CEPHALOPODS OF THE WORLD

AN ANNOTATED AND ILLUSTRATED CATALOGUE OF CEPHALOPOD SPECIES KNOWN TO DATE

Volume 3
Octopods and Vampire Squids

Edited by
Patrizia Jereb
Istituto Superiore per la Protezione e la Ricerca Ambientale
Rome, Italy

Clyde F. E. Roper
Smithsonian Institution, National Museum of Natural History
Washington, D.C., United States of America

Mark D. Norman
Museum Victoria
Melbourne, Victoria, Australia

and

Julian K. Finn
Museum Victoria
Melbourne, Victoria, Australia

with the support of the
Government of Italy
(Ministero per le Politiche Agricole e Forestali,
Direzione Generale per la Pesca e l’Acquacoltura)

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2014
The Third Volume of this New Edition of the Cephalopods of the World Catalogue

is warmly dedicated to the memory of

Katharina Mangold Wirz

an extraordinary brilliant scientist and teuthologist,
an unforgettable lady
and a cherished friend and colleague.

photo: F.G. Hochberg
This document has been prepared by the Marine and Inland Fisheries Service, Fisheries and Aquaculture Resources Use and Conservation Division, FAO Fisheries and Aquaculture Department. It is part of the regular programme activities and a partial fulfillment of the Organization’s role with regard to the marine fisheries resources identification and biodata. It received support through contributions from the Ministry of Agriculture and Forestry Policies of the Government of Italy and from the Ministry of Foreign Affairs of the Kingdom of Norway to the FAO Global Partnerships for Responsible Fisheries (FISCHCODE).

This publication is the third of three volumes of the second edition of the original FAO Catalogue of Cephalopods of the World (Roper et al., 1984), and it constitutes Volume 3 of Number 4 in the new series: FAO Species Catalogue for Fisheries Purposes, that evolved as an independent series in 2001 from the former FAO Fisheries Synopsis No. 125.

Because the new Catalogue has expanded apace with recent research and fisheries information and revisions, it now is necessary to publish it as three free-standing volumes. Each volume has separate pagination, terminology/glossary, systematic sections, list of species and a volume-specific bibliography. This allows readers to use each volume independently without having to consult the other volumes for technical terms, measurements or bibliographic purposes. We hope that this added flexibility will provide convenience and utility for users of the Catalogue.

Programme manager and coordinator: Johanne Fischer (Senior Fishery Resource Officer, FAO Fisheries and Aquaculture Department, FIRF, Rome).

Scientific and technical editors: Patrizia Jereb (ISPRA, Rome) and Clyde F. E. Roper (Smithsonian Institution, NMNH, Washington D.C., USA).

Technical and editorial assistance: Ingrid Roper (Smithsonian Institution, NMNH, Volunteer, Washington D.C., USA).

Scientific assistance: Michael J. Sweeney (formerly Smithsonian Institution, NMNH, Washington D.C., USA).

Page composition: Cinzia Lucini (Litografica Doria snc, Rome).

Distribution maps: Fabio Carocci (FAO, Rome).

Cover illustration: Emanuela D’Antoni (FAO, Rome).

Jereb, P.; Roper, C.F.E.; Norman, M.D.; Julian K Finn (eds)

ABSTRACT

This is the third volume of the entirely rewritten, revised and updated version of the original FAO Catalogue of Cephalopods of the World (1984). The present Volume is a multiauthored compilation that reviews 13 families, i.e. (in alphabetical order), Alloposidae, Amphitretidae, Argonautidae, Bolitaenidae, Cirroctopodidae, Cirroteuthidae, Octopodidae, Ocythoidae, Opisthoteuthidae, Stauroteuthidae, Tremoctopodidae, Vampyroteuthidae, Vitreledonellidae, with 56 genera and the 280 species known and named to the date of the completion of the volume. It provides accounts for all families and genera, as well as illustrated keys. Information under species accounts includes: valid modern systematic name and original citation of the species (or subspecies); synonyms; English, French and Spanish FAO names for the species; illustrations of dorsal aspects of the whole animal (as necessary) and other distinguishing illustrations; field characteristics; diagnostic features; geographic and vertical distribution, including GIS map; size; habitat; biology; interest to fishery; local names when available; a remarks section (as necessary) and literature. The Volume is fully indexed and also includes sections on terminology and measurements, an extensive glossary, an introduction with an updated review of the existing biological knowledge on Octopods and Vampire squids (including fisheries information and main catch data for recent years) and a dedicated bibliography.

Distribution
Authors
FAO Fisheries Officers
Regional Fisheries Councils and Commissions
Selector SC
For bibliographic reference the different sections should be quoted as follows:

Acknowledgements

From the Series Editors

We wish to gratefully acknowledge the contributions of colleagues who have supplied information, help and support to enable completion of the updated version of the Cephalopods of the World FAO Catalogue, first published in 1984 (Roper, Sweeney and Nauen, 1984). We appreciate their good efforts to help us make the 3-volume Catalogue a comprehensive and useful tool.

In particular, for Volume 3, we warmly thank Louise Alcock (School of Natural Sciences (Zoology) and Martin Ryan Institute, National University of Ireland, Galway, Ireland), Giambattista Bello (Mola di Bari, Italy), Heather Judkins (Department of Biological Sciences, University of South Florida, St. Petersburg, Florida, USA) and Paula Rothman (Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC), for their significant help and support in many phases of the work.

Very special thanks are due to Sigurd von Boletzky (Observatoire Océanologique de Banyuls, CNRS, Banyuls-sur-Mer, France) and M. Begonia Santos (Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Vigo, Spain) for their help in revising FAO French and Spanish names. Sigurd, in particular, offered constant support during the preparation of all three volumes of the Catalogue; we are deeply grateful to him.

In the earlier phase of this work, Michael J. Sweeney (formerly Smithsonian Institution, National Museum of Natural History, Washington, DC, USA) provided significant technical support, nomenclatural listing and literature searches, for which we are most grateful.

We also acknowledge Michael Vecchione and Richard E. Young for their major work on the Tree of Life website (http://tolweb.org/Cephalopoda); this was a most useful source of information during the preparation of this updated version of the Cephalopods of the World Catalogue.

We also acknowledge with sincere thanks the FAO Managers who supported the 3-volume series, Pere Oliver, Michel Lamboeuf, Jordi Leonardt and Johanne Fischer, along with our colleagues at the Italian Ministry, Mauro Bertelletti and Luca Bedin, all of whom were our valued advisors and supporters for the Catalogue project.

Our deepest thanks to the members of the FAO technical staff who so efficiently worked to produce the 3-volume series and contributed to the preparation of this third Volume: Emanuela D’Antoni for her excellent accomplishments in creating many of the illustrations needed for the Catalogue and for greatly enhancing many illustrations from the literature; Nicoletta De Angelis for her skilful collaboration during the first phases of the preparation of this document; Fabio Carocci for the careful preparation of the distribution maps. All are premier representatives of their professions. Deep, sincere thanks also to Michèle S. Kautenberger-Longo (formerly FAO), for her valuable and precious professional contribution to the preparation of the first two Volumes of the series. Our special thanks to Nicoletta, for her valuable and constant support during the entire production of this 3-volume Cephalopods of the World Catalogue project.

Special thanks also to Cinzia Lucini (Litografica Doria), for her patience along the difficult phases of the desk-top publishing work for this document.

Last, but not least, very special thanks are due to Ingrid H. Roper, for her technical assistance and invaluable support during all stages of the preparation of this Catalogue.

We are aware that oversights occurred in Volumes 1 and 2. These will be amended on the on-line versions available on the FAO website (http://www.fao.org/fishery/fishfinder/ publications/en).

Also, some changes in cephalopod terminology have occurred in the past 15 years. These may create discrepancies in the Glossary definitions used among the three volumes. We recommend that users refer to the Glossary that applies to the specific group/taxon being discussed in each volume.

