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Most integrated stock assessment models are fitted to alternative sources of data like indices of abun-
dance and length/age composition of catches in specific fisheries. While indices of abundance are often
standardized over time, not much attention is paid to the temporal stability of the length/age data. A
sequential approach to fitting model outputs to all sources of data, varying the weight given to the length
composition data, for Indian Ocean bigeye tuna (Thunnus obesus) was examined in this paper. Logistic,
double normal, and cubic spline selectivity functions were used to model the size composition of catches

ggfjé:’t‘i)\ris;ample size in the main industrial fisheries (longline and purse seine). Overall, there was a poor fit of stock assessment
Selectivity models to the individual length frequency observations collected from these fisheries, although marginal

improvements of fit was made when temporally variable selectivity was implemented in the Stock Syn-
thesis framework using the above described functions. The most influential factor in the assessment was
the weighting of the length composition data relative to the indices of stock abundance. Contradictory
signals between these two data sources have a large effect on spawning biomass dynamics, and inference
based on these weightings can produce different management conclusions. We emphasized that under-
standing the data was the key to performing a well-calibrated stock assessment, and further refinements

Length-frequency
Stock assessment

to the approach pursued in the analysis presented are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Integrated stock assessment models have been used in fisheries
management for the past three decades (Fournier and Archibald,
1982). However, blindly fitting models to all available sources of
data may lead to inaccurate results, as has been discussed exten-
sively by Francis (2011). Often fisheries change over time due to
shifts in fishery selectivity (i.e. the vulnerability of different age or
size classes of fish). When this type of trend is apparent in the data,
the modeller is faced with two choices: (1) model these as separate
fisheries over time using different catchability and selectivity esti-
mates, or (2) model these as one fishery with changing selectivity
over time. Often the latter approach is used (Gavaris and lanelli,
2002), as it easier to implement.

While most modellers and fisheries management practition-
ers understand the relative importance of size selectivity and its
interaction with biomass and effect on optimal yield and stock sta-
tus (Haddon, 2011; Hilborn and Walters, 1992), it is an extremely
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difficult process to estimate (Hilborn and Walters, 1992). Most
assessments use external sources to justify the general shape of the
selectivity curve (i.e., whether it is asymptotic ordome-shaped)and
estimate the specific shape (i.e., the parameters of the functional
form) by fitting the model to age and/or length-composition data.
In most tuna assessments age data are limited, so length frequency
data are the primary source of information. Tagging data can also
provide some information on selectivity, although in the case of the
Indian Oceanregion these data are of limited use, primarily because
tag mixing assumptions are violated (Langley et al., 2013). In the
case of a highly migratory species like bigeye tuna (Thunnus obesus;
hereafter referred to as BET), modellers assume similar functional
forms for selectivity used by tuna Regional Fisheries Management
Organizations (RFMOs) across the globe. Note that estimated selec-
tivity is not independent of other parameters, particularly natural
mortality (M), which is kept constant at different ages through time
(M =0.8 annually for the early ages in this assessment, and declines
to M =0.4 by age 3). These levels of natural mortality are compara-
ble to those used by the Inter-American Tropical Tuna Commission
(IATTC, Aires-da-Silva and Maunder, 2010) and Western Central
Pacific Fisheries Commission (WCPFC, Davies et al., 2011) BET stock
assessments (Kolody et al., 2010).
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Here we present a sequential analysis to account for tempo-
ral size-selective patterns in BET catch data by modelling different
functional forms of selectivity, along with temporal changes in
selectivity over time. The models examined use the following
choices: (1) different selectivity functions are examined for the
main fisheries (longline and purse seine fisheries by area) to cap-
ture changes in length frequencies over time, (2) different forms
of temporal variability in size-selectivity are examined, and (3)
the influence of the effective sample size with and without time-
varying selectivity is examined. Although this analysis focuses on
Indian Ocean bigeye tuna, the approach outlined here would be
useful in all stock assessments, and emphasizes that understand-
ing the data and its uncertainty is key to a rigorous and sound stock
assessment.

BET accounts for 430K Mt (10% of all tropical tuna) of worldwide
tuna catches by volume (2008-2010, Herrera et al., 2014) and is
caught primarily in the Pacific Ocean (54%), followed by the Indian
(28%) and Atlantic Oceans (18%). The data used in this analysis are
primarily from the longline and purse seine fisheries in the Indian
Ocean. The longline fishery (distant water) commenced operation
in the Indian Ocean during the early 1950s. BET represents a signifi-
cant component of the total catch from the longline fishery; catches
reached a peak in the late 1990s—early 2000s at 70K-90K Mt per
annum. The purse seine fisheries (primarily tuna schools occurring
due to natural aggregating devices (log) and tuna schools occur-
ring due to artificial fish aggregating devices (FAD) based fisheries)
and fresh-chilled longline fisheries developed in the mid-1980s and
total BET catches peaked at around 155K Mt in the late 1990s. Since
the mid-2000s, the total annual BET catch has fallen considerably,
primarily due to a decline in the longline catch in the western equa-
torial region in response to the threat of piracy off the Somali coast.
In 2011 the total annual catch was estimated to be around 91K Mt
(Herrera et al., 2012). Small scale fisheries that encounter BET are
the Maldivian pole/line fishery and gillnet fisheries operating in the
Indian Ocean. Both major fisheries have collected extensive length
frequency data over time and area, which are used in the model
fitting exercise described here.

Initial assessments of BET have generally applied non-
equilibrium surplus production models (Nishida and Rademeyer,
2011) and integrated stock assessment methods that are fit to
length composition data, indices of abundance, and tagging data
(Methot and Wetzel, 2013; Kolody et al., 2010; Shono et al., 2009).
Both assessment approaches indicate that the Indian Ocean BET
stock has not been overfished, although Kolody et al. (2010) high-
lighted the high level of uncertainty (both derived parameter
uncertainty and structural uncertainty, Punt and Hilborn, 1997;
Quinn, 2003) associated with key model parameters that resulted
in a range of contrasting estimates of stock status, some of which
indicated that the stock is in an overfished state.

