Controlling transboundary animal diseases in Central Asian countries

Italy funded a project (GTFS/INT/907/ITA) for eight years, from August 2004 to July 2012. The beneficiaries were five Central Asian countries – Afghanistan, Pakistan, the Republic of Tajikistan, Turkmenistan and the Republic of Uzbekistan – and the project was conducted in three phases. The overall focus was on institutional capacity building to assist the veterinary services of beneficiary countries in designing and implementing control activities for transboundary animal diseases (TADs). The four specific objectives were to:

1. progress towards verification of freedom from rinderpest, enabling countries to enter the World Organisation for Animal Health’s (OIE’s) Pathway to Rinderpest Freedom;
2. improve understanding of the impacts of peste des petits ruminants (PPR), foot-and-mouth disease (FMD) and other major livestock diseases in the countries;
3. establish communication for collaborative disease control among the countries;
4. establish national disease investigation, control and contingency planning for TADs.

This institutional capacity building project aimed to assist the veterinary services of beneficiary countries in designing and implementing control activities for TADs. Senior national veterinary staff attended international meetings and were exposed to new TAD control strategies. Project design was based on the paradigm that TAD control requires a regional approach because the efforts of individual countries may not succeed if neighbouring countries do not adopt also control activities. The project offered the five beneficiary countries plus the Islamic Republic of Iran and Kazakhstan opportunities for meeting and discussing their respective situations, challenges and constraints, thus encouraging a regional approach.

Main achievements

The project started on 2 August 2004 under the Trust Fund for Food Safety and Food Security – Italian Contribution. It was initially planned to terminate on 31 December 2007 (phase I), but was extended first until 31 August 2010 (phase II) and then until 31 July 2012 (phase III).

Main outcomes of phase I (August 2004 to December 2007)

Implementation of project activities was delayed pending endorsement of the project document by Uzbekistan and Turkmenistan and by the volatile security situation in Afghanistan, but important objectives were achieved during this phase:

- Recognition of freedom from rinderpest: All project countries were assisted in carrying out field activities and formulating dossiers to be submitted to OIE for official recognition of freedom from rinderpest. During the OIE General Session in May 2008, Afghanistan, Tajikistan and Uzbekistan were declared and certified free from rinderpest. Pakistan had obtained such recognition in 2007; the dossier submitted by Turkmenistan in 2008 was accepted in 2010.
Strengthened disease epidemiologic surveillance abilities of national veterinary services: The achievement of rinderpest freedom required a great deal of support to ensure that the overall surveillance system could provide reliable information on disease absence. In addition to laboratory support, the project provided training for 2,202 field veterinarians, who improved their clinical abilities in recognizing major TADs (rinderpest, FMD and PPR), and 8,336 farmers, who were reached through the participatory disease surveillance (PDS) approach in 571 villages. The process for ensuring that project countries were free from rinderpest was based on: i) field veterinarians acting as sentinels of the health status of susceptible populations; ii) farmers providing information on their livestock’s health status; and iii) sample collection and testing – 12,000 blood samples were collected and tested in each country.

Strengthened diagnostic capacity: The project provided central veterinary laboratories with equipment, supplies, diagnostic kits and training for local staff, enabling them to implement the two prescribed rounds of sero-surveillance to prove the absence of rinderpest from the cattle and buffalo populations of their respective areas. Project support also enabled beneficiary countries to establish diagnostic protocols for other major TADs, such as FMD and PPR.

Improved technical-institutional relationships: By sharing goals and adopting a common vision on surveillance and control strategies, neighbouring countries greatly enhanced their trust and confidence in each other. The results of the rinderpest campaign appeared to be more robust when neighbouring countries achieved similar results with the same surveillance approach.

Main outcomes of phase II (January 2008 to August 2010)
Once rinderpest was no longer an issue in the region, the project focused on diseases known to be present – such as FMD and PPR – for which field activities had to be redesigned within the framework of a progressive control and stepwise approach.