Recent reviews of the geographic distributions of some European species were conducted during a cooperative research project with several European colleagues (Jereb et al., in press). This study confirmed the existence of strong fluctuations in marine conditions in some geographic areas, such as the North Sea. In turn, this phenomenon may strongly influence the geographic distribution of cephalopod species, which may result in geographic fluctuations. Such a situation is difficult to represent on a map. A map best illustrates the normal distributions, while details about potential fluctuations or extensions and reductions in the distribution observed over time, are best described in the text. We are aware that some of the maps in Volumes 1 and 2 may not adequately reflect the complexity of actual distributions.

We sincerely appreciate the contributions, effort and support of colleagues around the world who have made it possible for us to complete this 3-volume work.
From the Authors

The authors gratefully acknowledge the contributions of colleagues who supplied references, species-specific information, and/or read drafts of text for this volume. In particular we would like to thank Michael J. Sweeney (formerly Smithsonian Institution, National Museum of Natural History, Washington, DC, USA). His comprehensive listing of cephalopod taxa, type localities, and repositories of type specimens was extremely helpful. Additional valuable feedback on this volume was provided by Christine L. Huffard (Monterey Bay Aquarium Research Institute). Thanks also to Richard E. Young for his Cephalopoda treatment in the Tree of Life website (http://tolweb.org/Cephalopoda), an excellent resource for all cephalopod researchers.

The volume was extensively reviewed and edited by Patrizia Jereb (Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy) and Clyde F. E. Roper (Zoologist Emeritus, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA), with assistance from Ingrid Roper. We warmly thank all for their considerable efforts and patience.

Thanks also to Johanne Fischer (FIRF) for support and coordination of this project on behalf of FAO.

We also acknowledge with great appreciation the members of the FAO technical staff who helped with all aspects in the preparation of this volume: Emanuela D’Antoni (FIRF) for creating original scientific illustrations for the volume and enhancing others provided from the literature; Nicoletta De Angelis for her skilful collaboration during the first phases of the preparation of this document; Fabio Carocci for preparation of distribution maps. Our thanks also to Cinzia Lucini (Litografica Doria) for the desk-top publishing work.

Colour photographs included herein were generously provided by Hideki Abe, Bruce Barker/CSIRO, Peter Batson, Fred Bavendam, Jim Black, Tom Bowling, Clay Bryce, Roy Caldwell, Helmut Debelius, Inigo Everson, John Forsythe, Dane Gernke, Howard Hall, Roger Hanlon, Nan Daeschler Hauser, Paul Humann, Jerry Kane, Alex Kerstitch, Jean Lecomte, Rich Lutz, Ed McSweeney, Ryo Minemizu, Roger Munns/SCUBAPIX, Koji Nakamura, Dot Norris, David Paul, Uwe Piatkowski, Clyde Roper, Cláudio Sampaio, Dirk Schories, Brad Seibel, David Shale, Roger Steene, Tim Stranks, Mike Vecchione, Peter Wirtz, James Wood, David Wrobel, Norbert Wu, Dick Young, Xiaodong Zheng.

Authors Norman and Finn would especially like to recognise the critical financial and moral support provided by the Australian Biological Resources Study (Australian Federal Government) and the Harman Slade Foundation in supporting the taxonomic research that underpins large sections of this volume.

The authors would especially like to thank the support of our wives and families over the lengthy production process of this volume, Karen Zipkas, Lena and Adel Hochberg, and Prema Finn.
Table of Contents

PREPARATION OF THIS DOCUMENT ..v

1. INTRODUCTION ...1

 1.1 Introductory Remarks ..1

 1.2 Plan of the Catalogue ..2

 1.3 General Remarks on Cephalopods ..3

 1.4 General Remarks on Octopods ..6

 1.5 World Octopod Fisheries ..9

 1.6 Illustrated Glossary of Technical Terms and Measurements22

2. OCTOPODS AND VAMPIRE SQUIDS ..33

 Key to incirrates, cirrates and vampire squids33

 2.1 Incirrate octopods ..33

 Key to families of incirrate octopods ..33

 2.1.1 Family OCTOPODIDAE d’Orbigny, 1840 [in Ferussac and d’Orbigny, 1834-1848]*. 36

 Key to the genera in the family Octopodidae37

 Genus Octopus sensu stricto Cuvier, 179740

 Octopus vulgaris Cuvier, 1797 ..42

 Octopus bimaculatus Verrill, 1883 ..47

 Octopus bimaculoides Pickford and McConnaughey, 194948

 Octopus hubbsorum Berry, 1953 ..50

 Octopus insularis Leite and Haimovici in Leite, Haimovici, Molina and Warnke, 2008 51

 Octopus maya Voss and Solis, 196653

 Octopus mimus Gould, 1852 ..54

 Octopus oculifer (Hoyle, 1904) ..56

 Octopus tetricus Gould, 1852 ..57

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE58

 Octopus filosus Howell, 1867 ..58

Genus Abdopus Norman and Finn, 2001 ...59

 Abdopus horridus (d’Orbigny, 1826)60

 Abdopus aculeatus (d’Orbigny, 1834 [in Ferrusac and d’Orbigny, 1834-1848]) 61

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE62

 Abdopus abaculus (Norman and Sweeney, 1997)62

 Abdopus capricornicus (Norman and Finn, 2001)62

 Abdopus tenebricus (Smith, 1884) ..62

 Abdopus tonganus (Hoyle, 1885) ..63

 Abdopus undulatus Huffard, 2007 ..63

Genus Amelioctopus Allcock, Hochberg, Rodhouse and Thorpe, 200364

 Amelioctopus polymorpha (Robson, 1930)64

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE65

 Adelieledone adelieana (Berry, 1917) ..65

 Adelieledone piatkowskii Allcock, Hochberg, Rodhouse and Thorpe, 200365

Genus Amelioctopus Norman, 1992 ..66

 Amelioctopus litoralis Norman, 1992 ...66

Genus Amphioctopus Fischer, 1882 ..67

 Amphioctopus aegina (Gray, 1849) ..68

 Amphioctopus burryi (Voss, 1950) ..69

 Amphioctopus examinnulatus (Norman, 1993)71

*At the time of going to press, Strugnell et al. (2013) published a major revision of the familial level classification of the incirrate octopods. They establish six families: Octopodidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Amphitretidae, the latter containing three subfamilies Amphitreitinae, Bolttaieninae and Vitreledonellinae (see that work for new taxonomic structure).
Amphioctopus fangsiao (d’Orbigny, 1839-1841 [in Ferrusac and d’Orbigny, 1834-1848]) 72
Amphioctopus kagoshimensis (Ortmann, 1888) .. 73
Amphioctopus marginatus (Taki, 1964) .. 75
Amphioctopus mototi (Norman, 1993) .. 77
Amphioctopus neglectus (Nateewathana and Norman, 1999) 79
Amphioctopus rex (Nateewathana and Norman, 1999) 80
Amphioctopus siamensis (Nateewathana and Norman, 1999) 81

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 83
Amphioctopus arenicola Huffard and Hochberg, 2005 83
Amphioctopus membranaceus (Quoy and Gaimard, 1832) .. 83
Amphioctopus ovulum (Sasaki, 1917) .. 84
Amphioctopus polyzenia (Gray, 1849) .. 84
Amphioctopus robsoni (Adam, 1941) .. 84
Amphioctopus varunae (Oommen, 1971) .. 84

Genus Bathypolypus Grimpe, 1921 .. 85
Bathypolypus arcticus (Prosch, 1847) .. 85

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 86
Bathypolypus bairdii (Verrill, 1873) .. 86
Bathypolypus ergasticus (Fischer and Fischer, 1892) .. 87
Bathypolypus pugniger Muus, 2002 .. 87
Bathypolypus rubrobristus Kaneko and Kubodera, 2008 .. 87
Bathypolypus sponsalis (Fischer and Fischer, 1892) .. 87
Bathypolypus valdiviae (Thiele in Chun, 1915) .. 87

