

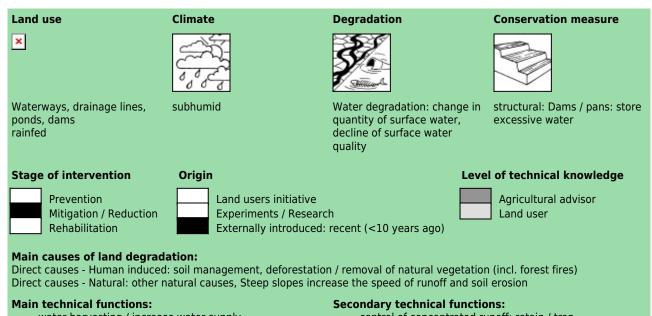
Rubagano rooftop rainwater harvesting system (with concrete/brick tank) Uganda - Okwombeka tanka z'amaizi ahamaju (Runyankore)

Rain-water from all corrugated iron roof structures in one compound is harvested and stored in underground tanks.

Despite high precipitation (>1200 mm), Rubagano still experiences water shortage. It is hilly, with steep (>30%) to very steep (>58%) slopes. Rain water runs off to the valleys below, causing erosion and damaging infrastructure such as roads along its course. There is little rain water infiltration and the ground water level low. The few boreholes that government constructed in the area are often dry. Therefore women and children normally walk distances of up to 4 km to fetch water which, in many cases, is actually runoff dammed behind a concrete wall built across an open rock patch. To alleviate water scarcity, farmers have been mobilized by Kagera TAMP project to harvest the rain water from their own roofs. Because water sources are far from most households, rooftop water harvesting has a very high utility for the farmers. Adoption is high. The primary goal of the technology is to increase household water availability. It also reduces runoff, produces water for the tree nursery and backyard gardens.. Requirements for harvesting water on an iron roof are water collection gutters and an underground tank. Rain falling on the roof flows into collection gutters constructed around the roof which angle gently away from the house and end at one or more underground tanks. Excavation and construction of the storage tank is costly and requires well qualified artisans. These are trained locally and are available within the community to minimize costs. The underground tank is constructed by excavating the ground between 3.0 m and 3.5 m deep and 2.0 m to 2.5 m diameter. Thus, a small tank will have a capacity of 38,000 litres (38 cubic metres). The bottom and walls of the pit is then built up throughout with brick and mortar. The top is a concrete slab with 2 openings of 0.3 m diameter, one connected to the gutters and the other through which a plastic container is lowered to fetch water. Though establishment costs appear high for farmers, the longer term benefits outweigh the original cost. Once established the maintenance costs are limited to periodic cleaning. Heavy rainstorms may blow the gutters out of position.

left: The water harvesting system with 3 components: the corrugated iron roof, the gutters and the storage tank (Photo: Charles L Malingu) **right:** Th storage tank capacity determines how long, during a dry spell, the farm household will stay water secure. A typical tank is 3m to 4m deep and 2.5m to 3.0m in diameter (Photo: Charles L Mlingu)

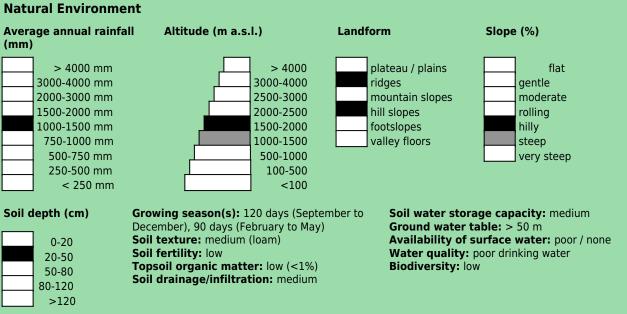
Location: Uganda Region: Mbarara District (Rubagano, Mwizi) Technology area: 0.001 km² Conservation measure: structural Stage of intervention: mitigation / reduction of land degradation Origin: Developed externally / introduced through project, recent (<10 years ago) Land use type: Other: Waterways, drainage lines, ponds, dams Climate: subhumid, tropics WOCAT database reference: T UGA027en Related approach: Community water security () Compiled by: Wilson Bamwerinde. Kabare district Uganda Date: 2013-12-05 Contact person: Wilson Bamwerinde, National Project Manager, K-TAMP project, Uganda (Kabale) Tel: +256 772541335 E-mail: Wilson.bamwerinde@fao.org



Classification

Land use problems:

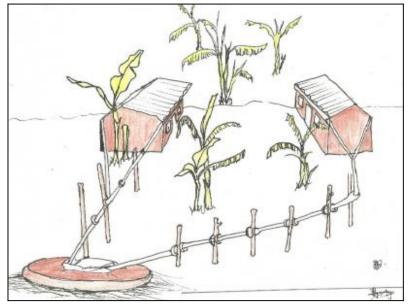
- Loss of vegetation, soil erosion and very low ground water level. Difficulty in finding access to water for domestic use, livestock and crop irrigation. (expert's point of view)