The project collaborated with the European Commission for the Control of Foot-and-Mouth Disease (EUFMD) based at FAO Headquarters in Rome to design a regional progressive control pathway (PCP) for FMD in the West Eurasia region (which includes the five project beneficiary countries).

In 2010, OIE endorsed this approach as one of the tools under the Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs), a joint FAO/OIE initiative. The PCP-FMD is based on indicators of country progress in risk identification and management along a progressive control pathway of five stages, enabling countries to recognize which stage they are at and which activities are a priority for moving forwards to the next stage. This progressive approach was formalized in late 2010 through an expert consultation meeting held at the Pirbright Institute in the United Kingdom of Great Britain and Northern Ireland.
• **Progressive approach:** Surveillance programmes collected samples from various animal husbandry systems – household, commercial, transhumant, etc. Much of the work and many of the approaches adopted were generated from experience gained in Pakistan, where field activities clearly identified that a particular animal husbandry system – known as “dairy colonies”, which are present only in Pakistan around large cities such as Karachi, Lahore and Islamabad – is a natural reservoir of FMD. The preliminary results of these activities were discussed at the Project Technical Meeting held in Ankara, Turkey in June 2009, and the final results were presented at the Project Tripartite Regional Meeting held in Istanbul, Turkey in October 2009, concurrently with the second meeting for the West Eurasia Roadmap.

• **Training component:** The project countries needed to upgrade their diagnostic protocols and introduce novel tests. Letters of agreement were signed with the Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy, to provide project countries with training and supplies of reagents.

Main outcomes of phase III (September 2010 to July 2012)

The main objectives of this phase were to consolidate the work carried out previously so that each country could self-sustain field activities with limited resources (basically by procuring diagnostic kits). Diagnostic capability was consolidated and the project assisted by developing capacities in designing TAD control and implement monitoring and surveillance systems.

Conclusions

Some of the project’s original expectations and the individual country situations outlined in the project document may have underestimated the challenges faced. An important issue was the long time required for some countries – Turkmenistan and Uzbekistan – to endorse the project document, which resulted in intermittent implementation of project activities. It is also likely that at the initial stage of project design, the sensitivity of some TADs (such as FMD) was overlooked. Efforts to overcome these issues as they emerged during project implementation included gathering information, providing evidence and proposing possible solutions.

The control of TADs is a major challenge for any veterinary service. However, once the capability and capacity to address a complex disease such as FMD has been attained, sound control strategies for other major livestock diseases can often be developed by adapting the framework of these existing programmes and capacities. It is therefore highly recommended that countries assisted by the project continue their policy of transparency on TADs and fulfil the requirements of reporting to the international community through OIE’s official channels.

The project contributed significantly to the formulation and development of a framework for progressive disease control (the PCP-FMD) that enables countries progressively...
to reduce the load of disease in their animal populations. All countries assisted by the project are currently in stage 1 of the PCP-FMD, and it is important that these countries continue their efforts in applying PCP-FMD principles and adopt a similar approach for other diseases of concern, especially PPR.

Application of PCP-FMD principles for other diseases (such as PPR) may require an initial minor investment. However, through the information generated by project activities, all beneficiary countries already have sufficient elements to start targeted control programmes. These are likely to be carried out with the implementation of pilot vaccination campaigns in selected geographical areas or small ruminant husbandry systems. Some project countries have already been exposed to such programmes. For example, Tajikistan has been assisted in identifying PPR for the first time in its territory. The occurrence of this disease led to the formulation of a Technical Cooperation Programme (TCP) project (TCP/TAJ/3002) in which one of the major components was a vaccination programme.

The following publications provide further examples of the project’s technical achievements.

Acknowledgements

The following people contributed to the success of the project. All of them are kindly acknowledged:

Italy: Venanzio Rosata, farming system specialist.

Pakistan: Ehtisham Khan, National Coordinator; Mohammad A. Munir, National Coordinator; Younis Muhammad, driver; Masud Khan, project assistant; Wajih Iqbal, project assistant; Owais Nawaz, project assistant; Jamal Syed, laboratory expert; Abu Bakar Mohammed, enzyme-linked immunosorbent assay (ELISA) expert; M. Javel Arshed, laboratory expert.