Genus Bathypurpurata Vecchione, Allcock and Piatkowski, 2005 88
Bathypurpurata profunda Vecchione, Allcock and Piatkowski, 2005. 88

Genus Bentheledone Robson, 1932 .. 89
Bentheledone rotunda (Hoyle, 1885) .. 90

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 91
Bentheledone albida (Berry, 1917) .. 91

Genus Benthoctopus Grimpe, 1921 .. 92
Benthoctopus karubar Norman, Hochberg and Lu, 1997 .. 92

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 94
Benthoctopus abruptus (Sasaki, 1920) .. 94
Benthoctopus berryi Robson, 1924 .. 94
Benthoctopus canthylus Voss and Pearcy, 1990 .. 94
Benthoctopus claderoperi O’Shea, 1999. .. 94
Benthoctopus fuscus Taki, 1964 .. 95
Benthoctopus hokkaidensis (Berry, 1921) .. 95
Benthoctopus johnsoniana Allcock, Strugnell, Ruggiero and Collins, 2006 .. 95
Benthoctopus leioderma (Berry, 1911) .. 96
Benthoctopus levis (Hoyle, 1885) .. 96
Benthoctopus normani (Massy, 1907) .. 96
Benthoctopus oregonae Toll, 1981 .. 96
Benthoctopus oregonensis Voss and Pearcy, 1990 .. 96
Benthoctopus profundorum Robson, 1932 .. 96
Benthoctopus pseudonymus (Grimpe, 1922) .. 97
Benthoctopus rigbyae Vecchione, Allcock, Piatkowski and Strugnell, 2009 .. 97
Benthoctopus robustus Voss and Pearcy, 1990 .. 97
Benthoctopus sibiricus Loyning, 1930 .. 97
Benthoctopus tangarou O’Shea, 1999 .. 97
Benthoctopus tegginmathae O’Shea, 1999 .. 98
<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthoctopus thielei Robson, 1932</td>
<td>98</td>
</tr>
<tr>
<td>Benthoctopus yaquinae Voss and Pearcy, 1990</td>
<td>98</td>
</tr>
<tr>
<td>Genus Callistoctopus Taki, 1964</td>
<td>99</td>
</tr>
<tr>
<td>Callistoctopus ornatus (Gould, 1852)</td>
<td>99</td>
</tr>
<tr>
<td>Callistoctopus alpheus (Norman, 1993)</td>
<td>100</td>
</tr>
<tr>
<td>Callistoctopus aspilosomatis (Norman, 1993)</td>
<td>102</td>
</tr>
<tr>
<td>Callistoctopus dierythraeus (Norman, 1993)</td>
<td>103</td>
</tr>
<tr>
<td>Callistoctopus graptus (Norman, 1993)</td>
<td>104</td>
</tr>
<tr>
<td>Callistoctopus luteus (Sasaki, 1929)</td>
<td>105</td>
</tr>
<tr>
<td>Callistoctopus macropus (Risso, 1826)</td>
<td>106</td>
</tr>
<tr>
<td>Callistoctopus nocturnus (Norman and Sweeney, 1997)</td>
<td>107</td>
</tr>
<tr>
<td>Callistoctopus rapanui (Voss, 1979)</td>
<td>108</td>
</tr>
<tr>
<td>SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES</td>
<td>109</td>
</tr>
<tr>
<td>Callistoctopus lechenaultii (d’Orbigny, 1826)</td>
<td>109</td>
</tr>
<tr>
<td>Genus Cistopus Gray, 1849</td>
<td>110</td>
</tr>
<tr>
<td>Cistopus indicus (Rapp, 1835 [in Ferrusac and d’Orbigny, 1834-1848])</td>
<td>110</td>
</tr>
<tr>
<td>Cistopus chinensis Zheng, Ling, Lu and Ma, 2012</td>
<td>112</td>
</tr>
<tr>
<td>Cistopus taiwanicus Liao and Lu, 2009</td>
<td>113</td>
</tr>
<tr>
<td>Genus Eledone Leach, 1817</td>
<td>114</td>
</tr>
<tr>
<td>Eledone moschata (Lamarck, 1798)</td>
<td>114</td>
</tr>
<tr>
<td>Eledone cirrhosa (Lamarck, 1798)</td>
<td>117</td>
</tr>
<tr>
<td>Eledone massyae Voss, 1964</td>
<td>119</td>
</tr>
<tr>
<td>‘Eledone’ palari Lu and Stranks, 1992</td>
<td>120</td>
</tr>
<tr>
<td>SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES</td>
<td>121</td>
</tr>
<tr>
<td>Eledone caparti Adam, 1950</td>
<td>121</td>
</tr>
<tr>
<td>Eledone gaucha Haimovici, 1988</td>
<td>121</td>
</tr>
<tr>
<td>Eledone schultzei Hoyle, 1910</td>
<td>121</td>
</tr>
<tr>
<td>Genus Enteroctopus Rochebrune and Mabille, 1889</td>
<td>122</td>
</tr>
<tr>
<td>Enteroctopus megalocyathus (Gould, 1852)</td>
<td>122</td>
</tr>
<tr>
<td>Enteroctopus dofleini (Wülker, 1910)</td>
<td>124</td>
</tr>
<tr>
<td>Enteroctopus magnificus (Villanueva, Sánchez and Compagno, 1992)</td>
<td>125</td>
</tr>
<tr>
<td>SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES</td>
<td>126</td>
</tr>
<tr>
<td>Enteroctopus zealandicus (Benham, 1944)</td>
<td>126</td>
</tr>
<tr>
<td>Genus Euaxoctopus Voss, 1971</td>
<td>127</td>
</tr>
<tr>
<td>Euaxoctopus panamensis Voss, 1971</td>
<td>127</td>
</tr>
<tr>
<td>SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES</td>
<td>128</td>
</tr>
<tr>
<td>Euaxoctopus pillsburiae Voss, 1975</td>
<td>128</td>
</tr>
<tr>
<td>Euaxoctopus scalenus (Hoyle, 1904)</td>
<td>128</td>
</tr>
<tr>
<td>Genus Galeoctopus Norman, Boucher and Hochberg, 2004</td>
<td>129</td>
</tr>
<tr>
<td>Galeoctopus lateralis Norman, Boucher and Hochberg, 2004</td>
<td>129</td>
</tr>
<tr>
<td>Genus Graneledone Joubin, 1918</td>
<td>130</td>
</tr>
<tr>
<td>Graneledone verrucosa (Verrill, 1881)</td>
<td>131</td>
</tr>
<tr>
<td>SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES</td>
<td>132</td>
</tr>
<tr>
<td>Graneledone antarctica Voss, 1976</td>
<td>132</td>
</tr>
<tr>
<td>Graneledone boreopacifica Nesis, 1982</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone challengeri (Berry, 1916)</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone gonzalezii Guerra, González and Cherel, 2000</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone macrotyla Voss, 1976</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone taniwha taniwha O’Shea 1999</td>
<td>134</td>
</tr>
<tr>
<td>Graneledone taniwha kubodera O’Shea 1999</td>
<td>134</td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Genus Graneledone</td>
<td>Graneledone yamana Guerrero-Kommritz, 2000</td>
</tr>
<tr>
<td>Genus Grimpella</td>
<td>Grimpella robsoni Robson, 1928</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena fasciata (Hoyle, 1886)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena nierstraszi (Adam, 1938)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena nierstraszi (Adam, 1938)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena nierstraszi (Adam, 1938)</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena lunulata (Quoy and Gaimard, 1832).</td>
</tr>
<tr>
<td>Genus Hapalochlaena</td>
<td>Hapalochlaena maculosa (Hoyle, 1883)</td>
</tr>
</tbody>
</table>

