DNA
RR Red rice
SHA Strawhull awnless
SHA+ Strawhull short-awned
SHR Strawhull red rice
SSA Sub-Saharan Africa
SSR Simple sequence repeat
TOT Training of trainers
USDA United States Department of Agriculture
Chapter 1
Introduction

Although weedy rices of several *Oryza* species have been in existence for many years in the vast areas of rice culture in Asia, they have been kept under satisfactory control in the transplant flooded culture system. However, these weedy rices and others introduced as contaminants with high-yielding varieties (HYVs) of *Oryza sativa* (or produced by crossing with them) are becoming serious problems in countries where direct seeding is replacing the transplant culture for all or for one or more of the rice crops in multicropping systems. As these trends continue and accelerate, the problem of weedy rices becomes more pervasive and serious. Similarly, in Africa, the second-oldest rice culture, several endemic species of *Oryza* (i.e. *O. barthii*, *O. longistaminata* and *O. punctata*) have long been a weed in the production of *O. glaberrima*, Africa’s cultivated rice. However, as in Asia, they are becoming a very serious problem and nearly impossible to control in the mechanized, direct-seeded rice schemes in various countries in West Africa and sub-Saharan Africa (SSA). Furthermore, *O. sativa* is replacing *O. glaberrima* as the main cultivated rice in many of the countries and additional weedy rices are emerging as contaminants in introduced seeds or from the crossing of cultivated and weedy types.

In the Americas and Europe, where rice culture began in historically recent times, weedy rices were introduced as contaminants in seed, and new or different types then developed as a consequence of crossing with cultivated types. In areas where direct seeding has been the main practice since the beginning, as in the United States of America and other countries in the Americas, or has become dominant in the last 30–40 years, as in Southern Europe and the Mediterranean, the most important and damaging types of weedy rices are red rices, varieties of *O. sativa* with weedy traits and grains that have a red pericarp. In these and other rice production areas where the crop is direct seeded, rice farmers, millers and extension and research workers view weedy red rice infestations as one of the most troublesome, difficult-to-manage and economically damaging weed problems. However, selected rice strains with a red pericarp are maintained and produced in some Asian countries as a special food for ceremonial occasions (Vivekanandan et al., 1979). In Vallee de l’Artibonite, Haiti, red rice selections have been cultivated for use as a “weaning” food for children (Delouche and Dougherty, 1973).

Against the background of a rapidly spreading and increasingly serious weed problem in one of the world’s most important food crops, the Global Workshop on Red Rice Control was convened in Varadero, Cuba, 30 August – 3 September 1999, under the sponsorship and guidance of the Food and Agriculture Organization of the United Nations (FAO). Thirty-three participants from 19 countries met to present reviews of the weedy rice situation in their countries, discuss the effectiveness of various control measures, and exchange information in formal and informal gatherings. The workshop group formulated 21 conclusions and recommendations, some technical, some economic and social, and some relating to the lack of educational and informational resources on the weedy rice problem. This report addresses the constraints on educational and informational resources highlighted by the workshop participants and by many other rice specialists around the world.
Chapter 2

The weedy rice problem

Rice (*Oryza sativa* L.) is an Asian species. China is thought to be its centre of diversity (Vaughan *et al.*, 2005). Weedy and cultivated rices both evolved from wild *Oryza* species. Of the 21 wild species in the genus *Oryza*, 9 are tetraploid (BBCC, CCDD) and the rest are diploid (Khush, 1997). Diversification into the different groups of *Oryza* probably occurred in China about 8 000 years ago. The wild species *O. rufipogon*, *O. nivara*, *O. glumaepatula*, *O. meridionalis*, *O. breviligulata*, *O. longistaminata* and the cultivated species *O. sativa* and *O. glaberrima* belong to the diploid gene pool (AA genome) and, therefore, can hybridize with each other. *O. sativa* is believed to have evolved from *O. nivara*, which in turn evolved from the wild species *O. rufipogon*. The cultivated *O. sativa* evolved into three main types: *indica*, *japonica* and *javanica*. Domestication in various climate regions in Asia resulted in the evolution of two types of *japonica*, a tropical *japonica* (such as the type now grown in the south of the United States of America) and a temperate *japonica* (such as the types grown in Japan and in California, the United States of America). *O. glaberrima*, the other cultivated species of *Oryza*, is native to Africa, and remains a crop of importance in West Africa.

Weedy rices, especially types with a red pericarp, are well known to rice farmers, suppliers of production inputs (including credit), millers, marketers of rough and milled rice, agronomists and other specialists involved in the rice industry in direct seeded areas where they are a problem. There are substantial differences in the meaning and significance of weedy rice among these participants and stakeholders in the industry, especially in the case of the dominant red-pericarp types. For farmers, weedy rice is a difficult-to-control, aggressive weed that increases the costs of production, reduces yield, lowers the market value of their rice crop and, where not controlled properly, can render the infested cropland unfit for rice production. Marketers and millers view it as a quality factor that can have a significant effect on costs and erode profits and reputation severely where it is not recognized and taken into account in buying and milling decisions. Suppliers of production inputs have to take special precautions to produce and market rice seeds that are not contaminated with those of weedy rice. For agronomists and other specialists involved in rice extension, research and other services, weedy rices represent a problem that is exceedingly difficult to resolve but easy to cause. These differing stakeholder perceptions are essentially one-dimensional views of a multidimensioned weed that produces a multidimensioned problem.

WHAT WEEDY RICES ARE

Weedy rices can be defined broadly and generically as plants of the genus *Oryza* that infest and compete with rice and other crops. Of these weedy rices, red rice is the dominant and most damaging type. It can be defined more narrowly and restrictively according to its common meaning to the miller, marketer, and consumer as a type of weedy rice that produces grains with a distinctly red or rouge pericarp (bran) rather than the tan or beige pericarp of cultivated varieties (Cragmiles, 1978). The red bran or pericarp is the critical characteristic that distinguishes red rice from other weedy rices and makes it a more troublesome and costly problem because of the heavy discounting of contaminated grain. Botanically, most specialists now classify weedy
types (including red rices) as *Oryza sativa*, the most important cultivated rice. Some specialists, especially in the past, have considered red rice to be *O. rufipogon* (Knapp, 1899; Stubbs, Dodson and Brown, 1904; Quereau, 1920; Kennedy, 1923) or *O. sativa* var. *rufipogon* (Dodson, 1900; Nelson, 1907, 1908). It is believed that red rice originated from *O. rufipogon*, an Asian perennial species of wild rice (Watt, 1891), which was the progenitor of *O. nivara*, an annual species, which, in turn, became the progenitor of *Oryza sativa* (Singh and Khush, 2000). Vaughan et al. (2001) collected red rice ecotypes from across the rice area of the south of the United States of America for analysis with simple sequence repeat (SSR) markers. They found that, while most of the red rice types were related closely to either *O. sativa indica* type or *O. sativa japonica* type, some were rather closely related to *O. rufipogon* and perhaps *O. nivara*. As previously noted, *O. rufipogon*, *O. nivara*, a few other *Oryza* spp., and weedy rices of *O. sativa* with the AA genome, i.e. diploids with 12 pairs of chromosomes, can intercross with cultivated *O. sativa* (Sitch, 1990). Thus, although *O. sativa* varieties are considered self-pollinating, they are genetically compatible and there is some outcrossing among them. This natural hybridization is responsible for the wide diversity of red rice populations worldwide. The development of herbicide-resistant rice varieties has provided a powerful technology for very effective and economical control of red rice. However, this technology also provides the opportunity for further diversification of red rice with herbicide-resistant types. This very current and important issue is reviewed and discussed in Chapters 3 and 7.

Some other species of *Oryza* are important weeds in the various rice-growing regions. The endemic species *O. latifolia* is a troublesome rice-field weed in Central America and other countries along the Gulf of Mexico and Caribbean Sea. In Italy and other Mediterranean areas, red rice is generally classified as *O. sativa* var. *sylvatica* (Ferrero and Vidotto, 1999; Vidotto and Ferrero, 2005). The weedy rices in West Africa, some with the red pericarp, belong to *O. barthii*, *O. longistaminata* (a perennial), *O. punctata*, *O. glaberrima* (the endemic African cultivated species), and the introduced *O. sativa*.

Agronomically, weedy rices are best defined in descriptive terms that are or should be meaningful to rice producers, rice millers and production specialists, for example:

> Weedy rices consist of weedy populations of the genus *Oryza*, mainly of *O. sativa* and with a predominance of the red pericarp, that are: phenotypically and genotypically diverse and changeable; very vigorous and competitive; exceedingly difficult to control; able to spread rapidly; and able to reduce both grain yield and the value of the grain (Sonnier, 1978; Huey and Baldwin, 1978). Most of the populations, variously termed ecotypes, biotypes or phenotypes, are as stable as cultivated varieties. However, a few are essentially hybrid swarms from weedy or weedy red and cultivated rice crosses from which most new weedy rice biotypes arise (Do Lago, 1982; Delouche, 1988).

In the distant past, different types of weedy rice were generated primarily through natural crossing between wild and cultivated rice species in areas where they grew (or still grow) sympatrically (Vaughan and Morishima, 2003; Australian Government, 2004). While this type of crossing is still important in a few areas in Africa and Asia, most types of weedy rice elsewhere now arise from much closer crosses between the plants of cultivated varieties and those of the weedy rices that infest the crop.

Definitions

In summary, this report makes use of the following definitions:

> Weedy rices: plants of the genus *Oryza*, mainly *O. sativa*, that infest and compete with rice and alternate crops.
Red rice: a type of weedy rice, mainly *O. sativa*, that has a red-pigmented pericarp. It is the most dominant, troublesome and economically damaging type of weedy rice.

Wild rice: species of the genus *Oryza*, including the progenitors of the two cultivated rices, that grow in largely undisturbed areas. However, some wild rices, particularly those of the *O. sativa* (AA) complex (i.e. *O. rufipogon*, *O. barthii* and *O. longistaminata*) and three species of the *O. officinalis* complex (i.e. *O. punctata*, *O. latifolia* and *O. officinalis*) have become invasive and very troublesome weeds in rice and other cropped areas.

Feral rice: a type of rice produced by a de-domestication process from the cultivated species that may have weedy traits.

WHERE WEEDY RICES ARE A PROBLEM

The weedy rice problem is pervasive. Weedy rices have long been, are now or are becoming a major problem throughout the world where rice crops are direct seeded.

The Americas

Direct seeding has long been the dominant planting method in the Americas.

In the United States of America, red rice infestations were reported as early as 1846 (Allston, 1846). It is generally believed that red rice was introduced into the United States of America at a much earlier date as contaminants in imported seed rice. Anecdotal information indicates that the first rice variety was introduced into what are now the states of North Carolina and South Carolina in 1698 from the India subcontinent. A subsequent introduction of a different rice variety or type is believed to have come from Madagascar (Stubbs, Dodson and Brown, 1904; Cragmiles, 1978). As rice cultivation expanded, seeds were imported from several other countries including Japan in a search for better varieties. Rice production moved gradually westward from the eastern tidal lands and wetlands into the southern area and, much later, into California. By 1899, the states of South Carolina, North Carolina, Georgia, Louisiana and Arkansas were producing rice, and weedy red rice was already a major problem. Dodson (1898) published the earliest and most detailed information on weedy red rice in the United States of America in an illustrated technical bulletin. In the first two sentences of the bulletin, he summarized the weedy red rice problem in terms that are as meaningful to most rice farmers today as they were to those in Louisiana more than a century ago: “All the rice planters in Louisiana are familiar with ‘red rice’ as it grows in the field. In many instances, to their sorrow, they are too frequently confronted with the annoying grain, and it often occurs that rice cultivation has to be abandoned for a period on account of its predominance.”

As there are no naturally occurring wild relatives of rice in North America, the only plausible explanation for the existence of weedy rices in production fields in the mid-1800s and earlier is that they were introduced as contaminants in imported seed, probably from India, Japan or both. Indeed, weedy rice strains from Brazil, China (upper Yangtze River area), Japan and the United States of America belong to the same group called crop “mimics” with *indica* characteristics (Tang and Morishima, 1996). While the majority of present-day red rices in the United States of America fall into the mimics category, recent studies (Vaughan *et al.*, 2001) suggest that *japonica* type weedy rices are also present. For many years, more than 100 years in some important cases, red rice has been an important weed in all of the main rice-growing states in the United States of America except California, i.e. Arkansas, Louisiana, Mississippi, Missouri and Texas. Red rice was a rice field weed in California from the 1920s (Kennedy, 1923;
Weedy rices – origin, biology, ecology and control

Bellue, 1932) at least into the 1950s, at which time it was considered the second most important weed in rice after *Echinochloa crus-galli* (Randall, 1950). Since then, red rice has apparently been virtually eliminated from the rice crop in California through the adoption of the water-seeding system, the use of appropriate herbicides and red-rice-free certified seeds. Plate 1 shows plants and seeds of typical strawhull-red and blackhull-red rice types in the rice area of the south of the United States of America. Seeds of common weeds (including red rices) in rice fields of the United States of America that are also difficult to separate from rice seed and, thus, occur as contaminants in rice seed are compared with those of medium- and long-grain cultivated varieties in Plate 2.

Rice was introduced to the Caribbean area earlier than to the North American mainland. The first reference to successful rice production is from Puerto Rico in 1535 (Lentini and Espinoza, 2005). Rice was also introduced into Mexico and Peru by the Spanish colonizers in about 1549. Weedy rices (including red rices) have been present in the Caribbean and the rest of the Americas for a long period, beginning soon after rice culture became significant and planting seeds began to be imported from other countries (including the United States of America). Red rice was apparently introduced into Venezuela from the United States of America in the mid-1940s in imported rice seed stocks (Dominguez, 1999). In Cuba, it was probably introduced in rice seeds from the United States of America during the intensification of rice cultivation beginning in 1927, or perhaps even earlier from Spain during the colonial period (Garcia de la Osa and Rivero, 1999). The extent and severity of the red rice problem in the reports from countries of the Americas in the Global Workshop on Red Rice Control (FAO, 1999) ranged from light to heavy between areas within a country and between countries with substantial rice cultivation. Noldin and Cobucci (1999) stated that red rice infestation is a critical problem in the state of Rio Grande do Sul, the most important rice production area in Brazil. They cited the use of red rice contaminated seeds as the main factor contributing to the initial spread of infestations and re-infestations. Fischer (1999) pointed out that the red rice problem is most serious in the tropical areas in Latin America where rice fields have to be drained after direct seeding, thus, precluding the establishment of the anaerobic seed bed conditions that are so effective in preventing germination of red rice, e.g. the transplant and water seeding systems. Monoculture and double-cropping of rice and the use of red rice contaminated seeds “results in perpetual field infestations”, which increase progressively to the extent that fields have to be abandoned in some cases.
While weedy red rice is not yet the most damaging weed in many of the countries, it has increased steadily in importance with the adoption of shorter-maturity, semi-dwarf varieties. It now ranks among the three or four worst weeds in most of the countries. Moreover, the nature of the weed problem and the difficulties of control have had or are having a profound influence on cultural practices, especially planting and water management after planting. Some countries, e.g. Costa Rica, Nicaragua and Venezuela, have reported problems with the endemic wild rice species *O. latifolia*, a white-pericarp type, often called *arrozon*, while *O. rufipogon* is claimed to be present as a weedy rice in Venezuela and Colombia.

Southern Europe and the Mediterranean

Southern European and other Mediterranean countries have not escaped the weedy rice problem. According to Vidotto and Ferrero (2005), shattering types of weedy rices were reported in Italian paddy fields early in the nineteenth century. Since then, weedy rices have spread and have become a major constraint on rice cultivation. The adoption of the transplant culture from about 1920 to 1960 retarded the spread of weedy rices considerably and reduced damage to the crop.

Since the beginning of the twentieth century, weedy rices in Europe have been classified as *O. sativa* var. *sylvestica*. According to Ferrero and Vidotto (1999), red-grain weedy rices began to be considered a significant problem when direct seeding replaced transplanting about 50 years ago. References cited in Eastin (1979) indicate that red rice was a problem in some Eastern European countries as early as the 1960s, e.g. Hungary and Bulgaria. However, it is in the last 25–30 years that they have become a major problem in European rice-growing countries with the adoption of “weak” semi-dwarf “indica-type” rice varieties and rice monoculture. Crop losses from weedy red rice infestations in Portugal can be as high as 50 percent, while in Spain weedy rice infestations range from very little to very severe in the main production areas (Barreda et al., 1999).

There are about 20 000 ha under rice in the Rhone Delta in southeast France (Mouret, 1999). Weeds are the main constraint on production, and among them red rice can be the most damaging, e.g. up to 50-percent reduction in yield. Strategies employed...
by farmers to control red rice infestations are diverse and range from traditional weed control practices to the use of chemicals and crop rotations.

Asia

Oryza rufipogon, a wild perennial rice with a red pericarp, is endemic to South and Southeast Asia. As previously noted, it is considered to be an ancestor of the *sativa* (AA) group of cultivated rices, i.e. *indica*, *japonica* and *javanica* types, and the likely donor of the red pericarp that is the common characteristic of the weedy red rices as well as selected red-pericarp lines of rice that have been and still are cultivated for ceremonial and other special occasions. However, in the context of the huge rice crop in Asia, weedy rices have not been among the more important weed problems in rice production because of the dominance of the flooded, transplant culture. The transplant culture was designed and adopted millennia ago in order to access important benefits including weed control. Puddling of the soil with retention of a film of water on the surface destroys weed seedlings that have emerged and results in anaerobic conditions that are unfavourable for germination of weed seeds. In addition, the use of relatively well-developed seedlings for transplanting provides a competitive advantage to the rice crop and facilitates the identification of weedy rice and other weed seedlings that do emerge for removal during post-transplant weeding operations.

However, in recent times, weedy rices have been increasingly reported among the major weed problems in some Asian countries, such as Malaysia, Sri Lanka, Thailand, India, Republic of Korea, philippines and Viet Nam. The weedy rices are morphologically similar to the cultivated rices in plant and seed characteristics. They share a common gene pool with cultivated rice, and they have the early and heavy seed shattering and dormancy traits that make them so difficult to control wherever they become established. The reported losses caused by infestations of weedy rices range from reductions in yield (by from 5 to 86 percent) to the abandonment of paddy fields by farmers facing the most severe infestations. The incidence and spread of the weedy rices in the affected countries is associated closely with the increase in direct seeding. The strong and growing trend in many Asian countries towards the practice of direct seeding for part or all of the annual rice crop (because of the shortage and high costs of labour) is extending the areas infested with weedy rices and increasing the severity of the infestations.

The extent of the areas affected by weedy rices varies among the countries. In Thailand, more than 2 million ha are seriously affected by weedy rices, while more than 500,000 ha are also infested in the Mekong River Delta in Viet Nam. Malaysia, Sri Lanka and the Philippines also have substantial areas of paddy production infested with weedy rices. It is probable that the increase in direct seeding in the huge paddy areas of Asia will result in the rise of the weedy rices to the top ranks of the most troublesome weeds in rice production.

The rapid emergence of weedy rice, “padi angina”, in northwest Malaysia following the adoption of direct seeding in the 1980s is a case in point (Vaughan et al., 2005). In Viet Nam, the transplant culture is popular and dominant in the north, while in the south more than 90 percent of the sown area is direct seeded (Chin et al., 1999). Only two crops of rice can be produced in the north owing to the cool winter season. However, triple-cropping is rather common in the south, and even quadruple-cropping is possible in some areas. In the case of triple-cropping, one or more of the crops might be transplanted. Infestation with weedy rices is lowest in transplanted rice and most severe in the “dry seeding” type of direct seeding. Most of the weedy rice types in Viet Nam have a red pericarp. Losses in infested areas average about 15 percent but can approach 70 percent in some cases. Surveys of farmers’ perceptions about the sources
of weedy rices reveal that 36.5 percent believe that they evolve from cultivated rice, 32.3 percent that they emerge from the soil seed bank, and 13.7 percent that they are introduced as contaminants in planting seeds.

Africa

Weedy rices are important weeds in the rice-producing areas in West Africa and south of the Sahel. Observations indicate that about 50 percent of the area sown to rice in Senegal is infested with biotypes of weedy rice (Diallo, 1999). Although weedy rices have been known in Senegal for a very long time, they have become an important problem only rather recently with the expansion, intensification and commercialization of rice culture and the replacement of traditional practices with those that invariably accompany such a transition, e.g. new varieties, irrigation, mechanization, and, very importantly, the concept of product quality in marketing. Some of the red-pericarp weedy rice biotypes in Senegal and other rice-producing areas in West Africa are different from those in other parts of the world. The annual species, *O. barthii*, and weedy biotypes of cultivated *O. glaberrima* are important there. During a 1970 visit to the Bumba area along the Congo River, then an important rice production and milling centre in the Democratic Republic of the Congo (formerly Zaire), Delouche (1970) determined that seed supplies and grain of R66, an important variety developed during the colonial period, were highly contaminated (10–35 percent) with red rice. Heavy infestations of red rice were also observed in the slash-and-burn dryland rice fields. Examination of milling records indicated that the high rates of contamination with red rice combined with inexperience and poor maintenance of essentially obsolete milling equipment reduced mill turnout considerably, especially head rice (whole grain) yield (which averaged only about 3 percent). In Egypt, an important North Africa rice producer, the types of weedy rice (including red rices) appear to be more similar to those in the Americas and Asia than to those in West Africa and SSA.

Johnson *et al.* (1999) reported that the main wild/weedy rice species in Africa south of the Sahel are biotypes of the annuals *O. barthii*, *O. glaberrima*, *O. punctata*, and the perennial *O. longistaminata*, which reproduces mainly from rhizomes. Two of these weedy species, the annual *O. barthii* and the perennial *O. longistaminata*, are among the four most important weeds in West Africa and the Sahel (Labrada, 1999). Overall, the wild rice / red rice situation in Africa differs considerably from that in other rice areas. Johnson *et al.* (1999) pointed out that the dominant lowland, mangrove and deep-water production systems that cover about 60 percent of the rice area in West Africa vary greatly in terms of the level of land development, water control and management, while relatively modern irrigated production systems have been developed in most of the countries. This diversity of production systems combined with “the uncertain genesis and identity of wild rices, the extent of gene introgression with crop cultivars and the degree of morphological and genetic variation further complicate the development of management strategies for these weeds.” (Johnson *et al.*, 1999).

THE ORIGINS AND SOURCES OF WEEDY RICES

The most generally accepted views and ideas about the origin and/or genesis and evolution of weedy rices (including red rices) have been outlined above. Olofsdotter, Valverde and Madsen (1999) prepared a comprehensive review of the genetic relationships among red, weedy, cultivated and wild rices for the Global Workshop on Red Rice (FAO, 1999). Chang (2003) and Vaughan and Morishima (2003) provide recent authoritative reviews of the origin and taxonomic relationships of weedy rices. However, the origins and/or sources of weedy red rice are well known.
Contaminated seed stocks

Allston (1846) documented the presence of three distinct phenotypes of red rice in rice fields in North Carolina and South Carolina, the United States of America, in 1846. In 1850, the United States Department of Agriculture (USDA) agriculturists identified four distinct red rice phenotypes in the same area (USDA, 1850). These early observers and most later rice specialists concluded that red rice must have been introduced into the United States of America as a contaminant in imported rice seed, probably much earlier than 1846, since rice cultivation began in the colony of South Carolina in 1698 or even earlier with imported seeds, possibly from Madagascar (Dodson, 1898, 1900; Knapp, 1899; Jones and Jenkins, 1938). Cragmiles (1978) stated without qualification that: “red rice was definitely present in the rice fields of the American colonists long before rice cultivation began on a commercial scale in Texas, Louisiana, and Arkansas.” The presence of red rice in California in the early 1900s is powerful evidence of its introduction as contaminants in seeds obtained from the southern states of the United States of America (Bellue, 1932). While red rices have been essentially eliminated from California, they have persisted in the other rice-producing states for various reasons, perhaps the most important being the continued and periodic infestation with red rice contaminated seeds. Recent surveys in Arkansas illustrate the importance of contaminated rice seeds as the main vehicle for the spread of the weedy rices (Figure 1). Red rices were found in rice-growing areas of Conway and Pope counties in the Arkansas River Valley, which are geographically isolated from the other rice-growing counties in the state. The only link between the isolated counties and the rest of the rice area is seed exchange.
The original sources of red rice in Latin America and the Caribbean are believed to be rice seeds imported from the United States of America (Domínguez, 1999; García de la Osa and Rivero, 1999), Spain or through Spain, The Netherlands, France and Portugal from Asian suppliers for cultivation in their “New World” colonies. After introduction, red rice spread to other areas through the exchange of seeds.

In Asia and West Africa, the origins of weedy rices were different from in the Americas or Europe because they are the sites of the evolution and domestication of the two cultivated rice species, *O. sativa* in Asia and *O. glaberrima* in Africa, where there are other wild rice species, many of which are troublesome weeds, and where rice has been cultivated for thousands of years. However, the present initial and recurring sources of weedy rice appear to be essentially the same as in the Americas. For example, farmers and specialists in Viet Nam recognize the importance of contaminated rice seeds as a source of weedy rice infestations and re-infestations (Chin et al., 1999). Similarly, weedy rice contaminated seed (either purchased or exchanged) is considered to be the main means of infestation of new rice lands in Africa and of re-infestation of areas that have been largely freed of weedy rices (including red rices) (Johnson et al., 1999).

Other means of distribution

Several “delivery systems” other than seed stocks have been implicated in the spread of weedy rice. Harvesting equipment is a significant source of contamination of rice seed lots and rice fields with seeds of weedy rice, other rice field weeds, and other varieties, i.e. “volunteers” (De Souza, 1989; Smith, 1992). Weedy rice seeds are also spread within fields and to other fields in mud adhering to the hooves and legs of animals, the wheels of carts, trucks and similar vehicles and in the movement of rice straw (Quereau, 1920; García de la Osa and Rivero, 1999). Very rigorous procedures are specified and used for cleaning harvesting equipment used in certified seed production. Alert and conscientious rice farmers use similar procedures in grain operations in order to lessen the chances of spreading weedy rice within and among their rice fields.

Because the spikelets (grains) of many of the weedy rice phenotypes are pubescent and some have long, hispid awns (Plate 3), the seeds can be spread by adhering to the fur of domestic and wild animals and even the clothing of field workers. One of the most persistent beliefs

Plate 3

Top, left to right: Starbonnet long-grain, Nato medium-grain, BHR, and SHR rices; note typical pubescence on hulls of the RR. Bottom, left to right: SHR and BHR rices with and without hulls. The SHR is a short-grain type.
regarding the spread of weedy red rices is that they are spread by waterfowl, mainly ducks that frequent rice fields for feeding after harvest. However, data collected from intestinal analyses of hunter harvested ducks of many species and in controlled feeding experiments refute this belief. Some very small seeds, e.g. *Leptochloa fascicularis*, and very hard seeds, e.g. *Polygonum* spp., pass intact through the digestive system of ducks but red and cultivated rice seeds do not (Powers, Noble and Chabreck, 1978; R.M. Kaminski, personal communication, 1993). Indeed, an article in *Rice Journal* in 1973 proposed ways to encourage wild ducks to stop over in rice fields in order to eat and deplete the red rice seeds in the top zone of the soil (Fontenot, 1973).

Hybridization of weedy and cultivated rices

Contaminated planting seed stocks are the main source and means of distribution of weedy rices in all the areas where they are a problem. However, there is another very important source of weedy rice types that has been documented conclusively for the weedy red rices. It is the source of the red rice types that arise to mimic the types of cultivated varieties produced in the area in terms of phenology, morphology and adaptation. These weedy types evolve from crosses of red and cultivated rices that result in the hybrid swarms from which, over time, types with high weedy potential and enhanced or special adaptability are selected under the pressure of natural forces and human activities involved in rice culture. Hybridization of a red rice with cultivated rice in the rice fields in North Carolina and South Carolina in the early nineteenth century (or earlier) was the most probable source of one or more of the three to four distinct biotypes of red rice described by Allston (1846) and the USDA (1850).

Even relatively recently, some authors of papers on the weedy red rices have become equivocal discussing the cause or origin of their great diversity. The earliest investigators recognized considerable diversity in red rice, a diversity that they attributed without reservation to hybridization of red and cultivated rices (Dodson, 1898; Knapp, 1898; Quereau, 1920). Furthermore, Beachell *et al.* (1938) published definitive work demonstrating that significant natural crossing occurs in rice, and Jodon (1959) published a widely quoted paper on the extent of natural crossing in rice (about 1 percent). It has been suggested that at least in the past the gene flow in the natural crossing between cultivated and weedy rices (including red rices) has been from the cultivated varieties to the weedy rices because the latter are more receptive to “non-self” pollen (Vaughan and Morishima, 2003; Australian Government, 2004). The significance of natural crossing in the persistence, spread and adaptability of red rice is discussed in detail in Chapters 3 and 4.

Early myths, speculations and conclusions

In earlier times (e.g. before the rediscovery of Mendelian genetics about 1900), the appearance of weedy red rices in rice fields stimulated much speculation, resurrected some old but enduring myths and generated some new ones about their origin or source. Many early lay observers of the weedy red rices believed that they were the result of the reversion, or conversion, of cultivated rices to wild forms. In the Louisiana rice area of the United States of America in the late 1800s, the common belief among rice farmers was that white rice seeds shattered onto the ground during harvest and exposed to winter conditions were changed irreversibly in some way so that those that survived the winter and emerged the following spring produced plants that had red rice characteristics and produced red grains. Once changed from white to red, the seeds continued to produce red rice in later generations, thus, causing the rapid increase in weedy red rice infestations. Other farmers thought that injuries to the young rice plants or trampling of the field by animals and wagon wheels induced injury responses
that resulted in the production of red grains that produced red rice plants and grains the next generation, and so on. These beliefs and others about the origins and sources of red rice and complaints to the Director of the Louisiana Agricultural Experiment Station led to the assignment of W.R. Dodson, Station Botanist, to investigate the “cause of the development of the red grain” in Louisiana rice fields and the publication of his 20-page illustrated bulletin (Dodson, 1898). In this publication, Dodson refuted all of the beliefs and myths about the environmentally- or injury-induced and/or seemingly spontaneous one-way and one-time change of white cultivated rice to red rice through close observations, rigorous logical reasoning, and field experiments.

Reading this century-old bulletin can be a most instructive exercise for present-day students of the red rice problem because it identifies and describes most of the traits and ecological aspects that make the red rice problem so interesting and challenging even though the author was unaware of Mendel’s laws of inheritance. Dodson’s conclusions from his investigations of red rice in Louisiana were: “I. Red rice is a different variety from the white (rice). II. White rice will not produce red seeds when the seeds have been exposed to the weather all winter, as is commonly believed by planters. (The white pericarp trait does not spontaneously mutate to red; white is the recessive allele.) III. The two varieties will cross, producing hybrids, and these hybrids tend to revert to one of the parental forms, red rice being the stronger. (Most of the obvious red rice traits are genetically dominant over their alleles in white rice.) IV. The red rice, being dependent upon self preservation is hardier than the white rice, and also has a special device for preserving the seeds shattered to the ground in early fall. (Red rice seeds are very dormant and survive the winter.) V. The proper methods to be adopted (for managing red rice infestations) are to use clean seed and prevent red rice from seeding (on late emerging plants or ratoons) after the general harvest.” (Italics in parentheses added for clarity, explanation or the modern interpretation.)

WHY WEEDEY RICES ARE SO SUCCESSFUL AS WEEDS

Weeds are plants growing where they are not wanted. “Volunteer” maize plants in a soybean crop following maize are troublesome weeds to a soybean seed producer. The volunteer plants have to be rogued (removed) from the field before the final field inspection and harvest, which adds to the cost of production. Similarly, rice seed producers have to take special precautions when they change variety in order to prevent contamination of the new rice variety with volunteers of the previous variety. Producers who change from a medium-grain to a long-grain rice variety sometimes experience discounts in marketing owing to mixtures of grain types caused by volunteers. Volunteers of these types from different crops (maize and soybean) or different varieties of a crop (e.g. rice) are weeds and can be troublesome, especially to seed producers, but they do not pose serious problems. They are managed easily and are usually self-eliminating even where no specific control measures are taken. They are usually not even marginally successful as weeds.

Weedy traits shared with other weeds

Most of the weedy rice types are essentially varieties or strains of rice that are highly successful as weeds. They cross, albeit infrequently, with cultivated rice varieties.

While it may seem that their success as weeds is related to the red pericarp because most of them are red, there is essentially no evidence that the red pericarp per se has an effect on the weedy habit. However, the possibility that the red-pericarp characteristic has an indirect effect through linkage with important weedy traits, such as intense and prolonged seed dormancy, should not be dismissed. Red rice is a highly successful
weed because it possesses essentially all of the traits that contribute to the success of weedy plants and some that are unique to weedy strains of cultivated species. Some of the more important traits that red rice shares with other very troublesome weeds are:

- excellent adaptation to the agronomic practices and ecological conditions favoured for the crop that it infests;
- a life cycle that is closely synchronized with the crop;
- abundant production of seeds that develop a capacity for germination relatively early and are dispersed fully and widely through early, easy and heavy shattering;
- rapid emergence followed by vigorous, competitive vegetative growth and reproductive development;
- intense and prolonged seed dormancy that maintains the germinability of shattered seeds on or in the soil through the cold or dry season until the next crop and those incorporated in the soil seed bank for multiple years;
- the seeds commonly occur as contaminants in planting seeds, which is a major means of widespread distribution of the weed.

Special weedy traits

Weedy rices, especially the ubiquitous weedy red-pericarp types, share a number of characteristics with other successful weeds. However, they also possess some rather unique characteristics derived from their botanical identity as strains or biotypes of the cultivated rice species they infest, mainly *O. sativa*, but also of *O. glaberrima* in some areas in West Africa and the Sahel. These unique and relatively rare characteristics contribute greatly to the complexity and difficulty of weedy rice control and to the losses resulting from infestations. These characteristics are:

- Most weedy rice ecotypes are so phenologically and morphologically similar to cultivated rice varieties from the seedling to the reproductive stage that they are difficult to recognize during the periodic weeding of the crop.
- Weedy rice seeds are difficult to distinguish and essentially impossible to separate from those of some cultivated varieties, especially medium-grain varieties. They are readily and often unknowingly distributed in planting seeds and in rice-harvesting equipment.
- As most of the weedy rice types belong to the same species as cultivated rice, the “selective” herbicide strategies that are used widely and effectively for control of other important weeds that are genetically dissimilar from the crop cannot be employed.
- Weedy rice contaminants in rice grain are difficult or impossible to remove. The red pericarp (bran) of weedy red rice is very objectionable to consumers and reduces the market grade and value of the grain. “Overmilling” to remove the objectionable red bran results in breakage and reduced mill turnout and grade. Thus, the losses from weedy red rice are not limited to the added costs of production for weeding and losses in yield but extend through milling to the final product.

Critical weedy traits of weedy rices

Each of the traits and characteristics of the weedy rices described above contributes to the complexity and severity of the problem in direct-seeded rice culture. However, four traits are critical for the establishment and continuation of weedy rice as a serious weed problem. The absence of any one of these traits would change it into a lesser, more easily managed weed, while the absence of any two of the traits would reduce it to the weedy status of a volunteer. The critical characteristics or traits are:
diversity and changeability of weedy red rice populations produced by natural crossing with cultivated varieties;
heavy seed production with early and heavy shattering;
intense and prolonged seed dormancy as compared with cultivated rice varieties;
superior vigour and competitiveness from emergence to the reproductive stage compared with cultivated varieties.

The first characteristic, i.e. diversity and changeability, sets weedy rice apart from most other serious weeds. However, it is, perhaps, the least understood and appreciated. It is reviewed and discussed in detail in Chapter 3, while the nature and interrelationships of the other three traits are considered in Chapters 4 and 5.
Chapter 3

Diversity of weedy rice populations

Four distinct types of red rice were documented in the United States of America as early as 1850 (USDA, 1850), and at least 7 different types were reported in the literature between 1846 and 1956. A review of the relatively recent literature reveals widespread recognition of the diversity and changeability of weedy rices (including red rices), and the reports in Global Workshop on Red Rice Control (FAO, 1999) are replete with references to the different types, variously termed biotypes, ecotypes, phenotypes or morphoforms, of weedy rices (including red rices) identified in various countries:

- Brazil: two distinct types recognized in 1971 (Mariot, 1971);
- Colombia: much morphological diversity (Montealegre and Vargas, 1992), and 30 types of red rice that fall into four groups (Carroza, 1999);
- Cuba: 38 red rice biotypes (Garcia de la Osa and Rivero, 1999);
- Guyana: “short” and “tall” red rice types recognized (Small, 1999);
- Mexico: seven distinct types of red rice (Aragon, 1969);
- Senegal: red rice biotypes of *O. glaberrima* and *O. barthii* (Diallo, 1999);
- Spain: biotypes of weedy rice some with red pericarp, some with white pericarp (Barreda et al., 1999);
- Suriname: “179 different weedy rices”, some with the red pericarp, some with the white pericarp (Khodabaks, 1999);
- Viet Nam: ten distinct and described ecotypes of red rice (Chin et al., 1999).

The United States of America is used as the geo-ecological location and database for this chapter on the diversity and changeability of weedy rice, especially the weedy red rices, for two reasons: (i) it has been a problem in the direct-seeded rice culture of the United States of America for more than 200 years; and (ii) research studies and observations by researchers and extension workers in the rice-growing area of the south of the United States of America in the last 100 years and more constitute the most important and accessible database on red rice. Furthermore, weedy rices (including red rices) in Central and South America, Europe and Oceania, and in direct-seeded rice cultures in Asia and even Africa appear to be similarly diverse and changeable. In 2006, the total harvested rice area in the United States of America was 1.14 million ha, with an average production of 7.7 tonnes/ha. For reference, Figure 2 shows the present distribution of rice production areas in the United States of America.

Much of the diversity of weedy rices (including red rices) has been and continues to be camouflaged semantically in the common use of the singular or, more properly, generic names red rice or weedy rice, just as enormous diversity is submerged in the generic names wheat, rice or even weed. While the use of such generic names and terms is so common and accepted as to be unavoidable, the seemingly awkward plural terms weedy rices or red rices are generally used in this report in the plural form in order to convey a clearer image and better understanding of the diversity of weedy rices (including red rices). Weedy rices (including red rices) are not one specific weed. Rather, they are a variety of weeds that share a common assemblage of “weedy” traits but differ morphologically and phenologically from place to place and time to time. The diversity and polymorphism of red rice has been characteristic of red rice in North
Weedy rices – origin, biology, ecology and control

America since it became established as a type of weedy rice in rice fields more than 200 years ago.

EARLY AND GENERAL OBSERVATIONS ON THE DIVERSITY AND VARIABILITY OF RED RICE

Early studies of red rice in the United States of America described the plants as: generally shorter than the cultivated rice (Dodson, 1900); growing in “clumps” because of numerous tillers, up to 60/plant (Nelson, 1908); having an open growth habit (Quereau, 1920) with culms growing at an angle about 65° from the vertical rather than essentially erect like the cultivated rice (Dodson, 1900). In these early times, tall rice varieties were grown, hence the emphasis on the difference in height. However, by the mid-twentieth century, rice breeders were giving much more attention to plant stature in order to better adapt varieties to mechanization and higher rates of fertilizer; this culminated in the development of (and near global shift to) semi-dwarf varieties in the latter half of the century. Therefore, more recently, red rice plants have begun to be described as generally taller than cultivated rice with long, pale, rough, droopy leaves and more, wider-angle tillers or culms. This latter trait gives the red rices a more “clumpy” open canopy in contrast to the rather compact and near vertical cultivated rices.

Early observers also emphasized differences in panicle morphology and structure between red and cultivated rices. The red rice panicle was described as longer and with fewer and shorter grains than that of the long-grain rice varieties then cultivated. Hence, it did not droop as much as did the panicle of cultivated rice. The red rice panicle was also described as more open than that of cultivated rice. The “openness” of the red rice panicle is associated with a distinctive pattern of curves of the main panicle branches in

FIGURE 2
Rice production areas in the United States of America, 2005

Source: National Agricultural Statistics Service (NASS), USDA.
contrast to the rather straight branches of cultivated rice (Dodson 1898). In addition, red rice grains have red pigmentation, which was generally described as limited to the pericarp (Chambliss, 1920; Quereau, 1920; Kennedy, 1923), but sometimes as infusing the whole endosperm (Dodson, 1898). Red rice grains had pubescent hulls and were generally shorter and wider than cultivated rice grains, except those of medium-grain or short-grain varieties. These early comparative descriptors of red rice are generalizations of the situation in the last years of the nineteenth century and the early years of the twentieth century. Since then, the ecological landscape for rice in the United States of America, the varieties cultivated and the rice field weeds including weedy rices have changed considerably, and they continue to do so. The red rice types that now infest rice fields in the southern states of the United States of America display great variability in height, panicle morphology, tillering, culm and leaf angle, pubescence, grain size, hull colour, and phenology.

LOUISIANA – AN EARLY STUDY OF VARIABILITY IN RED RICE

In 1958, Constantin (1960) made one of the earliest and most comprehensive studies of variability in red rice in the United States of America. He surveyed and analysed the weedy rices in maturing rice fields in the southwest Louisiana rice area, one of the oldest rice production areas in the United States of America. The incidence of weedy red rice plants was estimated in 21 fields. Nine of the 21 fields had fewer than 200 red rice plants per acre (500 plants/ha; 1 acre = 0.405 ha), 8 fields had 200–1 000 plants/acre (500–2 500 plants/ha), and 4 fields had more than 1 000 plants/acre (2 500 plants/ha), with an estimated 25 000 plants/acre (62 500 plants/ha) in one of the fields. In a second survey, the proportions of strawhull and blackhull red rice types were estimated in 65 fields (the synonymy of colour descriptors is: white hull with strawhull; dark hull with blackhull; grey hull with “faded blackhull”, brownhull with bronzehull, while goldhull has no synonym). Both strawhull and blackhull red rices were found in all the fields surveyed, but the proportions of each varied widely. Strawhull and blackhull types were present in about equal proportions in 21 of the 65 fields, while 19 fields had predominantly blackhull types and 25 fields had predominantly strawhull types. In order to examine the variability of the red rices in the area surveyed, Constantin collected 1 084 panicles from weedy and “off-type” rice plants in 44 randomly selected fields of maturing rice for laboratory study of the variation in panicle, spikelet and grain characteristics (Table 1). Although grain colour was not determined at the time of collection and was not a specific criterion for collection, subsequent analysis determined that the grain in every panicle collected had a red pericarp. No weedy or off-type rices with a white pericarp were collected. Pericarp colour ranged from light red to dark red but most of the panicles in each hull colour group had intermediate red pericarps although the greyhull group had a somewhat higher incidence of light red pericarps. While there was wide variation in the combinations of these and other characteristics among the panicles collected, there was no variation in grain shattering and hull pubescence. Every panicle shattered easily and heavily and had grain with pubescent hulls.

TABLE 1

Major characteristics of the spikelets and grains in 1 084 panicles

<table>
<thead>
<tr>
<th>Hull colour</th>
<th>Of total (%)</th>
<th>Awn status</th>
<th>Mean grain length (mm)</th>
<th>Shattering (%)</th>
<th>Pubescence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Partial None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>25 94 6 0</td>
<td>8.1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey</td>
<td>14 74 24 2</td>
<td>8.2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>61 9 33 58</td>
<td>7.9</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Constantin, 1960.
Constantin’s review of available records suggested that the blackhull red rice was a relatively recent introduction as none of the descriptions of red rice published up until 1920 mentioned black-coloured hulls, whereas strawhull red rices were mentioned in the earliest descriptions published in the mid-1800s. He cited an undated and unconfirmed report that a blackhull type of rice had been introduced into Vermilion Parish as a potential cultivated variety but abandoned because of its early and heavy shattering characteristic. There was some evidence to support this report. Blackhull red rices were more concentrated in Vermilion Parish than in other locations in the rice area and were popularly called Vermillion rice. Constantin’s review of the historical data available and his findings led to the conclusion that the original source of red rice in the southwest Louisiana rice area was most probably contaminated seed from the southeast, i.e. North Carolina and South Carolina. However, he pointed out that contaminated seed stocks would at most account for only a limited portion of the wide variability determined in his 1958–1960 studies, and, thus, attributed most of the variation to hybridization of cultivated and red rices. More specifically, he contended that red rice was the probable seed parent for new red rice segregates because its shattering trait ensured that most of the hybrid seeds, would be left in the field to infest the next crop rather than be removed with the harvested seeds as would have been the case with the reciprocal cross. In addition, he asserted that classification of the red rices according to hull colour is genetically valid and that the blackhull and strawhull red rices were genotypically distinct and probably distant. His assertion has been upheld by recent molecular evidence obtained by Gealy, Tai and Sneller (2002) and Vaughan et al. (2001) that strawhull and blackhull red rices are distinctive genotypes and that there is greater genetic diversity among the blackhull group, with an average genetic distance (GD) of 0.33 compared with an average GD of 0.20 among the strawhull group.