The approach pursued here builds on some of the structural
uncertainty examined in Kolody et al. (2010) and Langley et al.
(2013). The main focus of this work is examining how different
functional forms of selectivity can affect stock assessment, and the
impact of considering time-invariant vs. temporally variable selec-
tivity. In addition, we examine the effect of differentially weighting
size composition data on model outcomes. If information from
the fisheries suggests that the size composition of the catch has
changed in response to a change in fishery operations (for exam-
ple, a change in the spatial or seasonal operation of the fishery), it
may be appropriate to estimate temporal variation in the selectivity
parameters as we demonstrate here. We examine some alternative
hypotheses regarding selectivity forms and weights used for fitting
the length-composition data and the effect of these on reference
points (or derived model outputs). The merits of fitting models to
all sources of data, or discounting some information if unreliably
collected over time, are also discussed.

Table 1

Definitions of the individual model fisheries.
Code Method Region
FL2 Longline, fresh tuna fisheries 2
LL1 Longline, distant water 1
LL2 Longline, distant water 2
LL3 Longline, distant water 3
PSFS1 Purse seine, free school 1
PSFS2 Purse seine, free school 2
PSLS1 Purse seine, associated sets 1
PSLS2 Purse seine, associated sets 2
BB1 Baitboat and small scale encircling gears (PSS, RN) 1
LINE2 Mixed gears (hand-line, gillnet/longline combination) 2
OT1 Other (trolling, gillnet, unclassified) 1
0T2 Other (trolling, gillnet, unclassified) 2

2. Materials and methods

Construction and fitting of integrated stock assessment mod-
els combines all available data in a statistical maximum likelihood
estimation framework (Fournier and Archibald, 1982; Maunder
and Punt, 2013; Methot and Wetzel, 2013). These models simul-
taneously estimate numerous parameters to give the best fit to
observed data (Deriso and Parma, 1987; Fournier and Archibald,
1982). For this analysis we used the Stock Synthesis (SS) software
(Methot, 1989; Methot and Wetzel, 2013) that adapts the basic age-
structured algorithms presented in Fournier and Archibald (1982).
Stock Synthesis has considerable flexibility in the parameterization
of length- and age-based selectivity, including a range of functional
forms, is written in ADMB (Fournier et al., 2012), and has flexibility
in the formulation of priors for the main selectivity parameters, and
temporal variability (in blocks, as parameter deviates, or linked to
an exogenous variable).

2.1. Catch and biological data: model inputs

2.1.1. Temporal units

Data were disaggregated by calendar quarter (quarter
1=January-March), and the model was iterated on quarterly
time steps in order to capture potentially important seasonal
dynamics over the period 1952-2011. The model was aggregated
by sex; age class bins were yearly with a plus group at age 10
(the model worked on quarterly age increments resulting in 40
different quarterly ages in the model). The model worked on a
quarter as the time-step and did not use the seasonality framework
in SS.

2.1.2. Spatial structure, fishery dynamics, catch and CPUE data

Spatial structure of population dynamics in a given fishery is
an important consideration when constructing a stock assessment
model. BET population dynamics are spatially aggregated for the
purposes of these model runs; the main fisheries operating in three
areas are shown in Table 1, Fig. 1. The primary fisheries modelled
are longline in each of the three areas (LL 1-3), and the Purse Seine
Free School (PSFS) and Purse Seine Log School (PSLS) in Areas 1 and
2. Three other fisheries with a shorter catch history are included:
the fresh tuna fishery (LL in Area 2) a hook and line fishery in
Area 2, and a bait boat (BB) fishery in Area 1. The “other” cate-
gory includes all other catches, again in Areas 1 and 2, primarily
the non-industrial fisheries.

Sampling coverage of the length frequencies of catches varies
considerably by type of fishery (multiple fleets make a fishery in
one area; for example, the Japanese longline fleet is a subset of the
longline fishery), and by area. In the case of longline fisheries, samp-
ling from log books for some fleets can be as high as 80% in recent
years (defined in terms of the number of fish sampled for length
compared to the number of fish recorded for catch and effort by
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Fig. 1. Aggregate LL and PS catch (max bet catch in 5 deg cell aggregated over time
70,159.62 mt).

vessels operating in the area). The purse seine fleets report similar
levels of coverage. However, in the case of the “other” fisheries the
sampling coverage is much lower, generally less than 5%, while
bait boat coverage is in the range of 30%. The sampling coverage
of length—frequencies are high (greater than 30% of the total fish
caught) for a number of fleets (e.g., Taiwanese longline and Euro-
pean purse seine fleet), and low for other fleets (less than 1%). Some
investigators have noted inconsistencies over time in methods of
collection of length-frequency data for the longline fleet (Geehan
and Hoyle, 2013).

Fishery catches are provided in Herrera et al. (2012). The main
fisheries used in this analysis include the LL fleets and the PS fleets
which account for 90-95% of the catch. The length composition
data for each fishery tended to be a composite of length data from
a number of different fleets, consisting of a mixture of commercial
vessels, training vessels, and scientific observers. Using aggregated
fleet data may not capture differential operations in the individ-
ual fleets (e.g., Japanese longline vessels compared to Taiwanese
longline vessels). Japanese longline vessels are the primary source
of the length frequency data for BET in the early 1970s and 1980s,
while in the 1990s Taiwan (province of China) replaced Japan as
the main longline fleet reporting size data. According to the Over-
seas Fisheries Development Council (OFDC) of Taiwan (province of
China), size measurements between 2000 and 2011 were recorded
for over 4.4 million BET specimens from longline vessels. Between
2003 and 2005 alone—i.e., the years of highest sampling—length
measurements were recorded for over 1.7 million BET samples by
Taiwan (province of China). In addition to these differential fleet
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Fig. 2. Standardized longline CPUE indices for each region. The longline series are
standardized among regions.