Republic of Tajikistan: Sanguimorod Murvatulloev, National Coordinator; Gulnoza Khazanova, project assistant; Kamila Yuldasheva, project assistant; Muso Boborajev, driver.

Turkmenistan: Mohammedow Hudayberdy, National Coordinator; Amanguly Tato, National Coordinator; Merdan Muhammedow, project assistant; Sapar Ashyrov, project assistant; Diana Charriyeva, project assistant; Rahat Ekeyev, project assistant; Dmitri Espeyev, driver.

Republic of Uzbekistan: Mukhiddin Eranov, National Coordinator; Aziz Kuvatbekov, project assistant; Akmal Mahmudov, project assistant; Isomiddin Kalandarov, driver.

The Scientific Task Force on Wildlife and Ecosystem Health: promoting One Health across sectors

One of the greatest challenges of the twenty-first century is meeting the competing demands of global food security and sustainable natural resource management, given the trends in human demographics worldwide. Across the globe, communities under stress use various methods of coping with food insecurity, including expanding livestock farming, increasing the use of forest-derived species as a source of food, and expanding the wildlife farming sector.

To date, a balanced approach has not been identified, resulting in unhealthy ecological and agricultural systems in various areas worldwide. Within the context of global food insecurity and global environmental change, an additional challenge is the emergence and re-emergence of diseases. Around 60 percent of recent emerging infectious diseases in humans are zoonotic, of which 70 percent originate in a wide range of wildlife populations. These pathogens include the human immunodeficiency virus (HIV), the severe acute respiratory syndrome (SARS) virus, HSN1 highly pathogenic avian influenza (HPAI) virus, and bat-derived henipaviruses (FAO, 2011).

It has become clear that the emergence of pathogens is a highly complex process, which can often be traced back to ecosystem changes associated with one or more factors such as an expanding human population, food insecurity and unsustainable use of natural resources. These ecosystem changes can also decrease the availability of ecosystem services...
such as purification of air and water, delivery of food for humans and animals, and provision of biological resources for scientific research. Decreased availability of ecosystem services has a negative impact on the health of all species, including plants, wildlife, livestock and humans. In parallel to these local-level influences, there is also need to monitor climate-associated changes in ecosystem dynamics, which can cause wildlife to alter habitat use and migration patterns; pathogens to increase in prevalence, diversity and range; and resource availability to decline.

Recent experiences with influenza viruses serve to illustrate the important links among human, livestock and wildlife health. The emergence of H5N1 HPAI had broad impacts on all three health sectors, resulting in serious conservation concerns for threatened species such as the bar-headed goose (Anser indicus), and prolonged outbreaks that affected health, livelihoods and food security for millions of people, and international trade. The 2009 H1N1 pandemic caused by a virus containing gene segments from humans, pigs and birds highlighted the dangers associated with virus transmission among humans, livestock and wildlife, in this case resulting in a pandemic threat that – fortunately – had low pathogenicity for humans. These two influenza pandemics affected both animals and humans, spread rapidly, affected global economies and continue to require a coordinated and collaborative international response for monitoring, outbreak response and control. They therefore illustrate aspects of the need for a One Health approach to emerging infectious diseases.

In Kazakhstan, during 2010 thousands of the endangered Saiga antelope (Saiga tatarica) succumbed to an unknown disease within the span of one week, resulting in the loss of more than half of the local population. Over the past decade, these migrating ruminants have been threatened by poaching, decreased rangeland and multiple disease outbreaks. Through fieldwork led by the World Wildlife Fund and the United Nations Environment Programme Convention on Migratory Species (UNEP-CMS), with contributions from the Food and Agriculture Organization of the United Nations (FAO) and many other organizations, the most likely cause of death was determined to be pasteurellosis, which can also cause pneumonia in local livestock species. In this case the causative agent had potential to move from livestock to wildlife, or the reverse, or to cycle in both directions. Again, a multidisciplinary approach will be necessary to resolve the disease and maintain the wildlife population in this environment.