MISSISSIPPI – A CASE STUDY OF DIVERSITY AND VARIABILITY IN RED RICE

Rice production in the State of Mississippi, the United States of America, began relatively recently compared with the traditional rice states (Louisiana, Texas, Arkansas and California) and did not expand much for several decades owing to tight government controls on area planted. In the late 1960s, about 20 000 ha were planted to mainly Starbonnet, a fine-quality, long-grain variety that was replacing Bluebonnet 50, the long-time favourite. The foundation seed of Starbonnet was maintained by one company that was also the main producer of registered and certified class seeds. Farmers planted certified seeds or saved seeds for planting from a crop produced from certified seeds one to several generations removed. Red rice was not a problem. There had been some red rice in the state in the 1940s but it had been essentially eliminated by rotating rice with other crops and pastures, rigorous roguing of rice fields and the production and use of red-rice-free seeds.

In the early 1970s, the federal government relaxed controls on the area planted to rice and the area planted in Mississippi more than doubled within two years. Because the rapid expansion in the rice area greatly exceeded the supply of high-quality certified rice seed produced in the state, some farmers had to obtain seed supplies of Starbonnet and other varieties from various sources in other states. Within a couple of years farmers began to complain about red rice in their fields, seed inspectors encountered red rice plants in certified seed production fields, and some lots of seed had to be rejected for certification owing to contamination with red rice. Alarmed by the introduction and rapid spread of red rice in the state, the rice producers requested that the seed technology laboratory of Mississippi State University undertake studies to obtain information on the extent and nature of the red rice problem for use in certified seed production and weed control research and development.
Initial study

The first study of red rice in Mississippi was undertaken by Larinde (1979). He compared the patterns of development, seed maturation and intensity and release of dormancy in two red rices, a “strawhull awnless” phenotype (here, the term phenotype is used as essentially synonymous with ecotype) and a “blackhull, long-awned” phenotype, with those of Nato, a medium-grain variety with unusually intense seed dormancy, and several other varieties. The two red rice phenotypes had thinner, more lax, pubescent leaves, more tillers, and shattered early and heavily as compared with Nato, which had erect, glabrous leaves, relatively few tillers and did not shatter. Anthesis and maturation for the strawhull phenotype was nearly two weeks earlier than that of the blackhull phenotype and about the same time as that of four of the five cultivated varieties with which they were compared. Larinde noted some variation in the two red rice phenotypes. Some of the blackhull plants had red rather than black awns, and a few of the strawhull plants had short awns while the rest were awnless. He hypothesized that these variants might be the result of segregation after natural crossing and recommended additional studies on this aspect.

Phenological and morphological variability

Comprehensive follow-up studies of red rice phenotypes in Mississippi were undertaken by Do Lago (1982). Panicles from red rice plants were collected from rice seed fields by certification inspectors during field inspections in 1978 and 1979 and examined closely in order to eliminate obvious duplications. Ten rather distinct phenotypes collected in 1978, 15 collected in 1979 and 3 collected in 1980 were compared in uniform controlled plantings along with the “blackhull” (BLKH), “strawhull awnless” (SHA−), and “strawhull short-awned” (SHA+) phenotypes from Larinde’s studies, and three popular varieties. Twenty-two or 44 10–12-day-old seedlings from each entry were transplanted into a fumigated, irrigated field plot in April of each trial year (the usual time for planting rice), at spacings of 30 cm between plants and 60 cm between rows. Table 2 compares phenological data and morphological traits for 29 of the 31 red rice entries and 3 varieties along with those from subsequent plantings of five additional red rice types collected from 1986 to 1990, the semi-dwarf Lemont variety, and some entries from Texas (coded with a T), for observation and comparison.

There was a very considerable diversity among the red rice populations in Mississippi within 5–6 years after the apparent re-introduction of red rice into the state in seed rice from other states during the great expansion of rice production in 1972–74. The 34 red rice entries fell into two major phenotypic groups plus one unique phenotype.

The red rice phenotypes in the Mississippi studies are hereafter generally referred to as RR, while the red rices with straw coloured hulls are termed SHRs, those with black hulls as BHRs, and the brown or bronze hull types as BrHRs in the remainder of the paper.

Strawhull reds

Twenty-six RR phenotypes had straw-coloured hulls, but otherwise exhibited great diversity and variation in phenology and morphology:

- Plant height ranged from 68 to 169 cm.
- Time to 50-percent anthesis ranged from 89 to 109 days.
- Number of tillers per plant ranged from 24 to 54.
- Two phenotypes had short grains, 5 had long grains, and 19 had medium grains.
- Twenty-three phenotypes were awnless (no awns), 3 had short awns.
TABLE 2

Characteristics of 42 red rice contaminants from commercial rice fields in Mississippi and Texas, USA, 1978–1990 as compared with four cultivated varieties

<table>
<thead>
<tr>
<th>Variety/ecotype</th>
<th>No.</th>
<th>Plant height (cm)</th>
<th>50% anthesis (days)</th>
<th>Tillers</th>
<th>Leaves</th>
<th>Shatter</th>
<th>Hulls</th>
<th>Grain type</th>
<th>Grain colour</th>
<th>Awns (length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cult. varieties</td>
<td></td>
</tr>
<tr>
<td>Starbonnet</td>
<td>1</td>
<td>118</td>
<td>105</td>
<td>27</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>None</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>Lebonnet</td>
<td>1</td>
<td>111</td>
<td>100</td>
<td>18</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>None</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>Labelle</td>
<td>1</td>
<td>103</td>
<td>92</td>
<td>20</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>None</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>Lemont</td>
<td>1</td>
<td>74</td>
<td>90</td>
<td>22</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>None</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>STW hull reds</td>
<td></td>
</tr>
<tr>
<td>SHA-</td>
<td>1</td>
<td>157</td>
<td>99</td>
<td>50</td>
<td>INT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Short</td>
</tr>
<tr>
<td>79/11</td>
<td>1</td>
<td>153</td>
<td>89</td>
<td>37</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Short</td>
</tr>
<tr>
<td>79/6, 79/3</td>
<td>2</td>
<td>154–158</td>
<td>90–92</td>
<td>48–54</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>79/8, 79/7, 79/2, 78/2, 78/19, 78/3, 78/9, 80/2</td>
<td>8</td>
<td>137–161</td>
<td>91–103</td>
<td>40–53</td>
<td>INT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>79/9, 79/14, 78/1, 79/17, 78/7, 80/3</td>
<td>6</td>
<td>145–169</td>
<td>91–99</td>
<td>46–51</td>
<td>INT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>SHA+</td>
<td>1</td>
<td>144</td>
<td>108</td>
<td>54</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>79/1</td>
<td>1</td>
<td>162</td>
<td>97</td>
<td>24</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>Moderate</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>80/1</td>
<td>1</td>
<td>169</td>
<td>109</td>
<td>25</td>
<td>ERT</td>
<td>GLB</td>
<td>ERT</td>
<td>Moderate</td>
<td>STW</td>
<td>GLB Long</td>
</tr>
<tr>
<td>86/1, 86/1</td>
<td>2</td>
<td>84–95</td>
<td>95–103</td>
<td>38–44</td>
<td>ERT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>89/1</td>
<td>1</td>
<td>68</td>
<td>86</td>
<td>33</td>
<td>INT</td>
<td>PUB</td>
<td>ERT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Long</td>
</tr>
<tr>
<td>90/2</td>
<td>1</td>
<td>72</td>
<td>98</td>
<td>51</td>
<td>INT</td>
<td>PUB</td>
<td>ERT</td>
<td>Moderate</td>
<td>STW</td>
<td>PUB Long</td>
</tr>
<tr>
<td>90/2</td>
<td>1</td>
<td>66</td>
<td>95</td>
<td>30</td>
<td>INT</td>
<td>PUB</td>
<td>ERT</td>
<td>Moderate</td>
<td>STW</td>
<td>PUB Long</td>
</tr>
<tr>
<td>T/9</td>
<td>1</td>
<td>131</td>
<td>101</td>
<td>52</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Short</td>
</tr>
<tr>
<td>T/5/2</td>
<td>1</td>
<td>151</td>
<td>108</td>
<td>40</td>
<td>INT</td>
<td>PUB</td>
<td>ERT</td>
<td>Heavy</td>
<td>STW</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>Gold hull red</td>
<td></td>
</tr>
<tr>
<td>T/2/5</td>
<td>1</td>
<td>153</td>
<td>102</td>
<td>33</td>
<td>INT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>GLD</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>Brown hull red</td>
<td></td>
</tr>
<tr>
<td>78/8</td>
<td>1</td>
<td>152</td>
<td>112</td>
<td>60</td>
<td>INT</td>
<td>PUB</td>
<td>ERT</td>
<td>Heavy</td>
<td>DBR</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>Black hull reds</td>
<td></td>
</tr>
<tr>
<td>BLKH</td>
<td>1</td>
<td>171</td>
<td>109</td>
<td>77</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>DBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>79/13</td>
<td>1</td>
<td>184</td>
<td>93</td>
<td>62</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>DBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>79/4</td>
<td>1</td>
<td>180</td>
<td>103</td>
<td>85</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>DBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>78-5</td>
<td>1</td>
<td>150</td>
<td>104</td>
<td>52</td>
<td>INT</td>
<td>PUB</td>
<td>DRP</td>
<td>Heavy</td>
<td>DBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>T/4/1</td>
<td>1</td>
<td>172</td>
<td>97</td>
<td>46</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>IBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>T/8/2</td>
<td>1</td>
<td>162</td>
<td>115</td>
<td>97</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>IBL</td>
<td>PUB Medium</td>
</tr>
<tr>
<td>T/4/4</td>
<td>1</td>
<td>173</td>
<td>98</td>
<td>64</td>
<td>INT</td>
<td>PUB</td>
<td>INT</td>
<td>Heavy</td>
<td>IBL</td>
<td>PUB Long</td>
</tr>
</tbody>
</table>

Note: Abbreviations: ERT = erect; INT = intermediate; DRP = drooping; PUB = pubescence or pubescent; GLB = glabrous; STW = straw (hull colour); STW- = straw hull awnless genotype; STW+ = straw hull awned genotype; BLKH = black hull genotype; DBL = dark black; IBL = intermediate black; FBL = faded black; DBR = dark brown or bronze; GLD = golden colour; WHT = white; LRE = light red; IRE = intermediate red; DRE = dark red; SRT = short; MED = medium; LNG = long. T/entries are accessions from Texas for comparison.

Source: Data from Do Lago (1982) and colleagues.
Twenty phenotypes were pubescent, 6 were glabrous.
Twenty-two phenotypes shattered early and heavily, 4 shattered a bit later and moderately.
Twenty-two phenotypes had intermediate angle tillers, 4 had erect tillers.
Fifteen phenotypes had drooping leaves, 4 had intermediate angle leaves, and 7 had erect leaves.

Compared with Starbonnet and Lebonnet (the two most widely planted varieties in Mississippi in the 1970s and early 1980s), the SHRs collected up to 1980 were taller, earlier in terms of 50-percent anthesis, and more vigorous, i.e. had twice as many tillers. The most unique of the SHRs collected in 1980 or earlier were entries 79/1 and 80/1 – very tall, glabrous, long-grain RR with erect leaves, comparatively few tillers, and moderate shattering. Although very similar morphologically, there was a difference of about 12 days between the two entries in reaching the 50-percent anthesis stage, and the apicula of the grains were very different in curvature and colour. Beginning in 1986, short RR phenotypes with erect, glabrous leaves and long grains that mimicked the semi-dwarf Lemont variety began to be collected in the state. The uniqueness of some of the entries and the appearance of the semi-dwarf mimics are discussed in detail below.

Blackhull reds

Nine phenotypes had black hulls and were somewhat less morphologically diverse than the SHRs:
- Plant height ranged from 150 to 184 cm.
- Time to 50-percent anthesis ranged from 93 to 110 days.
- The number of tillers ranged from 52 to 85.
- All the phenotypes had medium grains with long awns, were pubescent, bore tillers at the intermediate angle, and shattered early and heavily.
- Five of the 9 phenotypes had erect leaves, 3 had intermediate angle leaves, while 1 phenotype had distinctly droopy leaves.

Overall, the BHRs were taller, later in maturity, and had more tillers not only than the cultivated varieties but also the SHRs. No different BHRs were collected after 1980.

Brownhull red

A unique phenotype with brown or bronze-coloured hulls was collected in 1978. It had the latest maturity of the entries, 112 days to 50-percent anthesis, erect pubescent leaves, medium-pubescent grains with medium-length awns, and shattered earlier and more completely than any other RR. It was also the most dormant of the RR phenotypes.

A comparison of the RR phenotypes collected through to 1980 with the cultivated varieties, excluding the semi-dwarf Lemont, in terms of mean values for three traits that influence competitiveness is summarized in Table 3.

The mean height of the RR phenotypes was 40 percent (SHR) to 57 percent (BHR) greater than that of the cultivated varieties, and the mean number of tillers was 2–3 times greater. However, maturity, as indicated by days to 50-percent anthesis, was very similar with the SHR averaging about 2 days earlier and the BHR about 6 days later than the cultivated varieties. As all the RR phenotypes shattered early and heavily, a substantial portion of the seeds produced would have been dispersed to the soil surface before mechanical or hand harvest of any one of the three cultivated varieties. Plates 4 and 5 show the plant and spikelet types of some of the entries.
TABLE 3
Mean values for three traits influencing competitiveness

<table>
<thead>
<tr>
<th>Trait</th>
<th>All varieties*</th>
<th>All RR</th>
<th>SHR</th>
<th>BHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height (cm)</td>
<td>110</td>
<td>160</td>
<td>154</td>
<td>173</td>
</tr>
<tr>
<td>50% anthesis (days)</td>
<td>98</td>
<td>99</td>
<td>96</td>
<td>104</td>
</tr>
<tr>
<td>No. of tillers</td>
<td>22</td>
<td>55</td>
<td>48</td>
<td>72</td>
</tr>
</tbody>
</table>

* Excludes semi-dwarf Lemont variety.

Although all entries except two that were not included in Table 2 were uniform and stable in several field plantings, it is unlikely that each was a distinctive “pure line” RR. The most common phenotypes, SHA- and BLKH, for example, were collected

Plate 4
Variation in RR phenotypes as compared with the variety Starbonnet. The variety Starbonnet (SB) is on the left and an RR is on the right in each picture. A: SHR, 79/8; B: SHR, R-6; C: BHR, R-13; D: BHR, R-1; E and F: RR segregates.
many times in many fields. The other entries were collected and entered into the uniform field plantings because they appeared to be different. However, some of these, especially some of the SHRs, turned out to be very similar and probably were not different or differed only in terms of a few days’ maturity. Nevertheless, most of the lines appeared distinctive and became more distinctive to the workers during the nearly 5 years of field plantings (just as commercial varieties become more and more distinctive to field inspectors as they gain experience over time). If some of the new “finger-printing” methods had been in general use at the time, it would have been possible to establish identity and examine relationships in a more definitive way.

Source of diversity and variation in red rices

The main question concerning the great diversity in the phenology and morphology of the RR phenotypes in Mississippi within just a few years of red rice being re-introduced into the state in the early 1970s was where it had come from. One answer to this question was suggested by the two entries in the uniform plantings that were not included in Table 2: one collected in 1978 and coded 78/21, and one collected in 1979 coded 79/16.

Entry 78/21

This entry (collected from a seed field of Starbonnet rice) had long, slender grains with a dark-red pericarp, straw-coloured hulls and partial tip-awns. The collector’s note indicated that the plant from which the panicle had been collected was slightly taller than Starbonnet. Early observations of the 22 plants from entry 78/21 revealed so much variability that not much attention was given to them until it was realized that they were a segregating population. Some morphological traits were recorded and seeds collected from the 15 plants that produced seeds within the time frame of the other RR entries. The remaining 7 plants of the 22 plants either flowered very late, exhibited sterility, or had very few and weak culms. Selected morphological traits for the 15 segregates are given in Table 4. Thirteen of the 15 progeny had strawhulls, 2 had light-brown or light-gold hulls; 7 of the plants produced medium grains, 8 produced long grains; 10 plants had white grains, 5 had red grains; 8 plants were glabrous, 7 were pubescent; only one plant was awnless, the rest had long, short or tip-awns; tiller angle ranged from open to erect; and seeds of two of the plants has distinctive black apicula. General observations of the entire 22-plant segregating population revealed considerable variation in plant
Weedy rices – origin, biology, ecology and control

height, time of flowering and maturity, sterility and tiller density as well as in the traits recorded in Table 4.

Entry 79/16

This entry, also collected from a seed field of Starbonnet a year later in 1979, had slender, pubescent medium grains with a red pericarp, faded black or greyish hulls and long awns. It became evident within a few weeks after transplanting that the 25 surviving plants were another segregating population. Observations and measurements of selected traits for 16 of the plants are given in Table 5. Of the remaining 9 of the 25 surviving plants, 5 were either very late or very sterile and 4 were not included in the measurements for various reasons. Fifteen of the 16 plants had red pericarps (the other one was white). Most of the plants were relatively tall compared with Starbonnet (118 cm), but 3 plants were about the same height or a bit shorter. Time to 50-percent anthesis ranged from 102 to 111 days compared with 105 days for Starbonnet. Tiller numbers ranged from 21 to 61 and the tiller angle was erect for 5 plants, intermediate for 8 plants and open for 3 plants. Nine of the plants had purplish leaves while the other 7 had “normal” green leaves. Seven plants were glabrous, and 9 plants were pubescent. Hull colour varied considerably: 5 plants had strawhulls, 6 had intermediate (colour) black hulls, 1 had faded black or grey hulls like the parent 79/16, 2 had dark-black hulls and 2 had dark-brown hulls. All plants had awns ranging from tip-awns to long awns. Grain type was mostly medium but there were several long-grain types (including the one with a white pericarp). Dormancy varied from very intense to essentially none for the white-pericarp type. Only 1
of the 7 plants with glabrous leaves also had glabrous grain. Plate 6 shows seeds from the 21 plants that produced seeds.

On the basis of observations of the segregates produced by entry 78/21, the strawhull, long-grain segregate (Table 4), during the initial and subsequent generations, it appeared to be a relatively early generation segregate of a cross between the Starbonnet variety and one of the common SHRs, possibly the short-awned SHR (SHA+). The entry was collected in a field of Starbonnet, which occupied probably as much as 75 percent of the area planted to rice in the state in the late 1970s. This conclusion was supported by the selection of multiple lines of red rices that were very uniform and stable and nearly identical to (i.e. “essentially derived from”) Starbonnet after five or six generations so that even experienced field inspectors had difficulty in distinguishing them from Starbonnet (Plate 7).

It is more difficult to speculate on the parentage of the 79/16 blackhull (faded), awned, medium slender

<table>
<thead>
<tr>
<th>Progeny</th>
<th>Collection No.</th>
<th>Hull colour</th>
<th>Grain type</th>
<th>Grain colour</th>
<th>Pubescence</th>
<th>Awns</th>
<th>Additional observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-I</td>
<td>Brown</td>
<td>Medium</td>
<td>White</td>
<td>Pubescent</td>
<td>Tip-awned</td>
<td>Slightly taller than Starbonnet</td>
<td></td>
</tr>
<tr>
<td>21-II</td>
<td>Straw</td>
<td>Medium</td>
<td>Red</td>
<td>Glabrous</td>
<td>None</td>
<td>Tiller angle erect</td>
<td></td>
</tr>
<tr>
<td>21-III</td>
<td>Straw</td>
<td>Long</td>
<td>White</td>
<td>Pubescent</td>
<td>Long</td>
<td>Tiller angle open</td>
<td></td>
</tr>
<tr>
<td>21-IV</td>
<td>Straw</td>
<td>Long</td>
<td>Red</td>
<td>Glabrous</td>
<td>Long</td>
<td>Tiller angle open</td>
<td></td>
</tr>
<tr>
<td>21-V</td>
<td>Straw</td>
<td>Medium</td>
<td>White</td>
<td>Glabrous</td>
<td>Short</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-VI</td>
<td>Straw</td>
<td>Long</td>
<td>White</td>
<td>Glabrous</td>
<td>Tip-awned</td>
<td>Tiller angle intermediate</td>
<td></td>
</tr>
<tr>
<td>21-VII</td>
<td>Straw</td>
<td>Long</td>
<td>Red</td>
<td>Pubescent</td>
<td>Long</td>
<td>Very late in flowering</td>
<td></td>
</tr>
<tr>
<td>21-VIII</td>
<td>Brown</td>
<td>Medium</td>
<td>Red</td>
<td>Pubescent</td>
<td>Short</td>
<td>Tiller angle erect</td>
<td></td>
</tr>
<tr>
<td>21-IX</td>
<td>Straw</td>
<td>Medium</td>
<td>White</td>
<td>Glabrous</td>
<td>Long</td>
<td>Tiller angle intermediate</td>
<td></td>
</tr>
<tr>
<td>21-X</td>
<td>Straw</td>
<td>Long</td>
<td>White</td>
<td>Glabrous</td>
<td>Long-red</td>
<td>Black apicula</td>
<td></td>
</tr>
<tr>
<td>21-XI</td>
<td>Straw</td>
<td>Medium</td>
<td>White</td>
<td>Pubescent</td>
<td>Long</td>
<td>Tiller angle erect</td>
<td></td>
</tr>
<tr>
<td>21-XII</td>
<td>Straw</td>
<td>Long</td>
<td>Red</td>
<td>Glabrous</td>
<td>Long</td>
<td>Tiller angle intermediate</td>
<td></td>
</tr>
<tr>
<td>21-XIII</td>
<td>Straw</td>
<td>Medium</td>
<td>White</td>
<td>Pubescent</td>
<td>Long</td>
<td>Tiller angle intermediate</td>
<td></td>
</tr>
<tr>
<td>21-XIV</td>
<td>Straw</td>
<td>Long</td>
<td>White</td>
<td>Pubescent</td>
<td>Short</td>
<td>Tiller angle erect</td>
<td></td>
</tr>
<tr>
<td>21-XV</td>
<td>Straw</td>
<td>Long</td>
<td>White</td>
<td>Glabrous</td>
<td>Long-red</td>
<td>Black apicula</td>
<td></td>
</tr>
</tbody>
</table>

Source: Data from Do Lago (1982).
Weedy rices – origin, biology, ecology and control

Some of the segregates produced by entry 79/16 in subsequent generations were as tall or taller than BLKH and were similar to it in leaf, tillering and grain characteristics. However, many of the segregates had the pronounced purple leaf sheath character with the purple coloration extending in some cases into the leaf blades, which was not present in the Starbonnet and BLKH populations. However, the purple leaf sheath character was observed in a few white-pericarp variants collected from certified rice fields and planted for observation.

Examples of the variability in spikelet (grain) and caryopsis characteristics in segregates from the 78/21 and 79/16 populations in subsequent generations are shown in Plates 8–10.

At about the time of the work of Larinde (1979) and Do Lago (1982) in Mississippi and Helpert (1981) in Texas in the United States of America, workers in Brazil were also looking at the diversity of red rices. Marques and co-workers (Marques et al., 1983) were cataloguing the variability in red and blackhull rice in Brazil and its effects on seed production, while another Brazilian team (Galli, Terres and Him, 1982) were examining first-generation hybrids from cultivated and red rice crosses.

TEXAS – COMPARATIVE STUDY OF DIVERSITY IN RED RICES FROM FOUR STATES

Noldin (1995) compared and characterized 19 ecotypes of RR obtained from researchers in Arkansas (4 ecotypes), Louisiana (5 ecotypes), Mississippi (6 ecotypes)
– 5 of which were collected in the late 1970s for Do Lago’s study) and Texas (4 ecotypes). The ecotypes represented essentially all the hull colours: 11 strawhull, 5 blackhull, 2 goldhull and 1 brownhull. Comparison plantings including several popular cultivated varieties were made on the Texas A&M Research Farm, College Station, Texas, the United States of America, and 46 different plant and seed traits were observed and/or evaluated. The results can be summarized as follows:

- Most ecotypes were uniform and stable although there was considerable variability within ecotypes.
- On average, compared with the cultivated varieties, the RR ecotypes were taller, had pubescent, lighter-green leaves, more tillers, panicles and seeds/panicle, larger flag leaf and leaf area/plant, and shattered heavily.
- Most of the RR ecotypes had traits associated with high

![Plate 10](image)

Variation in grain length, awns, spikelet type, and pericarp colour of progeny from the 78/21 segregate collected in a Mississippi Starbonnet rice field in 1978. Note variation in grain length from short to extra long.

TABLE 5

Characteristics of progeny from the 79/16 red rice segregate collected in a field of the Starbonnet rice in Mississippi, USA, in 1979

<table>
<thead>
<tr>
<th>Collection No.</th>
<th>Plant height (cm)</th>
<th>50% anthesis (days)</th>
<th>Tillers</th>
<th>Leaves</th>
<th>Hulls</th>
<th>Grain colour</th>
<th>Awns</th>
<th>Germ</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/16</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Progeny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-1</td>
<td>110</td>
<td>109</td>
<td>35</td>
<td>INT</td>
<td>PPL</td>
<td>GLB</td>
<td>STW</td>
<td>PUB</td>
</tr>
<tr>
<td>16-2</td>
<td>114</td>
<td>100</td>
<td>35</td>
<td>INT</td>
<td>PPL</td>
<td>PUB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-3</td>
<td>140</td>
<td>112</td>
<td>33</td>
<td>OPN</td>
<td>PPL</td>
<td>PUB</td>
<td>STW</td>
<td>PUB</td>
</tr>
<tr>
<td>16-4</td>
<td>131</td>
<td>113</td>
<td>51</td>
<td>INT</td>
<td>GRN</td>
<td>PUB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-5</td>
<td>114</td>
<td>110</td>
<td>22</td>
<td>ERT</td>
<td>GRN</td>
<td>GLB</td>
<td>STW</td>
<td>PUB</td>
</tr>
<tr>
<td>16-6</td>
<td>141</td>
<td>110</td>
<td>42</td>
<td>INT</td>
<td>PPL</td>
<td>GLB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-7</td>
<td>149</td>
<td>103</td>
<td>21</td>
<td>ERT</td>
<td>GRN</td>
<td>PUB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-8</td>
<td>147</td>
<td>103</td>
<td>47</td>
<td>OPN</td>
<td>GRN</td>
<td>GLB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-9</td>
<td>145</td>
<td>102</td>
<td>43</td>
<td>ERT</td>
<td>GRN</td>
<td>PUB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-12</td>
<td>135</td>
<td>111</td>
<td>61</td>
<td>OPN</td>
<td>GRN</td>
<td>PUB</td>
<td>DBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-14</td>
<td>138</td>
<td>111</td>
<td>39</td>
<td>INT</td>
<td>PPL</td>
<td>PUB</td>
<td>STW</td>
<td>PUB</td>
</tr>
<tr>
<td>16-17</td>
<td>149</td>
<td>107</td>
<td>49</td>
<td>INT</td>
<td>PPL</td>
<td>PUB</td>
<td>DBR</td>
<td>PUB</td>
</tr>
<tr>
<td>16-19</td>
<td>159</td>
<td>103</td>
<td>35</td>
<td>INT</td>
<td>PPL</td>
<td>GLB</td>
<td>DBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-20</td>
<td>152</td>
<td>101</td>
<td>41</td>
<td>INT</td>
<td>GRN</td>
<td>GLB</td>
<td>STW</td>
<td>PUB</td>
</tr>
<tr>
<td>16-21</td>
<td>146</td>
<td>103</td>
<td>32</td>
<td>ERT</td>
<td>PPL</td>
<td>PUB</td>
<td>FBL</td>
<td>PUB</td>
</tr>
<tr>
<td>16-22</td>
<td>156</td>
<td>102</td>
<td>40</td>
<td>ERT</td>
<td>PPL</td>
<td>GLB</td>
<td>IBL</td>
<td>PUB</td>
</tr>
</tbody>
</table>

Note: Abbreviations: ERT = erect; INT = intermediate; PPL = purplish; GRN = green; PUB = pubescence or pubescent; GLB = glabrous; STW = straw (hull colour); STW- = straw hull awnless genotype; STW+ = straw hull awned genotype; BLK = black; DBL = dark black; IBL = intermediate black; DBR = dark brown or bronze.

Source: Data from Do Lago (1982).
competitive ability – they were taller than the cultivated varieties and produced more biomass/area (tillers/plant × aboveground weight/plant).

On average, the RR ecotypesflowered 3–5 days earlier than the semi-dwarf variety Lemont, but 12 of the 19 ecotypes reached 50-percent anthesis at the same time as the Lemont.

Several of the ecotypes had plant and seed characteristics similar to commercial varieties, viz. erect, glabrous leaves, erect tillers, relative resistance to shattering, and long, slender grains.

ARKANSAS – PHENOTYPIC AND GENETIC DIVERSITY OF RED RICE

Phenotypic diversity

Arkansas is the leading state in terms of rice production in the United States of America, producing about 50 percent of the nation’s rice. Researchers from the Dale Bumpers National Rice Research Center (NRRC) at Stuttgart in Arkansas and from the University of Arkansas have conducted the most recent and comprehensive survey of red rices in the southern rice area (Figure 1). The 136 accessions obtained in Arkansas between 2002 and 2004 confirmed that the majority (76 percent) of red rices were SHRs and that about 95 percent of these were awnless (Table 6). BHR rices comprised 15 percent of the accessions, and 95 percent of them were awned. Thus, a few awned SHR and a few awnless BHR rices have evolved. BrHR rices constituted a very minor group, all of which were awned. Awn lengths ranged from a few millimetres to about 10 cm (Plate 11). The widest variation in plant height was in the BHR group, where the shortest accession was 110 cm and the tallest was 170 cm. Some BrHR rices were as tall as the BHRs but there were no short accessions. SHR rices had the narrowest range in plant height (120–150 cm). On average, the BHR accessions were the tallest plants. Although plant height is an environmentally influenced trait, tall genotypes are almost invariably tall relative to medium and short, e.g. semi-dwarf, genotypes under similar environmental conditions. While tall plants usually have a competitive advantage, short-stature red rices also have distinct advantages for establishment, survival and spread in rice fields. Red rice plants about the size of those of the cultivated variety, especially with erect culms and leaves, are frequently not recognized during casual and even more rigorous field inspections. They reproduce and shatter seeds into the soil seed bank in that season and perhaps in subsequent seasons. In contrast, a red rice plant taller than the variety is spotted.
rather easily in rice fields and can be rogued before reproduction.

Plate 12 shows representative plant types of various heights and canopy structure. The large, tall plants are top heavy and generally lodge at maturity, especially where growing at high densities. When the red rice lodges, the infested rice crop also lodges owing to the weight of the red rice biomass, which makes harvesting difficult. Tiller production in the absence of competition can vary by 50–60 tillers and generally ranges from 70 to 140 tillers per plant. The canopy structure of red rice plants varies widely from closed (or erect) to wide open (spreading) culm structure. While the majority of plants of all hull types have an intermediate canopy structure (culm angle = 20–45 °), a higher proportion (28 percent) of BHR rices have erect culms, while only 10 percent of the SHR rices are erect.

This recent characterization of red rice populations in Arkansas does not deviate significantly from the morphological characterization of red rices in Louisiana about half a century earlier, the more detailed characterization of red rice populations in Mississippi in the early 1980s or the Texas comparative studies of red rices from four states in the mid-1990s. It is probable that current surveys in Louisiana, Mississippi and Texas would find that the awnless SHR rices are still the dominant group, the long-awned BHR rices are of secondary importance, while the BrHR and greyhull red rices are still distinct minor groups. However, it is also probable that the diversity within each hull colour group would have increased, especially from the 1960 base, owing to outcrossing with shorter-stature and more erect varieties. The rarest type of red rice is goldhull, which was found in only one location in Arkansas and a few other locations in Louisiana and Texas. Of the Arkansas collection, goldhull red rice is also the most morphologically distinct, with long (42 cm), wide (19 mm) flag leaves, purple basal leaf sheath and leaf margins, dark-green leaves, longer grains (8.6 mm) than the other red rice types, and negligible seed shattering. Although this population is stable, its low seed-shattering characteristic may eventually cause its elimination from the plant community as most of its seed would be harvested along with the crop grain.

The red rice cultivated in Vallee de l’Artibonite, Haiti, had goldhulls (above). There was speculation that it was derived from a cross with Century Patna, a goldhull variety that had been widely grown in the country.
Phenological diversity

It is commonly reported that red rice flowers earlier than cultivated rice. This is true for the majority of SHR types. However, within the SHR category, the onset of flowering can vary for weeks depending on the latitude of origin of the accession (Shivrain, 2004). The greatest variation in onset of flowering existed among the SHRs at 942–1401 cumulative heat units (Table 6). The earliest and latest plants to flower were SHR types. When they were planted at Stuttgart, located in the central region of the state, the length of time from planting to the onset of flowering increased with decreasing latitude of origin. However, latitude of origin had no effect on the phenology of the BHR and BrHR rices. The great variability in time of flowering has significant implications for gene flow between cultivated rice and red rice.

Genetic diversity

Genetic fingerprinting experiments with deoxyribonucleic acid (DNA) and using microsatellite markers (Vaughan et al., 2001; Gealy, Tai and Sneller, 2002) and random amplified polymorphic DNA (RAPD) markers (Estorninos et al., 2006) showed that, generally, SHR and BHR rices are distinct genotypes (Figure 3). Therefore, the major grouping of red rices according to hull colour is genetically valid. There are also variants of these two groups that belong to different, albeit smaller, genotypic clusters. Others do not belong to any particular genotypic cluster. This supports earlier contentions that several intermediate genotypes have evolved from the SHR and BHR groups, which is also apparent in their morphological traits. These intermediate plant types are either the result of interbreeding between SHR and BHR rices or the products of genetic introgression from cultivated rice. However, it is not known whether these intermediate types are more genetically compatible with cultivated rice (thus, with a higher outcrossing rate) than the typical SHR and BHR types.

Red rice samples were collected from red rice contaminated grain rice from all over Arkansas at 11 dryer installations. Because each dryer processes grain rice from the immediate surrounding areas, a dryer can be equated to a subregion generally comprised of two or three rice-growing counties. A total of 55 samples (5/dryer) were genetically fingerprinted using SSR markers together with eight rice varieties, all of which were planted at the same time in fields where the samples originated (Rajguru et al., 2001). The rice varieties were: Bengal, Cypress, Drew, Jefferson, Kaybonnet, LaGrue, Leah and Lemont. As expected, the average GD among rice varieties was lower (0.28) compared with that among red rice samples (0.46). Genetic distance is a measure of genetic variability, with values ranging from 0 to 1. As the GD approaches 0, individuals become closer to being genetically identical. Thus, rice varieties grown in the south of the United States of America are more genetically homogeneous,

![FIGURE 3](source: Estorninos et al., 2006.)
Table 3 – Diversity of weedy rice populations

33

while the red rice populations maintained a high degree of genetic variability. The county or origin (or dryer) had the strongest contribution (R² = 54) to genetic variability among the red rice samples. In general, red rices were more genetically homogeneous within rather than among locations. Thus, it appears that genotype evolution of red rices is influenced strongly by geographical location, as is commonly known in other species. This localized evolution is manifested to a certain extent by the latitudinal influence on days to maturity of the red rice accessions.

The great diversity in the characteristics of red rices described for Arkansas and the several other adjacent states supports the hypothesis that not all the weedy rices in the United States of America are of the indica type, some are probably japonica types. Regardless of the subspecies of O. sativa to which the red rices are most closely related, it is apparent, as Constantin (1960) noted, that the great diversity of the red rices cannot be accounted for only in terms of contaminated seed rice imported from other countries or exchanged domestically among the rice-producing states. Therefore, the greatest portion of the diversity must derive from natural hybridization between the weedy types, and between them and the continuing succession of rice varieties of different stature, canopy structure, maturity, grain type, etc. The possibility of some of the diversity in red rices emanating from hybridization with entirely different species, i.e. O. nivara or O. rufipogon, cannot be discounted but it requires more rigorous verification. The practical lesson to learn from the studies on the diversity of red rices is that not all SHR or BHR rices are the same. The populations within each group differ sufficiently to affect management strategies for the control of weedy red rices.

TABLE 6
Characterization of red rice in Arkansas, USA

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Blackhull</th>
<th>Brownhull</th>
<th>Strawhull</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence (% of total)</td>
<td>15</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>Average grain length (mm)</td>
<td>7.9</td>
<td>8.2</td>
<td>7.7</td>
</tr>
<tr>
<td>Average grain thickness (mm)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Presence of awn ¹</td>
<td>% of each hull type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awned</td>
<td>95</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>Awn colour</td>
<td>% of awned type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Straw</td>
<td>0</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Pink</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Average awn length (cm)</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Seed production (g/plant)</td>
<td>75–250</td>
<td>150–225</td>
<td>100–275</td>
</tr>
<tr>
<td>Predominant seed yield (g/plant)</td>
<td>175–200</td>
<td>150–175</td>
<td>200–225</td>
</tr>
<tr>
<td>Panicle length (cm)</td>
<td>22–30</td>
<td>24–30</td>
<td>24–32</td>
</tr>
<tr>
<td>Predominant panicle length (cm)</td>
<td>28</td>
<td>28</td>
<td>26–28</td>
</tr>
<tr>
<td>Tiller number</td>
<td>80–140</td>
<td>70–130</td>
<td>70–120</td>
</tr>
<tr>
<td>Predominant tiller number</td>
<td>120</td>
<td>120</td>
<td>90–100</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td>110–170</td>
<td>120–170</td>
<td>120–150</td>
</tr>
<tr>
<td>Predominant plant height (cm)</td>
<td>160</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td>Canopy structure</td>
<td>% of each hull type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed or erect (< 20 °)</td>
<td>28</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Intermediate (20–45 °)</td>
<td>43</td>
<td>64</td>
<td>79</td>
</tr>
<tr>
<td>Open (> 45 °)</td>
<td>28</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Flag leaf length (cm)</td>
<td>30–45</td>
<td>35–45</td>
<td>20–55</td>
</tr>
<tr>
<td>Predominant flag leaf length (cm)</td>
<td>35</td>
<td>35–40</td>
<td>40</td>
</tr>
<tr>
<td>Heat units required to flower</td>
<td>1 042–1 389</td>
<td>1 047–1 307</td>
<td>942–1 401</td>
</tr>
</tbody>
</table>

Notes:
Single plants were grown between May and October 2003 at the Rice Research and Extension Center, Stuttgart, Arkansas, USA. Data from 136 accessions, with up to ten plants per accession, planted 1 m by 1 m apart. Accessions were collected from the northernmost to the southernmost part of the state with latitudes between 33 and 36.5 °N.

¹ Some panicles have 100 percent of grains with awns while others have grains only at the upper portion of the panicle with awn. Awn length also varies within a panicle.

HYBRID SWARMS

The natural crossing of weedy red rices with cultivated varieties is the source of the multiple phenotypes, ecotypes and biotypes observed and reported for more than 100 years. Hybrid swarms segregating for many characters that emerge from the natural white and red crosses could generate hundreds of distinctive troublesome weedy rices with red and white pericarps. However, the fact that this has not occurred raises the questions as to what happens to the hybrid swarms. To put this another way, the question could be posed as to why the common and well-known SHR and BHR complexes have maintained their dominant position for such a long time in the United States of America against the considerable pressures of multiple hybrid swarms produced by the natural crosses. It would seem reasonable to expect that either a great number of distinctive and stable types would arise or that a type or types very similar to the cultivated varieties of rice except in shattering, dormancy, tillering and competitiveness would come to dominance as a result of natural selection aided by unconscious and indirect selection incidental in rice production, e.g. roguing, mechanical harvesting, removal of some types of red rice contaminants during seed conditioning, crop rotation, etc. Another issue relates to why there are not any white-pericarp rices with the typical weedy red rice characteristics infesting rice fields.

Selection pressures on segregates

Definitive answers to most of the questions posed above have not yet emerged. However, the observations made and the data collected in the past 50–60 years provide a basis for speculation. A partial answer may be available to the question as to why selection pressures, direct and indirect, do not produce red rice types that are very similar to the cultivated varieties they infest. They apparently do to a considerable extent, as is evident in the observations and data from the studies of diversity and variability of the red rices in Louisiana, Mississippi and Arkansas. The dominant red rice phenotypes infesting Louisiana rice fields in the 1950s were, first, the SHR types (61 percent) and, second, the BHR types (25 percent). In the Mississippi study 20 years later, 69 percent of the red rices collected were of the SHR group and 25 percent were BHR types. In the most recent and comprehensive survey in Arkansas in 2002–04, 76 percent of the red rices collected were of the SHR group while only 15 percent were of the BHR group. Most of the dominant SHR rices surveyed in the three states in the nearly 60-year period were awnless, while essentially all of the BHR types were conspicuously awned. Overall, the dominant awnless SHR types are much more similar in general appearance to the cultivated varieties and, thus, less noticeable during inspections and roguing than are the generally taller, more erect BHR awned types. Furthermore, there is some indication in the results of the three surveys that the dominance of the SHR type is increasing, up from 61 percent in the 1960 survey to 76 percent in the 2002–04 studies. On the other hand, the more distinctive and easily recognized BHR types appear to be diminishing, down from 25 percent in the 1960 and 1982 studies to 15 percent in the 2002–04 studies. Therefore, these results suggest that the SHR rices are dominant because of direct, indirect and unconscious selection towards the cultivated varieties without loss of the crucial weedy traits of seed shattering, dormancy, vegetative vigour and competitiveness. On the other hand, the two rather distinctive SHR rices in the 1982 Mississippi studies that mimicked the cultivated rice except for conspicuous height (above), e.g. they had glabrous leaves, erect stems, compact panicles, and long awnless grain, were apparently not very successful as weeds because they did not retain the crucial weedy traits. They produced relatively few tillers, were relatively resistant to shattering, seed dormancy was not very intense or persistent, and they were conspicuously tall, which would attract the attention of inspectors and roguing crews.
Among the most interesting and revealing red rice phenotypes in the Mississippi studies were the 86/1, 88/1, 89/1, 90/1 and 90/2 entries collected in the period 1986–1990 (Table 2). These five entries, collected 7–12 years later than the basic collections in the late 1970s, were uniform and stable with erect leaves and strawhull grains, 3 entries had long grains and 2 had medium grains, 2 entries had short awns and 3 were awnless, 3 entries shattered early and heavily, 2 shattered moderately, 4 were glabrous and 1 was pubescent, and all were 95 cm or shorter in height with 3 of the lines the same height as the new (in the 1980s) semi-dwarf varieties, represented by the variety Lemont. These five red rice lines probably originated from crosses between a common red rice, probably the most common SHR phenotype, and one of the semi-dwarf varieties that began to replace the Starbonnet stature varieties in the mid-1970s. They were probably imported in seeds of the Lemont variety from another state, where natural and unconscious indirect pressures associated with cultural practices had produced some red rice phenotypes that mimicked the new semi-dwarf varieties with three of the phenotypes very similar to the semi-dwarf Lemont. Mimics are not restricted to intraspecific variants. A herbicide-resistant watergrass, *Echinochloa phyllopogon*, that infests rice fields in California, is referred to as “mimic” grass because it resembles rice both in appearance and ability to detoxify certain herbicides (Katz, 2005).