Women and children walk very long distances in search of water from permanent natural wells. (land user's point of view)

- water harvesting / increase water supply
- control of concentrated runoff: retain / trap
- control of concentrated runoff: drain / divert

- water spreading

Environment


Tolerant of climatic extremes: temperature increase, seasonal rainfall increase, heavy rainfall events (intensities and amount), wind storms / dust storms, floods, decreasing length of growing period Sensitive to climatic extremes: seasonal rainfall decrease, droughts / dry spells

Human Environment

		Land user: Individual / household, Small scale land users, common / average land users, men and women Population density: 50-100 persons/km2 Annual population growth: 2% - 3% Land ownership: individual, not titled Land use rights: individual Water use rights: open access (unorganised) Relative level of wealth: average, which represents 80% of the land users; 65% of the total area is owned by average land users	Importance of off-farm income: less than 10% of all income: Similar statistics for all types of land users as far as off-farm income is concerned Access to service and infrastructure: low: technical assistance, employment (eg off-farm), drinking water and sanitation, financial services; moderate: health, education, energy, roads & transport; high: market Types of other land:
--	--	---	--

Technical drawing

Details of rainwater harvesting system: roof catchment, gutters and underground storage tank (Byonabye Proscovia)

Implementation activities, inputs and costs

Establishment activities

- Tank construction

- Procurement and raising of collection gutters
- Wooden poles

Inputs	Costs (US\$)	% met by land user
Labour	500.00	100%
Equipment		
- tools	30.00	100%
Construction material		
- wood	16.00	100%
- Bricks	400.00	100%
- Cement	420.00	100%
- Sand	160.00	100%
TOTAL	1526.00	100.00%

Establishment inputs and costs per ha

Maintenance/recurrent activities

Maintenance/recurrent inputs and costs per ha per year

- Tank maintenance (above ground) - Gutter replacement - Wooden poles	Inputs	Costs (US\$)	% met by land user
	Labour	80.00	100%
	Equipment		
	- tools	10.00	100%
	Construction material		
	- wood	4.00	100%
	- Bricks	40.00	100%
	- Cement	42.00	100%
	- Sand	40.00	100%
	TOTAL	216.00	100.00%

Remarks:

Skilled labor for the construction of the underground tank The calculations were done for a 38.0 cubic meter tank constructed in September 2013

Assessment

Impacts of the Technology			
Production and socio-economic benefits	Production and socio-economic disadvantages		
+++ increased drinking water availability			
+++ increased water availability / quality			
+++ increased farm income			
+++ decreased workload			
++ increased crop yield			
++ increased wood production			
++ increased irrigation water availability quality			
++ reduced expenses on agricultural inputs			
Socio-cultural benefits	Socio-cultural disadvantages		
++ conflict mitigation			
++ improved situation of disadvantaged groups			
++ improved food security / self sufficiency			
++ improved health			
Ecological benefits	Ecological disadvantages		
+++ increased water quantity			
++ increased water quality			
++ improved harvesting / collection of water			
++ reduced evaporation			
++ reduced surface runoff			
+ increased soil moisture			
+ increased plant diversity			
Off-site benefits	Off-site disadvantages		
++ reduced damage on public / private infrastructure			
+ increased water availability			
+ reduced downstream flooding			
Contribution to human well-being / livelihoods			
+++ Women and children no longer have to walk long d	istances in search of water.		
Benefits /costs according to land user			

Benefits compared with costs	short-term:	long-term:
Establishment	negative	very positive
Maintenance / recurrent	neutral / balanced	very positive
The technology may appear expensive to the farmer at the time of	establishment but it is cost	-effective in the long-term.

Acceptance / adoption:

20% of land user families (5 families; 20% of area) have implemented the technology with external material support. 80% of land user families (20 families; 80% of area) have implemented the technology voluntary. There is moderate trend towards (growing) spontaneous adoption of the technology. Regardless of the high costs involved, improved water security has encouraged farmers to adapt the technology.

Concluding statements

Strengths and \rightarrow how to sustain/improve	Weaknesses and \rightarrow how to overcome
Makes water for drinking and domestic use more readily available to the household → Encourage adoption and maintenance through farmer-to-farmer information	Technology is expensive to establish → Support government and private sector to subsidize tanking systems for farmers
Saves women and children from walking long distances in search of clean water → Empower women and children to demand and obtain rooftop water harvesting at home	Requires technical expertise especially in concrete preparation to prevent cracks and leakages \rightarrow Ensure farmers who express the need to adapt get access to construction technicians
Rooftop harvested water is cleaner than trapped runoff used by many members of the community \rightarrow Help households to acquire materials for rooftop water harvesting	

Copyright (c) WOCAT (2014)