Not all food harvesting from the environment has a detrimental effect, but it is clear that in some locations food security and cultural preferences exert significant pressure on declining forest-based wildlife populations. While hunting and consumption of local forest resources may be sustainable, the lucrative business of hunting wild meat and exporting it to expatriate migrant groups in global urban centres has resulted in unsustainable depletion of wildlife. Wildlife conservationists advocate the preservation of wildlife species, while organizations concerned with food security advocate the sustainable use of natural
resources as a source of livelihoods. In areas where people rely directly on the use of natural resources it is imperative that these two groups are able to work together to find solutions that take into account the human concerns as well as the environmental and conservation-related issues. In these and other issues, researchers, public health professionals, policymakers and natural resource managers must work together to come up with multidisciplinary solutions that encompass food security, livelihoods, poverty reduction and biodiversity conservation through a One Health approach.

Building on experience of the successful Scientific Task Force on Avian Influenza and Wild Birds, the Conference of the Parties to UNEP-CMS passed Resolution 9.8 (in Rome, Italy in 2008) which calls on UNEP-CMS and FAO’s Animal Health Service to co-convene the Scientific Task Force on Wildlife Diseases – now known as the Scientific Task Force on Wildlife and Ecosystem Health – with the aim of identifying diseases that have a negative impact on both captive and migratory wildlife and that are of greatest concern with regard to food security, sustainable livelihoods and biodiversity conservation. At a workshop in Beijing, China in June 2011, technical priority areas were identified, including a broad range of working areas that expand the original mandate of the task force to focus on a One Health approach.

The main working areas of the task force are:

1. **Wild birds and avian influenza**, continuing the work of the FAO and UNEP-CMS co-convened Scientific Task Force on Avian Influenza and Wild Birds, sharing information as needed;

2. **Migration ecology**, reaching out to the international scientific community studying animal movements and migration to improve the identification of important conservation areas and increase the understanding of disease ecology and risk modelling;

3. **Disease ecology**, working with international partners to develop wildlife-focused communication and training materials regarding the spread, control and prevention of diseases affecting wildlife populations;

4. **Wildlife morbidity and mortality event tracking**, encouraging natural resource professionals and wildlife biologists to record both disease- and, especially, non-disease-related wildlife morbidity and mortality events to improve understanding of the factors that affect the vigour of wildlife populations;

5. **The human–wildlife–livestock–ecosystem interface**, including trans-frontier conservation areas, wild meat harvesting and captive farmed wildlife, looking specifically at the issues that occur at this interface;

6. **Bridging the gap between natural resource professionals and health professionals**, to improve communication between professionals in both sectors by providing concise science-based information that can be shared across sectors, while encouraging multidisciplinary work.

Participants in the capacity development workshop learning about the important role bats play in the ecosystem interface, Bangladesh, September 2012

©FAO/SIRIAROONRAT

1 www.aiweb.info
In November 2011, UNEP-CMS held the Tenth Conference of the Parties in Bergen, Norway, where Resolution 10.22 Wildlife Diseases was passed. This resolution requests the task force to create materials for dissemination through the Parties, facilitate workshops to increase collaboration, and liaise with other international groups working on wildlife disease issues, including wildlife disease surveillance, food security concerns, interactions between disease and wildlife or ecosystem health, and outbreak control.

The Scientific Task Force on Wildlife and Ecosystem Health now includes more than 15 bodies ranging from multilateral environmental agreements, to professional associations and student groups, and representing a global perspective. The task force works to achieve better health for ecosystems, wildlife, livestock and people by promoting an integrated scientific approach to problems within a One Health framework. The task force publishes a bimonthly newsletter covering new developments in the field of wildlife and ecosystem health, maintains a Web site of up-to-date information, and encourages participation and information sharing through presence at many international meetings. Other outputs of the task force include disease fact sheets, case studies of diseases affecting wildlife, fact sheets on livestock and human populations, fact sheets on ecosystem services and biodiversity, technical papers, and Web-based learning tools. The task force facilitates coordination, information sharing, communication and understanding among relevant organizations, networks, administrations and professional disciplines. Through international collaboration, the Scientific Task Force on Wildlife and Ecosystem Health will help improve the well-being of humans, livestock, wildlife and the ecosystems in which they live.