Cragmiles (1978) pointed out that most of the main morphological and physiological traits that distinguish red rices from cultivated rices, e.g. the red pericarp, pubescence, early and heavy shattering, intense and persistent dormancy, tallness, later maturity, vegetative vigour, and lighter green colour, are genetically dominant over their alleles in cultivated rice. Thus, it is not surprising that new red rice types can and do arise as a result of natural crossing.

Other ideas on the hybrid populations

There are several ideas, hypotheses and beliefs that relate to the hybrid populations from cultivated and red or wild rice and the fate of segregates. One set of ideas based on the work of Oka and Chang (1959), De Wet and Harlan (1975) and the studies of competition in rice by Jennings and Aquino (1968) was summarized by Noldin (1995):

“... hybridization between rice and red rice would produce a population with large genetic diversity, but this variability would be reduced by natural selection, including the cultivation pressure. ... ecotypes (of red rices) resembling rice cultivars are at a selective disadvantage in competition with rice cultivars. The natural selection for adaptability to the environment leads to reduced fitness, and rapid elimination of these forms thus occurs.”

On the other hand, Langevin, Clay and Grace (1990) felt that natural crossing of cultivated and red rices could result in the “natural selection” of red rice types with many characteristics of cultivated rice that enhance their adaptability and competitiveness, and, thus, the difficulty of their control. This idea is in general agreement with that of Galli, Terres and Him (1982), who contended that weedy races of crops that are phenotypically similar but genetically dissimilar to the crop are most successful. Earlier, Jodon (1959) had observed that because red rice cross-pollinates “readily with ordinary rice” this hybridization would be expected to give rise to innumerable types of red rices but it had not (up to 1959). He then noted that there were only a few types of red rice and that they resembled each other more than they resembled cultivated varieties. In his opinion, the reason why red rice types are not more numerous is that: “...red rice hybrids (with cultivated rice) are later maturing than either parent. Consequently, a field is usually cut (harvested) before the hybrids can mature seed. In a sense, they are self-eliminating.”
The fate of the segregating swarms from red × white hybrids and the reciprocal is an important issue in developing strategies for controlling red rices. It is addressed later in this chapter and in Chapter 6 because the most reasonable explanations of the fate of the segregates involve the three “weedy” traits discussed in subsequent sections and their interactions that appear to be critical for the success of a red rice types as weed.

Extent of natural crossing in rice

Rice is self-pollinating but, as is the case for other self-pollinating crop species, plant breeders have long known and acknowledged that the incidence of cross-pollination is significant and has to be considered in their work. The hybridization of weedy rices (including red rices) with cultivated rice has been reviewed comprehensively by Gealy (2005) and is discussed in the next section. Only a few of the classic studies of outcrossing in rice are introduced here along with findings that have generally been accepted. In 1938, five scientists undertook cooperative research to determine the extent of natural crossing in rice in the main rice areas in the United States of America (Beachell et al., 1938). From the literature available to them, they learned that natural crossing in South Asia ranged from 1.1 percent in Burma (now Myanmar) to 4 percent in Bengal for cultivated varieties but up to 8 percent or higher for wild rices. The incidences of natural crossing in rice in other rice areas in Asia had been reported to be about 1 percent in Japan, 1.3–4 percent in Java, 2.4 percent for panicles bagged together in the Philippines and 0.07 percent in Ceylon (now Sri Lanka). Their experiments in the United States of America involved natural crossing of “normal” and glutinous rice varieties planted in adjacent rows in California, Texas, Louisiana and Arkansas. The results obtained indicated that the incidence of natural crossing varied among varieties, locality, distance, seasonal and environmental conditions, and was generally higher in the humid southern states than in California. Overall, the extent of natural crossing ranged from 0 to 3.39 percent, with an average of 0.45 percent for all locations. A later report from Malaya (now Malaysia) also indicated a 0.45-percent rate of crossing among varieties in that country (Brown, 1957). Jodon (1959), one of the authors of the multilocation experiments on natural crossing in rice, later discussed natural crossing in rice based on his experiences and observations in Louisiana. He stated that natural cross-pollination takes place between rice varieties or red rices growing close together and flowering at the same time at about a 1-percent rate for plants 30 cm apart. He speculated that about half of the panicles in a rice field bear one or more seed resulting from fertilization by pollen from another nearby plant. If the “nearby plants were a red rice and cultivated rice”, the progeny would be a white × red intervarietal hybrid or the reciprocal.

The progress on development of herbicide-resistant varieties of rice for control of red rice and other weedy grass weeds that are developing resistance to various herbicides has stimulated much research on gene flow between cultivated varieties and weedy rices. The study by Langevin, Clay and Grace (1990) on the incidence and effects of crossing between cultivated rice and red rice in Louisiana was among the first in the new biotechnological perspective. They found that the percentage of natural crossing between red rice and selected rice varieties ranged from 1 percent for the Lemont variety, an incidence in line with the long-held view based on the studies and experiences of Beachell et al. (1938) and Jodon (1959), to an apparent 52 percent for the variety Nortai, which they attributed to the near synchronous flowering between the two lines. However, Gealy, Mitten and Rutger (2003) later suggested that this uncharacteristically high rate of outcrossing may have overestimated the actual crossing rate, at least in part, as a result of to the indirect assessment method used. Populations from the natural crosses were most frequently medium grain, taller and later in maturity than the cultivated parent. Studies on the hybridization of red rice
with cultivated rices in the south of the United States of America accelerated in the late 1990s with the imminent release of the Clearfield rice varieties resistant to the herbicide imazethapyr. The NRRC has been at the forefront of much of these studies. Research there and at other institutions in the region are reviewed and discussed in the next section. Chapter 7 provides additional discussion on the incidence and risks of crossing between rice varieties and herbicide-resistant varieties.

HYBRIDIZATION OF RED AND CULTIVATED RICE IN THE UNITED STATES OF AMERICA

Red rice in the United States of America is genetically and morphologically diverse. While weedy rices were probably introduced into the United States of America as contaminants in imported seed, only limited kinds would have arrived via this channel. Natural genetic mutations also occur in plant populations, but the frequency of this is very low and could not possibly account for the extent of variability observed in red rice. The most plausible explanation for such variability among the weedy types is genetic introgression from cultivated plants, along with the original introductions of different weedy biotypes. The earliest surveys of rice fields in Louisiana yielded evidence that cross-fertilization between rice and red rice occurs, giving rise to plants with intermediate grain colours. The majority of red rice grains have a dark-red colour, but some have a lighter tint of shade between dark red and white (Dodson, 1898). Sometimes, only the seed coat is red and sometimes the red colour penetrates the endosperm. Historic red rice surveys indicate that the colour of red rice grains ranges from dark red to pink or light red (Kennedy, 1923; Williams, 1956). Many varieties of weedy rice in rice-growing countries worldwide exhibit a range of colour variation in seed. Indeed, data obtained over time on red rice in the United States of America support the hypothesis that rice and red rice hybridize naturally, albeit at low rates. In genetic studies with *O. sativa*, red pericarp colour has been established as a dominant trait controlled by two complementary genes (Adair and Jodon, 1973; Bres-Patry et al., 2001). Other key dominant weedy traits are tall stature, high tillering capacity, grain shattering, pubescence, and dormancy (Cragmiles, 1978).

Some of the progeny from hybridization of red and cultivated rice are eliminated early from the hybrid swarm because of some undesirable trait, i.e. lateness or inability to mature before frost, reduced seed production, infertility, loss of the shattering trait, and reduced intensity of seed dormancy. Many fail to become established because of traits that reduce competitiveness, such as short stature, few and weak tillers, low leaf area, and tendency to lodge early. A few become established with most of the key traits of the dominant weedy parent and develop into relatively distinct types of weedy rice, usually with the red pericarp. Still fewer might evolve over time into a novel white-pericarp rice variety. As noted above, two of the stable SHR rices collected from seed rice fields in Mississippi had relatively few tillers, glabrous leaves, erect stems, and long grains – traits of cultivated rice (Do Lago, 1982). These two red rice mimics of cultivated rice have not become established as successful weeds, probably because they have few of the traits of the weedy rices. However, there is no doubt that many of the widespread and troublesome types of red rices in the south of the United States of America with dominant weedy traits also evolved from natural crossing of red and cultivated rice.

Genetic introgression into red rice

Oryza sativa is primarily self-pollinated. Anthers release their pollen just before the flowers open, but outcrossing can and does occur when the anthers remain exserted after the flowers close (Yoshida, 1981). Table 7 summarizes the main findings of
the review of studies on the outcrossing of rice and red rice in the United States of America.

In Arkansas, Louisiana, Texas and California, outcrossing between synchronously flowering rice cultivars separated by 0.3–1 m averaged 0.45 percent overall with a maximum of 3.4 percent, and was detected at distances up to 9 m (Beachell et al., 1938). Outcrossing was lower in California (0.16 percent) than in the south of the United States of America (0.52 percent). In recent studies, the maximum natural outcrossing between adjacent plants of herbicide-resistant rice and non-resistant rice in California, Louisiana and Texas ranged from 0.08 to 0.11 percent and was not detectable at separation distances of more than 1.8 m.

Floral synchronization is the key to *O. sativa* outcrossing because pollen can remain viable for only a few minutes once released into the environment (Yoshida, 1981). The greater the temporal separation between flowering of two rice plants the lower will be the probability of outcrossing. However, late flowers on an early-flowering plant could be available to outcross with early flowers on a late-flowering plant. Outcrossing between rice and red rice can proceed with either type as pollen donor or pollen acceptor, but red rice (usually taller) seems to be the dominant pollen donor (Estorninos et al., 2003b; Zhang et al., 2003). The height advantage for red rice seems the most logical explanation, but differential floral characteristics in rice and red rice could also be involved. The dominance of red rice as the pollen parent is not advantageous for the evolution of new red rice types. The survivability of the progeny would be diminished considerably as most of the hybrid seeds in the non-shattering panicle of the cultivated variety would be removed from the field with the harvested grain, and the few that shattered to the ground at harvest would have little dormancy and germinate and succumb to freezing temperature during the winter season. On the other hand, outcrossing with red rice as the pollen acceptor, i.e. female parent, would favour survival of the progeny and the evolution of new red rice types because many hybrid seeds formed in the early and easy shattering red rice panicle would shatter to the ground before harvest or as a result of harvesting, and many of these would survive the winter in the dormant condition. Maximum outcrossing rates between red rice and rice in the United States of America have ranged from undetectable (Estorninos et al., 2003b; Zhang et al., 2003) to as high as 3.2 percent in an imidazolinone-resistant rice field in southwest Louisiana with poor red rice control (Zhang et al., 2004). With the exception of a single report of 3.2 percent crossing, the maximum outcrossing rates determined have been 0.7 percent or less. Flowering synchronization, plant height differentials, floral anatomy, red rice population, and environmental conditions probably all contribute to the variations in outcrossing rates reported and summarized in Table 7.

Outcrossing between Clearfield rice and red rice

(Note: Clearfield is the registered trademark of BASF for the crop production systems consisting of varieties that are resistant to imidazolinone [IMI] and of its IMI herbicide Newpath®. The Clearfield system varieties have the prefix CL before the variety number/name.)

In commercial fields of Arkansas, outcrossing between Clearfield rice and red rice was detected in 3 of 7 fields infested with BrHR rice, 5 of 8 fields infested with SHR rice, and 4 of 6 fields infested with BHR types (Table 8). This information was derived from a maximum of 100 escaped red rice plants sampled per field at maturity. Because outcrossing is strongly dependent on flowering synchronization, it can be deduced that the BrHR has the least overlap with Clearfield rices in flowering. The outcrossing rate differed among red rice biotypes. In general, BrHR rice showed the highest
TABLE 7
Outcrossing from rice to rice and from rice to red rice under conditions in the United States of America

<table>
<thead>
<tr>
<th>Pollen acceptor / pollen donor</th>
<th>Location ¹</th>
<th>Outcrossing rates and separation distances</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice – rice outcrossing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *O. sativa* rice cultivar / *O. sativa* non-resistant ‘Cypress’ / *O. sativa* gluphosinate-resistant rice cultivar (LLRICE62; variety, LL401) | Stuttgart, AR; Crowley, LA; Beaumont, TX; Biggs, CA | Distance: 0.3–1 m
Outcrossing rate: 0.45% overall average; 3.4% maximum; 0.16% in CA
Distance: 9 m (TX only)
Outcrossing rate: 0.0–0.3%
Distance: 0–21 m from edge of gluphosinate-resistant rice
Outcrossing rate: undetectable
Distance: adjacent plants (resistant and susceptible rice)
Outcrossing rate: 0.08%
Overall average: 0.0051% | Beachell *et al.*, 1938 |
| O. sativa susceptible rice cultivar (M202) / *O. sativa* gluphosinate-resistant M202. | Crowley, LA, and Beaumont, TX | Distance: < 0.5 m; alternate row design plus mechanical pollen dispersal
Outcrossing rate: 0.010–0.216%
Distance: 0.3–15 m; circular design with concentric rings of susceptible rice from central herbicide-resistant rice pollen donor area
Outcrossing rate: 0.007–0.108%; undetectable > 1.8 m from transgenic rice source | Fischer *et al.*, 2004 |
| O. sativa susceptible rice cultivar / *O. sativa* gluphosinate-resistant rice cultivar | Robbins, CA (Davis, CA)
Robbins, CA (Davis, CA)
Biggs, CA | Adjacent plants: 0.1% outcrossing
At 1.5 m: 0.01% outcrossing
At > 1.5 m: undetectable | Johnson, Roberts & Mitten, Bayer Crop Science, 2001 (as cited by Gealy, Mitten & Rutger, 2003) |
| Red rice — rice outcrossing | | | |
| *O. sativa* gluphosinate-resistant rice ‘CPB6’ and *O. sativa* susceptible cultivar ‘Purple Haze’ / red rice (strawhull); also their reciprocal crosses | Baton Rouge, LA | Distance: 0.08–0.25 m
Outcrossing rates: gluphosinate-resistant rice / red rice = 0.33%
purple rice / red rice = 0.7%
red rice / gluphosinate-resistant rice = undetectable
red rice / purple rice = undetectable | Zhang *et al.*, 2003 |
| *O. sativa* red rice ecotypes (8 different types) / *O. sativa* gluphosinate-resistant rice ‘Bengal’, ‘Gulfmont’ or ‘Cypress’ | Fayetteville, AR | Distance: < 0.25 m
Outcrossing rate:
Overall average = 0.0146%
Maximum outcrossing = 0.37% (with blackhull red rice 10A / gluphosinate-resistant ‘Bengal’). | Wheeler & TeBeest, 2001 |

Note: Significant overlapping of flowering periods was observed in the species pairs tested. In a hybrid produced from the cross ‘a’ / ‘b’, plant ‘a’ was the female and plant ‘b’ the male.

¹ AR = Arkansas; CA = California; LA = Louisiana; TX = Texas.
Source: Data modified from Gealy (2005).
TABLE 7

Outcrossing from rice to rice and from rice to red rice under conditions in the United States of America (continued)

<table>
<thead>
<tr>
<th>Pollen acceptor / pollen donor</th>
<th>Location</th>
<th>Outcrossing rates and separation distances</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. sativa red rice / O. sativa IMI-resistant rice cultivar</td>
<td>Stuttgart, AR</td>
<td>Distance: 0–6 m</td>
<td>Shivrain et al., 2006a</td>
</tr>
<tr>
<td>O. sativa red rice / O. sativa IMI-resistant rice cultivar</td>
<td>Stuttgart, AR</td>
<td>Distance: intermingled plants in natural infestation</td>
<td>Estorninos et al., 2002a</td>
</tr>
<tr>
<td>O. sativa red rice (SL 121 and SL 141).</td>
<td>12 commercial imidazolinone-resistant rice field sites in southwest LA in 2002 and 2003</td>
<td>Distance: intermingled plants in natural infestation</td>
<td>Zhang et al., 2004; W. Zhang, personal communication, 2005</td>
</tr>
<tr>
<td>O. sativa red rice (Stuttgart Strawhull) / O. sativa IMI-resistant rice cultivar (CL121 and CL 141 [same as CL3291])</td>
<td>Stuttgart, AR</td>
<td>Distance: intermingled plants in natural infestation</td>
<td>Estorninos et al., 2003a</td>
</tr>
<tr>
<td>O. sativa red rice (blackhulled and strawhulled, respectively) / O. sativa susceptible cultivars 'Kaybonnet' and 'Starbonnet', respectively; including reciprocal crosses.</td>
<td>Stuttgart, AR</td>
<td>Distance: In 2000, rice and red rice pairs with coincident flowering grown in adjacent rows</td>
<td>Estorninos et al., 2003b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcrossing rate:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL121 (mostly coincident flowering) = 0.0013%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL141 (flowering mostly non-coincident) = 0.0016%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red rice seed production was estimated indirectly which may overestimate or underestimate outcrossing rates.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Significant overlapping of flowering periods was observed in the species pairs tested. In a hybrid produced from the cross ‘a’ / ‘b’, plant ‘a’ was the female and plant ‘b’ the male.

1 AR = Arkansas; CA = California; LA = Louisiana; TX = Texas.

Source: Data modified from Gealy (2005).
outcrossing rate (0.763 percent), SHR rice the lowest rate (0.109 percent), and BHR types an intermediate rate (0.434 percent). Thus, although gene flow between BrHR rice and Clearfield rice occurred with the lowest frequency among fields, the degree of outcrossing in fields where it did occur was higher than with the other red rice biotypes. It may be of some consolation to both rice growers and weed scientists that SHR rices, which comprise about 80 percent of the red rice population, have the lowest outcrossing rate among the red rice biotypes. The degree of outcrossing detected in commercial fields was generally higher than that detected in small-plot research. This could be because of the higher pollen load in commercial fields than in mini-plots. A significant difference in outcrossing rate was also observed between Clearfield varieties: the outcrossing rate for CL161 with SHR rice was 0.008 percent compared with 0.003 percent between CL121 and SHR rice (Shivrain et al., 2006a). Effective pollen flow from Clearfield rice was observed up to 6 m from the interface with SHR rice. The largest number of hybrids was found at the interface, which had an average outcrossing rate of 0.003 percent in experimental plots planted with CL161. The number of hybrids declined drastically at the 1-m distance to an average outcrossing rate of 0.001 percent. Beyond this distance, a very low, random number of hybrids (between 0 and 2) were detected at every metre beyond the interface.

Therefore, the recommended separation distance for rice seed production fields of 10 m is needed and justified (Khush, 1993). However, outcrossing has been documented up to 43 m between Minghui-63 and O. rufipogon in China (Song et al., 2003). Thus, several factors, some unidentified and some poorly understood, play a role in effective pollen flow and the resultant rate of outcrossing.

Characteristics of progeny from red and cultivated rice crosses

Distinctively different F₁ plant types are produced from crosses of cultivated rice with awnless red rice, e.g. late maturity, no awns, normal green lower stems or basal leaf sheaths, and medium-grain red seeds, than with awned BHR and or awned SHR rices, e.g. normal maturity, pink awns, purple lower stems, and medium-grain red seeds (Gealy, 2005). An understanding of the phenotypic traits expected in F₁ and F₂ hybrid populations can assist growers, agricultural professionals, and millers with red rice identification and management decisions. In studies of hybridization between Clearfield rice and SHR rice (Burgos et al., 2006b), the F₁ plants were distinctively taller than the rice or red rice parent and had leaves that were pubescent like red rice but erect like the cultivated rice parent (Plate 13). Hybrid vigour was also apparent in the crosses. The F₁ plants were 40–50 percent taller than the Clearfield parent regardless of the Clearfield variety used and the red rice parent, which averaged 110 cm in height,
and produced 45 percent more tillers than the Clearfield and red rice parents. Hybrids were confirmed each time an outcrossing experiment was conducted. All F₁ plants flowered later than their parents, which were 98 and 102 days after planting (DAP) for the SHR and CL161 variety, respectively. None of the hybrids with red rice as the female parent flowered within the normal growing season in the field. The phenology of the hybrids was maternally influenced because CL161 × red rice hybrids flowered 90 DAP, which was earlier than either parent. Spontaneous crosses between Clearfield rice varieties (CL121 or CL161) and SHR rice also produced essentially the same F₁ phenotypes as was observed with controlled crosses (Shivrain et al., 2006b). These results differ from those of another study (Gealy, Yan and Rutger, 2006) in which long-grain rice varieties pollinated by SHR rice produced F₁ plants that flowered later than either parent, and from the generally and long-accepted view of Jodon (1959) that “red rice hybrids (with cultivated rices) are later maturing than either parent.” Regardless of this, in growers’ fields, the crosses with red rice as the female parent are the most important because, as mentioned above, the hybrid seeds shatter and infest the field whereas the hybrid seeds produced with cultivated rice as the female parent are mostly harvested with the grain and removed from the field.

As noted above, the outcrossing rate between red rice and the Clearfield rices was affected strongly by variety, with CL161 having twice the outcrossing rate of CL121 (Shivrain et al., 2006a). As CL121 is earlier maturing and more closely synchronized in flowering with the SHR rice than the CL161 variety (Burgos et al., 2004), the higher rate of outcrossing of the latter may have been related to its greater height and/or floral morphology. The hybrids between red rice and the Clearfield rices were all resistant to the imazethapyr herbicide and rather easy to spot in a rice field. They generally flowered very late, so that many of the seeds would not mature before the onset of cold weather. However, if the crop is planted and harvested early enough, or if warm days extend well into the autumn season, the late hybrid plants could head, flower and set seeds that are viable within about two weeks.

Resistance to the imazethapyr herbicide is inherited as a partially dominant gene (Shivrain et al., 2006b; Burgos et al., 2006b). About 50 percent of the F₂ plants will survive a herbicide application, while 25 percent of the population will exhibit an intermediate level of resistance. However, the F₁ plants will segregate into various plant types, some of which are shorter than the rice variety while others are much taller than the red rice parent (Plate 14). In continuing but unpublished work, about 5 percent of the F₂ plants were very short (80 cm or less), 25 percent were almost as tall as the CL161 parent, and the rest were much taller than commercial rice or the strawhull red rice parent. The phenology of F₂ plants also ranges from extremely early to extremely late, with the majority flowering 90–100 DAP, which is close to both parents. Some of the plant types with characteristics that are compatible with rice culture and critical weedy

Plate 13
Typical F₁ phenotype of hybrids between Clearfield rice and red rice. Regardless of red rice parent, F₁ are generally taller, more vigorous, and more erect compared with the red rice parent.
traits, e.g. shattering and dormancy, could in time evolve into stable populations, become established and contribute to the diversity of weedy rices. If such populations carried herbicide-resistant genes, the assemblage of red rice types in the south of the United States of America would be augmented by herbicide-resistant types.

In studies with F₂ plants derived from manual crosses between red rice and transgenic gluphosinate-resistant rice or non-transgenic, non-herbicide resistant rice, phenotypic characteristics such as seed germination and shattering varied widely, were often intermediate between the rice and red rice parents, and were not more weedy (e.g. dormant or shattering) than their original red rice parents (Oard et al., 2000). Thus, only the herbicide-resistance trait was a major contributor to increased fitness in red rice populations derived from crosses with transgenic rice.

Summary

Summarizing studies on the natural crossing between cultivated and red rice in the south of the United States of America, Gealy and Estorninos (2004a, 2004b) noted that, while outcrossing rates between red rices and conventional or herbicide-resistant varieties have been variable, they have nearly always been less than 0.5 percent. The specific rate of outcrossing appeared to be influenced by many factors: the rice variety, the red rice ecotype, vertical and horizontal distances between panicles, synchronization of flowering, and aspects of the environment that are not well understood. This earlier work and the more recent studies reviewed in this chapter can be summarized as follows. Red rice in the United States of America is phenotypically and genetically diverse as a result of: multiple introductions of weedy red rices in contaminated imported seed during the nascent stage of rice culture in the United States of America; the natural hybridization among the imported red rice types and their progenies; and the natural hybridization between a succession of weedy red rice types and a succession of cultivated rice varieties. The herbicide-resistant rice technology already on-stream is a powerful tool for the management of red rice infestations in rice fields. However, it must be used in accordance with the protocols and recommendations that accompany the technology and with the other tools (cultural, chemical and regulatory) for managing weedy red rices in order to provide for and ensure sustainable control of red rice.
Chapter 4

Seed shattering and dormancy in weedy rices

EARLY AND HEAVY SEED SHATTERING

The shattering of seeds as they mature in the inflorescence is the naturally selected trait of plant species that produce dry fruits and seeds and is one of the most important of the seed dispersal and distribution mechanisms in plants. Shattering increases not only the survivability but also the area distribution of the species. Retention of seeds in the inflorescence at least until they all reach maturity is the opposing trait selected at first unconsciously and later consciously by humans in the domestication and improvement of plants to permit and/or facilitate the gathering of the desired plant products: food and feed grains, oilseeds, grain legumes. The selection was at first unconscious as the early human gatherers collected grains retained on the plants for food or seed in preference to those dispersed on the ground. Conscious selection for the non-shattering trait in wheat, barley and rice 6 000–10 000 years ago was probably the first major human “improvement” in plants (Diamond, 1999).

Early and heavy seed shattering, the red pericarp and seed dormancy are the constant traits among all the diverse types and other variants of the red rices. If the reference is broadened to include all weedy rices, then seed shattering becomes the invariable trait because some weedy rices, especially in Asia and Africa, have white pericarps, and the seeds of some weedy types are not any more dormant than those of some cultivated varieties. The seeds of Nato, an older-type medium-grain variety, are as dormant as those of many red rice phenotypes for a time after harvest but dormancy is released sooner. Constantin (1960) determined seed shattering for the 1 084 red rice panicles he collected from rice fields in the southwest Louisiana rice area and stated: “No red rice panicles were found that had non-shattering spikelets characteristic of cultivated rice. All had shattering spikelets and no variation among plants was detected.” The older literature on weedy rices in Asia (Graham, 1913; Roy, 1921; Chatterjee, 1947), and red rices in North America (Nelson, 1908; Quereau, 1920; Hodges, 1957; Williams, 1956), and, generally (Grist, 1955), always emphasized the importance of the “shattering”, “shedding” or “deciduous” nature of the spikelets in the persistence and spread of weedy rices.

Seed shattering – weedy trait

The early and heavy shattering of seeds as they mature in the inflorescence is an important mechanism for their dispersal and distribution. It increases the probability that a substantial portion of the seeds produced by a plant are scattered to the surface of the soil where they can be spread further by wind and water before being consumed by animals, harvested with the grain, or eventually falling to the ground in a clump along with the plant. Shattering is the naturally selected trait of plants but, as mentioned above, it was a very inconvenient trait in plants that produced food grains desired by early humans in the gathering stage of human development. Thus, since the dawn of crop husbandry, non-shattering has been a prized trait in the selection and improvement of varieties of crops. The non-shattering trait has not been disadvantageous to the
crops cultivated because their survival is dependent on human activities and not nature. However, the non-shattering trait would be disadvantageous to “wild” plants that grow in association with crops, i.e. weeds. Most of the seeds produced would be removed and destroyed by farmers or mixed in with the harvest and consumed. Farmers plant seeds of crops but not knowingly of weeds. Modern cultural practices and technologies, such as specialized seed production, mechanical harvesting, and grain and seed cleaning, have increased considerably the disadvantages of even relative non-shattering in annual wild plants or weeds growing with crops. Plate 15 compares shattering in panicles from four red rice phenotypes with the non-shattering panicle of the Starbonnet variety.

Onset of seed shattering in red rice

While seed shattering is apparently a characteristic of all weedy rices, there is considerable variation in the time and degree of shattering among the phenotypes or ecotypes. Do Lago (1982) determined the onset of shattering for 28 red rice phenotypes collected in Mississippi, the United States of America, in 1980 and found that the mean time of the onset of shattering was 24 days past 50-percent anthesis for all phenotypes, 23 days for the SHR group and 27 days for the BHR group. In 1981, he studied the onset of shattering for 14 selected phenotypes and also determined seed moisture content at the time of shattering (Table 9).

The mean shattering time for the BHR types was 3 days later than for the SHR types, but there was much less variation in the onset of shattering (4 days vs 13 days for

<table>
<thead>
<tr>
<th>Type</th>
<th>Hull colour</th>
<th>Shattering time from 50% anthesis</th>
<th>Seed moisture content at start of shattering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (days)</td>
<td>Range</td>
</tr>
<tr>
<td>Com. var.</td>
<td>STW</td>
<td>N5</td>
<td></td>
</tr>
<tr>
<td>All reds (13)</td>
<td>SH & BH</td>
<td>24</td>
<td>17–30</td>
</tr>
<tr>
<td>SHR (9) *</td>
<td>STW</td>
<td>24</td>
<td>17–30</td>
</tr>
<tr>
<td>BHR (3)</td>
<td>BLK</td>
<td>27</td>
<td>25–29</td>
</tr>
<tr>
<td>BrHR red (1)</td>
<td>BRN</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Anthesis, shattering and maturation were quite random and irregular in the panicles of two strawhull reds (SHR) and the brownhull red (BrHR).

Source: Do Lago, 1982.
the SHR group). Similarly, the mean seed moisture content at the onset of shattering was the same for the SHR and BHR groups but there was less variation among the BHR phenotypes (6.6 percent vs 12.2 percent for the SHR). These data were influenced strongly by two very atypical strawhull phenotypes and the unique brownhull red (BrHR). When they are excluded, the mean seed moisture contents and the ranges at the start of shattering are 26.4 percent, 23–31.1 percent, and 25.8 percent, 23–27.9 percent, for the remaining 10 red rice phenotypes and the 7 SHR types, respectively.

In 1981, Do Lago made a more detailed study of the time-course of shattering along the panicle for 6 red rice phenotypes, 4 SHR types and 2 BHR types. Shattering began in the tip of the panicle, as expected, as early as 16 days past 50-percent anthesis for the SHA+ phenotype and as late as 26 days for the 79/11 SHR, but shattering for the latter then progressed to the bottom of the panicle in 2 days (Table 10). The mean times for shattering to begin in the top, middle and bottom third of the panicle for 5 of the 6 phenotypes were 21, 23.4 and 26.4 days, respectively. Seed moisture content of seeds in the upper third of the panicle at the first evidence of shattering ranged from 23.5 to 31.2 percent with a mean of 27.0 percent for the 5 phenotypes. As noted in Table 10, the 79/5 BHR flowered more-or-less randomly rather than from tip to bottom of the panicle so that shattering and maturation were very non-uniform. Thus, the exceptionally high seed moisture content (42.2 percent) at the onset of shattering reflects the mixture of “drier” and “moister” seeds collected in the top third of the plant for the moisture content determination. The 27.0-percent mean moisture for the 5 phenotypes in Table 10 is 2.4 percent lower than that of the 13 phenotypes in Table 9. The difference probably reflects the greater care taken in the detailed study but mostly the inclusion of the brownhull red, coded 78/8, in the mean for the 13 phenotypes. As noted above, it exhibited the same random flowering habit as the 79/5 BHR red excluded from the means in Table 10.

Noldin (1995) examined some of the properties associated with seed shattering in 18 red rice ecotypes obtained from four different rice-producing states in the south of the United States of America. Five of the 6 ecotypes from Mississippi had been collected more than 15 years earlier for the studies of Do Lago (1982), Teekachunhatean (1985), Garcia-Quiroga (1987) and others. Noldin found that:

- The mean time of the onset of shattering for the 15 ecotypes that exhibited shattering was 15 days after anthesis with a range of 11–18 days.
- The mean seed moisture content at the onset of shattering for the 15 ecotypes was 25 percent with a range of 16–30 percent.
- The mean shattering index for 17 of the ecotypes on a scale of 1 (very low, < 1 percent) to 5 (moderate, 6–25 percent) to 9 (high, > 50 percent) was 6+ with a range from 1 (3 ecotypes) to 9 (7 ecotypes).

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Hull colour</th>
<th>Shattering from panicle area</th>
<th>Time to reach bottom of panicle</th>
<th>Seed moisture at top of panicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top (days from 50% anthesis)</td>
<td>Middle (days)</td>
<td>Bottom (days)</td>
</tr>
<tr>
<td>SHA+</td>
<td>STW</td>
<td>16</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>79/1</td>
<td>STW</td>
<td>22</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>79/11</td>
<td>STW</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>79-15</td>
<td>BLK</td>
<td>24</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>79/5</td>
<td>BLK</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>80/1</td>
<td>STW</td>
<td>17</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Mean (less 79/5)</td>
<td></td>
<td>21</td>
<td>23.4</td>
<td>26.4</td>
</tr>
</tbody>
</table>

¹Anthesis, shattering and maturation were not uniform along the panicle axis.

Source: Do Lago, 1982.
Two of the two ecotypes classified as essentially non-shattering by Noldin were from Mississippi and had previously been classified as a heavy and a moderate shatterer by Do Lago. While Do Lago did not use a shattering index, it is difficult to reconcile the very different observations of the two investigators regarding the phenotype coded BLKH in Do Lago’s studies and MS 3 in Noldin’s studies. This phenotype was the most common blackhull red in Mississippi in the period 1977–1990 and was observed to shatter rather easily and heavily by many workers involved in the red rice studies. The other Mississippi phenotype recorded as resistant to shattering by Noldin (MS 5) had been recorded as a moderate shatterer by Do Lago (80/1). There were also differences between the two researchers regarding the time of the onset of shattering and, to a lesser extent, the moisture content of the seeds at the time of shattering. Noldin reported 15 days past 50-percent anthesis as the mean time for the onset of shattering for 15 ecotypes while, as indicated above, Do Lago reported a mean time of 24 days for both the 28 phenotypes in his 1980 studies and the 13 phenotypes in his 1981 studies. However, the mean seed moisture contents for seeds at the time of shattering reported by the two workers were rather close, 25 percent by Noldin and 28 percent by Do Lago for 12 phenotypes and 27 percent for the 5 phenotypes in the more critical studies in Table 10. The differences in time of onset of shattering between the two researchers appears to be related to differences in the criteria and procedures used to determine the 50-percent anthesis baseline. Do Lago stated that his method of determining 50-percent anthesis, i.e. 50 percent of the plants in rows of 22 or 44 plants exhibiting anthesis, probably prolonged unduly the period from 50-percent anthesis to the beginning of shattering. Do Lago’s studies were also carried out at a location more than 300 km further north than those of Noldin.

The parameter of greatest ecological significance is seed moisture content at the time of shattering. The mean percentages determined by the two researchers (25 and 27 percent) are just below the 28–30 percent seed moisture content determined at physiological maturity, i.e. maximum dry weight, for the Bluebonnet 50 variety by Rajanna and Andrews (1970) and for several other varieties and red rice phenotypes by Larinde (1979). Do Lago (1982) also determined the changes in seed dry weight and moisture content for the two most common red rice phenotypes in Mississippi and the variety Starbonnet beginning on the 12th day after anthesis. The data obtained for the three types were very similar: seed dry weight increased steadily reaching a maximum at about 22 days past anthesis. Seed moisture content at 22 days was 26–28 percent. Do Lago also noted that all of the 13 red phenotypes in the study summarized above started shattering before the varieties Starbonnet and Lebonnet reached “harvest” maturity, defined as 20 percent seed moisture or less, but none were shattering when the earlier maturing Labelle variety reached the harvest maturity stage.

Chin et al. (1999) studied the seed shattering characteristics of ten typical weedy rice lines in Viet Nam, all with the red pericarp. The mean percentage of seeds shattered for the ten lines was 25.7 percent. In a more detailed study, they determined the time and degree (percent) of shattering for five of the weedy rice lines as compared with the variety IR 64 (Table 11).

<table>
<thead>
<tr>
<th>Weedy rice line</th>
<th>Time of shattering (days after flowering)</th>
<th>Shattered seeds (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latta 10</td>
<td>15</td>
<td>19.3</td>
</tr>
<tr>
<td>Latta 11</td>
<td>14</td>
<td>94.3</td>
</tr>
<tr>
<td>Latta 18</td>
<td>10</td>
<td>38.0</td>
</tr>
<tr>
<td>Latta 20</td>
<td>8</td>
<td>56.4</td>
</tr>
<tr>
<td>Latta 23</td>
<td>7</td>
<td>24.6</td>
</tr>
<tr>
<td>Cultivar IR 64</td>
<td>Non-shattering</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Source: Chin et al., 1999.
Viability of shattered seeds

On average, the main flux of seed shattering in red rices appears to be about the time the seeds attain physiological maturity and, thus, are fully capable of germination when dormancy is released. However, the seeds of some ecotypes begin to shatter considerably before they attain physiological maturity, even sooner than 10 days after anthesis. While the amount of seeds shattering at such an early stage is quite small, it could be significant in replenishing the soil seed bank if the seeds are capable of germination.

Ferrero and Vidotto (1999) and FAO (2003) studied the development of the germinative capacity and time of shattering of red rice (*Oryza sativa* var. *sylvatica*) seeds in Italy in order to establish the most appropriate time during the flowering and maturation period for applying control measures, such as panicle cutting, and application of herbicides with brush or wiping bar. They determined that:

- About 20 percent of the hand-harvested developing red rice seeds were capable of germination at 9 days past flowering and 85 percent were germinable by 12 days.
- Seed shattering was evident at 9–12 days after flowering, but seeds shattered before 15 days were very low in viability (about 5 percent). Shattering increased gradually from 15 days to complete development of the panicle at about 30 days, at which time 65 percent of the seeds had shattered in the 1996 study, but only 15 percent in the 1997 study.
- Panicle cutting and crushing with a roller as a post-planting control measure has to commence within 9 days after flowering in order to prevent escape of shattered seeds into the soil seed bank.

Rajanna and Andrews (1970) studied seed development and maturation in Bluebonnet 50, a long-grain variety. Seed moisture decreased gradually from a high of about 60 percent while seed dry weight increased rather dramatically up to about 25 days past anthesis. Thereafter, dry weight remained constant as seed moisture content further declined to 15 percent at 40 days. Seeds exhibited maximum germination at about 25 days regardless of the date of planting within a three-week period. A small percentage of the seeds were capable of producing obviously weak seedlings under laboratory conditions at 10 days. The percentage of seeds capable of germination increased up to 20 days although the most vigorous seedlings were not produced until a few days later (24–25 days). Larinde (1979) determined that, for the seeds of the common BHR and SHR red rices in Mississippi, moisture content decreased from almost 60 percent at 4 days past anthesis to about 20 percent at 26–30 days. Seed dry weight increased rapidly reaching a maximum at about 20 and 24 days, respectively, for the SHR and BHR. Although some seeds (fewer than 5 percent) were capable of germination at 10 days, the germinability of the seeds began to increase rapidly only after 14–16 days and reached full capability at 22–24 days.

“Panicle exsertion” and “heading” are terms for essentially the same stage in reproductive development in rice on an individual plant basis (Stansel, 1975). Some of the earlier studies on the development of the germinative capacity in red rices used “panicle exsertion”, “heading” or “flowering” as the baseline and, thus, cannot be related directly to those that used days past anthesis or days past 50-percent anthesis as the baseline. Nevertheless, they provide additional evidence that the seeds are fully germinable at about the time shattering begins although seedling vigour does not reach a maximum until the seeds attain physiological maturity, i.e. accumulate maximum dry weight. Sonnier (1963, 1965) harvested seeds of SHR and BHR types in September in Louisiana at daily intervals beginning 4 days after full exsertion of the panicle until 23 days. The seeds were dried at room temperature, threshed and stored until germination tests were made in April (seven months storage). A few seeds (fewer than
5 percent) were capable of germination, i.e. produced normal seedlings, at 6 days after panicle exsertion. Germination then increased rapidly to about 70 percent at 23 days. Although the seeds had been stored for 7 months at room temperature, the percentage of dormant seeds increased from about 5 percent at 7 days to about 70 percent at 14 days, and then decreased to less than 20 percent at 23 days. When the germination and dormant seed percentages were added to obtain the total viable seeds, the 80-percent level was reached between 12 and 15 days. Sonnier noted that dormancy was much more persistent in seeds produced in 1964 than in 1962 and 1963. In related date-of-seeding studies, Sonnier determined that SHR matured a few days earlier than BHR but that both types shattered viable seeds before harvest of Nato, an early variety, and Bluebonnet 50, a mid-season variety.

Helpert and Eastin (1976, 1978) reported similar studies on the development of the capacity for germination by seeds of SHR and BHR ecotypes compared with the variety Labelle, an early-maturing, long-grain variety. Panicles were tagged at heading and harvested at three-day intervals. Seeds of the SHR and BHR tested immediately after harvest were essentially all dormant until 27–33 days after heading, while those of Labelle were less dormant and germinated 25 percent at 27 days. Seeds of the BHR stored for two weeks at 30 °C to break dormancy before testing, germinated 40, 70, 80 and 90 percent for the 21, 24, 27 and 30-day harvests, respectively, while those of the SHR germinated 70, 85, 90 and 95 percent for the same periods. Seeds of Labelle stored for two weeks at 30 °C before testing germinated at least 50 percent at 15 days and almost 80 percent at 21 days. The authors concluded that seeds of Labelle, SHR and BHR types were viable 12, 15 and 18 days after heading, respectively. However, this conclusion apparently confounds viability, germinability and dormancy. It is probable that seed development followed the same time-course for the three lines but that dormancy was more intense and persisted longer for the two red rice types.

Importance of seed-shattering trait for weedy habit of red rice

The importance of the early and heavy seed-shattering trait to the very successful weedy habit of red rices cannot be overemphasized. In their review of Asian rice and weedy rice, Vaughan *et al.* (2005) stated that seed shattering is the single characteristic of all weedy rices in the rice field. Similarly, after examining and characterizing 1 084 panicles of red rices collected in the southwest Louisiana rice area in the late 1950s, Constantin (1960) noted that shattering and hull pubescence were the only two traits that did not vary among the plants represented by the panicles and concluded: “The two main factors involved in the survival and spread of red rice are grain shattering, and the ability of the grain to remain viable in the soil during long adverse periods.”

The seed-shattering trait contributes to the persistence and spread of red rice in several critical ways. First, red rice is an annual that is dependent entirely on seed for survival during adverse seasons until conditions become favourable again for the start-up and completion of its annual life cycle. Shattering ensures that a substantial portion of the seeds produced are distributed to the surface of the soil before and during harvesting rather than gathered with the grain and removed from the field. Second, the main flux of seed shattering in most red rice types appears at the time or a few days before the seeds reach physiological maturity, say 24–28 percent seed moisture content. This is very significant in terms of retention of dormancy during the post-maturation (and post-harvest) period when the temperature and soil moisture levels are often favourable for germination of rice seed in contact with the soil surface. Seedlings developed from seeds that germinate would be killed by freezing temperatures in temperate climates or by drought or land preparation for sowing and weeding in the succeeding crop in subtropical and tropical wet and dry season
climates (Teekachunhatean, 1985; Teekachunhatean and Delouche, 1986). Chapter 6 examines the ecological relationships between seed moisture content at the time of shattering, dormancy and survival of a significant portion of the seeds shattered onto and eventually into the soil for germination and emergence in the next rice production season and in succeeding years.

INTENSE AND PERSISTENT SEED DORMANCY

Seed dormancy also evolved as a survival mechanism in annual plant species. When the vegetative and reproductive stages of the annual cycle have been completed, the species survives as seed, the most resistant stage, until conditions again become favourable for start-up of the annual cycle. Simpson (1990) noted that while seed dormancy is of great adaptive significance for most plant species, it is one of the main reasons why grass species constitute the most serious weed problem in crops worldwide. Seed dormancy is an inconvenient trait in crop agriculture based on annual species. Relatively intense and persistent dormancy only interferes with the timely sowing of crops. In addition, even a moderately persistent level of seed dormancy complicates and increases the difficulty of post-sowing operations, e.g. weeding and harvest, because of non-uniformity in emergence, plant growth and development. On the other hand, the absence of dormancy or a very low level thereof (ephemeral dormancy) can lead to preharvest sprouting, often termed “germination-on-the-ear” or “germination-in-the-head”. This condition can occur where rice plants lodge into water or, more generally, where there is frequent rain and high humidity during the maturation and harvesting period. For example, a relatively low-intensity, short-term dormancy can complicate multicropping in rice where there is a relatively short period between crops and the seeds of the first crop are used to sow the second crop. Germination-on-the-ear is a rather common problem for some types of wheat grown in Northern Europe and a serious but infrequent problem in cotton, sorghum and wheat in the southeast of the United States of America.

