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Feeding dynamics, consumption rates and daily ration
of longtail tuna (Thunnus tonggol) in Australian waters,
with emphasis on the consumption of commercially
important prawns
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Abstract. The feeding ecology of longtail tuna was studied in northern and eastern Australia. Diet biomass data were
used to estimate daily ration and consumption of individual prey taxa, particularly penaeids targeted by Australia’s valuable
Northern Prawn Fishery (NPF). Overall, the 497 stomachs contained 101 prey taxa. In both regions, small pelagic and
demersal fishes comprised the majority of the diet biomass. Fish in both regions showed a marked increase in prey
diversity, variation in prey composition and stomach fullness index in autumn and winter (March—August). This increase
in apparently opportunistic feeding behaviour and feeding intensity showed an inverse relationship with reproductive
activity, indicating a possible energy investment for gonad development. Daily ration decreased with increasing fish size,
while annual consumption by fish increased with size. Total prey consumption in the Gulf of Carpentaria was estimated
at 148 178t year—!. This includes 599t year—! of penaeids, equivalent to 11% of the annual NPF catch. This study
demonstrated that longtail tuna play an important ecological role in neritic ecosystems. Their interaction with commercial
fisheries highlights the need for targeted dietary studies of high order predators to better understand trophic pathways to

facilitate ecosystem-based fisheries management.
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Introduction

The growing worldwide interest in ecosystem approaches to
fisheries management highlights a need for dietary informa-
tion to populate ecosystem models. This is especially important
for high-trophic-level predators — such as tunas — that can sig-
nificantly influence the structure of pelagic systems (Essington
et al. 2002). Such approaches are currently being explored for
Australia’s second most valuable fishery, the Northern Prawn
Fishery (NPF) (see Okey 2006). Extensive research into the diets
of demersal and estuarine fishes and their predation of commer-
cially important prawns within the NPF (Brewer ef al. 1991;
Haywood et al. 1998; Salini et al. 1998) have provided valuable
data for ecosystem models. However, the diet and consumption
rates of large pelagic fishes in northern Australia are lacking, par-
ticularly in relation to predation of NPF target species. This lack
of knowledge coupled with recent anecdotal accounts of pelagic
fishes preying upon prawn aggregations in the NPF (Bienke
2004) initiated an interest in better understanding the feeding
ecology and consumption rates of one of the region’s largest and
most prolific pelagic predators, longtail tuna Thunnus tonggol
(Bleeker 1851).

Species of the Thunnus genera are well known to exhibit
rapid growth rates and are physiologically characterised by high
metabolic rates (Brill 1996). Close relatives of longtail tuna —
yellowfin tuna Thunnus albacares and Atlantic bluefin tuna
Thunnus thynnus —have among the highest metabolic rates of all
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fishes (Korsmeyer and Dewar 2001) and can consume in excess
of 3 kg of prey per day (Maldeniya 1996; Aguado-Gimenez and
Garcia-Garcia 2005). Therefore, longtail tuna are also likely
to consume large quantities of prey in order to accommodate
their high energy requirements for growth and metabolic func-
tion. As a consequence, they may exert a significant ‘top-down’
effect on tropical ecosystems, as has been demonstrated for other
large tuna, such as yellowfin tuna in the eastern Pacific Ocean
(Essington et al. 2002).

Preliminary observations of the diet of longtail tuna suggest
that they are primarily piscivorous; however, they also consume a
vast variety of prey types including crustaceans and cephalopods
(Serventy 1942, 1956; Wilson 1981), which is likely to place
them at a high trophic level similar to that of other tropical Thun-
nus species in other ecosystems (Maldeniya 1996; Ménard et al.
2000). Despite the economic and apparent ecological importance
of longtail tuna in tropical coastal ecosystems ( Yesaki 1993), few
studies have investigated their feeding ecology in order to better
understand their role in tropical ecosystems.

The specific aims of the present study were to (i) quanti-
tatively assess the spatial, temporal and size-related variability
in the diet composition and feeding intensity of longtail tuna in
northern and eastern Australia, (ii) estimate the consumption rate
and daily ration for three size classes of fish and (iii) estimate
the annual biomass of prey consumed, particularly commercially
important prawns, in the Gulf of Carpentaria within the NPF.
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Fig. 1.

Map of Australia showing the managed area of the Northern Prawn Fishery (NPF, shaded) and the northern

and eastern regions where longtail tuna were collected for dietary analysis between February 2003 and April 2005.
The dashed line in the NPF delineates the boundary of the Gulf of Carpentaria where annual prey consumption

rates were estimated.

Methods and materials
Collection of specimens

Longtail tuna were collected monthly between February 2003
and April 2005 from two discrete regions in northern and east-
ern Australia using gillnets and rod and line (Fig. 1). In the
northern region, specimens were collected from the eastern coast
of the Gulf of Carpentaria from Weipa to Mornington Island,
Queensland. In the eastern region fish were caught between
Gladstone, Queensland and Iluka, New South Wales. In both
regions, fish were captured within 27 nautical miles of the coast
in depths of less than 30 m. Fish were put on ice upon cap-
ture and frozen as soon as possible, and freighted to the CSIRO
Marine and Atmospheric Research laboratories in Cleveland for
processing.

Regurgitation of stomach contents is common for some
scombrids, when captured by rod and line (Begg and Hopper
1997), which can lead to potential bias when comparing diets of
fish collected with other sampling methods. Conversely, the diets
of fish captured in gillnets may be biased towards less-digestible
prey if the gillnet sets are long (in this case 2-3 h), because
digestion of stomach contents can continue after death (Ménard
et al. 2000). We found no significant difference in the mean
stomach fullness between fish captured by gillnet and rod and
line (ANOVA: d.f. =1, F=2.912, P =0.094); thus, collection
method was ignored in subsequent dietary analyses.

Sample processing

In the laboratory, fish were weighed (0.01 g) and measured (fork
length FL, mm) before the stomach was removed. Sex was deter-
mined macroscopically and gonads were removed, trimmed of
fat and weighed (0.001 g) to calculate a gonadosomatic index
(GSI) using the equation:

GSI — gonad weight (g)
~ \ body weight (g) — gonad weight (g)

) x 100 (1)

Upon examination of the stomach, prey items were removed
and identified to the lowest possible taxon, counted, measured
where possible (total length for all taxa, and additionally stan-
dard length for fish, carapace length for crustaceans, and mantle
length for cephalopods), and a total wet weight was obtained for
each prey type. Otoliths, cephalopod mandibles and backbones
were noted but ignored in the analyses because they can accu-
mulate in the stomach and be over-represented in the diet (Olson
and Galvan-Magana 2002; Chipps and Garvey 2007). For each
fish, each prey type was oven-dried at 60°C for 48 h and the
dry weight measured. To investigate the intensity and timing of
feeding, a quantitative measure of stomach fullness was obtained
by dividing the wet weight of the stomach contents (0.01 g) by
the wet weight of the eviscerated fish. Monthly changes in the
stomach fullness index were also compared with monthly GSI
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data to investigate the possible effects of reproductive activity
on feeding intensity.

