Environmental performance of large ruminant supply chains
Guidelines for assessment
Environmental performance of large ruminant supply chains

Guidelines for assessment
Table of Contents

ACRONYMS AND GLOSSARY .. vi

1 INTENDED USERS AND OBJECTIVES ... 29

2 SCOPE ... 29
 2.1 Environmental impact categories addressed in the guidelines ... 29
 2.2 Application.. 30

3 STRUCTURE AND CONVENTIONS .. 31
 3.1 Structure .. 31
 3.2 Presentational conventions .. 33

4 ESSENTIAL BACKGROUND INFORMATION AND PRINCIPLES .. 33
 4.1 A brief introduction to LCA .. 33
 4.2 Environmental impact categories ... 34
 4.3 Normative references ... 36
 4.4 Non-normative references ... 36
 4.5 Guiding principles ... 38

5 LEAP AND THE PREPARATION PROCESS ... 40
 5.1 Development of sector-specific guidelines ... 41
 5.2 Large ruminants TAG and the preparation process ... 42
 5.3 Period of validity .. 43

6 The Large Ruminants Production Systems .. 43
 6.1 Background .. 43
 6.2 Diversity of large ruminant production systems .. 44
 6.3 Diversity of large ruminant value chain ... 50
 6.4 Multi-functionality of large ruminant supply chain ... 53
 6.5 Overview of global emissions from large ruminants .. 54

7 METHODOLOGY FOR QUANTIFICATION OF THE ENVIRONMENTAL FOOTPRINT OF DAIRY, BEEF AND BUFFALO SUPPLY CHAINS .. 57
 7.1 Description of products ... 57
ACRONYMS AND GLOSSARY

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEZ</td>
<td>Agro-Ecological Zones</td>
</tr>
<tr>
<td>CF</td>
<td>Characterization Factor</td>
</tr>
<tr>
<td>CFP</td>
<td>Carbon footprint of a product</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined heat and power</td>
</tr>
<tr>
<td>CO2e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>dLUC</td>
<td>direct Land Use Change</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>IDF</td>
<td>International Dairy Federation</td>
</tr>
<tr>
<td>ILCD</td>
<td>International Reference Life Cycle Data System</td>
</tr>
<tr>
<td>iLUC</td>
<td>Indirect Land Use Change</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LCI</td>
<td>Life Cycle Inventory</td>
</tr>
<tr>
<td>LCIA</td>
<td>Life Cycle Impact Assessment</td>
</tr>
<tr>
<td>LEAP</td>
<td>Livestock Environmental Assessment and Performance Partnership</td>
</tr>
<tr>
<td>LUC</td>
<td>Land Use Change</td>
</tr>
<tr>
<td>LULUC</td>
<td>Land Use and Land Use Change</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolizable Energy</td>
</tr>
<tr>
<td>NGGI</td>
<td>National Greenhouse Gas Inventory</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>PAS</td>
<td>Publicly Available Specification</td>
</tr>
<tr>
<td>PCR</td>
<td>Product Category Rules</td>
</tr>
<tr>
<td>PEF</td>
<td>Product Environmental Footprint</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Functions</td>
</tr>
<tr>
<td>SAFA</td>
<td>Sustainable Assessment of Agriculture and Food systems</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>SETAC</td>
<td>Society for Environmental Toxicology and Chemistry</td>
</tr>
<tr>
<td>SOM</td>
<td>Soil Organic Matter</td>
</tr>
<tr>
<td>TAG</td>
<td>Technical Advisory Group</td>
</tr>
<tr>
<td>TS</td>
<td>Technical Specification</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resource Institute</td>
</tr>
<tr>
<td>VS</td>
<td>Volatile solids</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wide Fund for Nature</td>
</tr>
<tr>
<td>Terms relating to feed and food supply chains</td>
<td></td>
</tr>
<tr>
<td>Annual forage</td>
<td>Forage established annually, usually with annual plants, and generally involves soil disturbance, removal of existing vegetation, and other cultivation practices.</td>
</tr>
<tr>
<td>Animal by-product</td>
<td>Livestock production output classified in EU in three categories mostly due to the risk associated to the bovine spongiform encephalopathy.</td>
</tr>
<tr>
<td>Cold chain</td>
<td>Refers to a system for distributing products in which the goods are constantly maintained at low temperatures (e.g. cold or frozen storage and transport), as they move from producer to consumer.</td>
</tr>
<tr>
<td>Combined heat and power (CHP)</td>
<td>Simultaneous generation in one process of useable thermal energy together with electrical and/or mechanical energy.</td>
</tr>
<tr>
<td>Compound feed/concentrate</td>
<td>Mixtures of feed materials which may contain additives for use as animal feed in the form of complete or complementary feedstuffs.</td>
</tr>
<tr>
<td>Cropping</td>
<td>Land on which the vegetation is dominated by large-scale production of crops for sale (e.g. maize, wheat, and soybean production).</td>
</tr>
<tr>
<td>Crop product</td>
<td>Product from a plant, fungus or algae cultivation system that can either be used directly as feed or as raw material in food or feed processing.</td>
</tr>
<tr>
<td>Crop residues</td>
<td>Materials left in an agricultural field after the crop has been harvested.</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>Growing of crops in a seasonal sequence to prevent diseases, maintain soil conditions and optimize yields.</td>
</tr>
<tr>
<td>Cultivation</td>
<td>Activities related to the propagation, growing and harvesting of plants.</td>
</tr>
</tbody>
</table>
including activities to create favourable conditions for their growing.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail packaging</td>
<td>Containers and packaging that reach consumers.</td>
</tr>
<tr>
<td>Feed (feedingstuff)</td>
<td>Any single or multiple materials, whether processed, semi-processed or raw, which is intended to be fed directly to food producing animals. (FAO/WHO, Codex Alimentarius CAC/RC 54-2004, amended in 2008).</td>
</tr>
<tr>
<td>Feed additive</td>
<td>Any intentionally added ingredient not normally consumed as feed by itself, whether or not it has nutritional value, which affects the characteristics of feed or animal products. Note: Micro-organisms, enzymes, acidity regulators, trace elements, vitamins and other products fall within the scope of this definition depending on the purpose of use and method of administration. (FAO/WHO, Codex Alimentarius CAC/RC 54-2004, amended in 2008).</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>Measure of the efficiency with which an animal converts feed into tissue, usually expressed in terms of kg of feed per kg of output (e.g. live weight or protein).</td>
</tr>
<tr>
<td>Feed digestibility</td>
<td>Determines the relative amount of ingested feed that is actually absorbed by an animal and therefore the availability of feed energy or nutrients for growth, reproduction, etc.</td>
</tr>
<tr>
<td>Feed ingredient</td>
<td>A component part or constituent of any combination or mixture making up a feed, whether or not it has a nutritional value in the animal’s diet, including feed additives. Ingredients are of plant, animal or aquatic origin, or other organic or inorganic substances. (FAO/WHO, Codex Alimentarius CAC/RC 54-2004, amended in 2008)</td>
</tr>
<tr>
<td>Fodder</td>
<td>Harvested forage fed intact to livestock, which can include fresh and dried forage.</td>
</tr>
<tr>
<td>Forage crop</td>
<td>Crops, annual or biennial, grown to be used for grazing or harvested as a whole crop for feed.</td>
</tr>
<tr>
<td>Conserved forage</td>
<td>Conserved forage saved for future use. Forage can be conserved in situ (e.g. stockpiling) or harvested, preserved and stored (e.g. hay, silage, or haylage).</td>
</tr>
<tr>
<td>Natural or cross ventilation</td>
<td>Limited use of fans for cooling; frequently a building’s sides can be opened to allow air circulation.</td>
</tr>
<tr>
<td>Natural pasture</td>
<td>Natural ecosystem dominated by indigenous or naturally occurring grasses and other herbaceous species used mainly for grazing by livestock and wildlife.</td>
</tr>
<tr>
<td>Packing</td>
<td>Process of packing products in the production or distribution stages.</td>
</tr>
<tr>
<td>Primary packaging materials</td>
<td>Packaging in direct contact with the product. See also Retail packaging</td>
</tr>
</tbody>
</table>
| Repackaging facility | A facility where products are repackaged into smaller units without
additional processing in preparation for retail sale.

Raw material
Primary or secondary material used to produce a product.

Secondary packaging materials
Additional packaging, not contacting the product, which may be used to contain relatively large volumes of primary packaged products or transport the product safely to its retail or consumer destination.

Silage
Forage harvested and preserved (at high moisture contents generally >500 g kg⁻¹) by organic acids produced during partial anaerobic fermentation.

Volatile solids
Volatile solids (VS) are the organic material in livestock manure and consist of both biodegradable and non-biodegradable fractions. VS is measured as the fraction of sludge combusted at 550 °C after 2 hours.

Terms relating to large ruminant supply chains

Beef
Beef is the culinary name for meat from bovines, especially domestic cattle, although beef also refers to the meat from the other bovines: antelope, African buffalo, water buffalo and yak.

Bobby calves
Calves taken away from the mother within a few hours of birth.

Boner
An animal yielding low-quality meat

Bovine
Animals belonging to the family **Bovidae** with compound stomach divided into four parts; pertains to cattle and buffalo.

Browse
A general term applied to shrubs or trees that are fed on by cattle by picking mouthfuls as they move.

Buffalo
Popularly known as water buffalo or domestic Asian water buffalo (**Bubalus bubalis**) is a large **Bovidae** that originated from India and found on the Indian subcontinent to Vietnam and Peninsular Malaysia, in Sri Lanka, in the Philippines, and in Borneo, used as draught animals and also suitable for milk production. Also known as carabao. In addition, buffalo are also found in North America are known as American bison (**Bison bison**).

Buffalo, Riverine
A type of buffalo (Chromosome number 2n=50) characterized by its high genetic capacity for milk production and is therefore considered under the dairy category. e.g. **Murrah, Jaffarabadi** buffaloes from India, Italy and Bulgaria, as well as the Nili Ravi from Pakistan.

Buffalo, Swamp
A type of buffalo (Chromosome number 2n=48) that has natural preference for swamps and marshlands. It is primarily utilized for farm work and also for meat. e.g. The Philippine carabaos and the Cambodian and Thai buffaloes.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull</td>
<td>An intact (not castrated) adult male of the species Bos taurus (cattle).</td>
</tr>
<tr>
<td>Calf</td>
<td>Offspring of cattle or buffalo of either sex below the age of one year is called calf.</td>
</tr>
<tr>
<td>Calving</td>
<td>Act of giving birth/parturition in cattle and buffalo.</td>
</tr>
<tr>
<td>Calving interval</td>
<td>Period between two successive calving, measured in calendar days or months.</td>
</tr>
<tr>
<td>Canned meat</td>
<td>Fresh or prepared meat packed in sealed containers with or without subsequent heating for the purpose of sterilization.</td>
</tr>
<tr>
<td>Canning</td>
<td>Preservation of meat in hermetically sealed containers.</td>
</tr>
<tr>
<td>Carabull</td>
<td>Sexually mature un-castrated male buffalo kept for breeding.</td>
</tr>
<tr>
<td>Caracalf</td>
<td>Male or female buffalo under one year of age.</td>
</tr>
<tr>
<td>Caracalving</td>
<td>The act of giving birth in buffalo.</td>
</tr>
<tr>
<td>Caracow</td>
<td>Sexually mature female buffalo that has given birth.</td>
</tr>
<tr>
<td>Carahoeifer</td>
<td>Sexually mature female buffalo that has not yet given birth.</td>
</tr>
<tr>
<td>Carcass</td>
<td>The fresh meat of any slaughtered animal after the bleeding and dressing with the removal of offal in the body.</td>
</tr>
<tr>
<td>Conception</td>
<td>Successful union of male and female gametes and implantation of zygote is known as conception.</td>
</tr>
<tr>
<td>Cow</td>
<td>The mature female of a bovine animal.</td>
</tr>
<tr>
<td>Cull</td>
<td>To reduce or replace a proportion of the herd by selling or killing that portion of its members.</td>
</tr>
<tr>
<td>Cull cow</td>
<td>Cows removed from a dairy or beef herd based on specific criteria.</td>
</tr>
<tr>
<td>Culling rate</td>
<td>The number of culls over the total number in the herd or flock multiplied by 100.</td>
</tr>
<tr>
<td>Culling/ Culled</td>
<td>Undesirable animals eliminated from the herd or flock, usually unproductive breeders.</td>
</tr>
<tr>
<td>Dairy animals</td>
<td>Animals producing milk such as cattle and buffalo for human consumption which may also include dual purpose animals.</td>
</tr>
<tr>
<td>Dairy beef</td>
<td>Beef steers; includes all cows, heifers, culls and calves including veal calves.</td>
</tr>
<tr>
<td>Dairy farm</td>
<td>Where dairy animals raised mainly for milk production.</td>
</tr>
<tr>
<td>Direct energy</td>
<td>Energy used on farms for livestock production activities (e.g. lighting, heating).</td>
</tr>
<tr>
<td>Draught animals</td>
<td>Animals raised for work purposes such as ploughing, harrowing, hauling, etc.</td>
</tr>
<tr>
<td>Dressed weight</td>
<td>Total weight of carcass excluding hide or skin, blood, edible and inedible offal and slaughter fat other than</td>
</tr>
</tbody>
</table>
Kidney fat.

Dressing percentage
A ratio of dressed carcass weight of animals to its live weight.

Dressing
Progressive separation on the dressing floor of food animal into a carcass (sides of a carcass), offal and inedible by products. It may include the removal of the head, hide or skin, genital organs, urinary bladder, feet and, in lactating animals the removal of the udder.

Edible offal
In relation to slaughtered food animals, offal that has been passed as fit for human consumption.

Fattening
Deposition of unused energy in the form of fat within the body tissues. Raising of animals to gain the desired weight in marketable age at specific period of time.

Feedlot
Parcel of land or pen where livestock are confined and fattened for slaughter.

Finishing operations
Production system specialized for the finishing of beef cattle prior to slaughter. The finishing degree depends on specific criteria from the industry.

Grasslands
Forage that is established (imposed grazing-land ecosystem) with domesticated introduced or indigenous species that may or may not receive periodic cultural treatment such as renovation, fertilization or weed control. The vegetation of grassland in this context is broadly interpreted to include grasses, legumes and other forbs, and at times woody species may be present.

Graze
To feed directly on growing grass, pasture or forage crops.

Hay
Harvested forage preserved by drying generally to a moisture content of less than 200 g kg\(^{-1}\).

Herd
A group of cattle or buffalo.

Heifer
A young cow, normally over one year old, that has not produced a calf.

Hide
Outer covering of cattle/ buffalo removed during the slaughtering process.

Kraals or “bomas”
An enclosure for cattle and other domestic animals, mainly in South Africa.

Lactating animal
An animal that is in physiological stage of milk production.

Mature milking
Mature milking refers to the stage where adult post-partum cows are milked. Note that this stage will also include the period of the year when the cows are dried off.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature maintenance</td>
<td>Mature maintenance refers to where animals are at least at their minimum mature body weight.</td>
</tr>
<tr>
<td>Mature finishing</td>
<td>Mature finishing refers to the stage where the body weight is deliberately increased above that of the “Mature (maintenance)” stage for slaughter.</td>
</tr>
<tr>
<td>Meat</td>
<td>Fresh, chilled or frozen edible carcass including offal derived from food animals.</td>
</tr>
<tr>
<td>Meat product(s)</td>
<td>Any product capable of being used as human food, which is made wholly or in part from any meat or other portion of the carcass of any food animals, except products which contain meat or other portions of such carcasses only in a relatively small proportion or historically have not been considered by consumers as products of the meat industry, and which are exempted from definition as a meat product.</td>
</tr>
<tr>
<td>Mixed crop-livestock system</td>
<td>A combination of crop and livestock activities in a production system.</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>Number of animals that died over the total number of animals during the reference period.</td>
</tr>
<tr>
<td>Offal</td>
<td>The internal organs of the body removed from the butchered animal (not included in a carcass).</td>
</tr>
<tr>
<td>Paddock</td>
<td>A grazing area that is a sub-division of a grazing management unit and is enclosed and separated from other areas by a fence or barrier.</td>
</tr>
<tr>
<td>Parturition</td>
<td>Act of giving birth to young is called parturition.</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>The percentage of adult animals in the herd replaced by younger adult animals each year.</td>
</tr>
<tr>
<td>Ruminant</td>
<td>Any of various even-toed, hoofed mammals of the suborder Ruminantia. Ruminants usually have a stomach divided into four compartments (one of which is called a rumen), and chew a cud consisting of regurgitated, partially digested food. Ruminants include cattle, buffalo, sheep, goats, deer, antelopes and camels.</td>
</tr>
<tr>
<td>Procreation service</td>
<td>The process in which mature male covers the female i.e. in heat with the object to deposit spermatozoa in the female genital tract is called either procreation service or just service.</td>
</tr>
<tr>
<td>Sire</td>
<td>A bull parent of the calf.</td>
</tr>
<tr>
<td>Steer</td>
<td>A male bovine that is castrated before sexual maturity and normally raised for beef.</td>
</tr>
<tr>
<td>Tallow</td>
<td>Rendered fat.</td>
</tr>
<tr>
<td>Weaning</td>
<td>Removal of calves from their mothers, usually at about 6 to 7 months of age.</td>
</tr>
<tr>
<td>Weaned calves</td>
<td>Calves recently removed from their mothers.</td>
</tr>
</tbody>
</table>
Terms relating to environmental accounting and environmental assessment

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidification</td>
<td>Impact category that addresses impacts due to acidifying substances in the environment. Emissions of NOx, NH3, and SOx lead to releases of hydrogen ions (H+) when the gases are mineralised. The protons contribute to the acidification of soils and water when they are released in areas where the buffering capacity is low. Acidification may result to forest decline and lake acidification. [Adapted from Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Activity data</td>
<td>Data on the magnitude of human activity resulting in emissions or removals taking place during a given period of time [UNFCCC, 2014]</td>
</tr>
<tr>
<td>Allocation</td>
<td>Partitioning the input or output flows of a process or a product system between the product system under study and one or more other product systems [ISO 14044:2006, 3.17]</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Relating to, or resulting from the influence of human beings on nature</td>
</tr>
<tr>
<td>Attributional modelling approach</td>
<td>System modelling approach in which inputs and outputs are attributed to the functional unit of a product system by linking and/or partitioning the unit processes of the system according to a normative rule [UNEP/SETAC Life Cycle Initiative, 2011].</td>
</tr>
<tr>
<td>Background system</td>
<td>The background system consists of processes on which no or, at best, indirect influence may be exercised by the decision-maker for which an LCA is carried out. Such processes are called “background processes.” [UNEP/SETAC Life Cycle Initiative, 2011].</td>
</tr>
<tr>
<td>Biogenic carbon</td>
<td>Carbon derived from biomass [ISO/TS 14067:2013, 3.1.8.2]</td>
</tr>
<tr>
<td>Biomass</td>
<td>Material of biological origin excluding material embedded in geological formations and material transformed to fossilized material, and excluding peat [ISO/TS 14067:2013, 3.1.8.1]</td>
</tr>
<tr>
<td>Capital goods</td>
<td>Capital goods are final products that have an extended life and are used by the company to manufacture a product; provide a service; or sell, store, and deliver merchandise. In financial accounting, capital goods are treated as fixed assets or as plant, property, and equipment (PP&E). Examples of capital goods include equipment, machinery, buildings, facilities, and vehicles [GHG Protocol, Technical Guidance for Calculating Scope 3 Emissions, Chapter 2, 2013]</td>
</tr>
<tr>
<td>Carbon dioxide equivalent (CO2e)</td>
<td>Unit for comparing the radiative forcing of a greenhouse gas (GHG) to that of carbon dioxide [ISO/TS 14067:2013, 3.1.3.2].</td>
</tr>
<tr>
<td>Carbon footprint of a product (CFP)</td>
<td>Sum of greenhouse gas emissions and removals in a product system, expressed as CO2 equivalents and based on a life cycle assessment using the single impact category of climate change [ISO/TS 14067:2013, 3.1.1.1]</td>
</tr>
<tr>
<td>Carbon storage</td>
<td>Carbon removed from the atmosphere and stored as carbon [ISO 16759:2013, 3.1.4]</td>
</tr>
</tbody>
</table>
Characterization Calculation of the magnitude of the contribution of each classified input/output to their respective impact categories, and aggregation of contributions within each category. This requires a linear multiplication of the inventory data with characterisation factors for each substance and impact category of concern. For example, with respect to the impact category “climate change”, CO₂ is chosen as the reference substance and kg CO₂-equivalents as the reference unit. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]

Characterization factor Factor derived from a characterization model which is applied to convert an assigned life cycle inventory analysis result to the common unit of the category indicator [ISO 14044:2006, 3.37]

Classification Assigning the material/energy inputs and outputs tabulated in the Life Cycle Inventory to impact categories according to each substance’s potential to contribute to each of the impact categories considered.[Adapted from: Product Environmental Footprint Guide, European Commission, 2013]

Combined production A multifunctional process in which production of the various outputs can be independently varied. For example in a backyard system the number of poultry and swine can be set independently.

Comparative assertion Environmental claim regarding the superiority or equivalence of one product versus a competing product that performs the same function. [ISO 14044:2006, 3.6]

Comparison A comparison of two or more products regarding the results of their life cycle assessment as according to these guidelines and not including a comparative assertion.

Consequential data modelling System modelling approach in which activities in a product system are linked so that activities are included in the product system to the extent that they are expected to change as a consequence of a change in demand for the functional unit [UNEP/SETAC Life Cycle Initiative, 2011].

Consumable Ancillary input that is necessary for a process to occur but that does not form a tangible part of the product or co-products arising from the process
Note 1: Consumables differ from capital goods in that they have an expected life of one year or less, or a need to replenish on a one year or less basis (e.g. lubricating oil, tools and other rapidly wearing inputs to a process).
Note 2: Fuel and energy inputs to the life cycle of a product are not considered to be consumables. [PAS 2050:2011, 3.10]

Co-production A generic term for multifunctional processes; either combined- or joint-production.

Co-products Any of two or more products coming from the same unit process or product system [ISO 14044:2006, 3.10]

Cradle-to-gate Life-cycle stages from the extraction or acquisition of raw materials to the point at which the product leaves the organization undertaking the assessment [PAS 2050:2011, 3.13]

Critical review Process intended to ensure consistency between a life cycle assessment and the principles and requirements of the International Standards on life cycle assessment [ISO 14044:2006, 3.45]
Critical review report

Documentation of the critical review process and findings, including detailed comments from the reviewer(s) or the critical review panel, as well as corresponding responses from the practitioner of the LCA study [ISO 14044:2006, 3.7]

Cut off criteria

Specification of the amount of material or energy flow or the level of environmental significance associated with unit processes or product system to be excluded from a study [ISO 14044:2006, 3.18]

Data quality

Characteristics of data that relate to their ability to satisfy stated requirements [ISO 14044:2006, 3.19]

Dataset (both LCI dataset and LCIA dataset)

A document or file with life cycle information of a specified product or other reference (e.g., site, process), covering descriptive metadata and quantitative life cycle inventory and/or life cycle impact assessment data, respectively. [ILCD Handbook, 2010a]

Delayed emissions

Emissions that are released over time, e.g. through prolonged use or final disposal stages, versus a single, one-time emission. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]

Direct Land Use Change (dLUC)

Change in human use or management of land within the product system being assessed [ISO/TS 14067:2013, 3.1.8.4]

Direct energy

Energy used on farms for livestock production activities (e.g. lighting, heating).

Downstream

Occurring along a product supply chain after the point of referral. [Product Environmental Footprint Guide, European Commission, 2013]

Drainage basin

Area from which direct surface runoff from precipitation drains by gravity into a stream or other water body. Note 1 to entry: The terms “watershed”, “drainage area”, “catchment”, “catchment area” or “river basin” are sometimes used for the concept of “drainage basin”. Note 2 to entry: Groundwater drainage basin does not necessarily correspond in area to surface drainage basin. Note 3 to entry: The geographical resolution of a drainage basin should be determined at the goal and scope stage: it may regroup different sub drainage basins. [ISO 14046:2014, 3.1.8]

Economic value

Average market value of a product at the point of production possibly over a 5-year time frame [Adapted from PAS 2050:2011, 3.17]. Note 1: whereas barter is in place, the economic value of the commodity traded can be calculated on the basis of the market value and amount of the commodity exchanged.

Eco-toxicity

Environmental impact category that addresses the toxic impacts on an ecosystem, which damage individual species and change the structure and function of the ecosystem. Eco-toxicity is a result of a variety of different toxicological mechanisms caused by the release of substances with a direct effect on the health of the ecosystem. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]

Elementary flow

Material or energy entering the system being studied that has been drawn from the environment without previous human transformation, or material or energy leaving the system being studied that is released into the environment without
subsequent human transformation [ISO 14044:2006, 3.12]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission factor</td>
<td>Amount of greenhouse gases emitted, expressed as carbon dioxide equivalent and relative to a unit of activity (e.g. kg CO2e per unit input) [Adapted from UNFCCC, 2014]. NOTE: Emission factor data is obtained from secondary data sources.</td>
</tr>
<tr>
<td>Emissions</td>
<td>Release of substance to air and discharges to water and land.</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Any change to the environment, whether adverse or beneficial, wholly or partially resulting from an organization's activities, products or services [ISO/TR 14062:2002, 3.6]</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Excess of nutrients (mainly nitrogen and phosphorus) in water or soil, from sewage outfalls and fertilized farmland. In water, eutrophication accelerates the growth of algae and other vegetation in water. The degradation of organic material consumes oxygen resulting in oxygen deficiency and, in some cases, fish death. Eutrophication translates the quantity of substances emitted into a common measure expressed as the oxygen required for the degradation of dead biomass. In soil, eutrophication favors nitrophilous plant species and modifies the composition of the plant communities. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Extrapolated data</td>
<td>Refers to data from a given process that is used to represent a similar process for which data is not available, on the assumption that it is reasonably representative. [Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Final product</td>
<td>Goods and services that are ultimately consumed by the end user rather than used in the production of another good or service. [GHG Protocol, Product Life Cycle Accounting and Reporting Standard, 2011].</td>
</tr>
<tr>
<td>Foreground system</td>
<td>The foreground system consists of processes which are under the control of the decision-maker for which an LCA is carried out. They are called “foreground processes” [UNEP/SETAC Life Cycle Initiative, 2011].</td>
</tr>
<tr>
<td>Functional unit</td>
<td>Quantified performance of a product system for use as a reference unit [ISO 14044:2006, 3.20]. It is essential that the functional unit allows comparisons that are valid where the compared objects (or time series data on the same object, for benchmarking) are comparable.</td>
</tr>
<tr>
<td>GHG removal</td>
<td>Mass of a greenhouse gas removed from the atmosphere [ISO/TS 14067:2013, 3.1.3.6]</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>Characterization factor describing the radiative forcing impact of one mass-based unit of a given greenhouse gas relative to that of carbon dioxide over a given period of time [ISO/TS 14067:2013, 3.1.3.4]</td>
</tr>
<tr>
<td>Greenhouse gases (GHGs)</td>
<td>Gaseous constituent of the atmosphere, both natural and anthropogenic, that absorbs and emits radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere, and clouds [ISO 14064-1:2006, 2.1].</td>
</tr>
<tr>
<td>Human toxicity – cancer</td>
<td>Impact category that accounts for the adverse health effects on human beings caused by the intake of toxic substances through inhalation of air, food/water ingestion, penetration through the skin insofar as they are related to</td>
</tr>
</tbody>
</table>
Human toxicity – non-cancer
Impact category that accounts for the adverse health effects on human beings caused by the intake of toxic substances through inhalation of air, food/water ingestion, penetration through the skin insofar as they are related to non-cancer effects that are not caused by particulate matter/respiratory inorganics or ionising radiation. [Product Environmental Footprint Guide, European Commission, 2013]

Indirect Land Use Change (iLUC)
Change in the use or management of land which is a consequence of direct land use change, but which occurs outside the product system being assessed [ISO/TS 14067:2013, 3.1.8.5].

Impact category
Class representing environmental issues of concern to which life cycle inventory analysis results may be assigned [ISO 14044:2006, 3.39].

Impact category indicator
Quantifiable representation of an impact category [ISO 14044:2006, 3.40].

Infrastructure
Synonym for capital good.

Input
Product, material or energy flow that enters a unit process [ISO 14044:2006, 3.21].

Ionizing radiation, human health
Impact category that accounts for the adverse health effects on human health caused by radioactive releases. [Product Environmental Footprint Guide, European Commission, 2013]

Intermediate product
Output from a unit process that is input to other unit processes that require further transformation within the system [ISO 14044:2006, 3.23]

Joint production
A multifunctional process that produces various outputs such as meat and eggs in backyard systems. Production of the different goods cannot be independently varied, or only varied within a very narrow range.

Land occupation
Impact category related to use (occupation) of land area by activities such as agriculture, roads, housing, mining, etc. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]

Land use change
Change in the purpose for which land is used by humans (e.g. between crop land, grass land, forestland, wetland, industrial land) [PAS 2050:2011, 3.27]

Life cycle
Consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources to final disposal [ISO 14044:2006, 3.1]

Life Cycle Assessment
Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle [ISO 14044:2006, 3.2]

Life cycle GHG emissions
Sum of GHG emissions resulting from all stages of the life cycle of a product and within the specified system boundaries of the product. [PAS 2050:2011, 3.30]

Life Cycle Impact Assessment
Phase of life cycle assessment aimed at understanding and evaluating the magnitude and significance of the potential impacts for a product system throughout the life cycle of the product [Adapted from: ISO 14044:2006, 3.4]
<table>
<thead>
<tr>
<th>Life Cycle Inventory (LCI)</th>
<th>Phase of life cycle assessment involving the compilation and quantification of inputs and outputs for a product throughout its life cycle [ISO 14046:2014, 3.3.6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Cycle Interpretation</td>
<td>Phase of life cycle assessment in which the findings of either the inventory analysis or the impact assessment, or both, are evaluated in relation to the defined goal and scope in order to reach conclusions and recommendations [ISO 14044:2006, 3.5]</td>
</tr>
<tr>
<td>Material contribution</td>
<td>Contribution from any one source of GHG emissions of more than 1% of the anticipated total GHG emissions associated with the product being assessed. Note: A materiality threshold of 1% has been established to ensure that very minor sources of life cycle GHG emissions do not require the same treatment as more significant sources. [PAS 2050:2011, 3.31]</td>
</tr>
<tr>
<td>Multi-functionality</td>
<td>If a process or facility provides more than one function, i.e. it delivers several goods and/or services (“co-products”), it is “multifunctional”. In these situations, all inputs and emissions linked to the process must be partitioned between the product of interest and the other co-products in a principled manner. [Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Normalization</td>
<td>After the characterisation step, normalisation is an optional step in which the impact assessment results are multiplied by normalisation factors that represent the overall inventory of a reference unit (e.g. a whole country or an average citizen). Normalised impact assessment results express the relative shares of the impacts of the analysed system in terms of the total contributions to each impact category per reference unit. When displaying the normalised impact assessment results of the different impact topics next to each other, it becomes evident which impact categories are affected most and least by the analysed system. Normalised impact assessment results reflect only the contribution of the analysed system to the total impact potential, not the severity/relevance of the respective total impact. Normalised results are dimensionless, but not additive. [Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Offsetting</td>
<td>Mechanism for compensating for all or for a part of the CFP through the prevention of the release of, reduction in, or removal of an amount of greenhouse gas emissions in a process outside the boundary of the product system [ISO/TS 14067:2013, 3.1.1.4]</td>
</tr>
<tr>
<td>Output</td>
<td>Product, material or energy flow that leaves a unit process [ISO 14044:2006, 3.25].</td>
</tr>
<tr>
<td>Ozone depletion</td>
<td>Impact category that accounts for the degradation of stratospheric ozone due to emissions of ozone-depleting substances, for example long-lived chlorine and bromine containing gases (e.g. CFCs, HCFCs, Halons). [Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
<tr>
<td>Particular matter</td>
<td>Impact category that accounts for the adverse health effects on human health caused by emissions of Particulate Matter (PM) and its precursors (NOx, SOx, NH3) [Product Environmental Footprint Guide, European Commission, 2013]</td>
</tr>
</tbody>
</table>
| **Photochemical ozone formation** | Impact category that accounts for the formation of ozone at the ground level of the troposphere caused by photochemical oxidation of Volatile Organic Compounds (VOCs) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx) and sunlight. High concentrations of ground-level tropospheric

<table>
<thead>
<tr>
<th>Primary data</th>
<th>Quantified value of a unit process or an activity obtained from a direct measurement or a calculation based on direct measurements at its original source [ISO 14046:2014, 3.6.1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary activity data</td>
<td>Quantitative measurement of activity from a product’s life cycle that, when multiplied by the appropriate emission factor, determines the GHG emissions arising from a process. Examples of primary activity data include the amount of energy used, material produced, service provided or area of land affected [PAS 2050:2011, 3.34]</td>
</tr>
<tr>
<td>Product(s)</td>
<td>Any goods or service [ISO 14044:2006, 3.9]</td>
</tr>
<tr>
<td>Product category</td>
<td>Group of products that can fulfil equivalent functions [ISO 14046:2014, 3.5.9]</td>
</tr>
<tr>
<td>Product category rules (PCR)</td>
<td>Set of specific rules, requirements and guidelines for developing Type III environmental declarations for one or more product categories [ISO 14025:2006, 3.5]</td>
</tr>
<tr>
<td>Product system</td>
<td>Collection of unit processes with elementary and product flows, performing one or more defined functions, and which models the life cycle of a product [ISO 14044:2006, 3.28]</td>
</tr>
<tr>
<td>Proxy data</td>
<td>Data from a similar activity that is used as a stand-in for the given activity. Proxy data can be extrapolated, scaled up, or customized to represent the given activity [GHG Protocol, Product Life Cycle Accounting and Reporting Standard, 2011]. For example, using a Chinese unit process for electricity production in an LCA for a product produced in Viet Nam.</td>
</tr>
<tr>
<td>Raw material</td>
<td>Primary or secondary material that is used to produce a product [ISO 14044:2006, 3.1.5]</td>
</tr>
<tr>
<td>Reference flow</td>
<td>Measure of the outputs from processes in a given product system required to fulfil the function expressed by the functional unit [ISO 14044:2006, 3.29]</td>
</tr>
<tr>
<td>Releases</td>
<td>Emissions to air and discharges to water and soil [ISO 14044:2006, 3.30]</td>
</tr>
<tr>
<td>Reporting</td>
<td>Presenting data to internal management or external users such as regulators, shareholders, the general public or specific stakeholder groups [Adapted from: ENVIFOOD Protocol: 2013]</td>
</tr>
<tr>
<td>Residue or Residual</td>
<td>Substance that is not the end product (s) that a production process directly seeks to produce [Communication from the European Commission 2010/C 160/02]. More specifically, a residue is any material without economic value leaving the product system in the condition as it created in the process, but which has a subsequent use. There may be value-added steps beyond the system boundary, but these activities do not impact the product system calculations. Note 1: Materials with economic value are considered products. Note 2: Materials whose economic value is both negligible relative to the annual turnover of the organization, and is also entirely determined by the production costs necessary not to turn such materials in waste streams are to be considered as...</td>
</tr>
</tbody>
</table>
residues from an environmental accounting perspective.
Note 3: Those materials whose relative economic value volatility is high in the
range of positive and negative value, and whose average value is negative are
residues from an environmental accounting perspective. Materials economic
value volatility is possibly calculated over a 5 year time-frame at the regional
level.

Resource depletion Impact category that addresses use of natural resources either renewable or non-
renewable, biotic or abiotic. [Product Environmental Footprint Guide, European
Commission, 2013]

Secondary data Data obtained from sources other than a direct measurement or a calculation
based on direct measurements at the original source [ISO 14046:2014, 3.6.2].
Secondary data are used when primary data are not available or it is impractical to
obtain primary data. Some emissions, such as methane from litter management,
are calculated from a model, and are therefore considered secondary data.

Sensitivity analysis Systematic procedures for estimating the effects of the choices made regarding
methods and data on the outcome of a study [ISO 14044:2006, 3.31]

Sink Physical unit or process that removes a GHG from the atmosphere [ISO 14064-
1:2006, 2.3]

Soil Organic Matter (SOM) The measure of the content of organic material in soil. This derives from plants
and animals and comprises all of the organic matter in the soil exclusive of the
matter that has not decayed. [Product Environmental Footprint Guide, European
Commission, 2013]

System boundary Set of criteria specifying which unit processes are part of a product system [ISO
14044:2006, 3.32]

System expansion Expanding the product system to include additional functions related to co-
products.

Temporary carbon storage It happens when a product “reduces the GHGs in the atmosphere” or creates
“negative emissions”, by removing and storing carbon for a limited amount of

Tier-1 method Simplest method that relies on single default emission factors (e.g. kg methane
per animal).

Tier-2 method A more complex approach that uses detailed country-specific data (e.g. gross
energy intake and methane conversion factors for specific livestock categories).

Tier-3 method Method based on sophisticated mechanistic models that account for multiple
factors such as diet composition, product concentration from rumen fermentation,
and seasonal variation in animal and feed parameters.

Uncertainty analysis Systematic procedure to quantify the uncertainty introduced in the results of a life
cycle inventory analysis due to the cumulative effects of model imprecision, input
uncertainty and data variability [ISO 14044:2006, 3.33]

Unit process Smallest element considered in the life cycle inventory analysis for which input
and output data are quantified [ISO 14044:2006, 3.34]
Upstream
Occurring along the supply chain of purchased goods/services prior to entering the system boundary. [Product Environmental Footprint Guide, European Commission, 2013]

Waste
Substances or objects which the holder intends or is required to dispose of [ISO 14044:2006, 3.35]
Note 1: Deposition of manure on a land where quantity and availability of soil nutrients such as nitrogen and phosphorus exceed plant nutrient requirement is considered as a waste management activity from an environmental accounting perspective. Derogation is only possible whereas evidences prove that soil is poor in terms of organic matter and there is no other way to build up organic matter. See also: Residual and Economic value.

Water body
Entity of water with definite hydrological, hydrogeomorphological, physical, chemical and biological characteristics in a given geographical area. Examples: lakes, rivers, groundwaters, seas, icebergs, glaciers and reservoirs. Note 1 to entry: In case of availability, the geographical resolution of a water body should be determined at the goal and scope stage: it may regroup different small water bodies. [ISO 14046:2014, 3.1.7]

Water use
Use of water by human activity. Note 1 to entry: Use includes, but is not limited to, any water withdrawal, water release or other human activities within the drainage basin impacting water flows and/or quality, including in-stream uses such as fishing, recreation, transportation. Note 2 to entry: The term “water consumption” is often used to describe water removed from, but not returned to, the same drainage basin. Water consumption can be because of evaporation, transpiration, integration into a product, or release into a different drainage basin or the sea. Change in evaporation caused by land-use change is considered water consumption (e.g. reservoir). The temporal and geographical coverage of the water footprint assessment should be defined in the goal and scope. [ISO 14046:2014, 3.2.1]

Water withdrawal
Anthropogenic removal of water from any water body or from any drainage basin, either permanently or temporarily [ISO 14046:2014, 3.2.2].

Weighting
Weighting is an additional, but not mandatory, step that may support the interpretation and communication of the results of the analysis. Impact assessment results are multiplied by a set of weighting factors, which reflect the perceived relative importance of the impact categories considered. Weighted impact assessment results can be directly compared across impact categories, and also summed across impact categories to obtain a single-value overall impact indicator. Weighting requires making value judgements as to the respective importance of the impact categories considered. These judgements may be based on expert opinion, social science methods, cultural/political viewpoints, or economic considerations. [Adapted from: Product Environmental Footprint Guide, European Commission, 2013]
The methodology developed in these draft guidelines aims to introduce a harmonized international approach to the assessment of the environmental performance of large ruminant supply chains in a manner that takes account of the specificity of the various production systems involved. It aims to increase understanding of large ruminant supply chains and to help improve their environmental performance. The guidelines are a product of the Livestock Environmental Assessment and Performance (LEAP) Partnership, a multi-stakeholder initiative whose goal is to improve the environmental sustainability of the livestock sector through better metrics and data.

The large ruminant sector is of worldwide importance. It comprises a wide diversity of systems that provide a variety of products and functions. Large ruminants play a crucial role in sustaining livelihoods in traditional, small-scale, rural and family-based production systems. Across the large ruminant sector, there is strong interest in measuring and improving environmental performance.

In the development of these draft guidelines, the following objectives were regarded as key:

- To develop a harmonized, science-based approach resting on a consensus among the sector’s stakeholders;
- To recommend a scientific but at the same time practical approach that builds on existing or developing methodologies;
- To promote an approach to assessment suitable for a wide range of large ruminant supply chains;
- To identify the principal areas where ambiguity or differing views exist as to the right approach.

Over the coming months these guidelines will be submitted to public review. The purpose will be to strengthen the advice provided and ensure it meets the needs of those seeking to improve performance through sound assessment practice. Nor is the present document intended to remain static. It will be updated and improved as the sector evolves and more stakeholders become involved in LEAP, and as new methodological frameworks and data become available. The development and inclusion of guidance on the evaluation of additional environmental impacts is also viewed as a critical next step.

The strength of the guidelines developed within the LEAP Partnership across the various livestock subsectors stems from the fact that they represent a coordinated cross-sectoral and international effort.

1 Large ruminants include cattle and buffalo. These guidelines focus on cattle and buffalo.

2 The public review period starts on 23 April 2015 and ends on 31 July 2015.
to harmonize measurement approaches. Ideally, harmonization will lead to greater understanding, transparent application and communication of metrics, and, importantly for the sector, real and measurable improvement in performance.

Rogier Schulte, Teagasc (2015 LEAP chair)
Lalji Desai, WAMIP (2014 LEAP chair)
Frank Mitloehner, University of California, Davis (2013 LEAP chair)
ACKNOWLEDGEMENTS

These guidelines are a product of the Livestock Environmental Assessment and Performance (LEAP) Partnership. Three groups contributed to their development:

The Technical Advisory Group (TAG) on large ruminants conducted the background research and developed the core technical content of the guidelines. The large ruminants TAG was composed of 30 experts: Alexandre Berndt (EMBRAPA, Brazil - Co-Chair of the Large Ruminant TAG), Ying Wang (Innovation Center for US Dairy, USA - Co-Chair of the Large Ruminant TAG), Greg Thoma (University of Arkansas, USA. Vice-Chair of the Large Ruminant TAG), Gonzalo Becoña (Plan Agropecuario, Uruguay), Sophie Bertrand (CNIEL/IDF, France), Jacques de Groot, (VanDrie Group, The Netherlands), Jean Baptiste Dollè, Institut de l'Elevage (French Livestock Institute, France), Hongmin Dong (Chinese Agriculture Academy of Sciences, China), Philippe Faverdin (INRA, France), Anna Flysjö (Arla Foods, Denmark), Armelle Gac (Institut de l'Elevage - French Livestock Institute, France), Manget Ram Garg (National Dairy Development Board, India), Sebastian Gollnow (PE International, New Zealand), Juan José Grigera Naón (International Meat Secretariat, Argentina), Saiakbai Kulov (NGO Center for Development of Kyrgyz Nomadic Pastoralism, Kyrgyzstan), Stewart Ledgard (AgResearch, New Zealand), Mark Lieffering (AgResearch, New Zealand), Ben Lukuyu (International Livestock Research Institute – ILRI, Kenya), Sarah Meale (Agriculture and Agri-Food Canada, Canada), Tim McAllister (Agriculture and Agri-Food Canada, Canada), Julio Mosquera Losada (Wageningen UR Livestock Research, The Netherlands), Barbara Nebel (PE International, New Zealand), Donal O'Brien (Teagasc, Ireland), Alan Rotz (USDA/Agricultural Research Service, USA), Laurence Shalloo (Teagasc, Ireland), Didier Stilmant (Walloon agricultural Research Centre, Belgium), Aimable Uwizeye (Food and Agriculture Organization of the United Nations), Mary Vickers (EBLEX, United Kingdom), Metha Wanapat (Tropical Feed Research and Development Center – TROFREC, Thailand), and Stephen Wiedemann (FSA Consulting, supported by Meat and Livestock Australia, Australia).

The LEAP Secretariat coordinated and facilitated the work of the TAG, guided and contributed to the content development and ensured coherence between the various guidelines. The LEAP secretariat, hosted at FAO, was composed of: Pierre Gerber (Coordinator until Jan 2015), Camillo De Camillis (LEAP manager), Carolyn Opio (Technical officer and Coordinator since Feb 2015), Félix Teillard (Technical officer) and Aimable Uwizeye (Technical officer). Bruno Notarnicola (University of Bari), Erwan Saouter (European Commission’s Joint Research Centre), Akifumi Ogino (National Agriculture and Food Research Organization, Japan) and Harinder Makkar (FAO, Animal Production Officer) assisted the Secretariat in reviewing the guidelines.

The LEAP Steering Committee provided overall guidance for the activities of the Partnership and helped review and cleared the guidelines for public release. During development of the guidelines the LEAP Steering Committee was composed of:
Steering committee members

Observers

Programme), Llorenç Milà i Canals (United Nations Environment Programme), Paul Pearson (International Council of Tanners, in LEAP since Feb 2015), Erwan Saouter (European Commission, Joint Research Centre), Sonia Valdivia (United Nations Environment Programme), and Elisabeth van Delden (International Wool Textile Organization).

LEAP is funded by its Members, with additional support from FAO and the Mitigation of Climate Change in Agriculture (MICCA) Programme.

Although not directly responsible for the preparation of these guidelines, the other TAGs of the LEAP Partnership indirectly contributed to this technical document.
PART 1. OVERVIEW AND GENERAL PRINCIPLES
1 INTENDED USERS AND OBJECTIVES

The methodology and guidance developed here can be used by stakeholders in all countries and across the entire range of large ruminant production systems. In developing the guidelines, it was assumed that the primary users will be individuals or organizations with a good working knowledge of life cycle assessment. The main purpose of the guidelines is to provide sufficient definition of calculation methods and data requirements to enable consistent application of LCA across differing large ruminant supply chains.

This guidance is relevant to a wide array of livestock stakeholders including:

- Livestock producers who wish to develop inventories of their on-farm resources and assess the performance of their production systems.
- Supply chain partners such as feed producers, farmers and processors seeking a better understanding of the environmental performance of products in their production processes.
- Policy makers interested in developing accounting and reporting specifications for livestock supply chains.

The benefits of this approach aim to include:

- Use of recognized, robust and transparent methodology developed to take account of the nature of large ruminant supply chains;
- Identification of supply chain hotspots and opportunities to improve and reduce environmental impact;
- Identification of opportunities to increase efficiency and productivity;
- Ability to benchmark performance internally or against industry standards;
- Supporting reporting and communication requirements; and
- Raising awareness and supporting action on environmental sustainability.

2 SCOPE

2.1 Environmental impact categories addressed in the guidelines

These guidelines cover only the following environmental impact categories: namely, climate change, fossil energy use, and water use. In addition, examples of impact assessment methods are also provided for acidification, eutrophication, biodiversity change and land occupation. This document does not provide support towards the assessment of comprehensive environmental performance, nor to the social or economic aspects or large ruminant supply chains.
It is intended that in future these guidelines will be updated to include multiple categories, provided sufficient reliability and data are provided to justify the changes.

In the LEAP Animal Feed Guidelines, GHG emission from direct land-use-change is analysed and recorded separately from GHG emissions due to other sources. There are two reasons for doing this. The first is a question of time frame because emissions attributed to land-use-change may have occurred in the past or may be set to occur in the future. Secondly, there is much uncertainty and debate about the best method for calculating direct land-use-change.

Regarding land occupation, the LEAP Animal Feed Guidelines divided land areas into two categories: arable land and non-arable grassland. Appropriate indicators were included in the guidelines as they provide important information about the use of a finite resource (land) but also in view of the follow-on impacts on soil degradation, biodiversity, carbon sequestration or loss, water depletion, etc. Nevertheless, users wishing to specifically relate land occupation to follow-on impacts will need to collect and analyse additional information on production practices and local conditions.

2.2 Application

Some flexibility in methodology is desirable to accommodate the range of possible goals and special conditions arising in different sectors. This document strives a pragmatic balance between flexibility and rigorous consistency across scale, geographic location, and project goals.

A more strict prescription on the methodology, including allocation and acceptable data sources, is required for product labelling or comparative performance claims. Users are referred to ISO 14025 for more information and guidance on comparative claims of environmental performance.

These LEAP guidelines are based on the attributional approach to life cycle accounting. The approach refers to process-based modelling, intended to provide a static representation of average conditions.

Due to the limited number of environmental impact categories covered here, results should be presented in conjunction with other environmental metrics to understand the wider environmental implications, either positive or negative. It should be noted that comparisons between final products should only be based on full life cycle assessment. Users of these guidelines shall not employ results to claim overall environmental superiority of some large ruminant production systems and products.

The methodology and guidance developed in the LEAP Partnership is not intended to create barriers to trade or contradict any WTO requirements.