characteristics, the spatial distribution of the operation of these
fleets has also changed considerably over time

The primary abundance data used in the BET assessment mod-
els are taken from standardized CPUE indices derived from the
Japanese longline fleet, which has been in operation since the late
1950s. This is the only such standardized data set collected sys-
tematically and, like other tuna RFMOs around the world, we use
it as a primary source of data in fitting these models. Standard-
ized CPUE indices for the entire Indian Ocean were derived from
the Japanese longline fleet using a generalized linear model (GLM,
Satoh and Okamoto, 2012; Hoyle and Okamoto, 2011). The indices
are derived by year and quarter for 1960-2011 (Fig. 2). The overall
Indian Ocean CPUE indices are very similar to the CPUE indices from
the western equatorial region (Satoh and Okamoto, 2012),and were
all assumed to have a coefficient of variation (CV) of 10%. The high
level of precision was assumed because the CPUE indices are the
primary indicator of relative abundance in the assessment model
and so the derived trends in stock abundance should be generally
consistent with these indices. For all models examined in this anal-
ysis, catchability for the main longline fisheries was assumed to be
temporally invariant.

Given all these complexities, it seemed appropriate to use dif-
ferential selectivity patterns by time and fishery (stratified by area)
to better capture some of the fishery-specific temporal and spatial
dynamics, as there is some evidence based on the 5 by 5 degree
data (latitude and longitude degrees on the Indian Ocean) that sug-
gests that the magnitude of catch can vary by a factor of two across
different 5 by 5 degree areas over time (I0TC, 2012).

2.2. Model structural assumptions

2.2.1. Biological parameters

Recent estimates of Indian Ocean BET growth derived from
otolith and tag release/recovery studies are available from Eveson
et al. (2012). Growth estimates are available for both sexes
combined. The quarterly age-class growth deviates from a von
Bertalanffy growth function, with considerably lower growth for
quarterly age classes 4-8. Maximum average length (L.,) was esti-
mated by Eveson et al. (2012) at 150.9cm fork length (FL). The
growth model was unable to reliably estimate the standard devi-
ation of length-at-age; however, the most appropriate level of
variation in length for all age classes was considered to be repre-
sented by a coefficient of variation of 0.10 (P. Eveson, CSIRO Marine
Research, GPO Box 1538, Hobart, Tasmania 7001, Australia, pers.
comm.). The growth function was modelled in SS using age-specific
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Negative Log likelihood values of the different selectivity sensitivity runs of the different components based on the effective sample sizes of the length composition data.
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Scenario number Description Log likelihood Survey LL Length Comp -LL No. of parameters estimated
Scenario 1 Base case 4257 304 4005 207
Scenario 2 Logistic LL Sel (Low Eff SS) 4316 303 4065 204
Scenario 3 Time varying Sel-LL (Low Eff SS) 4126 289 3877 223
Scenario 4 Time Varying LL and PSLS Fishery (Low Eff SS) 4112 288 3863 235
Scenario 5 Base case (higher eff SS) 21,737 709 21,003 207
Scenario 6 Logistic LL Sel (High Eff SS) 22,149 730 21,377 204
Scenario 7 Time varying Sel-LL (High Eff SS) 20,940 524 20,940 223
Scenario 8 Time varying Sel-LL and PS(High Eff SS) 20,777 522 20,201 235
Scenario 9 Aggregated Fishery Model 3866 882 2502 52

deviates on the k growth parameter. Because this feature has only
recently been implemented in SS, it is currently not documented
(R. Methot, NWFSC, NOAA Fisheries, Seattle, WA 98112 USA pers.
comm.) and is one of the first applications within SS to use this fea-
ture. Note, since the growth function is fixed, this has a large effect
on estimated selectivity and how it fits the length-composition
data. An alternative approach would be to estimate the growth
function directly from the data along with selectivity, but was not
attempted in this paper.

The size at sexual maturity used in the model was equivalent to
that applied by Shono et al. (2009) and Kolody et al. (2010). Female
fish were assumed to attain sexual maturity at 100 cm FL with full
sexual maturity at about 125 cm FL. The length-weight relationship
was equivalent to that previously used by Shono et al. (2009) and
Kolody et al. (2010) and was originally derived by Nakamura and
Uchiyama (1966). Fish weight was determined using the allometric
relationship, alength?, with a=3.661 x 10~>, and b=2.901, where
weight is in kilograms and length is in centimetres.

Age-specific natural mortality was equivalent to the schedule
used by Shono et al. (2009) and Kolody et al. (2010) where M is 0.8
annually for the early ages and declines to 0.4 by age 3 (quarterly
estimates of 0.2 and 0.1 were used in the model). The levels of natu-
ral mortality are comparable to IATTC and WCPFC bigeye tuna stock
assessments with relatively high natural mortality for the younger
age classes and natural mortality of about 0.1 per quarter for the
adult age classes.

2.2.2. Recruitment

Recruitment occurs in each quarterly time step of the model.
Recruitment was estimated as deviates from the Beverton-Holt
stock recruitment relationship (SRR), although deviates were esti-
mated for 1964-2009 only (184 deviates). Recruitment deviates
were not estimated for the earlier period of the model due to the
lack of longline CPUE indices prior to 1960 and the lack of length
frequency data prior to 1965, and recruitment deviates were not
estimated for the last eight quarters in the model as there is insuf-
ficient CPUE abundance index data to estimate recruitment in later
years. Recruitment deviates are assumed to have a standard devi-
ation (oR) of 0.6. The steepness (h) parameter of the SRR was fixed
at a value of 0.8, an intermediate value from the range of values
proposed by Harley (2011).