Diet was determined from the overall contribution of each
prey type in terms of percentage dry weight (% DW) and per-
centage frequency of occurrence (% FO) and was calculated only
from fish stomachs containing prey. These two diet measures
were calculated as:

. DW;
% DW; = | x 100 Q)
> DW;
i=1
F.
% FO; = (ﬁ) x 100 3)

where DW; is the weight of prey type i, O is the number of prey
types, F; is the number of fish stomachs containing prey type
i, and N is the total number of fish stomachs containing prey.
We primarily concentrated on describing the diet in terms of
biomass, and we used dry weight in preference to wet weight so
as to minimise the bias resulting from the consumption of prey
items having a high moisture content.

Non-metric multidimensional scaling (nMDS) was used
to examine differences in diet composition, in terms of
biomass, among regions, seasons, and fish size classes. Sea-
sons were defined as: spring (September—November), summer
(December—February), autumn (March—May) and winter (June—
August). The biomass of each prey taxon was represented as a
percentage of the total prey biomass for each month (Eqn 2) in
order to standardise the relative contributions of prey across all
months. Data were left untransformed and a similarity matrix
was constructed using the Bray-Curtis similarity coefficient
(Clarke 1993). Analysis of similarities (ANOSIM) was used
to test whether diet composition differed statistically among
regions, seasons and size classes (Clarke 1993). Similarity per-
centages (SIMPER) were used to determine the prey items that
made the greatest contribution to the similarity in samples within
a priori groups (e.g. season), and the dissimilarity of samples
between a priori groups. All multivariate analyses were con-
ducted using the PRIMER (Plymouth Routines In Multivariate
Ecological Research) package version 5.2.2.

Diel feeding

We assessed diel feeding periodicity by comparing the mean
stomach fullness and the percentage of fish with stomachs con-
taining prey between the day and night for each season sampled.
This was only possible for autumn (March, April and May) and
winter (June, July and August) in the northern region when day
and night sampling was conducted concurrently. Because we
obtained specimens opportunistically from commercial gillnet
vessels, we were unable to determine the extent of feeding at
discrete intervals over a 24-h period. Instead, we were only able
to ascertain whether specimens were collected during the day or
night.

Daily ration and prey consumption rates

We estimated daily consumption rates of prey by longtail tuna
using the methods of Olson and Mullen (1986). This method
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predicts the feeding rate (7, grams per hour) by dividing the
mean wet weight of the stomach contents per predator (W;, in
grams) by the average time required to evacuate the average
proportion of prey type i (4;). This can be represented in the
following model for a predator that consumes a range of prey
that are evacuated at different rates:

1 —_
ey @

where i refers to each of the prey types consumed by the preda-
tor. This represents the prey consumption per hour, so that 7 is
multiplied by the number of hours per day in which the preda-
tor feeds to estimate the daily meal (M). Because longtail tuna
primarily feed during the day (see ‘Results’), we multiplied 7 by
12. Daily ration was then calculated by expressing the daily meal
as a percentage of the average wet body weight of fish exam-
ined. We also investigated size-related variation in daily ration
among three size classes: small (S, <800 mm), medium (M, 800
to 1000 mm) and large (L, >1000 mm).

Because we had no information on the evacuation times
(A;) for specific prey consumed by longtail tuna, we applied
an estimate that most closely corresponded to the A; values
for particular prey experimentally determined by Olson and
Boggs (1986) for yellowfin tuna. We felt that this approach was
suitable for longtail tuna, because yellowfin tuna are a closely
related species and the experiment of Olson and Boggs (1986)
was undertaken in water temperatures (23.5-25.5°C) similar to
that of the present study (21-28°C). They assigned values of
A; to squid (4.48), mackerel (Scomber japonicus) (5.29), smelt
(Hypomesus pretiosus) (4.12) and nehu (Stolephorus purpureus)
(2.24), and the mean for four experimental food types (3.77).
Our estimates for each prey type were based on similarity of
digestibility by taking into account the size and ‘softness’ of the
prey type. This approach was successfully applied to dolphinfish
(Corypeanea hippurus) in the eastern Pacific Ocean by Olson
and Galvan-Magana (2002). We included all empty stomachs in
the estimation of daily ration because they probably represent the
true proportion of the population that may not have fed before
the time of capture.

Annual prey consumption in the Gulf of Carpentaria

We were interested in estimating the annual consumption of prey
species by longtail tuna, particularly penaeids that are commer-
cially important in the NPF, which incorporates the northern
study region (Fig. 1). Although we also aimed to estimate the
annual consumption of prey for the eastern region and the entire
NPF, this was not possible because we only had information
on longtail tuna density for the Gulf of Carpentaria (GoC)
(see Griffiths et al. in press). Longtail tuna apparently under-
take an ontogenetic migration from the north-west to eastern
Australia (Serventy 1956), and their density probably changes
significantly across this spatial scale. Therefore, it is unreal-
istic to employ the GoC longtail tuna density for estimating
consumption of fish in any area outside the GoC.

We initially aimed to estimate the annual biomass of prey
consumed using the method of Pauly and Palomares (1987)
and Brewer ef al. (1991). This method was not considered suit-
able for longtail tuna because their model does not account for
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size-related changes in prey preference and daily ration. We mod-
ified the model to better account for these factors, which can be
represented as:

B; =365T; Y  MyN; ()
je(S,M,L)

where B; is the total annual biomass of prey i consumed by
longtail tuna of size class j (j=S, M, L), T; is the total area
(km?) where predation of the prey species can occur, M; j 1s the
daily meal of prey type i by fish in size class j (in terms of
wet weight), N; is the density of longtail tuna in size class j
(fish km™2) in area 7;. In the absence of size-specific density
estimates for longtail tuna in the GoC, we used a value of 1.81
fish (s.d. & 0.499) km~2 for all three size classes of longtail tuna
in T; (Griffiths et al. in press).

The annual consumption rate of each prey type was calcu-
lated for the entire GoC using a feeding area (7}) of 397 700 km?
(Zhou and Griffiths 2006). We did not want to overestimate the
consumption rate of commercially important penaeids by long-
tail tuna. Most species of penaeids are more abundant close to the
coast. Therefore, we assumed that predation was restricted to the
commercial fishing grounds in the GoC comprising 206 804 km?
(Zhou and Griffiths 2006). We recognise that prey, particularly
prawns, may vary in their availability in space and time, and
that the contribution of prey to the observed diet may be influ-
enced by spatial or temporal variation in sampling intensity and
predator consumption rates. In this model, we assumed that the
contribution of prey to the overall diet was representative of the
entire year since we collected samples monthly throughout each
region. We also made a further assumption that the consumption
rate of tuna did not vary spatially or temporally.

We incorporated uncertainty around our model parameters
using a normal or uniform distribution depending on the data
available. The A; values used were point estimates without error
estimates and should be considered minimum estimates. We used
10000 Monte Carlo simulations in ‘Crystal Ball Risk Analy-
sis Software’ (Decisioneering, Denver, CO) to obtain the mean
biomass (B;) of prey consumed in the GoC.