These guidelines have been developed with a focus on cattle and buffalo production. Their application to other large ruminant species is possible, however, there may be specific circumstances for other species not covered in this document; for example, the co-production of velvet (antlers) and meat by elk or deer would require additional consideration regarding questions of allocation methodology.
3 STRUCTURE AND CONVENTIONS

3.1 Structure

This document adopts the main structure of ISO 14040:2006 and the four main phases of Life Cycle Assessment – goal and scope definition, inventory analysis, impact assessment, and interpretation. Figure 1 presents the general relationship between the phases of an LCA study defined by ISO 14040:2006 and the steps needed to complete a GHG inventory in conformance with this guidance.

Part 2 of this methodology sets out the following:

- Section 7 outlines the operational areas to which these guidelines apply.
- Section 8 includes requirements and guidance to help users define the goals and scope, and system boundary of an LCA.
- Section 9 presents the principles for handling multiple co-products and includes requirements and guidance to help users select the most appropriate allocation method to address common processes in their product inventory.
- Section 10 presents requirements and guidance on the collection and assessment of the quality of inventory data as well as on identification, assessment, and reporting on inventory uncertainty.
- Section 11 outlines key requirements, steps, and procedures involved in quantifying GHG and other environmental impact inventory results in the studied supply chain.
- Section 12 provides guidance on interpretation and reporting of results and summarizes the various requirements and best practice in reporting.

A glossary intended to provide a common vocabulary for practitioners has been included. Additional information is presented in the appendices.
Users of this methodology should also refer to other relevant guidelines where necessary and indicated. The LEAP large ruminants guidelines are not intended to stand alone but are meant to be used in conjunction with the LEAP Animal Feed Guidelines. Relevant guidance developed under the LEAP Partnership but contained in other documents will be specifically cross-referenced to enable ease of use. For example, specific guidance for calculating associated emissions for feed is contained in the LEAP Animal Feed Guidelines.
3.2 Presentational conventions

These guidelines are explicit in indicating which requirements, recommendations, or permissible or allowable options that users may choose to follow.

The term “shall” is used to indicate what is required for an assessment to conform to these guidelines.

The term “should” is used to indicate a recommendation, but not a requirement.

The term “may” is used to indicate an option that is permissible or allowable.

Commentary, explanations and general informative material (e.g. notes) are presented in footnotes, and do not constitute a normative element.

Examples illustrating specific areas of the guidelines are presented in boxes.

4 ESSENTIAL BACKGROUND INFORMATION AND PRINCIPLES

4.1 A brief introduction to LCA

Life cycle assessment (LCA) is recognized as one of the most complete and widely used methodology framework developed to assess the environmental impact of products and processes. LCA can be used as a decision support tool within environmental management. ISO14040:2006 defines LCA as a “compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle”. In other words, LCA provides quantitative, confirmable, and manageable process models to evaluate production processes, analyse options for innovation, and improve understanding of complex systems. LCA can identify processes and areas where process changes stemming from research and development can significantly contribute to reduce environmental impacts. According to ISO14040:2006, LCA consist of four phases:

- Goal and scope definition – including appropriate metrics (e.g. greenhouse gas emissions, water use, hazardous materials generated, and/or quantity of waste);
- Life cycle inventories (collection of data that identify the system inputs and outputs and discharges to the environment);
- Performance of impact assessment (application of characterization factors to the LCI emissions which normalizes groups of emissions to a common metric such as global warming potential reported in CO₂ equivalents);
- Analysis and interpretation of results.
4.2 Environmental impact categories

Life Cycle Impact Assessment (LCIA) aims at understanding and evaluating the magnitude and significance of potential environmental impacts for a product system throughout the life cycle of the product (ISO 14040:2006). The selection of environmental impacts is a mandatory step of LCIA and this selection shall be justified and consistent with the goal and scope of the study (ISO 14040:2006). Impacts can be modelled at different levels in the environmental cause-effect chain linking elementary flows of the life cycle inventory to midpoint and endpoint impact categories. Figure 2 provides an overview of some potential pressures, impacts and resource use associated with interventions on the environment.

A distinction must be made between midpoint impacts (which characterize impacts in the middle of the environmental cause-effect chain), and endpoint impacts (which characterize impacts at the end of the environmental cause-effect chain). Endpoint methods provide indicators at, or close to, an area of protection. Usually three areas of protection are recognized: human health, ecosystems quality, resources, and man-made environment. The aggregation at endpoint level and at the areas of protection level is an optional phase of the assessment according to ISO 14044:2006.

Climate change is an example of a midpoint impact category. The results of the Life Cycle Inventory are the amounts of greenhouse gas emissions per functional unit. Based on a radiative forcing model, characterization factors, known as global warming potentials, specific to each greenhouse gas, can be used to aggregate all of the emissions to the same mid-point impact category indicator, i.e. kilograms of CO₂ equivalents per functional unit.
Figure 2: Environmental cause-effect chain and categories of impact

Source: adapted from ILCD (2010b, 2011)
4.3 Normative references

The following referenced documents are indispensable in the application of this methodology and guidance.

- ISO 14040:2006 *Environmental management – Life cycle assessment – Principles and framework*

These standards give guidelines on the principles and conduct of LCA studies providing organizations with information on how to reduce the overall environmental impact of their products and services. ISO 14040:2006 define the generic steps which are usually taken when conducting an LCA and this document follows the first three of the four main phases in developing an LCA (Goal and scope, Inventory analysis, Impact assessment and Interpretation).

- ISO 14044:2006 *Environmental management – Life cycle assessment – Requirements and guidelines*

ISO 14044:2006 specifies requirements and provides guidelines for life cycle assessment including: definition of the goal and scope of the LCA, the life cycle inventory analysis (LCI) phase, the life cycle impact assessment (LCIA) phase, the life cycle interpretation phase, reporting and critical review of the LCA, limitations of the LCA, relationship between the LCA phases, and conditions for use of value choices and optional elements.

4.4 Non-normative references

- ISO 14025:2006 *Environmental labels and declarations – Type III environmental declarations – Principles and procedures*

ISO 14025:2006 establishes the principles and specifies the procedures for developing Type III environmental declaration programmes and Type III environmental declarations. It specifically establishes the use of the ISO 14040 series of standards in the development of Type III environmental declaration programmes and Type III environmental declarations. Type III environmental declarations are primarily intended for use in business-to-business communication, but their use in business-to-consumer communication is not precluded under certain conditions.

ISO 14046:2014 establishes the principles and specifies the procedures for developing water footprints for products, processes and organizations. It provides guidance on water footprint assessment as a standalone assessment or as part of a larger assessment. Only air and soil
emissions affecting water quality are included, but not all air and soil emissions are included. (International Organization for Standardization, 2014)

- ISO/TS 14067:2013 *Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification and communication*

 ISO/TS 14067:2013 specifies principles, requirements and guidelines for the quantification and communication of the carbon footprint of a product (CFP), based on ISO 14040 and ISO 14044 for quantification and on environmental labels and declarations (ISO 14020, ISO 14024 and ISO 14025) for communication.

- WRI/WBCSD (2011) *Product Life Cycle Accounting and Reporting Standard*

 The GHG Protocol from the World Resources Institute & World Business Council for Sustainable Development (WRI/WBCSD) provides a framework to assist users in estimating the total GHG emissions associated with the life cycle of a product. It is broadly similar in its approach to the ISO standards, although it lays more emphasis on analysis, tracking changes over time, reduction options and reporting. Like PAS2050, this standard excludes impacts from production of infrastructure, but whereas PAS2050 includes ‘operation of premises’ such as retail lighting or office heating, the GHG Protocol does not.

- ENVIFOOD Protocol, 2013, Environmental Assessment of Food and Drink Protocol

 The Protocol was developed by the European Food Sustainable Consumption Round Table to support a number of environmental instruments for use in communication and to support the identification of environmental improvement options. The Protocol might be the baseline for developing: communication methods, product group/sub-group specific rules (PCRs), criteria, tools, datasets and assessments. (Food SCP RT, 2013)

 The ILCD Handbook was published in 2010 by the European Commission Joint Research Centre ILCD and provides detailed guidance for LCA based on ISO 14040 and 14044. It consists of a set of documents, including a general guide for LCA, as well as specific guides for life cycle inventory and impact assessment. (European Commission et al., 2010).

- Product Environmental Footprint (PEF) Guide by the European Commission. General method to measure and communicate the potential life cycle environmental impact of a product developed by the European Commission to mostly contrast the confusion in environmental performance information. (European Commission, 2013)
BPX-30-323 General environmental footprinting methodology developed by the ADEME-AFNOR stakeholder platform and its further specifications (AFNOR, 2011). General method to measure and communicate the potential life cycle environmental impact of a product developed under request of the French Government to mostly contrast the confusion in environmental performance information. Food production specific guidelines are also available along with a large set of product specific rules on livestock products.

British Standards Institution PAS 2050:2011 Specification for the assessment of life cycle greenhouse gas emissions of goods and services

PAS 2050:2011 (BSI 2011) is a Publicly Available (i.e. not standard) Specification. A UK initiative sponsored by the Carbon Trust and Defra, PAS 2050 was published through the British Standards Institution (BSI) and uses BSI methods for agreeing a Publicly Available Specification. It is targeted at applying LCA over a wide range of products in a consistent manner for industry users, focusing solely on the carbon footprint indicator. PAS 2050 has many elements in common with the ISO 14000 series methods but also a number of differences, some of which limit choices for analysts (e.g. exclusion of capital goods and setting materiality thresholds).

4.5 Guiding principles

Five guiding principles support users in their application of this sector-specific methodology. These principles are consistent across the methodologies developed within the LEAP Partnership. They apply to all the steps, from goal and scope definition, data collection and LCI modelling through to reporting. Adhering to these principles ensures that any assessment made in accordance with the methodology prescribed is carried out in a robust and transparent manner. The principles can also guide users when making choices not specified by the guidelines.

Accounting and reporting of environmental impacts from large ruminant supply chains shall accordingly be based on the following principles:

Life cycle perspective
“LCA considers the entire life cycle of a product, from raw material extraction and acquisition, through energy and material production and manufacturing, to use and end of life treatment and final disposal. Through such a systematic overview and perspective, the shifting of a potential environmental burden between life cycle stages or individual processes can be identified and possibly avoided.” (ISO 14040:2006, 4.1.2)

Relative approach and functional unit

LCA is a relative approach, which is structured around a functional unit. This functional unit defines what is being studied. All subsequent analyses are then relative to that functional unit, as all inputs and outputs in the LCI and consequently the LCIA profile are related to the functional unit. (ISO 14040:2006, 4.1.4)

Relevance

Data, accounting methodologies and reporting shall be appropriate to the decision-making needs of the intended users. Information should be reported in a way that is easily understandable to the intended users.

Completeness

Quantification of the product environmental performance shall include all environmentally relevant material/energy flows and other environmental interventions as required for adherence to the defined system boundaries, the data requirements, and the impact assessment methods employed. (European Commission, 2013).

Consistency

Data that are consistent with these guidelines shall be used throughout the inventory to allow for meaningful comparisons and reproducibility of the outcomes over time. Any deviation from these guidelines shall be reported, justified and documented.
Accuracy

Bias and uncertainties shall be reduced as far as practicable. Sufficient accuracy shall be achieved to enable intended users to make decisions with reasonable confidence as to the reliability and integrity of the reported information.

Iterative approach

LCA is an iterative technique. The individual phases of an LCA use results of the other phases. The iterative approach within and between the phases contributes to the comprehensiveness and consistency of the study and the reported results. (ISO 14040:2006, 4.1.5).

Transparency

“Due to the inherent complexity in LCA, transparency is an important guiding principle in executing LCAs, in order to ensure a proper interpretation of the results.” (ISO 14040:2006, 4.1.6).

Priority of scientific approach

“Decisions within an LCA are preferably based on natural science. If this is not possible, other scientific approaches (e.g. from social and economic sciences) may be used or international conventions may be referred to. If neither a scientific basis exists nor a justification based on other scientific approaches or international conventions is possible, then, as appropriate, decisions may be based on value choices.” (ISO 14040:2006, 4.1.8)

5 LEAP AND THE PREPARATION PROCESS

LEAP is a multi-stakeholder initiative launched in July 2012 with the goal of improving the environmental performance of livestock supply chains. Hosted by the Food and Agriculture Organization of the United Nations, LEAP brings together the private sector, governments, civil society representatives and leading experts who have a direct interest in the development of science-based, transparent and pragmatic guidance to measure and improve the environmental performance of livestock products.

Demand for livestock products is projected to grow 1.3% per annum until 2050, driven by global population growth and increasing wealth and urbanization (Alexandratos and Bruinsma, 2012). Against the background of climate change and increasing competition for natural resources, this projected growth places significant pressure on the livestock sector to perform in a more sustainable way. The identification and promotion of the contributions that the sector can make towards more efficient use of resource and better environmental outcomes is also important.
Currently, many different methods are used to assess the environmental impacts and performance of livestock products. This causes confusion and makes it difficult to compare results and set priorities for continuing improvement. With increasing demands in the marketplace for more sustainable products there is also the risk that debates about how sustainability is measured will distract people from the task of driving real improvement in environmental performance. And there is the danger that labelling or private standards based on poorly developed metrics could lead to erroneous claims and comparisons.

The LEAP Partnership addresses the urgent need for a coordinated approach to developing clear guidelines for environmental performance assessment based on international best practices. The scope of LEAP is not to propose new standards but to produce detailed guidelines that are specifically relevant to the livestock sector, and refine guidance as to existing standards. LEAP is a multi-stakeholder partnership bringing together the private sector, governments and civil society. These three groups have an equal say in deciding work plans and approving outputs from LEAP, thus ensuring that the guidelines produced are relevant to all stakeholders, widely accepted and supported by scientific evidence.

With this in mind, the first three technical advisory groups (TAGs) of LEAP were formed in early 2013 to develop guidelines for assessing the environmental performance of large ruminants, animal feeds and poultry supply chains. The large ruminants TAG was then formed in March 2014.

The work of LEAP is challenging but vitally important to the livestock sector. The diversity and complexity of livestock farming systems, products, stakeholders and environmental impacts can only be matched by the willingness of the sector’s practitioners to work together to improve performance. LEAP provides the essential backbone of robust measurement methods to enable assessment, understanding and improvement in practice. More background information on the LEAP Partnership can be found at www.fao.org/partnerships/leap/en/.

5.1 Development of sector-specific guidelines

Sector-specific guidelines to assessing the environmental performance of the livestock sector are a key aspect of the LEAP Partnership work programme. Such guidelines take into account the nature of the livestock supply chain under investigation and are developed by a team of experts with extensive experience in life-cycle assessment and livestock supply chains.

The benefit of a sector-specific approach is that it gives guidance on the application of life-cycle assessment to users and provides a common basis from which to evaluate resource use and environmental impacts.
Sector-specific guidelines may also be referred to as supplementary requirements, product rules, sector guidance, product category rules or product environmental footprint category rules – although each programme will prescribe specific rules to ensure conformity and avoid conflict with any existing parent standard.

5.2 Large ruminants TAG and the preparation process

The Large ruminant TAG of the LEAP Partnership was formed in March 2014. The team included 30 experts in large ruminant supply chains as well as leading LCA researchers and experienced industry practitioners. Their backgrounds, complementary between products, systems and regions, allowed them to understand and address different interest groups and so ensure credible representation. The TAG was led by Ying Wang (Innovation Center for U.S. Dairy), Alexandre Berndt (EMBRAPA, Brazil), and Greg Thoma (University of Arkansas, USA).

The role of the TAG was to:

- Review existing methodologies and guidelines for assessment of environmental impacts from large ruminant supply chains and identify gaps and priorities for further work;
- Develop methodologies and sector specific guidelines for the life cycle assessment of environmental impacts from large ruminant supply chains; and
- Provide guidance on future work needed to improve the guidelines and encourage greater uptake of life-cycle assessment of GHG, water use, biodiversity change, acidification and eutrophication impacts from large ruminant supply chains.

The TAG met for its first workshop on 12–14 March 2014 in Rome, Italy. The TAG continued to work via emails and teleconferences before meeting for a second workshop, which took place on 2-3 July in Madrid, Spain. The third meeting took place on 15-16 October 2014 in Tivoli, Italy. The thirty experts were drawn from countries: Argentina, Australia, Belgium, Brazil, Canada, China, Denmark, France, India, Ireland, Kenya, Kyrgyzstan, The Netherlands, New Zealand, Rwanda, Thailand, United Kingdom, Uruguay and USA.

As a first step, existing studies and associated methods (see appendix 1 and 2) were reviewed by the TAG to assess whether they offered a suitable framework and orientation for a sector-specific approach. This avoids confusion and unnecessary duplication of work through the development of potentially competing standards or approaches. The review also followed established procedures set by the overarching international guidance sources listed in section 4.3.

The intention of this document is to provide an overview assessment existing studies and associated methods that have used lifecycle assessment for evaluation of large ruminant supply chains. Seventy
studies have been identified addressing the dairy supply chain; 28 studies on beef production; 10 studies which addressed both dairy and beef, and 1 study for buffalo (Pirlo et al., 2014). In the remainder of this document, the common approaches as well as differences in methodological and modelling choices are identified.

5.3 Period of validity

It is intended that these guidelines will be periodically reviewed to ensure the validity of the information and methodologies on which they rely. At the time of development, no mechanism is in place to ensure such review. The user is invited to visit the LEAP website (www.fao.org/partnerships/leap) to obtain the latest version.

6 The Large Ruminants Production Systems

6.1 Background

The world population of cattle and buffalo in 2012 was about 1.5 billion and 200 million respectively. In terms of distribution, for cattle North and South America comprise about 35% of the global total, with the former contributes nearly 20% and the latter 70%. For South America, Brazil dominates the cattle numbers with just over 200 million head while the USA dominates North America with about 90 million head. Asian countries have about 35% of the world’s cattle, with Africa 15%, Europe 12% and Oceania 3%. For Asia, most of the cattle are found in India (42%) and China (18%). For buffalo, the vast majority (c. 98%) are found in Asia, in particular the tropical and sub-tropical areas of South East Asia (FAOSTAT, 2014).

Cattle and buffalo produce two main tangible products: meat and milk (see section 6, appendices 3, 4 and 5). For meat, of the nearly 67 billion kilograms carcass weight (CW) produced globally in 2012, North and South America contributed about 46% of the total with Asia contributing 26%. It is interesting to note that nearly 22% of Asia’s bovine meat production is from buffalo and that in 2013 it was estimated that 25% of the world’s traded “beef” is in fact buffalo meat from India (FAOSTAT, 2014).

For milk, the global production of 625 billion kilograms of fresh, whole, cattle milk was almost equally divided between North and South America, Asia and Europe, with each contributing about 30% of the total with Africa and Oceania contributing about 5% each (FAOSTAT, 2014). For buffalo
milk, the global production of nearly 100 billion kilograms of whole milk was dominated by Asia (98%; FAOSTAT, 2014), reflecting the large number of buffalos on this continent.

The global production of meat and milk from cattle has increased by almost 40% and 50%, respectively in the last three decades. All regions except Europe have contributed to this increased production; in Europe meat production has declined 40% since 1980 while milk production has declined 20% though this trend is not evident in all countries. Buffalo meat production more than doubled in the last 30 years, while buffalo fresh milk production has increased nearly four-fold (FAOSTAT, 2014).

6.2 Diversity of large ruminant production systems

Cattle and buffalo for meat and milk production are raised under a wide variety of agro-ecological zones (AEZs) that have different climate, soil and terrain conditions/resources that ultimately determine the quantity, quality and composition of the animals’ diet and hence productivity (Figure 3, 4 and 5). As a result of the diversity of AEZs, the opportunities afforded by them and the diverse production objectives and interests of the human population groups (family producers, medium and large scale enterprises, etc.) occupying and/or living in them, leads to there being a wide variety of large ruminant production systems globally. This diversity means that there are a wide diversity of production systems with different intensities and purposes of production, varying greatly within and across countries (Steinfeld, 2006).

FIGURE 3: DISTRIBUTION OF DAIRY CATTLE PRODUCTION ACROSS WORLD REGIONS
Due to the wide variety of large ruminant production systems, it is useful to have a classification system which defines the various systems and integrates the notions of forages and crops, and livestock interactions both within and within the respective AEZs (Seré and Seinfeld, 1996; Thornton et al. 2007). Livestock production systems and their contribution to meat and milk production are constantly changing because of shifts in drivers such as market demand, land occupation (especially by resource-poor households), the relationship between the production of crops and livestock and the intensification of production. Here we describe a broad classification system of the different types of large ruminant production system found globally with the forage terminology based on that used by Allen et al., 2011.

Globally, five major livestock systems can be defined; these are:

1. Intensive mixed crop–livestock systems where animals are housed permanently or through most of the year. Feed supply can be arise from arable crops (including residues) or from cut-and-carry pasture and/or cultivated improved forages. Enterprises (including households) produce crops and livestock (the balance depending on the region), and there is usually intensive use of purchased inputs especially when finishing cattle for slaughter. In some cases income and/or livelihoods depend more on crops than livestock, but some
enterprises (particularly with small landholdings) may intensify their livestock sub-system and thereby increase its importance for income generation. In many cases manure from the housed animals is collected and used as fertilizer in crop and/or forage production. The occurrence of this system is usually an indicator of the pressure on land for crop cultivation and results in a high animal stocking rate. It also frequently occurs in areas with high human population densities which enables good linkages to markets. In some situations, irrigation is used to boost crop and/or forage productivities. Some examples of these systems include dairy or beef production enterprises in regions such as Southern Africa, North America, South America and Europe and also “zero grazing” systems for small scale milk production in areas such as Eastern Africa. This system is also used in South East Asia where buffaloes are raised for milk production and/or used for draught power. Crop residues and planted forages are produced on the farm or imported for feeding to livestock. Concentrate feeds, (i.e. feeds that contain a high density of nutrients and are usually low in crude fibre) are sometimes purchased to supplement livestock.

2. **Intensive systems with animals reared predominantly on pastures in confined farms.** In these systems, located in AEZs characterised by rainfall distributed throughout the year, animals derive most of their feed (60 to 90%) from pastures. Where climatic conditions dictate (i.e. pasture production ceases seasonally due to cold or drought) forage supplements (e.g. hay, silage) and additional feed coming from crop production may be supplied. Pastures may be permanent with introduced or indigenous perennial species or may be established yearly with annual plants and sometimes in conjunction with cropping. The establishment of pastures generally involves removal of existing vegetation, soil disturbance and other cultivation practices. Both annual and perennial pastures may receive periodic cultural treatment such as fertilization or weed control. In many cases there is a high utilisation of the grown pastures with intensive grazing (high stocking rate) management practices which may include rotational paddock grazing using electric fences. In some situations, a high proportion of the feed in these intensive systems may be purchased from off farm. In addition, particularly in East and Southern Africa, where there is the potential for livestock losses by predators, these systems may include animals being confined overnight in “bomas” or “kraals”. Usually in these cases, supplements are fed during the confinement period. Globally, the main products from this system, which is common in many regions of the world including North America, South America, Southern Africa, Europe and Oceania, include beef and/or milk from both cattle and buffalo.

FIGURE 4: DISTRIBUTION OF BEEF CATTLE PRODUCTION ACROSS WORLD REGIONS
Source: Gerber et al., 2013

FIGURE 5: DISTRIBUTION OF BUFFALOS PRODUCTION ACROSS WORLD REGIONS
3. Extensive systems with animals managed communally for grazing and fed on indigenous forages and residues from crops or trees. The principal feed resources in this system are natural pastures and crop residues with the latter sometimes including the grazing of in situ crop residues post-harvest. In some regions, animals are grazed on communal land and are brought back to the human settlement and kept in enclosures such as bomas, kraals or paddocks at night. The types of pasture used in these systems are commonly rangelands on which the indigenous vegetation is predominantly drought tolerant grasslands consisting of grasses, grass-like plants, forbs or shrubs. In many cases the grasslands are a natural ecosystem where the production of grazing livestock co-exists with wildlife. In these systems livestock production is integrated to varying degrees with crop production and cattle are primarily fed on pastures, and crop residues. These systems are usually based on rain-fed pastures and occur in areas of low to medium human population densities. In many areas, producers depend more on livestock than crops production. In these systems the role of livestock is multipurpose and the numbers, species and type of animals varies according to what is seen as optimal for the overall production of the farm or enterprise. In small holder areas, households may own a mixture of small and large ruminants for meat, milk and draught power. Compared to some of the other systems, the
levels of livestock production are low, governed by low reproduction rates, daily growth rates and milk production. These systems are common in many regions of South America, North America, Sub-Saharan Africa, Asia, South East Asia, and Oceania (Australia). In some regions, these systems may include nomadic and transhumance systems that involve regular movements of whole or part of the herd during seasonal climatic constraints. Grazing and water availability are the main drivers of these movements. Examples of these systems include some communities in South and East Africa.

4. **Systems where large ruminant production is integrated with plantation forestry or cropping.** In these systems large ruminant production or cropping is integrated with forestry plantation. These occur in a land use sequence where the forestry plantations interact in the same unit of land with cattle or annual crops. These types of systems achieve significant and positive ecological and economical interactions between forestry and beef or grain production (e.g. soybean). These integrated systems, in line with agro-ecological and sustainable intensification principles, are a good example of diversification, which is mainly driven by seasonality and risk. These systems are occurring in South America and North America.

5. **Large Scale Intensive livestock systems.** These systems are characterized by large vertically integrated production units such as feedlots used for dairy, veal or beef production in which feed, genetics and health inputs are combined in controlled environments. There is considerable variability in the structure of these systems; for beef production in North America and Australia, breeding is typically carried out in extensive or intensive rangeland areas and only the young animals are managed intensively. Some dairy systems may house cows continuously throughout their lifespan. The large scale intensive production units and their sources of feed (mainly grains) are generally spatially separated by moderate to large distances, with the feed originating from specialized feed-producing farms. In these systems, usually less than 10% of the dry matter fed to livestock is produced on the farm. These systems are common in regions of Europe and North America.
Table 1: Correlation Between the Five Major Livestock Systems Detailes above and Those Described by Robinson et al. (2011)

<table>
<thead>
<tr>
<th>Five Major Livestock Systems</th>
<th>Robinson et al. (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive mixed crop–livestock systems where animals are housed permanently or through most of the year.</td>
<td>MRA – Rainfed mixed crop/livestock systems (Arid and sub-arid)</td>
</tr>
<tr>
<td></td>
<td>MRH – Rainfed mixed crop/livestock systems (Humid and sub-humid)</td>
</tr>
<tr>
<td></td>
<td>MRT – Rainfed mixed crop/livestock systems (Highland/temperate)</td>
</tr>
<tr>
<td>Intensive systems with animals reared predominantly on pastures in confined farms.</td>
<td>LGA – Livestock only systems (Arid and sub-arid)</td>
</tr>
<tr>
<td></td>
<td>LGH - Livestock only systems (Humid and sub-humid)</td>
</tr>
<tr>
<td></td>
<td>LGT - Livestock only systems (Highland/temperate)</td>
</tr>
<tr>
<td>Extensive systems with animals managed communally for grazing and fed on indigenous forages and residues from crops or trees.</td>
<td>LGA – Livestock only systems (Arid and sub-arid)</td>
</tr>
<tr>
<td></td>
<td>LGH - Livestock only systems (Humid and sub-humid)</td>
</tr>
<tr>
<td></td>
<td>LGT - Livestock only systems (Highland/temperate)</td>
</tr>
<tr>
<td>Systems where large ruminant production is integrated with plantation forestry or cropping.</td>
<td>TREC – Tree crop systems (including livestock)</td>
</tr>
<tr>
<td></td>
<td>FORST – Forest based systems (including livestock)</td>
</tr>
<tr>
<td>Large Scale Intensive livestock systems.</td>
<td>MIA – Irrigated mixed crop/livestock Systems (Arid and sub-arid)</td>
</tr>
<tr>
<td></td>
<td>MIH - Irrigated mixed crop/livestock Systems (Humid and sub-humid)</td>
</tr>
<tr>
<td></td>
<td>MIT - Irrigated mixed crop/livestock Systems (Highland/temperate)</td>
</tr>
</tbody>
</table>

6.3 Diversity of large ruminant value chain

As discussed above, globally there are a wide variety of large ruminant production systems; due to this variation it is impossible to succinctly describe them all here. Figure 6 is a conceptual model that attempts to show important points that need to be considered when determining the components and aspects of dairy and beef production systems. The solid boxes show the different stages within the production system, while the dashed boxes denote the raw and processed products; the main products of the dairy (milk and milk products) and beef (live-weight, meat and hide products) are shown. Other possible outputs from mature animals are shown by arrow “a” (e.g. semen sales, draught power, wealth management; these are discussed fully in the section on product description).
Figure 6 Conceptual model of large ruminant dairy and beef production systems showing the different life stages, relationships between the systems and outputs.

For four example systems, arrows on the right shows the changes in the enterprises during the production cycle reflecting the buying and selling of animals with the widths of the lines reflecting the average quality of the feed at the different stages. See text for details.

Some representative movement of animals between the dairy and beef systems are shown by arrows e.g. bobby and weaned calves entering the beef supply chain (“b”), dry dairy heifers going to beef finishing operations (“c”) or directly to slaughter (“d”) or cull dairy cows going to slaughter (“e”). Other movements are of course possible, for example in systems using dual purpose breeds. Where movements occur between the dairy and beef systems, appropriate allocation decisions must be made (see the section 9).

The solid boxes denote the various life stages of the cattle and buffalo during the production chain. For both the dairy and beef systems “Gestation” refers to the pregnancy period after mating when the calf foetus develops prior to birth. Also, for both systems “Birth – Weaning” is the period after birth up until the calf is weaned from either its mother’s milk or a milk replacement substitute a point at which other feedstuffs such as calf meal may also be fed in varying proportions. This stage may have different durations depending on the production system.
For the dairy system, “Rearing (heifer)” refers to the stage where the female animal (heifer) gains weight post-weaning to approximately 65 – 80% of the adult weight. The heifer may or may not be mated; if she is mated she may or may not become pregnant. If she is not mated or does not become pregnant she may be transferred to the beef system for fattening (arrow “c”) or immediate slaughter (arrow “d”). Note that age of first mating will vary widely for the different farming systems.

For the beef system, “Rearing” refers to the stage where post-weaning steer/bull and heifer calves gain weight to reach adult weight. Similar to the dairy system, the heifer may or may not be mated; if mated this usually occurs at 60%-80% of adult weight, and at this point the heifer may or may not become pregnant. The age of first mating will vary widely for the different farming systems. Both the male and female animals may be slaughtered at this stage or enter the mature stage.

For the dairy system “Mature (milking)” refers to the stage where adult post-partum cows are milked. Note that this stage will also include the period of the year when the cows are dried off. For the beef system, two distinct adult stages are recognized: “Mature (maintenance)” and “Finishing”. The former refers to where animals are at least at their minimum mature body weight. Where the body weight is deliberately increased above that of the “Mature (maintenance)” stage for slaughter this is referred to as the “Finishing” stage. This frequently involves the feeding of higher quality feedstuffs and/or reducing energy requirements (e.g. feedlots). During the “Mature (maintenance)” stage the animals may be used for other purposes such as providing draught power a process that requires maintenance energy as well as additional energy for the work being performed.

In order to evaluate production systems, some key points need to be considered and the data collected in the inventory stage. Some examples of production systems are shown to the right of the diagram; as a guide to point out some of the factors that need to be considered when evaluating a production system. Real world examples of a variety of production systems are illustrated in appendix 4. This information together with the dry matter intake at the different stages is crucial in determining GHG and other emissions from the production system. Where there is a gap between life stages this indicates that the animal(s) change enterprise; where transport between enterprises is needed this is shown by a “T”. If the arrow is continuous then there is no change in the enterprise between life stages. For example, system “A” represents animals kept by a single enterprise (e.g. family small holding) from birth to slaughter with the slaughter taking place at home. After weaning the calves are fed relatively low quality forage until slaughter as denoted by the narrower width of the arrow. For system “B” the calves are sold to another enterprise after weaning (shown by the gap), finished by the new owners who in turn sell them to an intermediary that slaughters the animals at a meat processing plant. System “C” shows a complex production system with the animals being bought and sold multiple times with the wide width of the arrow at the last stage showing finishing in a feedlot using a
high quality diet. Finally “Z” shows a veal system with the animals going from the post-weaning rear stage to slaughter with no mature stage and the calves being sold to a meat processor. A more detailed description of regional production system and value chain can be found in appendix 4.

6.4 Multi-functionality of large ruminant supply chain

For a significant proportion of humanity, large ruminants are seen to contribute meat and milk for their nutritional nourishment. However, for many poor and vulnerable people, large ruminants also play crucial role in the four dimensions of food security (availability, access, stability and utilization) and are important for providing nutrition, providing high-quality proteins and a wide diversity of micronutrients. Additionally, where people have no access to banks and other financial services, large ruminants also allow communities to store and manage wealth, and are thus an important buffer in times of crisis. In addition, large ruminants, in the form of draught animals remain the most cost-effective power source for small and medium-scale farmers. In developing countries, the combining of cattle and buffaloes used for draught purposes as well as for meat and milk production is a common practice. Compared with the use of tractors, animal power is a renewable energy source in many developing countries and is produced on the farm.

In mixed crop-livestock systems, large ruminants often contribute to productivity, as manure is used to fertilize the soil and maintain its organic matter content. The integration of livestock and crops allows for efficient nutrient recycling. Aside from directly providing plant nutrients, manure also provides important organic matter to the soil, maintaining its structure, water retention and drainage capacity. In addition, in some developing countries, dung from cattle systems is used as fuel for cooking or heating for the households.

On-farm biogas production from cattle manure is a substitute for fossil fuel used in dairy systems in many countries. This resource provides a number of services, such as lighting and heating energy for dairy operations, or driving machinery such as water pumps. Additionally the nutrients in the effluent from biodigesters can be re-used as fertilizer.

Large ruminants also play an important role in cultural and religious significance. For example in the Hindu religion, cows are considered sacred animals and are honoured in society and as a consequence most Hindus do not eat beef. Finally, large ruminants can contribute effectively to the management of landscapes and preserved ecosystems. In most areas, large ruminants contribute to the cultural landscape, providing ecosystem services through encroachment control, conservation of biodiversity, and the presence of traditional agricultural activities and infrastructure. Importantly, large ruminants are endemic to ecosystems in many parts of the world and are therefore an integral part of natural ecology.
6.5 Overview of global emissions from large ruminants

The GHG emissions from livestock supply chain are estimated at 7.1 Gt CO₂-eq per annum, representing 14.5 percent of all human-induced GHG emissions. Large ruminants (cattle and buffalo) are responsible for about 74 percent of the livestock sector’s emissions, in which GHG emission from cattle represent about 65 percent of livestock sector emissions (4.6 Gigatonnes CO₂-eq), making cattle the largest contributor to sector emissions. Buffalo production contributes 618 million tonnes CO₂-equivalents or 9 percent of total sector emissions (Gerber et al., 2013).

For cattle, the global average GHG emission intensity have been estimated to be 2.8 kg CO₂-eq per kg of fat and protein corrected milk for milk and 46.2 kg CO₂-eq of carcass weight for beef (Gerber et al., 2013). However, there is distinct difference in emission intensity between beef produced from dairy herds and from specialized beef herds; the emission intensity of beef from specialized beef herds is almost four fold that produced from dairy herd (68 vs 18 kg CO₂-eq per kg CW), mainly because dairy herds produce both milk and meat. This results in the allocation of the environmental burden to two main products, while specialized beef herds mostly produce only meat as the main product. For buffalo, average buffalo milk emission intensity ranges from 3.2 in South Asia to 4.8 kg CO₂-eq per kg of fat – protein corrected milk (FPCM) in East and Southeast Asia. Average emission intensity of buffalo meat production ranges from 21 kg CO₂-eq per kg CW in Near East and North Africa to 70.2 kg CO₂-eq per kg CW in East and Southeast. (Gerber et al., 2013). For both cattle and buffalo, high emission intensity production systems tend to be lower in productivity.

Enteric fermentation and feed production largely dominates the sources of GHG emissions along the supply chains in large ruminant production. Enteric emissions from cattle represent 46 percent and 43 percent of the total emissions in dairy and beef supply chains, respectively. Feed emissions contribute about 36% percent of milk and beef emission of cattle. Over 60 percent of emissions from buffalo production come from enteric fermentation. Fertilization of feed crops contributes 17 percent and 21 percent of emissions for buffalo milk production and beef production. Gerber et al. (2013) also showed that emission intensities vary greatly between production units, even within similar production systems, leaving much room for improvement. The technologies and practice that could help reduce emissions exist but are not widely used, but their adoption and use by the bulk of the world’s large ruminant producers could result in a significant reduction in emissions. A major driver of GHG emission intensity is the efficiency of feed conversion into product, which is determined by potential animal productivity, as well as feed availability and quality through the year. Manure management also has an important effect on GHG emissions. Opportunities for reducing GHG emission intensity include use of better quality feed and diet formulation to lower enteric and feed emissions, improved animal breeding, health and reproduction would shrink the herd overhead and related options. Improved management of manure practices not only reduces emissions, but also ensures recovery and recycling of nutrients and energy, along supply chains. However, the potential for reducing GHG
emission intensity are dependent on local climatic, animal systems and feed conditions. The application of mitigation technologies or practices require adequate policies, awareness raising and incentives for technology transfers.
7 METHODODOLOGY FOR QUANTIFICATION OF THE ENVIRONMENTAL FOOTPRINT OF DAIRY, BEEF AND BUFFALO SUPPLY CHAINS

This document is intended to provide guidelines for users to calculate the GHG emissions, fossil energy use, and water use for large ruminant (buffalo and cattle) products over the key stages of the cradle-to-primary-processing-gate. In addition, other impact categories such as acidification, eutrophication, biodiversity change and land use are slightly described in these guidelines. The Guidelines are based on use of an attributional Life Cycle Assessment (LCA) approach. It is expected that the primary users will be individuals or organisations that have a good working knowledge of LCA.

7.1 Description of products

These Guidelines cover the cradle-to-primary-processing-gate and the main products generated are one or more of:

- Meat products and other possible co-products of processing such as tallow, hides, and renderable material,
- Milk products, such as cheese, yoghurt and milk powder, with possible co-products such as whey.
- Draught power and in some circumstances manure is a valuable (revenue generating) co-product
- Wealth management

These products and services are provided from a diverse range of production systems around the globe. (See appendix 5 for more details). Other co-products could be defined by the users to reflect the multi-functionality of the system under study such as cultural landscape management, corrida, education in agri-tourism, religious-related services.

7.2 Life cycle stages: modularity

Conduct of an LCA of the primary products can be done by dividing the production system into modules that relate to the different life cycle stages. The three main stages can be summarised into feed production (including feed processing, milling and storage), animal production (including animal breeding) and primary processing (as outlined in section 8.4) (Figure 7). The feed production stage covers the cradle-to-animal’s-mouth and includes a range of feeds including processed concentrates, grains, forage crops; pastures, shrubs and trees (see LEAP Animal Feeds Guidelines). The animal production stage covers the cradle-to-farm-gate stage and the main products generated include one or
more of the following: live animals (live weight), fresh milk, and draught power and wealth management services.

FIGURE 7: MODULAR SCHEME OF THE LARGE RUMINANT PRODUCTION CHAINS

8 Goal AND SCOPE DEFINITION

8.1 Goal of the LCA study

The first step required when initiating an LCA is to clearly set the goal or statement of purpose. This statement describes the goal pursued and the intended use of results. Numerous reasons for performing an LCA exist. LCAs can be used, for example, to serve the goal of GHG emission management by determining the carbon footprint of products and understanding the GHG emission hotspots to prioritize emissions-reduction opportunities along supply chains. However, LCAs can go beyond a carbon footprint and include other environmental impact categories such as eutrophication and provide detailed information on a product’s environmental performance and can serve performance tracking goals as well as to set progress and improvement targets. They could also be used to support reporting on the environmental impacts of products, although these guidelines are not intended for comparison of products or labelling of environmental performance.

It is therefore of paramount importance that the goal and scope be given careful consideration because these decisions define the overall context of the study. A clearly articulated goal helps ensure that aims, methods and results are aligned. For example, fully quantitative studies will be required for benchmarking or reporting, but somewhat less rigor may be required for hotspot analysis. Interpretation is an iterative process occurring at all steps of the LCA and ensuring that calculation approaches and data match the goal of the study (Figure 1 and Section 12). Interpretation includes completeness checks, sensitivity checks, consistency checks and uncertainty analyses. The conclusions (reported or not) drawn from the results and their interpretation will be strictly consistent to the goal and scope of the study.

Seven aspects shall be addressed and documented during the goal definition (European Commission, 2010):

1. Subject of the analysis and key properties of the assessed system: organization, location(s), dimensions, products, sector, and position in the value chain.
2. Purpose for performing the study and decision-context.

3. Intended use of the results: will the results be used internally for decision-making or shared externally with third parties.

4. Limitations due to the method, assumptions, and choice of impact categories: in particular limitations to broad study conclusions associated with exclusion of impact categories shall be addressed.

5. Target audience of the results.

6. Comparative studies to be disclosed to the public and need for critical review.

7. Commissioner of the study and other relevant stakeholders.

8.2 Scope of the LCA

The scope is defined in the first phase of an LCA, as an iterative process with the goal definition. It states the depth and breadth of the study. The scope shall identify the product system or process to be studied, the functions of the system, the functional unit, the system boundaries, the allocation principles, and the impact categories. The scope should be defined so that the breadth, depth and detail of the study are compatible and sufficient to achieve the stated goal. While conducting an LCA of livestock products, the scope of the study may need to be modified as information is collected, to reflect data availability and techniques or tools for filling data gaps. Specific guidance is provided in the subsequent sections. It is also recognized that the scope definition will affect the data collection for the lifecycle inventory, as described in more detail in Section 10.1.

8.3 Functional Units/Reference flows

Both functional units and reference flows provide references to which input and output data are normalized in a mathematical sense. Both functional units and reference flows shall be clearly defined and measurable (ISO 14044: 2006). While a functional unit describes the quantified performance of the function(s) delivered by a final product, reference flows provide a quantitative reference for intermediate products.

Livestock products are among those characterized by a large variety of uses (see 6.2.2.2., Envifood Protocol, 2013) and functions delivered change accordingly. In addition, many livestock products might be both intermediate products and final products. For example, farmers can distribute raw milk directly to consumers or supply it to dairy industry for further processing and bottling. For these reasons and for ensuring consistency across assessments conducted at sectorial level, livestock products are not classified in final and intermediate products in these guidelines and no differentiation is made between functional units and reference flows accordingly.
Recommended functional units/reference flows for different main product types are given in Table 2. Where meat is the product, the functional unit/reference flow, when the animal leaves the farm, shall be live-weight and at the stage of leaving the meat processing plant (or abattoir) shall be the weight of product (meat-product weight) destined for human consumption. In many western countries with commercial processing plants, the product weight has traditionally been identified as carcass-weight at the stage of leaving the meat processing plant. Carcass-weight (or sometimes called dead-weight) generally refers to the weight of the carcass after removal of the skin, head, feet and internal organs including the digestive tract (and sometimes some surplus fat). However, these internal organs, for the most part, are edible. Red offal (e.g. liver, kidney, heart) and green offal (e.g. stomach and intestines) are increasingly being harvested and should be included in the edible yield where they are destined for human consumption.

Note that the “product-weight” may include a small proportion of bone and cartilage retained within the animal parts for human consumption which are wasted at the consumption stage. The specific edible yield therefore needs to be specified in the functional unit/reference flow. An example of a functional unit/reference flow of meat products would be 1000 kg of meat – with specified edible yield, moisture, fat and protein packaged for secondary processing.

Table 2: Recommended functional units/reference flows for the three different main product types from large ruminants according to whether it is leaving the farm or primary product processing gate.

<table>
<thead>
<tr>
<th>Main product type</th>
<th>Cradle-to-farm-gate</th>
<th>Cradle to primary-processing-gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat</td>
<td>Live-weight (kg)</td>
<td>Meat product(s) (kg)</td>
</tr>
<tr>
<td>Milk</td>
<td>Fat and Protein -Corrected-Milk (kg)</td>
<td>Dairy product(s) with specific fat and protein content (kg)</td>
</tr>
<tr>
<td>Draught Power</td>
<td>MJ</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The bone content of the total meat product should be defined using assumptions relevant to the country being investigated. Where specific data for “product-weight” is not available, the cold carcass-weight shall be used and can be estimated from the live-weight using default values, based on a summary of international data. An example of the relative content by weight of different meat cuts and co-products is given in appendix 9.
Where milk is the main product type, the functional unit/reference flow shall be the weight of the milk as it leaves the farm gate corrected for fat and protein content (fat and protein corrected milk). The latter standardises the milk after adjustment for differences associated with breed and production. After the milk primary-processing stage there are a wide range of possible products and the appropriate functional unit/reference flow that is reported shall be the weight of the specific product (milk product weight) with appropriate information supplied regarding fat and protein content.

There are situations in which additional functions of large ruminant systems may be of interest, especially for small holder systems in developing countries. These include draught power and wealth management. When these functions fall within the goal and scope definition, then the multi-functional character must be accounted following the procedures provided in chapter 9.

8.4 System boundary

8.4.1 GENERAL / SCOPING ANALYSIS

The system boundary shall be defined following general supply chain logic including all phases from raw material extraction to the point at which the functional unit is produced. A full LCA would include processing, distribution, consumption and product end-of-life management; however, this guide does not cover post primary-processing stages in the supply chain.

The overall system boundary covered by these guidelines represents the cradle-to-primary-processing-stages of the life cycle of the main products from large ruminants (Figures 8 and 9). It covers the main stages of the cradle-to-farm gate, transportation of animals to primary processor and to the primary processing gate (e.g. to the output loading dock).

The modular approach outlined in section 7.2 illustrates the three main stages of the cradle-to-primary-processing-gate. The feeds stage is covered in detail in the associated LEAP Animal Feed Guidelines and covers the cradle-to-animal’s-mouth stage for all feed sources (including raw materials, inputs, production, harvesting, storage and feeding) and other feed-related inputs (e.g. milk powder for feeding calves and nutrients directly fed to animals) covered in detail in section 11.2.

The animal production stage covers all other inputs and emissions associated with animal production and management not covered by the LEAP Animal Feed Guidelines. It is important to ensure all farm-related inputs and emissions are included in the feed and animal stages and that double counting is avoided. The animal production stage includes accounting for breeding animals as well as those used directly for meat/milk production. This may involve more than one farm if animals are traded between farms prior to processing.

The primary processing stage shall be limited to the primary milk processing factory and animal slaughter facility (back-yard, village slaughter centre and abattoir) for meat processing. All transportation steps within and between the cradle-to-primary-processing-gate shall be included.
The choice of basic milk and meat products as typical sector outputs is intended to provide a point in the supply chain that has an analogue across the range of possible systems, geographies, and goals that may be encountered in practice. The basic milk and meat products may be used directly by the consumer (particularly in developing countries) or may undergo further secondary processing with addition of other constituents to make more complex food products (e.g. sausage).
FIGURE 8: SYSTEM BOUNDARY DIAGRAM FOR THE LIFE CYCLE OF BEEF AND DAIRY CATTLE COVERING THE MAIN PRODUCTS OF MILK AND MEAT AND OTHER CO-PRODUCTS.

The large box covering the cradle-to-primary-processing gate represents the stages covered by guidelines in this document, while the inner left box relating to land and feed is covered in the Feed LCA guidelines. The encircled t symbol refers to the main transportation stages. The terms in italics refer to functional units of products leaving several different stages. The ‘cattle’ box may include up to several phases of movement of animals between different farms/areas/systems before progress to primary processor.
There are several Product Category Rules (PCRs) available that extend beyond the system boundary covered in these Guidelines and that include the post primary-processing supply chain for meat (Boeri 2013 PCR Meat of Mammals), dairy cow milk products (e.g. IDF 2010, Sessa 2013a,b PCR Yoghurt, butter and cheese).

Figure 8 and 9 illustrates a range of co-products produced from the farm-to-primary-processing gate, which are outside the system boundary covered by these Guidelines. There are no PCRs relating specifically to these co-products. However, there are some relevant LCA publications for leather (Joseph and Nithya 2009; Mila i Canals et al. 1998; Mila i Canals et al. 2002), biofuel from tallow (Thamsiriroj and Murphy 2011), thermoplastic from blood meal (Bier et al. 2012) and products from rendering animal processing by-products (Ramirez et al. 2011).

a) Scoping analysis

Frequently a scoping analysis based on a relatively rapid assessment of the system can provide valuable insight into areas which may require additional resources to establish accurate information.
for the assessment. Scoping analysis can be conducted using secondary data to provide an overall estimate of the system impact. Furthermore, based on existing literature reviews relating to the large ruminants sector, it is relatively clear that for production systems the following factors are extremely important to assess with high accuracy: the diet, the feed conversion efficiency, reproduction efficiency, and livestock daily growth rates, manure production and management. Depending upon the particular operation under study additional effects may be observed. In the post farm supply chain, energy efficiency at the processing and manufacturing stages as well as an accurate assessment of transportation modes and distances are important.

8.4.2 Criteria for System Boundary

Material system boundaries: A flow diagram of all assessed processes should be drawn which indicates where processes were cut off. For the main transformation steps within the system boundary, it is recommended that a material flow diagram is produced and used to account for all of the material flows, e.g. within the milk processing stage the mass of milk solids entering the factory is defined and shall equate to the sum of the mass of milk solids in the range of products produced.