2.2.3. Fishery dynamics and selectivity assumptions

All selectivities were incorporated using the SS functionality
(see Methot and Wetzel, 2013) which can account for differ-
ent forms of the selectivity function and aggregate fisheries into
one form. For all fisheries, selectivity was estimated as an age-
based process. For the longline fleet, double normal selectivity was
assumed for Areas 2 and 3 and logistic selectivity was assumed for
Area 1 and the FL2 longline fishery. Logistic selectivity is expressed
as:

Syfpi=1+ e(_ln“9)(’[—ﬁi.y,f)/ﬂ2,y,f)71 (1)

where S is the proportion selected to the gear, y is the year, f is the
fishery, and f1 and B, are parameters related to the size at which
50% (1) selectivity occurs for fishery fin year y. 8, is the difference
between the size at 95% selectivity and 50% selectivity for the same
fishery and year (Methot, 2009).

The selectivities of the LL2, LL3, PSLS and BB fisheries were esti-
mated using a double normal functional form (Methot and Wetzel,
2013). To account for the bimodal length composition of the catch
from the PSFS fishery, the selectivity was modelled using a cubic
spline with 6 nodes (Haerdle, 1990). Limited data were available to
estimate the selectivity of either the PSLS2 or PSFS2 fisheries (i.e.,
purse seine fisheries operating in Area 2). The selectivity of these
fisheries was constrained to be equivalent to the corresponding
fishery selectivity in the western region (PSLS1 or PSFS1), and was
modelled using a double normal functional form with ascending
and descending functional forms modelling with equations known
as joiner functions (see Methot, 2009). Five parameters are used to
estimate this function and non-informative normal priors are used
to bound the parameter estimates. Note that selectivity could be
sex-specific but are not in this case.

Limited size data are available from the “other” fisheries. Initial
attempts to estimate independent selectivities for these fisheries
were not successful, partly due to the variability in length com-
position among samples. In aggregate, the length compositions
are bimodal and similar to the length composition from the PSFS
fishery. On that basis, the selectivities for the two “other” fish-
eries (OT1 and OT2) were assumed to be equivalent to the PSFS
fishery. Similarly, limited length data are available for the mixed
gears (hand-line, gillnet/longline combination) fishery in Area 2

Table 3

Maximum posterior density (MPD) estimates from the final set of model options and associated model sensitivities. The preferred (reference) model option is highlighted.
Scenario Selectivity sensitivity run SBo SBusy SB2o11 SB2011/SBo SB2011/SBmsy F2011/Fmsy MSY
1 Base case 1,606,040 446,970 606,830.3 0.38 1.36 0.31 179,370
2 Logistic LL Sel (Low Eff SS) 1,455,880 409,173 534,456 037 1.31 0.35 163,248
3 Time varying Sel-LL (Low Eff SS) 2,493,330 705,780 1,622,145 0.65 2.30 0.14 273,752
4 LL and PSLS Fishery (Low Eff SS) 2,432,020 696,212 1,598,100 0.66 2.30 0.15 259,886
5 Base case (higher eff SS) 1,082,610 300,837 343,326.8 0.32 1.14 0.51 114,591
6 Logistic LL Sel (High Eff SS) 1,323,390 243,942 343,327 0.26 1.41 0.66 93,973
7 Time varying Sel-LL (High Eff SS) 948,687 270,865 525,487 0.55 1.94 0.39 106,121
8 Time varying Sel-LL & PS(High Eff SS) 929,923 268,817 528,458 0.57 1.97 0.41 96,629
9 Aggregated fisheries 938,225 165,640 421,377 0.45 2.54 0.24 193,240
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Fig. 3. Fit of the base model the index of abundance as obtained from the Japanese longline fishery and the average length composition from the data aggregated across time
by each fishery separately.

(LINE2, Table 1), so the selectivity was assumed to be equiva- 2.3. Selectivity sensitivity model runs

lent to the main longline fishery. Finally, for the single region

model, the CPUE indices are linked to the selectivity of the LL1 A range of models was configured to investigate how selectiv-
fishery. ity affects the assessment (see Table 2 for more details). The cases

below highlight 5 scenarios, while Table 2 has 9 scenarios. Four
of the scenarios presented in Table 2 are essentially the same as

120 Longline Selectivity-Double Normal (LL2 & LL3) the first 4 scenarios shown below, other than the effective sample
size used in weighting the length frequency data for the LL and PS
1.00 —= fisheries. The following structural models were examined, where
RN Scenarios 1-4 are essentially the same as Scenarios 5-8 (other than
U . . . .
0.80 \ — e SelectivityLL 1 the effective sample size). The 5th structural model examined is an
\ aggregated model (Scenario 9) described below:
Z \ — = Selectivity-LL 2&3
£ 0.60 \
3 \ = Selectivity-FL 1 (1) The base case (Scenario 1) model uses a logistic selectivity in
00 \\ Area 1 for the longline fishery and fresh tuna longline fishery.
’ \ Double normal selectivity functions were used for the longline
S L fisheries in Area 2 and Area 3, and the PSLS in Areas 1 and 2.
0-20 This function was applied to the BB fishery as well. Finally the
PSFS used a cubic spline function. The other categories were
0.00 : - : : i - M modelled with the same cubic spline function, as some of the
Age catches appeared to have the same bimodal functionality as the
PSFS. The effective sample size used in these fisheries was low
120 (10 was used in Scenario 1). A model run with a larger effective
sample size (100) for the length composition data from the LL
1.00 and PS fisheries was conducted as well (Scenario 5).
(2) In Scenario 2 and 6, the only change from the Scenario 1
0.80 e SelectiviptL 1 parameterization was that logistic functions were assessed for
. all longline fisheries, to contrast with the base model which
% 0.60 = = Selectivity-LL 283 parameterized the selectivity of LL 2 and 3 using the double
2 —— Selectivity-FL 1 normal functional form.
° (3) In scenarios 3 and 7, selectivity was varied over time in three
040 discrete time blocks (1952-1972, 1972-2001, and 2002-2011)
to capture some of the changes in size composition observed in
020 the LL fisheries over time (see Fig. 5, where some evidence is
suggested for changes in the 1970s and then again in the 2000s,
0.00 Scenarios 3 and 7). The logistic selectivity function was still