The generic placement of this species requires review.
<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteroctopus Fischer, 1882</td>
<td>Pteroctopus tetracirrhus (Delle Chiaje, 1841)</td>
</tr>
<tr>
<td>Genus Robsonella Adam, 1938</td>
<td>Robsonella fontaniana (d'Orbigny, 1834 [in Ferrusac and d'Orbigny, 1834-1848])</td>
</tr>
<tr>
<td>Genus Sasakiopus Jorgensen, 2009</td>
<td>Sasakiopus salebrosus (Sasaki, 1920)</td>
</tr>
<tr>
<td>Genus Scaeurgus Troschel, 1857</td>
<td>Scaeurgus unicirrhus (Delle Chiaje, 1839-1841)</td>
</tr>
<tr>
<td>Genus Tetracheledone Voss, 1955</td>
<td>Tetracheledone spinicirrus Voss, 1955</td>
</tr>
<tr>
<td>Genus Thaumeledone Robson, 1930</td>
<td>Thaumeledone gunteri Robson, 1930</td>
</tr>
<tr>
<td>Genus Vulcanoctopus González and Guerra in González, Guerra, Pascual and Briand, 1998</td>
<td>Vulcanoctopus hydrothermalis González and Guerra in González, Guerra, Pascual and Briand, 1998</td>
</tr>
<tr>
<td>Genus Wunderpus Hochberg, Norman and Finn, 2006</td>
<td>Wunderpus photogenicus Hochberg, Norman and Finn, 2006</td>
</tr>
</tbody>
</table>

Species provisionally placed in the genus *Octopus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Octopus' alecto Berry, 1953</td>
<td>187</td>
</tr>
<tr>
<td>'Octopus' australis Hoyle, 1885</td>
<td>189</td>
</tr>
<tr>
<td>'Octopus' berrima Stranks and Norman, 1993</td>
<td>190</td>
</tr>
<tr>
<td>'Octopus' briareus Robson, 1929</td>
<td>191</td>
</tr>
<tr>
<td>'Octopus' humorong Stranks, 1990</td>
<td>192</td>
</tr>
<tr>
<td>'Octopus' californicus Berry, 1911</td>
<td>193</td>
</tr>
<tr>
<td>'Octopus' conispadiceus Sasaki, 1917</td>
<td>195</td>
</tr>
<tr>
<td>'Octopus' cyanea Gray, 1849</td>
<td>196</td>
</tr>
<tr>
<td>'Octopus' kauana Stranks, 1990</td>
<td>198</td>
</tr>
<tr>
<td>'Octopus' maorum Hutton, 1880</td>
<td>199</td>
</tr>
<tr>
<td>'Octopus' minor (Sasaki, 1920)</td>
<td>200</td>
</tr>
<tr>
<td>'Octopus' pallidus Hoyle, 1885</td>
<td>201</td>
</tr>
</tbody>
</table>
'Octopus' rubescens Berry, 1953 ..202
'Octopus' selene Voss, 1971 ..204
'Octopus' tehueculus d'Orbigny, 1834 [in Ferrusac and d'Orbigny, 1834-1848]205
'Octopus' veligerus Berry, 1953 ..206

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE 207
'Octopus' argus Krauss, 1848 .. 207
'Octopus' balboai Voss, 1971 .. 207
'Octopus' berenice Gray, 1849 .. 208
'Octopus' bocki Adam, 1941 .. 208
'Octopus' bulbatus Norman, 2001 .. 208
'Octopus' campbelli (Smith, 1902) .. 208
'Octopus' chierchiae Jatta, 1889 .. 208
'Octopus' diminutus Kaneko and Kubodera, 2008 .. 209
'Octopus' favonius Gray, 1849 .. 209
'Octopus' fitchii Berry, 1953 .. 209
'Octopus' gardineri (Hoyle, 1905) .. 209
'Octopus' gorgonius Huffard, 2007 .. 209
'Octopus' harpedon Norman, 2001 .. 210
'Octopus' hattai (Sasaki, 1929) .. 210
'Octopus' hawaiiensis Eydoux and Souleyet, 1852 .. 210
'Octopus' hongkongensis (Hoyle 1885) .. 210
'Octopus' humilis Huffard, 2007 .. 211
'Octopus' huttoni (Benham, 1943) .. 211
'Octopus' incella Kaneko and Kubodera, 2007 .. 211
'Octopus' joahini Robson, 1929 .. 211
'Octopus' kaharoa O'Shea, 1999 .. 211
'Octopus' kermadecensis (Berry, 1914) .. 212
'Octopus' laqueus Kaneko and Kubodera, 2005 .. 212
'Octopus' mariles Huffard, 2007 .. 212
'Octopus' mernoo O'Shea, 1999 .. 212
'Octopus' microphthalminus Goodrich, 1896 .. 212
'Octopus' micropyrsus Berry, 1953 .. 213
'Octopus' micros Norman, 2001 .. 213
'Octopus' mutilans Taki, 1942 .. 213
'Octopus' nanus Adam, 1973 .. 213
'Octopus' olivieri (Berry, 1914) .. 213
'Octopus' parvus (Sasaki, 1917) .. 214
'Octopus' penicillifer Berry, 1954 .. 214
'Octopus' pumilus Norman and Sweeney, 1997 .. 214
'Octopus' pyrum Norman, Hochberg and Lu, 1997 .. 214
'Octopus' salutii Verany, 1839 .. 214
'Octopus' superciliosus Quoy and Gaimard, 1832 .. 215
'Octopus' vitiensis Hoyle, 1885 .. 215
'Octopus' warringa Stranks, 1990 .. 215
'Octopus' wolfii (Wülker, 1913) .. 215
'Octopus' zonatus (Voss, 1968) .. 215

Ctenoglossan octopods .. 216
Key to families of ctenoglossan octopods* .. 216

2.1.2 Family AMPHITRETIDAE Hoyle, 1886. .. 217
Genus Amphitretus Hoyle, 1885 .. 217
Amphitretus pelagicus Hoyle, 1885 .. 217

* At the time of going to press, Strugnell et al. (2013) published a major revision of the familial level classification of the incirrate octopods. They propose a single ctenoglossan family Amphitretidae, containing three subfamilies Amphitretinae, Bolitaeninae and Vitreledonellinae (see that work for new taxonomic structure).
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE ... 219

Amphitretus thielei Robson, 1930 .. 219

2.1.3 Family VITRELEDONELLIDAE Robson, 1932 219
Genus Vitreledonella Joubin, 1918 .. 220

Vitreledonella richardi Joubin, 1918 ... 220

2.1.4 Family BOLITAENIDAE Chun, 1911 .. 222
Genus Bolitaena Steenstrup, 1859 .. 222

Bolitaena pygmaea (Verrill, 1884) .. 223
Genus Japetella Hoyle, 1885 .. 223

Japetella diaphana Hoyle, 1885 .. 224

Argonautoid octopods ... 225
Key to families of argonautoid octopods .. 225

2.1.5 Family ALLOPOSIDAE Verrill, 1881 .. 225
Genus Haliphron Steenstrup, 1859 .. 226

Haliphron atlanticus Steenstrup, 1861 ... 226

2.1.6 Family ARGONAUTIDAE Tryon, 1879 .. 228
Key to species in the genus Argonauta based on characters of the female argonaut 229
Key to species in the genus Argonauta based on characters of the female argonaut’s shell 229
Key to species in the genus Argonauta based on characters of the male argonaut 229
Genus Argonauta Linnaeus, 1758 .. 229

Argonauta argo Linnaeus, 1758 .. 230
Argonauta bians [Lightfoot], 1786 .. 232
Argonauta nodosus [Lightfoot], 1786 .. 234
Argonauta nouryi Lorois, 1852 ... 236

2.1.7 Family OCYTHOIDAE Gray, 1849 ... 237
Genus Ocythoe Rafinesque, 1814 .. 238

Ocythoe tuberculata Rafinesque, 1814 ... 238

2.1.8 Family TREMOCTOPODIDAE Tryon, 1879 240
Genus Tremoctopus Delle Chiaje, 1830 in 1823-1831 240

Tremoctopus violaceus Delle Chiaje, 1830 in 1823-1831 240
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 243