Spatial system boundaries: The cradle-to-farm-gate stage includes feed and animal components. The LCA of feeds is covered in detail in an associated Guidelines document (LEAP Animal Feed Guidelines) and covers the cradle-to-animal-mouth stage for all feed sources (including raw materials, inputs, production, harvesting, storage, loss and feeding). Feeds may be grown on-farm, or animals may graze/browse across a range of feed sources on land with multiple ownership, and/or a proportion of the feeds may be produced off-farm and transported to the farm for feeding to animals. The LEAP Animal Feed Guidelines covers all emissions associated with direct land occupation and land use change. The animal components cover all other inputs and emissions in the large ruminant supply chain not covered by the LEAP Animal Feed Guidelines. This includes emissions associated with large ruminant production and management. The latter includes accounting for the fate of excreta but, it is important to avoid double counting if excreta is captured as manure and represents a direct input for feed production. The estimation of manure emissions from transport and application are included, in the LEAP Animal Feed Guidelines. Animal production may involve more than one farm if animals are traded between farms prior to processing. For example, calves may be weaned or partly grown on one farm and sold on to another farm for finishing. These multiple components shall be accounted for in the calculations.

The primary processing stage is limited to animal slaughter (which may be backyard, village slaughter unit or abattoir) for meat processing to produce the functional unit. For primary processing in developing countries, village slaughter centres are common and these can include direct processing as well as sale of live animals to consumers for home-processing or on-selling to large abattoirs near
cities. All emissions directly related to inputs and activities in the cradle-to-primary-processing chain stages are included, irrespective of their location. All transportation steps within and between the cradle-to-primary-processing-gate are included as well as any packaging materials associated with products sold from the slaughtering facility.

The system boundaries covered shall include feed production, animal production and primary processing stages, as described in section 2.3.1.

8.4.3 MATERIAL CONTRIBUTION AND THRESHOLD

Life cycle assessment requires tremendous amounts of data and information. Managing this information is an important aspect of performing life cycle assessment, and all projects have limited resources for data collection. In principle all LCA practitioners attempt to include all relevant exchanges in the inventory. Some exchanges are clearly more important in their relative contribution to the impact categories relevant to the study, and significant effort is required to reduce the uncertainty associated with these exchanges. In determining whether or not to expend significant project resources to reduce the uncertainty of small flows, cut off criteria may be adopted. (Section 8.2). Exchanges which contribute less than 1 per cent percent of mass or energy flow may be cut off from further evaluation, but should not be excluded from the inventory. Larger thresholds shall be explicitly documented and justified by the project goal and scope definition. A minimum of 95 percent of the impact for each category shall be accounted for. Inputs to the system that contribute less than 1 per cent of the environmental significance for a specific unit process (activity) in the system can be included with an estimate from a scoping analysis (Section 8.2). The scoping analysis can also provide an estimate of the total environmental impact to evaluate against the 95% minimum.

For some exchanges which have small mass or energy contributions there still may be a significant impact in one of the environmental categories. Additional effort should be expended to reduce the uncertainty associated with these flows. Lack of knowledge regarding the existence of exchanges which are relevant for a particular system is not considered a cut off issue but rather a modelling mistake. The application of cut off criteria in an LCA is not intended to support the exclusion of known exchanges, it is intended to help guide the expenditure of resources towards the reduction of uncertainty associated with those exchanges which matter the most in the system.

8.4.4 TIME BOUNDARY FOR DATA

For products from large ruminants, a minimum period of 12 months should be used, provided this is able to cover all life stages of the animal through to the specified end point of the analysis. To achieve this, the study must use an ‘equilibrium population’ which shall include all animal classes and ages present over the 12 month period required to produce the given mass of product.
Documentation for temporal system boundaries shall describe how the assessment deviates from the one-year time frame. The time boundary for data shall be representative of the time period associated with the average environmental impacts for the products.

In extensive production systems it is common for important parameters to vary between years. For example, reproductive rates or growth rates may change based on seasonal conditions. In these cases where there may be considerable inter-annual variability in inputs, production and emissions, it is necessary for the one-year time boundary to be determined using data averaged over 3 years to meet representativeness criteria. An averaging period of 3 to 5 years is commonly used to smooth the impact of seasonal and market variability on agricultural products.

It is important to state that in this section the time boundary for data is described, and not the time boundary of a specific management system. When the specific management system, or additional system functions such as wealth management or the provision of draught power influence the life cycle of the animal this needs to be clearly stated. However, this would in general not influence the time boundary for the data being 12 months.

8.4.5 Capital Goods

The production of capital goods (buildings and machinery) with a lifetime greater than one year may be excluded in the life-cycle inventory. All consumables and at least those capital goods whose life span is below one year should be included for assessment, unless it falls below the 1% cut off threshold noted in section 8.4.3.

8.4.6 Ancillary Activities

Emissions from ancillary inputs, e.g. veterinary medicine, servicing, employee’s commutes, executive air travel or accounting or legal services may be included if relevant. To determine if these activities are relevant, an input output analysis can be used as part of a scoping analysis.

8.4.7 Delayed Emissions

All emissions associated with products to the primary processing stage are assumed to occur within the time boundary for data, generally of one year (section 8.4). Delayed emissions from soil and vegetation are considered in the LEAP Animal Feed Guidelines. The PAS 2050:2011 provides additional guidance regarding delayed emissions calculations for interested practitioners (British Standards Institution, 2011).

8.4.8 Carbon Offsets

Offsets shall not be included in the carbon footprint. However, they may be reported separately as “additional information”. If reported, details for the methodology and assumptions need to be clearly documented.
8.5 Impact categories

For the LCA, all impact categories that are qualified as relevant and operational should be covered (Section 2.1). These include: climate change, acidification, eutrophication, land occupation, biodiversity change, water use and fossil energy use. For climate change (as well as climate change from land use change), land occupation, and fossil energy use, the recommended method should be applied. For the other impact categories, Table 3 provides examples of possible methods that are often applied in the modelling of the impacts. Table 3 does not, however, cover all available methods and models. Other methods and models may be applied if: a) these have greater local relevance; b) they have scientific underpinning, proven in peer-reviewed scientific publications; and c) are publicly available for other users.

Any exclusion shall be explicitly documented and justified; the influence of such exclusion on the final results shall be discussed in the interpretation and communication stage and reported. The following sections describe in details some impacts categories: Eutrophication, Acidification and Biodiversity.

8.5.1 Eutrophication

Nutrients in manure (mainly nitrogen and phosphorus) or in the chemical fertilizers to produce feed may flow into surface water either directly or after field application. This process can provide limiting nutrients to algae and aquatic vegetation leading to a proliferation of aquatic biomass. Decomposition of this biomass consumes oxygen, creating conditions of oxygen deficiency, killing fish and other aquatic organisms. While many countries have strict regulations aimed at containing (e.g., catchment basins) or preventing the direct flow of manure or fertilizer nutrients (e.g., soil phosphorus directive) into surface or ground water, some countries lack such regulations or climatic events can lead to the uncontrolled release of nutrients into water bodies. Eutrophication is considered to be one of several impact categories that could be considered in LCA and its documentation would require the use of an impact assessment method and a description of the relevant emissions influenced (see Table 3). Quantifying eutrophication directly from large ruminants in grazing systems with access to streams or in close proximity to streams or water bodies remains difficult and is likely imprecise as these areas are often shared with other wildlife. Approaches to developing an eutrophication score associated with manure arising from large ruminants or chemical fertilizers used in crop production are covered in the LEAP Animal Feed Guidelines.

8.5.2 Acidification

Nutrients in manure (mainly nitrogen) or in the chemical fertilizers used to produce feed can emit NOx, NH3 and SOx leading to a release of hydrogen ions (H+) when these gases are mineralized. The protons contribute to the acidification of soils and water when they are released in areas where the
buffering capacity is low, resulting in soil and lake acidification. Lupo et al. (2013) estimated potential terrestrial acidification impacts of beef cattle production systems at 328 g SO2 eq per kg carcass weight. The main contributors to this impact were manure emissions and handling (286 g SO2 eq), followed by minor contributions from feed production (23.2 g SO2 eq) and mineral and supplement production (11.5 g SO2 eq). Ammonia emitted from manure can also be a major contributor to soil acidification. Quantifying NH3 emitted from large ruminant production systems must account for factors such as manure management, ambient temperature, wind speed, manure composition and pH. Current approaches include micrometeorological methods, mass balance accounting and chamber methods. Hristov et al. (2011) indicated that data on NH3 emissions from large ruminant production systems are highly variable with dairy farms in North America emitting 59 g/cow/day (range of 0.82 to 250 g NH3 /cow/day) and beef feedlots emitting an average of 119 g/animal/day. While many countries have strict regulations aimed at preventing soil acidification (e.g., EU Thematic Strategy for Soil Protection) as a result of the direct flow of excessive manure or fertilizer nutrients into the environment, some countries lack such regulations. Acidification is considered to be one of several impact categories that can be considered in LCA and its documentation requires the use of an impact assessment method and a description of the relevant emissions influenced. Approaches to developing an acidification score associated with manure arising from large ruminants or chemical fertilizers used in crop production are covered in the LEAP Animal Feed Guidelines.

8.5.3 BIODIVERSITY

Five main drivers of biodiversity loss are recognized by the Millennium Ecosystem Assessment (Milenium Ecosystem Assessment, 2005) and described in the LEAP Biodiversity Principles. These include habitat change, pollution, climate change, over-population and invasive species. For most of these drivers, large ruminants can either have positive or negative effects on biodiversity and in some cases continuous gradients between negative and positive effects exists (i.e., different management practices leading to either degradation or restoration in the same region). It is important that pressure indicators reflect both of these attributes. A primary example of habitat change putting pressure on biodiversity is the deforestation of the Amazonian rainforest to produce pastures and arable crops for livestock feed. Such a process simplifies the landscape, restricting species composition and fragmenting ecosystems. Additionally, intensification of large ruminant production and overgrazing can lead to desertification, soil degradation and preferential selection for invasive species. In contrast, extensively managed large ruminants on permanent semi-natural grasslands are among the habitats with the highest biodiversity levels (Baldock et al., 1993) and large ruminant activities can contribute to enhanced levels of biodiversity. For example, in African savannas, pastoralism is often compatible with wildlife and can enrich savanna landscapes (Reid, 2012). Without grazing large ruminants, ecological succession would result in the loss of many specialised species in several of the world’s
grassland regions. Extensive large ruminant grazing facilitates the restoration of abandoned grazing areas increasing species richness of vascular plants (Pykälä, 2003) or arthropods (Pöyry et al., 2004). Large ruminant producers can also help in preserving biodiversity through control of feral animals and weeds and managing the environmental impact of damaging wildfires. In grazed grasslands, large ruminant excreta makes an essential contribution to nutrient cycling (Gibson, 2009), and nutrient loading in grasslands can benefit biodiversity and contribute to carbon sequestration. However, in intensive systems, excessive nutrient excretion can lead to acidification and eutrophication (Sections 8.5.1 and 8.5.2) causing changes in community composition and plant species losses.

Quantifying the impact of livestock systems on biodiversity is crucial as mitigation options to address environmental impacts may have varying impacts on biodiversity. If biodiversity and ecosystem services were considered with environmental impacts to develop a sustainability assessment, extensive large ruminant systems could result in higher levels of sustainability even though they typically have higher levels of GHG emission per kg of meat or milk. Trade-offs exist between the environmental performance and biodiversity environmental criteria; therefore, assessing both criteria is needed to reveal what mitigation options will improve the overall sustainability of large ruminant production. Approaches to considering biodiversity in LCA are under development and discussed extensively in LEAP Biodiversity Principles.
Table 3: Examples of Impact Categories and Impact Assessment Methods

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Impact category indicator</th>
<th>Characterization model</th>
<th>Sources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>kg CO₂ equivalent</td>
<td>Bern model - Global Warming Potentials (GWP) over a 100 year time horizon.</td>
<td>IPCC, 2006c</td>
</tr>
<tr>
<td>Climate change from direct LUC to be reported separately</td>
<td>kg CO₂ equivalent</td>
<td>Bern model - Global Warming Potentials (GWP) over a 100 year time horizon. Inventory data for area associated with land use change per land occupation type and related GHG emission are based on two methods: 20 years depreciation of historical land use change (PAS2050-1:2012) global marginal annual land use change (Vellinga, 2012)</td>
<td>BSI, 2012 PAS2050-1:2012 Vellinga 2013, see annex</td>
</tr>
<tr>
<td>Fossil energy use</td>
<td>MJ (HHV)</td>
<td>- Based on inventory data concerning energy use
- Primary energy for electricity production required
- No impact assessment method involved</td>
<td>In several impact assessment methods, such as Recipe and Guineé et al., 2002, fossil energy use is either a separate impact category or part of a larger category such as abiotic depletion.</td>
</tr>
<tr>
<td>Land occupation</td>
<td>m²* year per land occupation category (arable land and grassland and location)</td>
<td>- Inventory data
- No further impact assessment method involved</td>
<td>ReCiPe (Goedkoop et al., 2008), ILCD or a regional specific impact assessment method For US and Japan: Hauschild et al. (2013)</td>
</tr>
<tr>
<td>Acidification</td>
<td>Depending on the impact assessment method</td>
<td>Depending on the impact assessment method</td>
<td>ReCiPe (Goedkoop et al., 2008), ILCD or a regional specific impact assessment method</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Depending on the impact assessment method</td>
<td>Depending on the impact assessment method</td>
<td>ReCiPe (Goedkoop et al., 2008), ILCD or a regional specific impact assessment method</td>
</tr>
</tbody>
</table>
9 Multi-functional processes and allocation

One of the challenges in LCA has always been associated with proper assignment (allocation) of shared inputs and emissions to the multiple products from multi-functional processes. The choice of the method for handling co-production often has a significant impact on the final distribution of impacts across the co-products. Whichever procedure is adopted shall be documented and explained, including sensitivity analysis of the choice on the results. As far as feasible, multi-functional procedures should be applied consistently within and among the data sets. For the purposes of these guidelines consistent use refers to choosing the highest method from the ISO hierarchy that can be applied for all multifunctional processes at a given stage of the supply chain – thus if economic allocation is used for soymeal/oil, then all meal/oil combinations should also use economic allocation. More specifically, these guidelines require adoption, in the following order in alignment with the specific goal and scope definition of the study, of system separation (e.g., separately inventory for dairy, chickens, and goats in multi-species systems) and system expansion (to include multiple products as the functional unit).

For situations where system separation or expansion is not used, the sum of allocated inputs and outputs should equal unallocated inputs and outputs. Systems with two major products such as dairy cattle should consider optimization of impacts from both live animal and milk sales/production concurrently. We recommend that impacts are reported for all products and considered in research discussions to help overcome burden shifting problems (i.e. where apparent mitigation in one product is simply the result of ‘burden shifting’ from one major product to another, such as from milk to live animals). In general, the aim of these guidelines is to aid in overall reductions in environmental impacts, and therefore evaluation of mitigation options should always consider reductions for the operation as a whole and not exclusively for just one of several co-products.

When several LCAs are combined to obtain an aggregated view of the larger system, it is essential that the system models of the LCAs are the same, so that all burdens caused by the aggregated demand are fully accounted so that no burdens are omitted or double-counted. For example, when a food crop uses the manure from an animal system, and the two systems are combined to view the consequences of the aggregate demand, the consequences of the manure management must be included only once, and the fertilizer use must be the full fertilizer requirement of the food crop minus the amount of fertilizer displaced by the manure. This can only be ensured if all inputs are modelled as marginal, and system substitutions are not mixed with other allocation procedures (an additional reason for exclusion of substitution as a method for handling multi-functionality in these guidelines). This guidance strongly encourages that aggregated data not be included if it applies other methods for allocation, except when necessary using proxy data for inputs with low significance.
It has been demonstrated that mitigation strategies focusing on one product (milk) without taking into account changes in the co-product system (live animals sold) can result in erroneous conclusions because negative changes in the co-product system have the potential to outweigh positive changes in the main product system (Zehetmeier et al., 2012). Cederberg and Stadig (2003) found that higher milk production and fewer dairy cows in the Swedish dairy herd resulted in lower emissions intensity for milk, but no change to total emissions when the expanded system included the necessary additional production of beef from suckler cows to meet existing demand for meat. Considering these two studies and others (Puillet et al., 2014), there is sufficient evidence of the limitations of attributional allocation in guiding future management decisions. The attributional allocation approach is appropriate for both benchmarking and hotspot analysis.

The function of wealth management that is relevant in many systems presents a challenge with regard to allocation of the whole system environmental footprint because it is a service rather than a product directly derived from the animal’s physiological functions in the manner of milk, meat or draught power. For purposes of the guidelines, the allocation to wealth management shall be based on an importance assessment in consultation with the stakeholders involved in the study. This involves consulting stakeholders to determine their perception regarding the relative contribution of each function delivered. Thus, if stakeholders perceive that the wealth management function is 20% of the value of the system, then prior to any other allocation among other system functions, 20% of the whole system emissions are allocated to wealth management. Draught power, particularly from swamp buffalo, can be estimated from known energy requirements for the provision of power as described below.

9.1 General principles

The ISO 14044 standard gives the following guidelines for LCA practitioners with respect to practices for handling multi-functional production:

Step 1: Wherever possible, allocation should be avoided by:

a) Dividing the unit process to be allocated into two or more sub-processes and collecting the input and output data related to these sub-processes; or

b) Expanding the product system to include the additional functions related to the co-products.

Step 2: Where allocation cannot be avoided, the inputs and outputs of the system should be partitioned between its different products or functions in a way that reflects the underlying physical relationships between them: i.e. they should reflect the way in which the inputs and outputs are affected by quantitative
changes in the products or functions delivered by the system. ISO 14044 states: “The inventory is based on material balances between input and output. Allocation procedures should therefore approximate as much as possible such fundamental input/output relationships and characteristics.”

Step 3: Where physical relationship alone cannot be established or used as the basis for allocation, the inputs should be allocated between the products and functions in a way that reflects other relationships between them. For example, input and output data might be allocated between co-products in proportion to their economic value.

Where allocation of inputs is required, for example allocation of energy use at the abattoir between large ruminant meat and non-human edible products, the allocation procedures should follow the ISO 14044 allocation hierarchy. When allocation choices significantly affect the results, a sensitivity analysis shall be performed to ensure robustness of conclusions. Below is a list of commonly used procedures for addressing multi-functional processes in attributional studies:

- Bio-physical causality, arising from underlying biological or physical relationships between the co-products, such as material or energy balances;
- Physical properties such as mass, or protein or energy content;
- Economic value (revenue share) based on market prices of products.

9.2 A decision tree to guide methodology choices

A decision tree diagram to help decide on the appropriate methodology for dealing with co-products is given in Figure 10. This involves a three-stage approach and the principles involved in working through it are as follows:

Stage 1: Avoid allocation by subdividing the processing system.

A production unit is defined here as a group of activities (and the necessary inputs, machinery and equipment) in a processing facility or a farm that are needed to produce one or more co-products. Examples are the crop fields in an arable farm, the potential multiple animal herds that are common in small holder operations (sheep, goats deer, dairy cattle, suckling cattle or even rearing of heifers, production of milk, etc.), or the individual processing lines in a manufacturing facility.

In the first stage (ISO step (1a) subdivision) all processes and activities of a farm/processing facilities are subdivided based on the following characteristics:
flow 1.a. Inputs/activities that can be directly assigned to a single co-product should be assigned to that co-product, e.g. packaging and post-processing storage for meat products, or rendering energy requirements in the post-exsanguination phase at the processing plant.

flow 1.b. Inputs/activities that can be assigned to single production units which may provide multiple co-products should be assigned to the specific production unit, e.g. input of pesticides for corn are assigned to the “corn production unit” of a farm with multiple crops; or energy inputs for a specific barn operation or manufacturing facility; or feed for a specific animal (which may yield multiple products) in a farm operation with several species.

flow 1.c. Inputs/activities of a nonspecific nature in a farm or processing facility such as heating, ventilation, climate control, internal transport in a manufacturing facility or farm that cannot be directly attributed to specific production units. For example energy to pump drinking water for multiple animal species in a small-scale, multi-species operation would be categorized as nonspecific. It may be possible for these inputs to be assigned to each production unit in proportion to the causal relationship that determines increased need for each input, such as weight, volume, or area (transport, roads, buildings) or revenue (office and accounting).

Stage 2. Attribute combined production to separate production units

In theory, all combined production systems are separable, where sufficient detailed data exist, and should normally follow path 1a. Some joint production systems may also be separable through the use of process models, a with IDF methodology for example (Thoma et al., 2013). Nevertheless, situations exist where this is impractical, and in Figure 10 stage 2 the generic processes should be attributed to production units on the basis of ISO steps 1b, 2 and 3. For example, cattle and sheep may be grazed on common fields in a single combined production unit. In this situation, farm overhead operations that cannot be explicitly assigned to an individual species should be handled using the criteria in box 2. For some production systems (particularly large commercial operations), the 1b path to box 3 will be followed, as the inputs and outputs in a single animal-species system are clearly assigned to the single production unit and its activities/operations and products. An example in the dairy sector of specific inputs attributable to a single farm activity is electricity and refrigeration linked only to milking.

System expansion: ISO step (1b) As part of the harmonization effort behind these guidelines, we narrow the range of allocation options in application of LCA to large ruminant systems, and exclude application of system expansion by means of substitution. Furthermore, we restrict its use to situations in which
“expanding the product system to include the additional functions related to the co-products” is acceptable within the goal and scope of the study (ISO14044:2006). This implies, for dairy operations for example, that the environmental impacts can only be attributed to the combined multiple outputs of cull cows and calves (as meat), milk, and draught power and that no individual function receives a separately identified impact (the functional unit might then be 6000 kg milk plus 200 kg live weight plus 48 hours of draught ploughing). For benchmarking operations, this is an entirely appropriate perspective – overall reduction of impacts for the multifunctional system can be easily monitored and managed.

The alternative, consequential use of system expansion using an avoided burden calculated through substitution is not compliant with these guidelines.

Allocation: ISO step 2: When system expansion to include additional functions within the scope of analysis is not possible, the second question is whether a physical allocation is possible. The condition imposed by these guidelines here is that the products should have similar physical properties and serve similar goals or markets (e.g., human food vs. pet food markets for products of meat processing). Alternatively, known processing or biophysical relationships can be used to assign inputs and outputs of a single production unit to each product that is produced from that production unit (ISO 14044 §4.3.4.2, Step2). For example, if feed is provided to multiple animal species, the animal growth requirements may be used to apportion the shared feed between the species. The result of this stage will be a splitting of some inventory flows between the production units, and if the resultant process is multifunctional (e.g., separation of dairy operations from free-range layers, in a system with both species feeding from the same pasture still leaves a multi-functional production unit of the dairy), these inventory flows will be allocated to single co-products in the next stage of the procedure (Box 3 in Figure 10).

If inputs in a multiple production system benefit all products and cannot be specifically assigned to production units, the allocation should be preferably based on a mechanistic algorithm or physical property (flow (2b) in Figure 10).

Allocation: ISO step 3: When physical allocation is not possible or allowed, the last option is economic allocation. As with physical allocation, the result of this step will be a splitting of some inventory flows between the production units, and if the resultant unit process is still multifunctional, these inventory flows will be allocated to single co-products in the next stage of the procedure (Box 3 in the diagram).
Figure 10: Multi-functional output decision tree

Note: The choice of method for handling multi-functional outputs for each stage or process in the supply chain shall be based on this decision algorithm. Allocation keys used in the right-most box refer to the factors derived during application of the decision tree that are used to allocate...
inputs among multiple functions. For example, if economic allocation is used (e.g., to arrive at 3c), the allocation key for that stage is the ratio of the revenue of the co-product of interest to the total revenue for the activity.
Stage 3. Split single production units into individual co-products

After stages 1 and 2, all inputs and operations will have been attributed to the single production unit, or already to a single product. An inventory table is made for the production unit. Stage 3 guides the assignment of inputs and emissions from a single production unit to each co-product produced by the unit. If there is only a single product at this stage, the process is complete. The same rule holds as the one defined above for production units, so system expansion (without substitution) should be applied in situations where supported by the goal and scope definition. Any flow arising from (2a) will follow this path. When system expansion is not used, the remaining outputs must be classified as co-products, residual products or wastes.

Outputs of a production process are considered as residual flows if (3f):

- They are exported in the condition in which they are created in the process and do not contribute revenue to the owner;
- There may be value-added steps beyond the boundary of the large ruminant system under study, but these activities do not impact the large ruminant system calculations in these guidelines.

Residual products will not receive any allocated emissions, nor will they contribute emissions to the main co-products of the production unit. However, it is useful to track residual flows for the purpose of understanding the mass balance for the production unit.

An output of a production process shall be considered as waste if the production unit incurs a cost for treatment or removal. Waste has to be treated and/or disposed of and these emissions shall be included in the inventory and allocated among the co-products. It is, of course, necessary that all activities associated with waste treatment fully comply with any local legal or regulatory requirements. For the large ruminant sector, the most common process in this category is wastewater treatment at manufacturing facilities.

Co-products (i.e., not residual or waste) are subject to allocation where some fraction of the entire production unit’s emissions are assigned to each co-product, leading to flows (3b), (3c), and (3d) in Figure 10. Assignment to these flows depends upon whether biophysical or mechanistic allocation or allocation based on physical characteristics is possible or allowed under these guidelines (3b), or whether an economic allocation at a single product (3c) or product group level (3d) is applied.

Following the ISO standard, the preferred approach is to identify a straightforward mechanistic algorithm, or biophysical, causal relationship that can be used to assign inputs and emissions to each co-product. If a causal relationship cannot be identified then the condition for determining whether physical characteristic based allocation (e.g., energy or protein content) is appropriate is that the products should have similar physical properties and serve similar functions or markets. When
physical allocation is not feasible (interactions too complex to accurately define a mechanistic relationship) or is not allowed (dissimilar properties or markets), the last option is economic allocation.

In the case of economic allocation, one option (flow 3d) is grouping a number of co-products and performing the allocation with some co-products at the group level instead of the single product level. This option is relevant for the various edible meat components (e.g. carcass cuts and edible offal) which shall be grouped before allocation between them and possible other inedible co-products such as hide and renderables.

9.3 Application of general principles for large ruminant systems and processes

In practice, dealing with multi-functional processes and the choice of allocation method is a contentious issue in LCA studies and for large ruminants there are a number of steps where allocation decisions are required. Thus, this guidelines document goes into some details on each of these steps and gives recommendations on the preferred allocation methodology for each one (Section 9.2.). The recommended methods, based on use of the decision tree, are summarized in Table 4.

9.3.1 Cradle-to-farm-gate

Within the cradle-to-farm-gate boundary there are a number of allocation decisions associated with feeds; multi-functionality of feeds is handled by the LEAP Animal Feed Guidelines. This last point may be more of a system boundary issue, but depending on how the material is classified at the processor gate, could be considered as an allocation issue. Within the animal production stage, there are two main areas where co-products need to be accounted for. These are:

- Where different animal species consume the same feed source(s) and/or share non-feed related inputs (path 1c in the decision tree);
- Where large ruminants produce multiple products of live animals (cull cows, weaner steers, replacement heifers, etc), milk, draught power, and wealth management.

In ruminant livestock systems, the major determinant of GHG emissions is enteric methane and excreta methane and N₂O emissions, and the driver of these is feed intake and feed characteristics. Consequently, if the activities, inputs or emissions cannot be separated, the preferred method to account for multi-functional processes and co-products shall be a biophysical approach based on feed intake associated with the different animal species or co-products.

In practice, accounting for multiple animal species (i.e. step 1c in Figure 10, since this is not a single production unit) is based firstly on separation of activities between species and then on determination of feed intake for each species (i.e. step 2b in Figure 10). Remaining shared inputs (e.g. energy use for water provision) are allocated according to relative feed intake between species.
At a whole farm level, the equivalent output from this approach would be to determine all feed and animal related emissions for the farm and use the allocation factors for the target large ruminant species based on relative feed intake to determine that species’ total emissions.

Table 4: Recommended methods for dealing with multi-functional processes and allocation between co-products for the cradle-to-primary processing gate stages of the life cycle of large ruminant products

<table>
<thead>
<tr>
<th>Source/stage of co-products</th>
<th>Recommended method*</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal species (within farm)</td>
<td>System separation Biophysical causality</td>
<td>First, separate the activities specific to an animal species. Then, determine emissions specific to feeds relating to the ruminants under study. For remaining non-feed inputs, use biophysical allocation based on the proportion of total energy requirements for each of the different animal species.</td>
</tr>
<tr>
<td>Live animals, milk, draught power, wealth management (within farm)</td>
<td>System separation Biophysical causality</td>
<td>First, separate activities specific to products (e.g. electricity for shearing or milking). Then use biophysical allocation according to energy requirements for animal physiological functions of growth, milk production, reproduction, activity and maintenance.</td>
</tr>
<tr>
<td>Milk processing to milk products</td>
<td>System separation Physical</td>
<td>First, separate activities specific to individual products where possible. Then use allocation based on dry matter content</td>
</tr>
<tr>
<td>Meat processing to edible and non-edible products</td>
<td>System separation Economic</td>
<td>First, separate the activities specific to individual products where possible. Then use economic allocation possibly based on a five years of recent average prices.</td>
</tr>
</tbody>
</table>

* Where choice of allocation can have a significant effect on results, it is recommended to use more than one method to illustrate the effects of choice of allocation methodology. Specifically, it is recommended that biophysical causality and economic allocation are used in sensitivity assessment, and that market price fluctuations be included as a tested parameter in all economic allocation (Food SCP RT, 2013, p. 28).

b) Accounting for different animal species and non-feed activities within a farm

Many farms present a mixture of animal species (e.g. sheep, cattle, buffalo, poultry and swine) which are often farmed together. Where possible, it is recommended to separate activities of the farm system for the different animal species where specific uses can be defined (e.g. use of summer forage crops for dairy cattle only, or use of nitrogen fertilizer specifically for pasture grown to feed beef cattle). For the remainder of the environmental impacts for the cradle-to-farm-gate stage, where there is common grazing or feeding of the same feed source, the actual amount of feed consumed by the cattle under study shall be calculated as outlined in Section 11.2.2 along with the intake of other animal species. Emissions associated with other non-feed shared activities (e.g. fuel used for animal transport, drain cleaning, hedge cutting, fencing maintenance, etc.) shall be allocated between animal species using a
biophysical allocation approach. Preferably, this should be based on calculation of the total feed intake for each of the different animal species and allocation based on the relative feed intake between species (see Example 1).

Example 1: Calculation of multi-functional processes and allocation in a French mixed sheep and cattle farm

The figure above describes the farm system (based on Benoit and Laignel, 2011). The area identified as being used for cash crops is excluded in the calculation of environmental impacts from animals’ on-farm. The main fodder area is pasture (in white), which is commonly grazed and used for silage or hay production for both sheep and beef cattle. The table below describes a process used in France to apportion environmental impacts between cash crops and animal species for the Case Study farm.
Table Ex1.1: Allocation among cattle, sheep and field crops.

<table>
<thead>
<tr>
<th>Recommended method</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st: Split between cash crops and animal production (including crops for animals and forages)</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>Total fuel use only</td>
</tr>
<tr>
<td>Electricity</td>
<td>Total electricity only, except for specific usages (irrigation)</td>
</tr>
<tr>
<td>Manure fertilizers</td>
<td>Amounts known for each crop and forages</td>
</tr>
<tr>
<td>Manure application</td>
<td></td>
</tr>
</tbody>
</table>

2nd: Then split between the different types of animal production		
Forages (production and conservation for silage or hay [e.g. including plastics])	General data on forages only	Biophysical allocation (based on relative feed intake) for forages (pasture, silage, hay) used by both animal species
Cereal crops and maize silage for animals	Quantities distributed to each animal species are known	System separation
Feed inputs (concentrates, vitamins, minerals, milk powder)	Quantities (or amount in €) distributed to each animal species are known	System separation
Breeding operations (e.g. reproduction, veterinary, drenches)	Can be assessed through economic value, but are known for each animal type	System separation

Total fuel use is known, but this is used for multiple purposes including production of cash crops, feeds for animals and general farm activities relating to animals (e.g. provision of feed, removal of feed waste, manure management, vehicles for animal movements). French researchers allocate fuel-related emissions between cash crops and each animal type using empirical functions derived from regional survey data and related to hectares of crop or livestock units. In this case a livestock unit (LU) was estimated in terms of body weight (500 kg body weight per LU), thus, conversion to LU was accomplished using average estimated body weights for sheep and beef cattle.
Table Ex1.2: Output of allocation among sheep, cattle and cash crops.

<table>
<thead>
<tr>
<th>Allocation across livestock, fodder areas and</th>
<th>Sheep production</th>
<th>Cattle production</th>
<th>Cash crops</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GJ LU⁻¹ year⁻¹ + 0.9 GJ/ha of fodder area +0.4GJ/ha crop</td>
<td>1 GJ LU⁻¹ year⁻¹ + 1.4 GJ/ha of fodder area +0.4GJ/ha crop</td>
<td>4.3 GJ/ha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical consumption

- Sheep: \(1 \times 73LU + 0.9 \times 56\) = 123.4
- Cattle: \(1.8 \times 40LU + 1.4 \times 36\) = 122.4
- Total: \(4.3 \times 34ha\) = 146.2

Allocation %

- Sheep: 31.5
- Cattle: 31.2
- Cash crops: 37.3
- Total: 100

An alternative approach for fuel is to use records of all specific farm operations relating to each crop (e.g. hectares ploughed, rotary-tilled, sown, harvested), then use country-specific or published values for typical fuel use per hectare (e.g. Witney 1988) and integrate these for each system using a system separation approach. In this case, biophysical allocation would then be applied for the remaining fuel used for pasture-related activities and non-feed animal activities (e.g. manure management, animal movements) to establish allocations between sheep and cattle (see below).

A similar approach is used for electricity use in France based on a database of average use for sheep, cattle or cropping [0.4 GJ/LU or 0.4 GJ/ha]. Alternatively, a biophysical allocation ratio could be applied to allocate between animal types (see below).

System separation can be used for the main crops, other feed sources and animal breeding operations (see table above). However, the sheep and cattle both graze the pasture on the farm and are both fed silage and hay. Therefore, some method is required for apportioning the related inputs and emissions between sheep and cattle. The simplest biophysical allocation method is to use the total energy requirements (or DM intake) for sheep and cattle. In this case, the allocation factor \((A)\) for cattle was calculated using:

\[
A \, (\%) = 100 \times \frac{\text{Cattle total DM intake}}{\text{Sheep total DM intake} + \text{Cattle total DM intake}}
\]

In this farm, \(A = 100 \times \frac{190}{347+190} = 35\%\) (where 347 and 190 are t DM intake calculated for sheep and cattle, respectively). Thus, 35 percent of farm management-related GHG emissions (or fossil fuel use) that could not be separately estimated or derived via system separation would be attributed to cattle.
c) Cattle and Buffalo Meat Production

For dedicated meat production systems, there are two potential stages of separation into multiple products: the cow-calf suckler (Birth-Weaning in Figure 13) stage and meat processing. The potential co-products depend on the specific system and boundaries chosen for the study. They include cull bulls and breeder cows, weaner steers and heifers, finished steers and heifers, and a range of meat (human edible) and non-meat (all non-human edible) products from processing.

Cow-calf stage: Here cull suckler cows and bulls are sent to slaughter, and weaner steers and heifers are sold to finishing operations – if a self-replacing herd is being modelled, replacement breeding animals are retained from a proportion of the annual weaned calves bred and these may represent an internal flow with no allocation required. However, allocation is still required to the proportion of weaners that are sold.

Stocker/background stage: This is an intermediate stage between weaning and finishing where animals are normally grazed on pasture or fed high forage diets in confinement until they are sent to a finishing operation. Some animals may be kept on pasture and marketed as grass-fed.

Finishing stage: all animals leaving this stage for slaughter, under these guidelines, are considered equivalent and considered on a live weight basis. For complete systems which include the suckler and stocker stages, the cull cows and bulls along with the finished steers and heifers shall be considered as the aggregate production from the system and allocation among these different animal classes is not required. If the cow-calf stage is considered as a background system, for which secondary data is used, then the first multifunctional issue will already have been accounted for in the secondary data.

d) Milk Production

For dairy production systems which are a single production unit and therefore follow step 1b, the allocation between live weight of animals and milk co-products shall be based on biophysical allocation according to feed requirements for their production (following steps 3a1 and 3b in Figure 10). This aligns with the IDF (2010a) methodology for allocation between milk and live animals sold for dairy cows. Previous studies have shown that the choice of allocation method for co-products can have a significant effect on reported product specific environmental impacts (Cederberg and Stadig, 2003; Flysjö et al., 2011; Gac et al., 2014; Nguyen et al., 2012). As noted previously, where choice of allocation can have a significant effect on results, more than one method shall be used to illustrate the effects of choice of allocation methodology. Alternate methodological approaches include: system expansion, economic allocation and mass, energy or protein allocation. This is also important when the guidelines are used for analysing the implications for co-products and the potential benefits of mitigation options. For example, depending on the methodology employed, the use of mitigation to reduce emissions from a main product may have unintended effects on increasing emissions from co-products and their associated production systems, leading to no overall
benefits (e.g., Flysjö et al., 2012; Zehetmeier et al., 2012). Appendix 6 provides an illustrative comparison of IDF (2010) and Agribalyse (Gac et al., 2014) methodologies for dairy production at farm-gate.

e) Allocation between draught, meat and milk production

Large ruminants produce meat and milk and are also occasionally used for draught power. However, in most ruminant production systems the focus is on one main product, or the one product that may provide the largest proportion of economic return to the producer. For instance, in the case of dairy cows where the main product is milk and where meat is a co-product, a biophysical or economic allocation approach is most widely used (e.g. (Flysjö et al., 2011; IDF, 2010; G. Thoma et al., 2013)).

Biophysical allocation is applied based on the feed energy consumption requirements for milk and meat production. This is calculated using a tier-2 approach, an internationally acceptable methodology (Section 11.2.2.a). In large ruminants used principally for draught, power can be considered as the main product and meat can be considered as a co-product. Appendix 7 provides calculations for estimation of energy requirements for draught power. The allocation ratio for milk, relative to milk plus meat is then calculated from the ratio of the energy requirement for milk production to the energy requirement for milk and meat (i.e. animal growth component) production:

\[
\text{Allocation \% to milk} = 100 \times \frac{\text{energy req. for milk}}{\text{energy req. for milk + energy req. for meat + energy req. for draught}}
\]

Where milk or meat is the main product from the production system, biophysical allocation based on energy requirements shall be used.

In conformance with ISO/TS 14067 (2013), where choice of allocation can have a significant effect on results, it is recommended to use more than one method to illustrate the effects of choice of allocation methodology (see Example 2). System expansion, protein mass or economic allocation should be used for comparison, with the latter based on the relative gross economic value of the products received (e.g. using regional/national data) over a period of at least three years (to reduce potential effects of price fluctuations over time). In conformance with ISO/TS 14067 (2013), where choice of allocation can have a significant effect on results, it is recommended to use more than one method to illustrate the effects of choice of allocation methodology (see Example 2). System expansion, protein mass or economic allocation should be used for comparison, with the latter based on the relative gross economic value of the products received (e.g. using regional/national data) over a period of at least three years (to reduce potential effects of price fluctuations over time).
Example 2: The influence of mass, protein, energy, economic and biophysical allocation on the proportion of greenhouse gas emissions attributed to milk for an Irish grass-based research dairy system (data provided by O’Brien et al., 2014)

Data in Table 5 below were based on a summary of the average outputs of a specialized grazing dairy farm in Ireland from 2002-2005. The economic value of the different components was calculated using the market average from 2008 to 2013. The energy and protein content of milk was based on measured values, but for meat from surplus calves and culled cows, default values were used (USDA, 2013). The biophysical energy requirement to produce milk and meat was calculated firstly according to a regression equation of the IDF (2010b) guidelines and secondly using energy requirement algorithms of the French ruminant nutrition guidelines (Jarrige, 1989). Table 5 shows that mass allocation attributed the least environmental impacts to milk, followed by allocation according to energy and protein content of the products produced. Allocation based on energy requirements (IDF and biophysical allocation) attributed the least environmental impacts to milk, given the higher energy requirements to produce live weight as compared to milk. Economic allocation attributed more environmental impacts to milk than using a biophysical approach. Overall Table 5 illustrates the effect the various allocation methods have on the carbon footprint for milk, which corresponded to approximately an eight-fold difference in the carbon footprint of meat.

Table Ex.2.5: The outputs and energy requirements per cow, and allocation factors calculated for milk for a specialized grazing dairy system.

<table>
<thead>
<tr>
<th>Allocation method</th>
<th>Milk</th>
<th>Surplus dairy calves</th>
<th>Culled Cows</th>
<th>Milk Allocation factor</th>
<th>Carbon footprint of milk (kg CO₂-eq/t milk)</th>
<th>Carbon footprint of meat (kg CO₂-eq/t live weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>6,667</td>
<td>47</td>
<td>88</td>
<td>98%</td>
<td>820</td>
<td>840</td>
</tr>
<tr>
<td>Energy Content (MJ)</td>
<td>21,165</td>
<td>371</td>
<td>689</td>
<td>95%</td>
<td>795</td>
<td>2,070</td>
</tr>
<tr>
<td>Protein Content (kg)</td>
<td>222</td>
<td>5</td>
<td>9</td>
<td>94%</td>
<td>789</td>
<td>2,370</td>
</tr>
<tr>
<td>Economic Revenue (€)</td>
<td>1,979</td>
<td>80</td>
<td>123</td>
<td>91%</td>
<td>759</td>
<td>3,850</td>
</tr>
<tr>
<td>IDF (g LW/kg milk)</td>
<td>-</td>
<td>13</td>
<td>7</td>
<td>88%</td>
<td>739</td>
<td>4,840</td>
</tr>
<tr>
<td>Biophysical (MJ)</td>
<td>32,938</td>
<td>1,512</td>
<td>4,987</td>
<td>84%</td>
<td>703</td>
<td>6,610</td>
</tr>
</tbody>
</table>
The economic allocation percentage (EA) for milk relative to the total returns for the dairy cow was calculated using:

\[
EA \, (\%) = 100 \times \frac{\sum (\text{weight of milk component } x \text{ relative value of milk component})}{\left[\sum (\text{weight of milk component } i \times \text{relative value of milk component } i) + \sum (\text{weight of co-product } i \times \text{relative value of co-product } i)\right]}
\]

The mass allocation percentage (MA) for milk was calculated using:

\[
MA \, (\%) = 100 \times \frac{\sum (\text{weight of milk component } i)}{\left[\sum (\text{weight of milk component } i + \sum (\text{weight of co-product } i)\right]}
\]

The following equation from the IDF (2010) was used to calculate the allocation factor for milk and meat:

\[
IDF = 1 - 5.7717 \times \left(\frac{M_{\text{meat}}}{M_{\text{milk}}}\right) \quad (1)
\]

where IDF = IDF allocation factor for milk, \(M_{\text{meat}}\) = sum of live weight of all animals including bull calves and culled mature animals and \(M_{\text{milk}}\) = sum of mass of milk sold, corrected to 4% fat and 3.3% protein.
Allocation of manure exported off-farm

This discussion follows the decision tree presented in Figure 10. The first determination that must be made is the classification of manure as either a co-product, waste or residual. This results in a separation of the system where all post-farm emissions from use of the manure are assigned to that subsequent use, while all on-farm management is assigned to the main product(s) from the farm (live animals, milk, draught power and possibly wealth management – for which the previous allocation procedures apply).

Co-product: When manure is a valuable output of the farm, and if the system of manure production cannot be separated from the system of animal production, then the full supply chain emissions to the farm-gate shall be shared by all the co-products. Following the recommendations provided in Table 3, the first method for allocation is to apply a biophysical approach based on the energy for digestion that must be expended by the animal in order to utilize the nutrients and create the manure. This is calculated as the heat increment for feeding of the diet. It represents the energy expended by the end associated with the process of feeding and digestion, and is distinct from maintenance energy requirements (Emmans, 1994; Kaseloo and Lovvorn, 2003). This situation may occur in any large ruminant system. There may be several co-products: cull cows, cull steers, or cull calves, milk and manure – as well as draught power and wealth management. The allocation fraction assigned to each of the co-products shall be calculated as the ratio of the feed consumed (except wealth management) which was required to perform each of the respective functions to the total feed consumed for all of the functions. In situations where energy content of the diet is unknown, the next step in a decision tree results in an economic allocation, because allocation based on physical characteristics parameters is clearly not appropriate as the functions are different for the product (fertilizer vs energy for manure). However, it should be noted that in this situation, an inconsistency in methodology arises if biophysical allocation is used for part of the system while economic allocation is used for another part. An example of manure as co-product is provided in appendix 8.

The practitioner shall make note of any inconsistencies and evaluate the possible impacts on the study conclusions in the reporting of results.

Residual: Manure has essentially no value at the system boundary. This is equivalent to system separation by cut-off, in that activities associated with conversion of the residual to a useful product (e.g., energy or fertilizer) occur outside of the production system boundary system. In this recommended approach, as previously stated, emissions associated with manure management up to the point of field application are assigned to the animal system, and emissions from the field are assigned to the crop production system.

Waste: If manure is classified as a waste – generally only in two situations: 1) where it is disposed of by landfill, incineration without energy recovery, or sent to a treatment facility and 2) when it is applied in excess of crop nutrient requirements. In the first case all on-farm emissions shall be
assigned to the animal product(s); However in the second case the fraction of manure applied to meet
crop nutrient requirements should be considered as a residual as described above. The excess manure
application shall be treated as a waste, and field emissions assigned to the animal production system.
Emissions associated with the final disposition of manure as a waste are within the system boundary
and must be accounted and assigned to the animal product(s).
BOX 1: Example calculation for on-farm energy generation.

Advanced options for manure management are continually being developed. One such technology which holds high promise is well developed is anaerobic digestion. In this example we will consider the manure management calculations, following the attributional approach required by these guidelines. We consider a 550 head dairy which uses a covered lagoon as an anaerobic digester. The biogas produced is used to produce electricity, in a 130 kW generator, for on-site consumption; excess electricity is sold to the local grid. Data for this operation indicate that approximately 59.5 L of manure are produced per animal per day. The total solids in the manure are 6.7 kg per cow per day and total volatile solids are 5.7 kg per cow per day; the digestibility (in the anaerobic reactor) of the total volatile solids is 30%. This results in the production of 2210 L per head per day of biogas with a composition of 59.1% methane, 39.2% carbon dioxide and 1.7% other gases including ammonia and hydrogen sulfide in trace quantities. This results in the production of 1430 kWh per day, equivalent to 1.176 kWh per cubic meter of biogas. The animals are housed in a tight stall barn which is regularly scraped to remove manure for transfer to the digester. Emissions associated with the residence time of the manure in the barn are attributed to the animal system, while the feedstock to the anaerobic digester is considered as a residual and carries no burden into the digester process. Based on unit processes from the eco-invent database (V 2.2: biogas, agriculture covered, in cogen with ignition biogas engine) for electricity and heat cogeneration from manure slurry, and assuming a 1% leak rate of methane and 1.4E-3 kg N₂O per m³ biogas processed from the anaerobic digester the carbon footprint for this electricity is 115 kg CO₂e per day. This analysis accounts for energy required to operate the anaerobic digester, primarily derived from steady-state operation of the digester itself in which excess heat from the electricity generation system is used to maintain appropriate operating temperatures for the digester.

The digester produces approximately 5 m³ of solid material per day which can be composted, to remove pathogens, and sold for $17USD/m³. The liquid effluent, which contains the majority of the remaining nutrients from the manure, is stored on site and used as a fertilizer for crop production; this liquid is treated as a residual and emissions associated with its application are assigned to the subsequent crop. Electricity is valued at $0.08USD/kWh, and an economic allocation among the co-products of the compost and electricity in the ratio of (1430*0.08 = 114.4USD) /(114.4 *5*17=199.4USD) =0.574. Thus the carbon footprint for electricity produced from the anaerobic digester system is 0.574*115/1430 equals 0.046 kg CO₂e/kWh. The electricity used by the dairy operation, supplied by the anaerobic digestion process, is treated as a normal input with the carbon footprint of 0.046 kg CO₂e/kWh. From an attributional perspective the greenhouse gas burden of the electricity sold to the grid is the same as for the dairy.
9.3.2 Post farm-gate

Milk Processing: For the first milk processing stage, where raw milk may be converted into multiple products, (which is considered a single production unit following steps 1b, 3a1 and 3b in Figure 10), allocation between co-products shall be based on dry matter content. The use of this approach for dairy products aligns with that used in recent publications for milk products from dairy cows (IDF 2010; Thoma et al., 2013b), and meets the requirements for similarity of products in grouping as shown in Figure 10.

Meat processing: The primary point of separation of multiple products in meat production systems is at the processing stage, where meat, hides, bone and blood meals as well as tallow and rendering products are generated. As discussed above, there are several approaches for handling this multi-functionality. As explained below, the recommendation of this guidance is to choose economic allocation for products that serve similar markets or functions. However, because of the potential sensitivity of the reported results to this methodological choice, if information is available, mass and physical property based allocation may also be examined to determine the robustness of the results to the choice of allocation methodology. It is acknowledged that from a consumer perspective, there is a difference in the products derived from a cull dairy cow and finished steer and between different cuts of meat (either cow or buffalo). However, from a nutritional perspective, there is little difference, and all serve the function of providing an equivalent nutritional value. Therefore, for purposes of these guidelines, all products edible by humans from the supply chain are considered as equivalent and other products should be classified in groups according to function or market (e.g., pet foods or livestock feed vs. tallow for biodiesel or hides for leather).