Since the beginning of crop husbandry, farmers have unconsciously and consciously selected annual crop varieties for limited but varying levels of dormancy in order to adapt them to the prevailing climate conditions and cropping intensity. Simpson (1990) viewed the success in reducing dormancy to a level that permitted timely sowing as one of the great achievements of humans in the Neolithic Age. In the past century, scientific plant breeders have successfully crafted varieties with the most appropriate incidence and intensity of seed dormancy. Therefore, seeds of most modern rice varieties have a short dormancy period that persists until harvest maturity and a few days beyond, rather than no dormancy as frequently claimed by researchers comparing them with weedy rices.

As discussed above, many early rice farmers in the United States of America believed that white rice grains left on the soil after harvest were transmuted by exposure to adverse winter weather so that they germinated and developed weedy-type plants that produced red-pericarp grain (seeds) that then continued to produce red rice in subsequent generations. However, the pioneering students of the red rice problem in the United States of America did not accept the transmutation explanations for the origin and spread of red rices (Allston, 1846; Austin, 1893; Dodson, 1898, 1900; Knapp, 1899). They suggested that the initial entry of red rice types into a rice field was usually through contaminated seeds and that their subsequent persistence and spread were a result of early and heavy shattering, which left most of the red rice seeds on the soil, and the maintenance of viability of many of them over the winter season and for several years in soil. Dodson (1898) undertook field experiments in Louisiana and demonstrated that a much higher percentage of red rice seeds survived the adverse
field conditions during the winter season than did those of white (cultivated) rices, and, thus, germinated and produced red rice plants the following season. The very few cultivated rice seeds that survived the winter produced “white rice” plants. Dodson concluded that: “From long cultivation the white rice has (sic) largely lost its power of self preservation. If they are on the ground, the fall rains with warm days that come in November and the early part of December, cause the seeds to germinate, and then they are killed by winter’s cold. On the other hand, the red rice is dependent upon self-preservation for the continuation of the species, and under the same conditions as above stated, hardly a grain can be found that shows evidence of germination. In the following spring, of the seeds that had remained on the field, a large per cent of the red rice would grow, and (only) a small per cent of the white rice would (germinate), and it is not hard to understand why the idea should become prevalent that the white seeds had developed plants that bore red seeds.”

While Dodson’s conclusions were correct, his explanation of why this was the case was necessarily cast almost wholly in Darwinian terms because Mendelian genetics was just being rediscovered. The survival and spread of the red rice populations are indeed totally dependent on the maintenance of viability of a significant portion of the seeds shattered to the soil surface until conditions become favourable again for initiation and completion of the annual cycle of growth, development and reproduction.

Seed dormancy is an effective survival mechanism for wild, native and weedy annual and perennial seed-propagated plants because it fulfils several critical conditions.

 gradoigns

>Dormancy blocks (delays) germination so that the species survive as seeds, the most resistant stage, until conditions are again favourable for growth, development and reproduction.

>Dormancy inhibits and/or ameliorates physiological deteriorative processes so that seeds retain their viability during the dormancy period.

>Dormancy is released by some natural event or condition, the most common of which is time but also light, low temperatures, high temperatures, soil acidity, soil nitrates, etc.

Many studies have demonstrated that dormancy in weedy rices (including red rices) meets all of these conditions in full.

Effectiveness of dormancy in delaying germination

Dormancy inhibits the germination of seeds when all environmental requirements for germination are met fully. Germination is delayed for a few days to more than a year depending on the intensity of dormancy in the individual seeds of the population. Dormancy is manifestly very effective in accomplishing the function it evolved to accomplish, i.e. the distribution of germination over time and space in order to maximize the probability of survival for species and populations. Chapter 6 presents the results and some of the data from studies on the effectiveness of dormancy in distributing germination over time to increase survivability in red rice populations.

Variation in the intensity and persistence of dormancy

The persistence or intensity of dormancy varies among the seeds in a population. Dormancy would be a much less effective survival mechanism if it persisted for the same period in all of the seeds in the population. Germination of all the seeds would
occur at the same time, which might not be favourable for establishment, growth and reproduction. In rice, the initial level and intensity of seed dormancy varies among both weedy types and cultivated varieties. In 1980, Do Lago (1982) did a preliminary survey of the variability in intensity of dormancy in red rice phenotypes in Mississippi. The percentage of dormant seeds was usually determined as the percentage “firm, ungerminated seeds” remaining at the end of the germination period. Their viability was confirmed periodically by the tetrazolium test or dormancy-releasing treatments. The intensity or initial level of dormancy was determined for 4 cultivated varieties and 28 uniform red rice phenotypes by making standard germination tests on seeds, “collected at harvest maturity, dried at room temperature for 7-12 days, (and) stored at 10 °C for a few weeks.” As expected from the lack of rigorous control of the survey, i.e. the imprecision of the words italicized in the quotation, the results were variable but suggestive:

- Seed dormancy for the four cultivated varieties ranged from 26 to 77 percent with an average of 52 percent. The medium-grain, mid-season variety Nato exhibited the most intense dormancy.
- The level of dormancy for seeds of the 18 SHRs ranged from 26 to 100 percent with an average of 50 percent while that of the 10 BHRs ranged from 94 to 98 percent with an average of 97 percent. The average level of dormancy for the combined 28 red rices was 66 percent.

Do Lago emphasized the preliminary nature of the study, acknowledged its lack of adequate controls and attributed the rather low average level of dormancy of the SHRs (50 percent) compared with the very high level for the BHRs (97 percent) to the later maturity of the latter (Table 2), which resulted in later harvest and less drying time at room temperature and storage at 10 °C than for the “typical” SHRs. In 1981, he repeated the study with more rigorous controls using the same 4 cultivated varieties and 20 red rices, many being the same phenotypes used in the earlier study. After the initial determinations, the seeds were stored at 10 °C (50 percent relative humidity storage) and re-tested for germination and dormancy after six months. The results are summarized in Table 12.

In another survey, Do Lago transplanted 22 seedlings each for 14 of the segregates from the heterozygous 78/21 red rice described in Table 4, and randomly harvested panicles from 54 plants for determination of pericarp colour and germination/dormancy within a few days after harvest and drying to below 15 percent moisture in a 10 °C low-humidity room. Ten of the plants produced grain with a white pericarp while 44 had a red pericarp. Table 13 shows how the initial level of dormancy varied among the 54 randomly selected segregates, all SHR types.

Although this survey indicated that red-pericarp segregates were more dormant on average than those with a white pericarp, it is only suggestive because the study was designed only for observation and not to determine whether pericarp colour and dormancy were associated. However, further observations of more than 2 000

TABLE 12

<table>
<thead>
<tr>
<th>Variety or phenotype</th>
<th>Hull colour</th>
<th>Months storage at 10 °C – 50% relative humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Variety</td>
<td>(%) dormant seed</td>
<td></td>
</tr>
<tr>
<td>Labelle Straw</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>Lebonnet Straw</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>Starbonnet Straw</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>Nato Straw</td>
<td>96</td>
<td>40</td>
</tr>
<tr>
<td>Red rice (RR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLKH Black (BH)</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>SHA- Straw (SH)</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>SHA+ Straw</td>
<td>99</td>
<td>37</td>
</tr>
<tr>
<td>7B-5 Black</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>7B-8 Brown</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>9 SH-RR Straw</td>
<td>r = 100–94; x = 98</td>
<td></td>
</tr>
<tr>
<td>6 BH-RR Black</td>
<td>r = 100–95; x = 99</td>
<td></td>
</tr>
</tbody>
</table>

Note: r = range; x = mean.

Source: Do Lago, 1982.
plants from segregating populations in the period 1982–83 indicated that dormancy in white-pericarp segregates was generally less intense and less persistent than for the red-pericarp segregates. Further critical studies are needed of the association of white or non-pigmented pericarp (the recessive trait) with the intensity and persistence of dormancy in segregating populations from red and cultivated rice crosses.

Noldin (1995) determined germination and dormancy at harvest for 19 red rice ecotypes from 4 states and 3 cultivated varieties in 1993. He found that the level of dormancy varied among the 19 red rice ecotypes: 13 exhibited a level of dormancy in excess of 90 percent, 2 between 80 and 89 percent, 3 between 70 and 79 percent, and 1 had a level of dormancy of 63 percent. Dormancy in the three cultivated varieties was less than 10 percent, which is low compared with the findings of Do Lago (above) and others reviewed below.

The intensity or level of dormancy in seeds harvested when about physiologically mature (circa 25–30 percent moisture content) and dried to about 14 percent or less with cool air (20–22 °C) approaches 100 percent for most RRs and can be very high even for many cultivated varieties. However, as noted above, the persistence of dormancy varies among the individual seeds in populations. This variation is evident in the data presented in Table 12. If the dormancy periods were the same in all seeds in a population, the percentage of dormant seeds after six months' storage would have been either the same as at zero months or 0 percent. The variation in persistence of dormancy among and within populations of two cultivated varieties and five red rice phenotypes in open storage at the relatively warm temperature of 30 °C for periods up to 25 days is evident in the germination data in Table 14.

Protective role of dormancy

Dormancy would not be very effective in ensuring the survival of plant populations if dormant seeds succumbed to the most common environmental factors involved in seed deterioration, i.e. high seed moisture, high humidity, and high and low temperature. In their studies of methods for overcoming dormancy in rice seed, Delouche and Nguyen (1964) observed that many seeds of the Nato variety that did not germinate under standard test conditions during an 80-day period were still firm, i.e. dormant, and viable as established by tetrazolium test. These remnant, fully imbibed dormant seeds were collected, sealed in glass bottles without drying and stored at room temperature.

Table 13

<table>
<thead>
<tr>
<th>Dormant seeds (%)</th>
<th>White phenotypes (no.)</th>
<th>Red phenotypes</th>
<th>Total phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>30–39</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>40–49</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50–59</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>60–69</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>70–79</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>80–89</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>90–100</td>
<td>2</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>Total no.</td>
<td>10</td>
<td>44</td>
<td>54</td>
</tr>
</tbody>
</table>

Mean dormancy 45% 90%

Source: Do Lago, 1982.

Table 14

Variation in the persistence of dormancy in seeds of two cultivated varieties and five red rice phenotypes in open storage at 30 °C

<table>
<thead>
<tr>
<th>Variety or phenotype</th>
<th>Storage period (days)</th>
<th>Germination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Labelle</td>
<td>8</td>
<td>88</td>
</tr>
<tr>
<td>Nato</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>BLKH</td>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>SHA-</td>
<td>7</td>
<td>73</td>
</tr>
<tr>
<td>SHA+</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>79/1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7/8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

temperature (about 25 °C) for an additional 90 days. At the end of the 90-day period, the seeds were removed from the bottle in order to determine seed moisture content and germination. Seed moisture content was about 27 percent, germination without special treatment was 30 percent, and germination after a soak treatment to release dormancy was 98 percent. Non-dormant seeds of rice at 27-percent moisture content and 25 °C would have either germinated within 10 days or decayed within a couple of weeks, but dormant seeds under the same conditions were protected so that full viability was maintained for almost six months (170 days). These observations were confirmed about 20 years later in a specifically designed study by Teekachunhatean (1985). Dormant and non-dormant seeds of the BLKH and SHA+ red rices were placed between moist germination blotters at 15 °C for 30 hours in order to condition them to full imbibition, circa 30-percent moisture content. The fully imbibed seeds were allowed to dry down briefly to about 27-percent moisture content (which is below the minimum moisture content for germination of rice). They were then divided into 24 portions of 125 seeds for each genotype and dormancy status, sealed in 2-mm-thick polyethylene envelopes and placed in several large glass containers with sealed closures for storage at 30 °C. Two envelopes for each genotype and dormancy status were removed at monthly intervals over a 12-month period for germination under standard test conditions. Dormancy-release treatments were applied randomly on seeds classified as “dormant”, i.e. firm, clean, no evidence of decay or germination at the end of the test period, in order to confirm that they were viable and germinable. Table 15 presents the results of the study for the bimonthly sampling periods. The non-dormant seeds of BLKH were all dead after about two months while nearly 50 percent of those of SHA+ survived for the 12-month period – apparently because dormancy was induced at the warm temperature (30 °C) between the second and fourth months. More than 75 percent of the dormant seeds survived the year-long storage period, most of them still in the dormant condition.

Noldin (1995) subjected dormant and non-dormant seeds of 11 red rice ecotypes from 4 states to accelerated ageing conditions of 45 °C and 100-percent relative humidity for periods up to 24 days before testing for germination. Noldin considered seeds lots as non-dormant if they germinated 80 percent or higher; lots that germinated less than 80 percent were considered dormant. Table 16 presents selected results from this study. The accelerated ageing treatment released dormancy during the first 4 days, but the initially dormant seeds survived from 4 to more than 8 days longer under the very adverse accelerated ageing conditions than did those classified as non-dormant. These various studies demonstrate that dormant rice seeds are much more resistant to

<table>
<thead>
<tr>
<th>Red rice phenotype</th>
<th>Seed response</th>
<th>Storage period (months)</th>
<th>Non-dormant seeds</th>
<th>Dormant seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 2 4 6 8 10 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLKH</td>
<td>% dormancy</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% germination</td>
<td>100 54 2 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA+</td>
<td>% dormancy</td>
<td>3 6 45 37 48 44 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% germination</td>
<td>90 78 9 15 11 13 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLKH</td>
<td>% dormancy</td>
<td>99 80 92 57 92 87 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% germination</td>
<td>1 25 5 37 4 10 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA+</td>
<td>% dormancy</td>
<td>99 100 89 89 86 85 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% germination</td>
<td>0 0 8 10 6 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the combination of high temperatures and moisture content than those in which the dormant condition has been released, i.e. non-dormant seeds.

In another study, Teekachunhatean (1985) determined the relative resistance of fully imbibed dormant and non-dormant seeds of the Nato variety and the BLKH and SHA+ red rices to low temperatures of 5, 0 and -15 °C for periods up to four weeks. The seeds were actually between moist germination blotters during the exposure periods, as if for germination testing. Selected results are presented in Table 17. Non-dormant seeds maintained germination at high levels at 5 and 0 °C for the four-week period, especially the Nato variety, but there was no evidence of induced dormancy and the seeds that did not germinate decayed. Dormancy was mostly released in Nato seeds after two weeks at 5 and 0 °C, while those of the two red rice phenotypes remained mostly in the dormant condition. These data show that dormant rice seeds are relatively more

TABLE 16

Differential germinative responses of non-dormant and dormant seeds of red rice ecotypes after accelerating ageing for periods up to 24 days

<table>
<thead>
<tr>
<th>Ecotype / condition</th>
<th>Hull colour</th>
<th>Accelerated ageing at 45 °C – 100% relative humidity (days)</th>
<th>Germination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>AR 2</td>
<td>ND</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>61</td>
<td>90</td>
</tr>
<tr>
<td>LA 4</td>
<td>ND</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>74</td>
<td>98</td>
</tr>
<tr>
<td>MS 2</td>
<td>ND</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>75</td>
<td>99</td>
</tr>
<tr>
<td>MS 5</td>
<td>ND</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>TX 4</td>
<td>ND</td>
<td>90</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>56</td>
<td>95</td>
</tr>
</tbody>
</table>

Note: ND = non-dormant; D = dormant; FBL = faded black; BLK = black; STW = straw.

TABLE 17

Effects of low temperatures and period of exposure on germination responses of fully imbibed non-dormant and dormant seeds (27–30-percent moisture content) of the Nato variety and the BLKH and SHA+ red rice phenotypes

<table>
<thead>
<tr>
<th>Variety / phenotype</th>
<th>Seed response</th>
<th>Initial values 0 weeks</th>
<th>Temperature 5 °C</th>
<th>Temperature 0 °C</th>
<th>Temperature -15 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: BLKH = black hull genotype; SHA+ = strawhull short awns.
resistant to low temperatures than are non-dormant seeds. Both non-dormant and
dormant seeds succumbed to the very low -15 °C.

Dormant rice seeds are relatively more resistant to adverse combinations of
temperature and internal moisture content than are non-dormant seeds. Dormancy
provides substantial protection against the common conditions that cause seeds to
deteriorate and lose viability. Thus, it fulfils one of the four conditions for an effective
survival mechanism set forth above. Chapter 6 presents additional evidence on the
protective role of dormancy in the survival of red rice populations.

Release of dormancy
The fourth and final criterion for dormancy as an effective survival mechanism set forth
at the beginning of this chapter is that dormancy must be released by natural events
and/or conditions. This criterion is met in full in the case of rice seed dormancy. After-
ripening, or the release of dormancy, takes place in naturally dried rice seeds over time.
The length of time required for after-ripening is determined by:

- inheritance, which sets the potential depth of the dormant condition;
- climate conditions during seed maturation, which influence its expression;
- seed moisture content and temperature, which influence the rate of dormancy
 release.

The intensity of dormancy is greatest at the time the seeds attain physiological
maturity, circa 28–30-percent moisture content. Shattering begins at about this time for
the weedy red rices (the significance of which is considered in Chapter 6) but not for
the non-shattering cultivated varieties. The release of dormancy probably commences
as the seeds dry-down to below 15-percent moisture, at which time it is controlled
largely by temperature – the higher the temperature (up to about 50 °C), the more
rapid the release of dormancy. Researchers studying dormancy in both cultivated and
weedy red rices need to appreciate how rapidly dormancy can be released by warm
temperatures. Seeds harvested at relatively high moisture contents in order to maximize
dormancy should be dried at cool temperatures to 8–12-percent moisture and stored at
or below freezing temperatures (-10 to -20 °C) until needed for experiments (Roberts,
1963; Cohn, 1980; Teekachunhatean, 1985.)

The effects of time, temperature and seed moisture content on the period of
dormancy in rice have long been known and taken advantage of in overcoming
dormancy problems in cultivated varieties. Umali, Parker and Dumlao (1960) exposed
seeds of the variety Peta to wood smoke for 84 hours in order to overcome dormancy.
They attributed the dormancy-releasing effect of the smoke to some chemical that
counteracted an inhibitor in the seed coverings. However, Jennings and de Jesus (1964)
re-interpreted these results and concluded that the effective agent in the smoke was its
temperature, as a temperature of about 49 °C was maintained throughout the 84-hour
smoking treatment. They tested and recommended the exposure of fresh but naturally
dried seeds to 50 °C in open containers for 4–5 days for overcoming dormancy in small
experimental lots of rice seeds. Earlier, Roberts (1962) had made a detailed analysis
of the effect of temperature on the dormancy periods of a cultivated variety of rice.
He determined that the temperature coefficient for breaking dormancy was 3.38. He
interpreted the result as ruling out the idea that a temperature-dependent diffusion
process is involved in rice seed dormancy, as temperature coefficients for most
diffusion processes are typically only about 1.3. He speculated that some non-enzymic
oxidation reaction essential for germination was promoted by the warm temperatures.
Even earlier, Weir (1959) observed that seed dormancy in rice grown in Arkansas,
principally the Bluebonnet 50 and Nato varieties, was related to: time of harvest,
moisture content at harvest, and drying method. Seed harvested at relatively high moisture levels and dried with natural, i.e. non-heated, air exhibited the greatest degree of dormancy. Drying the seeds at 40 °C for four days before testing for germination overcame dormancy for most seed lots, except for some of the most dormant lots of the Nato variety. There have been many other reports on the dormancy-releasing effects of high temperatures for cultivated rices since the early 1960s, as heating became established as the preferred method of overcoming dormancy (Delouche and Nguyen, 1964; Pili, 1968; Nugraha and Soejadi, 1991). Because there was no breeding or testing interest in the weedy red rices, the dormancy-breaking effect of heating for red rices was not demonstrated until some 20 years after Weir’s observations by Larinde (1979), Do Lago (1982), Moreno (1990) and others.

The data in Table 12 that illustrate the variations in the intensity of dormancy among red rice phenotypes also illustrate very well the dormancy-releasing effect of time, even at a very cool temperature (10 °C). The initial level of dormancy in the cultivated varieties ranged from 75 percent for Starbonnet to 96 percent for deeply dormant Nato and from 94 to 100 percent for the 20 red rice phenotypes. Dormancy was essentially completely released for 3 of the 4 varieties and decreased to less than 40 percent for 4 of the 5 identified red rices during the 6-month storage at 10 °C. The Nato variety maintained a higher level of dormancy, 40 percent, during the 6-month period than any of the group of 9 SHR types and all of the identified red rice types, except 78/8, the most persistently dormant (73 percent after 6 months) of the 20 red rices and 4 cultivated varieties evaluated. The group of 6 BHR types was more persistently dormant than the group of 9 SHR types. The effect of temperature on the dormancy period is also evident in the results of studies by Moreno (1990). Dormancy of seeds of the Labelle variety was essentially released in three days, i.e. dormancy decreased from more than 90 percent to about 10 percent (Table 14), while the five identified red rices varied considerably in the rate of dormancy release at 30 °C. Dormancy in BLKH and SHA-, two of the most common red rices in Mississippi, was released rather rapidly with germination increasing from less than 10 percent at 0 days to about 70 percent after just 3 days and more than 90 percent after 10 days. Dormancy was released more rapidly in 78/8, the most deeply dormant red rice, than in Nato, the deeply dormant variety. Dormancy in SHA+, a third common red rice phenotype, was released at about the same rate as for Nato and 78/8 through 10 days but then reached an essentially non-dormant condition at 25 days, at which time substantial percentages of the Nato and 78/8 seeds were still dormant.

Additional data from studies by Moreno (1990) on the interacting effects of time and temperature on the release of dormancy in the variety Nato and five red rice phenotypes are presented graphically in Figure 4. The BLKH, SHA- and 79/1 phenotypes lost dormancy at a relatively rapid rate at all temperatures from 2–5 °C to 40 °C. For example, BLKH and SHA- reached more than 90-percent germination in 180 days at 2–5 °C and in about 3 days at 40 °C, whereas Nato and 78/8 did not even reach 20-percent germination at 2–5 °C in 300 days and 90-percent germination at 40 °C until 20 days.

Nature of rice seed dormancy and responses

There is a large and expanding literature on the nature of rice seed dormancy and responses of seeds to a wide variety of treatments effective to varying degrees in breaking or releasing dormancy. While most of the research has been on the cultivated rices, the weedy red rices have also received some attention, especially in the last 25 years. The information accumulated thus far suggests that while the intensity and persistence
of dormancy varies widely among species, *Oryza sativa* and *O. glaberrima*, the *O. sativa indica, japonica* and *javanica* types, and among their weedy red rice ecotypes or biotypes, the essential nature of dormancy is similar if not the same. Generally, the database indicates that *O. glaberrima* populations have the most deeply dormant seeds followed by those of *indica, javanica* and *japonica* (Dore, 1955; Tang and Chiang, 1958; Ikeda, 1963; Nakamura, 1963; Hayashi and Himeno, 1974; Ellis, Hong and Roberts, 1983). The intensity and period of dormancy in cultivated populations appears to be controlled by genetic/environment interactions. Deep and persistent dormancy is considered to be dominant over the very short dormancy periods characteristic of most cultivated varieties.
Plant type and climate conditions

Relatively photo-insensitive and short-maturity genotypes generally have the shortest and least intense dormancy (Chandraratna, Fernondo and Wattegedera, 1952; Dore, 1955; Agrawal, 1981; Deore and Solomon, 1983), but the relationship between maturity and dormancy is not very consistent. Seeds that mature during periods of rainy weather and high humidity are generally more intensely and persistently dormant than those that mature during drier periods (Ghosh, 1962; Jennings and de Jesus, 1964; Nair, Ponnaiya and Raman, 1965). Dormancy is also more intense in seeds that mature under warmer temperatures, e.g. 30 °C, than at lower temperatures (Ikehashi, 1972, 1975). Buenaventura (1956) observed that the post-harvest dormancy period of Philippine rice varieties ranged from 0 to 11 weeks and that its intensity and persistence were greatest when the seeds were harvested at a relatively high moisture content. Weir (1959) also noted that, in Arkansas, dormancy was most intense in seeds harvested at “high” seed moisture and dried naturally or with non-heated air.

Chemical treatments

Many different chemical treatments have been shown to stimulate germination of dormant rice seed. However, the results obtained by different researchers have been relatively inconsistent except for a few of the chemicals. Nitrates and nitrites generally stimulate germination of varying portions of the dormant seeds, especially if the seeds are hulled (Roberts, 1963; Agrawal, 1981; Cohn, Butera and Hughes, 1983; Howard-Kandakai, 1983). Roberts (1964a, 1964b) tested the idea that dormancy release in rice involves blocks to conventional respiration by applying the common inhibitors of cytochrome oxidase that should prolong dormancy, but they did not. Instead, most of them, especially sodium azide, promoted germination of dormant seeds to varying degrees. Roberts (1964 b) speculated that cytochrome oxidase is a strong competitor for available oxygen and that its inhibition makes more oxygen available for the non-enzymic oxidation reaction he assumed was involved in the release of dormancy. Soaks in water at 40 °C are effective in promoting germination of slightly dormant seeds, while soaking in 0.25-percent sodium hypochlorite worked well in stimulating germination of more dormant seeds (Delouche and Nguyen, 1964). Dormancy in rice was released by soaks in sulphuric, nitric and hydrochloric acids, for various periods, i.e. acid scarification (Lin and Tseng, 1959; Roberts, 1963; Murty and Raghavaiah, 1966; Sikder, 1967; Agrawal, 1981; Paquiot, 1992). Roberts found that nitric acid scarification was more effective than the other acids for cultivated varieties and attributed this to the additive effects of nitrate. Paquiot, working with the very dormant Nato variety and three red rice phenotypes, found that nitric acid was most effective in terms of soaking time (relatively good results were obtained in five minutes), while sulphuric acid was the most effective and safest in terms of stimulating complete germination during longer soaking periods up to 30 minutes. The effects of acid scarification cannot be separated from mechanical scarification, such as hulling, scratching of the pericarp, and excising portions of the spikelet. The two types of scarification probably act on both the hulls and pericarp-testa.

The data on the effects of hormones, such as gibberellic acid (GA), ethylene and the cytokinins on release of dormancy are also rather inconsistent. Cohn and Butera (1982) found that various cytokinins effectively broke dormancy in red rice, but in some years only when the hulls were removed. Several workers reported that gibberellin promoted germination of some but not all of the dormant seeds in genotypes evaluated (Roberts, 1963b; Nakamura, 1963; Roberts and Smith, 1977; Ellis, Hong and Roberts, 1983; Paquiot, 1992). However, Eastin (1978b), failed to stimulate germination of dormant red rice seeds with GA and several other phytohormones. Ethylene chlorohydrin, a
chemical with hormonal-like activity, applied as a 1000-ppm soak for 24–48 hours at 40 °C was consistently effective in releasing dormancy in both cultivated and red rices (Delouche and Nguyen, 1964; Do Lago, 1982; Teekachunhatean, 1985; Garcia-Quiroga, 1987; Paquiot, 1992).

Seed coverings

Removal of the hulls and rupture of the pericarp-testa complex are the two most effective treatments for releasing dormancy in rice and many other Poaceae species (Simpson, 1990). Permeability of the hulls to water is not a factor as dormant and non-dormant seeds absorb water at about equal rates (Roberts, 1961; Larinde, 1979). Nguyen and Delouche (1964) contended that for rice the beneficial effects of hull removal reported by others (Mikkelsen and Sinah, 1961; Roberts, 1961) were probably the result of hull removal combined with abrasions and scratches of the pericarp-testa incidental to hulling. They found that careful removal of the hulls increased germination of a population of dormant seeds of the Nato variety only from 5 to 35 percent over a 30-day period, while hulling and scratching the pericarp along the scutellar margin induced 98-percent germination in 6 days. In addition, they found that nicking the pericarp along the margin of the scutellum through a very small opening cut into the lemma over the embryo was equally effective. Similar results have been reported by Pili (1968), Larinde (1979), Paquiot (1992), and Nugraha and Soejadi (1991). These data and others did not support the view of Mikkelsen and Sinah (1961) that dormancy in rice seed is caused by the leaching of an inhibitor or inhibitors from the hulls into the pericarp-testa and embryo. Although the specific or even general mechanisms remain unknown, it is certain that both the hulls and pericarp-testa of rice seeds are involved in the establishment and release of dormancy in rice.

Causes of seed dormancy in rice

Several theories on the mechanisms of dormancy in rice have emerged from the voluminous database. Those that have already been mentioned and others include:

- the migration of inhibitors from the lemma and palea into the caryopsis;
- restriction of oxygen availability to the embryonic tissues imposed by the combined hulls and pericarp-testa;
- insufficient functioning of the pentose phosphate (PP) pathway in dormant seeds that is essential for the initial stages of germination (Roberts, 1973).

Dormant seed have a high activity of conventional respiration involving cytochrome oxidase that competes with the oxidase of the PP pathway. Treatments such as removal of the hulls and rupture of the pericarp-testa increase oxygen availability, which favours the PP pathway and releases dormancy. However, more recent work has cast considerable doubt on the PP pathway theory.

Leopold, Glenister and Cohn (1988) examined the loss of dormancy via after-ripening of red rice seeds as a model case to test the hypothesis that reactions regulating seed dormancy can proceed at water contents that are “probably” too low for significant metabolic activity. They found that after-ripening, i.e. release of dormancy, was most rapid at 6–14-percent moisture content (dry weight). The release of dormancy did not occur at more than 18-percent moisture and was severely inhibited at less than 5-percent moisture. The calculation of water-binding enthalpy values placed the optimal water content for after-ripening between water binding regions 1 and 2, i.e. the least to intermediate water contents. The authors speculated that there is a requirement for the completion of some chemical transformations in the dry seeds in order to produce a germination-ready state. At the 6–14-percent moisture content they determined...
as optimal for release of dormancy, the necessary reactions would probably involve non-enzymic oxidations. At moisture contents below about 6 percent, the necessary reactions would be hindered by the increasing free energy required for reactions. At moisture contents above about 18 percent, increasing oxidative metabolic activity would gain dominance and suppress the non-enzymic oxidations involved in the release of dormancy. These speculations fit very well with previous observations that 8–12-percent seed moisture (wet basis) is the most favourable level for release of dormancy (Roberts, 1962; Jennings and de Jesus, 1964; Ellis, Hong and Roberts, 1983), that high moisture content seeds are more persistently dormant than those at lower (< 14 percent) moisture levels (Weir, 1959; Buenaventura, 1956), and that dormancy persisted in near fully imbibed seeds, circa 28-percent moisture content (Delouche and Nguyen, 1964; Teekachunhatean, 1985). It also fits findings on the persistence and seasonal variations in dormancy of rice seeds on or in the soil (Chapter 6).

Simpson (1990) reviewed and analysed the available and relevant information on all aspects of dormancy in grass seeds, including speculations, ideas, concepts and theories. The logical format adopted for the review illuminated the many similarities in response/reactions among species of Poaceae but did not produce a general theory of dormancy.

Dormancy release in nature

The operative factors involved in the release of dormancy in weedy red rice seeds under “natural” conditions, which is where dormancy is maintained or released, are considered in Chapter 6.
Chapter 5

Vigour and competitiveness of weedy rices

The vigour and competitiveness of weedy rices (including red rices) in rice fields is perhaps their most obvious characteristic. In North and South America and in Europe, the competition is primarily intraspecific and intense. The common red rices that infest rice fields have traits, properties and responses that give them a decided advantage over most cultivated varieties. In SSA, the competition is mainly interspecific but equally intense. The main weedy rices there are *Oryza barthii*, *O. longistaminata* and *O. punctata*. *O. barthii* and *O. longistaminata* are the most important and widely disseminated (Johnson et al., 1999). *O. longistaminata*, a perennial with deep rhizomes that enable it to survive brush fires, shallow cultivation, and prolonged drought, is an especially fierce competitor. In Asia, where red rice originated, the competition has been largely interspecific but is becoming increasingly intraspecific (Chin et al., 1999). Although some important weedy rices with and without the red pericarp belong to different species, their competitiveness is associated with many of the same traits, properties and responses possessed by the *O. sativa* red rices.

ECONOMIC LOSSES FROM WEEDY RICES

For more than 100 years, red rice has been considered the most abundant and difficult to control among rice field weeds in Louisiana (Stubbs, Dodson and Brown, 1904). In the 1970s, the annual economic loss from weedy rices in the United States of America related only to the discounted value of contaminated rice grain was estimated at US$50 million (Eastin, 1978a). However, the total economic loss from weedy rice infestations is much greater when yield reductions caused by competition from red rice are taken into account. The newest, high-yielding rice variety in Arkansas, ‘Wells’, sustained a 35-percent yield loss when grown in a field infested with 22 red rice plants per square metre at Stuttgart (Burgos and Anders, ongoing research). Yield losses in producers’ fields can be lower or higher depending on the infestation level. Rice grain contaminated with red rice is discounted at the rice mill, so the total economic loss with a 35-percent yield reduction amounts to about 95 percent of the value of rice produced from a red rice-free field. Of the 0.6 million ha of rice in Arkansas, an estimated 60 percent are infested with red rice at some level. Based on the yield of Wells and a grain price of US$86/tonne, the losses to producers could be as high as US$200/ha. With 0.39 million ha infested with red rice in Arkansas, the total losses at current grain prices could be US$78 million/year. The other rice-producing states in the United States of America, except California, have probably sustained proportional losses in recent years. The discounted mill price for red rice contaminated grain reflects the added costs of processing to reduce or eliminate the red rice, the decrease in head (whole grain) rice yield, and usually a reduction in grade, while the yield loss is the result of the considerable competitive capacity of red rice in rice fields.
COMPETITIVE TRAITS OF RED RICES COMPARED WITH CULTIVATED RICES

Compared with varieties they infest, the main weedy rices (including red rices) are generally taller, more heavily tillered, more open or spreading, have weaker culms, are more susceptible to lodging, produce more straw, germinate and emerge a day or two earlier, emerge from greater depths, and exhibit more rapid seedling growth (Sonnier, 1978; Eastin, 1978a; Do Lago, 1982; Teekachunhatean, 1985; Diarra, Smith and Talbert, 1985a; Kwon, Smith and Talbert, 1991a, 1992; Pantone and Baker, 1991a, 1991b; Wague, 1992; Carroza, 1999; Khodabaks, 1999; Fischer, 1999; Ferrero and Vidotto, 1999; Estorninos, Gealy and Talbert, 2002). These and other traits, properties and responses of weedy rices (including red rices) give them a competitive advantage over the cultivated varieties they infest.

Plant height

All 31 red rice phenotypes (21 SHRs, 9 BHRs and 1 BrHR) collected and characterized by Do Lago (1982) were substantially taller than Starbonnet, the tallest of the four varieties used for comparison (Table 2 – the red rice types designated with numbers larger than 80 or with a T, e.g. 86/1 and T/9, were collected by other workers after Do Lago had completed his work). The shortest SHR type was 19 cm taller than Starbonnet while the tallest was 51 cm taller. The BHR types were the tallest of the red rices with a height advantage over Starbonnet of 32–66 cm. The five SHR types collected in Mississippi after 1980 (designated with number greater than 80) were the offspring of crosses of an SHR type and one of the semi-dwarf varieties, e.g. Lemont, that had been released. The 19 red rice ecotypes (11 SHR, 6 BHR and 2 goldhull types) from four states characterized by Noldin (1995) were all significantly taller than the three cultivated varieties used for comparison. The height advantage of the red rice ecotypes over Mars, the tallest variety, ranged from 19 to 51 cm, while compared with the semi-dwarf Lemont, the height advantage ranged from 31 to 63 cm. Similar height advantages have been reported by Fischer and Ramirez (1993) in Colombia, De Souza (1989) in Brazil, Chin et al. (1999) in Viet Nam, and Ferrero and Vidotto (1999) in Italy. About a century ago, Dodson (1898, 1900) described red rice as shorter than the varieties then cultivated. However, cultivated varieties have been progressively shortened to accommodate high levels of fertilizer and reduce lodging. The rice varieties of the green revolution developed by the International Rice Research Institute (IRRI) were much shorter and stiffer-strawed than the tropical varieties planted in the 1950s and 1960s. The semi-dwarf indica varieties, such as Lemont, introduced in the agriculturally advanced countries in the 1970s increased the height advantage of red rices considerably (Kwon, Smith and Talbert, 1991a, 1991b; Noldin, 1995; Ferrero and Vidotto, 1999). Tallness is a competitive trait in plant communities. Weeds taller than the crop are usually most competitive during the latter half of the season and have a greater effect on the yield components than growth of the crop as a result of the shading effect and lodging (Stansel et al., 1965; Smith, 1968).

Tillers

Red rices produce many tillers, especially compared with the modern varieties bred for direct seeding and mechanized harvest. High densities of low-tillering plants produce high yields of uniformly maturing grain that facilitate harvest and post-harvest operations, e.g. drying. On the other hand, the high tillering capacity of red rices is a competitive advantage important for their success as weeds. All except two of the red rices characterized by Do Lago (1982) produced more tillers than Starbonnet, the most heavily tillered variety (Table 2). The two exceptions were tall, glabrous,
erect, moderately shattering, long-grain SHR types that mimicked the Bluebonnet 50 variety that Starbonnet replaced. The SHR types produced 10–100 percent more tillers than Starbonnet. The BHR types were more heavily tilled than the SHR types and produced 2–3 times as many tillers as Starbonnet. Similar results were obtained later by Noldin (1995) in studies where 2 of 19 red rice ecotypes produced fewer tillers than the Maybelle variety. Most of them produced 25–50 percent more tillers. Chin et al. (1999) reported that weedy rices in Viet Nam produced about 30 percent more tillers per plant in rice fields than did cultivated varieties. Sonnier (1978) described both SHR and BHR types as taller, more open, and heavily tilled compared with cultivated varieties and noted that the BHR types were the most heavily tilled with up to 50–75 tillers/plant in field infestations. Ferrero and Vidotto (1999) reported that in Italy red rices in the seedling stage are difficult to distinguish from those of the crop, but that, once tilling starts, the red rices are easily identified by their more numerous, longer, and more slender stems. Plate 15 compares the tilling of two red rices with the Starbonnet variety.

Lodging

The competitive advantages of height and heavy tilling of the red rices combined with the “spreading” habit of the tillers contribute to early and severe lodging of the rice crop, a situation that further reduces competition from the shorter cultivated varieties (Quereau, 1920; Smith, Flinchum and Seaman, 1977). The taller BHR types lodge more easily than the shorter SHR types (Larinde, 1979), but both are susceptible to lodging and frequently collapse onto the cultivated rice, usually causing it to also lodge (Huey, 1978; Huey and Baldwin, 1978).

Germination and emergence

In the past, there seems to have been a general impression that red rice germinates and emerges more slowly than cultivated varieties. It probably derived from observations during germination testing and/or emergence trials of the seeds at times, e.g. within weeks after harvest, when there is a wide difference in the intensity of dormancy between red rices and cultivated varieties. As dormancy is manifested not only in the complete inhibition of germination but also by slower germination/emergence and greater specificity in the conditions required (Delouche and Nguyen, 1964), the less dormant or non-dormant seeds of the varieties germinate/emerge much faster than those of the red rices. However, such observations made during trials and experiments are not representative of the competitive situation during the planting season. For example, the red rice seeds that contaminate seed rice and are planted along with them were dried along with the seed rice and stored for months so that dormancy is released fully at the time of sowing.

Studies in Texas in the late 1970s compared the daily germinative responses of non-dormant seeds of a BHR ecotype with those of 22 rice varieties at temperatures of 15–40 °C during a seven-day period (Eastin, 1978b; Helpert and Eastin, 1978; Helpert, 1981). The lower limit for germination during the seven-day period was 15 °C, while 40 °C was detrimental. The optimal temperature for germination of the BHR type was 30–35 °C compared with 30 °C for the cultivated varieties. On average, the BHR germinated about 1 day earlier than the varieties over the range 20–35 °C. Pitty (1988) determined germination rates and percentages for non-dormant seeds of the Nato and Starbonnet varieties and the BLKH, SHA- and 79/15 red rices on a one-way thermodgradient plate with a temperature range from 14 to 44 °C in a 14-day period. The three red rices germinated 1–2 days earlier and at cooler and warmer temperatures than the two varieties, which did not reach 50 and 80-percent germination within
two days at any temperature (Table 18). The three red rices reached the 80-percent germination level in six days at temperatures 2 °C cooler and 2 °C warmer than the cultivated varieties. The optimal constant temperature for germination of the red rices was about 35 ºC compared with 30–32 ºC for the cultivated varieties. The three red rices germinated earlier and at much higher rate at 42 °C than the cultivated varieties, but there was little germination above 42 °C and below 18 °C for any of the entries during the test period.

Teekachunhatean (1985) compared development of the mesocotyl, coleoptile and plumule for the SHA+ and BLKH red rices and the Labelle and Nato varieties after ten days at 25 °C. Total seedling development was only marginally greater for the red rices than the varieties (Figure 5). However, the author noted that differences were much greater during the early days of the ten-day period and that, apparently, either the varieties “catch up” to the red rices or the red rices slowed development after about five days. Wague (1992) repeated the study using two different and current varieties, Maybelle and Lemont, but the same two red rices at 30 °C for eight days rather than 25 °C for ten days. Seedling development of the red rices at eight days was about 50 percent greater than that of Maybelle and more than two times greater than that of Lemont (Figure 6) – the exceptionally short mesocotyl of the semi-dwarf Lemont variety and some of the later semi-dwarfs caused emergence problems and led to the development of the gibberellin seed treatment to increase seedling length, especially the mesocotyl. Both red rices were superior to Maybelle and Lemont in terms of root length at four and

<table>
<thead>
<tr>
<th>Variety or ecotype</th>
<th>Germination period (days)</th>
<th>Temperature range for germination ≥ 50% (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nato</td>
<td>None</td>
<td>30–40</td>
</tr>
<tr>
<td>Starbonnet</td>
<td>None</td>
<td>26–40</td>
</tr>
<tr>
<td>79/15 (RR) *</td>
<td>34–40</td>
<td>22–42</td>
</tr>
<tr>
<td>BLKH (RR)</td>
<td>30–40</td>
<td>24–42</td>
</tr>
<tr>
<td>SHA- (RR)</td>
<td>28–40</td>
<td>22–42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety or ecotype</th>
<th>Germination period (days)</th>
<th>Temperature range for germination ≥ 80% (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nato</td>
<td>None</td>
<td>30–40</td>
</tr>
<tr>
<td>Starbonnet</td>
<td>None</td>
<td>26–40</td>
</tr>
<tr>
<td>79/15 (RR)</td>
<td>34–40</td>
<td>24–42</td>
</tr>
<tr>
<td>BLKH (RR)</td>
<td>34–40</td>
<td>22–42</td>
</tr>
<tr>
<td>SHA- (RR)</td>
<td>32–40</td>
<td>22–42</td>
</tr>
</tbody>
</table>

* RR = red rice.
eight days, seedling dry weight and speed of germination. The BLKH phenotype exhibited a significantly greater rate of germination and seedling development than that of SHA+ (Table 19).

Helpert and Eastin (1978) conducted four depth-of-emergence studies in Texas in the late 1970s in order to compare the emergence of SHR and BHR ecotypes and five varieties from soil depths of 0, 1, 2, 4, 8 and 16 cm in the field and greenhouse. The emergence percentages and plant heights of the two red rices were higher than those of the cultivated varieties over all soil depths during the first half of the 24-day observation period. Emergence percentages for the red rices were still higher at 24 days but the varieties had about the same plant height. The two red rices emerged more rapidly and with higher percentages than any of the five varieties. Some seeds of the SHR type emerged from the 16-cm depth.

EFFECTS OF RED RICE DENSITY AND PERIOD OF INTERFERENCE

Field experiments were conducted in Arkansas in order to evaluate the effects of season-long competition of 0, 5, 108 and 215 red rice plants per square metre on yield and yield components of the long-grain Lebonnet and medium-grain Mars varieties (Diarra, Talbert and Smith, 1984; Diarra, Smith and Talbert, 1985b). Red rice densities of 5 plants/m² reduced grain yield by 19–22 percent, while the highest red rice densities reduced grain yield by as much as 83 percent. Yield components negatively affected by competition with red rice at the higher densities included panicles per square metre and grains per panicle. However, the number of tillers was reduced significantly only at red rice densities of 108/m² or higher.