0 2 4 6 8 10 12 used in Area 1 for the longline fishery and fresh tuna longline
fishery, and the double normal selectivity functions were used
Fig. 4. Logistic versus Double Normal Selectivity estimated in LL and Fresh Tuna for the longline ﬁ.Sherles n Areé 2 ar.ld Ar(?a 3, but time period
(FL) fisheries in area 1, 2 and 3. Note. LL 2 and 3 selectivity is modelled identically. blocks were used instead of the time-invariant approaches used
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Fig. 5. The average length (fork length, cm) of bigeye in the individual samples from each fishery. The grey line represents a lowess smoothed trend. The y-axis differs among

the individual plots.

in Scenario 1 and 5. This approach would translate into three
different selectivities for the LL fishery by area and time (a total
of 9 fisheries, though Area 2 LL and Area 3 LL share parameters;
Scenarios 3 and 7 use these forms and only change the LL selec-
tivity by time using the logistic and double normal functions in

fresh tuna longline fishery, and the double normal selectivity
functions were used for the longline fisheries in Area 2, Area 3
and the PSLS fishery. Note that scenario 4 and 8 analyze the LL
and PSLS simultaneously for the same time blocks, 1952-1972,
1972-2001, and 2002-2011.

area 1 and 2,3 respectively). (5) We also constructed a simple model aggregating all gear-

(4) Scenarios 4 and 8 used time varying selectivity for both the LL
and PSLS fisheries by time and area (3 different selectivities for
the LL fishery by area and time make a total of 9 fisheries, though
Area 2 LL and Area 3 LL share parameters, and 3 selectivities for
PSLS for a grand total of 12 new fisheries as Area 1 and Area
2 share the same selectivity function). The logistic selectivity
function was still used in Area 1 for the longline fishery and

specific fisheries operating in multiple areas into one fishery
across the entire Indian Ocean; a total of four fisheries was
included in this analysis (LL, PSFS, PSLS and “other”). Cubic
spline functions were used for the selectivities, including
LL (Scenario 9). This model only used quarterly recruitment
deviates from the period 1985 to 2007, and operated on an
annual time step with seasons (at this resolution this is 22
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Fig. 6. Marginal improvements in Pearsons residuals for length composition data FL2, LL 2 and PSFS 1 when fitting time varying selectivity in all the LL and PS fisheries by

the blocks 1952-1971, 1972-2001, and 2002-2011, respectively.

recruitment deviates), while the other models operated on a
quarterly time step and estimated deviates for 46 years (at a
quarterly resolution this is 184 recruitment deviates).

We examined the effect of weighting the length composition
data heavily versus discounting these data by contrasting Scenar-
ios 1-4 with Scenarios 5-8. An effective sample size of 10 was used
across all fisheries in the case of the base run, and an effective sam-
ple size of 100 for the LL and PS fisheries was used for weighting
the length composition data more heavily (Scenarios 5-9). For the
“other” fisheries an ESS of 10 was applied for all scenarios, and
selectivity was fixed as described in the previous sections. In all
the scenarios examined, the CV for the index of abundance was
held constant at 0.1. We compare the MLE estimates of current
biomass versus initial biomass over time to demonstrate how these
alternative assumptions affect selectivity.

2.3.1. Likelihood profile analysis

Profile likelihood (Edwards, 1992) techniques were used to
examine the effect of one parameter, recruitment at virgin biomass
levels (RO), and its interaction with selectivity on the overall model
fit using the base case scenario as this is informative since M and
growth are fixed. Since selectivity is tightly constrained by the LL1
logistic function, different estimates of RO will reflect the informa-
tion on fishing mortality and temporal trends in recruitment from
the two main data sets examined in this paper.

3. Results

For the aggregated fishery (Table 3, Scenario 9), fits to the aggre-
gated length composition data (over all time periods for a single
fishery) were reasonable while the fits to individual length obser-
vations were very poor, thus this model was disregarded as it failed
to account for the length frequencies observed in any of the fisheries
over time.

The base model (Scenario 1) exhibits a relatively good fit to the
abundance indices (Fig. 3a; Table 2, Scenario 1), and a reasonable fit
to the length composition data aggregated over time for the main
fisheries (Fig. 3b; Table 2, Scenario 1). While the average trend is
captured reasonably well in the main fisheries, i.e., the longline

and purse seine fisheries, the temporal variation is not captured
as well (Fig. 6). Fig. 6 displays the Pearsons residuals where the
circles are positive (dark) or negative (light) residuals between the
model estimates of length composition and the observed length
frequency of the catch in the particular fishery and area. The fits are
poor although typical for longline size data, with serious structural
change problems through time (Fig. 6, Table 2). The time-varying
selectivity has very little visible effect on the residual pattern (Fig. 6,
Table 2).

Table 2 lists diagnostics measuring the goodness of fit, namely
the negative log-likelihood values of the different components of
the model, the length frequency component and the survey com-
ponent (the catch component is left out as it is often negligible in
these models). Note that the model of the four aggregated fisheries
(Scenario 9 in Table 2 which had 52 parameters) is not comparable
to the other models presented (Table 2) unless we use other statis-
tics like AIC (Akaiki, 1983), though we do report reference points
obtained from the aggregated model (Table 3, Scenario 9).

In the case of using the logistic versus the double normal func-
tions for the LL fishery in Areas 2 and 3 (Fig. 4), the fits were
comparable (Table 2, Scenario 2) though the base model fit is bet-
ter than the logistic fit (Table 2) based on the overall likelihood
values. While the logistic function may not result in as good a fit as
the double normal function, it also has fewer parameters to esti-
mate. In addition, the logistic function does not have any problems
with denoting a cryptic biomass as all age classes are fully vulner-
able after a certain age. This is not the case with a dome-shaped
selectivity curve like the double normal curve. In our case, this is
not a problem as there is still one fishery with logistic selectivity
within the model domain. While the logistic function fits the data
because full selectivity occurs at a much younger age, the double
normal function achieves this fit by including fewer older fish in
the catch.