The assessment of meat processing will follow path 1b as the facility is a single production unit. If a whole-facility analysis is not being performed (path 3a), then the outputs of the production unit must be classified as co-products, residual, or waste. It is likely that the primary waste stream will be wastewater that will be treated on site or transferred to a treatment facility. For the remaining material products, the decision regarding classification as a residual or a co-product depends upon the revenue generated. For meat-processing facilities the co-products may have different end uses and serve different markets (e.g., human edible products vs. animal feed products vs. hides for leather vs. tallow for biodiesel). Therefore, economic allocation is considered the most appropriate approach using Figure 10 (i.e. path 3b1 followed by 3c or 3d). In practical application of the decision tree, the guidelines require that all edible materials should be classified together, and separated from non-edible materials. This approach is seldom used for manufactured meat products, as a mass based or protein-based approaches fail to clearly differentiate products and is not appropriate for products targeting different markets. It is recognized that some materials crossing the system boundary may have no economic value after primary processing (and in Figure 10 would be classified as a residual; step 3f), but that these materials may be collected and used for secondary processing (e.g. used for...
burning for energy or used for producing blood-and-bone meal). However, in this case the product of the secondary processing is beyond the system boundary for these guidelines, and the proper accounting of the materials used as input to the secondary processing is to treat them as a residual.

10 COMPILING AND RECORDING INVENTORY DATA

10.1 General principles

The compilation of the inventory data should be aligned with the goal and scope of the life cycle assessment. The LEAP guidelines are intended to provide LCA practitioners with practical advice for a range of potential study objectives. This is in recognition of the fact that studies may wish to assess large ruminant supply chains ranging from individual farms, to integrated production systems, to regional or national, or sector levels. When evaluating the data collection requirements for a project, it is necessary to consider the influence of the project scope. In general these guidelines recommend collection of primary activity data (Section 10.2.1) for foreground processes, those processes generally being considered as under the control or direct influence of the study commissioner. However, it is recognized that for projects with a larger scope, such as sectorial analyses at the national scale, the collection of primary data for all foreground processes may be impractical. In such situations, or when an LCA is conducted for policy analysis, foreground systems may be modelled using data obtained from secondary sources, such as national statistical databases, peer-reviewed literature or other reputable sources.

An inventory of all materials, energy resource inputs, outputs (including products, co-products and emissions) for the product supply chain under study shall be compiled. The data recorded in relation to this inventory shall include all processes and emissions occurring within the system boundary of that product.

As far as possible, primary inventory data shall be collected for all resource use and emissions associated with each life cycle stage included within the defined system boundaries. For processes where the practitioner does not have direct access to primary data (i.e. background processes), secondary data can be used. When possible, data collected directly from suppliers should be used for the most relevant products they supply. If secondary data are more representative or appropriate than primary data for foreground processes (to be justified and reported), secondary data shall also be used for these foreground processes for example the economic value of products over 5 years.

For agricultural systems, two main differences exist as compared to industrial systems. Firstly, production may not be static from year to year, and secondly, some inputs and outputs are very difficult to measure. Consequently, the inventory stage of an agricultural LCA is far more complex
than most industrial processes, and may require extensive modelling in order to define the inputs and outputs from the system. For this reason, agricultural studies often rely on a far smaller sample size and are often presented as ‘case studies’ rather than ‘industry averages’. For agricultural systems, many foreground processes must be modelled or estimated rather than measured. Assumptions made during the inventory development are critical to the results of the study and need to be carefully explained in the study methodology. In order to clarify the nature of the inventory data, it is useful to differentiate between ‘measured’ and ‘modelled’ foreground system LCI data. As an example, for a feedlot operation, measured secondary data may include fuel use, feed utilization and cattle numbers, while modelled secondary data may include GHG emissions from enteric fermentation and manure.

The LCA practitioner shall demonstrate that the following aspects in data collection have been taken into consideration when carrying out the assessment (adapted from ISO14044):

- **Representativeness**: qualitative assessment of the degree to which the data set reflects the true population of interest. Representativeness covers the following three dimensions:
 a) **temporal representativeness**: age of data and the length of time over which data was collected;
 b) **geographical representativeness**: geographical area from which data for unit processes was collected to satisfy the goal of the study;
 c) **technology representativeness**: specific technology or technology mix;
- **Precision**: measure of the variability of the data values for each data expressed (e.g. standard deviation);
- **Completeness**: percentage of flow that is measured or estimated;
- **Consistency**: qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis;
- **Reproducibility**: qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study;
- **Sources** of the data;
- **Uncertainty** of the information (e.g. data, models and assumptions).

For significant processes, the LCA practitioner shall document data sources, data quality, and any efforts made to improve data quality.

10.2 Requirements and guidance for the collection of data

Two types of data may be collected and used in performing LCAs:

- **Primary data**: defined as directly measured or collected data representative of processes at a specific facility or for specific processes within the product supply chain.
• **Secondary data**: defined as information obtained from sources other than direct measurement of the inputs/outputs (or purchases and emissions) from processes included in the life cycle of the product (PAS 2050:2011, §3.41). Secondary data are used when primary data of higher quality are not available or it is impractical to obtain them. Some emissions such as those arising from enteric fermentation in the rumen of cattle or buffalo are calculated from a model, and are therefore considered secondary data (for agricultural production a large proportion of the data used will be secondary).

For projects where significant primary data is to be collected, a data management plan is a valuable tool for managing data and tracking the process of LCI data set creation, including metadata documentation. The data management plan should include (Bhatia *et al.* 2011, Appendix C):

- description of data collection procedures;
- data sources;
- calculation methodologies;
- data transmission, storage and backup procedures; and
- quality control and review procedures for data collection, input and handling activities, data documentation and emissions calculations.

The recommended hierarchy of criteria for acceptance of data is:

- primary data collected as part of the project that have a documented Quality Assessment (Section 10.3);
- data from previous projects that have a documented Quality Assessment;
- Data published in peer-reviewed journals or from generally accepted LCA databases, such as those described by the Database Registry project of the UNEP/SETAC Life Cycle Initiative data presented at conferences or otherwise publicly available (e.g., internet sources);
- data from industrial studies or reports can be considered.

10.2.1 REQUIREMENTS AND GUIDANCE FOR THE COLLECTION OF PRIMARY DATA

In general, primary data shall, to the fullest extent feasible, be collected for all foreground processes and for the main contributing sources of environmental impacts. Foreground processes, here defined as those processes under the direct control of, or significantly influenced by, the study commissioner, are depicted in Figure 11 under feed, water and animals. Raw material acquisition represents background data. In most systems, the production of feed on-farm is fully integrated into the production system and is therefore a foreground process, whereas brought-in feeds from off-farm can be considered a background process. Some foreground processes are impractical to measure for an LCA, for example, a farm’s methane emissions from the enteric and manure sources. In cases such as
this, a model is used to estimate emissions, but if possible the input data used for the model should be obtained from sources where direct measurements were made.

The practicality of measured data for all foreground processes is also related to the scale of the project. For example, if a national-scale evaluation of the large ruminant sector is planned, it is impractical to collect farm-level data from all large ruminant producers. In these cases, aggregated data from national statistical databases or other sources (e.g., trade organizations) may be used for foreground processes. In every case, clear documentation of the data collection process and data quality documentation should be collected and stated to ensure compatibility with the study goal and the degree of scope shall be incorporated into the report.

Relevant specific data shall be collected that is representative for the product or processes being assessed. To the greatest extent possible, recent data shall be used, such as current data from industry stakeholders. Data shall be collected that respects geographic relevance (e.g. for crop yield in relation to climate and soils) and aligned to the defined goal and scope of the analysis. Each data source should be acknowledged and uncertainty in the data quality noted.

Prior work (e.g. Appendix 1) has identified the main hotspots and primary data (or modelled estimates using primary input data) that shall be used for these stages of the supply chain. Specifically, the cradle-to-farm-gate stage can dominate whole life cycle emissions (e.g. c. 72 percent in Thoma et al., 2013) and animal enteric methane can represent around 50-70 percent of cradle-to-farm-gate emissions. Thus, animal population and productivity, and feed quality data are key primary activity data needed to calculate enteric methane emissions and subsequently total emissions. Similarly, methane and N₂O from animal excreta can represent about 5-35 percent of cradle-to-farm-gate emissions and also require data on feed composition and chemical analysis to be calculated. Where manure is collected from animals, methods of storage and use can have a significant impact on emissions. Primary activity data on this area is therefore required. The contribution from emissions associated with feed production can vary greatly from minimal in low-input extensive grassland/rangeland/nomadic/transhumance systems to about 40 percent in intensive crop-based or zero-grazing systems where large amounts of chemical fertilizer may be used. Corresponding direct on-farm energy use is also variable from minimal to about 20 percent, with a global average of about 2 percent (Gerber et al., 2013). The global average emissions associated with processing represent 6 percent of life cycle emissions to the primary processing stage for milk, but only 0.5% for meat (Opio et al., 2013). The dominant contributors to processing emissions are fuel and electricity use, as well as waste water processing.
Secondary data refers to life cycle inventory data sets generally available from existing third-party databases, government or industry association reports, peer-reviewed literature, or other sources. It is normally used for background system processes, such as electricity or diesel fuel, which may be consumed by foreground system processes. When using secondary data, it is necessary to selectively choose the data sets which will be incorporated into the analysis. Specifically, life cycle inventory for goods and services consumed by the foreground system should be geographically and technically relevant. An assessment of the quality of these data sets (Section 10.3.2) for use in the specific application should be made and included in the documentation of the data quality analysis.

Where primary data are unavailable and where inputs or processes make a minor contribution to total environmental impacts, secondary or default data may be used. However, geographic relevance should be considered. For example, if default data are used for a minor input, such as a pesticide, the source of production should be determined and a transportation component added to estimated emissions to account for its delivery from site of production to site of use. Similarly, where there is an electricity component related to an input, a relevant electricity emission factor for the country or site of use should be used that accounts for the relevant energy grid mix.

Secondary data should only be used for foreground processes if primary data are unavailable, if the process is not environmentally significant, or if the goal and scope permit secondary data from national databases or equivalent sources. All secondary data should satisfy the following requirements:

- They shall be as current as possible and collected within the past 5-7 years; however, if only older data is available, documentation of the data quality is necessary and determination of the sensitivity of the study results to these data must be investigated and reported.
- They should be used only for processes in the background system. When available, sector-specific data shall be used instead of proxy LCI data.
- They shall fulfill the data quality requirements specified in this guide (Section 10.3).
- They should, where available, be sourced following the data sources provided in this guide (e.g. Section 11.2.2) and for animal assessment (Appendices 3 and 4).
- They may only be used for foreground processes if specific data are unavailable or the process is not environmentally significant. However, if the quality of available specific data is considerably lower and the proxy or average data sufficiently represents the process, then proxy data shall be used.

An assessment of the quality of these datasets for use in the specific application should be made and included in the documentation of the data quality analysis.
10.2.3 APPROACHES FOR ADDRESSING DATA GAPS IN LCI

Data gaps exist when there is no primary or secondary data available that is sufficiently representative of the given process in the product’s life cycle. LCI data gaps can result in inaccurate and erroneous results (Reap et al., 2008). When missing LCI data is set to zero, the result is biased towards lower environmental impacts (Huijbregts et al., 2001).

Several approaches have been used to bridge data gaps, but none are considered standard LCA methodology (Finnveden et al., 2009). As much as possible, the LCA practitioner shall attempt to fill data gaps by collecting the missing data. However, data collection is time-consuming and expensive, and is often not feasible. The following sections provide additional guidance on filling data gaps with proxy and estimated data. The following discussion regarding proxy data is primarily targeted at LCA practitioners. Proxy data is never recommended for use in foreground systems as discussed elsewhere in this guidance.

The use of proxy data sets – LCI data sets which are the most similar process/product for which data is available – is common. This technique relies on the practitioner’s judgment, and is therefore, arguably, arbitrary (Huijbregts et al., 2001). Using the average of several proxy data sets has been suggested as a means to reduce uncertainty compared to the use of a single data set (Milà i Canals et al., 2011). Milà i Canals et al. (2011) also suggest that extrapolation from one data set to bridge the gap may also be used. For example, data from one species of large ruminants (e.g. cattle) could be extrapolated for production of other large ruminant species (e.g. buffalo, yak), based on expert knowledge of differences in feed requirements, feed conversion ratios, excreta characteristics, and milk production.

Adapting an energy emission factor for one region to another with a different generation mix is another example. While use of proxy datasets is the simplest solution, it also has the highest element of uncertainty. Extrapolation methods require expert knowledge and are more difficult to apply, but provide more accurate results.

For countries where environmentally extended economic input-output tables have been produced, a hybrid approach can also be used as a means of bridging data gaps. In this approach, the monitor value of the missing input is analysed through the input-output tables and then used as a proxy LCI data set. This approach is of course subject to uncertainty and has been criticized (Finnveden et al., 2009).

Any data gaps shall be filled using the best available secondary or extrapolated data. The contribution of such data (including gaps in secondary data) shall not account for more than 20 percent of the overall contribution to each impact category considered. When such proxy data are utilized it shall be reported and justified. When possible, an independent peer review of proxy data sets by experts should be sought, especially when they approach the 20 percent cut off point of overall contribution to each emission factor, as errors in extrapolation at this point can be significant. Panel members should
have sufficient expertise to cover the breadth of LCI data that is being developed from proxy data sets.

In line with the guidance on data quality assessment, any assumptions made in filling data gaps, along with the anticipated effect on the product inventory final results, shall be documented. If possible, the use of such gap-filling data should be accompanied by data quality indicators, such as a range of values or statistical measures that convey information about the possible error associated with using the chosen method.

10.3 Data quality assessment

LCA practitioners shall assess data quality by using data quality indicators. Generally, data quality assessment can indicate how representative the data are as well as their quality. Assessing data quality is important for a number of reasons: improving the inventory’s data content, proper communication and interpretation of results, as well as informing users about the possible uses of the data. Data quality refers to characteristics of data that relate to their ability to satisfy stated requirements (ISO14040: 2006). Data quality covers various aspects, such as technological, geographical and time-related representativeness, as well as completeness and precision of the inventory data. This section describes how data quality shall be assessed.

10.3.1 DATA QUALITY RULES

Criteria for assessing LCI data quality can be structured by representativeness (technological, geographical, and time-related), completeness (regarding impact category coverage in the inventory), precision/uncertainty (of the collected or modelled inventory data), and methodological appropriateness and consistency. Representativeness addresses how well the collected inventory data represents the “true” inventory of the process for which they are collected regarding technology, geography and time. For data quality, the representativeness of the LCI data is a key component and primary data gathered shall adhere to the data quality criteria of technological, geographical, and temporal representativeness. Table 7 presents a summary of selected requirements for data quality. Any deviations from the requirements shall be documented. Data quality requirements shall apply to both primary and secondary data. For LCA studies using actual farm data and targeted at addressing farmer behaviour, ensuring that farms surveyed are representative and the data collected is of good quality and well managed is more important than detailed uncertainty assessment.
Table 7: Overview of requirements for data quality

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Requirements/ data quality rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological representativeness</td>
<td>• The data gathered shall represent the processes under consideration.</td>
</tr>
<tr>
<td>Geographical representativeness:</td>
<td>• If multiple units are under consideration for the collection of primary data, the data gathered shall, at a minimum, represent a local region such as EU-27.</td>
</tr>
<tr>
<td></td>
<td>• Data should be collected respecting geographic relevance to the defined goal and scope of the analysis.</td>
</tr>
<tr>
<td>Temporal representativeness</td>
<td>• Primary data gathered shall be representative for at least the past 3 years and 5-7 years for secondary data sources.</td>
</tr>
<tr>
<td></td>
<td>• The representative time period on which data is based shall be documented.</td>
</tr>
</tbody>
</table>

10.3.2 DATA QUALITY INDICATORS

Data quality indicators define the standard for the data to be collected. These standards relate to issues such as representativeness, age, system boundaries, etc. During the data collection process, quality of activity data, emission factors, and/or direct emissions data shall be assessed using the data quality indicators.

Data collected from primary sources should be checked for validity by ensuring consistency of units for reporting and conversion as well as material balances to ensure that, for example, all incoming materials are accounted in products leaving the processing facility.

Secondary data for background processes can be obtained from, for example, the EcoInvent database. In this situation, the data quality information provided by the database manager should be evaluated to determine if it requires modification for the study underway. For example, if the use of European
electricity grid processes in other geographical areas will increase the uncertainty of those unit processes.

10.4 Uncertainty analysis and related data collection

Data with high uncertainty can negatively impact the overall quality of the inventory. The collection of data for the uncertainty assessment and understanding uncertainty is crucial for the proper interpretation of results (Section 12) and reporting and communication (Section 12.5). World resources institute / World Business Council for Sustainable Development (WRI/WBCSD, 2011) has published additional guidance on quantitative uncertainty assessment which includes a spreadsheet to assist in the calculations.

The following guidelines shall apply for all studies intended for distribution to third parties, and should be followed for internal studies intended for process improvement:

- Whenever data is gathered, data should also be collected for the uncertainty assessment.
- Gathered data should be presented as a best estimate or average value, with an uncertainty indication in the form a standard deviation (where plus and minus twice the standard deviation indicates the 95 percent confidence interval) and an assessment if data follow a normal distribution.
- When a large set of data is available, the standard deviation should be calculated directly from this data. For single data points, the bandwidth shall be estimated. In both cases the calculations or assumptions for estimates shall be documented.

10.4.1 Inter- and intra-annual variability in emissions

Agricultural processes are highly susceptible to variation in year-to-year weather patterns. This is particularly true for crop yields, but may also affect feed conversion ratios when environmental conditions are severe enough to have an impact on an animal’s performance. Depending on the goal and scope definition for the study, additional information may be warranted such that either seasonal or inter-annual variability in the product system efficiency can be captured and identified.

11 Life cycle inventory
11.1 Overview

The life cycle inventory (LCI) analysis phase involves the collection and quantification of inputs and outputs throughout the life cycle stages covered by the system boundary of the study (Figure 8). This typically involves an iterative process (as described in ISO 14044:2006), with the first steps involving data collection using principles as outlined in Section 10. The subsequent steps in this process involve recording and validation of the data; relating the data to each unit process and functional unit (including allocation for different co-products); and aggregation of data, ensuring all significant processes, inputs and outputs are included within the system boundary. The system boundary has pre- and post-farm gate stages.

11.2 Cradle-to-farm-gate

The cradle-to-farm-gate stage consists of three main processes of raw material acquisition, water supply and feed production, and use for animal production (Figure 11). Most raw material acquisition is associated with the production of feeds. Note that these guidelines only provide limited background information related to animal feeds because these are covered in the separate LEAP Animal Feed Guidelines document. Thus, animal feeds information is presented largely for context, but also because of the strong linkage between feeds and animal production. This needs to be considered when completing the life cycle assessment.

Figure 11: Processes that contribute to environmental impacts and fossil energy use covering raw materials, water use, feed production and use, and animal production within the system boundary of the cradle-to-farm-gate.
The box with a green background refers to inputs, processes and emissions covered by the LEAP Animal Feed Guidelines and are not part of the current guidelines.

Water supply to animals is important for their survival and energy inputs are often required for the provision (e.g. for pumping and reticulation) and/or transport of water. The environmental impacts associated with this and other sources of energy use shall be included. There is also a small contribution to resource use and environmental impacts associated with the production and provision of animal health inputs, which may include treatments for infectious diseases, internal and external parasites, reproductive and metabolic diseases (e.g. Besier et al., 2010).

To assist the user in working through the process of calculating the environmental impact of products for the cradle-to-farm-gate stage, a flow diagram illustrating the carbon footprint at various steps involved is presented in Figure 12.
Figure 12: Flow diagram as a guide to the procedure for determining the carbon footprint of large ruminant products for the cradle-to-farm-gate stage

1. Define Goal & Scope
2. Describe system & Functional Unit(s)
3. Draw System Boundary diagram
4. Define farm structure (exclude non-animal components, e.g., cash crops)
5. Define animal population(s) and draw animal flow diagram
6. Summarise annual animal production, including co-product (number / quantity, LW, sales dates...)
7. Use animal data to calculate annual animal energy requirements and DM intake
8. Calculate actual amount of feed DM consumed annually from purchased & home-grown/graed feeds. Obtain related feed quality data
9. Define feed DM digestibility and calculate Volatile Solids excreted
10. From DM intake & feed %N, calculate feed-N intake by animals
11. From product yield & product %N, calculate product-N output
12. Calculate N excreted from N intake - N products
13. Define electricity & fuel use
14. For each feed, determine GHG/kg DM for production, processing, storage & use (see Feed LCA Guidelines)
15. Define other farm-related inputs used
16. Define quantity of each Functional Unit (FU). Allocation decisions may be required to assign emission to Functional Unit
17. Calculate kg CO2eq/FU

Calculate enteric methane
Calculate dung/manure methane
Calculate direct & indirect N2O from excreta on pasture
Calculate direct & indirect N2O from (housing) manure management
Calculate CO2eq from fuel & electricity
Calculate CO2eq from feeds used (including wastage)
Calculate CO2eq from other inputs
Calculate GHGs & use GWP factors to calculate total CO2eq

Content within the ellipse relates to allocation decisions, while rounded boxes are the specific GHG.
At the cradle-to-farm-gate stage, previous research has shown that the largest single source of GHG emissions is methane from digestion of feeds in the rumen of cattle. For example, Beauchemin et al. (Beauchemin et al., 2010) estimated enteric methane at 63 percent of the total life cycle emissions for beef cattle production in Western Canada, while O’Brien et al., (O’Brien et al., 2011) estimated methane emissions associated with dairy cattle at 50 percent of total emissions from the cradle to the farm gate. Thus, it is important to determine (measured or modelled) an accurate estimate of feed intake by large ruminants. This aspect is covered in detail in Section 11.2.2. However, an important first step is to define the feed types used and their feed quality characteristics, which are likely to differ most between confinement and grazing production systems and with differing forage to concentrate ratio in the diet.

11.2.1 FEED ASSESSMENT

The production, conservation and use of feeds can represent a significant contributor to the total resource use and environmental impacts from large ruminant products. Thus, it is important to accurately identify the number and types of feeds used, which can vary markedly in different large ruminant production systems, as discussed in Section 6.2. Determination of the amount of each feed used is described in detail in Section 11.2.2.

Feed types can vary from annual crops (where the feed source may be harvested grains, whole crop silage/hay or forage crops grazed in situ) through to perennial plants. The latter includes pasture, range and browse forages. A summary of the typical composition (dry matter, energy, protein, fibre and phosphorus concentrations) of a very wide range of these feed types is given in NRC (2000; 2001); 11.1 and 15.1, respectively). Primary data on the composition of the main feed sources used shall be obtained for use in the LCI analysis wherever possible, but the NRC tables provide default values when primary data cannot be obtained.

g) Calculating environmental impacts of feed production

The LEAP Animal Feed Guidelines describes the methodology for calculation of environmental impacts associated with the production, processing and storage of animal feeds. The main raw materials and processes that must be accounted for in determining the emissions of feeds are given in Figure 8. Key contributors to environmental impacts are inputs of fertilizers, manures and lime (including relevant manufacturing, transport and application stages); fuel used for production, processing and transport; crop residues (that produce N₂O emissions) and land use change. Land use change and carbon sequestration in soil can be important contributors to GHG emissions or removals, but these relate specifically to the feed production stage and, therefore, these aspects are covered in the LEAP Animal Feed Guidelines (see also (British Standards Institution, 2011). Land use change as
a result of large ruminant production systems can also have implication for loss or gain of biodiversity as discussed in Section 11.5.

A wide range of processed feeds or concentrates are used globally and various databases are being developed by a number of groups including FAO. Vellinga et al., (2012) provides default values for the total GHG emissions per kg feed. Default values are appropriate where relevant region-specific data are unavailable, and where their use is a minor component of the main feeds used.

When default published values for environmental impacts from the production of feeds are used, it is important to account for their system boundary. For example, the system boundary for the default values in the LEAP Animal Feed Guidelines ends at the “animal’s mouth”. When feed production emissions are integrated into the calculation of emissions for the cradle-to-farm-gate, it is important to ensure that double counting is avoided and that all emissions are included. Feeds which can be fractionated, for example the generation of cereal grain and cereal straw as feed, emissions should be assigned based on the nature of the fractionation.

In practice, there is wastage of feed at various stages between harvest, storage (covered in the LEAP Animal Feed Guidelines), and consumption by large ruminants, and this shall be accounted for. For example, if there is 30 percent wastage between the amount fed to large ruminants and the amount consumed, the emissions from feed inputs shall be based on the amount fed. This waste feed may end up in the manure management system and its contribution to subsequent methane and N₂O emissions during storage shall be accounted for, while in pasture based systems it may actually be available for the next grazing event.

As noted in Section 6, a large proportion of large ruminants globally are managed in extensive systems with grazing of perennial pastures or browsing on mixed forage systems. Some important features of these feed types, in contrast to annual crops and concentrates, include: relatively low inputs associated with their production, lack of crop residues associated with regular plant renewal, and variable feed quality throughout the year. The latter means that a single average dataset will be less accurate than a seasonal or monthly profile of plant analyses linked with seasonal or monthly estimates of animal feed intake.

The amount of feed used shall be based on the calculated intake by the animal over a one-year period. Thus, for a feed that is harvested and brought to the animal (e.g. a concentrate), the annual amount of feed dry matter used (plus any allowance for wastage) shall be calculated and multiplied by the emissions per kg feed (i.e. kg CO₂-equivalent/kg dry matter). During periods of extended drought or winter seasons when crop growth ceases, large ruminants may be supplemented on pasture with other feeds. In such cases, to determine feed-related emissions, there is a need to account for any inputs
used in their production, as well as for the harvesting and transport of feed to the animals and any wastage that may occur.

Cereal straw or other plant residues may be used for bedding in housed large ruminant systems or as a cover for manure storage systems. In such cases, environmental impacts associated with the harvest and transportation steps of such products shall be included.

11.2.2 ANIMAL POPULATION AND PRODUCTIVITY

The calculation of animal-derived GHG emissions (e.g., enteric methane, excreta N₂O and methane) requires data on total feed intake and some feed quality parameters. In many large ruminant production systems it is not possible to obtain direct data on feed intake. This applies particularly to farm systems in which large ruminants graze forages. Thus, feed intake is commonly determined indirectly using models that calculate feed requirements according to large ruminant numbers and their productivity.

Most models used for calculation of feed requirements derive intake from the energy requirements for the processes of growth, reproduction, milk production, activity (i.e. grazing/walking/draught) and maintenance (e.g. IPCC, 2006; NRC, 2000; 2001). This requires data on the numbers and productivity of large ruminants.

To account for total environmental impacts from large ruminant products over a one-year time period, it is necessary to define the population associated with the production of the products (e.g. see Figure 13 for a simplified dairy cow population example, more examples can be found in Appendix 3, 4, 5, 10). This requires accounting for the number of breeding female and male large ruminants, replacement female and male animals, and surplus (i.e. not required for maintenance of the herd) animals sold for meat. A minimum requirement for animal numbers for a stable population could be the number of adult breeding animals and the number and class (i.e. age category and gender) of animals sold for meat. However, it is recommended that an animal population “model” be constructed from:

- the number of adult breeding animals;
- a herd replacement rate (from which numbers of replacement animals could be calculated, not including additional animals required if the herd is expanding);
- Fertility (i.e. calving %, equivalent to the number of calves that are born as a percentage of the breeding fertile females that are bred) ; in many production systems cows that are not successfully bred are subsequently culled from the herd.
- death rate;
average age at first calving.

growth rate of young cattle

age of replacements at first mating.

Figure 13: Simplified example of a dairy farm illustrating annual flows of animals (dairy cows, replacement heifers and reared surplus calves) and product flows of energy corrected milk (ECM) and meat (carcass weight).

Based on breeding cow herd of 100 cows, 100 percent calving, 25 percent replacement rate, 2 percent mortality rate and first calving at 2 years of age. A dressing percentage (carcass weight/body weight) of 50% for culled cows and 59% for Dairy beef and veal bull calves was used. Please note all cows were bred by artificial insemination.

From the base animal population data, an annual stock reconciliation needs to be derived that accounts for the time of calving and time of sale of surplus animals. Ideally, a monthly stock reconciliation would be used. The benefit of having a Tier-2 methodology (using calculated energy requirements; see Glossary) and specific seasonal or monthly data is that the effects of improvement in animal productivity on reducing the carbon footprint of products can be determined. For example, achieving an earlier final slaughter weight of cattle reduces feed intake and maintenance feed relative
to the feed needed to achieve a given level of animal production. If possible, monthly input data is the
most desirable for calculations.

The population data may need to be extended to include large ruminants transferred among farms. In
some production systems large ruminants may be exchanged among 3 or more owners during the
production process. For example, growing beef cattle may be sold or moved from the primary
producer to a secondary producer during the growing stage of production, before being sold to a third
producer for finishing. Similarly, the rearing of replacement dairy heifers may be done on a different
farm from that where lactating cows are maintained. In these cases, all necessary components for the
production of the acquired animals on the contributing farm shall be accounted for, including adult
breeding stock. For national or regional level analyses, this can be accounted for using average data.
However, for case studies it will require primary data from all source farms, and where these data are
unavailable, it will be necessary to use regional data for the specific large ruminant classes on the
contributing farm(s) with this being considered based on the system boundary of the study being
completed. Simplifications may be necessary for minor contributors such as accounting for breeding
bulls. These are often sourced from other farms, but can be accounted for by assuming they are
derived from within the base farm system or that artificial insemination is being used at which point
they may lie outside the system boundary. Ideally the transport component of externally sourced bulls
should be included in the calculations.

Calculation of animal productivity also requires average data on male and female adult live-weight,
live-weight of animal classes at slaughter and milk production (for dairy cattle). Average birth weight
is also required, but a reasonable default value for cattle is 5 percent of the adult cow live-weight.

Primary data on the animal population and productivity shall be used where possible. The minimum
amount of primary data to develop an animal population summary was described above, but if this is
unavailable then an example of beef and dairy cattle herd parameters for different regions of the world
is given in Appendix 9.

h) Calculating energy or protein requirements of animals
A range of models are used internationally for estimating the energy requirements (either as net or
metabolizable energy) of ruminants from population and productivity data. Many of these have
similar driving functions (e.g. maintenance requirements based on metabolic weight = body-
weight^{0.75}) with variations in equation parameters according to data from specific animal metabolism
studies and field validations.

Where country-specific models for calculating the energy requirements for large ruminants have been
published, and used in the National Greenhouse Gas Inventory (NGGI) for that country, these shall be
used. Where alternative models (e.g. region-specific published models) are used to improve the accuracy of the calculations, these should be described in detail and justified. Many groups in the GHG research area use the IPCC (2006) energy requirement model; therefore, it is recommended that this model be used as the main default methodology. The recommended order of preference is:

1. region-specific models used in the country NGGI;
2. Other models that have been peer-reviewed and published that are applicable to the region or are country-specific;
3. IPCC (2006) Tier 2 method;
4. IPCC default Tier-1 values.

A similar approach can be used to estimate the N intake of large ruminants, information that is needed to estimate N excretion per animal (kg N animal$^{-1}$ year$^{-1}$) in order to estimate nitrous oxide emissions from manure. Once dietary dry matter intake has been estimated, N intake can be estimated based on the crude protein requirement of the diet (see section 11.2.3b).

i) Assessment of feed intake

In a limited number of situations, it will be possible to use measured data to define the amount of feed intake on-farm to produce animal product(s). This is only likely to apply where large ruminants are permanently housed and all feed is brought to them. However, in most cases, large ruminants obtain feeds from a number of sources, including grazing, where it may not be possible to have an accurate measurement of the total amount of feed consumed. In such cases, the total feed intake is calculated from the total energy requirements of the animals.

Calculation of feed intake from the energy requirements of large ruminants that consume a number of feed types will commonly require several steps. The following describes the process using metabolizable energy (ME).

The first step is to define the measured amount of feed intake from any supplied feed source brought into the farm from an outside source (e.g. where concentrates are provided). This must account for the total amount of the particular feed(s) provided adjusted for the level of feed consumption and wastage (i.e. using a utilization percentage). Some examples of losses by wastage are 5-10 percent when feed is provided to large ruminants in specialized feeding facilities to as high as 20-40 percent when they are fed by spreading feed on the ground or pasture (DairyNZ, 2012). The first calculation step will involve subtracting the amount of ME consumed from the supplied feed(s) (based on the amount of feed DM intake and its specific energy concentration in MJ ME/kg DM) from the total energy requirements to determine ME intake from other feed source(s):
ME intake_{other} = Total ME requirement – (DM intake x MJ ME/kg DM)_{feed1} – (DM intake x MJ ME/kg DM)_{feed2}

The difference (ME intake_{other}) will be the amount of energy consumed from other feed sources, such as from grazing pasture forages. If there is one source (e.g. pasture), then the amount of DM intake from that source can be calculated (based on its specific energy concentration in MJ ME/kg DM)

From:

DM intake_{other} = \frac{ME intake_{other}}{(MJ ME/kg DM)_{other}}

If there is more than one other feed source, it will be necessary to determine the DM intake for each source from an estimate of the proportion of each feed type consumed and their specific energy concentrations in MJ ME/kg DM.

For each feed source utilized by large ruminants, there is a need to have an accurate average estimate of the feeds chemical composition (concentrations of dry matter, metabolizable energy, digestibility and nitrogen) based on either a weighted annual average or on a monthly basis accounting for feed quality differences and changes in profile of energy demand especially in pasture based systems throughout the year. While these will be necessarily averaged values, the most accurate data available for the specific regional system should be used. Digestibility and nitrogen content of the faeces are used in the calculation of methane and N₂O emissions from excreta. These feed compositional parameters can be obtained from feed measurements at the farm system(s) studied; using average published data relevant to the agro-ecological zone of interest, or published national or global data for the relevant feeds. Where available, multiple published studies of a feed within an agro-ecological zone and within a similar production system are preferred. For forage species that show marked seasonal variation in quality, seasonal data (or monthly data if available) should be used where possible. Default annual average data for a wide range of different feed sources are given in NRC (2000; 2001). Where appropriate, rapid analyses techniques such as near infrared spectroscopy can increase confidence in the chemical composition of select feeds.

j) Animal enteric methane emissions
The 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) advise the use of a Tier-2/Tier-3 approach to calculate enteric methane emissions from mature dairy cattle, mature (non-dairy) cattle, and young cattle. For buffalo, either a Tier-1 (55 kg CH₄/head/year for both developed and developing countries) or a Tier-2 approach is suggested.

The Tier-2 approach relies on calculating the enteric methane production from large ruminants using data on feed intake (in particular gross energy (GE) intake, based on the total net energy (NE) or ME intake by each animal class as described in Section 11.2.2.) and methane conversion factors (MCF, % of GE lost as enteric methane). The first step is the conversion of total NE (or ME) intake to GE, using data on feed percentage digestibility (IPCC, 2006). When dry matter intake (DMI) is available, GE can be calculated as:

\[
GE\ (MJ\ /\ animal\ /\ day) = DMI\ (kg\ DM\ /\ animal\ /\ day) \times 18.45\ MJ\ /\ kg\ DM
\]

Regarding MCF, according to IPCC (2006) an average of 6.5 percent (±1%) of GE intake is lost as enteric methane from the rumen of mature cattle and buffalo (including their young, animals that are primarily fed low quality crop residues and by-products, and grazing cattle). Large ruminants fed more than 90% concentrate diets are assigned a MCF of 3.0 percent (±1%). Data for cattle generally indicate that this loss factor is higher for lower digestibility feeds, but there are limited data for development of scaling factors. If reliable information on forage quality is available, emission factors can be lowered or increased based on quality information, otherwise a single emission factor for forage diets can be used. Adjustments to the MCF should be based on peer reviewed publications and clearly reported.

The annual quantity of methane emitted for each animal class is then calculated using the following equations:

\[
kg\ CH_4/\ animal/\ year = GE\ intake\ (MJ/year) \times MCF / 55.65
\]

Where 55.65 is the energy content of methane in MJ/kg.

To summarize, annual enteric methane emissions per animal per year are calculated using the above equations using data on GE intake for one year for each animal class and integrating them across the number of animals. This represents a default international emission approach based on Tier-2 methodology. Where country-specific emission factors have been peer reviewed, published and integrated into the national GHG inventory, then these shall be used instead. For instance, the Netherlands uses a Tier-3 approach for mature dairy cattle to calculate methane emissions from enteric fermentation by using dynamic modelling ((Mills et al., 2001; Smink and Hoek, 2005); Bannink et al., 2005).
If a user of these guidelines is unable to access sufficient basic data to apply the above Tier-2 or Tier-3 approaches, then a Tier-1 emission factor could be used based on the IPCC (2006) regional default values for dairy and other cattle and 55 kg CH₄/animal/year for buffalo. However, the use of Tier-1 factors means that the user has no ability to account for carbon footprint reductions associated with improvements in large ruminant productivity. An example of calculation of enteric methane emissions from animal energy requirements is described in appendix 11.

11.2.3 MANURE PRODUCTION AND MANAGEMENT

a) Methane emissions from animal excreta and manure

According to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006), methane emissions from manure management can be calculated as:

\[
\text{kg CH}_4/\text{animal/year} = \text{VS} \times 365 \times \text{Bo} \times \text{MCF} \times \text{methane density (0.67 kg m}^{-3})
\]

Where

- **VS**: daily volatile solid excreted (kg dry matter/animal/day)
- **365**: conversion factor to calculate annual VS production based on daily values (day/year)
- **Bo**: maximum methane production potential (m³ CH₄/kg VS) for the excreted manure
- **MCF**: methane conversion factor for the manure management system (% of Bo)

First of all, the amount of volatile solids produced must be calculated. This represents the amount of feed consumed corrected for the component digested by animals and the non-volatile ash component that remains. For cattle, the equations for calculating volatile solids in IPCC (2006; Equation 10.24) can be simplified to:

\[
\text{kg volatile solids} = [\text{kg DMI/animal} \times (1.04 – \text{DMD})] \times 0.92
\]

Where **DMD** is the dry matter digestibility expressed as a fraction. For example, the % DMD for perennial pastures in New Zealand varies throughout the year, from about 74 percent in summer to 84 percent in winter (Pickering et al., 2011). In this equation, it is assumed that a value of 4 percent of GE can normally be attributed to urinary energy excretion by most large ruminants. This value should be reduced to 2 percent of GE for ruminants fed diets that contain 85 percent or more grain. Where
available, country-specific values should be used and users should be aware that factors such as feed processing can influence dry matter digestibility estimates. The 0.92 factor in the above equation is based on a default of 8 percent ash content of cattle manure (i.e. using \(1 - \%\text{ash}/100\)), which should be modified if measured or known system-specific values differ from this default.

Since \(B_0\) is not only dependent on the large ruminant category, but also on diet, IPCC (2006) recommends using country-specific values for \(B_0\). MCF gives an indication of the conversion of degradable compounds in the manure into methane. It depends both on the way manure is being managed in terms of handling and storage as well as on the climatic conditions. Similar to the other factors affecting methane production from manure management, country-specific MCF values are strongly encouraged. However, if country-specific MCF values are not available, default values may be applied (IPCC (2006); Table 10A4 for dairy cattle, Table 10A5 for non-dairy cattle, Table 10A6 for buffalo).

To summarize, methane emission factor calculations vary according to the manure management system and climate (IPCC, 2006). The Tier-2 approach is recommended. If this approach cannot be used, generic Tier-1 emission factors are given by IPCC (2006) for large ruminants in different regions of the world. Where country-specific emission factors have been peer reviewed, published and integrated into the national GHG Inventory, then these shall be used instead.

\[\text{kg N consumed} = \sum (\text{kg DM intake}_i \times \%\text{N in feed}_i /100)\]

b) Nitrous oxide emissions from animal excreta and manure

Nitrous oxide emissions occur by direct emissions from excreta, indirectly from ammonia released from excreta into the atmosphere and deposited back onto soil, and from nitrate leached to ground and surface waterways. The total \(N_2O\) emissions from excreta and manure are calculated by summing the direct and indirect \(N_2O\) emissions, after adjustment for the \(N_2O/\text{N}_2O-N\) ratio of 44/28. Implications of \(N\) emissions for eutrophication of water ways and acidification of soils are discussed in Sections 8.5.1 and 8.5.2, respectively.

Preferably, a Tier-2 approach shall be used whereby the amount of \(N\) excreted by large ruminants is calculated using the production and feed intake model outlined in Sections 11.2.2a–11.2.2b. The amount of DM intake is multiplied by the average \(N\) concentration of the diet (weighted according to the relative proportions of different feed types “\(t\)” in the diet) to get the amount of \(N\) consumed (Crude protein/6.25):

\[\text{kg N consumed} = \sum (\text{kg DM intake}_i \times \%\text{N in feed}_i /100)\]
Nitrogen output that is retained in product(s) (i.e. meat, hide, blood and milk) is then subtracted from
the N consumed to calculate the amount of N excreted:

\[\text{kg N excreted} = \text{kg N consumed} - \text{kg N in products} \]

Data on the average N concentration of a wide range of different feed sources is given in the LEAP
Animal Feed Guidelines and NRC (2000; 2001), but this shall be over-ridden by measured values
(i.e. primary data) or region-specific peer-reviewed published values, if available. The N output in
products is calculated from the amount of product multiplied by the protein concentration of the
product and divided by 6.25 to convert protein to N:

\[\text{kg N in products} = \sum \left(\text{kg product} \times \left(\frac{\% \text{ protein in product}}{100} \right) / 6.25 \right) \]

The values for protein concentration of products should be based on measured values or region-
specific peer-reviewed published values, where possible. Typical default values for the protein
concentration of meat (live-weight gain basis), and milk are 20, and 3.3 percent, respectively
(e.g. USDA, 2013).

It should be noted that in some cases, large ruminants may be moved from confined systems where
manure is subject to management practices to grazing system where the manure is deposited on
pasture within the duration of a single day. In this situation the practitioner should estimate the total
amount of time that the herd spends in each location and apportion the amount of volatile solids,
calculated as described in Section 11.3.2, on the basis of the duration that the animals spend in each
location. For example, if dairy cattle were held in confinement for 12 h per day where manure was
collected and subject to management practices, and allowed to graze pasture for 12 h per day, the total
volatile solids produced would be divided equally between manure management and pasture
deposition. It is equally important to carefully consider the fraction of manure that is managed in each
type of system manure management system (e.g., composting, liquid storage etc.). The best means of
obtaining manure management system distribution data is to consult regularly published national
statistics. If such statistics are unavailable, the preferred alternative is to conduct an independent
survey of manure management system usage. If the resources are not available to conduct a survey,
exterts should be consulted to obtain an opinion of the system distribution.

Direct N\textsubscript{2}O emissions from excreta deposited on soil during grazing of cattle (dairy, non–dairy,
buffalo) are calculated by multiplying the annual amount of N excreted by the IPCC (2006) emission
factor of 0.02 kg N₂O-N/kg N excreted (see Figure 14 for a summary of calculation components). Where country-specific emission factors have been published and integrated into the national GHG inventory, then these shall be used instead.

For calculation of N₂O emissions from manure during storage, the relevant IPCC (2006) emission factors shall be used. For example, direct N₂O emission factors in kg N₂O-N/kg N from storage vary from nil for uncovered anaerobic lagoons, 0.005 to 0.01 from aerobic ponds (being less with forced aeration), 0.02 from drylot to 0.1 for composting with regular turning and aeration (IPCC, 2006; Table 10.21).

Indirect N₂O emissions from ammonia during manure storage first require an estimate of the amount of ammonia emitted. This can be calculated using model predicted emissions, country-specific factors that have been published and integrated into the national GHG inventory. These estimates should be aligned with manure handling and storage practices. If these estimates are not available, IPCC (2006) default ammonia loss factors (FRACGASM) from excreta-N with consideration for manure handling practices may be used. Ammonia-N loss is then multiplied by the IPCC (2006) emission factor (EF₄) of 0.01 kg N₂O-N/kg N excreted.
Note: Summary of approach for calculating N\textsubscript{2}O emissions from animal excreta and the waste management system (WMS) using IPCC (2006) activity factors (FRAC refers to fraction of N source contributing) and emission factors (EF in kg N\textsubscript{2}O-N/kg N).

GASM = gaseous loss as ammonia; FRAC\textsubscript{gasm} and EF1 vary with type of AWMS. For manure, only manure storage losses are included in these guidelines (losses from land application are covered in the LEAP Animal Feed Guidelines).

Indirect N\textsubscript{2}O emissions from ammonia loss and N leaching from excreta deposited directly to land during grazing shall be calculated as shown in Figure 14. Calculations first require an estimate of the amounts of ammonia loss and N leaching from excreta deposited on land. The default IPCC (2006) loss factor for FRAC\textsubscript{gasm} is 20 percent of N excreted, and 30 percent for FRAC\textsubscript{leach} (for soils with net drainage, otherwise 0 percent) of N excreted by grazing cattle. There is evidence (Sherlock \textit{et al.}, 2008; Velthof \textit{et al.}, 2012) that the default IPCC FRAC\textsubscript{gasm} value may overestimate actual ammonia losses during grazing. However, due to the limited amount of data available, this default value is still often applied. If available, country-specific factors that have been published and integrated into the national GHG inventory shall be used. These are then multiplied by the corresponding IPCC (2006) emission factors [EF4 and EF5] of 0.01 kg N\textsubscript{2}O-N/kg N lost as ammonia and 0.0075 kg N\textsubscript{2}O-N/kg N leaching/runoff, respectively.
c) Methane and Nitrous oxide emissions from manure treatment

When excreta is collected and processed via a manure management system, the storage-related emissions shall be included in this analysis. Where the stored manure is transported away and applied to land growing a crop or pasture used to produce feed, the emissions associated with transport and application (after adjustment for N lost by volatilization) shall be included (see §9.2.1.4). If the manure is transported to a secondary user for other purposes, such as land reclamation or tree fertilization, emissions should be allocated to the secondary user. Under most circumstances, if the application of manure exceeds the limiting nutrient for crops than the emissions associated with the amount of manure applied above crop requirements is allocated back to livestock (See detailed discussion of allocation manure-related emissions in §9.2.1.4). Emissions associated with feed sources are found in the LEAP Animal Feed Guidelines and not within this document.

Where country-specific emission factors for specific manure management technologies have been peer reviewed, published and integrated into the national GHG inventory, then these values shall be used, otherwise default values based on the type and characteristics of the manure management system may be applied.

11.2.4 EMISSIONS FROM OTHER FARM-RELATED INPUTS

The other main inputs on-farm contributing to environmental impacts are largely associated with the use of fuels and electricity. Additional farm-related inputs that need to be accounted for include consumables used on-farm. Nutrients administered directly to large ruminants and milk powder used for rearing calves is covered in the LEAP Animal Feed Guidelines.

The total use of fuel (diesel, petrol) and lubricants (oil) associated with all on-farm operations shall be estimated. Estimations shall be based on actual use and shall include fuel used by contractors involved in on-farm operations. Where actual fuel-use data are unavailable, these should be calculated from the operating time (hours) for each activity involved in fuel use and the fuel consumption per hour (this latter parameter can be derived from published data or from appropriate databases, such as e.g. EcolInvent, ELCD, USNAL or GaBi). Note that any operations associated with the production, storage and transportation of large ruminant feeds are not included here, but are covered in the LEAP Animal Feed Guidelines. Figure 8 indicates some of the main non-feed processes associated with the use of fuels, such as water transport, use of vehicles for large ruminant transport, manure transport and application and removal of wasted feed and other farm-specific activities (e.g. visit by veterinarians or AI technicians).

The total amount of a particular fuel type used is then multiplied by the relevant country-specific GHG emission factor (which accounts for production and use of fuel) to determine fuel-related GHG emissions. The process for calculating fuel-related GHG emissions also applies to electricity. Thus, all electricity use associated with farm activities (excluding feed production and storage where they are...
included within the emission factor for feeds) shall be estimated. This includes electricity for water reticulation, large ruminant housing, and milking (Figure 8). Country-specific emission factors for electricity production and use shall be applied according to the electricity source. This would typically be the national or regional average and would account for the electricity grid mix of renewable and non-renewable energy sources and should be based on the demand load from the farms if national data is available.

In some extensive production systems, nutrients required to avoid deficiency by animals (e.g. energy, protein, minerals) may be delivered directly to grazing large ruminants. In such cases, transport and their contributions to total environmental impacts shall be accounted for, as described in the LEAP Animal Feed Guidelines. Any implications that this practice may have on biodiversity, water eutrophication or soil acidification shall be considered.

Where there is a significant use of consumables in farm operations, the environmental impacts associated with their production and use should be accounted for. An example of this would be the emissions associated with the production of farm machinery or building infrastructure. This would generally be estimated from published data or from appropriate databases (e.g. EcoInvent). However, in practice these will often constitute a minor contribution and relevant data on them may be difficult to access. See Section 8.4.3 on cut-off criteria for exclusion of minor contributors.