Teekachunhatean (1985) evaluated the effects of competition by the SHA- and BLKH phenotypes on the growth, development and yield of the Starbonnet variety. The competition level was a 1:1 ratio of each red rice type with Starbonnet with plants 15 cm apart in rows 30 cm apart. Plants were established by direct seeding and arranged in chequerboard fashion so that a red rice plant was surrounded by Starbonnet plants...
and vice versa. The plant density per plot was about 30 plants/m². Table 20 shows the results of season-long 1:1 competition between Starbonnet and the SHA- and BLKH red rice types, i.e.:

- no effect on time of anthesis, harvest maturity (circa 20 percent moisture) and plant height, with the exception that height of BLKH was reduced significantly by competition with Starbonnet;
- the number of tillers and dry weight per plant was reduced significantly for Starbonnet and increased for both BLKH and SHA-;
- grain yield of Starbonnet was reduced to 50 and 40 percent in competition with SHA- and BLKH, respectively, while the yields of SHA- and BLKH increased to 139 and 171 percent, respectively.

Grain yields of Starbonnet and the two red rices were comparable in pure culture. However, in competition, yield shifted to the red rices at the expense of Starbonnet, and increased significantly for BLKH.

Moreno (1990) examined the effects of season-long competition between the Maybelle and semi-dwarf Lemont varieties and the SHA- and BLKH red rices in a 1:1 ratio in both transplant and direct seeded culture. The number of tillers per plant, green weight per plant at 100 days, panicles per plant, grains per panicle and grain yield were reduced significantly for both varieties in both cultures (Table 21). The negative effects of competition with the red rices were greatest for the semi-dwarf Lemont.

The effects of season-long interference of an SHR ecotype at densities of 1–40 plants/m² on the growth, development and yield of the Newbonnet and Lemont (semi-dwarf) varieties were reported by Kwon, Smith and Talbert (1991a). Season-long interference had moderate to severe effects on the performance of the varieties depending on the density of the red rice. Straw dry weights of the Newbonnet and Lemont varieties were reduced by 100 and 130 kg/ha, respectively, for each red rice plant per square metre, while grain yields were reduced by 178 and 272 kg/ha for each red rice plant per square metre. The height of plants of the semi-dwarf Lemont was reduced by 10 red rice plants per square metre while that of the taller Newbonnet was reduced only at the highest density of 40 plants/m². The plant height of the red rice increased as the density of red

| TABLE 20 |
| Effects of season-long competition between the Starbonnet variety and the SHA- and BLKH red rice types in a 1:1 ratio on the time of 50-percent anthesis, harvest maturity, tiller number, plant dry weight, and grain yield |

<table>
<thead>
<tr>
<th>Types in competition ¹</th>
<th>Days to 50% anthesis</th>
<th>Plant height</th>
<th>Tillers</th>
<th>Dry weight per plant</th>
<th>Grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cm)</td>
<td>(no./plant)</td>
<td>(g)</td>
<td>0.5 m²</td>
<td>As % pure culture</td>
</tr>
<tr>
<td>Starbonnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Star/Star</td>
<td>93</td>
<td>123</td>
<td>115c</td>
<td>10.0d</td>
<td>34.6c</td>
</tr>
<tr>
<td>Star/SHA-</td>
<td>93</td>
<td>123</td>
<td>117c</td>
<td>6.0e</td>
<td>17.0d</td>
</tr>
<tr>
<td>Star/BLKH</td>
<td>94</td>
<td>124</td>
<td>113c</td>
<td>5.8e</td>
<td>15.7d</td>
</tr>
<tr>
<td>SHA-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA-/SHA-</td>
<td>85</td>
<td>116</td>
<td>157b</td>
<td>14.8c</td>
<td>48.2bc</td>
</tr>
<tr>
<td>SHA-/Star</td>
<td>90</td>
<td>119</td>
<td>146b</td>
<td>18.2c</td>
<td>60.7bc</td>
</tr>
<tr>
<td>BLKH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLKH/BLKH93</td>
<td>123</td>
<td>177a</td>
<td>24.5b</td>
<td>66.6b</td>
<td>33.9b</td>
</tr>
<tr>
<td>BLKH/STAR91</td>
<td>121</td>
<td>153b</td>
<td>35.7a</td>
<td>95.2a</td>
<td>56.1a</td>
</tr>
</tbody>
</table>

¹ Star/Star, SHA-/SHA- BLKH/BLKH were pure culture. In the competitive 1:1 plantings, the data in the row are for the first type, e.g. Star/SHA- – data for Starbonnet. Means in each column not followed by the same lower case letter differ significantly at the 1-percent level of probability as determined by least significant difference.

² Grain moisture about 20 percent.

rice increased but was greater in competition with the conventional variety Newbonnet than with the semi-dwarf Lemont. Overall, the interference of red rice was greatest with the semi-dwarf Lemont, which the authors attributed to increased shading.

In a related study, Kwon, Smith and Talbert (1991b) evaluated the influence of interference durations of an SHR ecotype on the growth, development and yield of rice of the Newbonnet and semi-dwarf Lemont varieties in order to obtain information useful in managing and timing control operations. Red rice at 20 plants/m² was grown with the two varieties for durations from 0 to 120 days after emergence. Competition of red rice for 120 days, i.e. full season competition, reduced straw dry weights by 58 and 34 percent and grain yields by 86 and 52 percent for Lemont and Newbonnet, respectively. Straw dry weights of the varieties were affected progressively and negatively as red rice interference extended beyond 40 days, while grain yields decreased progressively as the period of interference extended beyond 60 days. Other parameters of performance affected negatively by extended red rice interference included: plant height, panicles per square metre, spikelets per panicle, and filled grains per panicle. For all parameters measured, the semi-dwarf Lemont was affected more negatively than was the conventional Newbonnet. Similarly, straw dry weight and number of tillers were greater for the red rice in competition with the short stature Lemont. Therefore, red rices are more similar to other common rice field weeds, such as hemp sesbania (Sesbania exaltata) and northern jointvetch (Aeschynomene virginica), that become very competitive in the latter half of the season than like barnyard-grass (Echinochloa crus-galli), the most common weed in rice, which is a vigorous early-season competitor (Smith, 1968). More recent studies by Pantone and Baker (1991b) and Pantone, Baker and Jordan (1992) found that intervarietal competition had more effect than intravarietal competition, and that competition with weedy rice reduced the number of rice panicles and florets per panicle but not the number of filled florets or their weight, i.e. the quantity of yield was reduced rather than its quality. Estorninos et al. (2005b) reported that rice growth in competition with weedy rice was reduced only when the interference persisted longer than 70 days, which is somewhat longer than the 40 days of interference for biomass reduction and 60 days for yield reductions reported earlier by Kwon, Smith and Talbert (1991b).

Table 21

Effects of season-long competition between the Maybelle and Lemont varieties and the SHA- and BLKH red rice types in transplant and direct seeded culture on biomass and some yield components of the two varieties.

<table>
<thead>
<tr>
<th>Types in competition</th>
<th>Tillers per plant at 100 days</th>
<th>Green weight per plant at 100 days</th>
<th>Panicles per plant at maturity</th>
<th>Grains per panicle at maturity</th>
<th>Relative yield in grains per plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP (no.)</td>
<td>DS (g)</td>
<td>TP (no.)</td>
<td>DS (g)</td>
<td>TP (no.)</td>
</tr>
<tr>
<td>Maybelle (solo)</td>
<td>17a</td>
<td>18a</td>
<td>294a</td>
<td>330a</td>
<td>14a</td>
</tr>
<tr>
<td>Maybelle/SHA-</td>
<td>11b</td>
<td>12b</td>
<td>178b</td>
<td>160b</td>
<td>8b</td>
</tr>
<tr>
<td>Maybelle/BLKH</td>
<td>11b</td>
<td>10b</td>
<td>173b</td>
<td>180b</td>
<td>7b</td>
</tr>
<tr>
<td>Lemont (solo)</td>
<td>16a</td>
<td>17a</td>
<td>276a</td>
<td>362a</td>
<td>12a</td>
</tr>
<tr>
<td>Lemont/SHA-</td>
<td>10b</td>
<td>11b</td>
<td>161b</td>
<td>172b</td>
<td>6b</td>
</tr>
<tr>
<td>Lemont/BLKH</td>
<td>9b</td>
<td>10b</td>
<td>164b</td>
<td>148b</td>
<td>6b</td>
</tr>
</tbody>
</table>

Notes: Means in each column not followed by the same lower case letter differ significantly at the 1-percent level of probability.

1 Transplant culture.
2 Direct seeded culture.
3 All data are for the cultivated variety.
4 Yield based on grains per plant of variety in 1:1 competition relative to its yield in monoculture.

Source: Moreno, 1990.
OVERALL EFFECTS OF COMPETITION

The earliest workers in rice culture in the United States of America noted that, without the rigorous and conscientious use of the then available control measures, the population or density of red rice in continuous rice culture often increased to the extent that the infested fields became unfit for rice production (Dodson, 1898; Knapp, 1899; Quereau, 1920). Most of the discussions at the pioneering 1978 symposium on red rice research and control (Eastin, 1978a) emphasized the seriousness of the problem and the need for rice producers to exploit all available measures for control of red rice. Dishman (1978) related how a 100-ha field had to be abandoned for rice production because of the severity of the red rice infestation and the steps that were taken to reduce the density of red rice sufficiently to begin rice production again. Sonnier (1978) discussed in detail the alternatives and options available to rice farmers to control red rice sufficiently in order to maintain economically viable production. Although additional weapons in the battle against red rice have been developed since 1978, those discussed and recommended at the 1978 symposium remain the core of the package of control measures.

The consequences of red rice infestations depend on the degree of infestation and the control measures taken. From most to least serious, they include:

- the eventual abandonment of the area for rice production owing to an overwhelming population of red rice;
- substantial reductions in yield and lower grain prices owing to discounts for the presence of red rice in the grain;
- increased costs of production, e.g. labour, chemicals, equipment and energy used for control;
- the inconvenience of roguing minor infestations.

Reductions in yield are a common and frequently serious consequence of red rice infestations. Infestations of 60 red rice plants per square metre reduced yield by 30–50 percent in Brazil (De Souza, 1989), while 24 plants/m² reduced yields in Colombia by 50 percent (Fischer and Ramirez, 1993). Ten or fewer weedy rice plants per square metre did not affect yield in Costa Rica, but each weedy rice plant above 10 plants/m² decreased yield by 0.09 tonnes/ha (Espitia, 1999). Garcia de la Osa and Rivero (1999) reported red rice infestations of up to 240 plants/m² in some heavily infested areas in Cuba and noted that the short-cycle varieties were most affected. Yield reductions can be as high as 40–60 percent in Mexico (Martinez, 1999), while in Suriname yield was reduced by 6 percent for every 1-percent increase in the rate of infestation (Khodabaks, 1999). Chin et al. (1999) reported on results of studies in Viet Nam that showed that rice yield began to decrease as the number of weedy rice tillers exceed 12 tillers/m². In Europe, red rice infestations can reduce rice yield by 50 percent in France (Mouret, 1999) and even more from heavy infestations in Italy (Ferrero and Vidotto, 1999).

THE PHYSIOLOGY AND COMPETITIVENESS OF RED RICES IN THE UNITED STATES OF AMERICA

Timely, effective and economical weed control technology for rice production is influenced by several factors including interference thresholds, biology, and growth habits of weeds in rice culture (Smith, 1988). The impact of weedy rice on rice depends on crop-weed densities, interference duration, the variety planted, soil fertility levels, and soil moisture regime. Short-stature cultivars grow more slowly than the old tall varieties. Therefore, it takes longer for the crop canopy to close. This gives more possibility for weeds, such as red rice, to overcome rice. The switch from tall- to short-stature rice varieties had the undesirable side-effect of exacerbating the weed
problem because it favours the growth and competition of *Echinochloa crus-galli*, red rice, sprangletop (*Leptochloa* spp.), and aquatic weeds (Smith, Flinchum and Seaman, 1977; McGregor, Smith and Talbert, 1988). The competitive advantage is tipped further in favour of weeds where fertilizer is applied early in the season, as is necessary for the rice crop.

C₄ plants are expected to be more competitive than *C₃* plants because the latter are less efficient in carbon assimilation than the former (Orsenigo, Patrignani and Rascio, 1997), especially in warm and water-deficient climate zones. For example, grain sorghum (*Sorghum bicolor*) is a *C₄* crop species that is very productive in Kansas and Texas, where summer temperatures are high and rainfall is limited. Many of the problem weeds in rice are *C₄*, except for red rice, which is a *C₃* plant like cultivated rice. Smith (1988) reported on weed thresholds in the south of the United States of America. Of the ten weedy species studied, season-long competition with red rice caused the highest yield reduction in rice (about 80 percent). The shorter the duration of red rice competition, the less effect it had on rice yield. *Echinochloa crus-galli*, the most prevalent weed in rice production, was only second to red rice in terms of season-long effect on rice yield, with a 70-percent reduction. Red rice was also a more aggressive and damaging competitor in rice fields than other grass weeds, such as bearded sprangletop (*Leptochloa fascicularis*), and broadleaf signalgrass (*Brachiaria platyphylla*). Studies in Arkansas in the early 1980s using drill-seeded Newbonnet rice demonstrated that one red rice plant per square metre reduced rice yield by 219 kg/ha (Smith, 1988). There appears to be a narrow window from planting up to the 2- to 3-leaf stage when red rice has no impact on rice growth and is also susceptible to chemical control measures. Beyond this point, it becomes increasingly aggressive as it grows taller and larger than rice. Acceptable levels of red rice control were attainable only with great difficulty, expense, and/or long-term rotations until the commercialization of recent herbicide-resistant Clearfield rice technology.

Regarding economic thresholds for control, Smith (1988) advocated a low tolerance for red rice in rice production fields, as densities of 1–3 plants/m² were considered the trigger point for red rice control measures, a relatively stringent criteria that has not changed. In contrast, up to 10 plants/m² is considered the economic threshold for *Echinochloa crus-galli*, and threefold or more for other species.

Competition mechanisms

Competitiveness is the ability to deplete rapidly consumable resources, such as water and nutrients, or to grow better than associated species when these resources are limiting (Radosevich, Holt and Ghersa, 1997). There needs to be an explanation as to why a *C₃* plant, red rice, is more competitive than another *C₃* plant, cultivated rice. There are several possible causes for the underlying differences between cultivated and weedy red rice in terms of genetic differences and the resulting physiological responses to the environment. However, only recently have preliminary experiments been conducted to elucidate possible competitive mechanisms, some highlights of which are discussed below.

Many of the morphological traits that contribute to the competitiveness of red rices in rice fields have been identified and discussed above. Red rices are generally taller, produce more tillers, and have a larger leaf area than rice (Kwon, Smith and Talbert, 1992; Noldin, Chandler and McCauley, 1999; Estorninos, Gealy and Talbert, 2002). Height, aboveground and belowground biomass production, and leaf area are among the strongest indicators of the competitive ability of a plant (Gaudet and Keddy, 1988). Red rices possess these competitive traits and are much more aggressive competitors than cultivated rices (Pantone and Baker, 1991b; Estorninos, Gealy and Talbert, 2002).
TABLE 22
Comparative agronomic and physiological traits of rice and weedy rice grown in non-competitive conditions at the Rice Research and Extension Center, Stuttgart, Arkansas, between May and August in 2000 and 2001

<table>
<thead>
<tr>
<th>Rice cultivar or red rice type</th>
<th>Shoot biomass 1</th>
<th>Tiller number</th>
<th>Panicles per plant</th>
<th>Grains per panicle</th>
<th>Grains per plant</th>
<th>Total chlorophyll 3</th>
<th>Photosynthesis reduction 3</th>
<th>δ 13C 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 N (g/plant)</td>
<td></td>
<td>(no.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bengal</td>
<td>175</td>
<td>210</td>
<td>54</td>
<td>51</td>
<td>70</td>
<td>3,794</td>
<td>1.67</td>
<td>42</td>
</tr>
<tr>
<td>Wells 2</td>
<td>270</td>
<td>290</td>
<td>64</td>
<td>32</td>
<td>73</td>
<td>2,399</td>
<td>2.02</td>
<td>46</td>
</tr>
<tr>
<td>Katy red rice</td>
<td>230</td>
<td>260</td>
<td>51</td>
<td>45</td>
<td>101</td>
<td>4,136</td>
<td>1.29</td>
<td>27</td>
</tr>
<tr>
<td>Straw hull red rice</td>
<td>380</td>
<td>400</td>
<td>76</td>
<td>86</td>
<td>159</td>
<td>15,133</td>
<td>1.40</td>
<td>32</td>
</tr>
<tr>
<td>LSD0.05</td>
<td>Plant type = 78</td>
<td>12</td>
<td>8</td>
<td>28</td>
<td>1,201</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Factors involved in these experiments are: (i) plant type (as indicated in the table); (ii) N rate (0, 100 and 200 kg/ha); and (iii) shade (0 and 50%). Shade treatment was imposed 10 days after initiation of flowering of each plant type and imposed for 7 days. This duration of shade did not affect tillering, shoot biomass, and grain production.

1 N rates are in kilograms per hectare.
2 Yield parameters for Wells were available only in 2001. It did not mature before the onset of cold weather in 2000.
3 Chlorophyll and photosynthesis were measured from flag leaves, two days after imposing the shade treatment.
4 Analysed using the youngest leaf of each plant sampled, at 100 kg N/ha, 40 days after planting in 2000 and at flag leaf exertion in 2001, which was before the shade treatment. The values obtained are representative of C₃ plants in contrast to that of Echinochloa crus-galli (-12.13), which is a typical C₄ plant.

Source: Data extracted from Stiers (2002).
The advantages of light interception and occupying space

Tiller production in Poaceae (grasses) correlates strongly with biomass production and resource acquisition. Therefore, red rice, which can produce twice as many tillers as rice can, has the competitive advantage. High-tillering red rice occupies more space, crowds out other plants, and has a higher leaf area for greater light interception. In the absence of competition, SHR rice produced significantly more tillers than cultivated rice under similar conditions (Table 22). When grown in competition, red rice (LA3) also produced more tillers and shoot biomass than the variety Kaybonnet (Estorninos et al., 2005b). However, the competitiveness of red rice is influenced by the red rice biotype and the variety it infests. Potential tiller production (and plant height) varies greatly among red rice types (Chapter 3 and earlier in this chapter). In studies in Arkansas (Shivrain, 2004), the most common tiller number per plant for BHR and BrHR rice in the absence of competition was about 120/plant with a range of 70–140/plant. SHR rice, the dominant type of weedy rice, had a lower potential tiller production at 70–120/plant, but this is still much more than the tillering capacity of the rice varieties developed for mechanized rice production.

Another means of plants gaining a competitive edge over other plants for light interception is tallness. The height advantage of red rice over cultivated rice has already been discussed. The height of red rice ecotypes affects the varieties it infests and, in turn, is affected by the variety. The tall red rice (LA3) planted over a range of densities in competition with Kaybonnet planted at the usual rate (100 kg/ha) produced dramatically more tillers, panicles, biomass, and seed yield than did a short red rice type, KatyRR, derived from a cross with the Katy variety (Estorninos et al., 2005b). Similarly, yield, panicle density and aboveground biomass of Kaybonnet rice were substantially lower when grown in competition with the tall LA3 ecotype than with the short KatyRR.

Height advantage and tillering capacity have compensatory effects for competition. A red rice biotype might not be significantly taller than the rice variety but still compete aggressively by producing more tillers. In pot studies (Figure 7), semi-dwarf varieties with high-tillering capacity, such as PI 312777, 82 cm, 12 tillers/plant, were as competitively aggressive as red rice in contrast to tall but low-tillering varieties such as Kaybonnet, 100 cm, 5 tillers/plant (Estorninos, Gealy and Talbert, 2002). Similar results were obtained in field studies where high-tillering indica cultivars PI 312777 and Guichao at commercial planting rates (100 kg/ha) reduced red rice tiller numbers much more than did Kaybonnet (Estorninos et al., 2005a).

Because the agronomic characteristics of a rice variety influence its capability to withstand competition (Johnson et al., 1998), competitive traits should be considered in breeding for high yield and good grain quality. Tall rice varieties, which have not undergone intensive selection for specific agronomic traits, or are still genetically closer to the wild relatives, are more competitive than semi-dwarf ones in mixed populations (Jennings and Aquino, 1968; Jennings and de Jesus, 1968). For example, Newbonnet, a tall variety, suffered less yield loss from red rice competition compared with Lemont, a semi-dwarf variety: 10 red rice plants per square metre caused a 27-percent yield reduction in Newbonnet, but a substantially greater yield loss of 45 percent in Lemont (Kwon, Smith and Talbert, 1991a).

The newer rice varieties including CL161, Cocodrie, LaGrue, and XL8 (hybrid rice) are generally less affected by red rice competition at densities of up to 12 plants/m² compared with the older, semi-dwarf variety Lemont (Ottis et al., 2005). At the very low red rice density of fewer than 1 plant/m², Lemont generally produced the lowest yield (about 5–7.5 tonnes/ha) while the hybrid XL8 produced the highest yield (9–11.8 tonnes/ha) across different locations. The newer, non-hybrid cultivars either had
Weedy rices – origin, biology, ecology and control

the same or a higher yield than Lemont, but were less productive than the hybrid. This indicates that selection for higher yields did not eliminate the competitive ability of the newer cultivars. The hybrid rice has larger plants with more tillers than the modern, conventional rice varieties, and it is thought to be more competitive than them. This was most apparent where red rice density was high (12 plants/m²).

Nitrogen uptake and nitrogen-use efficiency

Red rice grows faster and matures earlier than many modern rice varieties and even older varieties such as Newbonnet and Lemont (Kwon, Smith and Talbert, 1992). This difference in biomass production between the weed and the crop is magnified in the field. Even in the absence of competition, rice and red rice respond differently to fertilizer nitrogen (N). At N doses optimal for the varieties Bengal and Wells (100 kg N/ha), SHR rice produced 1.4–2.2 times more biomass than the varieties (Table 23). At a high fertilizer N dose (200 kg/ha), the rates of leaf emergence of Bengal (medium grain) and Wells (long grain) declined relative to those under the optimal N rate. Conversely, the rate of leaf emergence of the SHR rice grown with 200 kg N/ha increased significantly relative to those with the lower N rate (Stiers, 2002). This indicates that excessive N fertilization delays the maturity of rice but not that of red rice.
Differences in red rice biology influenced its interference with rice. Burgos et al. (2006a) found that in a mixed population of three plants of the Drew variety to one SHR rice plant, the latter accumulated more N in its shoot tissues, produced more shoot biomass per unit N absorbed, and responded to higher N levels than the variety (Figure 8). Without N fertilizer, the red rice produced 791 g of shoot biomass per square metre compared with 686 g/m² for Drew two weeks after heading at Stuttgart, Arkansas. Drew did not respond significantly to added N up to a rate of 20 g/m² whereas red rice continued to produce significantly more shoot biomass in response to added N and did not reach maximum biomass production within the fertilization dose range used. The response of red rice to fertilizer N became much greater relative to the Drew variety two weeks after heading than at panicle initiation. This supports the general observation and contention that red rice becomes more vigorous and more competitive as the growing season progresses. Two weeks after heading, red rice also showed a steady rate of N uptake as more N was applied up to 20 g/m². In contrast, Drew rice showed a declining rate of N accumulation in shoot tissue as more N was applied. These results indicated that red rice was able to remove more N from the soil than Drew rice. On average, red rice accumulated 63 percent of applied N in its shoot tissue two weeks after heading, apparently as a result of the large amount of biomass that it produced both aboveground and belowground. SHR rice produced at least 1.5 times the root biomass of the medium-grain Bengal and long-grain Wells varieties under non-competitive conditions (Table 22).

The rate of shoot biomass production for every unit of total N accumulated (N-use efficiency) was higher in red rice than in Drew rice when fertilizer N was added, and this became more apparent at two weeks after heading (Burgos et al., 2006a). At an earlier growth stage (panicle initiation), Drew and red rice produced equivalent amounts of shoot biomass per gram of N accumulated when no fertilizer N was added, 69 and 72 g/g, respectively. While N-use efficiency for both Drew and red rice declined linearly with increasing N, red rice produced significantly more shoot biomass per unit of total N accumulated than Drew averaged over N rates. Two weeks after heading, N-use efficiency for Drew declined linearly with N dose while that of red rice reached

![Comparative response of Drew rice and strawhull red rice to fertilizer N in terms of biomass production and N-use efficiency, two weeks after heading](image)
Weedy rices – origin, biology, ecology and control

76

a peak at an N rate of less than 10 g/m². The maximum N-use efficiency for red rice was 114 g of shoot biomass per gram of total N accumulated at the 7.4 g N/m² rate, as compared with only 75.8 g of biomass per gram of N accumulated by Drew at the same N rate. Thus, regardless of the N rate, the N-use efficiency was higher for the red rice than for the variety Drew.

Red rice and a possible intermediate C₃-C₄ carbon fixation pathway

The very recent studies discussed above suggest that one of the important mechanisms for the competitiveness of red rice in rice fields is its capacity to produce more root and shoot biomass and accumulate more N than the cultivated varieties it infests. As the process of N uptake and assimilation is related closely with photosynthesis, it could be that red rice has higher photosynthetic efficiency than rice. It has been established that some wild rice types, e.g. *Oryza rufipogon* and *O. australiensis*, have evolved an intermediate carbon fixation pathway (Yeo, Yeo and Flowers, 1994) that is better than C₃ but not quite as efficient as C₄. These improvements in system efficiency, as discussed by Ku et al. (1991), include:

- stronger affinity for CO₂ than for O₂ in the ribulose-1,5-bisphosphate carboxylase-oxygenase (variety Rubisco) binding site;
- reduced photorespiration rate compared with C₃;
- reduced CO₂ compensation point compared with C₃;
- a tendency towards Krantz anatomy.

As noted above, the presence of these characteristics of an intermediate carbon fixation system have been reported for *O. rufipogon* and *O. australiensis*. Therefore, a preliminary study was conducted to determine the carbon fixation pathway of red rice using discrimination ratios of C¹³ to C¹². Rubisco preferentially binds the lighter carbon isotope. Therefore, C₃ plants have lower carbon discrimination ratios than C₄ plants. As these values are expressed relative to a reference with higher C¹³/C¹² than the sample, the final isotope discrimination values (δ¹³C) are negative. C₃ plants then

TABLE 23

Comparative growth between rice and red rice under non-competitive condition, with optimal soil fertility level, in pot experiments conducted outdoors, May–September 2001, at Main Agricultural Research and Extension Center, University of Arkansas, Fayetteville, USA

<table>
<thead>
<tr>
<th>Harvest time (DAP)</th>
<th>Rice or red rice type</th>
<th>Root biomass (g/plant)</th>
<th>Shoot biomass (g/plant)</th>
<th>Total biomass (g/plant)</th>
<th>Growth rate (g/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Bengal</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Strawhull red rice</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>21 Bengal</td>
<td>0.24</td>
<td>0.11</td>
<td>0.35</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>0.16</td>
<td>0.08</td>
<td>0.24</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Strawhull red rice</td>
<td>0.21</td>
<td>0.13</td>
<td>0.34</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>28 Bengal</td>
<td>0.55</td>
<td>0.19</td>
<td>0.74</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>0.21</td>
<td>0.27</td>
<td>0.48</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Strawhull red rice</td>
<td>0.36</td>
<td>0.31</td>
<td>0.67</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>90 Bengal</td>
<td>231.80</td>
<td>86.19</td>
<td>317.99</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>211.08</td>
<td>79.09</td>
<td>290.17</td>
<td>4.67</td>
<td></td>
</tr>
<tr>
<td>Strawhull red rice</td>
<td>390.78</td>
<td>137.81</td>
<td>528.59</td>
<td>8.51</td>
<td></td>
</tr>
<tr>
<td>130 Bengal</td>
<td>191.75</td>
<td>73.88</td>
<td>265.63</td>
<td>-1.31</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>190.62</td>
<td>71.38</td>
<td>262.00</td>
<td>-0.70</td>
<td></td>
</tr>
<tr>
<td>Strawhull red rice</td>
<td>237.50</td>
<td>138.88</td>
<td>376.38</td>
<td>-3.81</td>
<td></td>
</tr>
</tbody>
</table>

LSD₀.₀₅

72.70 12.81 22.70 0.93

Note: Values are average of four replications.

¹ DAP = days after planting.
² Bengal = medium-grain rice; Wells = long-grain rice; strawhull red rice = biotype from Stuttgart, Arkansas.

Source: Adapted from Stiers (2002).
would have more negative values than C₄ plants. The field experiments conducted at the Rice Research and Extension Center, Stuttgart, Arkansas (Stiers, 2002), showed that the medium-grain Bengal and long-grain Wells varieties had δ¹³C values of -26.96 and -28.05, respectively, while *Echinochloa crus-galli*, a C₄ plant, had δ¹³C = -12.13 (Table 22). These values are typical. The red rice biotypes Katy-RR and Stuttgart SHR rice had δ¹³C values of -27.98 and -28.09, respectively, which were similar to those of the rice varieties. These recent, preliminary studies indicate that a modified or intermediate, more efficient pathway than the normal C₃ system is probably not involved in the competitiveness of red rices.

Shade adaptation

Many weedy species of *Oryza* (*O. australiensis*, *O. brachyantha*, *O. nivara*, *O. longistaminata*, *O. barthii*, and *O. rhizomatis*) show the same photosynthesis rates as cultivated rice (Yeo, Yeo and Flowers, 1994). Preliminary experiments conducted in Arkansas also showed that red rice (*O. sativa*) has the same photosynthesis rate as cultivated rice (Stiers, 2002). However, it has been observed that in growers’ fields even sparsely distributed red rice plants seem to always manage to grow above the rice canopy, and short-stature red rice plants are able to grow normally in the usual dense stand of cultivated rice. However, where the situation is reversed in terms of density, cultivated rice cannot overcome the shading effect of weedy rice. Therefore, it has been theorized that weedy rice has better tolerance to shading than cultivated rice. Experiments conducted by Stiers (2002) at Stuttgart, Arkansas, in 2000 and 2001 showed that the medium-grain Bengal and long-grain Wells varieties sustained 42 and 46 percent reduction in photosynthesis rate, respectively, 2 days after being subjected to 50-percent shade compared with only a 38-percent reduction for the Stuttgart SHR rice (Table 22). The shade treatments were applied 10 days after 50-percent anthesis. The significantly lesser effect of shading on the photosynthesis rate of red rice suggests that it is more tolerant of reduced light than cultivated rice and, thus, might be able to grow well in normal rice populations even when it emerges later than the crop, or when it is set back temporarily by herbicide application. A possible mechanism of shade adaptation could be an altered chlorophyll a/b ratio in response to shade. This was observed in Stuttgart SHR rice, which showed a ratio of 4.69 chlorophyll a/b without shade and 4.19 after 2 days of exposure to 50-percent shade. The chlorophyll a:b ratios of rice cultivars were not altered by shading. The reduced chlorophyll ratio reflects an increase in the proportion of chlorophyll b relative to chlorophyll a. An increase in chlorophyll b per unit area allows efficient harvesting of light under reduced light conditions. This type of response has also been observed in cotton, where the chlorophyll a:b ratio decreased when plants were shaded for 2–8 days (Zhao and Oosterhuis, 1998).
Chapter 6

Ecological relationships

Much information is available on the diversity, characteristics/trait, and competitive capabilities of weedy rices (including red rices). However, much less is known about the ways these characteristics interact with one another and with environmental factors to adapt these rices to the ecology of various rice culture systems. Ecology is concerned with how living organisms adapt to and live in various environments, i.e. make themselves “at home” (Heydecker, 1973), and weedy rices (including red rices) have made themselves “at home” in direct-seeded rice culture in climate zones ranging from the tropics to temperate zones (Labrada, 1999). Several of the participants in the 1978 Red Rice: Research and Control symposium (Eastin, 1978a) pointed out that more research on the characteristics and ecological relationships of red rices was needed in order to find “weak links” in their life cycle that might be useful in devising effective and efficient control strategies (Sonnier, 1978; Helpert and Eastin, 1978; Eastin, 1978b). Eleven of the 21 conclusions and recommendations of the Global Workshop on Red Rice Control (FAO, 1999) dealt with the need for more information and research on various ecological aspects of infestations of weedy rices (including red rices) and on practical, integrated control measures.

Interesting and valuable research information on the ecological relationships of weedy rices (including red rices) has been developed since the late 1970s for direct-seeded, mechanized rice culture systems in temperate or near-temperate climate zones in North and South America and in Europe. A significant portion of this information has been developed by graduate students from different rice-growing countries whose studies have not been published. Some of the results of their studied have been reviewed and presented above. This chapter discusses additional results from their work and from other resources in order to illuminate the interactions between some of the traits of red rices with environmental factors that permit them to invade, spread and persist in the direct-seeded, irrigated rice production systems in temperate zones.

SEED SHATTERING AND DORMANCY

The roles of early, easy and severe seed shattering (or shedding) and seed dormancy of varying intensity in the establishment, maintenance and survival of communities of “native”, i.e. unimproved, plants have been reviewed and discussed in Chapter 4. In the case of red rice, the seed-shattering trait ensures that a sufficient portion of the seeds produced falls to the soil to produce the next cycle of plants rather than being taken away as contaminants in the harvested grain (Constantin, 1960). The role of seed dormancy in the survival of red rice during periods of freezing temperature in the winter season has long been recognized (Dodson, 1898). In considering these two critical and invariable traits of red rice, questions arose regarding their relationship (Do Lago, 1982), specifically, as to whether and how the two traits interact to enhance the survivability and persistence of red rices. Teekachunhatean (1985) designed some studies to answer this question taking into account earlier work that demonstrated the great effect of drying and warm temperatures on the release of seed dormancy in cultivated rice (Weir, 1959; Umali, Parker and Dumiao, 1960; Roberts, 1962; Jennings and de Jesus, 1964; Delouche and Nguyen, 1964) and the more recent work showing that red rice seeds responded similarly (Larinde, 1979; Do Lago, 1982).
Teekachunhatean simulated delays in shattering, i.e. varying resistance to shattering, of BLKH, the common BHR, SHA-, the common SHR, and the very early shattering and deeply dormant 78/8 BrHR phenotype by “catching” the first flush of shattered seeds in September and maintaining them in the air at panicle height on woven plastic screens for periods of 0, 2, 4 and 6 weeks. “Shattered” seeds of the non-shattering Starbonnet variety used for comparison were obtained by hand-stripping seeds at about 28 days past 50-percent anthesis from the middle of panicles. At the end of each period, the seeds were retrieved, planted about 0.5 cm deep in fumigated soil in a special area of the experimental plot, and watered thoroughly. Thereafter, watering was entirely by natural rainfall. The plantings were examined and emergence recorded at weekly intervals for about 15 months. Figure 9 presents selected results from the 1983 studies. Emergence of the lightly dormant Starbonnet seeds for all shattering-delay periods was relatively low and occurred entirely during the first three months after planting. Dormancy of BLKH seeds was released completely by 4-week and 6-week shattering delays, i.e. aerial drying, with the result that essentially all of seeds emerged within a couple of months. Seeds planted at the time of shattering (0 weeks) and after just a 2-week delay were dormant, so that 30–40 percent of them survived the winter as seeds and emerged in April and May of the following year, when rice is usually planted. Responses of the SHA- phenotype were similar with the exception that dormancy of the seeds from the six-week shattering delay was released completely so that most of the seeds germinated and were killed by an early freeze before or during emergence. Dormancy of seeds of

Source: After Teekachunhatean (1985).
the deeply dormant 78/8 phenotype was maintained sufficiently through the six-week shattering delay so that the full flush of emergence did not occur until April, May and even June of the following year.

Garcia-Quiroga (1987) extended the shattering-delay studies to include placement of the seeds after the periods of simulated shattering delay on both rainfed and “marshy” or wet soil, “as encountered in rice fields during the fall and winter seasons.” While the results were somewhat inconsistent over the two years of the studies, he concluded that dormancy in shattered seeds was prolonged greatly compared with those maintained in the air, with the result that “more of the seeds, therefore, over-wintered in the dormant state and germinated the following spring when conditions were favourable for completion of the life cycle of rice.” The beneficial effects of early shattering were more pronounced under “marshy” than rainfed conditions.

The results from the studies by Teekachunhatean and Garcia-Quiroga suggest that seed shattering and dormancy interact to increase the probability that seeds of red rice survive the winter season as seeds to germinate and emerge when conditions become favourable for rice in the following spring season. Seed shattering in the common red rice ecotypes begins soon after the seeds attain physiological maturity at moisture contents from 25–28 percent (Chapter 4), which is also the time of maximum intensity of dormancy. As dormancy is released most rapidly at 8–14-percent moisture content (Roberts, 1962; Ellis, Hong and Roberts, 1983; Leopold, Glenister and Cohn, 1988) and very slowly or not at all at moisture contents of more than 18 percent, shattering places the seeds on the soil beneath the plants where maintenance of a moisture content of more than 18 percent is more probable than if the seeds remain on the plant drying to lower moisture contents in warm air temperatures. Conversely, if red rices were as non-shattering as most varieties, the seeds not gathered in the harvest would remain on the plant and lose dormancy to the extent that most of them would germinate, emerge and be killed by freezing early in the winter. These findings and conclusions have important implications relating to the fate of segregates spawned in the hybrid swarms resulting from cultivated and red rice crosses.

VARIATION IN MATURITY

The days to 50-percent anthesis and/or the heat units required for flowering varied widely among the red rice types collected in Mississippi, Texas and Arkansas. In Mississippi, the time of 50-percent anthesis ranged from 86 to 109 days for 26 SHR rices, from 93 to 112 days for 9 BHR rices and 1 BrHR rice, and from 90 to 105 days for four widely grown varieties (Table 2). All but two of the SHR types collected from Starbonnet fields in 1978–1980 were 1–16 days earlier than Starbonnet, the two exceptions were 3–4 days later, while all but one of the BHR types had essentially the same maturity as Starbonnet or were a few days later. As none of the red rices was more than 4 days later than Starbonnet and shattering began early in most of them, many of the red rice seeds, perhaps more than 50 percent, would be on the soil surface before the crop was harvested, with additional seeds shattered at the time of harvest. On the other hand, if the red rices had infested fields of the new earlier-maturing Lemont variety, 90 days to 50-percent anthesis, rather than fields of Starbonnet, 105 days to 50-percent anthesis, seeds of the latest red rice types would not have been sufficiently developed to shatter and, thus, would have been gathered in the harvested grain and/or separated with the light debris and dropped onto the soil. The results from the Arkansas studies were similar. While the onset of flowering varied by weeks for some of the SHR rice accessions depending on latitude of origin (Shivrain, 2004), the majority of SHR rices flowered earlier than the cultivated rices. Latitude of origin had a strong influence on time of flowering for the SHR rice accessions but not for the BHR and BrHR types.
As pointed out in Chapter 3, the considerable variability in flowering times of red rices has significant implications for gene flow between cultivated and red rice as well as for the fitness of segregates from red and cultivated rice crosses.

The considerable variation in maturity, height and plant form of red rice types provides a powerful buffer against substantial changes in the maturity and stature of the varieties cultivated. Natural and cultural selection results in shifts in red rice populations to types that can best survive and compete with the new varieties and the suppression or elimination of types that are not competitive.

PROTRACTED EMERGENCE

Dodson (1898) reported that his field observations were in accord with the then prevalent view that red rices germinate and emerge early in the spring and, thus, cultivation just before sowing to destroy red rice seedlings was "productive of some good." However, he also noted that many red rice seeds remained in the ground, i.e. the seed bank, to emerge after the soil is disturbed during sowing, later in the spring as the "white rice is growing" before the flood, and even in late summer. More recent work and observations on the emergence of shattered red rice seeds during the autumn, winter and following spring seasons confirm Dodson's observations. Sonnier (1963, 1965, 1978) described the differences in winter and spring emergence between cultivated and red rice seeds shattered from the previous crop at Crowley, Louisiana. Rice seedlings that emerge in the autumn and during warm periods in February and March are nearly all of cultivated varieties. However, the seedlings that appear later in April after the soil warms are nearly all of red rices because the earlier emerging cultivated rice seedlings have succumbed to frost and the few remaining non-germinated seeds have decayed. Do Lago (1982) planted freshly harvested and dormant seeds of three cultivated varieties and four red rice phenotypes 2.5 cm in soil on 28 September in northeast Mississippi about 200 miles north of the Crowley location. Essentially, all of the seeds of the cultivated varieties except Nato had germinated, emerged and succumbed to frost by early winter (Table 24). About half of the seeds of Nato, a deeply dormant variety, had emerged by early winter, but an additional 28 percent emerged between mid-winter and 13 April, and 3 percent emerged even later. Emergence of three of the four red rices was ≤ 16 percent by 13 April, after which emergence increased incrementally through to the end of May. The SHA- phenotype had 50-percent emergence by mid-April and emergence had increased to 80 percent by the end of May. The last killing frost in 1982 occurred in late March, so that all seedlings emerged before then were killed. The relatively low cumulative emergence percentages of the BLKH, SHA+ and 78/8 red rices were probably the result of termination of the experiment at the end of May. In other studies, germination and emergence of red rice seeds in non-flooded areas continued throughout the summer.

<table>
<thead>
<tr>
<th>Variety or ecotype</th>
<th>11/12/81 (%)</th>
<th>23/3/82 (%)</th>
<th>13/4/82 (%)</th>
<th>28/4/82 (%)</th>
<th>13/5/82 (%)</th>
<th>28/5/82 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labelle</td>
<td>87</td>
<td>92</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Starbonnet</td>
<td>92</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Nato</td>
<td>47</td>
<td>66</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>BLKH</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>40</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>SHA-</td>
<td>37</td>
<td>49</td>
<td>50</td>
<td>65</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>SHA+</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td>78/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>36</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: Do Lago, 1982.
Teekachunhatean (1985) compared germination and emergence of three red rice types and the Labelle variety in two additional studies. He planted freshly harvested and dormant seeds of each type 2.5 cm deep on 15 September 1982 and seeds of the same batches (stored at -5 °C to maintain dormancy) the following June. Emergence was determined every 2 weeks over a 13-month period after planting. Figures 10 and 11 show the results in terms of cumulative emergence percentages. Most of the emergence of the September-planted seeds of Labelle emerged by December, those of BLKH emerged in April–May, while many of those of the SHA+ and 78/8 phenotypes also emerged in April–May but emergence continued into August. Emergence of the June-planted seeds was completed by August for Labelle and the BLKH ecotype, by September for the SHA+ ecotype, but not until April of the following year for 78/8.

The later and more protracted emergence for red rices compared with cultivated varieties reflects differences in the intensity of dormancy and the rates of its release. This statement is not contradictory to the conclusions in Chapter 5 that red rices are superior to most cultivated varieties in speed of germination and seedling growth. The present statement refers to red rice seeds shattered and/or planted about harvest time when dormancy is most intense, while the previous conclusions relate to red rice seed contaminants in planting seeds that have completely lost their dormancy during drying and storage.

Environmental factors, especially temperature, are probably also involved in these differential responses. Temperature has a considerable effect on the rate at which dormancy is released and on its induction as well as a direct effect on the rate of germination and seedling growth (Chapter 5). Moreover, dormancy is manifested in a greater specificity of the conditions required for germination, e.g. temperature, as well as in the complete inhibition of germination (Vegis, 1964). Therefore, germination of
red rice seeds with differing levels of residual dormancy did not occur until individual seeds were subjected to rather specific warm-temperature regimes.

There are some important implications of the late and extended period of emergence of red rices for the management and control of infestations. As noted by Dodson (1899) and Sonnier (1978), destroying red rice seedlings by cultivation (or chemicals) before sowing is a good but not always a wholly sufficient control measure. Red rice seeds germinate and emerge at the time rice is planted, while the seedlings are being established before the flood and anytime the flood is lifted for operations including harvest. Maintaining the flood as is done in water seeding is important to prevent or reduce the emergence and development of red rice plants. Similarly, the use of fallowing to renovate red rice infested fields must be accompanied by multiple cultivations over a two-year period (or longer) in order to deplete the population of seeds buried in the soil and reduce the red rice infestation to a manageable level.