Due to variation in the length composition data over time (Fig. 5)
among fleets, using temporally variable selectivity gave marginally
better fits for many fisheries (Fig. 6) but may have resulted in poorer
fits for some fisheries (PSLS1), as there is a longer series of LL data
(looking at the components of the likelihood function by gear makes
this clearer, but is not presented here). The fits compare models
with lower effective sample size, i.e. in this case the base model
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with lower effective sample size, and the time varying selectivity
models with lower effective sample size (Scenario 1 through 4).
This was done so we could take the confounding effect of effective
sample size out of the time varying selectivity component. A similar
exercise was conducted for models with higher effective sample
size and the results showed similar trends.

In essence the overall shape of the selectivity curves in the LL
and PS fisheries does not appear to have changed much over time,
or have a large effect on the age structure of the catch, and the num-
bers available over time (Fig. 7), though the LL fishery appears to
be selecting older fish over time. Note, however that if these data
were weighted with a large effective sample size (100 in LL and
PS fisheries), it would have a large impact on the overall assess-
ment in terms of derived parameters and biomass dynamics. Even

though the temporally variable component was added in block
format, the residual patterns still remain quite similar (Fig. 6).
The only noticeable change is that the magnitude of the residu-
als decreases when the time varying component is added for the
LL fishery in the 1970s and after 2003, when different selectivity
blocks are introduced in the fitting procedure. It could be con-
cluded that the time varying selectivity blocks are not adequate
to account for the variation in size over time and the apparent
inconsistency between the length-frequency data and the index
of abundance.

To examine the influence of the different sets of length-
composition data on the estimation of recruitment at virgin
biomass levels RO, we conducted a likelihood profile analysis. Since
M and growth are fixed and selectivity tightly constrained by the
LL1 logistic function, different estimates of RO will reflect the fish-
ing mortality and temporal trends in recruitment from the two
main data sets. It is evident from the likelihood profiles that there
is somewhat conflicting information about RO from the two data
sets, with the overall length data indicating lower overall stock
size (Fig. 8). Further examination indicates that the longline and
fresh tuna longline fisheries in these areas (primarily in Areas 1
and 2, figure not shown) are having the largest influence on the
RO parameter, primarily because there are few older fish in the
areas/fisheries operating in those areas. Any biases in these length
frequencies (Figure 11), mis-specification of the selectivity curve,
or use of incorrect M, can have huge effects on the assessment as
is evident with the estimates of target reference points Sysy and
Yield (Table 3, Fig. 9).

A comparison of the different sets of models with same effective
sample size weightings (Table 2) shows marginal improvements
in the overall log-likelihood values (sensitivity 1-4 and sensitiv-
ity 5-8 respectively). The log-likelihood values from models with
different effective sample size weightings cannot be directly com-
pared, but these diagnostics can be used in a qualitative manner
to assess how the fits may be improving (accounting for the differ-
ences in parameters estimated). For cases with the same selectivity
functional forms in the LL and PS fisheries a large effect on the
assessment dynamics (Fig. 9) is observed by weighting the length
composition data higher (Scenario 5 vs. 1). Adding temporally-
variable selectivity (Table 2, Scenario 3, 4 vs. Scenario 7, 8) or
different functional forms (Table 2, Scenario 2 vs. Scenario 6),
resulting in a marginal improvement in fit to the length frequency
data, but has major effects on management parameters obtained
from the assessment. For scenarios with the same effective sample
size for the length frequency data, changes in using time varying or
time/functional varying selectivity marginal improvements in fits
are seen, and biomass dynamics and management parameters are
scaled upwards (Figs. 9 and 10).

Finally, when we contrasted the model runs with higher and
lower effective sample sizes (Fig. 10) and examined how this
weighting relates to the fits to the different datasets used in
the model, we found contradictory signals between the index of
abundance and the length frequency data. While in the analysis
presented here, the effect of these different formulations on the
assessment is negligible in terms of the current stock status, this
effect may not be negligible in other global assessments. All sce-
narios investigated indicate that the current stock size (Byg11) is
greater than Bysy (low effective sample size scenarios; Byg11/Bmsy
is between 1.3 and 2.3), and current fishing mortality rates are
below Fysy. Weighting the length-composition data more heavily
produces a more pessimistic picture of the stock, i.e., Byg11/Bmsy iS
between 1.14 and 1.94, and Fz911/Fusy is between 0.41 and 0.66 for
all combinations examined. Consequentially target optimal yields
are 160-270 KT from the lower effective sample size combinations
versus 93-115KT from the higher effective sample size combina-
tions.
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also presented.

4. Discussion

Francis (2011) suggests that in cases where there are contradic-
tory signals between the length-composition data and the index
of abundance, it is almost always more important to capture the
index of abundance over the length composition data. Fitting to
the length-composition rather than the abundance data may be
misleading, as this approach gives more weight to processes of
which we have a poor understanding, and which are also corre-
lated with the overall abundance signal (Francis, 2011). In most
integrated models used across the globe, it is the nature of the mod-
eller/scientist to use all the data. However, as shown in this case,
it is extremely important to understand the data before they are
used in the assessment. If the length frequency data are not mod-
elled appropriately, then the resulting model will be biased, and
management advice resulting from the model will be incorrect as
well.

This paper illustrates a sequential approach on how to model
selectivity, the potential impacts of different selectivity assump-
tions, and effects of these assumptions on stock assessment
outputs. Three different critical issues for analysing selectivity are
illustrated here: (1) the form of the curve, (2) temporally variable
selectivity and its appropriate use, and (3) the effective sample
size of the length-composition data that affects the estimation
of key parameters in the assessment and in turn their effect on
derived parameters from the assessment. Population size scal-
ing was highly sensitive when comparing changes in selectivity

assumptions; the analysis highlights the importance of weight-
ing the length-composition data. However, trends in the overall
biomass were less affected as they are highly constrained by the
CPUE. In addition, the weighting issue is also related to natural
mortality (M) assumed in the assessment, and recruitment devi-
ation estimated in the model, but this question is not examined
here extensively.