Tremoctopus gelatus Thomas, 1977 .. 243
Tremoctopus gracilis (Eydoux and Souleyet, 1852) 243
Tremoctopus robsoni Kirk, 1884 .. 243

2.2 Cirrate octopods
Key to families of cirrate octopods .. 244

2.2.1 Family CIRROCTOPODIDAE Collins and Villanueva, 2008 245
Genus Cirroctopus Naef, 1923 ... 246

Cirroctopus glacialis (Robson, 1930) .. 246
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 247
Cirroctopus antarctica (Kubodera and Okutani, 1986) 247
Cirroctopus hochbergi O’Shea, 1999 .. 247
Cirroctopus mawsoni (Berry, 1917) ... 247

2.2.2 Family OPISTHOTEUTHIDAE Verrill 1896 248
Key to genera in the family Opisthoteuthidae 248
Genus Opisthoteuthis Verrill, 1883 .. 248
Opisthoteuthis agassizii Verrill, 1883 ... 249

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 250
Opisthoteuthis albatrossi (Sasaki, 1920) .. 250
Opisthoteuthis borealis Collins, 2005 ... 250
Opisthoteuthis brouni (Voss, 1982) .. 250
Opisthoteuthis californiana Berry, 1949 .. 250
Opisthoteuthis calypso Villanueva, Collins, Sánchez and Voss, 2002 251
Opisthoteuthis chathamensis O’Shea, 1999 .. 251
Opisthoteuthis depressa Ijima and Ikeda, 1895 .. 251
Opisthoteuthis dongshaensis Lu, 2010 ... 251
Opisthoteuthis extensa Thiele, in Chun, 1915 .. 252
Opisthoteuthis grimaldii (Joubin, 1903) ... 252
Opisthoteuthis hardyi Villanueva, Collins, Sánchez and Voss, 2002 252
Opisthoteuthis japonica Taki, 1962 ... 252
Opisthoteuthis massyae (Grimpe, 1920) .. 252
Opisthoteuthis medusoides Thiele in Chun, 1915 ... 253
Opisthoteuthis mero O’Shea, 1999 ... 253
Opisthoteuthis persephone Berry, 1918 ... 253
Opisthoteuthis philippii Oomen, 1976 ... 253
Opisthoteuthis pluto Berry, 1918 ... 253
Opisthoteuthis robsoni O’Shea, 1999 ... 253
Genus Cryptoteuthis Collins, 2004 .. 254
Cryptoteuthis brevibrachiata Collins, 2004 ... 254
Genus Grimpoteuthis Robson, 1932 ... 254
Grimpoteuthis wuelkeri (Grimpe, 1920) .. 256

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 257
Grimpoteuthis abyssicola O’Shea, 1999 ... 257
Grimpoteuthis bathynectes Voss and Pearcy, 1990 ... 257
Grimpoteuthis boylei Collins, 2003 ... 257
Grimpoteuthis challenger Collins, 2003 .. 258
Grimpoteuthis discovery Collins, 2003 ... 258
Grimpoteuthis hippocrepium (Hoyle, 1904) ... 258
Grimpoteuthis innominata (O’Shea, 1999) .. 258
Grimpoteuthis meangensis (Hoyle, 1885) ... 258
Grimpoteuthis megaptera (Verrill, 1885) .. 259
Grimpoteuthis pacifica (Hoyle, 1885) ... 259
Grimpoteuthis plena (Verrill, 1885) ... 259
Grimpoteuthis tufts Voss and Pearcy, 1990 ... 259
Grimpoteuthis umbellata (Fischer, 1883) ... 259
Genus Luteuthis O’Shea, 1999 ... 259
Luteuthis dentatus O’Shea, 1999 ... 260

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 261
Luteuthis shuishi O’Shea and Lu, 2002 ... 261

2.2.3 Family CIRROTEUTHIDAE Keferstein, 1866 .. 262
Key to genera in the family Cirroteuthidae ... 262
Genus Cirroteuthis Eschricht, 1836 ... 262
Cirroteuthis muelleri Eschricht, 1836 ... 263
Genus Cirrothauma Chun, 1911 .. 264
Cirrothauma murrayi Chun, 1911 ... 264

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE .. 265
Cirrothauma magna (Hoyle, 1885) ... 265
2.2.4 Family STAUROTEUTHIDAE Grimpe, 1916 ... 266
Genus Stauroteuthis Verrill, 1879 .. 266
Stauroteuthis syrtensis Verrill, 1879 .. 266

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE ... 267
Stauroteuthis gilchristi (Robson, 1924) ... 267

2.3 Vampire squids ... 268

2.3.1 Family VAMPIROTEUTHIDAE Thiele in Chun, 1915 268
Genus Vampyroteuthis Chun, 1903 .. 268
Vampyroteuthis infernalis Chun, 1903 .. 269

3. LIST OF NOMINAL SPECIES ... 271

4. LIST OF SPECIES BY MAJOR FISHING AREAS .. 279

5. REFERENCES .. 289

6. INDEX OF SCIENTIFIC AND VERNACULAR NAMES 335

7. LIST OF COLOUR PLATES ... 351
1. INTRODUCTION

1.1 INTRODUCTORY REMARKS

by Patrizia Jereb and Clyde F. E. Roper

The increasing exploitation of finfish resources and the depletion of a number of major fish stocks that formerly supported industrial-scale fisheries, force increased attention on the formerly-named ‘unconventional marine resources’, which include numerous species of cephalopods. Cephalopod catches have grown steadily in the last 40 years, from about 1 million metric tonnes in 1970 to around 3.6 million metric tonnes in 2010 (FAO, 2012).

This increase confirms the potential development of the fishery predicted by G.L. Voss (1973) in the first general review of the world’s cephalopod resources prepared for FAO. The rapid expansion of cephalopod fisheries in the decade or so following the publication of Voss’s review meant that a more comprehensive and updated compilation was required, particularly for cephalopod fishery biologists, zoologists and students. The FAO Species Catalogue, ‘Cephalopods of the World’ by Roper, Sweeney and Nauen (1984) was published to meet this need.

The number of cephalopod species that enter commercial fisheries has continued to expand significantly since 1984, as a result of the still-growing market demand and the expansion of fisheries operations to new fishing areas and to deeper waters. Formerly, it was suggested that the cephalopod ‘life-strategy’ may guarantee survival against environmentally stressful conditions, including those caused by heavy fishing. However, as cephalopod fisheries experienced further intensive development, parallel concern developed regarding potential overexploitation (see discussion of World Octopod Fisheries below).

In an effort to avoid possible failures in cephalopod exploitation, a broad consensus emerged among cephalopod fishery biologists to apply the experience gained from earlier errors in finfish management. To help prevent these potential failures, refined species identification capabilities are required, as well as a more detailed and accurate compilation of information on cephalopod species, their distribution, biology, fisheries and catch statistics.

Consequently, FAO recognized that a new edition of the ‘Cephalopods of the World’ catalogue was required. To achieve this expanded goal, several authors with particular areas of specialization were assembled to enhance the accuracy, coverage and utility of this revised catalogue. The magnitude of information currently available on cephalopod biology, taxonomy and fisheries made it necessary and convenient for specialized interests, to divide the Catalogue into three volumes: Volume I, on Chambered Nautiluses and Sepioids, published in 2005, Volume II, on Myopsid and Oegopsid squids, published in 2010, and Volume III, on Octopods and Vampire squids (current volume).

In our attempt to make this document as comprehensive and as useful as possible for the variety of potential users, the taxonomic coverage of the catalogue is organized into 3 levels of interest:

Level 1: species of cephalopods currently exploited commercially and species utilized at the subsistence and artisanal levels;

Level 2: species of occasional and fortuitous interest to fisheries. This includes species considered to have a potential value to fisheries based on criteria such as edibility, presumed abundance, accessibility, marketability, fin fishery bait, etc. Species of actual or potential interest to researchers or the wider public also are considered under this level, as is at least one representative of every octopod genus;

Level 3: species with no current interest to fisheries. These species are listed only with basic systematic and distributional information.