More information from:
FAO: www.fao.org
UNEP-CMS: www.cms.int/
Contact us: wildlifeandecosystemhealth@gmail.com

References

Contributors: Scott Newman (FAO), Lindsey McCrickard (FAO)

www.wildlifeandecosystemhealth.org
FAO supports regional animal health networks

1. Laboratory networks in Africa and Asia

A collaborative initiative to improve regional resource laboratories in a sustainable manner

For many years, the Food and Agriculture Organization of the United Nations’ (FAO’s) support to veterinary laboratories and laboratory networks has contributed to major achievements such as eradication of rinderpest and earlier diagnosis for the control of other animal diseases, including zoonoses and emerging diseases. FAO has supported the establishment of several regional laboratory networks (RLNs) and provides ongoing coordination and support. The sustainability of such networks is dramatically improved through recognition and support from national governments and linkages to regional economic organizations or other governance bodies. Under these regional frameworks, each network agrees on strategic approaches for strengthening diagnostic and investigation capacities, mapping regional gaps and resources through laboratory assessments, sharing information and biologic material, and improving linkages between human and animal health. Resource laboratories, known as “support” or “leading diagnostic” laboratories in sub-Saharan Africa and Southeast Asia, are identified and assigned regional responsibilities such as provision of services for disease confirmation, production of standardized reagents and harmonized protocols, and capacity building.

In sub-Saharan Africa, five regional support laboratories (RSLs) representing national animal health laboratories in Botswana (Botswana National Veterinary Laboratory [BNVL]), Ethiopia (National Animal Health Diagnostic and Investigation Centre [NAHDIC]), Nigeria (National Veterinary Research Institute [NVRI]), Senegal (Laboratoire National d’Élevage et de Recherches Vétérinaires [LNERV]) and South Africa (Agricultural Research Council Onderstepoort Veterinary Institute [ARC-OVI]), were selected to provide technical services and capacity building for other national laboratories within the region. The specific roles and responsibilities of these five RSLs were discussed and agreed during a meeting, sponsored by the USAID-funded IDENTITY project, conducted by FAO in July 2012 in Addis Ababa, Ethiopia and attended by representatives of the five RSLs, the African Union’s Interinfran African Bureau for Animal Resources (AU-IBAR) and Pan African Veterinary Vaccine Centre (AU-PANVAC), the World Organisation for Animal Health (OIE), the International Atomic Energy Agency (IAEA), the International Cooperation Centre of Agricultural Research for Development (CIRAD), the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), the Central Veterinary Research Laboratory (CVRL) and the three RLNs – the Eastern African Region Laboratory Network (EARLN), the Southern African Development Community’s (SADC’s) LABNET, and the West and Central Africa Veterinary Labora-
The meeting agreed that the role of the RSLs is “to assist the National Laboratories within the region to build/enhance capacity in the diagnosis of animal diseases including zoonoses” (FAO Subregional Office for Eastern Africa, 2012).

Towards this end, the RSLs are responsible for strengthening and sustaining their own capacities to fulfil their Terms of Reference. The position of the RSLs regarding the OIE/FAO Reference Centres was also clarified and agreed. The recommendations from the meeting are closely aligned with frameworks already in place in each of the three RLNs and will be taken forward by the respective laboratories and networks. The RSLs noted potential constraints to fulfilling their regional obligations, including inadequate budget, poor quality and low number of samples received by submitting laboratories, shortage of reagents, lack of quality management systems, and high turnover of laboratory management staff.