Results
Overall diet composition

A total 0f497 longtail tuna stomachs were analysed, of which 168
(or 34%) were empty. The overall diet was diverse, consisting
of 101 prey taxa (Table 1) with a total biomass of 5344 g and
22423 g by dry and wet weight respectively. The contribution of
each prey taxa (in terms of % DW and % FO) to the diet of fish
from each region across seasons and fish sizes is given in Tables
2to 4.

Overall, the relative importance of each prey category was
remarkably similar for both regions in terms of biomass and
frequency of occurrence. Pelagic fishes made the largest con-
tribution to the diet of longtail tuna in terms of biomass and
frequency of occurrence both in the northern region (90% DW,
73% FO) and the eastern region (93% DW; 65% FO) (Table 5).
These were primarily represented by small schooling clupeids
and engraulids including Sardinella albella, Sardinella gibbosa,
Stolephorous spp. and Sardinops spp.
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In terms of biomass, the next most important prey cate-
gories were similar for both regions: 4-5% for demersal fishes
and 2-5% for cephalopods in the eastern and northern regions
respectively. Other prey categories, including commercially
important prawns, contributed < 1% to the overall diet (Table 5).
Demersal fishes were mainly represented by Sillago spp. (24%),
Pseudorhombus spp. (16%), Paramonacanthus filicauda and
Nemipterus celebicus (8%). Cephalopods were mainly repre-
sented by Teuthoidea sp. (72%), Photololigo spp. (11%) and
Sepia smithii (10%).

In terms of frequency of occurrence, all prey categories
contributed 3 to 8% to the overall diet, with commercially
important prawns contributing 3% (Table 5). With respect to
region, miscellaneous prey items (Zostera spp. and Sargas-
sum spp.), crabs (portunids, Charybdis spp. and Thalamita
sima) and cephalopods (Teuthoidea sp. and Photololigo spp.)
made a slightly greater contribution to the diet in the east-
ern region. In contrast, demersal fishes (Leiognathus splendens,
Paramonacanthus filicauda and Centriscus scutatus) and com-
mercially important penaeids (Penaeus spp.) were more highly
represented in the northern region.

Regional comparisons

The number of prey taxa consumed in the northern region (82
taxa) was nearly twice that of the eastern region (45 taxa).
nMDS ordination showed no definitive difference in the tax-
onomic composition of diet with respect to region, because
samples appeared widely dispersed (Fig. 2). However, ANOSIM
indicated there was in fact a statistical difference in the diet com-
position between the two regions (Global R =0.181, P =0.009).
SIMPER revealed that this difference resulted from greatest con-
tributions of Sardinella spp., Teuthoidea sp. and Selar boops
in the northern region, compared with greater contributions
of Engraulidae sp., Clupeidae sp., Belonidae sp., Scomber
australasicus and Sardinops sagax in the eastern region.

Seasonal comparisons

The number of prey taxa consumed differed markedly among
seasons, but the pattern of seasonal variation was similar in both
regions. In the northern region, fish had the most diverse diet in
autumn and winter (47 and 27 taxa) and the least diverse diet
in summer (7 taxa). The same trend was apparent in the eastern
region, where fish had the most diverse diet in autumn and winter
(29 and 17 taxa) and the least diverse diet in summer (7 taxa).

With respect to diet composition, nMDS ordinations showed a
similar grouping of samples in both regions in that the proximity
of samples in autumn and winter were far closer than those in
summer and spring (Fig. 3). Because diets of individual fish were
aggregated into monthly samples, there were too few possible
sample permutations for ANOSIM to calculate a test statistic to
determine whether diets statistically differed among seasons in
each region. However, SIMPER revealed that the dissimilarity in
diets among seasons was very high for both the northern region
(73-92%) and the eastern region (69-80%).

In the northern region, Sardinella spp. and Stolephorus spp.
contributed most to the diet biomass in each of the four sea-
sons. The dissimilarity in diet composition among seasons was
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Table 3. Prey taxa consumed (% dry weight) by small (<800 mm FL), medium (800-1000 mm FL) and large (>1000 mm FL) longtail tuna caught
in northern and eastern Australia between February 2003 and April 2005
Fish with empty stomachs were excluded from the analysis. BC, benthopelagic crustaceans; Cep, cephalopods; Cra, crabs; DF, demersal fishes;

Misc, miscellaneous; Pen, penaeids; PF, pelagic fishes

Family Prey name Category Northern region Eastern region
Small Medium Large Small Medium Large
Teleost
Apogonidae Siphamia spp. DF 0.016
Belonidae Belonidae sp. PF 0.080 3.465 11.849
Strongylura leiura PF 0.681
Bregmacerotidae Bregmaceros spp. DF 0.012
Carangidae Alectis sp. PF 0.244
Carangidae sp. PF 0.925
Carangoides spp. PF 0.025
Pantolobus radiatus PF 0.738
Scomberoides spp. PF 0.834
Scomberoides tol PF 0.146 1.965
Selar boops PF 2.219
Trachurus declivis PF 0.249 0.407
Centriscidae Centriscus scutatus DF 0.053
Clupeidae Clupeidae sp. PF 2.571 0.703 6.793 6.258
Dussumieria elopsoides PF 5.372 1.405
Herklotsichthys spp. PF 0.455
Hyperlophus vittatus PF 6.028
Nematalosa come PF 3.137 6.234
Nematalosa spp. PF 0.523
Pellona ditchella PF 0.434
Sardinella albella PF 0.382 0.545
Sardinella gibbosa PF 7.037
Sardinella spp. PF 29.662 57.526 25.769 6.470 2.163
Sardinops spp. PF 1.591 13.424 10.447
Engraulidae Engraulidae sp. PF 6.126 6.808 27.936 37.631 11.989
Stolephorus spp. PF 9.723 3.462 37.065 10.784 3.800
Thryssa hamiltoni PF 1.199 2.902
Thryssa setirostrus PF 2.704 1.098
Thryssa spp. PF 0.220
Exocoetidae Cheilopogon spp. PF 0.765
Exocoetidae sp. PF 0.857
Haemulidae Pomadasys spp. DF 0.282
Hemiramphidae Hemiramphidae sp. PF 1.140 2.801 7.076
Hemiramphus robustus PF 1.466
Hyporhamphus dussumieri PF 1.575
Leiognathidae Leiognathidae sp. DF 0.237
Leiognathus bindus DF 0.194
Leiognathus equillus DF 1.864
Leiognathus splendens DF 0.919 2.516
Leiognathus spp. DF 0.854
Monacanthidae Monacanthidae sp. DF 0.010 1.965 0.082
Paramonacanthus filicauda DF 0.863 0.664
Mullidae Upeneus sulphureus DF 0.191
Nemipteridae Nemipterus celebicus DF 1.800
Nemipterus spp. DF 0.189
Ostraciidae Ostraciidae sp. BC 0.008 0.014 0.008
Paralichthyidae Pseudorhombus spp. DF 2.817
Platycephalidae Platycephalidae sp. DF 0.055
Plotosidae Plotosidae sp. DF 0.155
Scatophagidae Selenotoca multifasciata DF 0.113
Scombridae Scomber australasicus PF 14.741
Scombridae sp. PF 0.105
Scorpeinidae Scorpeinidae sp. DF 0.124
Serranidae Epinephalus spp. DF 0.001