11.3 Transportation

This section refers to transportation stages covering transport of large ruminants or milk from the site of production to the site of primary processing, manure transport off farm and any internal transport within the primary processing site(s) to the output loading dock (see Section 11.6). It also includes transportation of inputs such as water within the farm, and movement of animals between different farms, contributing to their production prior to going for processing.

Fuel consumption from transport can be estimated using: (i) the fuel cost method, (ii) the fuel consumption method, or (iii) the tonne-kilometre method. When using the fuel cost method (fuel use estimated from cost accounts and price) or the fuel consumption method (reported fuel purchased), the “utilization ratio” of materials transported shall be taken into account. Transport distances may be estimated from routes and mapping tools or obtained from navigation software.

The allocation of empty transport distance is often done already in the background models used for deriving the secondary LCI data for transportation. However, if primary data for transport should be derived, the LCA user should make an estimate of the empty transport distance. It is good practice to provide a best estimate with a corresponding uncertainty, per the requirement in section 10.4.

Allocation of empty transport kilometres (backhaul) shall be done on the basis of the average load factor of the transport that is representative for the transport under study. If no supporting information
is collected, 100 percent empty return should be assumed. However, the maximum weight can only be achieved if density of the loaded goods allows.

Allocations of transport emissions to transported products shall be performed on the basis of mass share, unless the density of the transported product is significantly lower than average so that the volume restricts the maximum load.

Where live exports of large ruminants occur, it is necessary to account for all related transport emissions and loss of animals during transportation. The use of fuels and GHG emission factors associated with the type of transportation shall be calculated according to the size of transportation vehicle and the typical fuel consumption rate. The type of fuel utilized should also be considered. Where refrigerated transportation is used, the typical rate of loss of refrigerant, fuel use associated with refrigeration and associated GHG emission factor shall be included.

11.4 Inclusion and treatment of land-use-change

Land-use-change (LUC) relates to the feed production stage and is therefore covered in the LEAP Animal Feed Guidelines. These guidelines describe two calculation methods, including a global averaging method if specific LUC details are unknown and where LUC effects are spread across all land use change. Calculations using the latter method shall exclude long-term perennial forages such as perennial pastures and rangeland systems (i.e. global average LUC GHG is zero). Long-term perennial forage systems can be significant feed source in some large ruminant systems. GHG emissions associated with LUC should be accounted separately and reported. PAS 2050 (British Standards Institution, 2011) provides additional guidance.

11.5 Water Use

Water is a finite and vulnerable natural resource for all ecosystems and human society. Livestock and agriculture are water intensive activities and water use and impact can vary widely depending on region, climate, watershed and water use competing activities.

The water footprint of large ruminants consists primarily of the indirect water footprint of the feed, in addition to the direct water footprint associated with drinking water and the consumption of service water (Chapagain and Hoekstra, 2003). U. S. milk LCA showed that ~93.5% of consumptive water use is used in the irrigation of crops for use as dairy feed. On dairy farms, water use and dairy processing account for a small proportion of total water use. (Henderson, A. D., 2013). The production system determines the size, composition and geographic spread of the large ruminant water footprint as this impacts feed conversion efficiency, feed composition and origin of feed.

There are two major parallel developments on the “water footprint”. One is the supply chain perspective Water Footprint Network (WFN), the other is LCA based water use and impact.
assessment. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. This section builds on recent water footprint activities of UNEP/SETAC Life Cycle Initiative project – Water Use LCA (WULCA) and aligns with the ISO14046 water footprint principles, requirements and guidelines.

Water footprint is based on LCA methodology, and as such it is important to conduct the assessment at a scale and resolution that is relevant to the goal and scope of the study and takes into account the local context (ISO14046, 2014). A water footprint assessment according to this standard shall include the four phases of life cycle assessment:

- Goal and scope definition
- Collection of data and water footprint inventory analysis
- Water footprint impact assessment
- Interpretation

A water footprint is the result of a comprehensive LCA which results in a profile of impact category indicator results. So the scope, system boundary and allocation etc. shall be conducted and reported in accordance with ISO14044 as described in these guidelines. A water footprint assessment may be performed as a stand-alone assessment or as part of a comprehensive LCA. The results of a water footprint inventory analysis may be reported, but shall not be reported as a water footprint. Hence, the appendix 12 describes the challenges related to water footprint in agriculture.

11.5.1 METHODS ADDRESSING FRESHWATER USE INVENTORY

There are several methods of assessing water use within a LCA; this guide adopts the terminology proposed by the UNEP/SETACT Life cycle Initiative (Bayard, et al. 2010). The terms related to life cycle assessment and water footprint assessment can be found in the appendix 11 and the glossary of this document.

It is important to define the scope of “water use” which is the total input of freshwater into a product system. As parts of the water input is released from the product system as waste water, the remaining portion which has become unavailable due to evaporation or product integration is referred to as “water consumption”(Berger M., 2010). Konini et al. (2013) reviewed relevant methods of addressing freshwater use in life cycle inventory and impact assessment, and identified the key elements that could be used to build a scientific consensus for comprehensive water assessment.

11.5.2 INVENTORY: COLLECTION OF DATA

The water inventory analysis phase involves data collection and modelling of the product (e.g. milk, cheese, and beef) systems, as well as description and verification of data.
According to ISO14046, the following data related to water shall be considered for data collection for assessing the environmental impacts of water consumption:

- quantities of water used (including water withdrawal and release);
- types of water resources used (including for water withdrawal and water receiving body);
- forms of water use;
- changes in drainage, stream flow, groundwater flow or water evaporation that arise from land use change, land management activities, and other forms of water interception (where relevant to the scope and boundary of the study);
- locations of water use (including for water withdrawal and release) that are required to determine any related environmental condition indicator of the area where the water use takes place;
- seasonal changes in water flows, water withdrawal and release, when relevant;
- and temporal aspects of water use, including, if relevant, timing of water use and length of water storage.

Following the ISO 14046, total flows of evapotranspiration from a land based production system are not considered to be relevant at the inventory level as at present there is a gap in available methods. While reference values can be calculated and the difference in evapotranspiration assessed as water consumption (Nunez et al., 2013) the uncertainties linked to the methodology are still too high.

A description of data needed for the calculation of water footprint is provided in appendix 13 and an example of a US dairy water footprint is described in appendix 14.

Water is a local issue, consumptive water use and water stress, as well as the impact on water quality should be discussed in a local context. There is no universal model to effectively estimate water use inventory and water quality impact in all geographical areas. Where possible, region specific hydrological information should be obtained for the development of a water footprint.

11.6 Soil carbon sequestration

Soil carbon sequestration can be important for some large ruminant systems. However, since this relates only to the feed production stage, the specific methods are covered in the LEAP Animal Feed Guidelines. Where no data relating to soil carbon sequestration are available, the LEAP Animal Feed guidelines provide default values (only for temperate climate). If data are available it is important to consider that sequestration will diminish overtime, eventually reaching a plateau with zero change in soil carbon if the system remains in stasis. Management practices that disrupt this stasis such as
cultivation of grassland or over grazing can result in a loss of soil carbon until sequestration returns to equilibrium. Additional descriptions on assessment of C soil sequestration are provided in appendix 15.

11.7 Primary processing stage

The primary products of milk and meat are covered in these guidelines. For all products, there are a number of generic processes that contribute to environmental impacts. These are summarized in Figure 15 and include transportation (of products within or between primary processing plants), processing, water use, cold/frozen storage, and wastes and wastewater treatment. Each component requires raw materials associated with production of energy carriers, refrigerants, consumables, cleaning chemicals and packaging. The following sections discuss the specific products and the assessment of environmental impacts with their primary processing.
Figure 15: Processes that contribute to environmental impacts and fossil energy use within the system boundary of the cradle-to-primary-processing-gate

Related cradle-to-farm-gate processes are also given (a further breakdown of these is given in Figure 8). The box with a green background refers to inputs, processes and emissions covered by the LEAP Animal Feed Guidelines and are not part of the current guidelines.

11.7.1 MILK PROCESSING

The milk collected from large ruminants may be used to produce one or more of the following products: fresh milk, yoghurt, cheese, cream/butter, whey, milk powder, etc. A very diverse range of products are produced during processing and a wide range of technologies are used for their production, from cottage industries to large multi-process facilities.

The main processes that need to be accounted for are milk collection, milk processing, production and use of packaging, refrigeration, water use and wastewater processing, and within-plant transportation (Figure 15). The milk-processing stage includes the use of resources including energy, water and consumables (e.g. detergents, cleaning chemicals). The energy related to the production of specific products should be included in the outputs including the co allocation of products. General milk
assembly should be handled across the milk pool while specific products should be related to their
direct energy and water use.

d) Data collection and handling of co-products

Representative data needs to be collected from the milk-processing plant(s) for the defined one-year
period on the amount of milk (and its fat and protein content) entering the plant and the fat and protein
content of the different products produced. A material flow diagram of milk input and output products
should be produced to account for a minimum of 99 percent of the fat and protein.

Representative data must also be collected on the resources used for processing. Ideally this should be
collected for each unit process so that it can be allocated according to the products produced, but these
are rarely available. In some cases, data may be available that can be attributed to production of one
specific product. In such cases, these process data should first be separately assigned to the specific
product before applying an allocation methodology to the remaining data. In most cases it is only
possible to obtain data for a whole processing plant, and in such cases a method for allocation of
resource use and emissions between the products is required.

Packaging is generally a relatively small contributor to total environmental impacts (<1%) and, where
this is the case, secondary data are often used where no specific on-site production data are available.
When packaging is manufactured off-site, the calculated environmental impacts should include the
production of the packaging as well as the raw materials. Where glass bottles are used for liquid milk,
the rate of re-use should be accounted for in the calculations. Similarly, many other consumables and
cleaning chemicals are used in the processing of dairy products, and secondary data sources from
databases such as EcoInvent may generally be used for their production and use. This also applies to
refrigerants, although use of primary activity data on the type and amount of refrigerants used is
desirable.

e) Calculating environmental impacts from milk processing

Activity data are required on the amounts of the various resources used. Energy use must account for
the type of energy. Similarly, the type of packaging materials and refrigerant(s) used should be
identified. The activity data are then combined with relevant emission factors to calculate total
emissions. For refrigerants, Myhre *et al.* (Myhre et al., 2013) provide a list of GWP (100-year) factors
for a wide range of refrigerants, which should be updated to coincide with future revisions by
IPCC. (2013) provide a list of GWP (100-year) factors for a wide range of refrigerants, which should
be updated to coincide with future revisions by IPCC. It is also important that the specific refrigerant
type being used be identified as emissions differ substantially among refrigerants. The distribution of
milk solids among the different products must also be known in order to follow the allocation procedure for incoming raw milk burdens.

Data are required on the quantities of wastewater produced, its composition and the method of processing (e.g. anaerobic ponds, aerobic ponds, and land application). The method of processing will determine the GHG emissions produced (e.g. methane from anaerobic digestion). Emission factors for methane and N₂O for the different wastewater processing systems are given in IPCC (2006).

Total GHG emissions are calculated from the sum of all contributing sources and converted to CO₂-equivalents according to the latest GWP factors from IPCC. The calculation of total environmental impacts must include adjustment for allocation between the various co-products, as outlined in Section 9.3.

11.7.2 MEAT PROCESSING

Primary processing of cattle and buffalo for meat production can occur in facilities ranging from backyards to large-scale commercial processing abattoirs (see Appendix 9). Processing results in a wide range of co-products, including hides (for leather), tallow (e.g. for soap, biofuel), pet food, blood (e.g. for pharmaceutical products), gelatine and renderable material (e.g. for fertilizer). Meat, hides and tallow can be considered to be the major products arising from meat processing.

Meat processing, inclusive of all stages of meat processing, which included chilling, boning and rendering, of co-products yields different products depending on the species. Yields may be determined from primary output data, but in the absence of these data the mass of products may be determined from a series of factors. The mass of unprocessed rendering material and products from rendering are included as co-products in the evaluation of meat processing. Yield factors including the edible fraction for the retail portions, which vary between different breeds of livestock and differs depending on the amount of bone included in the product sold at retail should be evaluated based on data reflective of the supply chain being investigated. This will vary depending on the degree of processing (boning) and the degree of trimming for excess fat. We specify here the edible portion, meaning the mass of product exclusive of bone and cartilage mass which are not easily digested. We consider offal sold for human consumption as part of the functional unit, because this product is functionally equivalent to meat from the animal carcass with respect to nutritional characteristics. Indicative yield factors for beef cattle have been supplied in (Wiedemann and Yan, 2014).

Importantly, the mass of meat actually consumed may be lower depending on consumer preferences and this would need to be accounted for during the consumption phase, which is beyond the scope of these guidelines.

Product category rules
Boeri et al., (2012) have produced a product category rule (PCR) for generic meat processing, where the core functional unit is 1 kg of meat (fresh, chilled or frozen), and includes details on accounting for cold and frozen storage. (2012) have produced a PCR for generic meat processing, where the core functional unit is 1 kg of meat (fresh, chilled or frozen), and includes details on accounting for cold and frozen storage. It also covers upstream and downstream processes, including the use phase (meat cooking). Although the PCR requires economic value allocation, it also states that all products which are “…destined to other chains (such as animal food) must be considered waste…”, which is inconsistent with these LEAP guidelines where an economic allocation among all of the revenue generating co-products is required in § 9.2.2.

The present guidelines refer to primary processing for fresh, chilled or frozen meat, and do not account for secondary processing (e.g. further processing of meat into ready-to-cook dishes) or subsequent retail, use and waste stages, which would be included in a full “cradle-to-grave” LCA. The main processes that need to be accounted for are: animal deconstruction into many component parts, production and use of packaging, refrigeration, water use and wastewater processing, and within-plant transportation (Figure 12). The meat-processing stage involves the use of resources including energy, water, refrigerants and consumables (e.g. cleaning chemicals, packaging and disposable apparel). Secondary processing of products such as plasma, gelatine, pharmaceuticals etc. are beyond the scope of these guidelines.

f) Data collection and handling of co-products

Representative data need to be collected from the meat-processing plant(s) for a recent representative one-year period on the amount of large ruminant live-weight entering the plant and the amount of different products produced. A material flow diagram of input and output products should be produced to account for a minimum of 99 percent of the mass. While primary data shall be used for meat, they may not be available for the numerous co-products (e.g. blood, gut contents), and therefore secondary data would be required, or information could be aggregated across several minor co-products. As with dairy, data for some of these co-products arising from meat processing is also likely to be limited, making the value of going to greater detail beyond that available for meat, hides and tallow, questionable.

Data are required on the use of the various resources. Energy use is a major contributor to total environmental impacts for the processing stage. Therefore, it is important to obtain primary data on the various sources of energy use. Similarly, water use can be relatively large and wastewater processing can represent a large component of the processing environmental impacts. Thus, data shall be collected on the volume and composition (e.g. Chemical Oxygen Demand and nitrogen load) of the wastewater and method of wastewater processing. Some resources such as consumables and refrigerant use are relatively small and typically constitute a minimal proportion of the total environmental impacts (e.g. <1%). Thus, secondary data on use of these resources are acceptable.
Data requirements for abattoirs process multiple animal species (e.g., cattle, buffalo and sheep) must support the ability to allocate emissions according to species. This requires documentation of the relative number and carcass-weights of the animal species processed. In addition there is need to account for relative differences in requirements (such as for energy use) between species. For example, the energy use per kg live-weight processed for sheep can be about 1.3 to 2 times that for cattle. Similarly, some abattoirs may have an associated rendering plant, and if separate energy use data are not available for meat processing and rendering, an adjustment should be considered to account for the greater energy requirements for rendering (e.g. associated with steam production).

One available method is to apply specific energy-adjusted values based on survey data, where specific energy uses between rendering and non-rendering facilities have been obtained from the facility operators. For example, Lovatt and Kemp (1995) obtained specific fuel use per tonne meat processed at eight-fold and two-fold higher for fuel and electricity use, respectively.

Following the product category rules (Boeri et al., 2012), the present guidelines recommend the use of economic allocation. However, it is noted that some co-products may be identified as having limited economic value, but may be collected and used for secondary processing (e.g. used for burning for energy or for producing blood-and-bone meal). If there is no revenue generated from sales of these materials, they are classified as residual and are not subject to allocation (§9.2.2)

\(g \) Calculating environmental impacts from meat processing

Calculation of environmental impacts shall account for resource use, wastewater processing, animal wastes and the associated emission factors associated with meat processing. Electricity and other sources of energy use shall account for total embodied emissions relevant to the country where the primary processing occurs. Data on wastewater quantity and composition are used with the emission factors to calculate environmental impacts from wastewater processing (IPCC, 2006). In meat-processing plants, wastewater will generally include excreta from animals held prior to processing, the contents of the stomachs and intestines of slaughtered animals, and various wastes (e.g. blood, if not collected for further processing). However, where these sources are not specifically captured in wastewater systems they shall be estimated and environmental impacts from them accounted. Total environmental impacts shall be allocated between the various co-products, as outlined in Section 9.3.

To assist in understanding the relative importance of the various contributors to meat processing in abattoirs, Opio et al. (2013) calculated, from an assessment of beef cattle supply chains, that the average energy use per kilogram of carcass weight (CW) during slaughter is 1.4 MJ/kg CW, where the energy used during slaughter accounted for 20 percent of GHG emissions, evisceration was 3 percent, cooling 41 percent and other energy use (compressed air, lighting and machinery) 30 percent (Ramirez et al., 2006).
11.7.3 ON-SITE ENERGY GENERATION

In some processing plants, waste material may be used for on-site energy generation. This may simply be used to displace energy requirements within the plant, in which case emissions from the energy generation system are assigned to the main products and net energy consumption from external sources used as input to the process for the analysis. Where there is a surplus of energy generated within the primary processing system and some fraction sold outside the system under study, the present guidelines recommend the use of system expansion to include the additional functionality of the sold energy. This is in line with ISO 14044 (2006). When this does not match the goal and scope of the study, then the system shall be separated and the waste feedstock to the energy production facility shall be considered a residual from the processing operation. All emissions associated with generation of energy shall be accounted and the fraction used on-site treated as a normal input of energy (with the just-calculated environmental burdens). The fraction sold carries the burden associated with its production.

11.7.4 DISPOSAL OF SPECIFIED RISK MATERIALS

In some countries, specified risk materials including the skull, brain, trigeminal ganglia, eyes, palatine tonsils, spinal cord and dorsal root ganglia of cattle 30 months or older, as well as the distal ileum from cattle of all ages must be disposed of and is not allowed to enter the food chain. Disposal methods include incineration and or rendering and burial of the material. Although this process may represent a relatively small contribution to the overall LCA, energy use associated with the disposal of this material should be considered.

12 INTERPRETATION OF LCA RESULTS

Interpretation of the results of the study serves two purposes (European Commission et al., 2010):

At all steps of the LCA, the calculation approaches and data shall match the goals and quality requirements of the study. In this sense, interpretation of results may inform an iterative improvement of the assessment until all goals and requirements are met.

The second purpose of the interpretation is to develop conclusions and recommendations, e.g. in support of environmental performance improvements. The interpretation entails three main elements detailed in the following subsections: "Identification of key issues," “Characterizing uncertainty” and "Conclusions, limitations and recommendations".

12.1 Identification of key issues

Identifying important issues encompasses the identification of the most important impact categories and life cycle stages, as well the sensitivity of results to methodological choices.

The first step is to determine the life cycle stage processes and elementary flows that contribute most to the LCIA results, as well as the most relevant impact categories. To do this, a contribution analysis
shall be conducted. It quantifies the relative contribution of the different stages/categories/items to the total result. Such contribution analysis can be useful for various interests, such as focusing data collection or mitigation efforts on the most contributing processes.

Secondly, the extent to which methodological choices such as system boundaries, cut-off criteria, data sources, and allocation choices affect the study outcomes shall be assessed, especially impact categories and life cycle stages having the most important contribution. In addition, any explicit exclusion of supply chain activities, including those that are excluded as a result of cut-off criteria, shall be documented in the report. Tools that should be used to assess the robustness of the footprint model include (European Commission et al., 2010):

- **Completeness checks**: evaluate the LCI data to confirm that it is consistent with the defined goals, scope, system boundaries, and quality criteria and that the cut-off criteria have been met. This includes completeness of process (i.e. at each supply chain stage, the relevant processes or emissions contributing to the impact have been included) and exchanges (i.e. all significant energy or material inputs and their associated emissions have been included for each process).

- **Sensitivity checks**: assess the extent to which the results are determined by specific methodological choices, and the impact of implementing alternative, defensible choices where these are identifiable. This is particularly important with respect to allocation choices. It is useful to structure sensitivity checks for each phase of the study: the life cycle inventory model, and impact assessment.

- **Consistency checks**: ensure that the principles, assumptions, methods and data have been applied consistently with the goal and scope throughout the study. In particular, ensure that the following are addressed: (i) data quality along the life cycle of the product and across production systems, (ii) methodological choices (e.g. allocation methods) across production systems and (iii) impact assessment steps have been applied with consideration for goal and scope of study.

12.2 Characterizing uncertainty

This section is related to data quality. Several sources of uncertainty are present in LCA. First is knowledge uncertainty which reflects limits of what is known about a given datum, and second is process uncertainty which reflects the inherent variability of processes. Knowledge uncertainty can be reduced by collecting more data, but often resource limits restrict the breadth and depth of data acquisition. Process uncertainty can be reduced by breaking complex systems into smaller parts or aggregations, but inherent variability cannot be eliminated completely. Third, the characterization factors that are used to combine the large number of inventory emissions into impacts also bring uncertainty into the estimation. In addition, there is bias introduced if the LCA model is missing...
processes that are critical to model outputs. Variation and uncertainty of data should be estimated and reported. This is important because results based on average data (i.e. the mean of several measurements from a given process – at a single or multiple facilities) or using life cycle impact assessment (LCIA) characterization factors with known variance do not reveal the uncertainty in the reported mean value of the impact. Uncertainty may be estimated and communicated quantitatively through a sensitivity and uncertainty analysis and/or qualitatively through a discussion. Understanding the sources and magnitude of uncertainty in the results is critical for assessing robustness of decisions that may be made based on the study results. When mitigation action is proposed, knowledge of the sensitivity to, and uncertainty associated with the changes proposed provides valuable information regarding decision robustness, as described in Table 9. At a minimum, efforts to accurately characterize stochastic uncertainty and its impact on the robustness of decisions should focus on those supply chain stages or emissions identified as significant in the impact assessment and interpretation. When reporting to third parties, this uncertainty analysis shall be conducted and reported.

TABLE 9: GUIDE FOR DECISION ROBUSTNESS FROM SENSITIVITY AND UNCERTAINTY

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Uncertainty</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

12.2.1 **MONTE CARLO ANALYSIS**

In a Monte Carlo analysis, parameters (LCI) are considered as stochastic variables with specified probability distributions, quantified as probability density functions (PDF). For a large number of realizations, the Monte Carlo analysis creates an LCA model with one particular value from the PDFs of every parameter and calculates the LCA results. The statistical properties of the sample of LCA results across the range of realizations are then investigated. For normally distributed data, variance is typically described in terms of an average and standard deviation. Some databases, notably EcoInvent, use a log normal PDF to describe the uncertainty. Some software tools (e.g. OpenLCA) allow the use of Monte Carlo simulations to characterize the uncertainty in the reported impacts as affected by the uncertainty in the input parameters of the analysis.
12.2.2 Sensitivity Analysis

Choice-related uncertainties arise from a number of methodologies including modelling principles, system boundaries and cut-off criteria, choice of footprint impact assessment methods, and other assumptions related to time, technology, geography, etc. Unlike the LCI and characterization factors, they are not amenable to statistical description, but the sensitivity of the results to these choice-related uncertainties can be characterized through scenario assessments (e.g., comparing the footprint derived from different allocation choices) and/or uncertainty analysis (e.g., Monte Carlo simulations).

In addition to choice-related sensitivity evaluation, the relative sensitivity of specific activities (LCI datasets) measures the percentage change in impact arising from a known change in an input parameter (Hong et al., 2010).

12.2.3 Normalization

According to ISO 14044, normalization is an optional step in impact assessment. Normalization is a process in which an impact associated with the functional unit is compared against an estimate of the entire regional impacts in that category (Sleeswijk et al., 2008). For example, livestock supply chains have been estimated to contribute 14.5 percent of global anthropogenic GHG (Gerber et al., 2013). Similar assessments can be made at regional or national scales, provided that a reasonably complete inventory of all emissions in that region which contribute to the impact category exists. Normalization provides an additional degree of insight into those impacts for which significant improvement would more accurately reflect the region in question, and help decision-makers to focus on supply chain hotspots for which improvement will result in the greatest overall environmental benefit.

12.3 Conclusions, Recommendations and Limitations

The final part of interpretation is to draw conclusions derived from the results, pose answers to the questions raised in the goal and scope definition stage, and recommend appropriate actions to the intended audience, within the context of the goal and scope, explicitly accounting for limitations to robustness, uncertainty and applicability.

Conclusions derived from the study should summarize supply chain "hot spots" derived from the contribution analysis and the improvement potential associated with possible management interventions. Conclusions should be given in the strict context of the stated goal and scope of the study, and any limitation of the goal and scope can be discussed a posteriori in the conclusions.

As required under ISO 14044:2006, if the study is intended to support comparative assertions (i.e. claims asserting difference in the merits of products based on the study results), then it is necessary to fully consider whether differences in method or data quality used in the model of the compared products impair the comparison. Any inconsistencies in functional units, system boundaries, data quality, or impact assessment shall be evaluated and communicated.
Recommendations are based on the final conclusion of the LCA study. They shall be logical, reasonable, plausibly founded and strictly related to the goal of the study. Recommendations shall be given jointly with limitations in order to avoid their misinterpretation beyond the scope of the study.

12.4 Use and comparability of results

It is important to note that these guidelines refer only to a partial LCA. Where results are required for products throughout the whole life cycle, it is necessary to link this analysis with relevant methods for secondary processing through to consumption and waste stages (e.g. EPD 2012; PAS 2395 2013Draft). Results from application of these guidelines cannot be used to represent the whole life cycle of large ruminant products. However, they can be used to identify hot-spots in the cradle-to-primary-processing stages (which are major contributors to emissions across the whole life cycle) and assess potential GHG and impact reduction strategies. In addition, the functional units recommended are intermediary points in the supply chains for virtually all large ruminant sector products and therefore will not be suitable for a full LCA. However, they can provide valuable guidance to practitioners to the point of divergence from the system into different types of products.

12.5 Good practice in reporting LCA results

The LCA results and interpretation shall be fully and accurately reported, without bias and consistent with the goal and scope of the study. The type and format of the report should be appropriate to the scale and objectives of the study and the language should be accurate and understandable by the intended user so as to minimise the risk of misinterpretation.

The description of the data and method shall be included in the report in sufficient detail and transparency to clearly show the scope, limitations and complexity of the analysis. The selected allocation method used shall be documented and any variation from the recommendations in these guidelines shall be justified.

The report should include an extensive discussion of the limitations related to accounting for a small numbers of impact categories and outputs. This discussion should address:

- Negative impacts on other (non GHG) environmental criteria;
- Environmental impacts (e.g., both from a positive and negative perspective on biodiversity, acidification, eutrophication, landscape, carbon sequestration);
- Multifunctional outputs other than production (e.g., economic, social, nutrition);

If intended for the public domain, a communication plan shall be developed to establish accurate communication that is adapted to the target audience and is defensible.

12.6 Report elements and structure

The following elements should be included in the LCA report:
- Executive summary typically targeting a non-technical audience (e.g. decision-makers), including key elements of goal and scope of the system studied and the main results and recommendations while clearly giving assumptions and limitations;
- Identification of the LCA study, including name, date, responsible organization or researchers, objectives of/ reasons for the study and intended users;
- Goal of the study: intended applications and targeted audience, methodology including consistency with these guidelines;
- Functional unit and reference flows, including overview of species, geographical location and regional relevance of the study;
- System boundary and unit stages (e.g. farm gate to primary processing gate);
- Materiality criteria and cut-off thresholds;
- Allocation method(s) and justification if different from the recommendations in these guidelines;
- Description of inventory data: representativeness, averaging periods (if used), and assessment of quality of data;
- Description of assumptions or value choices made for the production and processing systems, with justification;
- Feed intake and application of LEAP Animal Feed Guidelines, including description of emissions and removals (if estimated) for LUC;
- LCI modelling and calculated LCI results;
- Results and interpretation of the study and conclusions;
- Description of the limitations and any trade-offs;
- If intended for the public domain, the report should also state whether or not the study was subject to independent third-party verification.

12.7 Critical review

Internal review and iterative improvement should be carried out for any LCA study. In addition, if the results are intended to be released to the public, third-party verification and/or external critical review shall be undertaken to ensure that:

- Methods used to carry out the LCA are consistent with these guidelines and are scientifically and technically valid;
- Data and assumptions used are appropriate and reasonable;
- Interpretations take into account the complexities and limitations inherent in LCA studies for on-farm and primary processing;
- Report is transparent, free from bias and sufficient for the intended user(s).
The critical review shall be undertaken by an individual or panel with appropriate expertise, e.g. suitably qualified reviewers from the agricultural industry or government or non-government officers with experience in the assessed supply chains and LCA. Independent reviewers are highly preferable.

The panel report and critical review statement and recommendations shall be included in the study report if publicly available.
REFERENCES

BPX-30-323-0. 2011. General principles for an environmental communication on mass market products: - Part 0: general principles and methodological framework. ADEME-AFNOR. AFNOR, Saint-Denis, France.

DairyCo. 2010. Guidelines for the carbon footprinting of dairy products in the UK. Kenilworth, UK, DairyCo,

Appendices

Appendix 1: Review of available studies in methodologies focused on large ruminant production supply chain analysis by life cycle assessment.

A1.1 Introduction

Greenhouse gas (GHG) emissions from livestock systems have been identified as a significant contributor to total global emissions (e.g. Steinfeld et al., 2006). This was defined as being of particular significance for ruminant animals because of their high enteric methane emissions.

There have been many published studies of GHG emissions from livestock systems globally. However, the methodologies used for estimating GHG emissions have varied widely. Various authors have highlighted the difficulties in making comparisons across published studies because of the large differences in methodologies used (e.g. Edwards-Jones et al., 2009; Flysjö et al., 2011). Consequently, there has been interest in trying to agree on a common methodology for estimating GHG emissions both between and within sectors. In 2010, the International Dairy Federation (IDF, 2010b) developed a common methodology for estimating the carbon footprint (i.e. total GHG emissions) for dairy products. Estimates of total GHG emissions are now often based on use of life cycle assessment (LCA) to account for all GHG sources and to determine the extent of emissions on a product basis.

This document was prepared as part of Livestock Environmental Assessment and Performance Partnership (LEAP) technical advisory group for large ruminants. The intention of this document is to provide an overview assessment existing studies and associated methods that have used lifecycle assessment for evaluation of large ruminant supply chains. 70 studies have been identified addressing the dairy supply chain; 28 studies on beef production; 10 studies which addressed both dairy and beef, and 1 study for buffalo (Pirlo et al., 2014). In the remainder of this document will identify the common approaches as well as point out differences in methodological and modelling choices.

A1.2 Goal and Scope

The goal and scope of the studies range from hotspot identification (Arsenault et al., 2009; Becoña et al., 2014; Castanheira et al., 2010; Cederberg and Mattsson, 2000; Chen et al., 2005; DairyCo, 2012; Heller and Keoleian, 2011; Nguyen et al., 2010; Thomassen et al., 2008b) to commodity analysis (Basset-mens et al., 2003; Battagliese et al., 2013; Bianconi et al., 1998; Casey and Holden, 2005; Christie et al., 2011; Conestoga-Rovers & Associates, 2010; DairyCo, 2012; Dudley et al., 2014; Ferreira, 2005; Henriksson, 2014; Jacobsen et al., 2014; Nutter and Kim, 2012; Thoma et al., 2013b; Thomassen et al., 2009; Vergé et al., 2007; Weiss and Leip, 2012) to benchmarking for understanding and opportunities for improvement (Bartl et al., 2011; Basarab et al., 2012; Beauchemin et al., 2011; Castanheira et al., 2010; Cederberg and Flysjö, 2004; Eide, 2002; Gronroos et al., 2006; Heller and Keoleian, 2011; Henriksson et al., 2011; Hospido and Sonesson, 2005; Hospido et al., 2003; Lizarralde
et al., 2014; O’Brien et al., 2012; Weidema et al., 2008), with several studies that targeted a comparison of production methods – including other protein sources as well as organic and other alternate production methods (Arsenault et al., 2009; Basarab et al., 2012; Cederberg and Mattsson, 2000; de Boer, 2003; Gronroos et al., 2006; Henriksson et al., 2011; Kristensen et al., 2011; Nguyen et al., 2010; D’O’Brien et al., 2014; Olesen et al., 2006; Pelletier et al., 2010; Thomassen et al., 2008b; Weidema et al., 2008). In addition numerous papers evaluated the consequences of methodological choices in LCA of ruminant systems (Basset-Mens et al., 2009a; Cederberg and Stadig, 2003; Cederberg et al., 2011; Dalgaard et al., 2014; Dudley et al., 2014; Gac et al., 2014a, 2014b; Nguyen et al., 2012; O’Brien et al., 2011; Persson et al., 2014; Puilllet et al., 2014; Schmidt, 2008; Thoma et al., 2013a; Thomassen et al., 2008a; Wiedemann and Yan, 2014; Zehetmeier et al., 2012). Some papers were targeted at the post-farm-gate supply chain, evaluating improvement opportunities or packaging efficiency (Aguirre-Villegas et al., 2012; Berlin, 2005; Bosworth et al., 2000; Eide, 2002; Eide et al., 2003; Favilli et al., 2003; Feitz et al., 2005; Flysjö, 2012, 2011; Flysjö et al., 2014; Keoleian and Spitzley, 1999; Kim et al., 2013; Milani et al., 2011; Nutter et al., 2013; Ramirez et al., 2006; Weidema et al., 2008). In developing the draft guidance and methodology, it was considered important to allow sufficient flexibility to encompass this range of potential reasons for conducting an LCA of large ruminant systems.

A1.3 Geographic Region

There is a wide range of geographic coverage for the studies: Europe (Berlin, 2002; Bianconi et al., 1998; Casey and Holden, 2005; Castañeda-Gutiérrez et al., 2006; Castanheira et al., 2010; Cederberg and Flysjö, 2004; Cederberg and Mattsson, 2000; DairyCo, 2012; del Prado et al., 2010; Doublet et al., 2013; Eide, 2002; Flysjö et al., 2012; Foley et al., 2011; Gronroos et al., 2006; Guerci et al., 2014; Henriksson, 2014; Henriksson et al., 2014; Hospido et al., 2003; Jacobsen et al., 2014; Meneses et al., 2012; Mosnier et al., 2011; Nguyen et al., 2012, 2010; O’Brien et al., 2012; Pirlo and Carè, 2013; Thomassen et al., 2008a; van der Werf et al., 2009; Weiss and Leip, 2012), the United States (Adom et al., 2012a; Battagliese et al., 2013; Beauchemin et al., 2011, 2010; Capper and Cady, 2012; Capper, 2011, 2009; Capper et al., 2009; Dudley et al., 2014; Heller and Keoleian, 2011; Kim et al., 2013; Nutter et al., 2013; Pelletier et al., 2010; Rotz et al., 2010; Stackhouse-Lawson et al., 2012; Thoma et al., 2013c, 2013b; Vergé et al., 2008, 2007), South America (Bartl et al., 2011; Becoña et al., 2014; Cederberg et al., 2011; Dick et al., 2014; Lizarralde et al., 2014), and Australia/New Zealand (Basset-Mens et al., 2009b; Basset-mens et al., 2003; Chen et al., 2005; Christie et al., 2011; Flysjö et al., 2012, 2011b). A few studies have taken a global or regional perspective (Christie et al., 2011; Gerber et al., 2010; Hagemann et al., 2011; Vergé et al., 2007; Weiss and Leip, 2012). In reviewing these publications there do not seem to be significant differences that are driven by geographic location, aside from the need for life cycle inventory data that are relevant to that location.
A1.4 Materiality

The question of materiality related to the cut off criteria chosen for the study. The ISO 14044, PAS 2050, and Product Category Rules all provide guidance regarding lifecycle inventory or emissions impacts which should not be neglected. Only a few of the published studies that were reviewed make specific mention of cut-off criteria regarding life cycle inventory or impacts (Henriksson et al., 2014; Nutter and Kim, 2012; Nutter et al., 2013). The Veal PCR states that a cut-off of 2% of chemicals and other inputs used (mass basis as percentage of dry matter of feed processed) should be used (Consultants, 2013). The PAS 2050 requires that all material contributions should be included, and that 95% of all GHG emissions must be accounted (British Standards Institution, 2011). The ISO 14044 standard does not specify cut-off percentages, but does require a full description of the criteria used for cut-off flows (ISO 14044:2006, 2006).

A1.5 Functional Unit

A1.5.1 DAIRY

The majority of published studies on have taken as the functional unit a specified weight of fat and protein corrected milk at the farm gate (Bartl et al., 2011; Basset-Mens et al., 2009b; Basset-mens et al., 2003; Berlin, 2002; Casey and Holden, 2005; Castanheira et al., 2010; Cederberg and Flysjö, 2004; Cederberg and Mattsson, 2000; Christie et al., 2011; DairyCo, 2012; Dalgaard et al., 2014; de Boer, 2003; del Prado et al., 2010; Flysjö et al., 2011a, 2011b; Gerber et al., 2010; Gronroos et al., 2006; Guerci et al., 2014, 2013; Hagemann et al., 2012, 2011; Henriksson, 2014; Henriksson et al., 2011; Kristensen et al., 2011; Lizarralde et al., 2014; Mc Geough et al., 2012; Meneses et al., 2012; Donal O’Brien et al., 2014; O’Brien et al., 2012; D O’Brien et al., 2014; Pirlo and Carè, 2013; Rotz et al., 2010; Shéane et al., 2011; Thoma et al., 2013c; Thomassen and de Boer, 2005; Thomassen et al., 2009, 2008a, 2008b; van der Werf et al., 2009; Vergé et al., 2007). Relatively few report impacts for the animals sold as kg LW or carcass in conjunction with milk production (Bartl et al., 2011; Cederberg and Stadig, 2003; Cederberg et al., 2009b; Elmquist, 2005; Flysjö et al., 2012, 2011b; Gerber et al., 2010; Mc Geough et al., 2012; Weiss and Leip, 2012; Zehetmeier et al., 2012). Some report a functional unit of land occupation for production of milk (Basset-Mens et al., 2009b; Christie et al., 2011; de Boer, 2003; del Prado et al., 2010; Haas et al., 2007; D O’Brien et al., 2014; Thomassen and de Boer, 2005). Some studies only specified a volume of milk (without fat and protein content specified), sometimes at the farm gate (Capper, 2011; Capper et al., 2008; Castanheira et al., 2010; Ferreira, 2005; Foster et al., 2007; Haas et al., 2007; Vergé et al., 2007), sometimes with specified packaging or otherwise ready for delivery to consumers (Eide, 2002; Heller and Keoleian, 2011; Nutter et al., 2013; Thoma et al., 2013b).

A1.5.2 BEEF

Most of the studies on beef were based on kg LW at the farm gate (Beauchemin et al., 2010; Dudley et al., 2014; Pelletier et al., 2010; Stackhouse-Lawson et al., 2012; Vergé et al., 2008) while others
reported on the basis of kg carcass (Beauchemin et al., 2011; Capper, 2011; Cederberg et al., 2009a; Foley et al., 2011; Nguyen et al., 2012, 2010; Weiss and Leip, 2012); however, some studies reported on the basis of the carcass weight equivalent at the farm gate, which results in a mismatch between the system boundary definition and functional unit because live animals cross the farm-gate boundary. Three studies used one kg of LW gain as the functional unit (Becoña et al., 2014; Dick et al., 2014; Modernel et al., 2013).

A1.5.3 BUFFALO

The available studies for buffalo meat and milk have been performed using fat and protein corrected milk or carcass weight as the functional units for milk and meat, respectively (Carè et al., 2012; Gerber, n.d.; Pirlo et al., 2014).

A1.5.4 POST-FARM GATE

Some studies have evaluated dairy products other than milk (Aguirre-Villegas et al., 2012; Berlin, 2002; Capper and Cady, 2012; Castañeda-Gutierrez et al., 2006; Favilli et al., 2003; Flysjö, 2011; Keoleian et al., 2004; Kim et al., 2013), and these studies used functional units specific to the product studied: kg butter or cheese delivered to consumers; one study also reported on a dry solids basis for cheese (Nutter and Kim, 2012). Other post-farm gate studies have focused on processing energy or manufacturing sector improvement opportunities (Berlin, 2005; Flysjö, 2011; Ramirez et al., 2006; Weidema et al., 2008) as well as methodological issues (Bianconi et al., 1998; Feitz et al., 2005; Gac et al., 2014a; Wiedemann and Yan, 2014). The methodological studies do not recommend differentiation between cuts of meat at the processor gate, but current methodological approaches do differentiate dairy products on the basis of milk solids. A current proposal to the International Dairy Federation recommends a weighting of milk solids on the basis of the relative value of fat, protein and lactose (Flysjö, pers comm).

A1.6 System Boundaries

A1.6.1 DAIRY

The majority of dairy studies used the cradle to farm gate as the boundary (Arsenault et al., 2009; Basset-Mens et al., 2009b; Basset-mens et al., 2003; Beukes et al., 2008; Capper and Cady, 2012; Capper et al., 2008; Casey and Holden, 2005; Castanheira et al., 2010; Cederberg and Flysjö, 2004; Chen et al., 2005; Dalgaard et al., 2014; de Boer, 2003; del Prado et al., 2010; Flysjö et al., 2011b; Guerci et al., 2014, 2013; Hagemann et al., 2012, 2011; Henriksson, 2014; Henriksson et al., 2011; Hospido and Sonesson, 2005; Kristensen et al., 2011; Lizarralde et al., 2014; Mc Geough et al., 2012; D O’Brien et al., 2014; Donal O’Brien et al., 2014; O’Brien et al., 2012; Olesen et al., 2006; Pirlo and Caré, 2013; Rotz et al., 2010; Thoma et al., 2013c; Thomassen and de Boer, 2005; Thomassen et al., 2009, 2008a, 2008b; van der Werf et al., 2009; Vergé et al., 2007); however, several studies did include processing (Daneshi et al., 2014; Ferreira, 2005; Gerber et al., 2010; Gronroos et al., 2006; Hospido et al., 2003), and some were full cradle to grave analyses (Berlin, 2002; Eide, 2002; Flysjö,
A1.6.2 BEEF

There were three boundaries defined for beef systems as well: cradle to farm gate (Basarab et al., 2012; Beauchemin et al., 2011; Becoña et al., 2014, 2013; Capper, 2011; Dick et al., 2014; Dudley et al., 2014; Eady et al., 2011; Foley et al., 2011; Nguyen et al., 2010, 2012; Pelletier et al., 2010; Stackhouse-Lawson et al., 2012; Vergé et al., 2008; Weiss and Leip, 2012); cradle to processor gate (Cederberg et al., 2009a; Jacobsen et al., 2014); and cradle to grave (Battagliese et al., 2013). One study conducted a gate-to-gate analyses, focusing on the finishing stage only (and excluding the cow-calf phase) (Modernel et al., 2013).

A1.6.3 BUFFALO

The available studies for buffalo meat and milk have been conducted on a cradle-to-farm gate basis (Carè et al., 2012; Gerber, n.d.; Pirlo et al., 2014)

A1.7 Ancillary activities

This could include items in the life cycle such as: veterinary, accounting, legal, corporate overhead (potentially air travel), worker’s commutes. Few studies mention ancillary activities, but some partially included these effects (Bianconi et al., 1998; Foster et al., 2007; Gough et al., 2010; Kim et al., 2013); one paper was explicit regarding inclusion of ancillary activities through a hybrid input-output modelling approach (Peters et al., 2010).

A1.8 Biogenic Carbon/Methane

Few of the studies mentioned biogenic carbon, only one treats biogenic methane differently than fossil methane by assigning global warming potential 24 to account for the fact that the carbon dioxide decay product in the atmosphere was biogenic in origin (Capper, 2009). The most recent IPCC global warming potentials have been updated to account for this effect (Myhre et al., 2013). Only one study explicitly accounted for the animal’s respiratory CO₂ (Rotz et al., 2010).

A1.9 Soil Carbon / Sequestration

The majority of studies assumed that soil carbon stocks were constant for purposes of carbon accounting; the effect of land use change was generally discussed separately (following section). For the studies that made an accounting of soil carbon stock changes, it was generally treated as a scenario for comparison (Basarab et al., 2012; Beauchemin et al., 2011; Cederberg et al., 2009a; DairyCo, 2012; del Prado et al., 2010; Dudley et al., 2014; Eady et al., 2011; Gerber et al., 2010; Guerci et al., 2013; Hörtenhuber et al., 2010; Nguyen et al., 2012, 2010; D’O’Brien et al., 2014; Weiss and Leip, 2012).
A1.10 Land Use (direct LUC/indirect LUC)

Indirect land-use change was included in very few of the studies (Dalgaard et al., 2014; Persson et al., 2014); however direct land use change for recent (less than 20 years) conversion was included on a country specific basis (in particular for palm and soy) in several studies (DairyCo, 2012; Dudley et al., 2014; Gerber et al., 2010; Hörtenhuber et al., 2010; Nguyen et al., 2012, 2010; Donal O’Brien et al., 2014; O’Brien et al., 2012; Persson et al., 2014; Weiss and Leip, 2012). Land occupation, as an inventory item, was accounted as a means of denoting an opportunity cost for use of the land in ruminant systems in a number of studies (Arsenault et al., 2009; Bartl et al., 2011; Basset-Mens et al., 2009b; Basset-Mens et al., 2003; Berlin, 2002; Capper and Cady, 2012; Capper, 2011; Cederberg and Flysjö, 2004; de Boer, 2003; del Prado et al., 2010; Foster et al., 2007; Gronroos et al., 2006; Guerci et al., 2013; Henriksson et al., 2014; Kristensen et al., 2011; Lizarralde et al., 2014; Lovett et al., 2006; O’Brien et al., 2012; Thomassen et al., 2009, 2008a; van der Werf et al., 2009).

A1.11 Delayed Emissions

None of the studies included consideration of delayed emissions, although the study by Rotz et al. (2010) would allow calculation of carbon sequestered for some period (e.g., as leather) because they provide a full accounting of the carbon in the system.

A1.12 Infrastructure

There is a range of approaches in accounting for capital infrastructure. It is either not mentioned or excluded for the majority of studies. Some studies do provide a relatively complete estimate of the full infrastructure burden (Basset-Mens et al., 2009b; Foster et al., 2007; Hagemann et al., 2011; Meneses et al., 2012; Nutter et al., 2013; Stackhouse-Lawson et al., 2012). For studies that count, to some extent, for infrastructure in the supply chain, the most common approach is inclusion of background infrastructure (through existing databases), but to exclude foreground infrastructure (Becoña et al., 2014; Cederberg et al., 2009a; Conestoga-Rovers & Associates, 2010; Nguyen et al., 2012); the exceptions include partial accounting of on-farm infrastructure (machinery, but not buildings) (Flysjö et al., 2011b; Henriksson et al., 2011; Pirlo and Carè, 2013; Rotz et al., 2010; Vergé et al., 2007).

A1.13 Allocation

The predominant choices for allocation are economic value, biological causality and system expansion. However some additional approach is taken, including mass allocation. Others suggested gross chemical energy content and physical/cost relationships. The stages of the LR supply chain for which allocation is required include: ration production (meal/oil – refer to LEAP Feed Guidance); dairy farm gate (milk and cull animals; possibly manure); cow-calf and stocker (some studies separately account for feeders, bulls, and cull breeding animals) (Eady et al., 2011); and processing - multiple dairy products and meat and co-products (Feitz et al., 2005; Gac et al., 2014a; Wiedemann and Yan, 2014).
A1.13.1 DAIRY

Several studies assigned the entire dairy operation to milk with no allocation to culled animals (Capper et al., 2008; Casey and Holden, 2005; Chen et al., 2005; Christie et al., 2011; Ferreira, 2005; Flysjö et al., 2011b; Henriksson, 2014; Henriksson et al., 2011; Pirlo and Carè, 2013; Vergé et al., 2007; Zehetmeier et al., 2012), some of these studies also included other (economic, mass, system expansion) as alternate scenarios (Casey and Holden, 2005; D O’Brien et al., 2014; Pirlo and Carè, 2013). Biological causality was commonly used as a means of allocation between culled (live weight) animals sold from the farm and milk production (Arsenault et al., 2009; Basset-Mens et al., 2009b; Basset-mens et al., 2003; Cederberg and Mattsson, 2000; Daneshi et al., 2014; de Boer, 2003; Eide, 2002; Flysjö, 2011; Flysjö et al., 2011a; Guerci et al., 2014, 2013; Hagemann et al., 2012, 2011; Kim et al., 2013; Kristensen et al., 2011; Lizarraide et al., 2014; Mc Geough et al., 2012; O’Brien et al., 2012; D O’Brien et al., 2014; Pirlo and Carè, 2013; Thoma et al., 2013b, 2013c). Relatively few studies used system expansion for the milk/cull animal relationship (Foster et al., 2007; Gronroos et al., 2006; Hospido and Sonesson, 2005; Thomassen et al., 2008a), although some included it as a scenario (Cederberg and Stadig, 2003; Kristensen et al., 2011; D O’Brien et al., 2014). Only one paper addressed non-food functionality (draught power, financial holding, dowry) of small holder systems (Weiler et al., 2014); a second paper mentions the importance of non-food functions, but did not quantify these functions (Hagemann et al., 2011).