In their search for a “weak link” in the life cycle of red rices, Helpert and Eastin (1978) conducted field studies to determine the soil depth from which two types of red rice, a BHR and an SHR, and four current rice varieties (Dawn, Nato, Early Colusa, and Starbonnet) would emerge. Seeds with high germination (> 90 percent) were buried 0, 1, 2, 4, 8 and 16 cm deep in tubes made of polyvinyl chloride (PVC) in a fine sandy loam soil near Beaumont, Texas, in March 1977. The first seedling emerged after ten days. Seedling emergence and plant height were recorded at 3, 10, 17 and 24 days after the date of the first emergence. For all soil depths, the SHR and BHR types had higher emergence percentages from the 3rd day after first emergence through to the 24th day and produced taller plants during the early part of the 24-day period. Germination and emergence for all entries were higher from depths of 4 cm or less than from depths of more than 4 cm, but the red rices emerged a day sooner than the varieties at the 4-cm depth and had higher emergence percentages and more growth at the 8-cm depth. Some seeds of the SHR emerged from the 16-cm depth. Somewhat similar results were obtained by Teekachunhatean (1985) in a comparative study of the emergence and seedling growth of the Starbonnet variety and the SHA-,

TABLE 25

Effects of planting depth for two different dates on emergence and seedling height of the Starbonnet variety and the SHA-, SHA+ and BLKH red rices 20 and 30 days after planting

<table>
<thead>
<tr>
<th>Variety or ecotype</th>
<th>1st planting date: 17 September 1983</th>
<th>Planting depth in a Catalpa silty clay soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emergence (%)</td>
<td>Plant height (cm)</td>
</tr>
<tr>
<td>Starbonnet</td>
<td>97</td>
<td>20.2</td>
</tr>
<tr>
<td>SHA-</td>
<td>98</td>
<td>20.2</td>
</tr>
<tr>
<td>BLKH</td>
<td>97</td>
<td>21.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety or ecotype</th>
<th>2nd planting date: 19 October 1983</th>
<th>Planting depth in a Catalpa silty clay soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emergence (%)</td>
<td>Plant height (cm)</td>
</tr>
<tr>
<td>Starbonnet</td>
<td>73</td>
<td>10.1</td>
</tr>
<tr>
<td>SHA-</td>
<td>78</td>
<td>10.0</td>
</tr>
<tr>
<td>SHA+</td>
<td>86</td>
<td>10.0</td>
</tr>
<tr>
<td>BLKH</td>
<td>88</td>
<td>11.6</td>
</tr>
</tbody>
</table>

1 Data are measurements at 20 days after planting.
2 Data are measurements at 30 days after planting.
3 Air temperatures during the 2nd planting were about 6 °C cooler than for the 1st planting.
SHA+ and BLKH red rice types in soil depths of from 5 to 20 cm in September and October 1983. In the September planting, the emergence and seedling growth of the Starbonnet, SHA- and BLKH were comparable from 5 cm, but the BLKH displayed a superior performance from the 10-cm depth (Table 25). There was no emergence from 15 cm. The SHA+ and BLKH ecotypes emerged marginally better than Starbonnet and SHA- from the 7.5-cm depth in the October planting and much better from the 10-cm depth. The BLKH emerged more than 25 percent from 12.5 cm while the other entries emerged less than 5 percent.

ENVIRONMENTAL INTERACTIONS ON AND IN THE SOIL

The red rice soil seed bank

The term seed bank is used for viable and dormant seeds that are in and on the soil. The term is appropriate because seeds stored in the soil represent deposits of the genes and genetic variation of species that can be withdrawn as needed to maintain them (Murdoch and Ellis, 1992; Stiles, 1992; Vidotto and Ferrero, 2005). Dormancy is the key criterion for successful seed banking because non-dormant seeds in the soil either germinate or decay whenever adequate moisture is available and the temperature is favourable. Crawley (1990) emphasized the powerful buffer provided by seed dormancy against environmental and other adversities encountered by plant species that prevent or reduce seed production – seeds from the seed bank make up the deficit. The existence of a bank of red rice seeds in the soil is the reason why complete control of red rice in one or even two years in even a moderately infested field does not prevent a substantial infestation in the third year (Sonnier, 1978; FAO, 2003).

The red rice seed bank is depleted rather slowly but can be augmented rapidly by escapes from inadequate control measures or planting contaminated seeds. A calculation originally made by Dr R.J. Smith, Jr., is frequently cited to emphasize how planting red rice contaminated seeds can result in a red rice population explosion in just two years with a huge deposit in the red rice seed bank (Huey and Baldwin, 1978):

- **Year 1**: one red rice seed contaminant develops into a plant with 10 fertile tillers that produce 1,500 seeds.
- **Year 2**: the 1,500 seeds germinate, develop into plants that each produce 10 tillers and 1,500 seeds for a total of 2.25 million seeds.

While this calculation is exaggerated (as it is based on perfect seed responses) in order to make the point that rice farmers should not plant rice seeds contaminated with red rice, it illustrates how a clean rice field or one with a low red rice infestation under control can rapidly become heavily infested or out of control if management becomes careless.

The red rice seeds shattered to the ground before or at the time of harvest remain on the soil surface among the debris until disturbances of the soil by the passage of animals and equipment and cultural operations preparatory to sowing the next crop cause them to become incorporated in the soil to varying depths. In rice-growing areas that have a temperate winter, i.e. killing frosts, the seeds that remain on the soil can be depleted by germination and freezing during the autumn and winter seasons and by predation by birds, mice, and especially by migrating waterfowl where the field is maintained in a “wet” condition after harvest (Fontenot, 1973; Sonnier, 1978; Huey and Baldwin, 1978; Do Lago, 1982; Teekachunhatean, 1985). However, as depletion is never complete, at least some of the viable and dormant red rice seeds are buried in the soil to varying depths during the cultivations that precede sowing and, thus, deposited in the red rice seed bank. The fate of shattered red rice seeds in humid subtropical and tropical areas is not appreciably different. Red rice seeds that germinate in the interval between rice crops are destroyed by cultivation preparatory to planting, which incorporates the remaining viable dormant and non-dormant seeds in the soil.
The population of red rice seeds in the seed bank varies with cultural practices used after harvest and in preparation for sowing the next crop including control measures such as the stale seed bed and other factors included in the model of red rice population dynamics proposed by Vidotto and Ferrero (2005). There are relatively few data on the range in the numbers of seeds per unit area and their distribution by depth because most studies on red rice infestations focus on the number of plants per unit area rather than the number of seeds in the soil. Sonnier (1978) stated that 250 red rice seeds per square foot (circa 2,500/m²) was not an uncommon number in heavily infested areas. In laborious studies, Ferrero and Vidotto (1999) determined the number and distribution of red rice seeds in the seed bank of an experimental plot: 2,504/m² to 10-cm depth with 29 percent at 0–1 cm deep, 69 percent at 1–5 cm and 2 percent at 5–10 cm. Shallow ploughing reduced the total number of seeds per square metre considerably but increased sharply the percentage of seeds in the 5–10-cm depth. There is now more widespread recognition that ploughing after harvest buries red rice seeds rather deeply in the soil, where they survive for many years. This has led to the increasing practices of no-tillage and stale seed bed until preparation for planting the next crop, and then only minimum tillage and/or shallow cultivation in order to induce germination in red rice seeds on the soil or only lightly covered so that they can be destroyed chemically or mechanically before sowing (Sonnier, 1978; Fischer, 1999).

The weedy rice plants (including red rice plants) that escape these and other control measures provide the “rain” of shattered seeds that constitute the main input regulating seed bank dynamics and deposits into the seed bank (Vidotto and Ferrero, 2005).

Longevity of red rice seeds in soil

Quereau (1920) observed that shattered red rice seeds were more or less mixed with the soil by the work animals and implements used for harvesting. He then stated that there were a number of instances “on record” where red rice seeds germinated after being in the “ground” for 12 years, and that, on his station, it was possible to obtain a good stand of red rice by simply ploughing a few inches deeper than the depth tilled for the previous 7 years. While Quereau’s observations were in accord with the general views of the times, the classic studies on longevity of buried red rice seeds were not undertaken until the 1930s (Goss and Brown, 1939). Seeds of five red rice ecotypes and two cultivated varieties were buried 12.5 cm deep in soil at locations near Beaumont (Texas), Stuttgart (Arkansas) and Biggs (California) under rainfed and irrigated conditions. Batches of seeds were removed from the soil annually for five years (and winters) and tested for germination. The results were:

- Seeds of the two cultivated varieties (Caloro and Supreme Blue Rose) lost their viability during the first winter at all locations under both rainfed and irrigated conditions.
- The “California” red rice behaved similarly to the cultivated varieties except that it was slightly more persistent at the Stuttgart location; a small percentage (<16 percent) of the “Italian” red rice from the Biggs rainfed location germinated after 3 years.
- The three “southern” red rices, 2 SHR and 1 BHR, maintained good viability for 3 years, about 50 percent viability for 4 years, 12–25 percent for 5 years, and 2–20 percent after 7 years. The southern BHR was longest-lived, and longevity of all three southern red rices was favoured by the irrigated condition and the southern locations.
- A year later, Goss and Brown (1940) reported on the ten-year retrieval of seeds of four of the red rices at the Stuttgart location. The southern BHR and one of the southern SHR rices germinated 28 and 21 percent, respectively.
Response/reactions of deeply buried red rice seeds

The survival of deeply buried seeds of the red rices for long periods in soil is recognized as a critical trait in their success as rice field weeds and attributed to deep and persistent dormancy. However, until the 1980s, little was known about the physiological responses and reactions of the deeply buried seeds during changes in the environment associated with the seasons and cropping cycles. On 1 November 1981, Do Lago (1982) buried dormant seeds of the Nato variety and the BLKH, SHA- and 78/8 red rices 15 cm deep in rainfed (occasionally flooded) and perennially flooded soil environments for a 30-month study of buried seed response/reactions. Enough seeds were buried for retrieval every three months for tests. Seeds of the same variety and red rices were stored in the “air” but under cover above the buried seeds as a sort of control. Table 26 presents the results of the first six months of the study. After six months of deep burial in soil, none of the seeds of the rice variety and the three red rice types was dormant. Do Lago considered these results surprising as they raised the question as to whether dormancy was as critical for survival of red rice seeds in the seed bank as generally believed.

Continuing this buried-seed study, Teekachunhatean (1985) retrieved buried seed samples every 3 months for the first year and then every 6 months for the remainder of the 30-month period. Dormancy in seeds deeply buried in November was released during the winter, mostly by February for Nato and the SHA- red rice, so that 90 percent or more of the seeds of the red rice germinated and emerged in May when moved to a shallower depth of 3 cm (Figure 12). Germination of seeds of Nato was less than 40 percent in May in the rainfed soil but more than 90 percent in the flooded soil. Germination of the deeply buried seeds of the red rices began to decrease and dormancy to increase by August, so that in November nearly all of the seeds in the rainfed soil were dormant. In contrast, seeds of the deeply dormant Nato were mostly all dead and decayed by August. During the remaining 18 months of the study, the deeply buried seeds of the red rices that were still viable in the rainfed soil were essentially all germinable by May and all dormant by November. Viability of the seeds decreased in both field conditions, but more rapidly in the flooded soil, so that less than 10 percent of the seeds were viable at 30 months. The periodicity in germinability and dormancy of the buried red rice seeds corresponded to seasonal climate changes in such a manner as to favour survival and reproduction. The seeds were in a dormant condition with the advent of freezing temperatures during the late autumn and winter, and most of them remained dormant until dormancy was fully released as the danger of freezing temperatures receded the following spring and conditions became favourable for germination, growth and reproduction.

TABLE 26	Germination and dormancy of seeds after air storage in the field and buried 15 cm deep in soil under rainfed and flooded conditions						
Variety/ecotype	**Field condition**	**Air storage**	**Soil/rainfed**	**Soil/flooded**			
	Initial	**3 months**	**6 months**	**3 months**	**6 months**	**3 months**	**6 months**
Nato	11 88	88 9 97 1	96 0	35 1	0	95 3 95 0	
Red Rice	BLKH	8 90	98 1 88 6	73 15 85 7	68 30 98 0		
	SHA-	9 90	90 7 91 4	62 31 87 10	40 58 90 9		
	78/8	0 100	16 84 63 29	46 52 97 0	23 75 98 0		

Note: The 3 and 6-month data were the first two data points of a study that continued for 30 months.

1 Seeds buried = 1 November 1981; 3 months = 1 February 1982; 6 months = 1 May 1982.

2 Sixty-one percent of seeds germinated but did not emerge.

Source: Do Lago, 1982.
The re-imposition or induction of dormancy in late summer and autumn prevented germination in the following winter, when seedlings would be killed by freezing temperatures. The seeds of Nato, one of the most deeply dormant varieties, did not exhibit a distinct periodicity in germination and dormancy. Dormancy was released in the first winter season so that all viable seeds were germinable even in February, but most of the seeds not retrieved in May died and decayed by late-summer. In a related study, dormant and non-dormant seeds of Nato and the BLKH and SHA+ red rices were submerged 20 cm deep in water under ambient conditions in October 1983 and sampled for testing every 3 months for 1 year. The non-dormant seeds of Nato and the two red rices died during the first three-month period, October–January (Table 27). Dormancy was released completely in the Nato seeds during the first 3 months and all the seeds were dead by the sampling at 9 months in July. Dormancy was also released in 71 and 45 percent of the seeds of BLKH and SHA+, respectively, in the October–April period (first 6 months), then completely by July (9 months), after which most of the seeds reverted to the dormant condition again by October, the end of the 12-month period. Again, dormant seeds of the Nato variety either became germinable or died by April as they did when buried in soil. Petrini et al. (1993a, 1993b) also found that the viability of dormant red rice seeds was not much affected by flooding or saturated soil, while non-dormant seeds decreased in viability but not as much when buried deeply in the soil. The latter response was probably caused by induced dormancy. The seasonal patterns in the release and induction of seed dormancy demonstrated in the buried seed studies for red
rice were confirmed by Garcia-Quiroga (1987) in later studies in Mississippi, the United States of America, with some of the same red rice phenotypes, and in Brazil by Barros (1994) and Peske et al. (1997). These seasonal rhythms in readiness to germinate were neither unique nor surprising. Vegis (1964) proposed a general model for germination behaviour associated with the seasonal release and induction of dormancy that focused on the narrowing of the temperature range for germination as dormancy is induced and its widening as dormancy is released.

Baskin and Baskin undertook studies on the germination ecology of annual species including many weeds in the early 1970s, and in 1985 they published a review of their and other related works of others (Baskin and Baskin, 1985). Karssen (1982) and Karssen, Derkx and Post (1988) have argued that seasonal patterns of dormancy release and induction are of high survival value to plant species and that, in annual species, dormancy is released during the season that precedes the time conditions become favourable for

<table>
<thead>
<tr>
<th>Variety/ecotype</th>
<th>0 months (Oct. 83)</th>
<th>3 months (Jan. 84)</th>
<th>6 months (Apr. 84)</th>
<th>9 months (Jul. 84)</th>
<th>12 months (Oct. 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dormancy (%)</td>
<td>Germination (%)</td>
<td>Dormancy (%)</td>
<td>Germination (%)</td>
<td>Dormancy (%)</td>
</tr>
<tr>
<td>Non-dormant seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nato</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLKH</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SHA+</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dormant seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nato</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLKH</td>
<td>21</td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SHA+</td>
<td>96</td>
<td>17</td>
<td>16</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>71</td>
<td>68</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>60</td>
<td>39</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32</td>
<td>45</td>
<td>92</td>
<td>2</td>
</tr>
</tbody>
</table>

Weedy rices – origin, biology, ecology and control

germination, growth and reproduction, and induced in the season that precedes the
onset of conditions that are detrimental thereto. For summer annuals, such as the
red rices, dormancy is released during the late autumn, winter, and early spring and
induced in the late summer and early autumn. For winter annuals, dormancy is released
as temperature declines in late summer and early autumn and induced in mid-summer
to late summer when temperatures rise. The results of the studies on the behaviour of
buried seeds of the red rices are in full agreement with the several models of seasonal
changes in germination behaviour.

Teekachunhatean (1985) undertook several additional studies in order to identify
the environmental signals and conditions controlling the transition from germinability
to dormancy and vice versa in seeds of the red rices. The temperature signals for the
release of dormancy were investigated by imbibing dormant seeds (less than 5 percent
germination) of the SHA+ red rice for 48 hours on moist germination towels at 15 °C
after which batches of appropriate number were sealed in polyethylene envelopes and
placed in dark incubators at 5, 10, 20 and 30 °C for 25-day periods. At the end of the
first 25-day period, the seeds were transferred to a different temperature for a second
25-day period, and then transferred again for a third 25-day period, so that they were
exposed to the four temperatures in different sequences. Seeds were removed at the end
of each 25-day period for determination of germination and dormancy. The effects of
alternating exposure of the imbibed seeds to the different temperatures were generally
as expected but also surprising and revealing (Table 28). Dormancy was released sooner

Table 28
Effects of periods of constant and alternating temperatures on germination and dormancy of seeds of the
SHA+ red rice ecotype

<table>
<thead>
<tr>
<th>Test period and exposure duration</th>
<th>Period 1(25 d)</th>
<th>Periods 1 & 2 (25 d + 25 d)</th>
<th>Periods 1, 2 & 3(25 d + 25 d + 25 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Germ. (%)</td>
<td>Dorm. (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>5–10</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5–20</td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5–20–5</td>
<td>73</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5–30</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5–30–5</td>
<td>73</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5–30–10</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>10–5</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>10–10</td>
<td>59</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>10–20</td>
<td>71</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>10–30</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>20–5</td>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>20–10</td>
<td>93</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20–20</td>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>20–30</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>30–5</td>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>30–10</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>30–20</td>
<td>37</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>30–30</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Germ. = germination; Dorm. = dormancy.
and to a greater degree by exposure to alternating temperature sequences in which 10 °C was the initial temperature, and slowest and to the least extent by exposure to temperature sequences in which the first temperature was 30 °C. These results were as expected as in the buried seeds study dormancy was released as the soil temperature decreased in winter and induced as soil temperatures became warm in late summer. The surprising results were: 5 °C was not nearly as effective as 10 °C in releasing dormancy; and temperature sequences with a low temperature followed by a warm temperature, interspersed between two warm temperatures, or preceded by a warm temperature, e.g. 5–30–30, 10–30–30, 30–5–30, 20–5–20, 20–10, 20–10–10, were more effective in releasing dormancy than 10 °C for 50 days, e.g. 10–10. These revealing results appear to indicate that, for full release of dormancy, temperatures lower than 10 °C have to be combined with warm temperatures, while those higher than 10 °C have to be combined with cooler temperatures. These responses are most likely adaptations to reduce the probability of dormancy release too early in the winter and during periods of warm temperatures in late spring before the last killing frost.

Teekachunhatean's investigation of the temperature and other environmental factors involved in the re-imposition or induction of dormancy in buried seeds took into account observations during the studies on the survival benefits of early seed shattering (Chapter 4) that the high moisture contents (circa 20 percent) of shattered seeds were critical for maintenance of dormancy. He conditioned non-dormant seeds (germination ≥ 98 percent) of the SHA+ red rice to seed moisture contents of 18.5, 22.5 and 26.5 percent at 15 °C, sealed batches of appropriate number in polyethylene envelopes and stored them at 10, 20 and 30 °C for periods up to 5 months. Dormancy was induced in the initially non-dormant seeds with 18.5 percent and 22.5 percent moisture by 2–3 and 3–4 months exposure to 30 °C, respectively, but not in 26.5 percent moisture seeds (Table 29). At 10 °C, dormancy was induced in about 10 percent of the 18.5- and 22.5-percent moisture content seeds in 4–5 months while up to 25 percent of the 26.5-percent moisture seeds became dormant in 2 months. Seeds at 18.5- and 22.5-

TABLE 29
Effects of storage temperature and seed moisture content on the induction of dormancy in seeds of the SHA+ red rice phenotype

<table>
<thead>
<tr>
<th>Storage time (months)</th>
<th>10 °C</th>
<th>30 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germination</td>
<td>Dormancy</td>
<td>Germination</td>
</tr>
<tr>
<td>18.5% seed moisture content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>1</td>
<td>98</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

| 22.5% seed moisture content |
0	98	0	99	0	97	0
1	99	0	97	0	95	0
2	96	0	73	15	93	0
3	96	0	50	47	78	0
4	61	13	8	90	0	0
5	67	7	5	48	0	0

| 26.4% seed moisture content |
0	98	0	97	0	96	0
1	81	14	97	1	95	0
2	64	25	95	1	85	1
3	91	4	90	2	8	0
4	93	0	86	3	0	0
5	81	0	33	0	0	0

Weedy rices – origin, biology, ecology and control

92

percent moisture content stored at 30 °C transited from the germinable to dormant state beginning at 2 months with the transition completed in 3–4 months. The highest moisture content seeds, 26.4 percent, at 30 °C did not transit to the dormant state. None of the seeds at 40 °C developed dormancy and they began to decline in viability in 2–3 months so that they were all dead by 5 months. Seeds in which dormancy was induced (90 percent) were placed on moist media to complete imbibition and incubated at various temperatures for 30 days to determine the temperature regime for release of the induced dormancy (Table 30).

A temperature of 10 °C for 30 days reversed completely the induced dormancy to germinability. None of the other constant and alternating temperatures was as effective, but the near total ineffectiveness of alternating temperatures with 30 °C to reverse induced dormancy and the partial effectiveness of the 10–20, 10–40 and 20–40 °C alternating temperatures warrant further study. For example, Garcia-Quiroga (1987) repeated the dormancy induction study using only 18-percent moisture seeds and determined that dormancy was also induced in 2–3 months at 20 °C. Therefore, these results indicate that dormancy can be induced in non-dormant seeds of red rices from 18 to about 22 percent moisture by exposure to warm temperatures, 20–30 °C, for several months. However, they can only be considered as suggestive of what takes place in the microenvironment of deeply buried seeds and the seeds themselves. Additional studies are needed in order to gain a more complete and clearer understanding of the changes in germination behaviour of deeply buried red rice seeds. Field studies should include: continuous recording of soil temperature at the level of the buried seeds; monthly rather than quarterly retrievals of seeds for testing; and determination of seed moisture content as well as germination and dormancy. Laboratory studies on the induction of dormancy should include additional temperatures, such as 5, 15, 35 and even 40 °C, and a wider range in seed moisture content, e.g. from 16 percent to full imbibition, circa 28–30 percent, in 2-percent increments.

| TABLE 30 |
| Effect of temperature regime in releasing induced dormancy in seeds of the SHA+ red rice phenotype |

| Constant or alternating temperature (ºC) | 10 | 20 | 30 | 40 | 10–20 | 10–30 | 10–40 | 20–30 | 20–40 |
| Germination Percent | 91 | 12 | 0 | 3 | 24 | 3 | 36 | 0 | 24 |

ECOLOGICAL MODEL OF RED RICE GERMINATION

There is much information on the germination behaviour of red rice but it is still far from sufficient for the construction of a rigorous, comprehensive model of red rice germination and longevity in soil. As discussed above, some critically focused research is needed in order to obtain the additional information required for the construction of a good model of the germination behaviour of *Oryza sativa* red rice in temperate-zone irrigated rice cultures. Additional research would be required to extend the model into the humid tropics and subtropics, where temperatures below 20 °C do not occur or are exceedingly rare, and into warm zones with distinct wet and dry seasons (as in the dry season, germination of shattered seeds would most likely be prevented by their desiccation rather than dormancy). Even more work would be required in order to determine whether other species of weedy rices, e.g. *O. latifolia*, *O. barthii*, *O. glaberrima*, *O. longistaminata* and *O. rufipogon*, could be fitted into the same model as the *O. sativa* types or would have to be modelled separately. While much more information is needed even for the development of a good model of the germination
behaviour of red rices of the *O. sativa* group in temperate zones, some of the most probable constructs for a model have been identified, characterized and documented. They are:

- Lack of uniformity in germination and emergence of red rice seeds on or in the soil provides multiple opportunities for some of the seedlings to escape destruction from environmental adversities and from mechanical and chemical control measures and to grow, develop and mature seed, i.e. reproduce. The generally superior vigour, physiological efficiency, and plant stature and type of red rices as compared with cultivated varieties ensures that a good portion of the seedlings that do escape destruction are highly competitive and produce a relative abundance of seeds.

- Heavy tillering over a long period and the wide angle of the tillers of red rices contributes to their vigour and competitiveness. Moreover, it also expands the time frame of heading, seed maturation and shattering which, as in the case of the relative non-uniformity of germination and emergence, provides multiple opportunities for favourable positioning of shattered seeds in time and space for survival until the next season.

- The early and easy seed shattering of the red rices, one of the two traits most critical to their success as weeds, has several important functions. It increases considerably the seed dispersal zone compare with what it would be if they were as resistant to shattering as cultivated varieties. It ensures that at least some of the seeds are positioned on or in the soil to continue the infestation rather than gathered in the harvested grain. It results in seed dispersal at relatively high moisture contents that favour the maintenance of dormancy over the cool or cold seasons. Resistance to shattering would result in the offtake of the seeds in harvest or a substantial decrease in dormancy as the seeds dried during “storage on the plant”.

- The intensity and persistence of dormancy ensures that the ecotypes survive the winter season as seeds, the most resistant phase of the plant cycle. Release of “most” of the dormancy, i.e. reduction in its intensity, by prolonged exposure to cool/cold temperatures, circa 10 °C, results in germination and emergence over an extended period when environmental conditions become favourable in the spring season. An induced or secondary dormancy that develops in deeply buried or submerged seeds as the soil and water temperature becomes warm in late summer, circa 30–35 °C, prevents germination of seeds turned up to a favourable depth or when the flood is lifted during warm periods in the autumn and winter. The annual cycling of germinability and dormancy with the seasons is the most probable reason for the longevity of buried red rice seeds.

FURTHER DISCUSSION ON HYBRID SWARMS FROM CULTIVATED RICE / RED RICE CROSSES

Chapter 3 reported the observation that hybrid swarms from red rices and cultivated rice crosses segregating for many traits and characteristics could generate hundreds of phenotypically distinctive, troublesome weedy rices, some with red and some with white pericarps but that they had not done so. This raises several questions:

- What happens to the hybrid swarms?
- Do the hybrid swarms die off or blend back into the red rice populations from whence they originated?
- Why have the SHR and BHR complexes maintained their dominant positions in the United States of America against the seemingly constant pressures from the hybrid swarms?

Jodon (1959) observed that, as red rice cross-pollinates “readily with ordinary rice”, hybridization would be expected to give rise to innumerable types of red rices.
but it had not done so. He then noted that there were only a few types of red rices, as there are now, and that they resembled one another much more than they resembled cultivated varieties.

The SHRs are still the dominant red rices and resemble one another more than they do the cultivated varieties, especially as they enter the reproductive stage. However, there is an obvious resemblance of some ecotypes to the varieties in terms of plant height, panicle and leaf colour, and maturity. The BHRs also continue as a distinctive group, more distinctive than the SHRs, and resemble one another more much more than they resemble the cultivated varieties or the SHRs. Gealy and Estorninos (2004a) reported that BHR and variety hybrids are distinguished easily from those of SHRs and varieties because of the large genetic separation between these two main red rice groups.

The ecological significance, interactions and relationships of the critical traits of red rices discussed in this chapter provide a basis for informal speculation about the fate of red rice × cultivated rice hybrid swarms. Estorninos, Gealy and Burgos (2004) determined the reciprocal crossing rates of two varieties, Starbonnet and Kaybonnet, with BHR and SHR paired so that flowering was nearly synchronous. The rate of crossing between Kaybonnet and the BHR was 0.10 percent with the BHR as the pollen donor, but there was no detectable crossing with Kaybonnet as the pollen donor. Crossing between Starbonnet and the SHR was 0.23 percent with the SHR as the pollen donor and 0.14 percent with Starbonnet as the pollen donor. They tentatively attributed these differences among reciprocal crossing rates to the stature of the plants – the taller red rice plants are better able to function as the pollen donor than the shorter varieties. Regardless of the reason, red rice and cultivated rice crosses with the cultivated variety as the female parent have immediate serious deficiencies. First, the non-shattering trait of the cultivated maternal parent would place most of the hybrid seeds in the harvested grain for consumption rather than on the soil for propagation. Constantin (1960) reported that all of the more than 1 000 panicles of weedy rices he collected in southwest Louisiana had red pericarps and evidence of heavy shattering, and noted that the cultivated rices would most probably be the pollen donor in hybrid populations. Second, any hybrid seeds of crosses with the variety as the maternal parent that somehow escaped from the harvest would probably lose viability or be killed by freezing, as is the fate of most shattered seeds of cultivated varieties. First, the non-shattering trait of the cultivated maternal parent would place most of the hybrid seeds in the harvested grain for consumption rather than on the soil for propagation. Constantin (1960) reported that all of the more than 1 000 panicles of weedy rices he collected in southwest Louisiana had red pericarps and evidence of heavy shattering, and noted that the cultivated rices would most probably be the pollen donor in hybrid populations. Second, any hybrid seeds of crosses with the variety as the maternal parent that somehow escaped from the harvest would probably lose viability or be killed by freezing, as is the fate of most shattered seeds of cultivated varieties. There is evidence that dormancy in rice and other species of Poaceae is conditioned by properties of the pericarp and testa complex and the hulls, most of which are maternal tissues (Jana, Acharya and Naylor, 1979; Jana, Upadhyaya and Acharya, 1988). On the other hand, hybrid seeds with the variety as the pollen donor could be shattered to the soil, survive the winter, emerge in the spring, infest the crop, and produce seeds that in the next generation would produce a hybrid swarm.

Lateness and sterility are quite common traits in segregating populations from red and cultivated rice crosses (Jodon, 1959; Do Lago, 1982; Burgos et al., 2006b; Gealy, 2005). The very late and sterile plants in the hybrid swarm would be eliminated. Dormancy is an inherent trait, so seeds that end up with dormancy intensity about that of cultivated varieties would not be very successful in surviving adverse periods and most would be eliminated. Similarly, most segregates inheriting the non-shattering trait would be eliminated. Some segregates would not possess the traits to compete with already established, successful red rices or even cultivated varieties, and most of these would be eliminated. There may be many other reasons why new successful and distinctive ecotypes of red rices apparently emerge only very infrequently from the hybrid swarms. However, for the present, such reasons remain essentially unknown.

Several additional questions arose many times during the red rice studies at Mississippi State University in the 1980s. One set of questions related to the Nato
Plate 16
variety used as a reference or control in many of the experiments because it exhibited an intense, persistent dormancy, more intense than in most of the common red rice types in many of the experiments. The questions focused on why Nato was not an obnoxious volunteer in certified rice seed fields. As it was very non-shattering, its capacity for spread and persistence would be limited, but any seeds that did fall to the soil surface should survive the winter and persist in the soil seed bank. However, most of them do not. Another issue concerned why dormancy in Nato seems to be very persistent in air storage, more persistent than most of the common red rices but not in or on the soil. Further questions related to the seeming absence of any successful blackhull or strawhull ecotypes with a white pericarp. They emerge from the hybrid swarms, as is evident in Plates 4, 12, 13, 14 and 16. A successful weedy white-pericarp blackhull or strawhull type would raise some legal problems because red rice is defined in many seed laws as a rice seed with a red-pigmented caryopsis.
Chapter 7

Strategies for controlling weedy rices

Considering the complexities and multidimensioned aspects of the diversity, phenology and ecology of weedy rices (including red rices), it is to be expected that the control measures are also complex, difficult, multidimensioned and require exceptional discipline in crop management, patience and, perhaps most importantly, perseverance. Strategies for control are well established but the ways and procedures used for their implementation, i.e. the tactics, vary from place to place and require frequent revision. They need to be revised in order to:

- take into account the appearance of new and/or different weedy rice ecotypes;
- adapt to changes in cultivated varieties, cropping systems, cultural practices, water availability, and marketing standards for rice grain;
- take advantage of new and/or different crop rotations, advances in herbicide chemistry and usage, and biotechnology.

Many of the specific tactics employed for controlling weedy rices are continuously changing and evolving, time related, and dependent on the scale of farming and resource availability. Therefore, the primary focus of this chapter is on the broad strategies for control and the more widely adapted and used tactics, with some attention to the newer and somewhat controversial biotechnological approaches.

The main strategies for controlling weedy rices (including red rices) can be grouped into several broad categories:

- prevention of infestations or re-infestations;
- depletion of the soil seed bank by post-harvest, preplanting cultural practices;
- suppression of germination and/or emergence by sowing practices and water management;
- destruction of weedy rice plants in the rice crop;
- alteration of the rice field environment by crop rotation and/or fallowing;
- biotechnological methods.

While chemical herbicides are not mentioned specifically, they are an important element in all of the strategies except prevention.

RECOGNITION OF WEEDY RICES

The first requisite in any of the strategies for controlling weedy rices (including red rices) is recognition of local and/or introduced ecotypes. This is not easy to accomplish because many of them belong to the same species as the major cultivated rice, e.g. *Oryza sativa*, and share many of the characteristics of the cultivated rice – Vaughan *et al*. (2001) provide a different interpretation. It is especially difficult to distinguish between seedlings and juvenile plants of the rice weeds and the rice variety. Valverde (2005) argues that feral strains of rice with weedy traits can evolve from cultivated rices or other species of *Oryza*, e.g. *O. latifolia*, that are difficult to detect because they “mimic” cultivated types, and that hybrids may go undetected until a new aggressive ecotype becomes established. While most weedy rices, especially the red rice types, have hispid or pubescent leaves in contrast to the glabrous cultivated varieties, this
distinction requires quite close inspection, which is difficult at the seedling and juvenile plant stage. The weedy rices (including red rices) become much more recognizable as they develop, and especially as they enter the reproductive stage. This is because their “wild” characteristics and appearance often contrast vividly with the “selected”, more uniform appearance that characterizes cultivated varieties.

In the rice area of the southern states of the United States of America, red rice plants are usually taller, lighter green in colour and have pubescent somewhat drooping leaves, a greater number of wider-angled (open) tillers, and more open and lax panicles than cultivated varieties (Quereau, 1920; Constantin, 1960; Do Lago, 1982; Noldin, 1995, Stiers, 2002; Shivrain, 2004). The SHRs are usually shorter than the BHRs and have a more open architecture, more drooping leaves, more drooping and fully exerted panicles, fewer tillers and produce mainly awnless spikelets, whereas the BHRs are almost invariably medium- to long-awned (Cragmiles, 1978; Huey and Baldwin, 1978; Sonnier, 1978; Do Lago, 1982; Noldin, 1995). Differentiation of both types of red rices from the cultivated variety is rather easy at maturity. This is because the open panicles of the red rices exhibit very conspicuous evidence of seed shattering or shedding, which contrasts sharply with the compact, non-shattering panicles of modern varieties. The statement by Sonnier (1978) that despite the “variations and hybrid forms which occur in red rice, all of them fall into two main groups or types,” based on hull colour (strawhull or blackhull) is not entirely correct. The dominant red rices are strawhull, the blackhull types are a distant second, but there are also goldhull and brownhull or bronzehull types and variants in the blackhull group, e.g. dark blackhull, intermediate blackhull, faded blackhull, and greyhull (Constantin, 1960; Do Lago, 1982; Noldin, 1995). The red rices are mostly medium-grain types with a few short-grain and a few long-grain types, and the pericarp is always some shade of red.

In Viet Nam, some of the weedy rices (including red rices) belong to *Oryza sativa*, but others belong to other species. Recent surveys indicate that farmers recognize weedy rices at the booting stage by their taller stature, awned spikelets, dark coloured hulls, early and heavy shattering and smaller seeds – as compared with cultivated varieties – and by their usually having a red pericarp (Chin et al., 1999).

Ferrero and Vidotto (1999) noted that while weedy rices in Italy are difficult to distinguish from the cultivated varieties in the seedling and young plant stage they can be identified rather easily after tillering is well established owing to many obvious morphological differences with the usual cultivated varieties. The weedy rice plants are usually taller, their tillers are more numerous, longer and slenderer, their leaves are pubescent, and several plant parts are often pigmented, particularly the pericarp.

In Central and South America, most weedy rices are weedy, red-pericarp ecotypes of *Oryza sativa*. The endemic species *O. latifolia* is also a problem in Central America and some of the countries bordering on the Caribbean (Lentini and Espinoza, 2005). In Costa Rica, *O. latifolia* is much taller (up to 2 m) than the cultivated varieties and the *O. sativa* red rices, has wider leaves, an erect growth habit like the cultivated rices but unlike the drooping and lax leaves and culms of the red rices, a white pericarp, and prominent awns like the red rices (Espitia, 1999). However, as noted by Valverde (2005) *O. latifolia*, called *arrozon*, has evolved some strains that closely “mimic” the cultivated varieties in height and maturity. Red rices in Nicaragua are also taller than varieties and generally flower before them (Fletes, 1999). García de la Osa and Rivero (1999) cite a 1998 survey in Cuba that found 39 biotypes of red rices, 16 strawhulls, 10 goldhulls and 13 blackhulls. Twenty-seven percent of the population of red rices surveyed and collected exhibited some segregation when planted. In a summary of the weedy rice problem in Latin America, Fischer (1999) described red rices as having a pigmented aleurone pericarp and usually being taller, leafier, more tillered and more competitive than cultivated rice.
Weedy rices in SSA are very different from those in the Americas, Southern Europe, North Africa and some areas in Asia. The main weedy rices are the annual species *O. barthii* and *O. punctata* and the perennial *O. longistaminata* (Johnson et al., 1999). These species are very vigorous and competitive and shatter the seeds produced early and heavily. *O. longistaminata* reproduces by rhizomes as well as seeds. In Senegal, some red-pericarp biotypes of *O. glaberrima*, the cultivated African rice, have a weedy habit (Diallo, 1999).

As stated above, recognition of the common weedy rices (including red rices) by farmers, extensionists, certification field inspectors, and seed analysts is the first requisite for implementation of any control strategy and/or tactic in a region. Farmers, advisors, inspectors and other rice specialists must be able to recognize the weedy rices common in their area. In addition, they must also be vigilant and always on the lookout for different ecotypes introduced from other areas and, especially, for segregates from the infrequent hybridization of cultivated and weedy rices and the new ecotypes naturally selected from the hybrid swarms. Plate 16 shows a small sample of the diversity of red rices in plant stature, form and panicle characteristics in comparison with several types of cultivated rice (also Plates 4 and 12).

PREVENTING INFESTATIONS

Importance of purity of planting seed

Weedy rices spread from an infested area to a clean area primarily as contaminants in planting seeds. Animals and farm equipment and machines (including vehicles) can also contribute to the spread of weedy rices. The primal role of contaminated seeds in the spread of the red rices was recognized more than 100 years ago and this recognition continues to the present:

- “Careful attention should be given to raising rice seed for planting. If the seed are purchased, a guarantee should be demanded that the seeds are free of red rice.” (Dodson, 1898). “Selecting pure seed is of utmost importance.” (Dodson, 1900).
- “Two things must be accomplished to keep the fields clear of red rice: First, seed planted must be free of red rice...(and)... Second, red rice must be prevented from producing seeds in the field if accidentally planted.” (Knapp, 1899).
- “In order to have red rice the seed must be planted. White rice does not turn into red as some farmers are inclined to believe. The principal means of propagation (of red rice) is that of planting the red seeds with white.” Quereau (1920).
- “Every precaution should be taken to avoid introducing these (red rice) and other weeds to clean land in the seed.” (Jones and Jenkins, 1938).
- “I think our problem with red rice is not ducks and geese moving it from one field to another. The reason we have it is that we plant it and cultivate it.” (Cox, 1978).
- “The first step in controlling red rice is to prevent infestations. This can be done by planting seed free of red rice.” (Huey and Baldwin, 1978)
- “The first measure to control red rice is to use good seed.” (Jorge and Barquin, 1980).
- “Preventive methods (of control) are planting rice seeds free of red rice seeds. To this end it is important to produce rice seeds completely clean and with no seed of red/weedy rice. In some countries there are tolerances admitting some seeds of red rice per kg of cultivated rice seeds. This practice has shown to be negative in long term.” (Labrada, 1999).

The above quotations are repetitious. However, some state and national seed laws still permit some weedy rice seeds even in certified rice seeds, e.g. the European Union (Vidotto and Ferrero, 2005), and some farmers still plant saved seed or seed bartered
Weedy rices – origin, biology, ecology and control

from a neighbour or purchased from a trader that they know is contaminated or probably contaminated with weedy rice. This suggests that the appeals to plant clean seed have not been repeated often enough, loudly enough and to enough rice farmers.

The symposium held in Texas in 1978 was a response to an escalating red rice problem in the southern states of the United States of America. In large part, the problem was the result of a two-year or longer scramble by rice farmers to obtain enough seed rice in order to take advantage of the relaxation of strict government controls on the rice area planted and the release of some very superior new varieties. Supplies of clean seed of both the older and new varieties were insufficient to plant the expanded area, so farmers secured seeds for planting from almost any source, including grain rice destined for the mill (Huey and Baldwin, 1978; Do Lago, 1982). The consequences of this indiscriminate scramble for planting seeds ranged from substantial to enormous. Red rice infestations increased and spread to formerly clean areas in the major, long-time rice states, and red rice was introduced into states that had entered rice production more recently and served as prime sources of red rice free seed. The Global Workshop on Red Rice Control (FAO, 1999) recognized the rapid “globalization” of the red and weedy rice problem with “the shift from rice transplanting to direct seeding ...(and)... the cultivation of weak, semi-dwarf ‘indica-type’ varieties” (Ferrero and Vidotto, 1999), the switch to “varieties of medium cycle that favour the multiplication of mixtures” (Garcia de la Osa and Rivero, 1999), “… the gradual change from the traditional system to an intensive agriculture with new and more demanding production objectives that require new technologies (new varieties, irrigation, mechanization.” (Diallo, 1999), and insufficient attention to the purity of planting seed and/or inadequate supplies of clean seed for planting as mentioned by all of the participants at the Global Workshop. Five of the 21 recommendations of the Global Workshop concerned the production and supply of clean seed free of weedy rices (including red rices).

Seed certification

The development and maintenance of adequate supplies of red-rice-free planting seeds requires a legally sanctioned, organized system of seed multiplication and production that operates in accord with well-tested protocols and procedures to assure the genetic integrity and purity of the seeds produced. Seed certification is the internationally recognized and accepted system for producing and supplying high-quality pure seed. Traditionally, seed certification is organized as an official agency of the government or a legally and officially sanctioned agency to conduct activities that are in the national interest. The original purpose of seed certification was to maintain the genetic integrity, i.e. varietal purity, of varieties. However, over time, it began to encompass other attributes of seed quality, such as physical purity, other crop and weed seeds, and seed-borne diseases. Seed certification is a responsibility of government at the national or lower government (e.g. state and province) levels. However, for many years in many countries, it has operated under the umbrella of and in accord with the protocols and standards of international organizations or associations. The main international organizations/associations are: the Organisation for Economic Co-operation and Development (OECD), Paris (variety certification units); and the Association of Official Seed Certifying Agencies (AOSCA), Moline, the United States of America. These two international organizations set minimum standards for genetic purity and for other seed qualities, such as seed-borne diseases and weed seed contaminants.

The organization, functions, standards and operational procedures of seed certification schemes are well known and available. Hence, there is little need for a detailed description and lengthy discussion of them in this report. However, some discussion and observations on aspects of key activities in producing pure seeds could
be useful. This aspects include field inspections, seed analysis or testing, and clean-up of seed stocks, which are especially relevant to preventing weedy rice contamination of any class of planting seeds (certified, non-certified, saved, etc.).