(Continued)
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Table 3. (Continued)

Family Prey name Category Northern region Eastern region
Small Medium Large Small Medium Large
Sillaginidae Sillago spp. DF 6.576
Sphyraenidae Sphyraena obtusata PF 0.578
Synodontidae Synodontidae sp. DF 0.987
Teleost Remains PF 10.668 3.490 29.593 17.066 9.869 16.616
Terapontidae Terapon puta DF 0.582
Tetraodontidae Lagocephalus lunaris DF 0.109
Tetraodontidae sp. DF 1.948 0.097
Miscellaneous
Seagrass Misc 0.009 0.002
Avies Bird Feather Misc 0.000 0.001
Casuarinaceae Cassurina Plant remains Misc 0.008 0.004
Hydrocharitaceae Halophila ovalis Misc 0.011
Hymenoptera Hymenoptera Misc 0.000
Sargassaceae Sargassum spp. Misc 0.004 0.148
Zosteraceae Zostera spp. Misc 0.131 0.329 0.133 0.154
Mollusca
Bivalvia Bivalve Larvae Misc 0.000
Loliginidae Photololigo spp. Cep 0.538 0.755
Teuthoidea sp. Cep 1.019 3.158 39.065 0.238 0.010 0.266
Sepiidae Sepia elliptica Cep 0.438
Sepia plangon Cep 17.365
Sepia smithii Cep 1.142
Sepioidae sp. Cep 0.011 0.053
Crustacea
Natantia BC 0.001
Brachyura Brachyuran megalopa BC 0.001 0.003 0.018
Caridea Caridae BC 0.000
Crustacea Crustacea remains BC 0.002 0.006
Isopoda Isopoda BC 0.033 0.001 0.005 0.028
Palinuridae Panulirus phyllasoma BC 0.001
Panulirus puerulus BC 0.004
Penacidae Metapenaeopsis novaeguinea Pen 0.443 0.118
Metapenaeopsis palmensis Pen 0.005
Metapenaeopsis spp. Pen 0.035 0.036 0.002
Penaeidae sp. Pen 0.099 0.053 0.118
Penaeus esculentus Pen 0.061 0.410
Penaeus merguiensis Pen 0.181
Penaeus plebejus Pen 0.010 0.061
Portunidae Charybdis spp. Cra 0.004 0.058 0.012
Charybdis truncata Cra 5.442
Charybdis yaldwini Cra 0.052
Portunus acerbiterminalis Cra 0.054 0.022 0.026
Portunus pelagicus Cra 0.167
Portunus rubromarginatus Cra 0.034 0.073
Portunus sanguinolentus Cra 0.012
Portunus spp. Cra 0.011 0.025 0.106
Thalamita sima Cra 0.046 0.059
Thalamita spp. Cra 0.023
Sergestidae Sergestidae sp. BC 0.000
Squillidae Stomatopoda Larvae BC 0.121 0.011
Total number of stomachs examined 272 97 17 19 53 39
Total number of prey taxa recorded 70 36 5 6 31 29

high (71-90%), indicating that the diet composition varied sub-
stantially among seasons; however, Sardinella spp. contributed
between 18 and 35% to the dissimilarity among seasons. Sev-
eral other species made reasonable contributions (>5%) to

the dissimilarity of the diet among particular seasons, includ-
ing Paramonacanthus filicauda, Teuthoidea sp., Pantolobus
radiatus, Nematalosa come, Selar boops and Nemipterus
celebicus.



388 Marine and Freshwater Research

S. P. Griffiths et al.

Table 4. Prey taxa consumed (% frequency of occurrence) by small (<800 mm FL), medium (800-1000 mm FL) and large (>1000 mm FL) longtail
tuna caught in northern and eastern Australia between February 2003 and April 2005
Fish with empty stomachs were excluded from the analysis. BC, benthopelagic crustaceans; Cep, cephalopods; Cra, crabs; DF, demersal fishes;

Misc, miscellaneous; Pen, penaeids; PF, pelagic fishes

Family Prey name Category Northern region Eastern region
Small Medium Large Small Medium Large
Teleost
Apogonidae Siphamia spp. DF 2.632
Belonidae Belonidae sp. PF 0.532 3.571 20.588
Strongylura leiura PF 0.532
Bregmacerotidae Bregmaceros spp. DF 0.532
Carangidae Alectis sp. PF 2.941
Carangidae sp. PF 2.632
Carangoides spp. PF 2.632
Pantolobus radiatus PF 0.532
Scomberoides spp. PF 1.786
Scomberoides tol PF 0.532 5.263
Selar boops PF 0.532
Trachurus declivis PF 2.941
Centriscidae Centriscus scutatus DF 1.596
Clupeidae Clupeidae sp. PF 3.723 2.632 3.571 2.941
Dussumieria elopsoides PF 2.660 2.632
Herklotsichthys spp. PF 1.064
Hyperlophus vittatus PF 5.882
Nematalosa come PF 2.660 2.632
Nematalosa spp. PF 0.532
Pellona ditchella PF 0.532
Sardinella albella PF 1.064 2.632
Sardinella gibbosa PF 1.596
Sardinella spp. PF 21.809 42.105 25.000 14.286 5.882
Sardinops spp. PF 1.064 8.929 5.882
Engraulidae Engraulidae sp. PF 22.872 10.526 40.000 39.286 5.882
Stolephorus spp. PF 14.362 21.053 20.000 12.500 14.706
Thryssa hamiltoni PF 1.596 2.632
Thryssa setirostrus PF 2.128 2.632
Thryssa spp. PF 1.064
Exocoetidae Cheilopogon spp. PF 0.532
Exocoetidae sp. PF 1.064
Haemulidae Pomadasys spp. DF 2.632
Hemiramphidae Hemiramphidae sp. PF 2.660 5.357 14.706
Hemiramphus robustus PF 1.064
Hyporhamphus dussumieri PF 2.660
Leiognathidae Leiognathidae sp. DF 8.824
Leiognathus bindus DF 2.632
Leiognathus equillus DF 2.632
Leiognathus splendens DF 2.128 5.263
Leiognathus spp. DF 1.064
Monacanthidae Monacanthidae sp. DF 1.064 2.632 3.571
Paramonacanthus filicauda DF 1.596 2.632
Mullidae Upeneus sulphureus DF 0.532
Nemipteridae Nemipterus celebicus DF 0.532
Nemipterus spp. DF 0.532
Ostraciidae Ostraciidae sp. BC 1.064 2.632 2.941
Paralichthyidae Pseudorhombus spp. DF 2.941
Platycephalidae Platycephalidae sp. DF 0.532
Plotosidae Plotosidae sp. DF 0.532
Scatophagidae Selenotoca multifasciata DF 0.532
Scombridae Scomber australasicus PF 11.765
Scombridae sp. PF 0.532
Scorpeinidae Scorpeinidae sp. DF 0.532