FAO is working on the next steps of this process of strengthening the status of RSLs. First, a meeting will be held involving FAO, AU-IBAR and all the regional economic communities in sub-Saharan Africa to present the achievements of preliminary activities and the constraints and opportunities in the RSL initiative, and to explore ways of ensuring institutional, technical and financial continuation and sustainability of the initiative. Thereafter, work plans for the regional economic communities will be prepared, including activities and advocacy and funding mechanisms. To this end, a meeting will be held with the regional economic communities, the RSLs, some national laboratories, representatives of each of the RLNs, technical partners (OIE/FAO Reference Centres) and financial partners.

In Southeast Asia, three regional leading diagnostic laboratories (RLDLs) have been appointed to provide disease-specific services for the region: the OIE Reference Laboratory for Foot-and-Mouth Disease at Thailand’s National Institute of Animal Health (NIAH); Regional Animal Health Office No. 6 (RAHO6) in Viet Nam, for classical swine fever; and the Veterinary Research Institute (VRI) in Malaysia, for highly pathogenic avian influenza (HPAI). Under the RLN framework, FAO supports the RLDLs in fulfilling their regional roles and responsibilities, including by strengthening laboratory management and technical expertise. FAO also collaborates with the RLDLs to conduct RLN workshops on diagnosis of priority diseases, thereby leveraging the RLDLs’ specific diagnostic expertise. Such activities provide excellent opportunities for the RLDLs to collaborate with internationally recognized trainers, gain experience of organizing regional training, and share their specific expertise with RLN members. These training activities also enhance the visibility of the RLDLs and interactions among network laboratories across the region.
In addition to their contribution to strengthening regional laboratory capacities, the directors of the RLDLs are also involved in the development of RLN strategies and policies, and participate in Regional Laboratory Technical Advisory Group meetings, which provide technical inputs for strategic planning and laboratory capacity building activities. The RLDLs take turns to host a forum for all laboratory directors in the RLN. This regional forum provides a venue for discussing problems and issues related to national veterinary diagnostic laboratories, and serves as a coordinating platform for promoting quality services, collaboration and networking among member laboratories. Recommendations and outcomes from the forum provide the basis for planning and implementation of new activities to strengthen laboratory capacity and quality services in Southeast Asia. One of the major outputs of the forum is the Regional Strategic Framework for Laboratory Capacity Building and Networking in Southeast Asia, which describes the main strategic goals and action plans for promoting the sustainable development of diagnostic capacities, quality laboratory services, and sharing of information and expertise among veterinary diagnostic laboratories. Endorsed by the Association of Southeast Asian Nations (ASEAN) in August 2012, the strategic framework represents significant progress in engaging the regional economic community in supporting the development of quality laboratory services at the policy level.

FAO’s mission is to contribute to economic growth, food security and safety, and animal health through timely early warning and disease intelligence based on the sharing of reliable, consistent and transparent information. National animal health laboratories responsible for disease detection and surveillance are central to this mission. Building technical capacity, competency, leadership and a critical mass of regionally networked epidemiology, surveillance and laboratory specialists is a strategic imperative for the efficient and effective coordination of risk management for transboundary animal diseases and zoonoses, including HPAI.

Reference

Contributors: Charles Bebay (FAO), Sanipa Suradhat (FAO), Mia Kim (FAO), Gwenaelle Dauphin (FAO)
2. Epidemiosurveillance networks in Africa

In response to persistent animal epizootic diseases, lack of harmonization among regional strategies for the monitoring and control of major transboundary animal diseases (TADs), and the need to strengthen national animal disease surveillance systems, the countries of East, Central and West Africa have established regional networks for epidemi-surveillance and laboratory diagnostics, with support from the Food and Agriculture Organization of the United Nations (FAO) and partners. These are not the first regional networks for animal health in Africa; similar initiatives were developed during implementation of the African Union Inter-African Bureau for Animal Resources’ (AU-IBAR’s) continental programmes for eradicating rinderpest – the Pan-African Rinderpest Campaign (PARC) and the Pan African Campaign for the Control of Epizootics (PACE). However, although these earlier networks were considered critical to the success of PARC and PACE, they were not sustained when the projects ended.