The inclusion of such a wide range of species is necessary to provide the most comprehensive inventory of species, regardless of their current commercial status. For example, this work should be useful in the ever-expanding search for development and utilization of ‘natural products’, pharmaceuticals, etc., as well as for fisheries and biology.

The catalogue is based primarily on information available in published literature. However, yet-to-be-published reports and working documents also have been used when appropriate, especially from geographical areas where published information and data are limited. Many of these documents are the result of the research of the current authors.

We are particularly grateful to colleagues worldwide who have provided us with fisheries information, as well as with bibliographies of local cephalopod literature. The fishery data reported herein are taken from the FAO official database, FishStat Plus 2009, now replaced by FishStatJ.

During the 20-plus years separating the two editions of the Catalogue, the rapid development of worldwide cephalopod fisheries and the simultaneous increase in the population of fisheries scientists through their research and publications, have produced an enormous amount of new data. Sometimes it is difficult to evaluate the reliability of published data, especially with regard to the identification of species in areas where the cephalopod fauna has not been sufficiently studied taxonomically. It is entirely understandable that field workers isolated from comprehensive library and museum/collection facilities find it difficult to correctly identify the species they encounter in the field. Moreover, the discovery of new species, the more accurate delimitation of known species, or even the introduction of nomenclatural changes, may cause confusion and lead to the use of scientific names that are incorrect by modern standards. Although great care has been exercised to evaluate and correct the published
information used in the preparation of this catalogue, some incorrect interpretations may have occurred. Another potential limitation, in the taxonomic literature especially, is that information on the economic importance of species is either scarce or of a very general nature. Further, important information may have been overlooked if published only in local fisheries literature that is unavailable on an international scale. All of these potential limitations, however, have been significantly mitigated during the preparation of the new edition because of the availability of on-line fisheries databases and bibliographic search capabilities.

With regard to the limitations mentioned above, we heartily request that readers who detect any errors in the information presented, or who have additional information and data that will enhance the accuracy and utility of this book, please contact and inform one of the authors or FAO FishFinder, the Species Identification and Data Programme of the Marine Resources Service, Fisheries Resources Division, Fisheries Department, FAO, Rome [FI-inquiries@fao.org].

For further reading and information on cephalopod biology, fisheries and resources, several references to websites are listed at the end of the references section (page 333).

1.2 PLAN OF THE CATALOGUE*

This catalogue is organized by families and their included genera within major cephalopod groups. The type genus within each family is treated first, then all remaining genera are listed alphabetically. The type species within each genus is treated first, then all remaining species are listed alphabetically.

Level 1, includes the most important species for fisheries utilization, and it consists of detailed information in all 12 categories listed below. Level 2, which comprises those species of occasional, fortuitous or potential interest to fisheries, consists of whatever information is available and appropriate for the 12 categories. Level 3, those species for which there is no current interest to fisheries, consists of basic information (i.e., scientific name, size, geographical distribution, literature). Within this volume the first two levels of treatment (Level 1 and Level 2) are not differentiated. Species included in Level 3 are presented at the end of each genus.

Each major group and family is introduced with general descriptive remarks, illustrations of diagnostic features, highlights of the biology and relevance to fisheries. The information that pertains to each species in Levels 1 and 2 is arranged by categories as follows: (1) scientific name; (2) synonymy; (3) misidentifications; (4) FAO names; (5) diagnostic features with illustrations; (6) maximum known size; (7) geographical distribution, including map; (8) habitat and biology; (9) interest to fisheries; (10) local names; (11) remarks (12) literature.

(1) Scientific Name: Reference to author, date and publication citation is given for the original description of each species.

(2) Frequent Synonyms: Principal synonyms and name combinations are listed.

(3) Misidentifications: Misidentifications are reported here and discussed in detail when appropriate, along with other nomenclatural points, in section 11, Remarks.

(4) FAO Names: English, French and Spanish names for each species, used primarily in FAO statistics and literature, are selected on the basis of the following criteria: (i) each name must apply to only one species, in a worldwide context; (ii) the name must conform to FAO nomenclatural spelling; (iii) the name should apply only to a cephalopod species, and it should not lead to confusion with species names in other major animal groups. Wherever possible, these names are selected based on vernacular names (or parts of names) already in existence within the geographical areas where the species is fished. FAO species names, of course, are not intended to replace local species names, but they are considered necessary to overcome the considerable confusion caused by the use of a single common name for many different species, or several names for the same species.

(5) Diagnostic Features: Distinctive characters of the species are given as an aid for identification, accompanied by pertinent illustrations. Species identifications should be attempted only after verification of the family through use of the illustrated key to families. Morphological characters in bold are considered primary diagnostic features to aid identification.

(6) Size: The known mantle length (or total length in some cases) of both males and females is provided where possible. Sizes or measurements might not be completely comparable, because they often were taken from preserved or fixed specimens. Measurements of commercially important species often come from fresh material. Because of the elasticity of arms, total length is not a very accurate measurement. Where both total length and mantle length are given, the accompanying illustrations were not necessarily illustrated from the same specimen but may have been obtained from different sources. The information available on the size attained by some species often is meagre, so the maximum size cited herein might be smaller than the actual maximum size. Maximum weight is given when available.

(7) Geographical Distribution: The entire known geographic range of the species, including areas of seasonal occurrence, is given in the text and shown on an accompanying map. In cases where only scattered records of occurrence are available, question marks have been used to indicate areas of suspected or unconfirmed distribution.

(8) Habitat and Biology: The known depth range of the species and information on salinity and temperature of its habitat are given where available. For the sake of precision, actual depth of capture data are reported, as given in the referenced literature. Information on biological aspects, such as migration, spawning season and area, longevity, prey, and predators, also is included.

*According to FAO standards
Interest to Fisheries: This paragraph gives an account of the areas where the species is fished and of the nature of the fishery. Its importance either is qualitatively estimated (minor, moderate, major or potential) or actual figures of annual landings are provided. Data on utilization (fresh, dried, cooked, frozen, canned, etc.) also are given when available. Here, too, the quality and quantity of the available information varies considerably among the species, and it is reported in as much detail as possible in relation to the species significance to the fisheries.

Local Names: These are the names used locally for the topic species. The present compilation is necessarily incomplete, since only a fraction of the local names applied to specific entities actually is published. In many cases, local names are available only for species that support traditional fisheries. Apart from possible omissions due to limitations of literature available, some of the names included may be somewhat artificial, e.g. through transliteration of indigenous words into English. The local species name is preceded by the name of the country concerned in capital letters and, when necessary, by geographical specifications in lower case letters.

Remarks: Important information concerning the species, but not specifically linked to any of the previous categories, is given here. For example, in some cases the taxonomic status of certain scientific names requires further discussion. Other nomenclatural problems are discussed in this section, such as the use of subspecies names.

Literature: This category includes references only to those publications cited in the text. For many uncommon species, only systematic papers are available.

1.3 GENERAL REMARKS ON CEPHALOPODS

by Patrizia Jereb and Clyde F.E. Roper

The group known as cephalopods (class Cephalopoda) is the most complex in the phylum Mollusca, and indeed, in all of the invertebrate phyla. Cephalopods include exclusively marine animals that live in all oceans of the world with the exception of the Black Sea, from the Arctic Sea to the Antarctic Ocean and from the surface waters down into the abyssal zone of the deep sea.