(Continued)
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Family Prey name Category Northern region Eastern region
Small Medium Large Small Medium Large
Serranidae Epinephalus spp. DF 0.532
Sillaginidae Sillago spp. DF 2.941
Sphyraenidae Sphyraena obtusata PF 2.941
Synodontidae Synodontidae sp. DF 1.786
Teleost remains PF 36.170 28.947 75.000 40.000 26.786 44.118
Terapontidae Terapon puta DF 0.532
Tetraodontidae Lagocephalus lunaris DF 0.532
Tetraodontidae sp. DF 2.632 2.941
Miscellaneous
Seagrass Misc 0.532 2.941
Avies Bird feather Misc 0.532
Casuarinaceae Casuarina plant remains Misc 1.064
Hydrocharitaceae Halophila ovalis Misc 5.357
Hymenoptera Hymenoptera Misc 0.532
Sargassaceae Sargassum spp. Misc 1.064 7.143
Zosteraceae Zostera spp. Misc 25.000 20.000 26.786 11.765
Mollusca
Bivalvia Bivalve larvae Misc 0.532
Loliginidae Photololigo spp. Cep 2.128 1.786
Teuthoidea sp. Cep 3.723 13.158 25.000 20.000 7.143 8.824
Sepiidae Sepia elliptica Cep 1.786
Sepia plangon Cep 20.000
Sepia smithii Cep 1.786
Sepioidae sp. Cep 0.532 2.941
Crustacea
Natantia BC 1.786
Brachyura Brachyuran megalopa BC 1.064 1.786 2.941
Caridea Caridae BC 0.532
Crustacea Crustacea remains BC 0.532 2.632
Isopoda Isopoda BC 7.979 2.632 10.714 8.824
Palinuridae Panulirus phyllasoma BC 0.532
Panulirus puerulus BC 2.128
Penaeidae Metapenaeopsis novaeguinea Pen 2.941
Metapenaeopsis palmensis Pen 1.786
Metapenaeopsis spp. Pen 4.787 5.263 1.786
Penaeidae sp. Pen 3.191 5.263 2.941
Penaeus esculentus Pen 0.532 2.941
Penaeus merguiensis Pen 1.064
Penaeus plebejus Pen 0.532 2.941
Portunidae Charybdis spp. Cra 0.532 2.632 1.786
Charybdis truncata Cra 25.000
Charybdis yaldwini Cra 2.632
Portunus acerbiterminalis Cra 2.128 2.632 1.786
Portunus pelagicus Cra 1.064
Portunus rubromarginatus Cra 1.786 2.941
Portunus sanguinolentus Cra 0.532
Portunus spp. Cra 1.064 2.632 2.941
Thalamita sima Cra 1.786 2.941
Thalamita spp. Cra 2.632
Sergestidae Sergestidae sp. BC 2.632
Squillidae Stomatopoda larvae BC 2.128 2.632
Total number of stomachs examined 272 97 17 19 53 39
Total number of prey taxa recorded 70 36 5 6 31 29
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TableS. Percentage contribution (in terms of dry weight and frequency of occurrence) of eight prey categories to the diet of longtail tuna in northern
and eastern regions in Australia

Prey category % Dry weight % Frequency of occurrence
Northern Eastern Overall Northern Eastern Overall
Pelagic fishes 89.686 93.094 91.390 73.713 65.356 69.443
Demersal fishes 5.158 4.243 4.701 8.093 3.814 5.907
Cephalopods 4.486 1.686 3.086 4.596 7.818 6.242
Penaeids 0.289 0.369 0.329 4270 2.244 3.235
Crabs 0.247 0.303 0.275 1.901 3.271 2.601
Benthopelagic crustaceans 0.119 0.024 0.071 5.477 4.569 5.013
Miscellaneous 0.015 0.281 0.148 1.950 12.929 7.559
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In the eastern region, several prey taxa made substantial
contributions to the diet biomass in each of the four seasons,
including Engraulidae sp., Stolephorus spp. and Belonidae sp. A
The dissimilarity of the diet composition among seasons was [
high (89-99%), indicating that the diet composition varied sub-
stantially among seasons. Several species contributed greatly to
the dissimilarity of diets among seasons, including Belonidae
sp., Scomber australasicus, Clupeidae sp., Engraulidae sp., ®
Sardinops sagax and Pseudorhombus spp.
Feeding periodicity A
With respect to monthly variation in feeding intensity, the stom- ®
ach fullness index varied considerably among months, being Stress = 0.12

highest between April and July (0.34+£0.5 s.e.) and gradu-
ally declining to the lowest values between October and March
(0.01 0.0 s.e.). This pattern in the stomach fullness index
showed a close inverse relationship with reproductive activity,
with stomach fullness being highest in the months of lowest

Fig.3. MDS ordination of diet biomass data for longtail tuna caught in four
seasons (spring, summer, autumn and winter) in (a) northern and () eastern
Australian waters between February 2003 and April 2005. Stress values are
shown.
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Fig. 4. Monthly mean (+s.e.) stomach fullness index and gonadosomatic
index (GSI) showing the relationship between feeding intensity and repro-
ductive activity. Both diet and GSI data from northern and eastern regions
were combined.

reproductive activity and lowest during the months of highest
reproductive activity (Fig. 4). The relationship between GSI
and stomach fullness index was negative and statistically sig-
nificant for both males (r=—0.704, P=0.011) and females
(r=-0.652, P =0.022) (Fig. 5).

An assessment of diel feeding periodicity was only possi-
ble for autumn and winter in the northern region, where day
and night sampling was conducted concurrently in the same
region. The proportion of stomachs containing prey was 2.4 to
3.8 times higher during the day than at night for autumn and win-
ter, respectively. Although 23 and 40% of stomachs contained
prey during the night during autumn and winter, stomach full-
ness was low (0.02 to 0.08) (Fig. 6). This result, coupled with
the observation that most stomachs collected at night contained
prey in advanced stages of digestion, indicates that fish proba-
bly did not feed during the night but had prey remaining in their
stomachs from daytime meals. A two-way fixed-factor ANOVA
revealed that mean stomach fullness was significantly higher
during the day than at night in both autumn and winter (d.f. =1,
F =85.57, P<0.0001, Student-Newman-Keuls test; Fig. 6).
However, mean stomach fullness was significantly higher dur-
ing winter than during autumn (d.f. =1, F =26.62, P < 0.0001,
Student-Newman-Keuls test; Fig. 6). A significant season x diel
interaction (d.f. =1, F=11.57, P<0.001) was also evident,
owing to the mean stomach fullness being significantly different
between autumn and winter during the day but not during the
night (Student-Newman-Keuls test; Fig. 6).

Size-related comparisons

The number of prey taxa consumed by each size class differed
markedly; however, diets of fish from the two regions showed a
different pattern of variation among size classes. In the northern
region, small fish had the most diverse diet (70 taxa), while large
fish had the least diverse diet (5 taxa). In the eastern region, large
fish had the most diverse diet (29 taxa) and small fish had the
least diverse diet (6 taxa).

nMDS ordinations of diet biomass data (Fig. 7) and ANOSIM
revealed a significant difference in the diets of the three size
classes in the northern region (Global R=0.181, P =0.009)
and the eastern region (Global R =0.181, P =0.009). Pair-wise
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Fig. 5. Plot showing the relationship between reproductive activity (GSI)

and feeding intensity (stomach fullness index) for longtail tuna caught in
northern and eastern Australia between February 2003 and April 2005.
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Fig. 6. (@) Mean (=%s.e.) stomach fullness index and (b) proportion of
stomachs with prey for longtail tuna caught during the day and night in
autumn and winter in the Weipa region, northern Australia.

comparisons revealed a consistent pattern in both regions in that
the diets of large fish were significantly different to those of
small and medium fish, whereas the diets of small and medium
fish did not differ.