Field inspections and roguing

Effective field inspections of seed rice fields requires: (i) that whoever makes the inspections (e.g. farmer, extension specialist, or certification inspector) be familiar to the point of expertise with the characteristics of the rice varieties planted in the area and with the off-types and variants including weedy rices (including red rices); and (ii) that the inspections be undertaken and executed in an objective, careful and serious manner. The inspection of flooded rice fields is difficult and exhausting, but there is no substitute for wading among the rice plants. Unless very small in area, fields cannot be inspected adequately by walking the levees or bunds or with binoculars from the bed of a cart or field vehicle. Field inspections are much easier in drilled rice plantings than in broadcast plantings. Sonnier (1978), one of the most experienced and expert red rice specialists in the United States of America, offered this advice on field inspections for red rice: “… you have to stand in one place (at a time) and look around. And when you see that tall plant out there, you can bet that two or three more are somewhere around, hiding in the rice. You have to get them all… Believe me, the red rice situation does not remain static. It either improves or it gets worse.” Regarding roguing, Sonnier stated that roguing of red rice from rice fields at the time of or after inspections is very effective but very costly if done properly. Sonnier pointed out that substantial damage can be done to a broadcast field by a roguing crew, but then noted that in the case of a light and rogueable infestation of red rice in a field of seed rice, the producer must either rogue regardless of damage to the crop or divert the field to grain production.

The workers in the roguing crew must also be familiar with the weedy rices (including red rices) and other weeds and variants that are to be removed. Moreover, insofar as possible, roguing should be done before the weedy rices start shattering seeds. Roguing after shattering begins might prevent contamination of the harvested seeds but the soil and soil seed bank are repopulated with red rice. Workers should be taught how weedy rices need to be rogued in order to prevent scattering them further through shattering of the seeds. Cox (1978), a seeds expert from Arkansas, related an incident that contains a critical lesson for a roguing crew. He was visiting the farm of one his contract seed producers when the farmer came out of the field waving a handful of red rice panicles he had rogued. With considerable irritation, Cox informed the farmer that he was not only wasting his time but making things worse because he had scattered more than half of the seeds through shattering as he walked about in the field looking for other red rices. He recommended: “If you spot a red rice plant in the field, look in all directions because there is always more than one. Ease up on it very gently, pull the head over into a bag and clip it off, and (only) then pull the root up and put it into another bag. That is the only way to get rid of it.”

Seed inspections and testing

The seed-testing laboratory is the last place and seed analysis is the last chance for detecting weedy rice (including red rice) contaminants in planting seeds. Seeds of some weedy rice ecotypes are recognized easily, but the hulls should still be removed in order to view the pericarp for additional verification if red rice is the prohibited or severely restricted type. However, seeds of other weedy rice ecotypes mimic those of cultivated varieties so closely that identification is very difficult, time-consuming, and much less than 100-percent accurate. Therefore, laboratories should have a small
huller, such as used in breeding laboratories and in rice mills, to hull a specific quantity of the seeds for inspection for red pericarp seeds (Plate 17). The quantity of seeds to be hulled is usually specified in the certification standards, seed law or the laboratory protocols. However, this procedure is subject to error because the pericarps of some seeds, especially those gathered before maturity, are not red but about the same colour as similarly immature white rice, i.e. greenish, chalky white or some other off-colour that should arouse suspicion, but not always. Do Lago (1982) harvested seeds of four red rice types at 14, 16 and 18 days past anthesis and determined that the number of days required for the seeds to develop a visually detectable red colour varied with time of harvest, phenotype and storage conditions. Generally, the more immature the seeds are at harvest, the longer is the time taken for the red colour to develop, e.g. 36–59 days for seeds harvested at 18 days and stored under ambient conditions, and more than 100 days for seeds of 3 of the 4 phenotypes harvested at 14 days. These suspect seeds should be tested individually in a test-tube or small glass or ceramic dish by placing several drops of 2.0-percent potassium hydroxide (KOH) solution on them (Rosta, 1975; Louisiana State Seed Testing Laboratory, 1980). Red rice seed will develop a deep red coloration within 5–10 minutes (up to 30 minutes for old seeds) while only a light or golden-yellow colour will develop for cultivated rices and any segregates or other weedy rices with a “white” pericarp. These procedures are shown in Plate 18.

Purification of contaminated seed stocks

Elite seed stocks, such as those of the basic or foundation multiplication classes, can become contaminated with weedy rices that mimic closely the variety, so that all the succeeding stages of multiplication and the fields used for multiplication become contaminated. Where the variety is a new and valuable one, something must be done to clean up the basic seed stock in order to avoid criticism and/or satisfy claims against the elite seed stocks unit. In one case, clean-up was accomplished by selecting four uniform areas in the field of about 0.1/ha each, with rigorous roguing of each plot to remove all suspect plants even those well behind in maturity. The seeds were harvested by hand with further discarding of any suspicious panicles. The panicles were threshed in a small thresher that had been cleaned and inspected thoroughly, and cleaned by sieving and aspiration. Two 0.5-kg samples from the cleaned seeds from each plot were hulled, aspirated to remove hulls, and checked under magnification for red or suspect pericarp colours. Suspect seeds were subjected to the KOH treatment for determining
red rice. Seeds from plots with no evidence of weedy rice (including red rice) seeds in the samples were combined, treated with a fungicide, and planted in an area that was more than 100 km from the nearest rice and had never been planted with rice. The seeds were planted in rows at a low density in order to maximize the multiplication. Many inspections were made; laggard and even slightly off-type plants were rogued. The seeds were harvested with clean machines never used to harvest rice, and then dried and cleaned. Tests on several 1-kg samples did not reveal any weedy rice (including red rice) seeds. The seed stock was certified clean of weedy rice seeds and multiplied as rapidly as possible in the same isolated area in order to prevent re-contamination. These rather laborious and time-consuming procedures delayed wide distribution of seeds of the much sought after variety for several years but restored the credibility of the foundation (basic) seeds unit and, very importantly, prevented additional claims and suits for damages.

Clean-up of contaminated seed lots

Most red rices produce medium-grain seeds that are wider and somewhat thicker than the longer and slender grains seeds of the long-grain rice varieties. These differences in physical dimensions of the seeds have long been taken advantage of by seed producers to remove red rice seeds from contaminated seed lots by cleaning the seed lots with special width separators. These width separators remove a lot of the red rice seeds from seed lots of long grain varieties but almost never all of them. Tests at Mississippi State University indicated that 98–99 percent of the seeds of a typical medium-grain SHR could be removed from seed lots of the long-grain Starbonnet variety with a loss of about 23 percent of the crop seeds, but the separation was not effective for lots of medium-grain crop seeds (Veras, 1984; Delouche, 1988). Clean-up of contaminated seed lots by mechanical or even optical separations should not be the first option for producers of certified seeds because of the high probability that some red rice seeds will remain with the crop seeds. However, the clean-up option has been used effectively to reduce the amount of red rice seeds in seed lots that have to be used for planting because certified seed is not available or for other reasons. In effect, removing red rice seeds in the seed-processing operation is a tactic in the depletion strategy – some of the red rice seeds that would have been planted are deleted from the potential red rice population. However, Vidotto and Ferrero (2005) emphasized that while a few weedy rice contaminants in planting seeds have a negligible influence on the weed rice
population dynamics where planted on substantially infested lands, they can lead to severe infestations in a few years where planted in clean fields.

The clean-up of seed lots is not possible where the red rices are of the long-grain type or the variety is medium-grain.

Other sources of infestations
Contaminated planting seeds are not the only source and ways that weedy rice seeds are spread among fields within a rice farm and from one farm to another. Other common sources of weedy rice infestations are:

- machinery, especially machinery used in harvesting including carts, tractors and other vehicles (Quereau, 1920; Huey and Baldwin, 1978; Smith, 1992);
- mud clinging to wheels and tyres;
- animals;
- land levelling and movement of soil;
- cultivation (De Souza, 1989; Garcia de la Osa and Rivero, 1999);
- flowing irrigation water (Manning, 1998).

Options for the small farmer
The purchase of certified seeds from a reliable seed dealer is the best way to avoid infesting or re-infesting rice production fields. However, in some countries, clean seed supplies are not available or the small farmers either want to continue with varieties no longer in the seed production system or they lack the resources to purchase the needed seed supplies. In such cases, two options are available the farmer:

- Rogue and save seed for planting from the best area in the field.
- Obtain seeds from a neighbour who has an exceptionally clean field – determined by close observation and inspection – of the variety wanted.

DEPLETION OF THE WEEDY RICE SOIL SEED BANK
The soil seed bank depletion strategy involves management decisions regarding cropping systems and employs a variety of cultural, mechanical and chemical practices and treatments. The management decisions relate to the sequence and intensity of cropping, e.g. rice monoculture, double-cropping, alternation of crops (rotation), multiple-year fallowing. In this section, the emphasis is on practices and treatments and their management during the interval between rice crops. This interval may be range from a few months to several years of fallowing in the case of especially heavy infestations. Crop rotation is considered in a later section. Vidotto and Ferrero (2005) have developed and tested a model of the population dynamics of weedy rice seeds and infestations as an aid for selecting and managing control measures. The model focuses on the dynamics of the soil seed bank in terms of inputs into the bank and measures that deplete the supply of seeds. Some of the more important measures in the model for depleting the seeds in the bank are included here.

The first post-harvest management decision should be to avoid deep ploughing or any but the very shallowest cultivation. This is in order to avoid burying weedy rice seeds in the soil seed bank, where they are very long-lived (Goss and Brown, 1939, 1940; Dishman, 1978; Do Lago, 1982; Teekachunhatean, 1985; Fischer, 1999). The first step should be destruction of the stubble to prevent ratooning of the rice – white or red – if there is an opportunity for reproduction before freezing or the onset of the dry season (Sonnier, 1978). Thereafter, the field should be managed in ways that cause the greatest depletion of weedy rice seeds on or in the soil at emergence depth.
Stale seed bed

One popular option is the stale seed bed (Baker, 1974). Essentially, a stale seed bed (frequently termed false seeding in Europe) is one that has received no preparatory tillage prior to planting (Heatherly, 1999). In the case of soybeans and similar crops, there might or might not be one or more tillage operations up to about 30 days before planting. However, for rice, little is done before sowing except possibly rolling the straw after harvest and keeping the field wet or flushing it with water one or more times in order to stimulate germination and/or rotting of the seeds (Huey and Baldwin, 1978). Leaving the field more-or-less undisturbed permits maximum depredation of the seeds by birds and field rodents. Some farmers in the Louisiana rice belt encourage the winter stop-over of wild ducks and geese to feed on shattered red and cultivated rice seeds by maintaining a suitable flood on the land by irrigation or natural rainfall (Fontenot, 1973). Smith and Sullivan (1980) conducted trials in Arkansas to determine the effectiveness of the winter feeding of ducks and geese in depleting the population of red rice seeds in infested fields and found that wild ducks consume large quantities of red rice seeds. They recommended that farmers attract wild ducks by keeping infested fields flooded after harvest until late winter.

The stale seed bed is rid of all green vegetation including weedy rice seedlings and plants before sowing by application of a non-selective systemic herbicide such as glyphosate, a contact and/or short-residual herbicide, or very light but thorough cultivation (Sonnier, 1978; Smith, 1992; Ferrero et al., 1999; Fischer, 1999; Martinez, 1999; FAO, 2003). The seeds are then drill sown or broadcast in a relatively dry, wet or flooded seed bed depending on the type of water management used (Sonnier, 1978).

Minimum or no-tillage

Minimum tillage can be applied in the stale seed bed planting system. There does not appear to be much difference between them except that in the stale seed bed system there is no mechanical preparation for at least 30 days or so before sowing, i.e. the seed bed is not “freshly prepared.” The no-tillage system means just what it says, i.e. there is no tillage during the post-harvest, preplanting period – vegetation is killed by herbicide and the seeds are drilled or broadcast in the stubble. In some areas, minimum tillage is applied to the rice field several times during the post-harvest, preplanting period in order to destroy the flushes of weedy rice seedlings after rains or promoted by light irrigation (Sonnier, 1978; Martinez, 1999; Barreda et al., 1999, Ferrero et al., 1999). Tillage can be applied just before planting. However, this is not recommended because some weedy rice seeds germinate and emerge along with the cultivated rice. Minimum tillage is most often combined with some degree of water seeding, either drilling or broadcast into a flood, or drilling/broadcasting followed in a few days by flooding.

Fallowing

Fallowing is rather deep cultivation during the idle time between crops to turn up buried seeds of weeds and the crop (in the case of changing varieties to emergence depth), stimulate germination of weed seeds, and destroy all plants that emerge during the fallowing period. Fallowing is one of the oldest methods of weed control. It is often imposed on farmers by infestations with weeds to the point that crop production becomes uneconomic or impossible. Sonnier (1978) did much of the research on fallowing for red rice control in the United States of America and stated that with some reservations and qualifications it is an effective method. He found that fallowing only during the interval between rice crops had no effect on the level of red rice infestation and actually increased the problem by burial of the red rice seeds, i.e. planting them as
argued by Dishman (1978). The fallowing had to be continued for a 2–3 year period in order to significantly deplete the soil seed bank and reduce the red rice population in the rice crop following the fallow period. Idling cropland for long periods is not usually a feasible solution unless there is no alternative. The most economical and currently preferred solution is to fallow after the rice crop and through the winter, and then to rotate production into another crop that offers opportunities for destruction of emerged red rice plants by selective chemicals and cultivation while providing income from the alternative crop. Technically, rotation to another crop is not fallowing but it accomplishes some of the same things, mainly, depletion of the seed soil bank. Rotation for weedy rice control is considered below.

Burning of stubble and straw

Sonnier (1978) pointed out that burning of the stubble and straw in rice was once a very common practice in the Louisiana rice area because farmers believed that burning destroyed red rice seeds. However, the practice was eventually abandoned because of the smoke pollution problem and recognition that valuable organic matter was being destroyed, but mostly because it was not very effective except in areas where the straw was very dense. He also cited the “invention” of a burner designed to direct an intense flame onto the soil surface. The invention was soon abandoned owing to the destruction by burning of the equipment carrying the burner and the high consumption and cost of fuel for burning.

Other approaches

Several other approaches have been investigated with the aim of depleting weedy rice (including red rice) seeds in the soil seed bank. Eastin (1978) discussed efforts to find some way to release dormancy and induce germination in red rice seeds so that they could be destroyed by chemicals or mechanical means during the interval between rice crops. Many chemicals were evaluated in laboratory experiments, including gibberellin, ethephon, indole-3-acetic acid, kinetin, and hydrogen peroxide, but none was consistently effective. Based on the earlier laboratory studies at Mississippi State University (Delouche and Nguyen, 1964; Larinde, 1979; Do Lago, 1982), Teekachunhatean (1985) planted very dormant (germination < 5 percent) seeds of the Nato variety and three red rice types 2.5 cm deep in soil and drenched them with equal volumes of water, ethylene chlorohydrin and sodium hypochlorite solutions, flushed them with another equal volume of water, and counted emerged seedlings after 14 days. The water treatment had no effect on emergence, but 35–86 percent of the seeds drenched with 0.25-percent ethylene chlorohydrin and 0.50-percent sodium hypochlorite emerged, with the sodium hypochlorite drench stimulating the highest emergence. Garcia-Quiroga (1987) continued the drenching studies and found that the ethylene chlorohydrin drenches were generally more effective than sodium hypochlorite in stimulating emergence of an SHR and BHR ecotype, but that the effectiveness of both treatments varied widely among plots and times of treatment. Such treatments would need to be carefully screened for residual and pollution effects.

SUPPRESSION OF WEEGY RICE GERMINATION (WATER MANAGEMENT AND CHEMICALS)

The suppression of germination and emergence of weedy rices (including red rices) and other weeds by anoxia in wet and flooded soils has been practised for millennia in transplant rice culture. However, water management and sowing practices for producing anoxia in direct-seeded, irrigated rice culture have been developed only during the last
century. Smith (1972) conducted greenhouse studies on the effect of submergence in water on the germination and emergence of red rices. In these studies, submergence of the soil by 1.25–5 cm reduced emergence of red rice seeds 1–2.5 cm deep in the soil by 92 percent and emergence of seeds 5–10 cm in the soil by 100 percent. Other workers obtained similar results (Sonnier, 1978; Diarra, Smith and Talbert, 1985c). The most successful application of water seeding for control of red rices and other weedy grass species has been in California, the United States of America, which became an essentially red-rice-free production area through the use of red-rice-free certified seeds and the practice of water seeding (Fischer, 1999). California had the main requirements for water seeding, i.e. level fields, a dependable water supply, and a desert to semi-desert climate with few storms and heavy rains at sowing time. The suppression strategy maintains and extends both the short-term and long-term benefits of the weedy rice soil seed bank depletion strategy. Thus, it follows (or must be preceded by) the stale seed bed, minimum tillage, periodic flushing, smoothing and rolling practices used to stimulate the presowing germination of weedy rices and other weeds, and the mechanical or chemical destruction of all vegetation before sowing.

Water seeding (sowing in a flood)

There are several versions of water seeding in order to accommodate differences in field uniformity, levelling and climate. Most of them require use of pregerminated seeds, i.e. seeds soaked in water to full imbibition and held for a time in order to permit germination to commence. Some farmers like to leave the seed bed in a rough, cloddy condition in order to curtail movement of the seeds in the water film (Hill, 1978), while others smooth and roll it and still others puddle the soils (Garcia de la Osa and Rivero, 1999; Dominguez, 1999). According to Sonnier (1978), farmers have three water management options after water seeding:

- **Maintain a continuous flood from planting until drainage preparatory to harvest.** This is the best option for suppression of weedy rices but it has risks. Obtaining a satisfactorily stand of seedlings can be a problem in high organic soils that keep the water murky. Heavy rains and high winds can cause drifting of the seeds and uprooting of seedlings.
- **Drain the fields after sowing and reflood only when the seedlings are established sufficiently to withstand a full flood.** Obtaining a good stand of seedlings is not a problem but the stand is likely to include a good population of weedy rice seedlings.
- **Drain the fields a few days after flooding and then reflood gradually as the cultivated rice seedlings set down roots.** This option, a compromise between the other two options, is termed “pinpoint flooding.” Although the flood is drained, the soil is kept moist so that weedy rice germination and emergence is suppressed sufficiently for a “good” control rating. Stand establishment is favoured, and the seedlings set down roots quickly and resist drifting and uprooting.

Sonnier also stated that the continuous flooding option gave the best control of red rice but cautioned farmers about the risks of poor stands and drifting from rainy, windy weather. He noted that, while fewer red rice seeds emerge in continuous flooding, the plants are usually very robust and produce large quantities of seeds compared with the more numerous smaller plants that produce relatively few seeds in prolonged drainage systems. Overall, considering the suitability of fields for water seeding and climate conditions at sowing time, Sonnier and other specialists (Hill, 1978; Huey, 1978) generally considered the pinpoint flooding system as most suitable for the southern states of the United States of America and similar rice production areas.
Chemical suppression

Several herbicides are used in water-seeding rice culture for additional suppression of the germination of weedy rices and other “watergrasses”. The most widely used is the herbicide molinate incorporated preplant or in the water after seeding (Parker and Dean, 1976; Baker and Sonnier, 1982, 1983; Smith, 1981, 1992; Abud, 1986; Fischer, 1999). Application of 1, 8-naphthalic anhydride, a “herbicide antidote”, as a seed treatment has been used to enhance tolerance of rice to molinate and other thiocarbamate herbicides (Smith, 1972; Henry and Baker, 1972). However, water seeding and the use of chemicals such as molinate are changing the ecology of the direct-seeded, irrigated rice system to the extent that new weed problems have arisen. An increasing population of weeds are becoming well adapted to the water-seeding system and resistant. Goforth (2004) reported that the water-seeding system is losing its effectiveness and that in some cases growers are “taking a second look at drill seeding” in dry seed beds. He quotes Fischer: “Water-seeding has over the years selected for a specific set of weeds that are particularly adapted to this (water seeding) anerobic system. (and.). ...These weeds have developed resistance to many herbicides....Resistant biotypes of these weeds are distributed throughout the rice growing areas in California.” Fischer also noted that new herbicide chemistry is not a likely solution because of the high cost of development and the complex registration process and, moreover, that the herbicide molinate will be phased out in California within the next five years owing to regulatory restrictions and loss of effectiveness. After cautioning rice growers considering the dry-drill-seeding system to be on the lookout for new weed problems, Fischer concluded: “Although red rice has not yet become a problem in California, largely due to the water-seeding system and the use of certified seed, this weed may find favorable conditions in a continuous dry-seeding system.”

A variety of “antigermination” herbicides are used for the control of weedy rices in rotation crops such as soybeans, sorghum and sunflower. However, in rice culture, residual activity has limited their use to very-short-residual types. In European rice culture, the chemicals pretiachlor and dimethenamid, alone or in combination, applied preplant at least 25 days before rice sowing have enabled quite good control of the weedy rices (Ferrero and Vidotto, 1999).

Change to transplanting culture system

The transplant culture system is the traditional method for suppressing the germination and emergence of weeds in rice fields. It is always an option where available control methods used in direct-seeded rice systems fail to provide the level of control for economically viable rice production. This option is the next to last one – the last one being abandonment of rice production – and limited to small-scale operations managed largely with family labour. Nevertheless, it has been taken up in some areas in SSA (Johnson et al., 1999), Asia (Chin et al., 1999) and the Americas (Martinez, 1999).

DESTRUCTION OR REMOVAL OF WEEDY RICE PLANTS IN THE RICE CROP

Weedy rice seeds that germinate and emerge along with the rice crop will grow, develop, and produce seeds for infesting the next crop unless they are removed, killed or prevented from reproducing. However, the options available to most rice farmers for control of weedy rices in the growing rice crop have been limited, laborious and expensive. They have been limited because most weedy rices are strains of Oryza sativa or very close relatives, which precludes their control by selective herbicides as used for control of other weeds in rice and other crops. They have been further limited because the flood and broadcast seeding precluded the periodic cultivation traditionally used
for weed control in other crops. They were laborious because the only practice available to most rice growers was hand-weeding or roguing, or treatment of individual plants with herbicides. They were expensive because hand-weeding is expensive even when done by family labour. However, recent developments of a “biotechnology strategy” for control of weeds in a variety of crops (including weedy rices in the rice crop) have the potential to essentially eliminate these constraints and limitations for growers who can access and afford the technology. The biotechnology strategy is considered in a later section.

Hand-weeding of rice field (roguing)

Hand-weeding and/or roguing of volunteer, red and other weedy rices is a viable option only for small farmers and certified seed producers with relatively light infestations. Roguing of certified seed fields has been discussed above. The cautions and procedures described and discussed are equally applicable to small farmers using family labour. The main points are that roguing should be done as soon as the weedy rice plants can be identified, or at least before seed shattering. The panicles should be cut and placed in a bag before the rest of the plant is pulled for removal from the field.

Osborn and Faye (1991) and Chin et al. (1999) related for Senegal and Viet Nam, respectively, how small farmers could avail themselves of the relatively simple and readily available practice of planting rice in defined rows rather than by broadcast or other ill-defined planting systems. This greatly facilitates the early weeding between rows of the rice crop before flooding or during drainage periods by hand or with short hoes, with the added benefit of a substantial reduction in the amount of seeds required.

Mechanical and chemical control practices

Ferrero and Vidotto (1999) describe a cutter bar device from a combine harvester fitted with contra-rotating crushing rolls that is attached to the front of a tractor and used to cut and crush panicles of weedy rices (including red rices) and that are sufficiently taller than the crop. Two passes are made through the field – the first at the beginning of flowering, and the second 15 days later. An alternative to cutting and crushing is the use of a rope or sponge wick device wetted with an herbicide, such as glyphosate, to rub across the tops of taller weeds and weedy rices (Stroud and Kemper, 1989). In Brazil, maleic hydrazide, a plant growth regulator, has been labelled for the suppression of seed production in rice (Noldin and Cobucci, 1999; Saldain and Deambrosi, 2000). Use of maleic hydrazide, based on earlier work by Dunand (1996), requires that the weedy rice be at least 10–15 days later than the crop. Spraying the chemical on the weedy rice prior to or at the time of heading reduced the number of panicles, increased sterility and reduced viability. Agostinetto et al. (2002) reported similar suppression of weedy rice seed production by applications of the herbicides glyphosate, gluphosinate and paraquat as well as maleic hydrazide in rice fields planted to varieties substantially earlier than the weedy rices. Best results were obtained when flowering of the weedy rices had reached the basal spikelets in the panicles.

ALTERNATION OF RICE WITH OTHER CROPS OR FIELD USES TO CHANGE ENVIRONMENT

Rotation with other row crops

The disadvantages of monoculture and the advantages of crop rotation in terms of soil condition and conservation, disease and insect control, and control of weeds have long been recognized and practised. Baldwin (1978) related how the worsening red
Weedy rices – origin, biology, ecology and control

The rice situation in Arkansas led to the decision in 1969–1970 to focus research on crop rotation for control. Extension and research specialists in the state recognized that discovery of a selective herbicide for red rice control was highly improbable, that cultural practices were only slowing the increase in red rice infestations, and that some more effective control system other than multiple-year fallow was needed in order to maintain economically viable rice production. Soybean was the second crop in the grand prairie rice area of Arkansas and was already rotated with rice by some growers. Therefore, research attention focused on soybean–rice rotations and, to add another option, on sorghum–rice rotations. It was soon determined that a one-in-one-out rotation of rice and soybeans would not control red rices satisfactorily except in very lightly infested fields. Therefore, a two-out-one-in rotation (two successive years out of rice in a three-year period) became the minimum.

Rotating rice with soybeans, grain sorghum, sunflowers, maize and grain legumes other than soybeans has several crucial advantages. The sowing and cultural systems provide ideal conditions for the germination of red rice and the opportunity to deplete seriously the red rice soil seed bank by use of the full array of preplant incorporated, pre-emergence, post-emergence and over-the-top herbicides used for weed control in the alternate crop. More recently, the introduction of herbicide-resistant varieties of some of the rotation crops permits use of broad-spectrum herbicides. The equipment and facilities, e.g. storage bins and dryers, used for rice can also be used for the other “grain” crops with minimum modifications. The success of rotation for the control of weedy rices (including red rices) depends on how well weeds are controlled in the alternate crop in general and the specific attention given to preventing production of seeds by red rice plants in the crop from late-emerging seedlings or ratoon tillers. Rotation of rice with soybeans, sorghum or another suitable crop is currently the most successful practice for the control of weedy rices, especially severe infestations (Fischer, 1999; FAO, 2003). Moreover, rotation is becoming an even more critical component of weedy rice control programmes in the new era of herbicide-resistant rice as an essential tactic in strategies to reduce or prevent the development of herbicide-resistance in the weedy rices.

The main limitations on the rotation control system are the availability of a suitable crop, the drainage of the rice fields (poor drainage precludes the use of many row crops), and the need of rice for on-farm consumption, i.e. as in near-subsistence agriculture.

Rotations with green manure crops and pastures

Rice production is alternated with green manure crops in some countries, e.g. *Crotalaria* in Colombia (Carroza, 1999), and *Sesbania* in Cuba (Garcia de la Osa and Rivero, 1999). Moreover, it has long been rotated with pastures and cattle or hay operations. Sonnier (1978) stated that the prevailing rotation in the rice area in Louisiana before soybeans became a major crop in the same area was with improved or non-improved pastures. He then discussed some farmer perceptions and his station’s findings on advantages and limitations of the rotation. Red rice plants readily volunteer in the pasture phase of the rotation and some reach maturity despite grazing pressure. Many farmers felt that the addition of one or two mowings and clippings to the grazing pressure destroyed most of the red rice plants that emerged and also prevented seed production. However, red rice plants in pastures mown to 5 cm regrew to 30 cm in 21 days and panicles were emerging from the boot. Red rice plants mown to 10 cm regrew to 35 cm in 21 days and were in head, while 28 days after mowing panicles were well developed and the seeds were nearly at the shattering stage. Based on the rapid regrowth and heading of red rices in pastures, Sonnier recommended that the pastures be grazed and mown to a
height of 7.5 cm or less at least twice in the warm season for rice at intervals of 28 days or less.

De Souza (1989) described a successful rice-improved pasture rotation in southern Brazil for the control of red rice and for additional income. Following the rice harvest, the annual pasture grass species *Lolium multiflorum* is established, grazed during the winter, then killed with a non-selective herbicide before drilling rice seed in the sod for the next rice crop. Beginning in the 1980s, Uruguay established a model rotation system of 2 years rice, 3 or 4 years pastures/cattle. This system brought red rice under control and permitted the development of Uruguay’s premium quality rice export programme (Chapter 8).

BIOTECHNOLOGICAL STRATEGY – HERBICIDE-RESISTANT VARIETIES

Long before the release of the first herbicide-resistant rice variety in 2002, efforts had been made to identify a herbicide / herbicide-resistant-variety system that would permit easier, simpler and more effective control of weedy rices (including red rices) in the rice crop. Some varieties and lines were identified that were superior competitors and some exhibited tolerance to herbicides (Baker and Bourgeois, 1978; Wirjahardja and Parker, 1978; Wirjahardja and Susilo, 1979; Richard and Baker, 1979). However, the search for suitable herbicide-resistance sources was not very successful. The situation changed with the rapid progress in the development of herbicide-resistant and insect-resistant soybeans, cotton, maize and other crops. Several biotechnology companies and university research units began or accelerated work on the development of herbicide-resistant rice varieties that would permit the effective control of weedy rices (including red rices) and the increasing number of herbicide-resistant weedy species in rice with a single powerful, non-selective, environmentally “friendly” herbicide (as was also the goal in the work on herbicide resistance in other crops). In the mid-1980s, considerable progress was made in developing rice lines resistant or tolerant to the IMI herbicides, mainly by mass screening in tissue culture (Croughan et al., 1984; Croughan, Pizzolatto and Trump, 1986; Croughan, 1994). Somewhat later, gluphosinate resistance was transferred to rice lines by genetic engineering (Linscombe et al., 1994; Braverman and Linscombe, 1994; Rathore, Rao and Hodges, 1994).

Apart from technical considerations, there were two main reasons why application of the herbicide resistance strategy for weed control in rice lagged behind that for soybean, maize, and cotton. First, rice is a minor rank crop in most of the countries with advanced agricultural research and agrichemical industries where it is direct seeded. Second, there was and is considerable apprehension that the resistance gene (or genes) would flow to weedy rices (including red rices) that cross with cultivated rice and produce herbicide-resistant populations of the weedy rices. However, by the late 1990s, rice varieties resistant to the broad-spectrum herbicides gluphosinate, IMI, glyphosate and probably others had been or were being developed. Varieties resistant to IMI (so-called IMI rice) were introduced in 2001–02 in the rice-growing area of the south of the United States of America under the Clearfield trade name. The Clearfield varieties were not modified genetically by the insertion of foreign genes. They were selected as mutants and developed into varieties by classical breeding methods. Seeds of Clearfield varieties are marketed in a package with the Newpath® herbicide (imazethapyr). By 2005, Clearfield varieties had been planted to about 27 percent of the long-grain rice area in Arkansas, the leading rice-producing state in the United States of America (Horizon Ag, LLC, 2005). Farmers have generally obtained satisfactory results with the Clearfield varieties in terms of both weed control and production, especially after several years’ learning process and the release of improved Clearfield varieties (Bennett, 2005). The area planted to herbicide-resistant varieties of rice in the
United States of America and other countries will probably continue to increase as it has for herbicide-resistant varieties of other crops.

In 2005, the rice trade magazine *Rice Farming* headlined a story under the headline “Red Flag Warning” (Boyd, 2005). The story related the first commercial case of Clearfield rice outcrossing with red rice in the 2004 crop in Arkansas. The field in which the hybrid was identified had been planted to the Clearfield variety for two successive years in “violation” of the Clearfield Stewardship Agreement. This agreement clearly states, among other things, that: “a Clearfield rice crop should not be followed by another Clearfield rice crop or a conventional rice crop in the same field; the rotation crop, e.g. soybean, should be treated with herbicides that have different modes of action than Newpath®; and red rice escapes in rice fields and adjacent areas should be carefully hand pulled and removed from the area.” Although the discovery of a herbicide-resistant red rice was indeed a warning it was not surprising. Olofsdotter, Valverde and Madsen (1999) has presented a thorough review and analysis of herbicide-resistant rice at the 1999 Global Workshop on Red Rice Control (FAO, 1999), while a year later, at the 3rd International Weed Science Congress, Valverde (2000) had pointed out that worldwide 19 weedy species in rice had developed resistance to herbicides and recommended that herbicide-resistant rice varieties be used rationally and in well-managed integrated weed control programmes (Gealy, 2005; Valverde, 2005). Moreover, university and USDA researchers, especially in Arkansas, had established outcrossing between Clearfield (IMI) rice and strawhull red rice with near synchronous flowering (Moore et al., 2001; Estorninos et al., 2001) with outcrossing rates estimated at 0.012 percent, and also between gluphosinate-tolerant rice varieties and several red rice ecotypes (Wheeler and TeBeest, 2001). Methods have been and are being developed that permit rapid and accurate identification of hybrids between rice and red rice, with particular emphasis on hybrids from crosses of herbicide-resistant rice and red rice for use in close monitoring of developments by company representatives, extension specialists and consultants (Rajguru et al., 2001; Gealy and Estorninos, 2004a, 2004b; Gealy, Mitten and Rutger, 2003; Estorninos, Gealy and Burgos, 2004). The hybridization of red rice with cultivated rice, including herbicide-resistant varieties, has been discussed in greater detail in Chapter 3, and reviewed comprehensively by Gealy (2005).

These recent events involving herbicide-resistant rice underline the importance of adherence to the agreement and other guidelines that have become an essential, even legal, part of the purchase order of proprietary varieties, both transgenic and non-transgenic. The terms of the agreement and guidelines have been determined by the owner of the technology, public scientists, extension specialists, and progressive growers. They are designed and intended both to protect the rights of the owner and, very importantly, to protect and sustain the integrity of the technology for use by all farmers who want to use it. There are risks associated with the use of herbicide- and insect-resistant varieties of any crop. Those related to herbicide-resistant rice varieties have been reviewed by Olofsdotter, Valverde and Madsen (1999) and, more recently, by Gealy (2005). However, there is a strong belief among knowledgeable scientists, specialists and farmer-users that the risks can be managed in ways that will protect the technology and preserve the very substantial benefits to the producers, the food supply, and the environment. However, it is generally recognized that the cost, complexity, and proprietary rights associated with most biotechnology products such as herbicide-resistant rices will limit access, at least in the initial stages, of the powerful and benefit-laden technology to large, mechanized and commercial rice production operations, and effectively exclude most of the smaller, lower input, resource-poor rice operations and producers.
REQUISITES FOR EFFECTIVE WEEDY RICE CONTROL PROGRAMMES

The development of a system for producing good-quality, weedy-rice-free seeds and the availability of supplies of clean seeds are essential first steps in the implementation of control programmes for weedy rices (including red rices). However, improvements will be limited unless and until all the stakeholders in the rice industry are persuaded that control is possible, that it is needed, that the control measures have to be integrated and comprehensive, and that the benefits will exceed the costs. Obtaining the attention of the stakeholders, especially the producers, is difficult to impossible in areas where rice is a subsistence and/or mainly an opportunistic market crop, crop yields are only slightly affected, and there is no market penalty for the presence of weedy rice grain, especially those with the red pericarp, in grain rice. Little can be done in such situations. However, such areas are vanishing as the urban and even rural markets in developing countries such as Senegal are becoming more discriminating in terms of quality, as noted by Diallo (1999).

Agreement by most of the stakeholders that the weedy rice problem is important and that action is needed does not improve things very much. What is needed is an imaginatively conceived, comprehensive, energetically led and sustained campaign that involves all the stakeholders. The campaign needs to be based on practical and doable measures, and have achievable goals. The critical requisites for a successful campaign are commitment, coordination, cooperation and comprehensiveness. Chapter 8 presents some examples of successful weedy rice control programmes/campaigns.
Chapter 8
Examples of weedy rice control campaigns

This chapter presents examples of actual weedy rice control campaigns in various countries in three geographical regions:
- South America: Uruguay;
- Central America and the Caribbean: Colombia, Costa Rica, Cuba, Nicaragua, Panama and Venezuela;

SOUTH AMERICA – COMBAT AND CONTROL OF RED RICE IN URUGUAY

This case study analyses and discusses the main factors that allowed Uruguay to gain and maintain control of red rice with minimal impacts on yields and grain quality.

Background

Rice was first planted in Uruguay in about 1920 in the north of the country. In the 1930s, the first large rice farms started production activities in the east at the Laguna Merim basin, where rice cropping has mostly developed up to the present time. These rice production activities were initiated by national farmers and enterprises based on knowledge, technology and varieties introduced mostly from Brazil and Italy. Today, Uruguay has about 200 000 ha of rice managed under highly technical, mechanized systems (Figure 13).

Although documented data are lacking, it is assumed that red rice was introduced as contaminants in rice seeds imported by the pioneering rice farmers. In 1972, with a view to developing a rice seed certification programme, a survey was conducted on the varieties used by farmers and seed samples were collected and analysed (Jorge, 1972).

In 1972, about 26 800 ha of rice were planted, 70 percent with long-grain varieties and 30 percent with medium- and short-grain varieties. At that time, there was no organized seed programme and only 70 percent of the seed available for planting had been subjected to some degree of processing or cleaning. The rest of the seed used by farmers was home-saved.

Seed quality tests of the samples collected revealed that 38 percent of the seed lots being planted were contaminated with red rice. Of these red rice contaminated lots, 90 percent were from small farmers.

![Figure 13: Evolution of the rice area in Uruguay, 1930–2005](source: Zorrilla, 1998.)
and 15 percent from large rice enterprises that were just starting the development of a seed programme. The seed lots of medium- and short-grain rice varieties had the highest levels of red rice contamination (about 400 red rice seeds per kilogram of rice seed). The results from the 1972 survey indicated that red rice was present in almost all of the rice cropping areas, a fact later corroborated by senior agronomists.

Basic elements to combat and control red rice

Development of a rice-exporting sector

Since 1935, Uruguay has had a positive rice production balance with a certain volume of grain available for export. For many years, these exports were mainly opportunistic and complementary to the national rice supply. However, by the mid-1960s, some changes in the rice sector had initiated activities that were the first steps in the successful campaign to combat and control red rice.

In 1965, some large seed producers involved in the export of rice introduced the variety Bluebelle, from the United States of America. This variety adapted well to the local conditions and played a crucial role in augmenting rice exports. In the 1970s and 1980s, more than 80 percent of the national rice production was of this variety, allowing Uruguayan producers to enter international markets with a fine-quality product. The rice sector subsequently developed into a major rice exporter, so that more than 90 percent of the rice production is now exported and Uruguay ranks seventh among the rice-exporting countries.

The need to survive and develop in a world rice market distorted by subsidies and numerous commercial barriers required a series of transformations in the rice sector in order to achieve and maintain a competitive position. Emphasis was placed on technological developments geared towards higher yields, greater efficiency in the use of resources, and higher quality and uniformity of the final product.

In this emerging rice production programme, it was soon recognized that lack of variety purity and red rice contamination were affecting not only rice yields but also the quality of the product, and that the development of a seed supply system to ensure varietal purity and the quality of the seeds as regards contaminants had to become an urgent priority. This seed supply and seed quality focus for development of the rice industry in Uruguay is fundamental for understanding and appreciating the successes obtained in the combat and control of red rice.

The national seed system as a basic component

The Estación Experimental del Este was created in 1970 with the objective of generating and adapting technology for rice production. Among its priorities were the development of a national rice breeding programme, the initiation of a rice seed certification scheme, and soil and crop improvement and management.

The certified rice seed programme has had a leading role in the combat of red rice. From the outset, it received strong support from the private sector and within a few years almost all the rice cropping area of the country was planted with rice seeds free of red rice.

In Uruguay, several categories of seed are recognized (foundation, registered and certified) with genealogical control at all stages by the Instituto Nacional de Semillas (INASE), which releases the seed labels. In additional, a category of commercial seeds is recognized. Commercial seeds do not require genealogical control but they have to meet all other standards similar to those of certified seeds. This category is guaranteed by the seed producer and is controlled, at market level, by the INASE.
In 1984, of a total planting area of 80,700 ha, 48 percent was planted with certified seeds and the balance with commercial seeds produced under strict quality control regulations (Zorrilla and Acevedo, 1985). The seed tests showed that all seed lots sampled were free of red rice contamination.

During the early implementation of the seed production scheme among the national rice producers (Figure 13), there was the opportunity to produce rice seeds in fields that had never been planted to rice. This was a major asset for the rice seed production system and made possible the early production of large volumes of red-rice-free rice seeds. The increase in the use of certified seeds has continued and now more than 85 percent of the national area is planted every year with certified seeds (Figure 14). The progress made in establishing a quality seed supply system and the very low use of farmer-saved seeds has been largely possible because of the strong support from the rice industry and its close relationship and cooperation with the rice farmers.

The rice-milling group developed into a highly technical industry with the consensus goal of producing the highest quality rice free of red rice. Seed production was and is considered an essential activity of the rice industry and not a profit-making business. Thus, the average cost of the red-rice-free rice seed is only 1.7 times the cost of rice grain, a fact that discourages the use of farmer-saved seeds.

The contracting system used between rice farmers and the rice industry supports the expansion of the use of certified seeds, which is a specific requirement in the contracts. The rice producers of the Asociacion de Cultivadores de Arroz have supported this system as they are convinced that this strategy is beneficial for the whole agroindustrial chain.

The governmental institutions have also supported the development of the rice production sector: the Estación Experimental – Instituto Nacional de Investigación Agropecuaria (INIA), Treinta y Tres, by generating and maintaining new varieties and producing the foundation seeds of the new varieties, and the INASE as the institution responsible for the whole system (Figure 15).

Among the elements that were adjusted in the improvement and development of the red-rice-free seed production process, some significant changes were made in the rice seed certification standards. In 1989, a zero tolerance of red rice was included for the category of certified seeds. In 1993, this was extended to all seed categories (Table 31).

The establishment of large-scale rice seed production free of red rice before the rapid expansion

![Figure 14](chart.png)

Evolution of the total planted area and the area planted with certified seeds in Uruguay, 1988–1998

<table>
<thead>
<tr>
<th>Year of planting</th>
<th>Certified seed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: G. Sanguinetti, personal communication.

Table 31

<table>
<thead>
<tr>
<th>Year</th>
<th>Foundation</th>
<th>Registered</th>
<th>Certified</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 1989</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1989</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

of the rice-producing sector in the country, and the recognition by rice farmers of the importance of buying quality rice seeds every year were critical steps in the implementation of an effective and efficient programme for the control of red rice.

Rotation of rice and livestock

The limiting factor for increasing the rice production area in Uruguay has not been the availability of land, but the availability of irrigation water and the necessary investments. For these reasons, from the outset, the rice sector developed a rotation system of rice and pastures with 2–3 years of rice followed by several years of fallow and pastures for livestock. Since the start of the national rice research activities in 1970, the improvement of this rotation system has been a main priority.

In the 1980s, the Estación Experimental del Este – INIA, Treinta y Tres, promoted and obtained the massive adoption of a rice–pastures–livestock rotation system with two years of rice cropping followed immediately after harvest by aerial seeding of pastures. The pastures were used for four years for fattening cattle before the land was returned again to rice (Bonilla and Grierson, 1982). More recently, considering the needs of the producers, the INIA, Treinta y Tres has been developing a more intensive rotation system that includes 2 years of rice and 3 years of pasture. Rice is planted directly, and the livestock includes bovines and sheep (Bonilla and Zorrilla, 2000). This strategy of integrating rice with livestock production has many advantages, including:

- increased sustainability of rice production by having lower costs and higher yields;
- diversification of livestock production;
- sustainable management of the natural resources;
- reduced impact on the environment.

Ongoing research means that the rotation system is being improved.

Although red rice control was not the primary reason for adopting the rotation system, it was soon learned that the rice–livestock rotation was a very effective measure for combating and controlling red rice. One of the main traits of red rice that contributes to its success as a weed is the longevity of its seed in the soil. In a long-term trial installed at the INIA, Treinta y Tres, viable red rice seeds have been found after 11 years of burial on the soil (Zorrilla, personal communication, 2004). The interruption of rice cropping for several years obtained by the rotation with pastures and livestock avoids the multiplication of the weed and reduces the red rice soil seed
bank. Thus, the low-intensity system of rice production has been a significant factor in the effectiveness of measures used to combat red rice.