A Regional Network of National Epidemiosurveillance Systems for Transboundary Animal Diseases (RESEPI) for West Africa was created in December 2008, and was extended to include Central Africa in November 2009. The Eastern Africa Region Epidemiology Network (EAREN) was launched in April 2009.

Each network generally organizes an annual meeting with the participation of representatives from each of the countries in the region, representatives of the regional economic community and technical partners. Regional network meetings were held in East and West Africa in July and September 2012, to assess the status of regional networks and national epidemi-surveillance systems, discuss the transboundary animal and zoonotic disease situation, and identify prospects for strengthening epidemi-surveillance in the regions.

A joint epidemiology and laboratory annual coordination meeting for East Africa took place in Mombasa, Kenya from 24 to 27 July 2012. The meeting was organized by FAO’s Emergency Centre for Transboundary Animal Disease Operations (ECTAD) and co-funded by the IDENTIFY and VET-GOV projects. IDENTIFY is a component of the United States Agency for International Development’s (USAID’s) five-year Emerging Pandemic Threats (EPT) programme, launched in October 2009 and jointly implemented by FAO, the World Organisation for Animal Health (OIE) and the World Health Organization (WHO). VET-GOV is funded by the European Union (EU) and jointly implemented by AU-IBAR, OIE and FAO in collaboration with regional economic communities, to reinforce veterinary governance in Africa. The meeting was attended by representatives from 12 countries (Burundi,
the Democratic Republic of the Congo, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, South Sudan, the Sudan, Uganda and the United Republic of Tanzania) and representatives from OIE, AU-IBAR, AU’s Pan African Veterinary Vaccine Centre (AU-PANVAC), the International Livestock Research Institute (ILRI), the Intergovernmental Authority on Development (IGAD), the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) Padova (Italy), the National Veterinary Institute of Sweden (SVA) and the African Field Epidemiology Network (AFENET). As this was a joint epidemiology and laboratory meeting, its objectives included reviewing the status of laboratory and epidemiology networks and the results of veterinary diagnostic laboratory proficiency tests carried out in 2011.

RESEPI’s meeting took place in Accra, Ghana from 10 to 13 September 2012 and was jointly organized and funded by FAO, the United States Department of Agriculture’s Animal and Health Inspection Service (USDA-APHIS), USAID and Africa Command (AFRICOM). Representatives from 21 West and Central African countries (Benin, Burkina Faso, Cameroon, Cape Verde, Chad, Congo, Côte d’Ivoire, the Democratic Republic of the Congo, Equatorial Guinea, Gabon, the Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, the Niger, Nigeria, Senegal, Sierra Leone and Togo) participated, along with representatives of FAO, AU-IBAR, the Economic Community of West African States (ECOWAS), USDA-APHIS, USAID, AFRICOM and the Southern Africa Development Community (SADC).

Participants at the two meetings agreed on the need to restructure epidemiological networks and consolidate regional animal health networks under a single
sector-wide umbrella. Such restructuring aims to increase the participation of chief veterinary officers (CVOs) and countries in coordinating the regional networks. One of the main recommendations of the Mombasa meeting was to establish a Regional Animal Health Network (RAHN) as the umbrella for all regional animal health-related networks, including those in the areas of epidemiology, laboratory, socio-economics, communications and wildlife. RAHN will be chaired by the CVOs of member countries, on rotation. The Accra meeting agreed to establish two regional epidemiology networks, one for Central Africa and one for West Africa, to be linked to the Economic Community of Central African States (EC-CAS) and ECOWAS respectively. Each regional network will have two coordinators appointed by member countries, and each country will appoint a focal point from its epidemiology unit as its representative in the regional epidemiology network.

The networks have strong support from all the countries in the regions. Their value was clearly established during rinderpest eradication programmes, and they are expected to contribute much to enhancing the control of TADs and zoonoses in Africa in the future. However, their ongoing viability – at least in the early days – depends on receiving sufficient support from technical partners and donors.

Contributors: Fairouz Larfaoui (FAO), Youssouf Kabore (FAO), Bouna Diop (FAO)