In the northern region, SIMPER revealed that this difference
resulted from the consumption of cephalopods (Teuthoidea sp.),



392 Marine and Freshwater Research

(a) Northern region

| ]

| ‘

[ |

A Small

O Medium n
W Large Stress = 0.08
(b) Eastern region
|
[ |
[ |
|

Stress = 0.08

Fig. 7. nMDS ordination of diet biomass data for small (<800 mm FL),
medium (800—-1000 mm FL) and large (>1000 mm FL) longtail tuna caught
in (@) northern and (b) eastern Australian waters between February 2003 and
April 2005. Stress values are shown.

Sardinella spp., teleost remains (mainly unidentifiable clupeids
and engraulids) and Charybdis truncata by large fish, com-
pared with the consumption of Sardinella spp., Stolephorus spp.
and Engraulidae sp. by small and medium fish. In the eastern
region, the difference resulted from the consumption of larger
teleosts including Scomber australasicus, Belonidae sp., Hemi-
ramphidae sp. and Sillago spp. by large fish, contrasting with
the consumption of Stolephorus spp. Engraulidae sp., and teleost
remains (mainly unidentifiable clupeids and engraulids) by small
and medium fish.
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Fig. 8. Histogram showing the standard length (in 10 mm increments)
of prey consumed by longtail tuna caught in (a) northern and (b) eastern
Australia between February 2003 and April 2005.
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Fig.9. Plot showing the relationship between longtail tuna fork length and
the standard length (mm) of prey consumed. Data were combined for fish
caught in northern and eastern Australia between February 2003 and April
2005.

After combining the data from both regions in order to
investigate the relationship between fish size and prey size,
it was clear that fish of all sizes primarily consumed prey of
less than 120-mm total length (TL) (Fig. 8). There was no
significant correlation between fish size and the size of prey
consumed (r=0.042, P=0.499; Fig. 9). A small number of
large prey (380-540 mm) — primarily belonids, hemiramphids
and exocoetids — were consumed by a wide size range of fish
(654-1055 mm FL).

Prey-consumption rates and daily ration

Evacuation rates (A;) used for various prey taxa to estimate daily
ration for longtail tuna are given in Table 1. The estimated mean
(&£s.e.) daily consumption averaged across all fish sizes was
159.39 £ 5.06 g, which translated into an estimated daily ration
0f 2.36 + 0.07% of body weight per day (BW day~!) (Table 6).
Estimates of size-related variation in daily ration was under-
taken by combining data from both regions, because digestion
and evacuation rates are biologically controlled processes influ-
enced by the ‘softness’ of the prey consumed rather than by diet
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Table 6. Fork length (in mm), mean (+s.e.) body weight, daily consumption, ration, and estimated annual prey consumption for small, medium and
large longtail tuna in Australia pooled for northern and eastern regions

Size class  Fork-length range (mm) Weight (g) Daily consumption (g day~!)  Daily ration (% BW day~!')  Annual consumption (kg year—')
Small 597-799 5678 (101.41) 123.27 (4.35) 2.17 (0.08) 45.26 (0.23)
Medium 800999 9413 (156.33) 212.77 (12.52) 2.26 (0.13) 77.14 (0.54)
Large 1000-1250 17657 (589.06) 229.04 (12.92) 1.30 (0.07) 82.97 (0.55)
Overall 597-1120 8178 (142.36) 159.39 (5.06) 2.36 (0.07) 70.70 (0.25)

Table 7. Estimated annual consumption (tonnes year~!) (%s.e.) of major prey categories by small, medium and large longtail tuna in the Gulf of
Carpentaria (397 700 km?)
Consumption estimates for commercially important penaeids were restricted to the trawl grounds (206 804 km?) of the Gulf of Carpentaria. Consumption
estimates were calculated using 10 000 Monte Carlo simulations of a consumption model and defining uncertainty around mean fish weight and daily ration
for each size class and mean longtail tuna density in the region

Size class Pelagic fishes Demersal fishes Cephalopods Penaeids Crabs Benthopelagic Miscellaneous Total
crustaceans
Small 25396.98 (318.06)  5347.41 (66.97) 447.48 (5.60)  99.33(2.16)  26.90(0.34) 23.30(0.29) 70.12(0.88)  32227.17(89.71)
Medium  48517.73 (1198.34) 5188.24 (128.14) 1403.47 (34.66) 28.51(0.68) 114.81(2.84) 14.32(0.35) 0.19 (0.00)  56105.11 (155.35)
Large 43733.40 (934.14) 12538.88 (267.83) 250.79 (5.36) 471.24(9.89) 180.57 (3.86) 12.43(0.27) 1.25(0.01)  59826.33 (166.07)
Overall 121657.89 (1588.45) 23953.11 (345.25) 2160.89 (32.40) 599.08 (10.12) 334.84 (5.15) 51.56 (0.67) 71.50 (1.71) 148177.93 (244.41)

composition. Daily ration was similar for small (2.17 +0.08%
BW day~!) and medium (2.26 & 0.13% BW day~!) fish, and was
lowest for large fish (1.30 & 0.07% BW day~!) (Table 6). Esti-
mated annual consumption rates for individual fish increased
with fish size from 45.2640.23kg year~! for small fish to
82.97 +0.55kg year~! for large fish.

Annual prey consumption estimates in the Gulf of Car-
pentaria increased from 32227490t year~! for small fish to
59826 + 166t year~! for large fish, resulting in an overall con-
sumption rate of 148 178 4244 t year—! (Table 7). Pelagic and
benthopelagic fishes contributed 121 658 4 1588t year—! and
23953 4 345t year ™!, respectively, to the total prey consump-
tion. The next most important prey were commercially important
cephalopods and penaeids, contributing 2161 & 34t year—! and
599 + 10 tyear—!, respectively. Also, large fish consumed at least
four times the biomass of penaeids (471 & 10 t year ) compared
with small and medium fish. Crabs, benthopelagic crustaceans
and miscellaneous prey items made smaller contributions (52—
335t year~!) to the total prey consumption (Table 7).

Discussion
General diet description

Our results show that longtail tuna play an important ecological
role in the neritic ecosystems of northern and eastern Australia by
consuming a wide range of prey from both pelagic and demersal
assemblages. Fish from both regions appear to consume a diverse
suite of prey items during the daytime, not only from the pelagic
realm in which they frequent, but also from demersal assem-
blages. Although the taxonomic composition of the diet differed
significantly between regions, longtail tuna in both regions con-
sumed small fishes when available, in particular small schooling
pelagic clupeids and engraulids.