Cephalopods first appeared as a separate molluscan taxonomic entity, the nautiloids, in the Upper Cambrian period (over 500 million years ago), but more than half of these ancestors were already extinct by the end of the Silurian, 400 million years ago, when only the nautiluses survived. Meanwhile, other forms arose in the late Palaeozoic (between 400 and 350 million years ago), including those of the Subclass Coleoidea, but most of them became extinct by the end of the Mesozoic, about 150 million years ago. The only members of the subclass Coleoidea that exist today are the forms that developed in the Upper Triassic and Lower Jurassic (between 200 and 150 million years ago).

Although there is a long fossil record of many different groups, all living cephalopods belong to two ‘subclasses’: the Coleoidea, which includes the major groups known as squids, cuttlefishes sensu lato, octopods and vampires, and the Nautilioidea, containing two genera, Nautilus and Allonautilus(1), the only surviving cephalopods with an external shell.

At the present time the status and understanding of the systematics and classification of the Recent Cephalopoda are under considerable discussion. The families of living cephalopods are, for the most part, well resolved and relatively well accepted. Species-level taxa usually can be placed in well-defined families. The higher classification, however, still is not resolved. The classification above the family level is controversial and a broad consensus still needs to be achieved. This situation is not unexpected for a group of organisms that has undergone explosive research attention in recent decades.

Consequently, rather than accept and promote any particular scheme of classification, before consensus and stability are achieved, we will use an ‘operational breakdown’ that is satisfactory for the objectives of this Catalogue. For practical purposes we separate the cephalopods into several groups, without assigning or implying taxonomic relationships. Figure 1 diagrams several of the classification schemes currently under discussion.

In this work the following groups are used, as illustrated in Figure 2(2):

- Nautiluses
- Cuttlefishes
- Bobtail squids
- Bottletail squids
- Pygmy squids
- Ram’s horn squid
- Myopsid squids
- Oegopsid squids
- Vampire squids
- Cirrate octopods
- Incirrate octopods

Unresolved taxa:

- Spirula
- Chthamalops

Plural versus singular usage of cephalopod common group names is standardized as follows: squid, cuttlefish, octopod, octopus, vampire squid, nautilus refer to one individual or one species; squids, cuttlefishes, octopods, octopuses, vampire squids, nautiluses refer to two or more individuals and/or species. These terms also are used to indicate the major groups.

We differentiate between the members of the family Octopodidae, which are called octopus/octopuses, and the members of the whole group (Incirrate and Cirrate or any combination of non-Octopodidae taxa), which are called octopod/octopods.

Cuttlefishes, along with Nautiluses, were treated in Volume I. Squids were treated in Volume II. This third Volume of the Catalogue is focused on Octopods.

(1) Harvey et al. (1999) questioned the validity of the genus Allonautilus. However, the majority of the scientific community still considers the genus as valid (e.g., Ward, 1999; Bonnau et al., 2004; Kugl et al., 2004, 2007; Davis, 2005; Crook, 2008; Kruta and Landman, 2008; Turek, 2008; Young, 2010; Dunstan et al., 2011).

(2) The endings used in the group names do not imply any particular level of classification.
<table>
<thead>
<tr>
<th>Author</th>
<th>Superorder</th>
<th>Order</th>
<th>Suborder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roper et al. (1984)</td>
<td></td>
<td>Order</td>
<td>Suborder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teuthoidea</td>
<td>Myopsida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepioidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vampyromorpha</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octopoda</td>
<td>Cirrata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incirrata</td>
</tr>
<tr>
<td>Engeser and Bandel (1988)</td>
<td></td>
<td>Superorder</td>
<td>Order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decapoda</td>
<td>Spirulida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"higher decapods"</td>
<td>(name not given)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vampyromorpha</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octopoda</td>
<td>Cirrata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incirrata</td>
</tr>
<tr>
<td>Clarke (1988)</td>
<td></td>
<td>Order</td>
<td>Suborder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepioidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepiolioidea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teuthoidea</td>
<td>Myopsida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vampyromorpha</td>
<td>Oegopsida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octopoda</td>
<td></td>
</tr>
<tr>
<td>Sweeney and Roper (1998)</td>
<td></td>
<td>Superorder</td>
<td>Order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decabrachia</td>
<td>Spirulida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepiida</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepiolida</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teuthida</td>
<td>Myopsina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vampyromorphida</td>
<td>Oegopsina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octobrachia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octopodida</td>
<td>Cirrina</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incirrina</td>
</tr>
<tr>
<td>Young et al. (1998)</td>
<td></td>
<td>Division</td>
<td>Superorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neocoleoidea</td>
<td>Decapodiformes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sepioidea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sepiolida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teuthida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vampyromorpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octopodiformes</td>
<td>Octopoda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boletzky (1999)</td>
<td></td>
<td>Grade</td>
<td>Superorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decabrachia</td>
<td>Spirulida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sepiida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sepiolida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Idiosepiida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teuthida</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vampyropoda</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pseudooctobrachia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octobrachia</td>
<td>Cirrcoptopoda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Octopoda</td>
</tr>
<tr>
<td>Haas (2002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decabrachiomorpha</td>
<td>Oegopsida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spirulida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uniductia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octobrachiomorpha</td>
<td>Vampyromorpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Some conflicting suprafamilial classifications of living coleoid cephalopods
Fig. 2 Living cephalopods
1.4 GENERAL REMARKS ON OCTOPODS

by Mark D. Norman

Distribution, habitats and diversity

Octopods are exclusively marine in habit. None have colonized fresh water habitats, as this group shares the poor tolerance to low salinities found in the vast majority of cephalopods. The only potential octopod exceptions may be tolerance to high and low salinity by intertidal octopuses (such as members of the genus Abdopus). Periodic high temperature evaporation versus heavy rainfall on exposed intertidal reefs and pools can cause large variation in salinity levels.

Octopods occur at all latitudes from the equator to the polar waters. They also occur over a huge depth range from intertidal habitats to at least 5 000 m deep in the deep sea. There are two major groups, the finless incirrate octopuses (including the familiar benthic octopuses) and the semi-gelatinous finned cirrate octopods (and the related vampire squid). These two groups show different distributional trends.

Incirrate octopods exist in all habitat types and at all depths from coral and rocky reefs, to seagrass meadows, sponge gardens, soft substrates, open waters and into the deep sea. By contrast, the cirrate octopods and related vampires are restricted to the deep sea, rarely found shallower than 600 metres, except at high latitudes.

The highest diversity of octopods occurs amongst the shallow-water benthic octopuses of the family Octopodidae, likely to total more than 300 species worldwide. Many of these lack formal scientific description. In common with many marine animal groups, the highest diversity of the octopods occurs in the tropical Indo-West Pacific region, particularly the Indo-Malayan Archipelago.

Life mode and locomotion

Octopods exhibit diverse life styles. Most species are associated with the seafloor, with further division of these benthic species into those with free-swimming planktonic juvenile stages and those with well-developed crawl-away young.

Other groups of octopuses are free-swimming in the water column for their entire life cycle (holopelagic). Two groups, the ctenoglossans and the argonautoids, occupy the middle to upper levels of the water column (above approximately 600 m). The ctenoglossans include the families Bolitaenidae, Vitreledonellidae and Amphitretidae*, characterised by transparent soft bodies and reduced organs oriented to minimise their silhouettes from predators below in the twilight zone of the open ocean. The argonautoids include the argonauts (also known as ‘paper nautiluses’) and their relatives. These muscular animals typically reside in near-surface waters and are united by extreme sexual dimorphism (i.e. dwarf males).

In deeper waters (typically greater than 600 m), vampire squid and some cirrate octopods are holopelagic. Other cirrate octopods are associated with the ocean layer immediately above the seafloor and are capable of settling on the substrate (i.e. they are benthopelagic).

Locomotion of octopods varies from walking on the substrate with all limbs (or a subset, i.e. bipedal walking), jet swimming using the funnel, and/or a form of pulsating swimming consisting of rhythmic opening and closing of the arms and webs (medusoid swimming).