While developing the models here, a simpler approach was
initially taken (Table 1, Scenario 9). However, this model was
abandoned as it did not capture changes in length composition
over time. This is primarily because the fisheries were aggre-
gated spatially, and hence the model did not capture length
composition changes in space, rather than time, though this
eventually appears as temporal changes because sampling (fish-
ing) locations changed over time and space. This outcome was
not surprising as the fisheries were aggregated, and using a
cubic spline function for selectivity, while allowing flexibility
that captures bimodal length frequencies, still fails to account
for all the complexities in the temporal and spatial dynamics
of the fishery. Thus, one needs to account for the main sources
of size variation so that the temporal effect (which affects the
model) is not confounded with other factors (location in this
case). Thus, keeping the fisheries at least separated geographi-
cally may more accurately reflect fishery dynamics, provided the
data are unbiased and consistently sampled over time, and so this
approach was used in subsequent model runs (Maunder et al.,
2014).
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4.1. Time varying selectivity and its effects

We conclude from our analyses that while the shape of the selec-
tivity function is important in these fisheries, it does not have a
significant affect on either the fits to the length-composition data
or to the abundance index data, unless it is weighted heavily. Our
model run outputs are likely too variable between time steps and
among fisheries to reliably fit the contradictory signals, and the
estimated selectivity simply reflects the average pattern of fish-
ery exploitation. While a possible improvement may be to fit the
length-composition data using selectivity deviates for each time
step, that approach might be tantamount to fitting the model to the

error in the observations. The use of a logistic function vs. a dou-
ble normal function has only marginal effects on the overall results,
unless we impose a larger effective sample size on the data (Table 3,
Fig.4) which forces the model to fit to the length-frequency compo-
nent. Even then the shape does not differ substantially as is evident
in Fig. 7, though effects on population scaling are large.

The issue of whether we use temporally variable selectivity is
intricately confounded by the length-frequency data sampled. It is
highly unlikely that the fisheries, particularly the sizes targeted,
have remained unchanged in the last 50 years, therefore using
time-invariant selectivity will probably bias our estimates. How-
ever, as is demonstrated here, if the length-composition data are
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60 R. Sharma et al. / Fisheries Research 158 (2014) 50-62
a)
Japan longline size-frequency average weights
70 70,000
No. size-frequency samples == Size-frequency average weights
60 - 60,000
3 50 4 50,000
3. 2
§ 40 40000 ..
s :
£ &
5 &
5 30 30,000 8
20 20,000
10 -| 10,000
(e = 5 8 5 H B E E E H N E HE E E E SN H H N N N N N N H N N ESSSENSY
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Years
b)
Taiwan,China longline size-frequency average weights
70 700,000
No. size-frequency samples Size-freq average weight:
60 600,000
50 - 500,000
2 3
) =3
2 g
g 40 400,000 5
® g
= &
5 &
g 30 4 300,000 5
° -8
? 2
5
2 20 200,000
10 - 100,000
0 0

Years

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Fig. 11. Length frequency data trends in average catch and sample sizes from Japan (a) and Taiwan, China (b) longline fleets over the time period used in the assessment.

inconsistently measured over time (Fig. 11), then putting unduly
heavy weight on this parameter can also bias the assessment.
Finally, adding temporally variable selectivity estimates a higher
biomass than in the case when we do not weight the length compo-
sition data (Fig. 10, Scenario 3 and 4; Table 3), and a lower biomass
estimate of the stock in the case where the length-composition
data are weighted heavily (Fig. 10, Scenario 7 and 8, Table 3).In our
analysis we chose to put a lower weight on the length composi-
tion data rather than give undue weight to the length composition
data based on criteria stated in Francis (2011). As a result of this
approach we estimate different levels of biomass than if we chose to
weight the length-composition data higher (Fig. 10). This discrep-
ancy occurs primarily because the length frequency data from the
longline and fresh tuna fishery in Areas 1 and 2 are highly influen-
tial in the model. Since natural mortality (M) and growth are fixed,
and selectivity tightly constrained by either the logistic or double

normal function, a different RO and recruitment deviates are esti-
mated to better fit to the length observations. Hence we observe
the lower RO values, an increase in recruitment in the 1970s, and
increases in recruitment in the 2000s.

The modelled biomass trajectories resulting from the different
combinations of input data (Fig. 10) have different outcomes as far
as management advice is concerned. The issue with the estimated
selectivity curves (Figs. 4 and 7) that indicate a sharp decline in the
proportion vulnerable to the gear at around age 7 is common when
using the double normal function, as the growth curve flattens off
by age 7. In addition, we sample very few fish over this size in the
length composition data (Fig. 5), causing these curves to exhibit the
declining limb, which would mean we still have a large number of
older fish in the population (M values used imply enough older fish
available in the population). This pattern may however be just due
to the growth curve being inaccurate for (some parts of) the fished
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population. Biologically, growth varies through time and space, but
the model growth curve is uniform across all locations and times,
and therefore indirectly has an effect on estimates of selectivity.

4.2. Data issues related to estimated length compositions and
selectivity

It is evident that either changes are occurring in the fishery over
time (Fig. 5), or there are problems with the sampling coverage
after the year 2000. It is more likely that something changed in
the sampling regime after 2000 (Geehan and Hoyle, 2013). Further
examination of the data (Fig. 11) indicates that the sampling cover-
age from the main longline fisheries has changed during the period
examined. In the 1970s and 1980s the main source of information
for the length frequency data (Fig. 11a) was the Japanese longline
fleet. However, in recent years these data have been almost entirely
contributed by Taiwan (province of China) (Fig. 11b). In addition
the Taiwanese data collection techniques and systems changed in
the late 1990s (Chung and Wang, 1998, Dr. S. Wang Department
of Environmental Biology and Fisheries Science, National Taiwan
Ocean University, Keelung, Taiwan personal comm.). Based on the
sampling data it appears that larger fish are now encountered in
larger proportions than prior to the 2000s, and the overall variance
in length-composition in the catch data has also decreased (Wang
etal., 2009). These observations indicate that there are inconsisten-
cies in the length composition data over time, thus the data series
may not be entirely reliable. Because close to 90% of the overall
catch comes from these fleets, unreliable, or inconsistently col-
lected data has alarge effect on the results of the overall assessment,
as demonstrated in this paper.