Although previous studies of longtail tuna feeding ecology
have been based on small sample sizes, they complement the
results of the present study that found that longtail tuna are
predators that consume a variety of prey types, but primarily
small pelagic fishes. For example, Wilson (1981) examined the
stomachs of 26 longtail tuna from the Gulf of Papua and found
fish to consume 31 prey taxa comprising a range of teleosts
(85% by volume), crustaceans (8%) and cephalopods (6%), with
engraulids the most predominant prey item overall. Serventy
(1942, 1956) provided observational accounts of the stomach
contents of a small number of longtail tuna caught through-
out the Australian distribution of the species. He noted that a
range of small pelagic fishes such as engraulids, clupeids, exo-
coetids, carangids, belonids and hemiramphids comprised the
majority of diet, while other demersal prey including monacan-
thids, cephalopods and a range of crustaceans including penaeids
were also commonly consumed. In Malaysia, Silas (1967) also
found that longtail tuna consumed a diverse suite of teleosts
from both pelagic and demersal habitats, including engraulids,
clupeids, sygnathids and scombrids; however, in contrast to Aus-
tralian studies, squids and crustaceans (stomatopods, mysids and
megalopa) were the predominant prey in terms of frequency of
occurrence.

The relatively high contribution of demersal and benthic
prey (e.g. Sillago spp., Platycephalidae sp., Upeneus sulphureus
and penaeids) in the diets of fish in this study demonstrates
the large differences that can exist in the diets of similar-
sized tuna species. Other tropical tunas have been documented
to mainly consume prey from surface layers, such as small
schooling pelagic fishes (e.g. engraulids, clupeids and scom-
brids), exocoetids and cephalopods (Maldeniya 1996; Bertrand
et al. 2002; Olson and Galvan-Magana 2002). However, previ-
ous dietary studies in Australia (Serventy 1942, 1956; Wilson
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1981) and Malaysia (Silas 1967) demonstrated that longtail tuna
often consume demersal teleosts from families such as Syg-
nathidae, Blenniidae, Gobiidae, Mullidae, Platycephalidae and
Callyonimidae. The high proportion of demersal prey in the diet
may owe to their preference for relatively shallow neritic waters.
Because water depths in the two regions where the fish were
caught were less than 30 m, fish may easily target slower-moving
demersal prey when their preferred pelagic fish prey is unavail-
able. Demersal prey are relatively uncommon in the diets of
other large tunas, such as yellowfin and Atlantic bluefin tuna that
inhabit deep oceanic waters, despite the fact that these predators
having specialised retia to heat the brain, eyes and viscera that
can enable fish to dive to the ocean floor in the deep, cool waters
beyond continental shelves (Block et al. 2001; Brill et al. 2002).
However, in an isolated case, Chase (2002) found over half of the
prey in the diet of large Atlantic bluefin tuna (Thunnus thynnus)
captured in the shallow waters (25 m) of Cape Cod bay, New
England, to be comprised of benthic or demersal prey, includ-
ing sessile sponges. He hypothesised that this was a result of
opportunistic foraging in shallow waters.

Spatial and seasonal variation in diet

Longtail tuna played a similar ecological role in northern and
eastern Australia by consuming a range of prey categories (e.g.
pelagic and demersal fishes) in similar proportions. However,
the diversity and composition of the diet varied significantly
among regions, seasons and fish sizes. The diversity of prey in
the northern region was nearly twice that of the eastern region,
which probably reflects the higher diversity of fishes generally
found in the tropical northern region (Blaber 2002). Also, the
overall prey diversity, variation in diet composition and feeding
intensity was highest during autumn and winter and decreased
markedly in spring and summer. This pattern was consistent for
both regions, despite fish in each region having significantly
different diet composition. In the northern region, longtail tuna
primarily consumed small schooling pelagic species such as
Sardinella spp. and Stolephorous spp. during spring and sum-
mer, while Stolephorous spp., Clupeidae sp. and Engraulidae sp.
were primarily consumed in the eastern region during this time.

There was a consistent pattern of seasonal variation in the
diversity and composition of the diet of fish from the two regions,
considering the vastly different environmental regimes of the
two regions. In contrast to the subtle seasonal variation in water
temperature in the subtropical-temperate climate of the eastern
region (Ridgway and Godfrey 1997), the tropical northern region
experiences a dynamic monsoonal climate with a ‘wet’ season
between October and February and a ‘dry’ season between March
and September. The numerous large estuaries in the region flood
during the wet season and discharge large volumes of turbid
freshwater into the Gulf of Carpentaria, significantly changing
the salinity, temperature and turbidity regime of coastal waters
(Blaber et al. 1995).

Tunas rely heavily on their high visual acuity to capture prey
(Nakamura 1968), which probably explains why we found long-
tail tuna to feed primarily during the day. We assumed that
longtail tuna would move further offshore during the wet sea-
son to avoid highly turbid waters, a behaviour known to occur
in northern bluefin tuna (Brill ef al. 2002; Lemos and Gomes
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2004), yellowfin tuna and kawakawa (Euthynnus affinis) (Barry
1978). As a consequence, we expected a dramatic shift in the
diet composition to reflect consumption of a greater variety of
prey that is generally more abundant in offshore waters, such
as exocoetids and cephalopods. However, our results indicated
the contrary, with diets characterised by low prey diversity pri-
marily being comprised of schooling pelagic species. This may
indicate that longtail tuna may be more tolerant of turbid waters
compared to other large tunas, thereby allowing them to remain
within the coastal regime during the wet season to exploit locally
abundant pelagic prey, such as Sardinella spp.

In contrast to the low prey diversity and feeding intensity
during spring and summer, fish in both regions clearly increased
feeding intensity and consumed a wider range of prey during
autumn and winter; consuming a range of both pelagic and dem-
ersal prey items. In the northern region, fish consumed a vast
array of demersal and benthic species including leiognathids,
platycephalids, sillagids, mullids and nemipterids. Similarly,
in the eastern region, the diet comprised numerous demersal
species including Psuedorohombus sp., Sillago spp., penaeids
and portunids. However, Sardinops spp. also made a large contri-
bution to the diets of medium and large fish in the eastern region
during autumn and winter. Serventy (1956) also found longtail
tuna caught in south-eastern Australia during autumn to feed
‘... almost exclusively on pilchards (Sardinops neopilchardus)’.
Ward et al. (2003) found Sardinops sagax to be most abundant
along the eastern coast of Australia during autumn and winter
months (June to August), when they migrate northward to spawn.
Longtail tuna may therefore periodically target pilchard shoals
as they migrate along the eastern coast.

Few studies of tuna have collected reproductive and dietary
information concurrently in order to investigate the relationship
between these two factors. Spotted mackerel (Scomberomorus
munroi) and school mackerel (S. queenslandicus) from east-
ern Australia (Begg and Hopper 1997), and Spanish mackerel
(S. maculatus) in Trinidad (Sturm 1978) were shown to have an
inverse relationship between feeding intensity and reproductive
activity. This was similar for longtail tuna, where temporal
increases in feeding intensity in both regions showed a close
inverse relationship with reproductive activity, as indicated by
the gonadosomatic index (Figs 4 and 5). The fact that such a
dramatic increase in apparently opportunistic feeding behaviour
also occurs during the periods of highest feeding intensity may
indicate that longtail tuna maximise consumption in the months
leading up to the spawning season, in order to direct energy
towards gonad development. The decline in stomach fullness
during the spawning season may indicate that fish may actively
reduce their feeding intensely and rely more on stored energy
during this time. Fish may also be physically constrained to con-
sume less prey during the spawning season because enlarged
gonads, which can comprise up to 2.5% of body mass in females,
occupy a large proportion of their visceral cavity.