A1.13.2 BEEF

Most of the beef studies did not require allocation – all the LW leaving the system was considered equivalent (Beauchemin et al., 2010; Dick et al., 2014). One study separately accounted for feeders, bulls, and cul breeding animals because of system boundary choices that necessitated transfer of animals between operations (Eady et al., 2011).

A1.13.3 BUFFALO

Gerber et al. (2013) report on a global assessment of emissions published by FAO is based on LCA methodology and uses IPCC (2006) guidelines. FAO used a recently developed framework called Global Livestock Environmental Assessment Model for quantification of GHG emissions for geographically defined spatial units. Tier 2 approach of IPCC was followed for quantification of the GHG emissions. The functional unit was 1 kg of carcass weight for meat and 1 kg of FPCM for milk. Economic and protein content based allocation was used.

Care et al. (2012) report the carbon footprint of buffalo milk estimated in 6 farms in the ‘Mozzarella di bufalacampana-DOP’ production area (Caserta, Italy). The system boundary was limited to cradle to farm-gate and the functional unit was 1 kg of FPCM. The allocation of co-products generated during milk production was on the basis of co-products economic value. IPCC Tier 2 approach was followed for estimating the GHG emissions.
Pirlo et al. (2014) report the carbon footprint of milk produced in 6 Mediterranean buffalo farms. The assessment was from cradle to farm-gate and the functional unit was 1 kg of FPCM using economic allocation.

A1.13.4 MIXED FARMING SYSTEMS

The study of Eady et al. (2012) was for a case farm with mixed cropping and livestock. The authors used system expansion to allocate between crop and livestock and compared biophysical and economic allocation for lamb/mutton/wool. Similarly, the NZ system (Ledgard et al., 2011) included mixed sheep and cattle farming and used biophysical allocation to allocate between each animal type (i.e. apportioning according to the amount of feed dry matter consumed), and then used economic allocation for lamb/mutton/wool. Enteric methane was a significant contributor to the carbon footprint and therefore most studies used a tier-2 methodology, whereby feed intake was estimated from a number of animal productivity parameters (e.g. live-weight, growth rate, lambing percentage and replacement rate). However, two studies used a tier-1 methodology where each sheep class had a constant methane emission per animal. In view of the large contribution from enteric methane, it is desirable to use a tier-2 methodology since there can be large differences in animal productivity, feed conversion efficiency and methane emissions per kg animal production, including from sheep (e.g. Ledgard et al., 2011; Benoit and Dakpo, 2012).

A1.13.5 PROCESSING

Relatively few studies considered post-farm gate stages of the supply chain (Aguirre-Villegas et al., 2012; Berlin, 2005, 2002; Bosworth et al., 2000; Gerber et al., 2010; Hansen et al., 2000; Keoleian et al., 2004; Milani et al., 2011; Nutter et al., 2013; Raggi et al., 2008; Ramirez et al., 2006). Several were methodological in nature (Feitz et al., 2005; Gac et al., 2014a; Wiedemann and Yan, 2014).

A1.14 Data Quality Assessment

Data quality was thoroughly discussed and evaluated in relatively few of the studies (Adom et al., 2012a; Capper, 2009; DairyCo, 2012; Foster et al., 2007; Thoma et al., 2013b, 2013c), other studies included a qualitative discussion or mentioned adoption of the ecoinvent pedigree for background datasets (Bartl et al., 2011; Berlin, 2002; Dalgaard et al., 2014; Hospido et al., 2003; Kim et al., 2013; Meneses et al., 2012; Thoma et al., 2013b; Thomassen and de Boer, 2005; Thomassen et al., 2009).

A1.15 Uncertainty Analysis

Monte Carlo analysis was the method used for determining the propagation of input uncertainties to the environmental impacts reported (Adom et al., 2012a; Basset-Mens et al., 2009b; Flysjö et al., 2011b; Gerber et al., 2010; Henriksson, 2014; Henriksson et al., 2011; Kim et al., 2013; Nutter et al., 2013; Thoma et al., 2013b, 2013c; van der Werf et al., 2009); however, the majority of studies do not mention the role of uncertainty in LCA of large ruminant systems.
A1.16 Product category rules

The generic GHG methodology guidelines refer to product category rules (PCRs) and recommend that these are used where they have been produced. A detailed search revealed that there are no specific PCRs for beef or dairy products. However, there are generic PCRs on “Meat of mammals” (Boeri, 2013), “Processed liquid milk” (Sessa, 2013a) and a draft PCR on “Textile yarn and thread from natural fibres, man-made filaments or staple fibres” (Rossi, 2012), which can be used to assist in developing methodology guidelines for large ruminants.

A1.17 GHG foot-printing tools covering large ruminants

There are a number of GHG foot-printing tools that are being used or available for use on farms for evaluation of the GHG footprint of large ruminants and mitigation options. Ten carbon calculators available within the United Kingdom were recently reviewed by EBLEX (2013). Many of these use an LCA approach and account for UK-specific management practices, but in most cases the specific methodology and algorithms are not published and therefore specific methodology details are unavailable. This makes it difficult to assess these models, but it gives an indication of the potential for practical use on-farm. It also highlights the importance in having a commonly agreed methodology for estimating GHG emissions from large ruminants and their products for comparison of production and processing systems.
<table>
<thead>
<tr>
<th>Classification</th>
<th>Region</th>
<th>System Boundaries</th>
<th>Functional Unit</th>
<th>GHG Emissions (kg CO2e / FU)</th>
<th>Allocation</th>
<th>Soil Carbon / Sequestration</th>
<th>LUC / iLUC</th>
<th>Land use/occupation</th>
<th>Impact categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D O'Brien et al., 2014)</td>
<td>Model study</td>
<td>UK</td>
<td>cradle to farm gate</td>
<td>ton FPCM</td>
<td>837 - 914</td>
<td>none, economic, mass, protein, biological causality (M/LW); system expansion</td>
<td>assumed neutral / not included</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Capper and Cady, 2012)</td>
<td>Comparison</td>
<td>USA</td>
<td>cradle to farm gate</td>
<td>milk required for 500,000 t of cheddar</td>
<td>6.4 - 8.1 (e9)</td>
<td>not mentioned</td>
<td>assumed neutral</td>
<td>not included</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(O'Brien et al., 2012)</td>
<td>Case study</td>
<td>Ireland</td>
<td>cradle to farm gate</td>
<td>ton FPCM</td>
<td>874 - 1027</td>
<td>economic (rations); biological causality (M/LW)</td>
<td>scenario analysis</td>
<td>included</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Pirlo and Carè, 2013)</td>
<td>Model study</td>
<td>Italy</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.97 - 1.22</td>
<td>None; physical; economic</td>
<td>not included</td>
<td>discussed; not included</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Lovett et al., 2006)</td>
<td>Model study</td>
<td>Ireland</td>
<td>cradle to farm gate</td>
<td>kg milk</td>
<td>1.03 - 1.2</td>
<td>not mentioned</td>
<td>assumed neutral</td>
<td>not mentioned</td>
<td>included</td>
</tr>
<tr>
<td>(Christie et al., 2011)</td>
<td>National Sector</td>
<td>Tasmania</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.04 ± 0.13</td>
<td>all to milk</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Donal O'Brien et al., 2014)</td>
<td>Case study</td>
<td>Ireland</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.87 - 1.72</td>
<td>economic allocation</td>
<td>not included</td>
<td>included</td>
<td>not mentioned</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>(Casey and Holden, 2005)</td>
<td>National Sector</td>
<td>Ireland</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.5</td>
<td>none; mass; economic</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(van der Werf et al., 2009)</td>
<td>Model study</td>
<td>France (West)</td>
<td>cradle to farm gate</td>
<td>1000 kg FPCM</td>
<td>1037 - 1082</td>
<td>economic allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Bianconi et al., 1998)</td>
<td>National Sector</td>
<td>Italy</td>
<td>farm-gate to grave</td>
<td>5 kg butter delivered to final consumer (250-g packets)</td>
<td>n/a</td>
<td>mass allocation (where allocation couldn't be avoided)</td>
<td>N/A</td>
<td>N/A</td>
<td>none; primarily LCI</td>
</tr>
<tr>
<td>(Thomassen et al., 2008a)</td>
<td>Methodology</td>
<td>The Netherlands</td>
<td>cradle to farm gate</td>
<td>1 kg FPCM</td>
<td>1.61</td>
<td>economic and mass and allocation (ALCA) system expansion (CLCA)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Hagemann et al., 2011)</td>
<td>Multi-national</td>
<td>38 countries</td>
<td>cradle to farm gate</td>
<td>100 kg FPCM</td>
<td>135 ± 49</td>
<td>biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not included</td>
<td>land use, energy use, climate change, acidification and eutrophication</td>
</tr>
<tr>
<td>(Henriksson et al., 2014)</td>
<td>Animal ration</td>
<td>Sweden</td>
<td>cradle-to-feed consumed by cattle</td>
<td>feed consumed to produce 1 kg FPCM</td>
<td>0.42 - 0.53</td>
<td>economic (meal/oil)</td>
<td>not included</td>
<td>included (Brazilian soy)</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Sultana et al., 2014)</td>
<td>Multi-national</td>
<td>Global</td>
<td>cradle to farm gate</td>
<td>1 kg FPCM</td>
<td>1.5 [0.9 - 4.1]</td>
<td>biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not included</td>
<td>climate change</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Arsenault et al., 2009)</td>
<td>Comparison</td>
<td>Canada (Nova Scotia)</td>
<td>cradle to farm gate</td>
<td>1000 kg of unprocessed, unpackaged milk</td>
<td>974</td>
<td>mass (rations); biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Basset-Mens et al., 2009b)</td>
<td>Comparison</td>
<td>New Zealand</td>
<td>cradle to farm gate</td>
<td>kg of milk (specified fat and protein)</td>
<td>0.86</td>
<td>biological causality (M/LW)</td>
<td>not included</td>
<td>not included</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Gough et al., 2010)</td>
<td>Case study</td>
<td>USA (CO)</td>
<td>cradle to grave</td>
<td>one gallon of packaged fluid milk</td>
<td>7.79</td>
<td>energy allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Kristensen et al., 2011)</td>
<td>Comparison</td>
<td>Denmark</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.2 - 1.27</td>
<td>none; economic, protein, system expansion; biological causality (M/LW)</td>
<td>not included</td>
<td>not mentioned</td>
<td>included as inventory</td>
</tr>
<tr>
<td>Reference</td>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(Guerci et al., 2014)</td>
<td>Regional</td>
<td>Italy</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.55 ± 0.21 (no grazing) 1.72± 0.37 (grazing)</td>
<td>biological causality (M/LW); economic; milk and meat nitrogen content; mass allocation</td>
<td>not included; LUC for soy as scenario</td>
<td>yes. Allocation and LUC</td>
<td>not mentioned (only LUC for soy)</td>
</tr>
<tr>
<td>(Gronroos et al., 2006)</td>
<td>Case study</td>
<td>Finland</td>
<td>cradle to processor gate</td>
<td>1000 L (1.5% of fat) transported to a retailer</td>
<td>6.4 GJ energy conv, 4.4 GJ energy organic</td>
<td>system expansion</td>
<td>N/A</td>
<td>N/A</td>
<td>included as inventory</td>
</tr>
<tr>
<td>(Meneses et al., 2012)</td>
<td>Regional</td>
<td>Spain</td>
<td>cradle to grave</td>
<td>packaging to contain 1 L</td>
<td>0.05 - 0.18</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(de Boer, 2003)</td>
<td>Review article</td>
<td>Sweden, Netherlands, Germany</td>
<td>cradle to farm gate</td>
<td>ton FPCM</td>
<td>888 - 1300</td>
<td>economic and biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>included except for Germany</td>
</tr>
<tr>
<td>(Ferreira, 2005)</td>
<td>National Sector</td>
<td>Portugal</td>
<td>cradle to processor gate</td>
<td>1626880 ton milk (Portuguese production in 2005)</td>
<td>–2.1e6 ton</td>
<td>all to milk</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Berlin, 2002)</td>
<td>Dairy products</td>
<td>Sweden</td>
<td>cradle to grave</td>
<td>1 kg of Angsarden cheese wrapped in plastic</td>
<td>8.8</td>
<td>Economic allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>Discussed.</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Thomassen and de Boer, 2005)</td>
<td>Methodological</td>
<td>The Netherlands</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.81 ± 0.86</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>Land use is considered one of the impact categories.</td>
<td>land use, fossil energy use, climate change, eutrophication and acidification potential</td>
</tr>
<tr>
<td>(Basset-mens et al., 2003)</td>
<td>National Sector</td>
<td>New Zealand, Sweden, Germany</td>
<td>cradle to farm gate</td>
<td>kg FPCM milk (4% fat)</td>
<td>0.72 – NZ conv. 1.1 – SE conv. 1.3 – DE conv.</td>
<td>biological causality (M/LW)</td>
<td>not mentioned</td>
<td>land occupation accounted</td>
<td>climate change, eutrophication & acidification potential</td>
</tr>
<tr>
<td>(Dalgaard et al., 2014)</td>
<td>Model study</td>
<td>Denmark and Sweden</td>
<td>cradle to farm gate</td>
<td>1 kg FPCM at farm gate</td>
<td>1.05 – 1.8</td>
<td>Economic, system expansion, biophysical, sequestration is not included</td>
<td>included</td>
<td>Effects of iLUC are included.</td>
<td>carbon footprint</td>
</tr>
<tr>
<td>(Nutter et al., 2013)</td>
<td>Processing</td>
<td>USA</td>
<td>gate to gate</td>
<td>1 kg of packed fluid milk delivered to the plant’s customers</td>
<td>0.203 ± 0.0174</td>
<td>volumetric basis for other packaged fluids (e.g., juices)</td>
<td>N/A</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Thoma et al., 2013b)</td>
<td>National Sector</td>
<td>USA</td>
<td>cradle to grave</td>
<td>1 kg of ‘average’ milk consumed in US</td>
<td>1.77 – 2.4</td>
<td>economic (rations); biological causality (M/LW); mass (cream-milk)</td>
<td>assumed neutral</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Hörtenhuber et al., 2010)</td>
<td>Model study</td>
<td>Austria</td>
<td>not mentioned</td>
<td>kg milk</td>
<td>0.81 - 1.17</td>
<td>system expansion</td>
<td>included</td>
<td>not mentioned</td>
<td>assumed climate change</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>------------------------------------</td>
<td>--------------------------------------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Henriksson, 2014)</td>
<td>National Sector</td>
<td>cradle to farm gate</td>
<td>1kg FPCM delivered at farm gate.</td>
<td>1.13 ± 0.2</td>
<td>economic (ration); all to milk</td>
<td>not included</td>
<td>emissions from LUC with Brazilian soy bean production</td>
<td>discussed; need for better accounting stressed</td>
<td>climate change</td>
</tr>
<tr>
<td>(Vergé et al., 2007)</td>
<td>National Sector</td>
<td>cradle to farm gate</td>
<td>kg milk (fat/protein not reported)</td>
<td>1.02</td>
<td>all to milk</td>
<td>Soil carbon decomposition was not considered in this analysis</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Gerber et al., 2010)</td>
<td>Multi-national</td>
<td>cradle to farm gate and farm gate to retail</td>
<td>kg FPCM</td>
<td>2.4</td>
<td>economic and protein content</td>
<td>Sequestration accounted (IPCC -PAS 2050)</td>
<td>Included for soya only. Deforestation in Brazil and Argentina.</td>
<td>see table 4.2 for land use</td>
<td>climate change</td>
</tr>
<tr>
<td>(Daneshi et al., 2014)</td>
<td>Case study</td>
<td>Tehran</td>
<td>one litre of pasteurized milk packed in a plastic pouch</td>
<td>1.73</td>
<td>economic (ration); biological causality (M/LW)</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>carbon footprint</td>
</tr>
<tr>
<td>(DairyCo, 2012)</td>
<td>National Sector</td>
<td>cradle to farm gate</td>
<td>Not stated but assumed 1 liter fat corrected milk.</td>
<td>1.309 ± 0.273</td>
<td>not specific</td>
<td>they did a calculation with sequestration and one without</td>
<td>included</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Flysjö et al., 2011a)</td>
<td>Methodological</td>
<td>New Zealand and Sweden</td>
<td>1 kg (FPCM)</td>
<td>0.6 – 1.52 (NZ) 0.8 – 1.56 (SE)</td>
<td>physical, economic, protein, and mass allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/ occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>--</td>
<td>----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>(Eide, 2002)</td>
<td>Case study</td>
<td>Norway</td>
<td>cradle to grave</td>
<td>1,000 litres of drinking milk brought to the consumers.</td>
<td>economic (rations); biological causality (M/LW); mass (post-farm-gate)</td>
<td>not included</td>
<td>not included</td>
<td>not mentioned</td>
<td>Climate change, ozone depletion, eutrophication, acidification, Eco toxicity and photo-oxidant formation.</td>
</tr>
<tr>
<td>(Bartl et al., 2011)</td>
<td>Case study</td>
<td>Peru</td>
<td>cradle to farm gate</td>
<td>1 kg FPCM and 1 animal</td>
<td>Economic and mass allocation.</td>
<td>not included</td>
<td>not included</td>
<td>included</td>
<td>climate change, acidification and eutrophication</td>
</tr>
<tr>
<td>(Kim et al., 2013)</td>
<td>National Sector</td>
<td>USA</td>
<td>cradle to grave</td>
<td>One ton of cheddar consumed (dry weight basis); One ton of mozzarella consumed (dry weight basis)</td>
<td>Economic (rations); biological causality (M/LW); economic, expert judgement and milk solids allocations (processor)</td>
<td>not included</td>
<td>not included</td>
<td>not included</td>
<td>climate change, marine eutrophication, photochemical oxidant formation, freshwater eutrophication, ecosystems human toxicity ecotoxicity</td>
</tr>
<tr>
<td>(Thomassen et al., 2008b)</td>
<td>Comparison</td>
<td>The Netherlands</td>
<td>cradle to farm gate</td>
<td>1 kg of Fat and Protein Corrected Milk leaving the farm-gate</td>
<td>Economic allocation.</td>
<td>not mentioned</td>
<td>one of the impact categories</td>
<td>land use, energy use, climate change, acidification, and eutrophication</td>
<td></td>
</tr>
<tr>
<td>(Heller and Keoleian, 2011)</td>
<td>Case study</td>
<td>USA</td>
<td>cradle to grave</td>
<td>1 L of packaged fluid milk</td>
<td>Energy allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>Climate change, energy use</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use / occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>(Chen et al., 2005)</td>
<td>Model study</td>
<td>Australia</td>
<td>cradle to farm gate</td>
<td>one litre of raw milk leaving at the farm gate</td>
<td>Single combined score</td>
<td>all to milk</td>
<td>not mentioned</td>
<td>shown in graphical form</td>
<td>resources: fossil fuels, land use; ecological quality; climate change, acidification, eutrophication, radiation, ozone depletion, eco-toxicity; human health: cancer and respiratory</td>
</tr>
<tr>
<td>(Cederberg and Mattsson, 2006)</td>
<td>Comparison</td>
<td>Sweden</td>
<td>cradle to farm gate</td>
<td>1000 kg FPCM</td>
<td>950 - 1050</td>
<td>economic (rations); biological causality (M/L)</td>
<td>not mentioned</td>
<td>talk about land use between the two systems but not LUC</td>
<td>brief discussion resources: energy, material and land use; human health: pesticide use; ecological effects: climate change, acidification, eutrophication, photo-oxidant formation and depletion of stratospheric ozone</td>
</tr>
<tr>
<td>(Cederberg and Flysjö, 2004)</td>
<td>Case study</td>
<td>Sweden (South West)</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.896 ± 0.038 (conv H), 1.037 ± 0.041 (conv M) 0.938 ± 0.048 (org)</td>
<td>economic for both dairy and feed production</td>
<td>not mentioned</td>
<td>not included</td>
<td>Included resources, energy, land, toxicity, climate change, eutrophication, acidification</td>
</tr>
<tr>
<td>(Mc Geough et al., 2012)</td>
<td>Model study</td>
<td>Canada (Eastern)</td>
<td>cradle to farm gate</td>
<td>kg FPCM kg LW</td>
<td>Milk: Beef 0.92 0.84 0.67 1.72 5.32</td>
<td>none; economic; biological causality (IDF)</td>
<td>not included</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Guerci et al., 2013)</td>
<td>Comparison</td>
<td>Denmark, Germany, Italy</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.1 – 1.91</td>
<td>biological causality (M/L)</td>
<td>included</td>
<td>not included</td>
<td>included (one of the impact categories) climate change, eutrophication, acidification, non-renewable energy use, land occupation, biodiversity: damage score</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>(Flysjö, 2011)</td>
<td>Processing</td>
<td>Denmark</td>
<td>cradle to grave</td>
<td>kg butter consumed w/ consumer waste</td>
<td>14.7</td>
<td>Milk solids with economic weighting</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Lizarralde et al., 2014)</td>
<td>Case study</td>
<td>Uruguay (Southern)</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.99 coefficient of variance</td>
<td>biological causality (M/LW)</td>
<td>discussed, but not taken into account in this study</td>
<td>assumed neutral / not included</td>
<td>included</td>
</tr>
<tr>
<td>(Thoma et al., 2013c)</td>
<td>Regional</td>
<td>USA</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.23</td>
<td>biological causality (M/LW)</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Adom et al., 2012b)</td>
<td>Animal ration</td>
<td>USA</td>
<td>cradle to farm gate</td>
<td>1 kg of dairy feed</td>
<td>N/A</td>
<td>Economic and mass allocation</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Thomassen et al., 2009)</td>
<td>National Sector</td>
<td>The Netherlands</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.76 ± 0.1</td>
<td>economic allocation</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>it is one of the impact categories</td>
</tr>
<tr>
<td>(Hospido et al., 2003)</td>
<td>Case study</td>
<td>Spain</td>
<td>cradle to processor gate</td>
<td>IL of packaged liquid milk, ready to be delivered</td>
<td>1.05</td>
<td>Mass (rations); biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not included</td>
</tr>
<tr>
<td>(Rotz et al., 2010)</td>
<td>Model study</td>
<td>USA</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>0.37 – 0.69</td>
<td>economic allocation</td>
<td>no net sequestration - though included as a scenario</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>(Capper et al., 2008)</td>
<td>Comparison USA</td>
<td>cradle to farm gate</td>
<td>kg milk</td>
<td>1.38 (w/rBST) 1.53 (w/o rBST)</td>
<td>all to milk</td>
<td>Crops under conventional tillage were not considered to sequester carbon</td>
<td>reported as lower LU in modern dairies</td>
<td>not mentioned</td>
<td>acidification (AP), eutrophication (EP), and climate change (GWP) potentials</td>
</tr>
<tr>
<td>(Capper et al., 2009)</td>
<td>Comparison USA</td>
<td>assumed farm gate</td>
<td>1kg of milk produced</td>
<td>1944: 3.66 2007: 1.35</td>
<td>not mentioned</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
<tr>
<td>(Foster et al., 2007)</td>
<td>Literature review UK</td>
<td>cradle to grave</td>
<td>1000 liter of milk</td>
<td>1039 economic allocation (ratios); system expansion (manure and cull cows)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>they talk about land use (direct) but not LUC (look at tables)</td>
<td>Primary energy used, climate change, eutrophication & acidification potential, abiotic resource use, land use</td>
</tr>
<tr>
<td>(Hospido and Sonesson, 2005)</td>
<td>Comparison Spain</td>
<td>cradle to farm gate</td>
<td>milk sold by typical Galician herd normalized system expansion for meat – included in FU</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>Climate change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Castanheira et al., 2010)</td>
<td>Case study Portugal</td>
<td>cradle to farm gate</td>
<td>one tonne of raw milk approximately 1021 Economic allocation.</td>
<td>not discussed</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>abiotic depletion, climate change, photochemical oxidation, acidification and eutrophication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Henriksson et al., 2011)</td>
<td>Case study Sweden</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.13 all to milk discussed but not included</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
<td></td>
</tr>
<tr>
<td>(Flysjö et al., 2011b)</td>
<td>Methodological</td>
<td>cradle to farm gate</td>
<td>kg FPCM at farm gate in NZ and SE, including co-products</td>
<td>NZ: 1.00 SE: 1.16 economic (ratios); all to milk</td>
<td>not included</td>
<td>not included</td>
<td>not included</td>
<td>climate change</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td>kg LW</td>
<td></td>
<td>assumed constant</td>
<td>no LUC (deforestation)</td>
<td>included</td>
<td>climate change</td>
<td></td>
</tr>
<tr>
<td>(Becoña et al., 2013)</td>
<td>Comparison</td>
<td>Uruguay and New Zealand</td>
<td>cradle to farm gate</td>
<td>UR: 18.4 – 21 NZ: 8 - 10</td>
<td>calves from dairy carry no burden</td>
<td>economic allocation</td>
<td>not mentioned</td>
<td>reported as inventory</td>
<td>climate change</td>
</tr>
<tr>
<td>(Stackhouse-Lawson et al., 2012)</td>
<td>Model study</td>
<td>California</td>
<td>kg HCW</td>
<td>Angus: 22.6 ± 2.0 Holstein: 10.7 ±1.4</td>
<td>economic allocation</td>
<td>no cow/calf allocation</td>
<td>assumed constant</td>
<td>not mentioned</td>
<td>ecological footprint was used instead of land occupation</td>
</tr>
<tr>
<td>(Pelletier et al., 2010)</td>
<td>Comparison</td>
<td>Upper Midwest United States</td>
<td>kg LW</td>
<td>Pasture finished: 19.2; Feed lot finished: 14.8</td>
<td>no cow/calf allocation</td>
<td>Biophysical properties (rations)</td>
<td>assumed constant</td>
<td>not mentioned</td>
<td>climate change, acidification potential, eutrophication potential, land occupation and non-renewable energy use</td>
</tr>
<tr>
<td>(Nguyen et al., 2012)</td>
<td>Case study</td>
<td>France</td>
<td>kg carcass (farm gate); kg LWG (live weight gain)</td>
<td>27.0 – 27.9</td>
<td>live weight; protein; economic</td>
<td>included</td>
<td>included</td>
<td>included</td>
<td>climate change, acidification potential, eutrophication potential, land occupation and non-renewable energy use</td>
</tr>
<tr>
<td>(Nguyen et al., 2010)</td>
<td>Comparison</td>
<td>EU</td>
<td>kg carcass delivered from farms</td>
<td>cow-calf: 27.3 dairy bull calf: 12mo: 16, 16mo: 17, 19, 24mo: 19</td>
<td>system expansion (soymeal/oil); biophysical causality (bull calves from dairy)</td>
<td>included</td>
<td>included</td>
<td>discussed</td>
<td>Climate change, acidification potential, eutrophication potential, land occupation and non-renewable energy use</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Conestoga-Rovers & Associates, 2010)</td>
<td>National sector</td>
<td>Canada</td>
<td>cradle to slaughter house receiving dock</td>
<td>1 kg LW at slaughterhouse</td>
<td>14.5</td>
<td>No allocation to hides, intestines. All dairy to milk except replacement heifers allocated to beef</td>
<td>included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Modernel et al., 2013)</td>
<td>Case study</td>
<td>Uruguay</td>
<td>gate-to-gate (cow-calf excluded)</td>
<td>kg LW</td>
<td>R-R: 16.7 R – F: 10.5 S – F: 6.9</td>
<td>not mentioned</td>
<td>assumed constant</td>
<td>no LUC (deforestation) for the systems</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>(Basarab et al., 2012)</td>
<td>Case study</td>
<td>Canada</td>
<td>cradle to farm gate</td>
<td>kg LW and kg carcass</td>
<td>LW: 11.6 - 13.2 CW: 19.9 - 22.5</td>
<td>not mentioned</td>
<td>included</td>
<td>included</td>
<td>included</td>
</tr>
<tr>
<td>(Vergé et al., 2008)</td>
<td>National sector</td>
<td>Canada</td>
<td>cradle to farm gate</td>
<td>kg LW</td>
<td>10.37</td>
<td>not mentioned</td>
<td>not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Weiss and Leip, 2012)</td>
<td>Regional Assessment</td>
<td>EU</td>
<td>cradle to farm gate (including slaughter)</td>
<td>kg carcass; kg milk (4% fat)</td>
<td>Beef: 21-28 Milk: 1.3 – 1.7</td>
<td>physical allocation (Nitrogen/protein/energy content); biological causality (MLW)</td>
<td>included</td>
<td>included</td>
<td>included</td>
</tr>
<tr>
<td>(Becofa et al., 2014)</td>
<td>Case study</td>
<td>Uruguay</td>
<td>cradle to farm gate</td>
<td>kg of live weight gain produced on farm</td>
<td>20.8</td>
<td>not discussed</td>
<td>not mentioned</td>
<td>discussed but not included</td>
<td>climate change</td>
</tr>
<tr>
<td>(Dick et al., 2014)</td>
<td>Case study</td>
<td>Brazil</td>
<td>cradle to farm gate</td>
<td>kg of live weight</td>
<td>22.5 (extensive) 9.2 (improved)</td>
<td>not needed - single product (LWG)</td>
<td>not included</td>
<td>discussed, not included</td>
<td>one of the impact categories</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Beauchemin et al., 2010)</td>
<td>Case study</td>
<td>Western Canada</td>
<td>cradle to farm gate</td>
<td>kg LW</td>
<td>13.04</td>
<td>not needed (system included culled breeding animals)</td>
<td>discussed but not included</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Cederberg et al., 2009a)</td>
<td>Case study</td>
<td>Brazil</td>
<td>processor gate</td>
<td>kg carcass (farm gate); kg boneless shipped to Sweden</td>
<td>Carcass: 28 Boneless: 41</td>
<td>biophysical causality (M/LW); no allocation to meat by-products</td>
<td>included</td>
<td>included</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>(Beauchemin et al., 2011)</td>
<td>Regional Assessment</td>
<td>Western Canada</td>
<td>cradle to farm gate</td>
<td>kg carcass</td>
<td>21.7</td>
<td>no allocation (animals); DDG production to ethanol</td>
<td>included</td>
<td>included</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>(Battagliese et al., 2013)</td>
<td>National sector</td>
<td>United States</td>
<td>cradle to grave</td>
<td>1 lb consumed, boneless beef</td>
<td>23.6 (kg/lb)</td>
<td></td>
<td>not mentioned</td>
<td>reported as inventory</td>
<td>climate change, land occupation, energy consumption, eutrophication, acidification, consumptive water, solid waste toxicity</td>
</tr>
<tr>
<td>(Eady et al., 2011)</td>
<td>Case study</td>
<td>Australia</td>
<td>cradle to farm gate</td>
<td>kg LW</td>
<td>Beef heifer: 17.5 Weaner steer: 20.8 Beef bull: 22.9</td>
<td>economic and mass between animal types (some as cull, weaners to another enterprise)</td>
<td>included</td>
<td>discussed</td>
<td>not mentioned</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use / occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(Peters et al., 2010)</td>
<td>Comparison</td>
<td>Australia</td>
<td>cradle to processor gate</td>
<td>kg HSCW</td>
<td>Grain finished: 9.9, Grass finished: 12.0</td>
<td>Mass-based and economic allocations applied at scale of individual process units</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>mentioned briefly</td>
</tr>
<tr>
<td>(Capper, 2009)</td>
<td>Comparison</td>
<td>United States</td>
<td>cradle to grave</td>
<td>kg LW</td>
<td>Conv: 15.2 Natural: 18 Grass finished: 26</td>
<td>mass and economic</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>included</td>
</tr>
<tr>
<td>(Capper, 2011)</td>
<td>Comparison</td>
<td>United States</td>
<td>cradle to farm gate</td>
<td>billion kilogram of HCW beef</td>
<td>17.945E19</td>
<td>biological causality (dairy to beef)</td>
<td>discussed; considered in balance so not accounted</td>
<td>not included</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>(Dudley et al., 2014)</td>
<td>Regional Assessment</td>
<td>United States</td>
<td>cradle to farm gate (cow-calf, background feedlot)</td>
<td>kg LW</td>
<td>8 - 8.3</td>
<td>mass</td>
<td>included</td>
<td>included</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>(Foley et al., 2011)</td>
<td>Case study</td>
<td>Ireland</td>
<td>cradle to farm gate</td>
<td>kg carcass; ha</td>
<td>23.1 (national survey result)</td>
<td>not mentioned</td>
<td>discussed, but not included</td>
<td>mentioned, not included</td>
<td>climate change</td>
</tr>
<tr>
<td>(Zervas and Tsiplakou, 2012)</td>
<td>Comparison</td>
<td>Greece</td>
<td>cradle to farm gate</td>
<td>not mentioned</td>
<td>N/A</td>
<td>not mentioned</td>
<td>discussed, not quantified</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(de Vries and de Boer, 2010)</td>
<td>Review</td>
<td>EU</td>
<td>cradle to farm gate</td>
<td>kg beef</td>
<td>14 - 31</td>
<td>various - from different studies</td>
<td>not mentioned</td>
<td>recommended for inclusion in future studies</td>
<td>reported as inventory</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO₂e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Zehetmeier et al., 2012)</td>
<td>Comparison dairy + beef combined system</td>
<td>Germany</td>
<td>cradle to farm gate but it is a bovine system including milk and beef systems</td>
<td>kg milk; kg beef</td>
<td>Milk: 0.98 – 1.35 Beef: 14.6 – 5.6 Milk: 0.89 – 1.06 Beef: 16.2 – 10.8 (shr. paired production of milk and meat)</td>
<td>None (dairy to milk); economic (for M / LW)</td>
<td>not mentioned</td>
<td>scenario</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Elmqist, 2005)</td>
<td>Model Study</td>
<td>Sweden</td>
<td>cradle to farm gate</td>
<td>1000kg FPCM plus 28 kg lean meat</td>
<td>−1250</td>
<td>economic (rations); system expansion (combined FU)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Cederberg et al., 2009b)</td>
<td>Retrospective</td>
<td>Sweden</td>
<td>cradle to farm gate</td>
<td>kg carcass; kg FPCM</td>
<td>Milk: 1.27 (1990) 1.02 (2005) Beef: 18 (1990) 19.8 (2005)</td>
<td>physical and economic allocation</td>
<td>not mentioned</td>
<td>not included</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Puillet et al., 2014)</td>
<td>Methodology</td>
<td>France</td>
<td>cradle to farm gate</td>
<td>N/A</td>
<td>N/A</td>
<td>avoided - bovine sector as whole modeled</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>(Cederberg and Stadig, 2003)</td>
<td>Methodology</td>
<td>Sweden</td>
<td>cradle to farm gate</td>
<td>kg FPCM; kg of bone-free meat</td>
<td>Milk: 1.05 Meat: 22.3</td>
<td>none; economic; biological causality (M/LW); system expansion</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>one of the impact categories</td>
</tr>
<tr>
<td>(Doublet et al., 2013)</td>
<td>National Survey</td>
<td>Romania</td>
<td>cradle to processor gate</td>
<td>kg of bone-free beef; kg raw milk</td>
<td>33 1.1</td>
<td>biological causality (M/LW)</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>inventory</td>
</tr>
<tr>
<td>Classification</td>
<td>Region</td>
<td>System Boundaries</td>
<td>Functional Unit</td>
<td>GHG Emissions (kg CO2e / FU)</td>
<td>Allocation</td>
<td>Soil Carbon / Sequestration</td>
<td>LUC / iLUC</td>
<td>Land use/occupation</td>
<td>Impact categories</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Flysjö et al., 2012)</td>
<td>Comparison</td>
<td>Sweden</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>1.07 (no LUC)</td>
<td>none system expansion</td>
<td>briefly discussed</td>
<td>included</td>
<td>included</td>
</tr>
<tr>
<td>(Pirlo et al., 2014)</td>
<td>Case study</td>
<td>Italy</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>8.24% F 4.57% P</td>
<td>not mentioned</td>
<td>not included</td>
<td>not included</td>
<td>climate change</td>
</tr>
<tr>
<td>Gerber et al. (2013)</td>
<td>Case study</td>
<td>Global</td>
<td>cradle to farm gate</td>
<td>1 kg CW, 1 kg FPCM</td>
<td>53.43 3.44</td>
<td>Economic, protein content</td>
<td>discussed</td>
<td>not included</td>
<td>discussed</td>
</tr>
<tr>
<td>Gerber et al. (2013)</td>
<td>Case study</td>
<td>Asia</td>
<td>cradle to farm gate</td>
<td>1 kg CW, 1 kg FPCM</td>
<td>51.0 3.2</td>
<td>Economic, protein content</td>
<td>discussed</td>
<td>not included</td>
<td>discussed</td>
</tr>
<tr>
<td>(Carè et al., 2012)</td>
<td>Case study</td>
<td>Italy</td>
<td>cradle to farm gate</td>
<td>kg FPCM</td>
<td>3.93</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>climate change</td>
</tr>
</tbody>
</table>

Buffalo

1. Buffalo

2. Gerber et al. (2013) Case study Global cradle to farm-gate 1 kg CW, 1 kg FPCM 53.43 3.44 Economic, protein content discussed not included discussed climate change

3. Gerber et al. (2013) Case study Asia cradle to farm-gate 1 kg CW, 1 kg FPCM 51.0 3.2 Economic, protein content discussed not included discussed climate change

4. (Carè et al., 2012) Case study Italy cradle to farm gate kg FPCM 3.93 none not mentioned not mentioned climate change
A1.18 Bibliography

Adom, F., Maes, A., Workman, C., Clayton-Nierderman, Z., Thoma, G.J., Shonnard, D.R., 2012b. Regional carbon footprint analysis of dairy feeds for milk production in the United States Appendix A: Dairy feed rations for each dairy region for both non-grazing and grazing seasons (All values reported as pounds of dry matter intake per day) Table.

Hemme, T., 2013. Overview on milk prices and production costs world wide.

Appendix 2: Summary of available standards and specifications of LCA methodologies for large ruminant productions supply chain analysis.

A2.1 Introduction

This document was prepared as part of the Livestock Environmental Assessment and Performance Partnership (LEAP) technical advisory group for large ruminants. The intention of this document is to provide an overview assessment existing standards and specifications that have created to guide lifecycle assessment. This summary is a synopsis of a detailed evaluation performed by the European Commission Joint Research Centre, Institute for Environment and Sustainability (Chomkhamsri and Pelletier, 2011). That study considered seven product-specific and seven organization-specific methodologies. This synopsis focuses only on the relevant product-specific methodologies: ISO 14044: Environmental management -- Life cycle assessment -- Requirements and guidelines (ISO 14044:2006, 2006); ISO 14067: Carbon footprint of product (International Organization for Standardization, 2010); ILCD: International Reference Life Cycle Data System (European Commission et al., 2010); Product and Supply Chain Standards Greenhouse Gas Protocol (WRI/ WBCSD) (Bhatia et al., 2011); French Environmental Footprint (BPX 30-323) (AFNOR, 2011); and UK’s Product Carbon footprint (PAS 2050) (DEFRA, 2009). This document evaluated a wide range of methodological issues, including: applications of LCA, target audience, functional unit, system boundary, cut-off criteria (materiality), impact categories, data modelling and quality, primary and secondary data, allocation, biogenic carbon emissions, direct and indirect land-use change, carbon sequestration, renewable energy, land occupation, offsets, review and reporting, interpretation and uncertainty.

The ISO 14044 standard is the basis for remaining standards, and therefore all of them are largely in agreement—certainly for all of the major points. However there are some points of divergence, which will be summarized at the end of this document.

A2.2 Goal and Scope

All the extant methodological guidelines employ Life Cycle Thinking/approach in product evaluation. The goal and scope (applications) of LCAs range from hotspot identification, to commodity analysis to benchmarking for understanding and opportunities for improvement. All of the methodologies and standards support improvement identification and benchmarking for the purpose of performance tracking. Only the WRI/WBCSD guidance does not support comparative assertion as defined in the ISO 14044 standard. It is considered important to allow sufficient flexibility to encompass this range of potential reasons for conducting an LCA of large ruminant systems.
A2.3 Target audience

The target audience is that group (individuals or organizations), identified by the authors of the study, who rely on the study for decision-making. All the standards except for PAS 2050, which does not specify requirements for communication, refer to both B2B and B2C communications (the BPX 30-323 standard only refers to B2C communications). In general, the target audience should be explicit in the LCA report.

A2.4 Functional Unit

The functional unit describes the characteristic function(s) delivered by the system related to the questions “what”, “how much”, “how well”, and “for how long”. Without identical functional units, among other requirements, differed LCA’s are not comparable. All of the standards are clear that the functional unit should be clearly defined, measurable and consistent with the project goal and scope.

A2.5 System Boundary Definition

Determination of the processes to be included in the LCA, based on the goal and scope of the study and defined iteratively in order to identify and focus on the most relevant processes. In general the extant protocols defined the system as beginning with raw material acquisition and concluding with end-of-life and disposal. The WRI/WBCSD, PAS 2050, and ISO 14067 allow for both cradle-to-grave and cradle-to-gate studies, while the other protocols imply a full cradle-to-grave analysis is necessary.

A2.6 Materiality

The question of materiality is related to the cut off criteria chosen for the study -in particular, specification of material or energy flows which are insignificant enough to be excluded from the system. This is important in the context of providing appropriate balance between representativeness of the model and data collection efforts by the practitioner. The standards all provide guidance regarding lifecycle inventory or emissions which should not be neglected. The ISO 14044 standard and ILCD guidance do not specify cut-off percentages, but do require a full description of the criteria used for cut-off flows (ISO 14044:2006, 2006). Typically the cut-off criteria are reported in terms of an estimated percentage of materials or emissions which have been excluded. The PAS 2050 and French standard require that all material contributions be included, and that 95% of all GHG emissions/impacts must be accounted (British Standards Institution, 2011). The WRI WBCSD does not specify cut-off, but also requires justification for exclusion of attributable processes and an estimation demonstrating the process is insignificant as well as a reporting of the insignificance threshold (cut-off) to justify any exclusion.
A2.6.1 INFRASTRUCTURE

There is a range of approaches in accounting for capital infrastructure. It is a requirement of the French standard that infrastructure associated with transportation be included. Infrastructure is considered a non-attributable process by WRI/WBCSD, and is not mandatory, but if included shall be disclosed. PAS 2050 excludes capital goods, unless supplementary requirements have been established, in which case those requirements should be adopted. In addition, the PAS 2050, allows for inclusion of capital goods when a materiality assessment has been conducted which shows a significant contribution.

A2.6.2 ANCILLARY ACTIVITIES

The PAS 2050 explicitly excludes capital goods, human energy inputs, transport by animals, transport of the consumer to and from retail, and employee commuting. The French standard excludes carbon offsets, research and development, employee commuting, associated services (advertising or marketing), and consumer travel to and from retail.

A2.7 Impact categories

Potential effects to the environment or human health or natural resource depletion that result from activities of the system under study. The PAS 2050 and WRI/WBCSD protocols focus only on climate change (including the effects of land-use change on GHG emissions -but reported separately); however the remaining protocols recommend a wider range of impact categories. BPX 30-323 follows the JRC recommendations, with impact categories fixed by the product category. The LCD handbook (Joint Research Centre, 2010) provides recommendations for the following impact categories (which is a superset of the ISO 14044 categories): Climate change, Acidification, Eutrophication, Ozone depletion, Summer smog, Human toxicity (Respiratory inorganics, Carcinogens, Non-carcinogens), Land use (includes biodiversity, land productivity), and Material and energy resource depletion.

A2.8 Biogenic Carbon/Methane

ISO 14044 does not provide specific guidance on biogenic carbon emissions. However, the remaining standards are in fundamental agreement that both fossil and biogenic carbon emissions are included in the analysis and should be reported separately. Regarding climate change impact, all of the guidelines refer to the IPCC for characterization factors. In the most recent publication, biogenic methane has been given a different global warming potential than fossil methane (Myhre et al., 2013).

A2.9 Carbon Sequestration / Delayed Emissions

This refers to either fossil or biogenic carbon which is removed from the atmosphere not re-released (i.e., sequestered) to the atmosphere during the process itself or end-of-life disposal, but may be slowly released over longer time periods. Chomkhamsri & Pelletier (2011) suggested that ISO 14044 considers
carbon storage and delayed emissions to be outside the usual scope of study, this is explicitly stated by the ILCD handbook; however, if considered part of the study goal, operational guidance is provided. It also differentiates temporary from permanent storage if guaranteed for more than 10,000 years. ISO-14067, PAS 2050, and the WRI/WBCSD standards all require separate reporting of temporary carbon storage. The WRI/WBCSD, PAS 2050, and French standards allow for waiting factors in calculation of delayed emissions (reported separately).

A2.10 Land Use (direct LUC/indirect LUC)
This refers to emissions or sequestration of carbon associated with changes in land management practices. As such, it is primarily relevant for its impact on climate change through its effect on the greenhouse gas balance. ISO 14044 does not mention land-use change. The remaining documents all rely on the IPCC guidelines, generally amortizing to products for 20 years after land-use change has occurred. The French standard and ISO 14067 indicate that indirect land-use change induced effects shall be considered once there is an internationally accepted methodology. The ILCD handbook considers indirect land-use change for consequential LCA, but, in agreement with PAS 2050, exclude iLUC from attributional, product level LCA’s. The WRI/WBCSD protocol does not require indirect land-use change, but if shown to be significant should be reported separately.

Land occupation, as an inventory item, is not specifically addressed by any of the standards.

A2.11 Emission Off-setting
In general, this refers to third-party greenhouse gas mitigation activities. These are discrete reductions used to compensate for emissions elsewhere. ISO 14044 does not provide guidance on this topic; however, all of the remaining methodologies do not allow including emission offsets in the calculations.

A2.12 Renewable energy
The principal concern associated with renewable energy in those standards which address it is associated with the potential for double counting. ISO 14067 requires exclusion of renewable energy sources if they have been claimed elsewhere. PAS 2050 provides guidance on avoiding double counting associated with renewable electricity generation, and the French standard allows different energy models provided the renewable electricity is not connected to the main grid.

A2.13 Multi-functionality/Allocation
When a unit process in the system provides more than one function, the inputs and emissions/impacts need to be partitioned among all of the provided functions. All of the standards follow ISO 14044 in recommending that allocation be avoided by system separation, if possible. The ILCD, WRI/WBCSD and
ISO 14067 adopt the ISO 14044 hierarchy. This may provide slightly more refined guidance, but the preferential order of system separation followed by system expansion and then physical relationships with economic value as the final option. The PAS 2050 standard allows for supplementary requirements (e.g., PCR) to be used if up appropriately specified, prior to the economic value allocation. The French standard switches the process of allocation based on physical relationships (mass, energy, etc.) with system expansion, and leaves economic value allocation as the lowest priority choice.

A2.14 Data Quality Assessment

Data quality refers to the suitability of the data with regard to achieving the goal and scope of the study. It is important to evaluate in order to ascertain the robustness of decisions which may be made on the basis of the study results. The characteristics of data quality have been identified in part one of this document as well as being detailed in the standards. The data quality requirements given by ISO 14044 include:

a) Time-related coverage: age of data and the minimum length of time over which data should be collected;
b) Geographical coverage: geographical area from which data for unit processes should be collected to satisfy the goal of the study;
c) Technology coverage: specific technology or technology mix; d) precision: measure of the variability of the data values for each data expressed (e.g. variance); e) completeness: percentage of flow that is measured or estimated;
f) Representativeness: qualitative assessment of the degree to which the data set reflects the true population of interest (i.e. geographical coverage, time period and technology coverage);
g) Consistency: qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis;
h) Reproducibility: qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study;
i) Sources of the data;
j) Uncertainty of the information (e.g. data, models and assumptions).

ISO 14067 and PAS 2050 both adopt the ISO 14044 data quality assessment guidance. The ILC D and WRI/WBCSD both make slight modifications referring to temporal, technological, and geographical representativeness and combining other categories into completeness and precision. The French standard has a governance committee which advises on these issues as well as clarity, recognition, transparency, format and updates.
A2.15 Primary/secondary data

Primary data refers to information which is collected as part of the current study, while secondary data refers to data which may be available in existing lifecycle inventory databases or maybe collected from published literature. There is general agreement among the standards that foreground processes, those owned or operated by the study commissioner should be populated with primary data. The ILC D recommends primary data for the main background processes as well. Secondary data is acceptable for background processes, but is subject to the same data quality assessment requirements as primary data. All of the standards acknowledge the utility of a data collection template for the project; however none of them provide examples of templates. (Note: the LEAP guidance for the poultry sector includes a data collection template as one of the Annexes).