Based on these observations, two alternative hypotheses may be
proposed: (1) the length frequency data are reliable and the stock
is much less abundant than previously estimated (Table 3, Fig. 10),
or (2) the stock is somewhat more abundant, the abundance index
data are more reliable, and the length frequency data are not as
reliable (Fig. 10, Table 3). A third alternative could also be examined
(though notin this paper): the data are reliable until the early 2000s
when the sampling regime changed. Under this scenario, we could
fit the model to the length-frequency data until 2000, and then only
to the abundance index data after that. However, an examination
of the earlier fits to the length frequency data prior to 2000 (Fig. 6,
base case) still reveals a poor fit to the length-frequency samples
in those years. Another alternative would be to fix selectivity at the
values estimated through the logistic or double normal functions
and then fit to the abundance data iteratively. This approach would
ensure that we accounted for the catch being taken out at the right
size and fit to the overall abundance, without worrying about fitting
to the length—frequency component as well.

In deciding between alternatives (1), and (2) stated above,
Francis (2011) suggests weighting the index data more than the
length composition data (which we do, Table 2, Fig. 9). Until we
have a thorough understanding of the length composition data used
in tuning these models, we are forced to rely on the index of abun-
dance data that is compiled and analyzed by the LL fleets of Japan.
More effort may also be required to understand why the index of
abundance jumped in the mid-1970s. Bigelow et al. (2002) suggest
that fleet targeting could be the reason for this increase as shown
by Sakagawaetal.(1987)and Suzuki et al. (1977), meaning that the
gear was set at a different depth specifically to catch BET (see Wang
etal., 2009). Alternative standardization procedures using different
depths of fishing as a covariate, and the correct assigning of species
compositions (these were problematic prior to the 1970s, Herrera
et al., 2012) during that period could provide alternative indices
of abundance (Bigelow et al., 2002). However, since this approach
would require a thorough re-examination of the operational data,
it is beyond the scope of this study.

4.3. Management implications of selectivity and weighting of
data

While size-selectivity is extremely important and directly
related to estimates of optimal yield, target spawning stock sizes,
and overall fishing mortality (F), the results from this study indi-
cate that the functional forms have little effect after the majority
of the fish become mature (or whether the fish are still growing
after age 7) for the longline fisheries. Whether we use a logis-
tic or double normal function (declining limb of selectivity) the
overall effect is marginal, other than when we use temporally vari-
able selectivity with lower weights on the length composition data,
where the reference points and yields are significantly higher than
the other scenarios (Fig. 10, Table 3). To avoid convergence issues,
one needs at least one asymptotic form, which we used in LL 1. As
Wang et al. (2013) show, the functional form of the selectivity (in
their case asymptotic) could cause biases in the estimates of stock
abundances and fishing mortality, as it is confounded with the max-
imum length and the length-compositions observed in the fishery.
While temporally variable selectivity fits the length-composition
data better, if the length composition is weighed higher, it has a
large effect on RO (Fig. 8) and the overall spawning stock biomass
trajectories (Fig. 10), indicating a declining recruitment trend and
possibly lower optimal spawning stock sizes. The model formu-
lations with the logistic function also estimate a larger fishing
mortality rate compared to models with a declining limb in selec-
tivity for obvious reasons.

4.4. Further improvements in model formulations of selectivity

Further refinement of the fisheries by area and jurisdiction could
provide the model with more consistent data for length frequen-
cies and indices of abundance. In addition, a length frequency data
set that accounts for changes in targeting could also improve the fit
of the model, as the stock could be modelled as separate fisheries
based on when these targeting changes occurred. If selectivity of the
fleets has changed over time (which is likely), using the temporally
variable component makes sense. However, if there is no drastic
change in the length-composition data, and we use the same func-
tional form, we get very slight differences in these curves as seen
in Figs. 4 and 7. Modelling these as entirely different fisheries, with
different functional forms (double normal versus logistic), could
possibly produce improvements in the assessment, provided we
have some external source of information indicating that these
fisheries operated very differently in these two periods.

Alternative model assumptions such as considering the appro-
priateness of age- vs. length-based selectivity should also be
undertaken (though an analysis to look at these effects, not pre-
sented here, gave very similar results). It is also important to
consider reliability of other key fixed model parameters, especially
growth and M-at-age, which have a large impact on selectivity
and available biomass at any given time. Other key processes
that may be affecting this assessment are regional stock struc-
ture and spatial differences in recruitment processes; these should
be examined along with the selectivity assumptions presented
here.

Finally, the use of iterative reweighting approaches as suggested
by is another alternative to improving the selectivity, and not fitting
to the length-composition for periods in which we have problem-
atic length-frequency data, as we would have the correct from of
selectivity estimated from the data which is representative of the
catch. In this manner, we can account for the catch being taken
at the appropriate age without fitting to the length-composition
data, but still have the assessment dynamics represented in an
unbiased manner. This approach may not be helpful if sampling is
indeed biased for the length-frequency period used in estimating
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selectivity. This is plausible in our case (Fig. 11), as the mean length
of the catch appears to increase over time while the variability
decreases over time (kurtosis decreases, not shown here). However,
one of our key conclusions is that it is critical to first understand
whether the changes in length-frequencies are real or biased. This
is a critical step, given the importance of these data in influencing
the overall assessment results.
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