Prey consumption rates and daily ration

Our study was able to provide the first information on prey con-
sumption rates and daily ration for longtail tuna. Our annual prey
consumption estimates clearly indicate that longtail tuna play an
important role in structuring neritic ecosystems, consuming an
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estimated 148 000t year—! of prey in the Gulf of Carpentaria. It
is important to note that our consumption estimates were based
upon the gastric evacuation rates of yellowfin tuna. However,
Olson and Galvan-Magana (2002) suggested that these gas-
tric evacuation estimates are suitable for application to other
tunas, billfishes and dolphinfishes based on their physiological
similarities.

Estimated daily food consumption of longtail tuna (123—
229 g day~!) in the present study was similar or slightly lower
than what has been recorded elsewhere for closely related tunas,
whereas daily ration estimates (1.3-2.3% BW day~') were
nearly half that of similar size classes of tropical tunas studied in
other tropical regions (Olson and Boggs 1986; Maldeniya 1996;
Ménard et al. 2000). Olson and Boggs (1986) estimated simi-
lar daily prey consumption rates (175-270 g day™—!), but much
higher daily rations (3.8-9.6% BW day~!) for yellowfin tuna.
Similarly, Ménard et al. (2000) estimated that skipjack, bigeye
and yellowfin tuna consume around 170 g day~! and have a daily
ration of 6.1% BW day_l. In Sri Lankan waters, Maldeniya
(1996) estimated that yellowfin tuna had a much higher daily
prey consumption (275-539 g day~!) and ration (2.3-5.5% BW
day~') than longtail tuna in our study. The differences in daily
ration and consumption rates between longtail tuna and other
tropical tunas may be related to a difference in metabolic rates
and water temperature that can influence prey evacuation rates
(Durbin et al. 1983).

In contrast, our estimates of daily ration for longtail tuna were
nearly twice that of southern bluefin tuna (Thunnus maccoyii) oft
Tasmania, Australia (Young et al. 1997). Small (<140 cm FL)
and large (>140cmFL) fish were reported to consume only
1.01% and 0.89% BW day~!, respectively. This may owe to
low water temperatures off Tasmania (< 16°C), which may con-
tribute to a decrease in gastric evacuation rate and therefore a
lower daily ration (Durbin et al. 1983).

The pattern of size-related variation in the daily ration of
longtail tuna was similar to that of other large pelagic fishes in
that daily ration increased with body weight in small and medium
size classes but then declined in the largest size class. In Sri
Lankan waters, Maldeniya (1996) found that the daily ration of
yellowfin tuna increased from 2.1% BW day~! in small fish to
5.5% BW day~! in medium fish, but then gradually declined
to 1% BW day ™' for the largest size class. Brill (1987) found
that the standard metabolic rate of two tunas, 7 albacares and
Euthynnus affinis, decreased with increasing body weight. We
advocate that the decline in daily ration in large longtail tuna
may be a result of a rapid decrease in growth rate at sizes greater
than 100 cm FL (Wilson 1981), and thus a decrease in metabolic
demand. Therefore, larger fish may only require proportionally
smaller meals to meet their metabolic requirements.

Ecosystem and fishery interactions

Much research has been undertaken on the feeding ecology of
demersal fishes in the NPF, mainly to identify significant natu-
ral mortality sources of commercially important prawns in order
to improve prawn population models for management (Brewer
et al. 1991; Salini et al. 1998; Haywood et al. 1998). More
recently, results from such studies have become increasingly use-
ful for populating ecosystem models for ecosystem approaches
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to fisheries management. However, the role of pelagic fishes
in the neritic ecosystems of northern Australia and their inter-
action with commercial prawn fisheries in the region is poorly
understood.

Our results indicate that longtail tuna prey on commercially
important prawns, primarily Penaeus merguiensis and P escu-
lentus, but that the contribution of these prawns to the overall diet
was relatively minor (1.2% by dry weight). Wilson (1981) also
found penaeids to make a similar contribution to the diet of long-
tail tuna in the Gulf of Papua (1.8% by volume), while Serventy
(1956) noted that penaeids were commonly consumed in West-
ern Australia. By incorporating the consumption rates and daily
ration of longtail tuna estimated in our study with information
on their abundance in the region (Griffiths ez al. in press), it is
clear that they have a reasonable impact on penaeids, consuming
around 600t year~! in the Gulf of Carpentaria. This equates to
~11.4% of the total annual commercial catch of prawns (5287 t)
in the NPF during the time of sampling. However, considering
that the GoC comprises about half of the NPF-managed area
(Zhou and Griffiths 2006), the consumption of penaeids by
longtail tuna is likely to exceed 1000t year~!.

Itis important to note that although differential digestion rates
of prey taxa were incorporated into our consumption model, the
annual consumption estimates of penaeids are probably under-
estimated. First, these soft-bodied prey may be rapidly digested
before inspection of the stomach. Haywood (1995) found that
even in a slow-moving demersal fish, Monacanthus chinensis,
penaeids are completely digested within 3 h of consumption. In
the present study, most penaeids were found in advanced stages
of digestion; therefore, their contribution to the diet biomass
would have been greatly underestimated. Second, one species of
commercially important penaeid, Penaeus merguiensis, forms
dense aggregations for only a few months of the year as they
migrate from the estuaries to the commercial trawl grounds
between 10 and 20 m depth (Dell et al. in press). Unfortunately,
the majority of our samples were collected from commercial
gillnet vessels that generally fish beyond the depths of the trawl
fishery in 25 to 40 m. In contrast, samples taken on rod and
line from the sport fishery were restricted to inshore waters
less than ~15-m depth. As a result, prawns were probably very
much under-represented in our samples, if localised feeding
had occurred near prawn aggregations as suggested by Bienke
(2004).

Brewer et al. (1991) suggested that demersal fishes are the
primary source of natural mortality of commercially important
prawns in the NPE. They showed that 34 species of demersal fish
consumed 2950t year—! of commercially important penaeids in
Albatross Bay, a small region of the NPF (5788 km?). This trans-
lates to an average consumption rate of around 88t year~! per
species. In comparison, we estimated that longtail tuna consume
around 17t year™! in this region. At least a dozen species of rel-
atively large pelagic fishes occur in the region that are reputed
or recorded to prey upon penaeids to varying degrees, such as
spotted and school mackerel (Scomberomorus queenslandicus
and S. munroi) (Begg and Hopper 1997). This highlights the
need for more targeted dietary studies of high order predators
in order to better understand and quantify the trophic linkages
in ecosystems and their possible interactions with fisheries. This
will help improve the realism of ecosystem models that may be
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employed to facilitate ecosystem-based fisheries management
proposed for many fisheries worldwide.
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