A2.16 Uncertainty Analysis

In order to determine whether the apparent differences between the compared alternatives are real (statistically significant), it is necessary to perform an assessment of the uncertainties accompanying the results. Three main sources of uncertainty may be addressed (European Commission et al., 2010): stochastic uncertainty; choice uncertainty; lack of knowledge of the studied system. However, detailed guidance is lacking in all of the guidelines. The WRI/WBCSD and PAS 2050 provide guidance in separate, supplementary documents while the French standard shifts the focus to sector specific working groups and refers to ISO 14044.

As a practical matter, Monte Carlo analysis is generally the method used for determining the propagation of input uncertainties to the environmental impacts reported; however, there may be alternate methods that are appropriate for a given study.
A2.17 Review of PCR and other Protocols for LCA of Cattle products

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>INRA, ADEME AGRIBALYSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>INRA, INRA, ART etc</td>
</tr>
<tr>
<td>Products</td>
<td>Co-products: all products generated by a process in addition to the main product Beef, culling cows, calves and milk but Agribalyse also account for products of feed supply chains</td>
</tr>
<tr>
<td>Objectives</td>
<td>To contribute to environmental labelling of food products, To provide reference methodologies to the agricultural sector for LCA assessment and to guide mitigation strategies.</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open consultation</td>
<td>No</td>
</tr>
<tr>
<td>Co-products</td>
<td>Beef meat, cow milk, calves</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of live weight</td>
</tr>
<tr>
<td></td>
<td>1 kg of FPCM</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to gate</td>
</tr>
<tr>
<td></td>
<td>Off-farm activities excluded</td>
</tr>
<tr>
<td></td>
<td>Co-products from crop processing excluded</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Bio-physical allocation based on physiological functions Beef vs heifers: Bio-physical allocation Milk vs culling cows vs calves: Bio-physical allocation</td>
</tr>
<tr>
<td>Impact categories</td>
<td>GHG emission (CC), resource depletion, fossil fuel energy demand, eutrophication, eco-toxicity, acidification, human toxicity, land use, land use change</td>
</tr>
</tbody>
</table>
| Organization and method | AFNOR Normalisation
Référentiel d'évaluation de l'impact environnemental des produits laitiers en France |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>Quantis, Cniel</td>
</tr>
<tr>
<td>Products</td>
<td>Milk products (all)</td>
</tr>
<tr>
<td>Objectives</td>
<td>To simplify the methods for assessment of environmental impacts for dairy companies</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open</td>
<td>Yes</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk</td>
</tr>
<tr>
<td>Functional unit</td>
<td>100g/ml or portion of milk products with variable weight</td>
</tr>
</tbody>
</table>
| System boundaries | Cradle to grave
Exclusion: carbon credit, flows related to research and development, transport of farm’s staff, marketing, consumers activities |
| Handling multi-functional processes (allocation) |
Allocation factor: calculated based on dry matter weight
Farm: meat and milk : biophysical based on proteins content
Milk processing: milk co-products : based on dry matter content
Retailer : transport and refrigeration : based on product weight
Refrigeration stage (energy consumption): based on storage time and weight
Storage at consumer’s stage: based on storage time and weight |
| Impact categories | GHG emission (CC), eutrophication, acidification, biodiversity |
| Additional information | |

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>GGELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2010</td>
</tr>
<tr>
<td>Developed by</td>
<td>JRC</td>
</tr>
<tr>
<td>Products</td>
<td>Milk products</td>
</tr>
<tr>
<td>Objectives</td>
<td>To provide an estimate of the net emissions of GHGs and ammonia (NH3) from livestock sector in the EU-27 according to animal species, animal products and livestock systems following a food chain approach.</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk, meat, calves</td>
</tr>
</tbody>
</table>
| Functional unit | Meat: Carcass weight
Milk: 1kg of FPCM |
| System boundaries | Cradle to retail
Exclusion: carbon credit, flows related to research and development, transport of farm’s staff, marketing, consumers activities
System expansion for manure
Substitution of the application of mineral fertilizer (avoided emissions) |
| Handling multi-functional processes (allocation) |
Based on Nitrogen content of products except for CH4 from enteric fermentation and manure allocated based on energy requirement for lactation and pregnancy. |
| Impact categories | GHG emission (CC) |
| Additional information | |
Guidelines for the Carbon Footprinting of Dairy Products in the UK

Organization and method

Guidelines for the Carbon Footprinting of Dairy Products in the UK

Date of publication
2010

Developed by
Carbon trust, Dairy UK, DairyCo

Products
Milk products

Objectives
The product carbon footprint is the measurement of all the greenhouse gases emitted during the life cycle of the product. The greenhouse gases included within the scope of the measurement are those listed in Annex A of the PAS 2050. The Greenhouse Gas emissions are expressed as Carbon Emissions in terms of CO2e (Carbon Dioxide equivalent) by using the latest IPCC 100-year global warming potential (GWP) coefficients as specified within the PAS 2050.

Review panel
Yes

Public review/open consultation
Yes

Co-products
Milk, cream, milk products, cheese, butter, yogurt
Milk, meat
Co-products: Where a single process gives rise to more than one product. These co-products cannot be created separately, but both occur inherently as outputs of a single process.

Functional unit
1 litre of milk

System boundaries
Cradle to grave
Including disposal and recycling

Allocation factor
calculated based on dry matter weight
Milk co-product: Biophysical allocation (dry mass percentage)
Energy allocation: based on biophysical principle (mass allocation)

Impact categories
GHG emission (CC)

Greenhouse gas emissions from ruminant supply chains

Organization and method

Greenhouse gas emissions from ruminant supply chains

FAO

Date of publication
2010

Developed by
FAO

Products
Milk, meat

Objectives
To present the first comprehensive and disaggregated global assessment of emissions which enable the understanding of emission pathways and hotspots? To quantify the main sources of GHG emissions from the world dairy sector, and to assess the relative contribution of different production systems and products to total emissions from dairy sector.

Review panel
Yes

Public review/open consultation
No

Co-products
Milk, meat, draught power, capital

Functional unit
1 kg of meat
1 kg of FPCM

System boundaries
Cradle to retail

Handling multi-functional processes (allocation)
Biophysical allocation
Economic allocation

Impact categories
GHG emission (CC)

Additional information
<table>
<thead>
<tr>
<th>Organization and method</th>
<th>A common carbon footprint approach in dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2010</td>
</tr>
<tr>
<td>Developed by</td>
<td>IDF</td>
</tr>
<tr>
<td>Products</td>
<td>Milk</td>
</tr>
<tr>
<td>Objectives</td>
<td>To support the production of consistent and comparable carbon footprint figures internationally, and enable the evaluation of dairy products on a consistent basis.</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open consultation</td>
<td>Yes</td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk, meat, calves</td>
</tr>
<tr>
<td>Co-products: any of two or more products from the same unit process or product system (ISO 14044)</td>
<td></td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of FPCM</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to processing</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Feed stage: Economic allocation</td>
</tr>
<tr>
<td>Milk, meat and calves: Biophysical allocation based on energy requirement</td>
<td></td>
</tr>
<tr>
<td>Milk products: biophysical allocation (physic-chemical)</td>
<td></td>
</tr>
<tr>
<td>Manure: system expansion</td>
<td></td>
</tr>
<tr>
<td>Heat and power: System expansion</td>
<td></td>
</tr>
<tr>
<td>Impact categories</td>
<td>GHG emission (CC), land use and land use change, sequestration,</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>Earth sure Meat Environmental Product Declarations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2006</td>
</tr>
<tr>
<td>Developed by</td>
<td>Earth sure Meat, IERE</td>
</tr>
<tr>
<td>Products</td>
<td>Meat</td>
</tr>
<tr>
<td>Objectives</td>
<td>To support the EPD; to learn more about environmental impacts of the product; to improve environmental performance</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open consultation</td>
<td>Yes</td>
</tr>
<tr>
<td>Co-products</td>
<td>Meat, calves, milk</td>
</tr>
<tr>
<td>Functional unit</td>
<td>One pound of meat at the processing plant exit gate</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to plate</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>All impact allocated to meat</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, Stratospheric Ozone Depletion, Acidification, Eutrophication, Photochemical Smog, Aquatic Toxicity, Fossil Fuel Depletion, Mineral Resource depletion, Water Use, Antibiotic Use, Soil losses, Hormone Used, Gene Modified Organisms</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td>Organization and method</td>
<td>Development of Carbon Calculator to promote low carbon farming practices</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>EC, JRC, SOLAGRO</td>
</tr>
<tr>
<td>Products</td>
<td>Beef, dairy</td>
</tr>
<tr>
<td>Objectives</td>
<td>The aim of the Carbon Calculator is to assess GHG emissions from farming practices and to suggest climate change mitigation and sequestration actions at farm level.</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open consultation</td>
<td>No</td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk, meat,</td>
</tr>
<tr>
<td>Functional unit</td>
<td>A tonne of milk, A tonne of meat</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to farm gate</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Economic allocation, Mass allocation, Allocation according to the production cycle, Protein or energy allocation (meat and milk)</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>EPD, PCR CPC Class 2912 Version 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2011</td>
</tr>
<tr>
<td>Developed by</td>
<td>EPD</td>
</tr>
<tr>
<td>Products</td>
<td>Finished bovine leather</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>No</td>
</tr>
<tr>
<td>Public review/open consultation</td>
<td>No</td>
</tr>
<tr>
<td>Co-products</td>
<td>Finished bovine leather, meat, milk</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 m² "Finished bovine leather"</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to grave: Including upstream emissions related to cattle raising</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Mass allocation between hides, edible meat and inedible co-products</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, acidification, eutrophication, ozone depletion,</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td>Organization and method</td>
<td>EPD, PCR Meat of mammals CPC 2111 and 2113</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Date of publication</td>
<td>2011</td>
</tr>
<tr>
<td>Developed by</td>
<td>EPD</td>
</tr>
<tr>
<td>Products</td>
<td>Meat of mammal: fresh or chilled</td>
</tr>
<tr>
<td></td>
<td>Meat of mammal, frozen</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>No</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Meat, Milk, skin</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of meat in packaging.</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to grave</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Economic allocation</td>
</tr>
<tr>
<td></td>
<td>Process at slaughterhouse: Biophysical allocation</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, acidification, ozone depletion, eutrophication</td>
</tr>
<tr>
<td>Additional information</td>
<td>Ecological footprint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>EPD, PCR, PRODUCT GROUP: UN CPC 022 RAW MILK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>EPD</td>
</tr>
<tr>
<td>Products</td>
<td>Meat of mammal: fresh or chilled</td>
</tr>
<tr>
<td></td>
<td>Meat of mammal, frozen</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>No</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Meat, Milk, leather</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of milk</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to grave</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Economic allocation</td>
</tr>
<tr>
<td></td>
<td>Milk, surplus calves, meat for heifer stage</td>
</tr>
<tr>
<td></td>
<td>Milk and surplus calves for lactation stage</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, Acidification, Eutrophication, Land use and land use change Eco toxicity</td>
</tr>
<tr>
<td>Additional information</td>
<td>Ecological footprint, Water footprint</td>
</tr>
<tr>
<td>Organization and method</td>
<td>EPD, PCR, PRODUCT GROUP: UN CPC 221 PROCESSED LIQUID MILK AND CREAM</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>EPD</td>
</tr>
<tr>
<td>Products</td>
<td>Processed liquid milk and cream</td>
</tr>
<tr>
<td></td>
<td>Processed liquid milk</td>
</tr>
<tr>
<td></td>
<td>Cream, fresh</td>
</tr>
<tr>
<td></td>
<td>Whey</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>No</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk products</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of dairy products</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to grave</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Allocation based on physical relationships between the mass of protein and fat of co-products</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, Acidification, Eutrophication, Land use and land use change Eco toxicity</td>
</tr>
<tr>
<td>Additional information</td>
<td>Ecological footprint, Water footprint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization and method</th>
<th>EPD, PCR, PRODUCT GROUP: UN CPC 2223, 2224 & 2225 YOGHURT, BUTTER AND CHEESE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication</td>
<td>2013</td>
</tr>
<tr>
<td>Developed by</td>
<td>EPD</td>
</tr>
<tr>
<td>Products</td>
<td>Yoghurt and other fermented or acidified milk and cream</td>
</tr>
<tr>
<td></td>
<td>Butter and other fats and oils derived from milk</td>
</tr>
<tr>
<td></td>
<td>Cheese, fresh or processed</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk products</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg of dairy product</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to grave</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Allocation for mass of protein and fat</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, Acidification, Eutrophication, Land use and land use change Eco toxicity</td>
</tr>
<tr>
<td>Additional information</td>
<td>Ecological footprint, Water footprint</td>
</tr>
<tr>
<td>Organization and method</td>
<td>World Food LCA Database</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Date of publication</td>
<td>2014</td>
</tr>
<tr>
<td>Developed by</td>
<td>World Food LCA Database</td>
</tr>
<tr>
<td>Products</td>
<td>Agricultural products</td>
</tr>
<tr>
<td>Objectives</td>
<td>Environmental product declaration</td>
</tr>
<tr>
<td>Review panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Public review/open</td>
<td>No</td>
</tr>
<tr>
<td>consultation</td>
<td></td>
</tr>
<tr>
<td>Co-products</td>
<td>Milk, meat, calves and other non-animal products</td>
</tr>
<tr>
<td></td>
<td>Slaughterhouse: high quality meat, low quality meat, fat, non-edible (skin), non-edible (bones).</td>
</tr>
<tr>
<td>Functional unit</td>
<td>1 kg animal, live weight at farm exit gate</td>
</tr>
<tr>
<td></td>
<td>1 kg fat and protein corrected milk (FPCM), unpackaged, at farm exit gate</td>
</tr>
<tr>
<td>System boundaries</td>
<td>Cradle to farm gate</td>
</tr>
<tr>
<td>Handling multi-functional processes (allocation)</td>
<td>Allocation based on physical causality (IDF approach)</td>
</tr>
<tr>
<td></td>
<td>At slaughterhouse: Allocation based on dry matter basis for co-products (Agribalyse, Gac et al., 2012)</td>
</tr>
<tr>
<td>Impact categories</td>
<td>Climate Change, Acidification, Eutrophication, Land use and land use change, Eco toxicity</td>
</tr>
<tr>
<td>Additional information</td>
<td>Ecological footprint, Water footprint</td>
</tr>
</tbody>
</table>

Bibliography

Tignor, S. K. Allen, J. Boschung, P. M. Midgley (Eds.), Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York,
NY, USA: Cambridge University Press.
Appendix 3. Large Ruminants: Main producing countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Buffaloes (heads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 20 countries (for herd)</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>115,420,000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>33,700,000</td>
</tr>
<tr>
<td>China</td>
<td>23,253,900</td>
</tr>
<tr>
<td>Nepal</td>
<td>5,241,873</td>
</tr>
<tr>
<td>Egypt</td>
<td>4,200,000</td>
</tr>
<tr>
<td>Myanmar</td>
<td>3,250,000</td>
</tr>
<tr>
<td>Philippines</td>
<td>2,912,842</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>2,559,500</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1,484,000</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1,465,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>1,279,000</td>
</tr>
<tr>
<td>Thailand</td>
<td>1,219,000</td>
</tr>
<tr>
<td>Lao People's Democratic Republic</td>
<td>1,180,000</td>
</tr>
<tr>
<td>Cambodia</td>
<td>676,000</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>413,500</td>
</tr>
<tr>
<td>Italy</td>
<td>402,659</td>
</tr>
<tr>
<td>Iraq</td>
<td>307,000</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>260,889</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>135,000</td>
</tr>
<tr>
<td>Malaysia</td>
<td>120,000</td>
</tr>
<tr>
<td>Remaining countries</td>
<td>303,386</td>
</tr>
</tbody>
</table>

TABLE A3.2: RELATIVE NUMBER OF CATTLE ACROSS COUNTRIES GLOBALLY IN 2013 (FAOSTAT 2013).

<table>
<thead>
<tr>
<th>Country</th>
<th>Cattle (heads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 20 countries (for herd)</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>217,399,800</td>
</tr>
<tr>
<td>India</td>
<td>214,350,000</td>
</tr>
<tr>
<td>China</td>
<td>113,636,600</td>
</tr>
<tr>
<td>United States of America</td>
<td>89,299,600</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>54,000,000</td>
</tr>
<tr>
<td>Argentina</td>
<td>51,095,000</td>
</tr>
<tr>
<td>Sudan (former)</td>
<td>41,917,000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>38,300,000</td>
</tr>
<tr>
<td>Mexico</td>
<td>32,000,000</td>
</tr>
<tr>
<td>Australia</td>
<td>29,290,769</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>24,000,000</td>
</tr>
<tr>
<td>Colombia</td>
<td>23,141,388</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>21,500,000</td>
</tr>
<tr>
<td>Nigeria</td>
<td>20,000,000</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>19,930,354</td>
</tr>
<tr>
<td>Kenya</td>
<td>19,500,000</td>
</tr>
<tr>
<td>France</td>
<td>19,095,797</td>
</tr>
<tr>
<td>Indonesia</td>
<td>16,607,000</td>
</tr>
<tr>
<td>Myanmar</td>
<td>14,700,000</td>
</tr>
<tr>
<td>Venezuela (Bolivarian Republic of)</td>
<td>14,500,000</td>
</tr>
<tr>
<td>Remaining countries</td>
<td>420,085,461</td>
</tr>
</tbody>
</table>
Appendix 4: Summary of carcass-weight: live-weight ratios (as percentages)
for dairy and beef cattle and buffalo for different regions

Table A4.1: Average ratios of carcass-weight to live-weight for dairy and beef cattle and buffalo for
different global regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Dairy Cattle</th>
<th>Beef Cattle</th>
<th>Buffalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>51</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>51</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>Near East and North Africa</td>
<td>49</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Western Europe</td>
<td>51</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>51</td>
<td>57</td>
<td>51</td>
</tr>
<tr>
<td>East and South East Asia</td>
<td>52</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Oceania</td>
<td>51</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>South Asia</td>
<td>52</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Latin American countries</td>
<td>51</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>47</td>
<td>47</td>
<td>51</td>
</tr>
</tbody>
</table>

Source: Based on a summary by Opio et al. (2013).

Carcass-weight (CW), sometimes called dead-weight, generally refers to the weight of the carcass after
removal of the skin, head, feet and internal organs including the digestive tract (and sometimes some
surplus fat). The “hot carcass-weight” may be recorded after slaughter and refers to the unit by which
farmers in some countries are paid. In practice, the carcass loses a small amount of moisture as it cools
(e.g. about 1-2 percent) to the cold CW.

The variation in these average default CW values of 47-52 percent for dairy cattle and 47-57 percent
for beef cattle probably reflects differences in method of calculation from the literature that it was
derived from (e.g. hot versus cold CW), as well as differences associated with key factors of age,
breed, weight, gender and diet.
Appendix 5: diversity of large ruminant supply chains

As described in Section 6.3, there are wide varieties of dairy, beef and water buffalo production system around the world. To further explain and showcase the differences in production system, eight case studies are listed below.

A5.1 US Dairy Farms

American dairy farms range in herd size from about 30 to 10,000 cows with an average size of around 120. Most dairy herds consist of high producing Holstein cattle producing 25 to 45 kg of milk/cow per day. Herds normally calve randomly throughout the year, so at any point about 85% of the cows are lactating and 15% are non-lactating and pregnant. Young stocks are produced to replace cows that are culled for failure to rebred, illness or other reason. In typical herds, 30 to 40% of the cows are replaced each year requiring 0.35 to 0.45 two year old heifers per cow. Therefore, 0.7 to 0.9 replacement heifers per cow must be raised each year. Replacement heifers are often raised on the same farm as the cows, but contract rising on separate farms is also used, particularly by larger dairy farms. Artificial insemination is used so no bulls are maintained in the dairy herd. Bull calves, extra female calves and culled heifers are sold from the dairy herd for use in either beef or veal production. All cull cows leaving the herd are harvested for beef.

Most dairy cows are housed year around in free stall barns where they have a bedded stall for resting and free access to walk to the feed bunk. Tie stall barns are also common on smaller farms, and in the drier regions in the western U.S. animals are housed in open lots with or without access to free stall barns. Dairy herds produce 10 to 14 kg of manure solids/cow per day. Manure is typically scraped or

Fig A5.1 illustrates the U.S. Dairy production system.
flushed from the barn floor. Scraped manure is often handled as slurry (8 to 10% solids) where it is stored in a tank for 4 to 6 months before application to cropland. Flushed manure is handled as a liquid (about 5% solids) where a separator may be used to remove a major portion of the solids and the liquid is stored in a sealed earthen pond or lagoon for up to a year before application to cropland. With greater use of bedding in a tie stall barn, manure is handled as a semisolid (12 to 15% solids) typically with daily hauling to cropland with only short term storage. Manure nutrients are recycled through feed production, but when available land is limited for feed production, excess manure must be exported to other farms or composted for other use.

Dairy herds consume 20 to 30 kg of feed DM/cow per day depending upon their size and production level. Lactating cow diets consist of 40 to 60% forage with the remainder being corn grain and other energy and protein feed supplements. Higher forage diets are used for growing animals and non-lactating cows. Most of the forage required is normally produced on the farm and some or all of the corn grain may also be produced. Forage feeds are primarily corn silage and alfalfa silage or hay but small grain silage, sorghum silage and various grass silages and hays are used in various regions of the country. Commercial fertilizers are used to meet crop nutrient needs beyond that supplied by manure.

A5.2 South American Beef Farm

South American beef farms range widely in herd size from about 30 to 40,000 animals with an average size of around 100 per farm. Most beef herds consist of pure breeds from Indian (Bos indicus) and European (Bos taurus) origins. Herds normally calve in determined breeding seasons of 3 months, depending on the country and production system. Young female stock are produced to replace cows that are culled for failure to rebred, illness, worn teeth or other reason. In typical herds, 15 to 25% of the cows are replaced each year and replacement heifers are raised on the same farm as the cows. Usually natural breeding with bull is used and they represent 3 to 4% of the number of cows. Artificial insemination is used in more intensive systems (in some cases for first heifers mating) and bulls are maintained in the herd for a final option of pregnancy. Bull calves, young steers, extra female calves, culled heifers and cows are sold from the beef herd or fattened in the farm for use in either beef or veal production.

Most of the beef herds are kept in pasture year around subject to different forage availability due to the grass production seasonality. The most common management in farms based on natural grasslands with vegetation characteristics determined by climate and soil conditions and by grazing animals (i.e. Campos, Cerrado, and Pampa). Feedlots are used during part of the year for finishing animals that goes to slaughter (average between 100 to 120 days). Beef animals in feedlot produce 8 to 12 kg of manure solids/head per day. Manure is typically removed at the end of the fattening period and distributes in pasture or cropland. Manure nutrients are recycled through feed production and usually there is enough available land for feed production that can receive the manure.
Beef calves are weaned with 5 to 7 months and 140 to 170 kg Live Weight. Usually calves are reared for 6 to 24 months and finished for 4 to 6 months. The rearing phase is critical to determine the slaughter age. An animal can go directly from weaning to feedlot and be slaughtered very young with 12 months, while other can be slaughtered with 36 months. In the rearing phase beef herd can receive supplements to improve growth performance and shorten slaughter age. Usually daily weight gain can vary from 300g/day in natural grasslands, 900g/day in cultivated pastures with supplements and 2000g/day in high grain feedlots. The average slaughter weights can vary from 450 to 650kg; average carcass yield for Indian breeds is 52% and 56% for European breeds.

In feedlot beef herds consume 10 to 15 kg of feed DM/head per day depending upon their breed, cross breed, size and age. Diets consist of 20 to 30% forage with the remainder being maize grain, soybean meal and other energy and protein feed and by-products. Most of the forage required is normally produced on the farm and some of the maize or sorghum grain may also be produced. Soybean meal, by-products, minerals and vitamins are usually bought. Forage feeds are primarily maize, alfalfa, sorghum or grass silage. High moisture maize and sorghum silage is also used. Commercial fertilizers are used to meet crop nutrient needs beyond that supplied by manure, but usually no fertilizer is used in the natural grasslands and in some cases in cultivated pastures or annual pastures.

Figure A5.2 South American Beef System
A5.3 Dairy, beef and water buffalo supply chain in India

Total cattle and buffalo population in India is 190.9 and 108.7 million head, contributing about 37.3 and 21.2%, respectively, to the total livestock population in the country (Livestock census, 2012). India is the world’s largest milk producing country, with 132.4 million tonnes milk production during 2012-13 (BAHS, 2013). Over the past few years, 53% of the fluid milk produced comes from buffaloes and 43% from cows (FAOSTAT, 2013). Officially, the slaughter of cows is banned in India and the beef production is mainly buffalo meat where the slaughter is restricted to buffalo males and unproductive buffaloes. In spite of this, India is the biggest beef exporter in the world (1.89 million tonnes in 2012-13, BAHS, 2013).

Intensive mixed crop-livestock system. Mainly predominates in Northern region and in some parts of Western region of India, where households produce crops as well as livestock. Feed supply to livestock involves arable crops (including residues) or from cut-and-carry pastures and/or cultivated improved forages. In some parts, manure from housed animals is collected and used in crop and/or forage production. This system also applies for buffaloes raised for milk production and/or used for draught power. Crop residues and planted forages are produced on the farm or imported from the neighbouring states for feeding livestock. The concentrate feeds; by-products of food crops are mostly purchased to supplement the ration of livestock.

Semi-intensive livestock system. It is being followed in all other regions of the country in which unproductive and low yielding animals are managed on grazing and fed on indigenous forages/natural pastures and residue from crop or trees. At the end of the day, animals are brought back to the paddocks after grazing. The types of pastures used in this system are commonly rangelands with indigenous vegetation that is usually draught tolerant (grasses and shrubs). This system is usually based on rain-fed pastures and occurs in areas of low to medium human population densities. In many areas, households depend more on livestock than crop production. Compared to other systems, the level of livestock production (reproduction, growth rate and milk production) is usually low, under the semi-intensive system of livestock rearing.

Modelling of emissions. Equations pertaining to the emissions of enteric CH₄ and N₂O from manure as mentioned in IPCC (2006) guidelines may be followed.

A5.4 Water Buffalo Production System in Asia

Buffalo (Bubalus bubalis), a triple purpose animal, provides milk, meat and mechanical power to mankind. Buffalo is known as efficient convertor of poor quality forages into high quality milk and meat. Buffalo is mainly categorized as Asian and Mediterranean with two main sub species i.e. water (chromosome n=50) and swamp (chromosome n=48) buffalo contributing as a major source of food (milk and meat), power, fuel and leather especially in developing countries. Buffalo is distributed worldwide; however, around 95% of the total world buffalo population is present in Asia with India, Pakistan and China as major buffalo holding countries. In these countries, animals are fed on low-
quality roughages; agricultural crop-residues/and industrial by-products containing high fibrous materials. Contrary to cattle, buffalo are unique in their capability to efficiently utilize poor quality feed resources, through better rumen fermentation (Wanapat et al., 2000) as well as better nitrogen utilization (Devendra, 1985), indicating natural potential to survive and produce in tough environment with limited feed resources. However, imbalanced nutrition has resulted in low milk production, poor growth, high mortality rates and poor reproduction performance (Sarwar et al., 2009; Pasha and Khan, 2010).

Asia is famous for its water and swamp types of buffaloes. Water (River) buffaloes are generally large in size, with curled horns found in the Indian subcontinent, near Middle East, Eastern Europe, and are mainly available in India and Pakistan. They prefer to enter clear water, and are primarily used for milk production, but are also used for meat production and for draught purposes. Buffalo population in South-Asian countries is increasing more rapidly than rest of the world due to their unique qualities and emerging role in economic development. This region possesses most of the well-known breeds of buffaloes which are reared by adopting extensive, semi-intensive and intensive production systems by the farmers. India is a harbinger of some of the best riverine breeds of buffaloes. Murrah, Nili-Ravi, Surti, Mehsani, Jaffarabadi enjoy paramount position among high producing germ plasm.

The research over past three decades has confirmed that the buffaloes digest feed more efficiently than cattle do, particularly when feeds are of poor quality and are high in ligno-cellulose. The ability of buffaloes to digest fiber efficiently is partly due to the presence of some typical microorganisms in the rumen which convert feeds into energy more efficiently than those in cattle. Other reasons for the buffalo's being a better converter of feed might be the higher dry-matter intake, longer retention time of feed in the digestive tract, ruminal characteristics more favourable to ammonia nitrogen utilization, less depression of cellulose digestion by soluble carbohydrates, superior ability to handle the stress environment and a wide range of grazing preferences. The preference for buffaloes has continued to increase due to higher fat content of milk (7-8%), ability to thrive on harsh conditions, genetic potential, disease resistance, mainly on low quality rations as well as ever increasing export market for buffalo meat and milk products. It is expected that buffalo will continue to be the future animal of dairy-cum-meat industry in the region.

A5.4.1 POPULATION DYNAMICS

South Asian buffaloes dominate the world population (Table A3), representing about 75% of the world buffalo population. During the last ten years, world buffalo population has increased at the rate of 1.24 per cent per year, whereas, in South Asian countries the buffalo population increased at the rate of 1.49 per cent per year, largely contributed by India and Pakistan. The buffalo population in India is 108.7 million heads, contributing about 21.2%, to the total livestock population within the country (Livestock census, 2012). India is the world’s largest milk producing nation with 132.4 million tonnes
milk during 2012-13. Over the past few years, 53% of the fluid milk produced in the country has come from buffaloes (FAOSTST, 2013).

<table>
<thead>
<tr>
<th>Year</th>
<th>World</th>
<th>South Asia</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>174.09</td>
<td>131.00</td>
<td>99.72</td>
</tr>
<tr>
<td>2005</td>
<td>177.02</td>
<td>133.78</td>
<td>101.56</td>
</tr>
<tr>
<td>2006</td>
<td>180.55</td>
<td>136.81</td>
<td>103.43</td>
</tr>
<tr>
<td>2007</td>
<td>183.96</td>
<td>139.71</td>
<td>105.34</td>
</tr>
<tr>
<td>2008</td>
<td>187.06</td>
<td>142.61</td>
<td>107.24</td>
</tr>
<tr>
<td>2009</td>
<td>190.09</td>
<td>145.92</td>
<td>109.44</td>
</tr>
<tr>
<td>2010</td>
<td>192.70</td>
<td>148.13</td>
<td>111.89</td>
</tr>
<tr>
<td>2011</td>
<td>195.25</td>
<td>151.63</td>
<td>112.92</td>
</tr>
<tr>
<td>2012</td>
<td>198.09</td>
<td>154.34</td>
<td>114.48</td>
</tr>
<tr>
<td>2013</td>
<td>199.78</td>
<td>156.38</td>
<td>115.42</td>
</tr>
</tbody>
</table>

Source: FAOSTAT, 2013

Distribution of buffalo population in different Asian regions (1961-2007) is presented in Table A4. Important riverine buffalo breeds in Asia are presented in Table A5.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>World total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Asia Total</td>
<td>97.39</td>
<td>97.38</td>
<td>97.20</td>
<td>96.67</td>
<td>97.06</td>
<td>96.96</td>
</tr>
<tr>
<td>Southern Asia</td>
<td>68.19</td>
<td>63.67</td>
<td>67.27</td>
<td>69.96</td>
<td>74.50</td>
<td>75.25</td>
</tr>
<tr>
<td>South-Eastern Asia</td>
<td>18.15</td>
<td>17.46</td>
<td>14.00</td>
<td>11.93</td>
<td>8.51</td>
<td>8.57</td>
</tr>
<tr>
<td>Western Asia</td>
<td>1.58</td>
<td>1.28</td>
<td>0.97</td>
<td>0.32</td>
<td>0.35</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Source: Pasha and Hayat, 2012

A5.4.2 BUFFALO MILK

According to the definition of USDA (2011), buffalo milk is the normal lacteal secretion practically free of colostrum, obtained by the complete milking of one or more healthy water buffalo. Buffalo milk is a totally natural product that can be consumed like any other milk. It is one of the richest products from a compositional point of view and characterized by higher fat, total solids, proteins, caseins, lactose and ash content than cow, goat, camel and human milk. General composition, fatty acids composition, amino acids composition and physico-chemical characteristics of buffalo milk are
given in the Table A6-A9. Buffalo milk has higher levels of total protein, medium chain fatty acids, CLAs, and content of retinol and tocopherols than those of cow milk. Some components may only be present in buffalo milk such as specific classes of gangliosides (Berger et al., 2005).

Table A5.3: Important riverine buffalo breeds in Asia

<table>
<thead>
<tr>
<th>Breed</th>
<th>Distribution</th>
<th>Lactation (days)</th>
<th>Milk yield (kg)</th>
<th>Milk fat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azeri</td>
<td>Iran, Azerbaijan</td>
<td>200-220</td>
<td>1200-1300</td>
<td>6.6</td>
</tr>
<tr>
<td>Azi-Khel</td>
<td>Pakistan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bangladeshi</td>
<td>Bangladesh</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bhadawari</td>
<td>India</td>
<td>274</td>
<td>780</td>
<td>7.2</td>
</tr>
<tr>
<td>Jafarabadi</td>
<td>India</td>
<td>350</td>
<td>1800-2700</td>
<td>8.5</td>
</tr>
<tr>
<td>Jerrangi</td>
<td>India</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kundi</td>
<td>Pakistan</td>
<td>320</td>
<td>2000</td>
<td>7.0</td>
</tr>
<tr>
<td>Lime</td>
<td>Nepal</td>
<td>351</td>
<td>875</td>
<td>7.0</td>
</tr>
<tr>
<td>Manda</td>
<td>India</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Mehsani</td>
<td>India</td>
<td>305</td>
<td>1800-2700</td>
<td>6.6-8.1</td>
</tr>
<tr>
<td>Murrah</td>
<td>India</td>
<td>305</td>
<td>1800</td>
<td>7.2</td>
</tr>
<tr>
<td>Nagpuri</td>
<td>India</td>
<td>243</td>
<td>825</td>
<td>7.0</td>
</tr>
<tr>
<td>Nili Ravi</td>
<td>Pakistan, India</td>
<td>305</td>
<td>2000</td>
<td>6.5</td>
</tr>
<tr>
<td>Parkote</td>
<td>Nepal</td>
<td>351</td>
<td>875</td>
<td>7.0</td>
</tr>
<tr>
<td>Sambalpuri</td>
<td>India</td>
<td>350</td>
<td>2400</td>
<td>NA</td>
</tr>
<tr>
<td>Surti</td>
<td>India</td>
<td>350</td>
<td>2090</td>
<td>6.6-8.1</td>
</tr>
<tr>
<td>Tarai</td>
<td>India</td>
<td>250</td>
<td>450</td>
<td>8.1</td>
</tr>
<tr>
<td>Toda</td>
<td>India</td>
<td>200</td>
<td>500</td>
<td>NA</td>
</tr>
</tbody>
</table>

Source: Sethi, (2003); Moioli and Borghese (2008). NA = Data not available

Table A5.4: General composition of buffalo milk (g/kg)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Fat</th>
<th>Lactose</th>
<th>Ash</th>
<th>Total solids</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>77</td>
<td>47</td>
<td>8</td>
<td>175</td>
<td>Altman and Dittmer (1961)</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>51</td>
<td>8</td>
<td>167</td>
<td>Sindhu and Singhal (1988)</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>49</td>
<td>8</td>
<td>175</td>
<td>Jan (1999)</td>
</tr>
<tr>
<td>44</td>
<td>71</td>
<td>52</td>
<td>8</td>
<td>175</td>
<td>Ahmad et al. (2008)</td>
</tr>
<tr>
<td>46</td>
<td>73</td>
<td>56</td>
<td>-</td>
<td>176</td>
<td>Menard et al. (2010)</td>
</tr>
<tr>
<td>50</td>
<td>71</td>
<td>46</td>
<td>9</td>
<td>177</td>
<td>Han et al. (2012)</td>
</tr>
</tbody>
</table>

A5.5 Swamp Buffalo Production System

Buffalo (Bubalus bubalis) have been important domesticated livestock for farmers engaged in integrated crop-livestock farming in many countries including China, Vietnam, Laos, the Philippines, Malaysia, Indonesia, Thailand, as well as in some countries of Africa and America etc. Their multiple functional roles are vital; serving as draft, transportation means, manure, meat, by-products as well as livelihood of the rural communities. Recent research has been conducted investigating the uniqueness of their abilities in utilizing fibrous low-quality feeds including crop-residues producing fermentation end-products (volatile fatty acids, VFAs) and microbial protein for synthesis of useful products such as meat and milk. Furthermore, the use of molecular techniques to study existing rumen microbes namely
bacteria, protozoa and fungi forming the rumen consortium and fermentation characteristics have been providing interesting and useful data pertaining to their abilities of digestion as well as potential applications in the food-feed-system to support sustainable livestock production. Livestock production, in particularly buffalo and cattle, are an integral part of the food production systems, making important contributions to the quality and diversity of human food supply as well as providing other valuable services such as work and nutrient recycling. Large increases in per capita and total demand for meat, milk and eggs are forecast for most developing countries for the next few decades. In developed countries, per capita intakes are forecast to change slightly, but the increases in developing countries, with larger populations and more rapid population growth rates, will generate a very large increase in global demand. Most importantly, the human-inedible materials such as roughages, tree fodders, crop residues and by products into human food by ruminant animals will continue as a very important function of animal agriculture. However, since much of the projected increase is expected to come from pork, poultry and aquaculture production, i.e. from species consuming diets high in forage carbohydrate, meeting future demand will depend substantially on achievable increases in cereal yields. Therefore, there are opportunities and challenges for researchers to increase in animal productivity through the application of appropriate technologies, particularly in production systems, nutrition and feeding.

Buffaloes produce meat, milk, saving bank, draft power, transportation, and other purpose for human and on-farm manure to crop farming. Therefore, feed utilization of buffaloes is more effective than cattle when cattle and buffaloes were kept under similar conditions, particularly well-adapted to harsh environment and are capable of utilizing low quality roughages especially the agricultural crop-residues and by-products, hence their potential are therefore remarkable in terms of meat production using locally available feed resources. However, a decrease in the number of buffaloes has been occurring in some countries in the world due to influences associated with three factors: holsteinization which mean the substitution of low production buffaloes with high production of other ruminants; mechanization, which mean the substitution of draught animals with tractors and the poor market demand for buffalo products. According to some countries, buffalo numbers have increased due to the demand for particular products obtained from buffalo milk and meat to both on the national and international market.
Figure A5.3 Swamp buffalo (*Bubalus bubalis*) production systems

Swamp buffalo (*Bubalus bubalis*) production systems:

I. Smallholder buffalo production system (85% of total system)

- Breeding Buffalo Cow (450 kg)
 - Feeding: natural grass / crop-residues
 - Digestibility 55%
 - Crude protein 7%
 - ME 1.8 Mcal/kg DM

- Female calf (20 kg)

- Male calf (30 kg)

- 2-3 years heifers (250 kg)

- 2-3 years bull (300 kg LW)

- Calving (70%)

- Draft Power (10%)

- Slaughter (600 kg)

- Fattening or Slaughtering (90%)

- Supplementation of concentrate, 14% CP, ME 2.5 Mcal/kg DM

- 7-10 years

- Female calf (20 kg)

- Male calf (30 kg)

- 2-3 years heifers (250 kg)

- 2-3 years bull (300 kg LW)

- Calving (70%)

- Draft Power (10%)

- Slaughter (600 kg)

- Fattening or Slaughtering (90%)

- Supplementation of concentrate, 14% CP, ME 2.5 Mcal/kg DM

- 7-10 years
Swamp buffalo (*Bubalus bubalis*) production systems:

II. Large scale buffalo production system (15% of total system)

Breeding Buffalo Cow (450 kg)

- Feeding: natural grass / crop-residues
- Digestibility 55%
- Crude protein 7%
- ME 1.8 Mcal/kg DM

Female calf (20 kg)

- Calving (70%)

Male calf (30 kg)

- 2-3 years heifers (250 kg LW)
- 2-3 years bull (300 kg LW)

- Supplementation of concentrate, 14% CP, ME 2.5 Mcal/kg DM

- Fattening (>500 kg)
- Sell out

- Fattening (<500 kg)

- Slaughter

Fattening (>500 kg)

- Supplementation of concentrate, 14% CP, ME 2.5 Mcal/kg DM

- Sell out

- Fattening (<500 kg)

- Slaughter

Buying – in
A5.6 European Dairy Production System

In Europe, the dairy herd size can be largely increased when a higher part of the total UAA is cultivated with fodder maize (http://ec.europa.eu/agriculture/analysis/external/livestock-gas/full_text_en.pdf). The typology developed in this last study identified different dairy systems clusters, characterized, within other, by different level of intensification, with in increasing order, climate constrained systems in the North of Europe and Mountain areas, systems extensively based on grassland, in UK and Ireland, free-ranging subsistence systems in southern part of Europe, grazing systems complemented in Centre of France, Germany, in South of Portugal and in Eastern European countries, intensive grass and maize based systems in the main milk production basins of Europe with higher intensity and so maize levels in areas such as Flanders and the Netherlands.

For cattle meat production, the study of Sarzeaud et al. (2007), based on FADN results of 2004, illustrate the diversity of the European situation with pure dairy and mix dairy-beef systems contributing for more than 44 % of beef production economic value, 31 % of this value was associated to cow-calve breeding systems (Charolais, Limousin, Angus, Belgian Blue, … Breeds), some being associated to sheep production, mainly in UK, while the remaining 25 % came from finishing units, 44% of these volume integrating also breeding activity.

As for dairy production, soil and climate conditions exert a huge impact on the beef livestock system orientation: breeding systems being located in constrained area with extensive management (more than 80 % of the farms had less than 1.6 LU ha-1). In the unit specialized in beef finishing, this proportion is lower than 20 %. It is close from 50 % for the dairy farming systems.

Hereafter, a beef production system as found in Belgium, with specialized suckling system in the less fertile area found in the south-eastern part of the country and fattening units in more fertile area, is illustrated as an example. Due to the high cost of the land, that is the limiting factor, the production scheme remains intensive and is based on the valorisation of double muscles Belgian blue Breed. This level of intensification is not representative of the average situation in Europe.

A5.7 Veal Farming in Europe

In the veal industry two types of production systems are distinguished: The vast majority is the white veal production system and the minority is the rose veal production system. In both systems the calves come from dairy farming and enter the veal production system at a starting weight of 45 to 50 kilograms. The average size veal calve farm in 2012-2013 held approximately 780 calves.

In the white veal production system the calves reach a slaughter weight of 240 to 250 kilograms within approximately 6 months (25 to 27 weeks). The calves are mainly raised on calf milk replacer and a minor amount of roughage. By this feeding ration ‘white’ meat is produced.
A large portion of the manure produced in the Dutch veal production systems is processed in manure processing plants to produce energy. The manure which is not processed is applied in arable farming systems.

The main inputs of the veal production system are animal feed, electricity, natural gas and water. The digestion process of the calves comes with an emission of greenhouse gases in the form of methane also known as enteric fermentation. Methane, but also dinitrogen monoxide, is emitted because of excretion and storage of manure in the stable. Just like in the dairy farm minerals are supplied via animal feed. At the point of excretion these minerals are important for emissions of greenhouse gases, ammonia and nitrogen, phosphorous and contributing to environmental impact categories like climate change, acidification and eutrophication.
Dairy farming is very important to the New Zealand economy: the value of dairy exports make up almost a third of New Zealand’s annual merchandise exports. There are about 11,500 dairy farms having an average area of 141 hectare with the average herd size being just over 400 animals. Annual milk production averages 3,947 litres (346 kg milk solids) per cow or 988 kg milk solids per hectare. The two main operating structures found on New Zealand dairy farms are “owner operator” and “sharemilker” with the former accounting for 65% of farms. Owner operators are farmers who either own and operate their own farms, or who employ a manager to operate the farm for a fixed wage while in the case of sharemilking, the sharemilker owns the herd and any plant and equipment (other than the milking plant) needed to farm the property and receives a percentage of the milk income (typically 50%).

Three breeds (Holstein-Friesian, Jersey, and Friesian/Jersey crossbreed) dominate the dairy herds. About 75% of the cows are artificially inseminated; calving typically occurs in August. Depending on the season the lactation length ranges from about 250 to 275 days; annual herd replacement rate is about 20%. The cull dairy cows as well as male calves that are on-sold and “finished” make an important contribution to the beef supply chain. The dominant feed is pastures usually consisting of a ryegrass and white clover mix; these are usually grazed in situ with seasonal excesses (usually in spring/summer) being made into hay and/or silage. Speciality crops such as maize for silage can also be grown on or off the farm in the warmer regions. Other feed supplements such as palm kernel extract
(a by-product of the South East Asian palm oil industry) may also be purchased with the decision usually being based on the cost and other considerations such as infrastructure and feeding logistics.

Most herds are run outside year-round; in areas where pugging damage of the soil in winter can occur “stand-of” pads may be used; fulltime housing of cows is extremely rare. Five broad farms production systems can be recognised based on the timing, purpose and amount of imported feed use (the latter consisting of both as purchased supplements and off-farm grazing for dry cows): 1) All grass, self-contained (5% of owner-operator herds) – these farms rely solely on home-grown pasture (which may be conserved as hay or silage in the spring/summer) and no supplement feed is purchased and no cows are grazed off the farm; 2) Dry cow feed purchased (25% of herds) - approximately 10% of total feed is imported and fed to dry cows including dry cows grazing off the milking area; 3) Feed purchased for dry cows and to extend lactation in the autumn (40% of herds) - up to 20% of total feed is imported in order to extend lactation and for dry cows; 4) Feed purchased for dry cows and to extend both ends of lactation (25% herds) – 20 - 30% of total feed purchased at both ends of lactation and for dry cows; 5) Feed purchased for year round feeding (5% of herds) - over 30% of total feed imported all year round including for dry cows.
A5.9 References:

Appendix 6: Multi-Functionality at the Dairy Farm Gate: Comparison of IDF and AGRIBALYSE methodologies.

A6.1 Allocation methods milk and meat

As stated in the main document, when allocation choices significantly affect results (e.g. allocation between milk and meat) sensitivity analysis should be carried out to test the robustness of results. Two approaches have been discussed for the allocation at dairy farm gate. One is the approach taken by the French AGRIBALYSE® program and the second is the basis of the IDF approach. Both agree that a bio-physical approach is feasible and preferred for addressing the multi-functionality of dairy systems. The co-products which should be included are: milk, cull cows, calves (either culled at birth (<~3 days) or later) – which may enter the beef system or another dairy operation as replacements (within-herd replacements do not require allocation); draught power and wealth management.

There is one major difference in the two approaches which apparently leads to different computational algorithms and results. The AGRIBALYSE approach begins with the assertion that the dairy animal’s life can be divided chronologically into phases related to strictly growth and strictly lactation without (much) overlap in function. The IDF approach, by contrast, asserts that the dairy animal is kept alive until slaughter for the purpose of providing all of the functions of the dairy operation (as outlined in Table 1). The major consequence of the different starting points seems to be in the way that maintenance and activity feed energy is distributed between the multiple functions: for AGRIBALYSE, there is a clear demarcation based on the age of first calving and maintenance and activity energy (in fact, all aspects of the emissions associated with the animals existence) is allocated accordingly to the production of meat from the time of birth until first calving. In the underlying algorithm of the IDF, the feed consumed to provide maintenance and activity for the animal’s entire life is allocated to each of the multiple functions on the basis of an allocation factor. In essence, for the IDF approach maintenance and activity feed energy is aggregated with other shared inputs (tractor fuel used to distribute feed to the whole herd, for example) to be allocated on the basis of a biophysically derived allocation factor. The AGRIBALYSE system also uses a biophysically derived allocation factor to distribute the shared inputs across the multiple functions.

One point of interest regarding the AGRIBALYSE approach is that it has been developed to be applied on every livestock farming system, not only on dairy. The elegance of the AGRIBALYSE approach is that the inventory phase of an LCA can be relatively cleanly divided by operational phase of the production system which should simplify data collection and management.

Both IDF and AGRIBALYSE are in line with ISO 14044 Step 1 recommendation by avoiding allocation as much as possible by subdivision of the system – although the approach to subdivision is different.
Table A6.1. Assignment of energy to system functions.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Physiological functions considered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
</tr>
<tr>
<td>division + allocation (AGRIBALYSE®) (Cow-calf suckler)</td>
<td>Division + %</td>
</tr>
<tr>
<td>division + allocation (AGRIBALYSE®) (Dairy)</td>
<td>Division + %</td>
</tr>
<tr>
<td>Biophysical (IDF, 2010; Thoma, 2013) (Dairy)</td>
<td>Milk/meat ratio</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As seen in the last two columns, the distribution of maintenance and activity is different between the methods; IDF considers that some maintenance and activity from all stages of the animal’s life support both growth and lactation, while the AGRIBALYSE® method assigns all the maintenance and activity to the life stage that is assigned to growth or lactation.

A6.2 AGRIBALYSE:
As mentioned, there is a proposed subdivision of the production cycle based on an assertion that the function of the production system from birth to first calving is to gain body mass, and thus this entire stage is assigned to culled cows as a co-product, on a live weight basis. Similarly, it is asserted that the purpose of the animal after first calving is milk and calf production, and therefore all of the farm inputs and emissions from this phase are assigned to milk and calf. A biophysical calculation of the feed energy for pregnancy, plus a fraction of maintenance and activity energy is the basis for allocating burdens between the milk and the calf. Culled cows at the end of their productive life thus carry the emissions accrued during their lives prior to first calving and during a finishing stage if it occurs. Energy requirements to cover the physiological functions are calculated using NRC modelling (as recommended in IPCC 2006 to assess enteric methane with the Tier 2 approach).