Diffusion and knowledge – complementary measures

The organizations linked to the rice system considered the need to implement measures complementary to the availability of red-rice-free seed rice in order to offer an efficient and coherent control strategy. The population dynamics of red rice calls for a permanent and active state of alert for its combat and control by making farmers aware of the red rice problem and its importance in maintaining a good export market.

In the 1980s and 1990s, extension and educational campaigns were implemented by all the institutions among all the stakeholders participating in the rice-related agroindustrial chain: the INIA, INASE, the Asociación de Cultivadores de Arroz (ACA) and the Gremial de Molinos Arroceros (GMA). These campaigns included:

- specific publications;
- press and magazines articles;
- field visits and workshops for producers, technicians and field staff of the rice firms.
- The most important messages disseminated in the campaigns were:
 - Better knowledge of the different forms of red rice and the need for permanent vigilance and combat are very important.
 - The best strategy is to prevent the entry of red rice into a field.
 - Rice seed free of red rice is the first and most crucial control measure.
 - Avoid other means of contamination, in particular by machinery, tools and harvesters.
 - Implement specific control measures for primary infestations: manual control, localized herbicide application, others as available and appropriate.
 - Reduce cropping intensity of rice by including rotations with pasture.

Results of the integrated strategy

The widespread distribution of red rice in the rice-producing area in the 1960s was reduced slowly. In the 1980s and 1990s, red rice was a sporadic weed in fields with many years of continuous rice cropping, but usually absent in new fields. In the early 1990s, studies were made to evaluate the actual incidence in the final product, that is, in the grain for industrial processing.

The majority of rice farmers in Uruguay produce under contracts with the industrial sector. The contract specifies, among other things, a price and penalty system for the quality of the grain delivered, and every truckload of rice reaching the mill is sampled and analysed. With the collaboration of the main rice millers, harvests for several years were collected and studied (Zorrilla, 1998). Table 32 shows that about 90 percent of the production of 3 years was surveyed and that red rice was detected in less than 1.5 percent of the samples.

These results confirmed the success of the red rice control programme and campaigns, and the nil or minimal impact of the very low incidence of the weed seeds on the quality of the final product and on the industrial costs. However, these results do not show directly the incidence of the weed in the field

<table>
<thead>
<tr>
<th>TABLE 32</th>
<th>Survey of analyses of incoming rice received by the main rice mills of Uruguay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1986</td>
</tr>
<tr>
<td>Total surveyed tests (no.)</td>
<td>21 124</td>
</tr>
<tr>
<td>Analysis with red rice (no.)</td>
<td>228</td>
</tr>
<tr>
<td>Analysis with red rice (%)</td>
<td>1.08</td>
</tr>
<tr>
<td>National production surveyed (%)</td>
<td>90</td>
</tr>
</tbody>
</table>

as it shatters early and heavily and only a small fraction of the seeds is taken in the harvest. The analysis of the incoming rice also identified the location of the production represented by the sample. The results confirmed that, in spite of the low incidence of red rice in the grain, it was still present in all the rice production areas of the country.

The present situation

In the latter part of 1990s and up to 2000, there was a significant increase in the rice-cropping area. This was in part as a consequence of the expansion of the agricultural frontier and of the intensification of the rotations (with fewer years devoted to pasture between rice crops). This increased the presence of red rice in the fields, especially in the traditional rice-growing areas. In the same period, there was a significant increase in the number of new producers of Brazilian origin. They brought with them the habit of using their own seed, as is common in Rio Grande do Sul in southern Brazil. This situation has resulted in an increase in red rice infestations in the new fields and clean areas. The national institutions are now increasing their efforts to avoid the deterioration of the existing favourable situation. Emphasis is maintained on the national red-rice-free seed production system and the rotations. The INIA has now moved from the diffusion and prevention strategies emphasized in the past to the support of specific projects on red rice management and control.

There are studies in progress on the variability of biotypes present in the country and its possible genetic origin (Federici et al., 2001). There are ongoing trials and recommendations on systems for soil preparation, types of planting and strategies for the use of herbicides that could enable economically viable production on heavily infested soils (Castillo, Gauna and Saldain, 2004), and applications of herbicides at the end of the weed cycle to avoid seed formation (Saldain and Deambrosi, 2003).

Although the problem continues to be a minor one at field level, in milling and in the quality of the final product, there is concern about the trend of increasing weed populations. Discussions with the officers of the main milling industries of the country indicate that the percentage of red rice in the rice received by the mills between 1986 and 1992 was less than 2 percent (Table 32) but that it was close to 5 percent in the 2004 harvest. Nevertheless, this is not yet considered a serious problem.

The Clearfield technology of mutant varieties (not transgenic) that are resistant to herbicides of the IMI family (Croughan et al., 1990) is arriving in the country at the right moment and could become a very efficient and effective tool if managed properly. For the 2005 planting season, a recently introduced American variety will be available for farmers. In the next few years, the INIA expects to release national varieties obtained by the INIA plant-breeding programme under an agreement with BASF. If the technological package is applied as directed to avoid the flux of genes to the red rice, it may become the ideal tool to consolidate the control of the weeds and especially red rice in Uruguay just at the moment when an increasing trend in red rice infestations has been detected.

Lessons learned

The experience gathered from 35 years of combating red rice in Uruguay allows the identification of the most important factors that have contributed to the development of a successful national strategy for red rice control:

- An effective strategy to combat red rice requires the participation and commitment of all the stakeholders in the rice chain: farmers, millers and public institutions on research and seeds. This team of actors must achieve a fair distribution of costs and benefits for all the actions performed.
Rice seed free of red rice accessible to all farmers is fundamental but it must be complemented by other actions taken in the comprehensive combat and control plan.

It is necessary to develop and maintain education and extension programmes in order to ensure that farmers, millers, technicians and workers in the rice industry are aware of the problems caused by red rice and combat it vigorously, following the motto that “the best control is not to have red rice in the field”. In this regard, a basic element is the development and extension of a set of measures to combat primary infestations. These measures need to be applied by farmers in a systematic way when the problem is still relatively easy to resolve.

Rice farmers always need to be attentive and ready to apply at once the technological advances that the national research confirms as effective in combating red rice.

CENTRAL AMERICA AND THE CARIBBEAN – MANAGEMENT AND CONTROL OF WEEPY RICES

Background

Recognizing the importance of the problem of weedy rices, particularly in countries practising direct seeding, FAO started some activities in order to assist developing countries with ways to reduce weedy rice infestations in rice. The first activity in this context was to organize an FAO global workshop on the subject, which was held in Varadero, Cuba, (FAO, 1999) with the participation of specialists from 17 countries. The workshop concluded that the high weedy/red rice incidences in many rice-producing countries are the result of using contaminated seeds, continuous monocropping and inappropriate cultural practices during the crop cycle. The need for an integrated management approach was emphasized with the critical first step of reducing the weedy rice seed sources.

Based on many suggestions and recommendations, a subregional project was implemented by FAO jointly with relevant national institutions. Six countries affected by weedy rices participated in the subregional project: Colombia, Costa Rica, Cuba, Nicaragua, Panama and Venezuela. All field activities were conducted through the development of the so-called farmers field schools (FFS). At these schools, farmers learned about:

- control procedures;
- elements of the ecology of weedy rice;
- the soil seed bank;
- identification of the main biotypes of weed rices and their cycle;
- the importance of cleaning the equipment and machinery coming from infested areas.

Weedy rice problems in the participating countries

Rice is grown on 320 000 ha in Colombia, where the first constraint on its production is weedy rice infestations in the fields. There are usually two crops a year and monocropping is the normal practice. The use of uncertified rice seeds of low quality is also common in areas with limited-resource farmers.

In Costa Rica, the rice area is about 40 000 ha, distributed in five regions of the country (Chorotega, Brunca, North Huetar, Central Pacific, and Atlantic). The area infested by weedy rice is about 19 500 ha. The major weedy rice species are Oryza sativa L. and O. latifolia Desv. (known locally as “arrozón”). Their major incidence is in fields where rice is cropped twice each year. The presence of weedy rices can reduce rice yields by up to 65 percent in some areas. In such cases, rice is usually abandoned and replaced by sugar cane or pasture. Many farmers do not pay the necessary attention
to the use of certified rice seeds that are free of weedy rice seeds, and they ignore the importance of depleting the seeds in the soil seed bank.

In Cuba, rice is the major staple food in the country. Most of the rice consumed is imported as the national production provides only 30 percent of the needs. The crop is grown in an area of slightly less than 200 000 ha, and 35 percent of it is severely infested by weedy rices. In some heavily infested areas, rice yield losses reach 89 percent. The problem is aggravated by insufficient supplies of certified rice seed and/or the use of low-quality seeds contaminated with weedy rice seeds.

Weedy rices also affect rice production in Nicaragua. The weeds are present in all rice-producing areas of the country with infestations of more than 80 panicles/m². The main weedy rice species are *Oryza sativa* and *O. latifolia*, with infestations of up to 40 percent in rice fields. Farmers do not use certified seeds and no specific methods are practised to control the weeds. Normally, farmers either apply glyphosate preplanting over the weeds that have emerged or simply rogue the plants.

In Panama, rice is grown on more than 75 000 ha, mainly in the provinces of Chiriquí (54 percent), Cocle (14 percent), Panama (Chepo) (11 percent) and Veraguas (9 percent). Rice yields are not high owing to the use of non-certified seeds with low germination level, and high incidences of weedy rices. In addition to reducing crop yields, the weedy rices increase the consumption of herbicides for their control as well as the costs associated with applications (including fuel). In some cases, heavy infestations of weedy rices increase the costs of rice production to the extent that farmers have to abandon the rice crop.

Venezuela has a rice-producing area of about 140 000 ha. The main rice-producing states are Portuguesa, Guárico, Cojedes and Barinas. In contrast to the other countries, there is a high level of mechanization and irrigation for the production of rice with average rice yields of 3.8 tonnes/ha. Weedy rices are a major constraint on rice production, with about 88 percent of the crop area infested with up to 17–18 plants/m². The main species of weedy rices in Venezuela are *Oryza sativa* L., *O. rufipogon* Griff., and *O. latifolia* Desv. The certified seed category permits up to three seeds of weedy rices per kilogram of rice seeds as well as one plant of weedy rice per hectare in areas for production of certified seeds (Gaceta Oficial-Venezuela, 1986). These tolerances have favoured the proliferation of weed rices, affecting the yields and the quality of harvested rice.

Some of the countries are aware of and concerned about the losses caused by the weedy rices and implement some control methods, while others simply coexist with or ignore the weedy rices and continue with conventional cropping practices.

FAO project on weedy rice in Latin America

Several Latin American countries affected by weedy rices requested technical assistance from FAO in order to reduce infestations. The main objective of the project developed was to strengthen national capabilities on methods for the prevention and control of weedy rices through the implementation of a comprehensive training process for relevant technical bodies and farmers. The project included activities for educating pilot groups of farmers on problems caused by weedy rices and on the best methods for their control. For this purpose, FFSs were implemented, where farmers learned by doing and observing the results of the practices they implement. This participatory approach allowed the farmers to meet every two weeks in order to observe and discuss the results of their activities in the field. Generally, the farmers assessed the number of all weeds, the health and density of rice plants, and other related matters for a plot they shared. Technicians acting as facilitators usually added the explanations of related topics of interest to the farmers.
Chapter 8 – Examples of weedy rice control campaigns

The first things for farmers to learn were the sources of weedy rice infestations and the importance of using certified seeds as well as ways to reduce the weedy rice soil seed bank. In nearly all the countries, farmers collected the weedy rice biotypes and gave names to each of them. In some cases, they studied the germination of seeds of these biotypes. Another activity carried out was the estimation of viable weed seeds in the soil seed bank using the methodology proposed by Forcella, Webster and Cardina (2003). Taking into account their observations and discussions regarding the sources of weedy rice infestations, the farmers designed control procedures to prevent early competition of the weed in the crop. The use of clean rice seeds was adopted as one of the main strategies, together with the preplanting control of weedy rice infestations.

Land preparation in some areas started in dry soils, followed by: fast irrigation to promote weed seed germination, puddling, draining the field to permit the emergence of new weed flushes, application of glyphosate, flooding, and rice seeding into a shallow water layer. In other areas, land preparation started with puddling, draining the field, glyphosate application, flooding and seeding as above. In some areas, control of weed flushes was also done mechanically immediately after draining. Promoting the early emergence and control of weedy rices increased the cost of the production slightly but yields increased by up to 25 percent, and grain quality was much improved. In the case of Nicaragua, farmers used this type of production system in the model plot for seed purposes.

In one area in Venezuela, after harvest of an infested field, crop residues were burned in order to encourage germination of weedy rice seeds remaining at the soil surface. Soil moisture was maintained for a period of 85 days, and weedy rice populations reached the level of 130 plants/m². Land preparation was then started. The field was flooded, drained and left for another 15 days to promote a new weed flush. The same operation was then repeated for another flush of weeds, after which the area was flooded for 8 days and the herbicide oxadiargyl was applied (1.15 litre/ha). Finally, the field was drained and two days later pregerminated rice seeds were planted. Weedy rice plants escaping from these control measures were later controlled by direct application of glyphosate or removed manually.

Several other control strategies were practised or discussed with the farmers. One was the possibility of short crop rotations with “smothering” cover crops, e.g. for 40–45 days, in order to reduce the weedy rice infestation. The leguminous plant *Sesbania rostrata* Brem. is used for this purpose in Cuba. Other cover plants with fast growing habits should also be considered. This practice would also enable the soil to recover part of its fertility.

Roguing and using glyphosate shortly before harvest is another useful method to prevent further weedy rice seed germination in soil. Inflorescences of weedy rice plants that have survived are simply soaked with glyphosate before crop harvesting.

In Venezuela, farmers were very well trained in procedures for cleaning the machinery coming from rice fields infested by weedy rice.

In general, the process of farmer training went well in all cases when working with groups of low-income farmers who expressed the need for such a participatory approach for training on all the problems affecting rice production. The participatory approach also changed the way of thinking of the technicians involved as facilitators. Both parties noted that this approach was much better than traditional technology transfer methods. However, FFS was not a suitable procedure in the case of wealthy farmers with large areas in rice production. However, as they all have technicians working on their farms, training of trainers (TOT), which is the training applicable for
the facilitators, can be implemented for their technical staff combined with some field days for the farmers themselves.

The training and the results of the methods proposed and practised by the farmers in their plots demonstrated the importance of using clean, good-quality rice seeds. In some countries, farmers evaluated the number of weedy rice seeds present in rice seeds marketed as “certified”, and having learned the importance of even one weedy rice seed in the seeds planted, concluded that it is best to demand totally clean seeds and/or even to pay more in order to obtain the quality seeds they need.

Farmers also acknowledged the importance of early weedy rice control. Preplanting, stale seed bed procedures, and eliminating the first weed flushes with glyphosate or mechanically clearly showed that avoiding early competition of weedy rice with the crop increases the yields as well as quality of the produce. Although not always enthusiastic about assessing the soil weed seed bank, farmers became convinced of the need to control those weedy rice plants escaping from the early control operations either with direct application of a chemical over the plant or by removing them manually in order to prevent them from depositing more seeds in the soil seed bank.

NORTH AMERICA

The two case summaries in this section are shorter than the cases presented above. However, these cases from Arkansas and California in the United States of America are significant. Indeed, the California case represents the most successful control programme for red rice anywhere, while the Arkansas case illustrates how innovative a campaign can be when weedy rice begins to have a serious impact on farm income.

California – clean seed and water seeding

California is a long-term producer of rice. The bulk of its production is destined for export to Asian countries, such as Japan, that have strict market standards. There is no record of red rice in California before about 1920, but, in 1932, Bellue (1932) noted that red rice was present in about 28 percent of the seed samples submitted for testing and concluded that it must have been introduced into the state from other states in the 1920s. In 1950, Randall (1950) stated that red rice was the second most important weed in rice after *Echinochloa crus-galli*. However, beginning in the 1960s, red rices have been brought under almost complete control by good extension and industry-backed campaigns based on the production and use of clean seed and the water-seeding system combined with appropriate herbicides.

Arkansas – “Get the red out”

Arkansas is the leading rice producer in the United States of America. Production is commercial scale, technologically advanced and fully mechanized. Red rice has been present in Arkansas rice fields since at least 1908. Long a problem, it became a rather alarming one in the late 1970s when difficulties were encountered in marketing the grain because of too much contamination with red rice. The rice area had expanded so rapidly in the mid-1970s as a result of good prices and the relaxation of controls that the supplies of certified seeds were exhausted and farmers turned to less reliable sources for seeds. The marketing difficulties and heavy discounts drew the attention of the rice producers, millers, the agrochemical industry, the experiment station researchers and extension personnel. Increased emphasis began to be given to the production and use of certified seeds, rotations with other crops, and the use of effective herbicides. This emphasis developed into an imaginative and well-organized campaign by the
extension service and its clients and cooperators under the slogan: “Get the red out”. Meetings were held with farmer-producers and the rice mills. Demonstrations were carried out in all of the 42 rice-producing counties, and colourful posters with cartoon characters carried the message “Get the red out”. The programme and technological developments have brought red rice under control although it remains a problem that requires constant attention.
Chapter 9

Conclusions

Weedy rices (including red rices) have long been important weeds in direct-seeded production areas. However, in the past 25 years or so, they have increased in importance in the long-established direct-seeded areas and have spread worldwide with the adoption of direct-seeding systems in some of the traditional transplant culture areas. Currently, infestations by weedy rices (including red rices) are considered one of the most troublesome, difficult-to-manage and economically damaging weed problems by stakeholders in the rice industry from production through to marketing. Infestations increase labour requirement and production costs while reducing the yield and market quality of the crop.

Botanically, red rices in the Americas, Europe and North Africa are mostly weedy biotypes of *Oryza sativa*. In West Africa and SSA, the weedy rices are *O. barthii*, *O. longistaminata*, *O. punctata*, and weedy biotypes of *O. glaberrima* and *O. sativa*. In Asia, the area where *O. sativa* originated, *O. rufipogon* and other *Oryza* spp. are the sources of the weedy rices. Agronomically, the weedy rices (including red rices) consist of weedy populations of *Oryza sativa* and/or other *Oryza* spp. that are phenotypically and genotypically diverse, changeable, very vigorous and competitive, exceedingly difficult to control, and able to spread rapidly. In most areas, the diversity of the populations and their changeability are the result of introductions from other areas and natural crossing of the weedy biotypes and cultivated varieties. The weedy rices (including red rices) have been and still are spread from infested areas to non-infested areas primarily as contaminants in planting seeds.

Weedy rices (including red rices) are very successful as weeds because they have most of the traits and characteristics that contribute to the success of weeds in general plus some that are unique. The traits they share with other important weeds are: excellent adaptation to most rice cultural systems; a life cycle closely synchronized with rice; abundant production of seeds that are dispersed widely by early and heavy shattering; rapid emergence followed by vigorous growth and reproductive development; and intense and prolonged dormancy (which maintains the viability of the shattered seeds in the soil seed bank during adverse climate conditions). The unique traits that contribute to their success as weeds include: morphological and phenological similarity of the plants and seed to those of the rice crop (which makes them difficult to recognize and separate); and their close genetic relationship to cultivated rice (which precludes the use of most selective herbicides). Among these traits, four are critical to their success: the diversity and changeability of the populations produced by natural crossing of the weed and crop; early and heavy shattering; intense and prolonged seed dormancy; and superior vigour and competitiveness as compared with cultivated varieties.

Natural crossing of weedy rices (including red rices) and cultivated rice provides variability that can be and has been naturally selected to produce ecotypes adapted to changes in cropping systems and varieties. Early and heavy shattering ensures that most of the weedy rice seeds (including red rice seeds) are scattered and dispersed to the surface of the field rather than gathered with the grain for consumption or marketing. Intense and prolonged dormancy maintains the viability of the seeds during the adverse climate conditions that occur between harvest and the next planting season and permits the establishment of a soil seed bank that can be drawn on for several to many years.
The superior vigour and competitiveness of weedy rices (including red rices) ensures that they will produce seeds in the midst of the rice crop. The general and unique traits of the weedy rices (including red rices) make them multidimensioned weeds that produce multidimensioned problems in direct-seeded rice cultural systems.

Satisfactory control of weedy rices (including red rices) requires an approach that fully integrates informed management decisions, control practices and methods. Successful integrated control programmes involve the implementation of combinations of tactics from five long-time, well-tested control strategies and the judicious exploitation of powerful new technology.

Infestations of weedy rices (including red rices) are prevented or kept from spreading through the use of quality seeds that are not contaminated with red rice seeds, i.e. red-rice-free seeds.

Cultural practices such as the stale seed bed and minimum or no-tillage systems are employed to deplete the population of seeds of weedy rices (including red rices) on the soil by bird and rodent predation, stimulation of germination, and mechanical or chemical destruction of the seedlings before sowing the next crop. Where practical and feasible, fallowing for two or more years is an effective way of depleting the deposit of seeds in the soil seed bank.

Flooding and water are managed in ways to take advantage of the suppression of germination and emergence of weedy rices (including red rices) by anoxia in wet and/or flooded soils. The main systems are seeding in a water film maintained until harvest, and the “pinpoint flooding” method of seeding in a water film followed by draining for a few days to establish the seedlings and return of the flood until harvest time. The herbicide molinate is used effectively in the water-seeding systems to suppress and control other weedy grasses as well as the weedy rices (including red rices).

The methods and practices for control of weedy rice plants (including red rice plants) in the rice crop are limited. Hand weeding is the most common method. However, the application of non-selective herbicides directly to tall weedy plants or clumps of weedy plants and the mechanical clipping or crushing of weedy rice panicles that stand above the rice crop are used effectively in some areas.

Rotation of rice with other crops is one of the most effective and economical methods of maintaining satisfactory control of weedy rices (including red rices). The cultural practices used for the alternate crop stimulate the germination of weedy rices (including red rices), which can then be controlled by a variety of selective herbicides. The most effective rotations are one year of rice followed by two or three years of the alternate crop. Alternate crops include soybeans, sorghum, green manure crops, sunflower, and pastures (and cattle).

Herbicide-resistant varieties of rice have been and are being developed. They permit the use of specific non-selective or broad-spectrum herbicides to control weedy rices (including red rices) as well as the other weeds in the rice crop. The biotechnological strategy has been used successfully in soybeans, maize, cotton and other crops for some years now with no technical problems, albeit with considerable controversy. However, the situation with rice is different because the crossing of cultivated varieties and the weedy rices (including red rices) could transfer the herbicide-resistance genes to the weed. The companies and scientists involved in the development of herbicide-resistant varieties are aware of the risks and have established protocols for use of the technology that should minimize if not eliminate them. These protocols involve the adoption of integrated control systems that use many of the time-tested control measures, such as rotation of rice with other crops, rotation of herbicides, and the destruction of escaped weeds by roguing, mechanical and chemical means.
In conclusion, in the last 25 years or so, much information has been developed on the diversity, incidence of outcrossing, phenology, and ecology of weedy rices (including red rices), particularly of the *Oryza sativa* red rices. Biotechnological developments and potentials are providing powerful incentives and resources for finally and fully understanding the ecophysiology of the *O. sativa* red rices and, perhaps, other weedy rices in the shorter rather than the longer term.
References

Do Lago, A.A. 1982. Characterization of red rice (Oryza sativa L.) phenotypes in Mississippi. Mississippi State University, USA. (PhD dissertation)

References

Garcia-Quiroga, E. 1987. Release and induction of dormancy in seeds of red rice (Oryza sativa L.) in the field and laboratory. Mississippi State University, USA, (PhD dissertation)

Helpert, C.H. 1981. Dormancy, germination and emergence of red rice (Oryza sativa). Texas A&M University, USA. (PhD dissertation)

References

Howard-Kandakai, L.G. 1983. Evaluation of some chemicals for overcoming dormancy in red rice. Mississippi State University, USA. (MSc thesis)

Larinde, M.A. 1979. *Seed maturation, development and release of dormancy in red rice*. Mississippi State University, USA. (MSc thesis)

Moore, O.J. 1990. *Evaluation of competitiveness and dormancy releasing treatments in red rices (Oryza sativa L.*)*. Mississippi State University, USA. (MSc thesis)

Pitty, N. 1988. Effects of temperature on germination and dormancy release in cultivated and red rices (Oryza sativa L.). Mississippi State University, USA. (MSc thesis)

Stiers, E.N. 2002. *Determination of competitive characteristics in red rice* (*Oryza sativa L.*). University of Arkansas, USA. (MSc thesis)

Teekachunhatean, T. 1985. Release, induction and significance of dormancy in seeds of red rice (*Oryza sativa L.*). Mississippi State University, USA. (PhD dissertation)

Veras, R.D. 1984. *Separation of red rice and medium grain rice from long grain rice*. Mississippi State University, USA. (MSc thesis)

Wague, K. 1992. *Comparison of seedling vigor and competitiveness in selected red rices and cultivated rices*. Mississippi State University, USA. (MSc thesis)

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horticulture: a select bibliography</td>
<td>1976 (E)</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Cotton specialists and research institutions in selected countries</td>
<td>1976 (E)</td>
<td>26 Sup.</td>
</tr>
<tr>
<td>3</td>
<td>Food legumes: distribution, adaptability and biology of yield</td>
<td>1977 (E F S)</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Soybean production in the tropics</td>
<td>1977 (C E F S)</td>
<td>28</td>
</tr>
<tr>
<td>4 Rev.1</td>
<td>Soybean production in the tropics (first revision)</td>
<td>1982 (E)</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Les systèmes pastoraux sahéliens</td>
<td>1977 (F)</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Pest resistance to pesticides and crop loss assessment</td>
<td>– Vol. 1, 1977 (E F S)</td>
<td>31</td>
</tr>
<tr>
<td>6/2</td>
<td>Pest resistance to pesticides and crop loss assessment</td>
<td>– Vol. 2, 1979 (E F S)</td>
<td>32</td>
</tr>
<tr>
<td>6/3</td>
<td>Pest resistance to pesticides and crop loss assessment</td>
<td>– Vol. 3, 1981 (E F S)</td>
<td>32 Sup. 1</td>
</tr>
<tr>
<td>7</td>
<td>Rodent pest biology and control – Bibliography</td>
<td>1970-74, 1977 (E)</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Tropical pasture seed production</td>
<td>1979 (E F** S**)</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Food legume crops: improvement and production</td>
<td>1977 (E)</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Pesticide residues in food, 1977 – Report</td>
<td>1977 (E F S)</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Pesticide residues in food 1965-78 – Index and summary</td>
<td>1978 (E F S)</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Crop calendars</td>
<td>1978 (E/F/S)</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>The use of FAO specifications for plant protection</td>
<td>1979 (E F S)</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>Guidelines for integrated control of rice insect pests</td>
<td>1979 (Ar C E F S)</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>Pesticide residues in food 1978 – Report</td>
<td>1979 (E F S)</td>
<td>44</td>
</tr>
<tr>
<td>15 Sup.</td>
<td>Pesticide residues in food 1978 – Evaluations,</td>
<td>1979 (E)</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Rodenticides: analyses, specifications, formulations</td>
<td>1979 (E F S)</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>Agrometeorological crop monitoring and forecasting</td>
<td>1979 (C E F S)</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>Guidelines for integrated control of maize pests</td>
<td>1979 (C E)</td>
<td>48</td>
</tr>
<tr>
<td>19</td>
<td>Elements of integrated control of sorghum pests</td>
<td>1979 (E F S)</td>
<td>49</td>
</tr>
<tr>
<td>20</td>
<td>Pesticide residues in food 1979 – Report</td>
<td>1980 (E F S)</td>
<td>50</td>
</tr>
<tr>
<td>20 Sup.</td>
<td>Pesticide residues in food 1979 – Evaluations,</td>
<td>1980 (E)</td>
<td>51</td>
</tr>
<tr>
<td>21</td>
<td>Recommended methods for measurement of pest resistance to pesticides</td>
<td>1980 (E F)</td>
<td>52</td>
</tr>
<tr>
<td>22</td>
<td>China: multiple cropping and related crop production technology</td>
<td>1980 (E)</td>
<td>53</td>
</tr>
<tr>
<td>23</td>
<td>China: development of olive production</td>
<td>1980 (E)</td>
<td>54</td>
</tr>
<tr>
<td>24/1</td>
<td>Improvement and production of maize, sorghum and millet – Vol. 1. General principles</td>
<td>1980 (E F)</td>
<td>55</td>
</tr>
<tr>
<td>24/2</td>
<td>Improvement and production of maize, sorghum and millet – Vol. 2. Breeding, agronomy and seed production</td>
<td>1980 (E F)</td>
<td>56</td>
</tr>
<tr>
<td>25</td>
<td>Prosopis tamarugo: fodder tree for arid zones</td>
<td>1981 (E F S)</td>
<td>57</td>
</tr>
<tr>
<td>27</td>
<td>Small-scale cash crop farming in South Asia</td>
<td>1981 (E)</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>Second expert consultation on environmental criteria for registration of pesticides</td>
<td>1981 (E F S)</td>
<td>60</td>
</tr>
<tr>
<td>29</td>
<td>Sesame: status and improvement</td>
<td>1981 (E)</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>Palm tissue culture</td>
<td>1981 (C E)</td>
<td>62</td>
</tr>
<tr>
<td>31</td>
<td>An eco-climatic classification of intertropical Africa</td>
<td>1981 (E)</td>
<td>63</td>
</tr>
<tr>
<td>32</td>
<td>Weeds in tropical crops: selected abstracts</td>
<td>1981 (E)</td>
<td>64</td>
</tr>
<tr>
<td>32 Sup. 1</td>
<td>Weeds in tropical crops: review of abstracts,</td>
<td>1982 (E)</td>
<td>65</td>
</tr>
<tr>
<td>33</td>
<td>Plant collecting and herbarium development</td>
<td>1981 (E)</td>
<td>66</td>
</tr>
<tr>
<td>34</td>
<td>Improvement of nutritional quality of food crops</td>
<td>1981 (C E)</td>
<td>67</td>
</tr>
<tr>
<td>35</td>
<td>Date production and protection</td>
<td>1982 (Ar E)</td>
<td>68</td>
</tr>
<tr>
<td>36</td>
<td>El cultivo y la utilización del tarwi – Lupinus mutabilis Sweet</td>
<td>1982 (S)</td>
<td>69</td>
</tr>
<tr>
<td>37</td>
<td>Pesticide residues in food 1981 – Report</td>
<td>1982 (E F S)</td>
<td>70</td>
</tr>
<tr>
<td>38</td>
<td>Winged bean production in the tropics</td>
<td>1982 (E F/S)</td>
<td>71</td>
</tr>
<tr>
<td>39</td>
<td>Rodent control in agriculture</td>
<td>1982 (Ar C E F S)</td>
<td>72</td>
</tr>
<tr>
<td>40</td>
<td>Rice development and rainfed rice production</td>
<td>1982 (E)</td>
<td>73</td>
</tr>
<tr>
<td>41</td>
<td>Pesticide residues in food 1981 – Evaluations</td>
<td>1982 (E)</td>
<td>74</td>
</tr>
<tr>
<td>42</td>
<td>Manual on mushroom cultivation</td>
<td>1983 (E F)</td>
<td>75</td>
</tr>
<tr>
<td>43</td>
<td>Improving weed management</td>
<td>1984 (E F S)</td>
<td>76</td>
</tr>
<tr>
<td>44</td>
<td>Pocket computers in agrometeorology</td>
<td>1983 (E)</td>
<td>77</td>
</tr>
<tr>
<td>45</td>
<td>Pesticide residues in food 1982 – Report</td>
<td>1983 (E F S)</td>
<td>78</td>
</tr>
<tr>
<td>46</td>
<td>The sago palm</td>
<td>1983 (E F)</td>
<td>79</td>
</tr>
<tr>
<td>47</td>
<td>Guidelines for integrated control of cotton pests</td>
<td>1983 (Ar E F S)</td>
<td>80</td>
</tr>
<tr>
<td>48</td>
<td>Pesticide residues in food 1982 – Evaluations</td>
<td>1983 (E)</td>
<td>81</td>
</tr>
<tr>
<td>49</td>
<td>International plant quarantine treatment manual</td>
<td>1983 (C E)</td>
<td>82</td>
</tr>
<tr>
<td>50</td>
<td>Handbook on jute</td>
<td>1983 (E)</td>
<td>83</td>
</tr>
<tr>
<td>51</td>
<td>The palmryah palm: potential and perspectives</td>
<td>1983 (E)</td>
<td>84</td>
</tr>
<tr>
<td>52</td>
<td>Selected medicinal plants</td>
<td>1983 (E)</td>
<td>85</td>
</tr>
<tr>
<td>53/1</td>
<td>Manual of fumigation for insect control</td>
<td>1984 (C E F S)</td>
<td>86</td>
</tr>
<tr>
<td>54</td>
<td>Breeding for durable disease and pest resistance</td>
<td>1984 (C E)</td>
<td>87</td>
</tr>
<tr>
<td>55</td>
<td>Pesticide residues in food 1983 – Report</td>
<td>1984 (E F S)</td>
<td>88</td>
</tr>
<tr>
<td>56</td>
<td>Coconut, tree of life</td>
<td>1984 (E S)</td>
<td>89</td>
</tr>
<tr>
<td>57</td>
<td>Economic guidelines for crop pest control</td>
<td>1984 (E F S)</td>
<td>90</td>
</tr>
<tr>
<td>58</td>
<td>Micropropagation of selected rootcrops, palms, citrus and ornamental species</td>
<td>1984 (E)</td>
<td>91</td>
</tr>
<tr>
<td>59</td>
<td>Minimum requirements for receiving and maintaining tissue culture propagating material</td>
<td>1985 (E F S)</td>
<td>92</td>
</tr>
<tr>
<td>60</td>
<td>Pesticide residues in food 1983 – Evaluations</td>
<td>1985 (E)</td>
<td>93</td>
</tr>
</tbody>
</table>
62 Pesticide residues in food 1984 – Report, 1985 (E F S) 93/1
63 Manual of pest control for food security reserve grain stocks, 1985 (C E) 93/2
64 Contribution à l'écologie des aphides africains, 1985 (F) 94
65 Amélioration de la culture irriguée du riz des petits fermiers, 1985 (F) 95
66 Sesame and safflower: status and potentials, 1985 (E) 96
67 Pesticide residues in food 1984 – Evaluations, 1985 (E) 97/1
68 Pesticide residues in food 1985 – Report, 1986 (E F S) 97/2
69 Breeding for horizontal resistance to wheat diseases, 1986 (E) 98
70 Breeding for durable resistance in perennial crops, 1986 (E) 99
71 Technical guideline on seed potato micropropagation and multiplication, 1986 (E) 100
72/1 Pesticide residues in food 1985 – Evaluations – Part I: Residues, 1986 (E) 100/2
72/2 Pesticide residues in food 1985 – Evaluations – Part II: Toxicology, 1986 (E) 101
73 Early agrometeorological crop yield assessment, 1986 (E F S) 102
74 Ecology and control of perennial weeds in Latin America, 1986 (E S) 103/1
75 Technical guidelines for field variety trials, 1993 (E F S) 104
76 Guidelines for seed exchange and plant introduction in tropical crops, 1986 (E) 105
77 Pesticide residues in food 1986 – Report, 1986 (E F S) 106
78 Pesticide residues in food 1986 – Evaluations – Part I: Residues, 1986 (E) 107
78/2 Pesticide residues in food 1986 – Evaluations – Part II: Toxicology, 1987 (E) 108
79 Tissue culture of selected tropical fruit plants, 1987 (E) 109
80 Improved weed management in the Near East, 1987 (E) 110
81 Weed science and weed control in Southeast Asia, 1987 (E) 111
82 Hybrid seed production of selected cereal, oil and vegetable crops, 1987 (E) 112
83 Litchi cultivation, 1989 (E S) 113
84 Pesticide residues in food 1987 – Report, 1987 (E F S) 114
85 Manual on the development and use of FAO specifications for plant protection products, 1987 (E ** F S) 115
86/1 Pesticide residues in food 1987 – Evaluations – Part I: Residues, 1988 (E) 116
86/2 Pesticide residues in food 1987 – Evaluations – Part II: Toxicology, 1988 (E) 117
87 Root and tuber crops, plantains and bananas in developing countries – challenges and opportunities, 1988 (E) 118
88 Jessenia and Noecarpus: neotropical oil palms worthy of domestication, 1988 (E S) 119
89 Vegetable production under arid and semi-arid conditions in tropical Africa, 1988 (E F) 120
90 Protected cultivation in the Mediterranean climate, 1990 (E F S) 121
91 Pastures and cattle under coconuts, 1988 (E S) 122
92 Pesticide residues in food 1988 – Report, 1988 (E F S) 123
94 Pesticide residues in food 1988 – Evaluations – Part II: Toxicology, 1989 (E) 125
95 Utilization of genetic resources: suitable approaches, agronomical evaluation and use, 1989 (E) 126
96 Rodent pests and their control in the Near East, 1989 (E) 127
97 Striga – Improved management in Africa, 1989 (E) 128
98 Fodders for the Near East: alfalfa, 1989 (Ar E) 129
99 Fodders for the Near East: annual medic pastures, 1989 (Ar E F) 130
100 An annotated bibliography on rodent research in Latin America 1960-1985, 1989 (E) 131
102 Pesticide residues in food 1989 – Evaluations – Part I: Residues, 1990 (E) 133
103 Pesticide residues in food 1989 – Evaluations – Part II: Toxicology, 1990 (E) 134
104 Soilless culture for horticultural crop production, 1990 (E) 135
105 Pesticide residues in food 1990 – Report, 1990 (E F S) 136
106 Pesticide residues in food 1990 – Evaluations – Part I: Residues, 1990 (E) 137
107 Major weeds of the Near East, 1991 (E) 138
108 Fundamentos teórico-prácticos del cultivo de tejidos vegetales, 1990 (S) 139
109 Technical guidelines for mushroom growing in the tropics, 1990 (E) 140
110 Gynandropsis gynandra (L.) Briq. – a tropical leafy vegetable – its cultivation and utilization, 1991 (E) 141
111 Carambola cultivation, 1993 (E S) 142
112 Soil solarization, 1991 (E) 143
113 Potato production and consumption in developing countries, 1991 (E) 144
115 Cocoa pest and disease management in Southeast Asia and Australasia, 1992 (E) 146
117 Integrated pest management for protected vegetable cultivation in the Near East, 1992 (E) 148
118 Olive pests and their control in the Near East, 1992 (E) 149
120 Quality declared seed, 1993 (E F S) 151
121 Pesticide residues in food 1992 – Evaluations – Part I: Residues, 1993 (E) 152
122 Quarantine for seed, 1993 (E) 153
123 Weed management for developing countries, 1993 (E S) 154
124 Weed management for developing countries, Addendum 1, 2004 (E F S) 155
125 Rambutan cultivation, 1993 (E) 156
126 Pesticide residues in food 1993 – Report, 1993 (E F S) 157
127 Rodent pest management in eastern Africa, 1994 (E) 158
128 Pesticide residues in food 1993 – Evaluations – Part I: Residues, 1994 (E) 159
129 Plant quarantine: theory and practice, 1994 (Ar) 160
130 Tropical root and tuber crops – Production, perspectives and future prospects, 1994 (E) 161
131 Pesticide residues in food 1994 – Report, 1994 (E) 162
129 Mangosteen cultivation, 1995 (E)
130 Post-harvest deterioration of cassava – A biotechnology perspective, 1995 (E)
131/1 Pesticide residues in food 1994 – Evaluations – Part I: Residues, Volume 1, 1995 (E)
132 Agro-ecology, cultivation and uses of cactus pear, 1995 (E)
133 Pesticide residues in food 1995 – Report, 1996 (E)
134 (Number not assigned)
135 Citrus pest problems and their control in the Near East, 1996 (E)
136 El pepino dulce y su cultivo, 1996 (S)
138 Sunn pests and their control in the Near East, 1996 (E)
139 Weed management in rice, 1996 (E)
140 Pesticide residues in food 1996 – Report, 1997 (E)
141 Cotton pests and their control in the Near East, 1997 (E)
142 Pesticide residues in food 1996 – Evaluations – Part I Residues, 1997 (E)
143 Management of the whitefly-virus complex, 1997 (E)
144 Plant nematode problems and their control in the Near East region, 1997 (E)
147 Soil solarization and integrated management of soilborne pests, 1998 (E)
149 Manual on the development and use of FAO specifications for plant protection products – Fifth edition, including the new procedure, 1999 (E)
150 Restoring farmers’ seed systems in disaster situations, 1999 (E)
151 Seed policy and programmes for sub-Saharan Africa, 1999 (E F)
152/1 Pesticide residues in food 1998 – Evaluations – Part I: Residues, Volume 1, 1999 (E)
153 Pesticide residues in food 1999 – Report, 1999 (E)
154 Greenhouses and shelter structures for tropical regions, 1999 (E)
155 Vegetable seedling production manual, 1999 (E)
156 Date palm cultivation, 1999 (E)
156 Rev.1 Date palm cultivation, 2002 (E)
157 Pesticide residues in food 1999 – Evaluations – Part I: Residues, 2000 (E)
158 Ornamental plant propagation in the tropics, 2000 (E)
159 Seed policy and programmes in the Near East and North Africa, 2000
160 Seed policy and programmes for Asia and the Pacific, 2000 (E)
161 Silage making in the tropics with particular emphasis on smallholders, 2000 (E S)

Grassland resource assessment for pastoral systems, 2001 (E)
Pesticide residues in food 2000 – Report, 2001 (E)
Seed policy and programmes in Latin America and the Caribbean, 2001 (E S)
Pesticide residues in food 2000 – Evaluations – Part I, 2001 (E)
Global report on validated alternatives to the use of methyl bromide for soil fumigation, 2001 (E)
Pesticide residues in food 2001 – Report, 2001 (E)
Seed policy and programmes for the Central and Eastern European countries, Commonwealth of Independent States and other countries in transition, 2001 (E)
Cactus (Opuntia spp.) as forage, 2003 (E S)
Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed, 2002 (E)
Pesticide residues in food 2001 – Evaluations – Part I, 2002 (E)
Pesticide residues in food, 2002 – Report, 2002 (E)
Manual on development and use of FAO and WHO specifications for pesticides, 2002 (E S)
Genotype x environment interaction – Challenges and opportunities for plant breeding and cultivar recommendations, 2002 (E)
Pesticide residues in food 2003 – Report, 2004 (E)
Pesticide residues in food 2003 – Evaluations – Part I: Residues, 2004 (E)
Pesticide residues in food 2004 – Report, 2004 (E)
Triticale improvement and production, 2004 (E)
Seed multiplication by resource-limited farmers - Proceedings of the Latin American workshop, 2004 (E)
Towards effective and sustainable seed-relief activities, 2004 (E)
Pesticide residues in food 2004 – Evaluations – Part I: Residues, Volume 1 (E)
Pesticide residues in food 2004 – Evaluations – Part I: Residues, Volume 2 (E)
Pesticide residues in food 2005 – Report, 2005 (E)
Quality declared seed system, 2006 (E S)
Calendario de cultivos – América Latina y el Caribe, 2006 (S)
Pesticide residues in food 2006 – Report, 2006 (E)
Weedy rices – origin, biology, ecology and control, 2006 (E)
Availability: February 2007

Ar – Arabic Multil – Multilingual
C – Chinese * Out of print
E – English ** In preparation
F – French
P – Portuguese
S – Spanish

The FAO Technical Papers are available through the authorized FAO Sales Agents or directly from Sales and Marketing Group, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.
This publication presents a compilation of information from literature reviews on the body of knowledge available from ongoing unpublished research, research reports and symposia carried out on various aspects of the importance, ecology, biology and control of weedy rices. It also highlights global economic and environmental problems created by weedy rices. This document is a result of FAO partnership arrangements with institutions of excellence to generate information that will be for general public use. In an attempt to fulfill the goal of food security, since this publication will interest a wide range of stakeholders – policy-makers, scientists, technicians and producers – including those interested in rice crop research, production, rice milling for commerce, quarantine regulations and seed trade, an attempt has been made to define weedy, wild and red rices so as to engender a common understanding of various aspects of these weeds. The information provided will contribute to the better knowledge of weedy rices throughout the world.