Culled calves (at birth) carry the burden calculated as: \(G + (M + A) \times \left(\frac{G}{L}\right), \) where \(G\) = gestation energy requirement; \(M\) = maintenance energy requirement; \(A\) = activity energy requirement; and \(L\) = lactation energy requirement (Gac et al., 2014b).
Animals culled at different life stages are accounted as new-born calves (from above) plus the inputs/emissions necessary for them to reach the weight/age of sale – the associated burden would follow the animal to its destination as a beef finisher or replacement heifer. This is a separation of the system at the point of divergence in the end use for the animal – of course, it requires separate accounting for the inventory of these animals.

To allocate energy consumption and other shared inputs and emissions across the multiple functions, technical references or ratios, based on technical survey of French dairy operations is used. Those ratios are for example MJ electricity / UGB (French Livestock Unit). It is assumed that 85% of the electricity bill correspond to consumption at the milking parlour¹ (Gac et al., 2014b). The other 15% are distributed through all animal classes prorata the LU in each class. For the fuel bill, it is assumed 1/3 is used on buildings for manure handling operation, distributed over the animal classes’ prorata the LU in each class. The 2/3 of the fuel is used for crops and forages have to be allocated depending on the type of ration for each animal class.

A6.3 IDF:
The calculations behind the IDF methodology described in detail elsewhere (Thoma et al., 2013a). The principal difference, as mentioned above, is that the assumption is made that the animal is kept alive for its entire existence for the purpose of providing all of the functions it delivers. Thus, rather than divide the animal’s life by time/weight, the energy requirements for growth and lactation are used to divide the inputs required to produce the functions based on NRC equations that define the net energy for growth or lactation. The growth calculation specifically includes gestation requirements for calves.

To create the allocation factor for the whole farm a division of burdens (currently only to milk and sold live animals – cull calves, heifers, and cows on a total live weight basis), one additional step is taken: because the nutritional density (specifically net energy availability) of different feeds for milk production and growth is different (milk is produced between ~1.2 and 2 times more efficiently depending on the individual feed), the net energy requirements are converted to feed intake based on net energy available in the ration consumed on the farm. The allocation ratio (or key) is calculated as the ratio of dry matter intake required for milk production to total dry matter intake required for growth and milk production. In the IDF approach, which is a simplified regression based on Thoma et al. (Thoma et al., 2013a), the allocation factor is then applied to the whole farm. Thus the IDF approach allocates the ration (and associated emissions) consumed for maintenance through the entire lifecycle proportionally to milk and live weight of animals sold, rather than defining life phase as belonging to one or the other function.

Animals sold from the dairy operation are assigned a burden based on their live weight. In the full analysis, following Thoma et al. (Thoma et al., 2013a), each animal’s feed consumption is separately calculated and the impacts due to its feed consumption for growth are assigned to that animal when it is sold. Following the IDF guidelines, the ratio of the total LW of all animals sold to the total weight (FPCM) of milk sold defines a whole-farm allocation factor (from the regression equation provided) which can be used to calculate the impact per kg LW (not distinguishing the type of animal):

\[
EF_{catf} = \left(\frac{EF_{farm}(1 - AF_{milk})}{TLW} \right) Calf_{lw}, \quad \text{where } EF_{catf} = \text{environmental footprint of the calf;}
\]

\[
EF_{farm} = \text{environmental footprint of the production unit; } AF_{milk} = \text{allocation fraction assigned to milk (from the regression equation of IDF); } TLW = \text{total live weight sold by the production unit; and}
\]

\[
Calf_{lw} = \text{live weight of the calf as sold; similarly for other animals sold, if needed. The gestation requirement calculation is hidden in the IDF methodology, but was incorporated in the analysis of the farms used for creation of the regression equation.}
\]

A separate, as yet unpublished re-analysis of the 536 farms where the feed (and associated enteric and manure emissions) are directly assigned to the meat or milk and only the remaining feed consumed for maintenance and activity are assigned using the allocation ratio yields essentially the same regression equation.

<table>
<thead>
<tr>
<th>Table A6.2 Main differences identified between IDF and AGRIBLAYSE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDF</td>
</tr>
<tr>
<td>Description : Biophysical allocation based on the feed energy content (Physiological net energy requirement for growth, lactation, maintenance, gestation, activity) All Emissions are allocated to animal live weight (cull cow + calves + any animals sold to another dairy) and milk following the feed requirement to produce milk vs that required producing live weight (growth + gestation). Gestation is considered growth, and is included as such in calculation of the allocation key. Emissions related to maintenance and activities are allocated to milk and meat following this allocation key.</td>
</tr>
<tr>
<td>No distinction in footprint of type of animal (including animals sold to other dairies). Different weight classes carry a proportionate burden to their weight.</td>
</tr>
<tr>
<td>Maintenance and activity energy or animal’s entire life allocated following allocation key</td>
</tr>
<tr>
<td>In principle, a straightforward extension of the method can be used to calculate allocation factors for activity, specifically draught power.</td>
</tr>
<tr>
<td>Agribalyse</td>
</tr>
<tr>
<td>Description : Subdivision of the animal lifecycle: 1- Subdivision of the animal lifecycle: Heifers growth phase emissions attributed to cull cows or sold heifers. Lactating phase emissions attributed to milk and calves. 2- Allocation between milk and calf (lactating phase) based on biophysical allocation based on the feed energy requirements (Physiological net Energy requirement for lactation, maintenance, gestation, activity) Emissions related to maintenance, gestation and activity are allocated to milk or live weight of animals sold according to emissions during specific life stages</td>
</tr>
<tr>
<td>Distinction between cull cows and calf (including animals sold to other dairies). Different weight classes carry a burden proportionate to both weight and class-specific footprint.</td>
</tr>
<tr>
<td>Maintenance and activity energy allocated by a combination of emissions following the life stage of and following an allocation key (for milk and calves from lactating cows)</td>
</tr>
<tr>
<td>Activity requirements can be extracted to calculate an allocation factor for activity, specifically draught power.</td>
</tr>
<tr>
<td>Designed for use with dairy systems</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Simplified regression analysis provides the allocation factor based on the ratio milk/meat sold</td>
</tr>
<tr>
<td>Data required: Need to collect data on kg of milk (FPCM – so need fat and protein content, to ensure all farms are evaluated on the same total milk solids production basis) and kg of live animals sold. To perform complete analysis, similar data requirements to AGRIBALYSE will be encountered.</td>
</tr>
<tr>
<td>Result: Based on typical cull rates in the systems tested, it gives an average of 85% allocation to milk</td>
</tr>
<tr>
<td>Levers of action: One might conclude that very high cull rate is suggested by the regression as a means to lower the footprint of milk by shifting burden to the sold animals. However, such action will likely result in lower efficiency as a larger fraction of the milking herd will be first calf heifers (young) that normally have low milk productivity</td>
</tr>
<tr>
<td>Pro’s: Already published and referenced Used by dairy companies. Less data intensive</td>
</tr>
</tbody>
</table>

Both methods require care in evaluation and interpretation of the results, as highlighted by the ‘levers of action’ examples. In addition, a limitation with sector specific allocation is that cursory analysis may lead to the conclusion that intensification is the best approach to sustainable production. Intensification of dairy production (meaning increasing annual yield per animal) without consideration of the effect on beef production (which either requires a consequential perspective, beyond the scope of these guidelines, or system expansion to include multiple functionalities in the functional unit) will result in fewer dairy animals necessary to meet demand for dairy products. The effect of this is need for additional animals in the beef sector to meet the shortfall in demand due to lack of sufficient cull dairy animals for the meat market.

The reason for the strong correlation with IDF derives from the calculation of the allocation factor based on the reported number of animals sold, which is also used in the parameter for the x-axis. It is not clear why a similar correlation (for the same farms) using the AGRIBALYSE approach does not arise – it may be in part because the calculation of the allocation factor is inferred from the directly calculated emissions assigned to different life stages.
Figure A6.1 Regression analysis for 536 farms in the United States for the calculated (IDF, left) and inferred (AGRIBALYSE, right) allocation factor.
Appendix 7: Calculation of feed energy requirements for draught power and allocation between draught power and meat production.

Lawrence (1985) provides the following relationship for calculation of metabolizable energy requirements for draught power:

\[E = AFM + BFL + \frac{W}{C} + \frac{9.81HM}{D} \]

Where: \(E \) is extra energy used for work (kJ); \(F \) is distance travelled (km); \(M \) is live weight (kg); \(L \) is load carried (kg); \(W \) is work done while pulling loads (kJ); \(H \) is vertical distance moved (km); \(A \) is energy used to move body weight 1 m horizontally (J); \(B \) is energy used to move 1 kg of applied load 1 m horizontally (J); \(C \) is efficiency of mechanical work (work done / energy used); and \(D \) is the efficiency of raising body weight (work to raise body weight / energy used). \(F, M, L, W \) and \(H \) can be easily estimated or measured and the constants \(A, B, C \) and \(D \) have been reported as 2.0 J/kg/m, 2.6 J/kg/m, 0.3 and 0.35, respectively (Lawrence, 1985). The quantity of the animal’s ration required to provide this additional energy is calculated from the ME content (kJ/kg) of the ration as: \(\text{Feed (kg)} = \frac{E}{\text{ME (kJ/kg)}} \).

Harrigan and Roosenberg (2002) provide estimates for the draught force needed for different activities such as ploughing, diskng, and harrowing. These forces range from 580 N/m implement width for harrowing to over 7000 N/m implement width for moldboard ploughing (15 cm depth, medium soil). The work, \(W \), is calculated as draught force multiplied by distance. Typical speeds for tillage tools is near 3.2 km/h. Animals will typically work for 5 to 5.5 hours per work day with between 100 and 150 work days per year. For ploughing Lawrence (1985) estimates 10 kg load (the downward load on the yolk) for ploughing and 1.9 kg for pulling a cart – for this example, 2 kg is assumed for the load, on average. Swamp buffalo, which are predominantly owned by small-holder operations are primarily used for draught and meat. These animals may live 14 – 18 years or longer. For purposes of an example calculation of an allocation fraction between meat and draught power provided by an animal over its lifetime, we assume an average daily draught force of 750 N for 5 hours. With the average speed, this results in a work term, \(W = 16 \text{(km)} \ast 750 \text{N} = 12 \text{MJ/day} \). If the terrain is relatively flat, then the vertical distance moved in a day’s work may be 50 m, as an example. Finally, assuming a body weight of 500 kg, it is possible to calculate the daily energy requirement as:

\[
E = 2 \ast 16 \ast 500 + 2.6 \ast 16 \ast 2 + \frac{12000}{0.3} \ast \frac{9.81 \ast 0.05 \ast 500}{0.35} = 56.78 \text{MJ day}^{-1}
\]

The lifetime energy requirement (assuming 12 active years beginning at 2 years of age) is then 56.78*125 work day/ year * 12 year = 85,176 MJ or 20343 Mcal. Tatsapong et al. (2010) present a series of rations for buffalo with different levels of crude protein, the lowest, with 5% CP consists of 66.2% rice straw, 26.1% cassava pulp, 4.3% soybean meal, 3.4% molasses and vitamins and minerals.
This ration has an energy density of 2.14 Mcal/kg dry matter, which translates to approximately 9506 kg of ration consumed for draught power in the animal’s lifetime. Bulbul (2010) presents the nutrient requirements for growth of buffalo as ranging from 0.8 – 1.4 kg DM / 500g gain (excluding maintenance requirements) depending on the animals weight as shown in the table below.

Table 24. Feed consumed for growth of buffalo after Bulbul (2010)

<table>
<thead>
<tr>
<th>BW (kg)</th>
<th>Age (days)</th>
<th>ADG (kg/day)</th>
<th>DMI (kg)*</th>
<th>DM consumed (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>260</td>
<td>0.5</td>
<td>0.4</td>
<td>104</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>0.5</td>
<td>0.8</td>
<td>80</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>0.5</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>0.5</td>
<td>1.1</td>
<td>110</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>0.5</td>
<td>1.1</td>
<td>110</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>0.5</td>
<td>1.4</td>
<td>280</td>
</tr>
<tr>
<td>500</td>
<td>200</td>
<td>0.5</td>
<td>1.4</td>
<td>280</td>
</tr>
</tbody>
</table>

* consumption above maintenance requirements to achieve ADG

The allocation fraction is then calculated as:

\[AF_{draught} = \frac{9506}{9506 + 1064} = 0.90 \]

Because the maintenance ration is not included in the calculation of the allocation fraction, the final estimate of environmental burden assigned to draught power and meat is calculated when the total emissions associated with both activities have been estimated – this includes calculation of all the feed consumed, enteric and manure emissions and other ancillary emissions which may be associated with the production system.

REFERENCES

Appendix 8: Example of manure as co-product

In cases where manure generates net revenue for an operation, it is considered a co-product of the production system and shall receive a share of upstream burdens. In this example, we consider a biophysical approach for calculating the allocation ratio for manure for a dairy system in which the main products are milk, meat and manure. The demographics of the farm are presented in Table EX-1 below. Table EX-2 presents the dry matter intake for each animal class on the farm. In this example springers are animals within 60 days of first calving. Table EX-2 also presents the weighted net energies for growth and lactation of the different rations for each animal class, which is used to calculate the feed requirements for growth and lactation respectively.

<table>
<thead>
<tr>
<th>Table EX-34: Herd demographics and manure production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Average number milking cows</td>
</tr>
<tr>
<td>Average number dry cows</td>
</tr>
<tr>
<td>Average number heifers < 5 months</td>
</tr>
<tr>
<td>Average number heifers > 4 months and unmated</td>
</tr>
<tr>
<td>Average number mated and pregnant heifers</td>
</tr>
<tr>
<td>Heifers calving</td>
</tr>
<tr>
<td>Culls</td>
</tr>
<tr>
<td>Calves sold</td>
</tr>
<tr>
<td>Cows calving per year</td>
</tr>
<tr>
<td>Heifer calves reared</td>
</tr>
</tbody>
</table>

* Average manure production taken from ASAE [American Society of Agricultural Engineers, 2005]

**Calculated using net energy for growth based on NRC (Thoma, et. al., 2013)

For the example, it assumed that the daily milk production is 29 kg of fat and protein corrected milk (FPCM). Further, it is assumed that all cull animals are sold to the beef sector and that only fully grown animals are culled. Bull calves and surplus heifer calves are also sold to the beef sector. The
allocation fractions are calculated as the ratio of feed consumed of each purpose divided by the total feed consumed for production of the three co-products. Note that this calculation only gives the allocation ratio, and that feed consumed for maintenance during the animals’ lives is allocated based on these allocation fractions.

Given the rations is Table EX-2, the feed consumed by lactating animals in one year is: $730 \times 29 \times 365 = 7,733,696 \text{ kg/yr}$. The feed consumed to produce the calves (based on net energy for pregnancy) is $614 \text{ calves} \times 217 \text{ (kg DM/calf)} = 133,225 \text{ kg feed / yr}$. Similarly for culled cows the feed consumed for growth to the sale weight is: $256 \text{ (culls)} \times 2290 \text{ (kg feed for growth / cull)} = 586,349 \text{ kg feed/yr}.$

<table>
<thead>
<tr>
<th>Table EX-2. Example rations by animal class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>corn</td>
</tr>
<tr>
<td>oats</td>
</tr>
<tr>
<td>molasses</td>
</tr>
<tr>
<td>dgd, dry</td>
</tr>
<tr>
<td>cottonseed</td>
</tr>
<tr>
<td>wheat mill run</td>
</tr>
<tr>
<td>canola meal</td>
</tr>
<tr>
<td>supplement</td>
</tr>
<tr>
<td>corn silage</td>
</tr>
<tr>
<td>alfalfa hay</td>
</tr>
<tr>
<td>almond hulls</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Net Energy for Growth (Mcal/kg)</td>
</tr>
<tr>
<td>Net Energy for Maintenance (Mcal/kg)</td>
</tr>
<tr>
<td>Net Energy for Lactation (Mcal/kg)</td>
</tr>
</tbody>
</table>

In case manure is not considered a cop product, the allocation fraction for milk is given by: $7,733,696 / 8,453,174 = 0.915$.

Emmans [1994] have shown that the heat increment associated with production of manure is $3.8 \text{ MJ/kg fecal organic matter (or volatile solids).}$ The calculation for the feed required to provide the heat increment for digestion is, for example, for lactating cows:
1 \(730 \text{(head)} \times 7.5 \text{ (kg VS/head/day)} \times 365 \text{ (days/yr)} \times 3.8 \text{ (MJ/kg VS)} \div [1.67 \text{ (Mcal/kg feed)} \times 4.184 \text{ (MJ/Mcal)}] \) = 2,108,932 kg feed consumed by lactating cows. This is summarized in Table EX-3.

<table>
<thead>
<tr>
<th>Table EX-3. Feed consumed to provide heat increment for manure production.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number milking cows</td>
</tr>
<tr>
<td>Average number dry cows</td>
</tr>
<tr>
<td>Average number heifers < 5 months</td>
</tr>
<tr>
<td>Average number heifers > 4 months and unmated</td>
</tr>
<tr>
<td>Average number mated and pregnant heifers</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Finally, the allocation fraction for milk, meat and manure is calculated as:

\[
AF_{\text{milk}} = \frac{7,733,696}{9,982,188} = 0.775
\]

\[
AF_{\text{meat}} = \frac{719,478}{9,982,188} = 0.072
\]

\[
AF_{\text{manure}} = \frac{1,529,014}{9,982,188} = 0.153
\]
Appendix 9: Meat Processing

Wiedemann et al. (2014) suggest a combination of physical allocation based on utilizable protein and energy in the primary products coupled with system expansion for minor co-products. They report that a strictly physical allocation across all co-products gives, they argue, unreasonably high allocation fractions to some of the minor co-products – an issue corrected through the coupling with system expansion.

Gac et al. (2014) present a similar analysis of the meat processing facility, but use an EU regulatory framework for definition of the classes of co-products. They recommend an allocation based on dry matter content of the different co-products. This is favored over other options because of the value of the materials based on protein and fat content for both human food uses as well as other uses: “the allocation on the dry matter content has the following advantages: this criterion combines all of the physico-chemical characteristics of interest (in particular lipids and proteins); it is relevant for the different uses and markets (food, chemistry, leather and for all animal co-products, irrespectively of their destination; it provides stable figures, few dependent of the economical context.”

Blonk et al. (2014) propose yet a different grouping of co-products from bovine slaughter. They consider meat and organs as food grade, splitting blood into sterile and non-sterile (considered as a residual), but include bones with the food grade category and hides as a residual. In addition, several parts are considered waste (e.g., spine, brains, hooves and horns). They agree that differentiation among different food grade components is not appropriate. They also discuss a hierarchy for allocation decisions which is essentially identical to that adopted by the LEAP partnership for large ruminants (and reproduced in the main body of this chapter). For the slaughterhouse co-products, they finally recommend using ‘ingredient value’ for minor co-products which can be converted to food grade ingredients. The ingredient value is the value after further processing of the slaughterhouse co-products, and is suggested to be similar to a system expansion substitution for these products – this seems to align with the recommendation of Wiedemann et al above. However, this interpretation does not match well with the recommendation from the Veal PCR:

For slaughtering economic allocation shall be applied using the following categorization of slaughter products

- Fresh meat (allocation on the basis of average price of full package)
- Other Food grade products (allocation on the basis of average price of package)
- Other products (no allocation)

In comparisons and external communication the other allocation options (mass and energy) shall be explored as part of the sensitivity assessment. Also here no environmental impact will be allocated to the category other products.
Appendix 10. Average cattle and buffalo herd parameters for different regions of the world FAO statistics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>North America</th>
<th>Russian Federation</th>
<th>Western Europe</th>
<th>Eastern Europe</th>
<th>North Africa and near East</th>
<th>East and SE Asia</th>
<th>Oceania</th>
<th>South Asia</th>
<th>Latin America and the Caribbean</th>
<th>Sub-Saharan Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cattle: Weights (kg)</td>
<td></td>
</tr>
<tr>
<td>Adult cow</td>
<td>747</td>
<td>500</td>
<td>593</td>
<td>518</td>
<td>371</td>
<td>486</td>
<td>463</td>
<td>346</td>
<td>551</td>
<td>325</td>
</tr>
<tr>
<td>Adult bull</td>
<td>892</td>
<td>653</td>
<td>771</td>
<td>673</td>
<td>477</td>
<td>326</td>
<td>601</td>
<td>502</td>
<td>717</td>
<td>454</td>
</tr>
<tr>
<td>Calves at birth</td>
<td>41</td>
<td>33</td>
<td>38</td>
<td>36</td>
<td>20</td>
<td>28</td>
<td>31</td>
<td>23</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Slaughter female</td>
<td>564</td>
<td>530</td>
<td>534</td>
<td>530</td>
<td>329</td>
<td>256</td>
<td>410</td>
<td>87</td>
<td>540</td>
<td>274</td>
</tr>
<tr>
<td>Slaughter male</td>
<td>605</td>
<td>530</td>
<td>540</td>
<td>530</td>
<td>367</td>
<td>243</td>
<td>410</td>
<td>141</td>
<td>540</td>
<td>278</td>
</tr>
<tr>
<td>Rates (%)</td>
<td></td>
</tr>
<tr>
<td>Replacement adult cow</td>
<td>35</td>
<td>31</td>
<td>31</td>
<td>27</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Fertility</td>
<td>77</td>
<td>83</td>
<td>83</td>
<td>84</td>
<td>73</td>
<td>80</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>Death rate female calves</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Death rate male calves</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>50</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Death rate other</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Age at first calving (years)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.2</td>
<td>3.4</td>
<td>2.5</td>
<td>2.1</td>
<td>3.1</td>
<td>2.6</td>
<td>4</td>
</tr>
<tr>
<td>Beef Cattle: Weights (kg)</td>
<td></td>
</tr>
<tr>
<td>Adult cow</td>
<td>649</td>
<td>0</td>
<td>529</td>
<td>530</td>
<td>431</td>
<td>501</td>
<td>403</td>
<td>350</td>
<td>419</td>
<td>271</td>
</tr>
<tr>
<td>Adult bull</td>
<td>843</td>
<td>0</td>
<td>688</td>
<td>689</td>
<td>563</td>
<td>542</td>
<td>524</td>
<td>505</td>
<td>545</td>
<td>347</td>
</tr>
<tr>
<td>Calves at birth</td>
<td>40</td>
<td>0</td>
<td>35</td>
<td>35</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>33</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Slaughter female</td>
<td>606</td>
<td>0</td>
<td>529</td>
<td>530</td>
<td>445</td>
<td>223</td>
<td>403</td>
<td>73</td>
<td>392</td>
<td>349</td>
</tr>
<tr>
<td>Slaughter male</td>
<td>565</td>
<td>0</td>
<td>529</td>
<td>530</td>
<td>478</td>
<td>218</td>
<td>403</td>
<td>68</td>
<td>400</td>
<td>288</td>
</tr>
<tr>
<td>Rates (%)</td>
<td></td>
</tr>
<tr>
<td>Replacement adult cow</td>
<td>14</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Fertility</td>
<td>93</td>
<td>0</td>
<td>93</td>
<td>93</td>
<td>75</td>
<td>90</td>
<td>93</td>
<td>75</td>
<td>73</td>
<td>59</td>
</tr>
<tr>
<td>Death rate female calves</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>15</td>
<td>10</td>
<td>22</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.8</td>
<td>2.5</td>
<td>2.1</td>
<td>3.1</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Age at first calving (years)</td>
<td>2</td>
<td>0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.8</td>
<td>2.5</td>
<td>2.1</td>
<td>3.1</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Death rate male calves</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>15</td>
<td>10</td>
<td>50</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Death rate other</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Buffalo: Weights (kg)

<table>
<thead>
<tr>
<th></th>
<th>Adult female</th>
<th>Adult male</th>
<th>Calves at birth</th>
<th>Slaughter female</th>
<th>Slaughter male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>650</td>
<td>800</td>
<td>38</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>800</td>
<td>38</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>648</td>
<td>800</td>
<td>38</td>
<td>352</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>559</td>
<td>700</td>
<td>38</td>
<td>481</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>610</td>
<td>38</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>398</td>
<td>38</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>32</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>485</td>
<td>532</td>
<td>24</td>
<td>215</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>900</td>
<td>n/a</td>
<td>400</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Rates (%)

	Replacement female	Fertility	Death rate female calves	Death rate male calves	Death rate other
	10	76	8	8	4
	20	68	8	8	4
	10	76	8	8	4
	20	68	8	8	4
	20	69	8	8	4
	n/a	n/a	57	57	6
	20	n/a	n/a	n/a	n/a
	10	n/a	53	53	7
	n/a	n/a	75	75	7
	24	n/a	n/a	n/a	n/a
	7	n/a	7	7	n/a
	4	4	4	4	9
	1	2	6	6	2
	2	3	n/a	n/a	n/a
	3	4	n/a	n/a	n/a

Source: Opio et al. (2013).
Appendix 11: Calculation of enteric methane emissions from animal energy requirements

A10.1 Background

Section 11.2.2.b outlines the procedure for calculating feed intake from energy requirements of large animals. These calculations are based on net energy (NE) as used in IPCC (2006) or metabolizable energy (ME) intake. However, the procedures for calculating enteric methane are usually described as a percentage of gross energy (GE) intake. Thus, there is a need to convert NE or ME to GE. Figure A1 shows the relationship between these, where GE can be partitioned to manure energy and enteric methane energy and net energy.

Figure A10.1: Diagram showing the flow of the different sources of energy for ruminants, based on a high-quality feed with a digestibility of 75%

A11.2 Calculation of gross energy

The main additional data needed are the % digestibility of the feed. A summary of the range of values for different feed types is given later in this Appendix.

IPCC (2006) uses net energy and gives the following equation for the ratio of NE for growth to the digestible energy consumed (REG):

\[REG = \left[1.164 - (5.16 \times 10^{-3})DE\% + (1.038 \times 10^{-5})(DE\%)^2 - \frac{37.4}{DE\%} \right] \]

where DE% is digestible energy as a % of gross energy in the feed.
Similarly, the following equation is used for the ratio of net energy for maintenance to the digestible energy consumed (REM):

\[REM = \left[1.123 - (4.092 \times 10^{-3})DE\% + (1.126 \times 10^{-5})(DE\%)^2 - \frac{25.4}{DE\%} \right] \]

From these, the gross energy (GE in MJ/day) is calculated using:

\[GE = \left[\frac{(NE_m + NE_a + NE_l + NE_p + NE_g)}{REM} + \frac{(NE_g)}{REM} \right] \times \frac{DE\%}{100} \]

where the subscripts m, a, l, w, p, and g refer to maintenance, activity (walking), lactation, work, pregnancy and growth, respectively.

The relationships for net energy estimation are as follows (all with units of MJ/day):

\[NE_m = C_{fi} (BW)^{0.75} \]
\[NE_a = C_a (NE_m) \]
\[NE_l = Milk (1.47 + 0.4Fat) \]
\[NE_w = 0.1 (NE_m) (hours) \]
\[NE_p = 0.1 (NE_m) \]
\[NE_g = 22.02 (WG)^{1.097} \left(\frac{BW}{C_g \times MW} \right)^{0.75} \]

Where the coefficients \(C_{fi}, C_a, \) and \(C_g \) are from the table below depending on specific conditions. BW is the animal body weight (kg), Milk is daily milk production (kg); Fat is the milk fat content (%); hours is the hours of work per day (h); WG is daily weight gain for the animal class (kg/day); and MW is the mature weight of an adult female of the species (kg).

<table>
<thead>
<tr>
<th>Animal Class</th>
<th>(C_{fi})</th>
<th>Animal Class</th>
<th>(C_a)</th>
<th>Situation</th>
<th>(C_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-lactating cows</td>
<td>0.322</td>
<td>Female</td>
<td>0.8</td>
<td>Stall (little activity)</td>
<td>0.00</td>
</tr>
<tr>
<td>Lactating cows</td>
<td>0.386</td>
<td>Castrates</td>
<td>1.0</td>
<td>Pasture (moderate activity)</td>
<td>0.17</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.370</td>
<td>Bulls</td>
<td>1.2</td>
<td>Grazing large areas</td>
<td>0.36</td>
</tr>
</tbody>
</table>

(Dong et al., 2006)

From GE, the methane emissions can be calculated from the GE intake using:

\[\text{kg CH}_4/\text{mature animal/year} = \text{gross energy intake (MJ/year)} \times 0.065/55.65, \text{ or} \]

\[\text{kg CH}_4/\text{animal(<1 year-old)/year} = \text{gross energy intake (MJ/year)} \times 0.045/55.65 \]
where the values of 0.065 and 0.045 refer to the 6.5 percent and 4.5 percent loss factors for methane of gross energy intake, and 55.65 is the energy content of methane in MJ/kg. The IPCC methane loss factor for feedlot cattle with a 90% concentrate diet is 3% (Dong et al., 2006).

Typical ranges for values of DE% are: concentrates: (75-85 percent), pasture (65-75 percent) and low-quality forage (45-65 percent).

In practice, DE % will vary during the year and an example of this from the NZ GHG Inventory for average dairy cattle feed in New Zealand in winter, spring, summer and autumn at 81.0 percent, 79.3 percent, 74.5 percent and 78.1 percent, respectively (Wear, 2013). Corresponding ME concentrations are 11.9 percent, 11.8 percent, 10.8 percent and 11.3 MJ ME/kg DM, respectively.
Appendix 12: Water footprint and Animal Agriculture

Water is a key factor for animal production and competitiveness between countries and regions. Historically, animal agriculture has not managed water because it is believed that water is abundant and has a low cost. Water sources appear as a major competitive advantage in discussions about the competitiveness of animal agriculture. Preserving its quantity and quality is strategic for maintaining competitiveness and sustainable production of animal protein.

Estimates of how much water is consumed by a livestock herd or to produce one kg of meat or milk remain scarce. Such information needs to be given to society and water resource managers. In this way, animal agriculture can become less confrontational and demonstrate that, despite being water intensive, it has practices and programs for increasing water efficiency. Studies have begun to perform such estimates, using a variety of methods. Currently, two methods are noteworthy: Water Footprint Network and Life Cycle Assessment.

Society and the animal-production sector did not know about the methodologies and their premises, how to interpret the results, or how to use them in decision making. At that moment the lesson was, regardless of the method used to calculate the water footprint and its premises, a strategy should exist for reporting results and describing the production system of reference, geographic area, and time series. Only in this way, results will have potential to be used in decision-making and water footprint values could be internalized by actors and used to improve the water efficiency.

Currently, the challenges to calculating the water footprint for animal agriculture are:

- lack of concern about water use and water management in farms and production chains,
- lack of data, which increases assumptions, uncertainties, and conflicts,
- fewer interaction between agriculture and livestock sectors,
- absence of a systemic vision to actors and decision makers,
- aversion of some actors to the water footprint assessment,
- fewer understanding of the methodology by actors and society,

Knowledge of water consumption by animal agriculture is an opportunity for:

- provide water-use data for livestock and poultry production systems,
- ensure availability of water quantity and quality,
- estimate the water consumption of blue water by animal-production systems in different regions and conditions to facilitate water management, promote water-use efficiency, and establish best water practices,

2 Text prepared by Dr. Julio Cesar Pascale Palhares, Embrapa Southeast Livestock
• reduce conflicts between production and society,
• identify vulnerable areas,
• formulate policies and set goals for reducing water demand,
• Formulate zoning and water management programs.
Figure A12.1 Best management practices and their environmental, social, economic impacts.

Best Management Practices

- Know all environmental legislation related to its activity and the management of water resources and soil;
- Utilize inputs considering all environmental, technical, and productive conditions, and analyse soil fertility;
- Utilize soil conservation practices, including winter cover crops, and appropriate tillage practices;
- Have a nutrient management plan;
- Consider agricultural and ecological zonings.

- Know all environmental legislation related to its activity and the management of water resources;
- Know the water fluxes in the farm (water map);
- Installation of water meters;
- Have actions and indicators to evaluate water consumption by animals and services;
- Do not allow animals to consume water from rivers, streams, lakes and ponds;
- Diets must be properly formulated in order to avoid excessive intake and excretion of nutrients;
- Have an irrigation project and efficient equipment;
- Monitor water system to maintain cleanliness and eliminate leaks;
- Always check if there is an occurrence of cracks, infiltration and leaks in water systems;
- Follow the manufacturer's technical equipment recommendations;
- Distribute equipment and water sources in a correct way in the facility and space;

Positive Impacts

ENVIRONMENTAL - conserve soil, water, and downstream quality, increase the carbon fixation by the soil, reduce the GHG emission, and preserve landscape, biodiversity and wildlife.

SOCIAL - document environmental and water management, raise the level of information and knowledge about the importance of water, maintain a good relationship with neighbours.

ECONOMICAL - have an agriculture plan, improve the land value.

ENVIRONMENTAL - reduce the use of water, energy, and nutrients, produce indicators to evaluate the water efficiency, give water security to the farm and to watershed.

SOCIAL - document environmental and water management, facilitate the process to take the water and environmental licenses, reduce the conflict between production, watershed community, and stakeholders, raise the level of information and knowledge about the importance of water, maintain a good relationship with neighbours and environmental agencies, assist policy makers to better understand animal-water-environment linkages so as to improve policy design and decision-making.

ECONOMICAL - offer water in quantity and quality to the herds, upgrade feed management, have a water plan, improve the production and sanitation in the farm and the herds, reduce the water cost and the water pricing.
Appendix 13: Data needed to calculate water footprint at the dairy farm level

On farm:

- Quantity of electricity
- Quantity of diesel
- Quantity of withdrawal water (often need to be estimated)
- Type of water (tap water, well water etc.)
- Percentage manure/slurry
- Days of full grazing

Crops and pasture (on and off farm):

- Irrigation water
- Quantity of N, P, K used for each crop
- Type of mineral fertilizer

Animals:

- For each type of animal:
 - Number of animals
 - Type of feed and quantity
 - Composition of concentrate
- Type, quantity and live-weight of sold animals
- Quantity of milk sold
- Type of milking parlor
Appendix 14: U.S. Water Footprint Example

The Innovation Center for U.S. Dairy commissioned the U.S. milk comprehensive LCA, the goal of this study (Henderson et al., 2013) was to assess overall environmental impacts of milk production in the United States, taking spatial differences in, e.g., feeding practices and crop production practices into account. The study built on data collected during US Dairy greenhouse gas (GHG) study (Thoma et al. 2010), where data were collected at the state, regional, and national levels. The five milk-production regions are shown in Figure A14-1.

![Milk production regions used in the U.S. milk GHG LCA (Thoma et al. 2010)](image)

The functional unit was one consumed kilogram of fat and protein corrected milk (FPCM), as defined by the IDF (2010). In this example, however, we focus only on the impacts up to the farm gate, i.e., associated with milk production, but not considering milk processing, distribution, and consumption. Allocation between milk and beef was based on a causal, feed-centred approach that traced energy in feed, resulting in a typical allocation ratio of 89%:11% for milk and beef respectively.

Rations are critical connection between milk production and feed. As noted above, feed production is often the dominant contributor to many life cycle impacts. Thoma et al. (2010) surveyed US milk producers and were able to capture 80% of the ration dry matter (DM) using 11 feeds; with the remainder modelled as a feed mix. To calculate the water inventory at the dairy level, the regional ration and the state-by-state supply of feed were considered. A matrix approach (Henderson et al., 2013) was employed to link consumption of feed in one state to production of that feed in other states, based on a feed transport model. It is critical to realize that crop production practices vary from location to location, largely due to climatic differences. For example, corn grain production water requirements vary between states from over 1000 to 0.3 L / kg DM.
Data collection included state-based yield, irrigation rate, and the fraction of produced feed each state supplies to the others. Also, water used on the dairy producing farm: dairy wash water and cow drinking water.

In this LCA study only consumed water (which is withdrawn from a basin and not returned) was included in the water inventory. Green water, largely natural precipitation was not considered, as using green water for crop production does not constitute a withdrawal nor does it deprive other users.

Life Cycle Impact Assessments at the end-point level allows the quantification of impacts related to water consumption on human health and ecosystem quality, but for the purposes of this demonstration calculation, we focus only on water stress (Pfister et al. 2009). Connecting water inventory to impact is critical: using 1 L of water in water stressed and water rich regions will have different effects.

Water footprint inventory and impact assessment

Figure A14-2 shows the map of the U.S. water stress index for 18 HUC-2 level watersheds. It is clearly shown the differences in watersheds water competition. The figures below illustrate the variation in water consumed (i.e., water inventory, Figure A14-3) and water stress impact (Figure A14-4), disaggregated according to feed crop as well as on-farm activity by US watershed (see Figure 9 for watershed numbers). To reflect the mix of national production, variable-width graphs were used. These show a watershed-level inventory (or impact) on the y-axis, and the milk production fraction on the x-axis. Watersheds are sorted according to descending area – the product of both the watershed level inventory or impact and that watershed’s milk production importance.

Figure A14-2: Water stress index (WSI) for USA watersheds.
Because data are shown disaggregated according to feed, we see in Figure A14-3 that the main contributors to water inventory are, generally, hays and silages grown locally in watersheds with water scarcity. Water for drinking and parlour washing tend to relatively small: even areas with abundant water tend to purchase commodity crops that require some irrigation. The watershed-level water consumption ranges from 588 to 12 L $\text{H}_2\text{Oe}/\text{kg FPCM}$, and the water stress are 517 to 0.9 L $\text{H}_2\text{Oe}/\text{kg FPCM}$.

Depending on climatic conditions, feed supply, and rations, just a few watersheds are significant contributors to the national-level milk water inventory. Watersheds may be significant at the national level through high milk production fractions – but moderate water inventories – or moderate production but high water inventory. In the case of inventory, 95% of the water consumption is due to 50% of milk production; for impact 98% of water stress is due to 50% of production. The national average water consumption at farm gate is 18 L $\text{H}_2\text{Oe}/\text{kg FPCM}$, and the impact is 121 L $\text{H}_2\text{Oe}/\text{kg FPCM}$.

Figure A14-3: Water use inventory at the national level. Watershed-level inventory is shown on the y-axis (L $\text{H}_2\text{Oe}/\text{kg FPCM}$); milk production on the x-axis; rectangle area represents overall contribution.
Figure A14-4: Water use impact at the national level. Watershed-level stress is shown on the y-axis (L H\textsubscript{2}Oe/ kg FPCM); milk production on the x-axis; rectangle area represents overall contribution to water stress.

Overall, this analysis shows the importance of using spatially-differentiated values in the water footprint. In contrast to other environmental impacts (e.g., greenhouse gases or land use), the amount of water required to produce feeds varies greatly across geographies. This must be coupled with information about sources of feeds in order to accurately capture the water use – and impact – associated with milk production.
Appendix 15: Assessing C soil sequestration in tropical regions

The gases responsible for the greenhouse effect and, thus, by global warming are carbon dioxide (CO₂), Methane (CH₄), nitrous oxide (N₂O), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF₆), being CO₂ the largest gas emissions and greater impact on global warming. The increasing concentration of CO₂ in the atmosphere is the result of burning fossil fuels, deforestation and misuse of agricultural soils. By contrast, although agriculture contributes to the increase in greenhouse gas emissions, it also presents a great potential for mitigation through carbon sequestration by soil. Agriculture can be an important tool to mitigate the concentration of CO₂ in the atmosphere. By photosynthesis the plants can convert the atmospheric CO₂ in vegetable mass and furthermore, through a suitable management of this mass can retain some of the carbon in the soil. This mechanism is classified as "carbon sequestration" of the atmosphere by soil (LAL, 2004abc).

Carbon is stoked on Earth in 5 environments: Earthen biomass and geological carbon (mineral coal, petroleum and gas) on the soil (organic and inorganic carbon), atmosphere and oceans. An estimated 560 x 10¹⁵ g (560 gigatonnes (Gt) or petagrama (Pg) = 10¹⁵ g) of organic carbon are contained in the terrestrial biota (plants and animals) whereas soils contain about 2500 x 10¹⁵ g (LAL, 2008).

According LAL (2004b), worldwide the soil organic carbon (SOC) sequestration potential is estimated to be 0.01 to 0.3 Gt C/year on 3.7 billion ha of permanent pasture, which equivalent to a sequestration potential of 4% of the total emissions of greenhouse gases.

The carbon sequestration in the soil is essential that the agroecosystem is associated with a system of crops with high biomass production and slow decomposition of plant residues, resulting in more efficient soil cover, and the mitigation of CO₂ emissions and other greenhouse gases (NO₂ and CH₄) to the atmosphere will be enhanced. The quantity and quality of plant residues accumulated in the soil over the crop rotation with green manure species are expressed in the supply of nutrients, particularly, carbon and nitrogen, also contributing to the negative balance of greenhouse gas emissions.

The carbon balance of the soil is greatly influenced by human activity, including the removal of natural vegetation and patterns of land use in pastures, agricultural, industrial and urban areas. The combined biomass from native Earth and loss of soil due to deforestation and cultivation during the last three centuries losses have been estimated at 170 x 10¹⁵ g of carbon. Continued deforestation for agriculture in the tropics apparently results in additional emissions of about 1.6 x 10¹⁵ g of carbon per year (Segnini et al, 2008). According to the 4th Assessment Report to the IPCC (Smith et al., 2007),

* Text prepared by Dr. Patricia Perondi Anchao Oliveira, Amanda Prudencio Lemes, Daniella Flavia Vilas Boas and Leandro Sannomiya Sakamoto, Embrapa Southeast Livestock
1.5 gigatonnes CO₂-eq of carbon could be sequestered annually if a broad range of grazing and pasture improvement practices were applied to all of the world’s grasslands. It is estimated that improved grazing management practices in grasslands could sequester about 409 million tonnes CO₂-eq of carbon per year (or 111.5 million tonnes C per year over a 20-year time period), globally (FAO, 2013).

Carbon stocks in soil are dependent on the amount of organic matter present in it and this, in turn, is directly related to the chemical, physical and biological characteristics. This reservoir of carbon has almost 3.3 times more carbon than the atmosphere, which has approximately 760 x 10¹⁵ g. Thus, the amount of carbon in soils is more than four times the amount of carbon in the terrestrial biota and over three times that of the atmosphere. The oceans hold around 38400 x 10¹⁵ g; geologic carbon is present on 4130 x 10¹⁵ g. However, the reservoir easier to handle yourself is the soil, in the case of incorporation of carbon from the atmosphere (LAL, 2008).

Carbon stocks vary according to the types and soil profiles, the total biomass production and amount of soil organic matter. According Boddey et al. (2012) in some ecosystems, however, the natural soil fertility is low and plant primary production is limited such that after application of lime and fertilizers to agricultural systems, pasture or planted forests, primary production could significantly exceed that of the native vegetation. Grazing land and pasture management practices that increase soil carbon stocks can significantly mitigate CO₂ emissions and may present opportunities for profitable investment in mitigation (FAO, 2013), as carbon credits.

A further 176 million tonnes CO₂-eq of sequestered emissions (net of increased N₂O emissions) per year over a 20-year time period, was estimated to be possible through the sowing of legumes in some grassland areas. Thus, a combined mitigation potential of 585 million tonnes CO₂-eq was estimated from these practices, representing about 8 percent of livestock supply chain emissions (FAO, 2013). The implementation of other production systems, such as forest-livestock integration, crop-livestock-forest; and management practices such as tillage, avoiding soil disturbance, can be alternatives for reducing greenhouse gas (CO₂, CH₄ and N₂O) emissions. However, it is necessary for carbon quantification methods are efficient enough to provide better estimates of carbon inventories. More than that, such instrumental methods need to check the precision and accuracy determinations and generate minimal waste (Segnini et al., 2008).

A15.1 References

Appendix 16: LCA data modelling approaches

The scientific literature is replete with papers comparing the LCA data modelling approaches. In particular, much attention was catalysed by scholars on the pros and cons of attributional and consequential modelling approaches because they are often seen in competition by representatives of the different schools of thought. Although attributional and consequential modelling approaches are the mainstream practices, additional approaches exist and are emerging especially to support decision making. For a comprehensive overview, see De Camillis et al. (2013).

This annex pinpoints some key features of attributional and consequential approaches in order to provide the reader of LEAP guidelines with some basic information to understand differences in epistemology, basic assumptions and modelling rules. Even if attributional and consequential approaches are seen as equally legitimate perspectives, the LEAP Partnership acknowledges that mixing attributional and consequential approaches delivers results that have no clear meaning. This was indeed highlighted by Ardente et al. (2013) and more recently reiterated by Plevin et al. (2014) and Pelletier et al. (2015).

1. Description of the data modelling approach

Attributional approach

“System modelling approach in which inputs and outputs are attributed to the functional unit of a product system by linking and/or partitioning the unit processes of the system according to a normative rule” (UNEP/SETAC Life Cycle Initiative, 2011).

The attributional LCA data modelling approach attempts to provide information on what portion of global burdens can be associated with a product (and its life cycle). In theory, if one were to conduct LCAs of all final products with attributional modelling, one would end up with the total observed environmental burdens worldwide (UNEP/SETAC Life Cycle Initiative, 2011).

Consequential approach

“System modelling approach in which activities in a product system are linked so that activities are included in the product system to the extent that they are expected to change as a consequence of a change in demand for the functional unit.” (UNEP/SETAC Life Cycle Initiative 2011).

2. Focus

* The method followed to come up with such overview is the following: “Several modelling practices were found in the literature. To best analyse them in relation to objectives of the review, it was discussed how to appropriately address quality issues for future-oriented assessment. The technical features of each modelling approach were subsequently determined through the identification of the needs of policy makers and businesses when developing and assessing policies and when developing business strategies, respectively. Once these needs had been identified, a number of technical features for modelling approaches were defined and incorporated in a template in the form of characterization criteria. This template was then submitted to selected experienced researchers with an established track record of publication in the field. These researchers were asked to fill in the template fields following the rigorous reference guidelines on each modelling practice, when these documents were available, and these results subsequently compiled. Hence, the contents of the compiled templates (chapters 3 to 6 of this report do not necessarily reflect the author view on the approach” (De Camillis et al., 2013).
Attributional approach

Usually a clearly defined, single product system

Consequential approach

Changes throughout whole Economy

3. Question the approach aims to answer when baseline scenario is assessed

Attributional approach

Baseline scenario is the Product System as it is, now or in the future. The question that the approach strives to answer is “What is the potential environmental impact attributable to a certain product delivered in a given point in time (t₁-BaselineA)?” (De Camillis, Zamagni and Bauer, 2013)

Consequential approach

“Baseline scenario is the World as it is, now or in the future, without any action. The question that the approach aims to answer is "what are the net impacts associated to a change (in a product system) relative to the baseline scenario, where that change does not take place?". In this way, the baseline scenario is not assessed per se – only the effect of the change is assessed.” (Brandão and Weidema, 2013).

4. Question the approach aims to answer when future-oriented/alternative scenarios are assessed

Attributional approach

What is the potential environmental impact attributable to a certain product delivered in a given point in time (t₁) if the product were designed or/and produced or/and consumed or/and managed differently at the end of its life? (De Camillis, Zamagni and Bauer, 2013)

Alternative scenarios can be modelled on the basis of the assumptions made by a practitioner on e.g. alternative raw materials chosen, project variants, alternative production processes, consumption patterns, product end-of-life options.

Sensitivity analysis is often used to compare alternative scenarios in a static manner. As long as the assessment scope is relative to a single product system, no induced effects on other product systems can be captured (De Camillis, Zamagni and Bauer, 2013).

Consequential approach

What is the potential environmental impact of a decision likely to result in a change in demand or in supply of a product?

Most of the activities affected by the decision are included, i.e. excluding constrained activities, but including first-order rebound effects (Brandão and Weidema, 2013).

5. Modelling assumptions

Attributional approach

Linear emission profiles attached to LCI datasets. Effects on the economy are not captured (De Camillis, Zamagni and Bauer, 2013).
Consequential approach

“Linear, static model. Producers are price-takers. Markets clear. Ceteris paribus relative to other decisions and the overall technology and productivity of the rest of society” (Brandão and Weidema, 2013).

6. Co-products

Attributional approach

Unit process outputs defined according to a normative rule, for example, all products generating revenue for the process might be considered as co-products.

Consequential approach

Products are normally classified either in determining products or non determining products. Solving multi-functionality

Attributional approach

To be avoided as far as feasible via subdivision or reporting at multi-product level (that is, system expansion to include additional functionality – ISO 14044:2006), otherwise partitioning according to a normative rule (Pelletier et al. 2015).

Consequential approach

System expansion and substitution (Pelletier et al. 2015).

7. Crediting of avoided burden and accounting for rebounds

Attributional approach

Usually not allowed (De Camillis, Zamagni and Bauer, 2013)

Consequential approach

Obligatory (Brandão and Weidema, 2013)

8. Background system data

Attributional approach

Average technology mix (De Camillis, Zamagni and Bauer, 2013)

Consequential approach

Marginal technologies (Brandão et al., 2014)

9. Reference standards/guidelines

Attributional approach

Consequential approach

REFERENCES

Developing sound tools for transition to sustainable food and agriculture

LEAP Partnership Life Cycle Assessment Guidelines on Livestock supply chains:

Methodological notes

http://www.fao.org/partnerships/leap