Cirrate octopods and vampire squids also use the fins to power (or assist) swimming locomotion (juvenile vampire squids have two pairs of fins). Swimming is aided in some groups by a gliding motion achieved by spreading the lateral arms as wings (e.g. benthic octopuses such as Enteroctopus) or by full spread of the arms and webs as a disk (e.g. cirrate octopuses such as Grimpoteuthis).

Octopods are primarily solitary in nature. As for all cephalopods there is no parental care or association beyond hatching. Like many other cephalopods, there is a prevalence of cannibalism. Only a few octopods appear to group in large numbers (outside breeding aggregations), namely the pelagic argonauts and members of the family Bolitaenidae.

General external characteristics

There are two major forms of octopods: 1) incirrate octopods, and 2) the deep-sea cirrate octopods and vampire squids. The incirrate octopods contain the greatest number of species including the familiar, muscular, bottom-dwelling (benthic) octopuses that are popular as fisheries targets (family Octopodidae).

Most incirrate octopods are bottom dwelling and occur from intertidal habitats to the deep sea floor. This group also includes a few strange free-swimming (pelagic) octopuses of the open ocean, such as the argonauts and the Glass octopus (Vitreledonella richardi). Mature animals range in size from pygmy octopuses at under one gram to the Giant Pacific octopus (Enteroctopus dofleini) and the pelagic Seven-arm octopus (Haliphron atlanticus) with arm spans likely to exceed 3-4 metres.

The primary external characteristics of incirrate octopods are:

- Generally muscular, spherical bodies that lack fins
- Skin that is typically coloured and often sculptured in regular or irregular textures, with or without larger raised papillae
- A wide opening on the underside of the head/body into the mantle cavity, from which the tubular funnel protrudes
- Short to long arms that bear one to two longitudinal rows of suckers
- Typically moderate to deep web sectors between the arms
- Suckers with wide bases and soft cup linings (never with the horny sucker ring found in squid and cuttlefish)
- Most species possess an ink sac
- All except several transparent pelagic forms have males with a modified arm tip on one of the third arms (right arm in most species)
- A well-developed beak and radula

* At the time of going to press, Strugnell et al. (2013) published a major revision of the familial level classification of the incirrate octopods. They establish six families: Octopodidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Amphitretidae, the latter containing three subfamilies Amphitretinae, Bolitaeninae and Vitreledonellinae (see that work for new taxonomic structure).*
By contrast the cirrate octopods and vampire squids are exclusively residents of the deep sea. They are soft, semi-gelatinous animals that are rarely encountered. None are commercially harvested. Mature animals range in size from around 10 cm to at least two metres in total length. The primary external characteristics of cirrate octopods and vampire squids are:

- Body and arms semi-gelatinous.
- Body bears a pair of round to elongate fins (two pairs in juvenile vampire squids), supported under the skin by a cartilaginous support (shell).
- Skin is typically uniform in colour (white to dark brown), lacking any skin sculpture.
- A narrow opening on the underside of the head/body into the mantle cavity, tightly fitting around the protruding tubular funnel.
- Short to long arms that bear a single longitudinal row of suckers between two longitudinal rows of thin digits of skin (cirri).
- Vampires possess a pair of long, thin, sensory filaments, which can retract into pits in the web between the bases of arms 1 and 2.
- Typically possess deep and thin web sectors between the arms, as a double inflatable layer in some groups.
- Small suckers embedded within the flesh with small soft-lined cups (never with the horny sucker ring found in squid and cuttlefish). Mature males of some groups possess enlarged suckers in their single sucker row.
- All species lack an ink sac.
- No male arm tip modifications as found in incirrate octopods.
- A well-developed beak.
- Radula present, reduced or absent, depending on the group.

Nervous and sensory systems

Cephalopods in general, and octopods in particular, are renowned for their well-developed brain and nervous system. The brain of octopods (and cephalopods) has a unique floor plan, having evolved as a neural ring around the oesophagus. The majority of the octopod brain consists of the optic lobes. For example, the brain of *Octopus vulgaris* contains around 130 million nerves in the optic lobes and only 40 million for all the other portions of the brain. The paired optic lobes are primarily concerned with vision, regulating visual behaviour and learning, storing visual memory and controlling skin displays.

Almost all octopods have well-developed eyes and excellent vision. The eye typically contains a two-part lens consisting of two half spheres. Evidence from retinal structure and behavioural experiments indicates that octopods (and all cephalopods) are colour blind – their colour change abilities are responding to tonal differences rather than colour wavelengths. Species have also been demonstrated as discriminating the plane of polarization of polarized light, proposed as aiding detection of prey or predators in sunlit surface waters.

Eye form becomes more diverse in deep-water octopods. The deep-sea cirrate octopod, *Cirrothauma murrayi*, is unique amongst all cephalopods, as its eyes are simple open cups that lack lens or iris. It is unlikely to be able to form a focused image. As the name suggests, the Telescope octopus (*Amphitretus pelagicus*) has vertically-oriented, tubular eyes used to search the waters above for the silhouettes of its prey in the twilight zone between around 200-800 metres.

The skin of octopods

Octopods are most famous for the complex skin in many species and their capacities for rapid pattern and texture changes. The skin contains two main components that carry out these changes: chromatic and sculptural.

The chromatic components produce the colour of the skin and are under direct neural control. There are three classes of organs within the skin that produce and change colour: 1) chromatophores, 2) iridocytes and reflector cells, and 3) leucophores. In a general sense these can be considered as the colour pixels, the reflective cells and the white markings (respectively).

Chromatophores are like small elastic balloons of coloured pigment surrounded by the spokes of radial muscles. The balloon is stretched by contraction of the radial muscles so that the colour is displayed as a circular or polygonal spot. When the muscles relax, the elastic balloons contract to a tiny dot so that the colour is not visible. This is how the coloured dots can be turned on and off, much like the colour pixels in a television screen. Chromatophores come in different colours, grading through yellow to orange, red, dark brown and black. They can be less than 0.3 mm across and can occur in very high densities, resulting in high-resolution body patterns.

Iridocytes and reflector cells cause the iridescent sheen in the skin of many octopods, especially around the eyes. These structures selectively reflect and refract light, causing green, blue or violet shades. Some species concentrate these iridescent structures in rings within false-eye spots (i.e. some ocellate members of the genus *Amphioctopus* and all species of the blue-ringed octopuses, genus *Hapalochlaena*).

Leucophores wholly reflect white light, forming the high contrast white markings found in many well-camouflaged benthic octopuses, e.g. the transverse pair of bright white spots on the dorsal mantle. The sculptural components of the skin can include large individual papillae of skin (particularly over the eyes), overall textures of regular/irregular rounded warts or patches (patch and groove system), and longitudinal flaps or ridges. Some benthic octopuses, particularly those from soft sediment substrates, also may possess a longitudinal raised ridge around the lateral and posterior mantle (the lateral mantle ridge).

Used in combination, these skin components can produce dynamic and complex visual displays. When coupled with appropriate postures and motion, complex camouflage and even mimicry can be effected.
Circulatory system

The blood of cephalopods contains the respiratory pigment haemocyanin, a copper-based pigment that causes the blood to be blue to green in colour. This pigment is less efficient at capturing and transporting oxygen compared with human iron-based respiratory pigment, haemoglobin, and as such requires higher blood pressures and flow rates to maintain the high metabolic rate of active predators. The circulatory system is made up of three hearts, a central systemic heart and paired branchial (gill) hearts, one above each gill. The gills consist of multiple fleshy plates (8-30 per gill), each plate is known as a gill lamella. Besides the gills, there is some evidence that oxygen also can be directly absorbed through the skin.

Digestive and excretory systems

Beginning from the mouth, the primary components of the digestive system of octopuses are the buccal mass (a muscular ball containing the two beak halves and the toothed radula), one or two pairs of salivary glands, an oesophagus, a crop (with or without a side-branch diverticulum), a muscular stomach, a coiled caecum joined by paired ducts into a large digestive gland (the vertebrate liver equivalent in cephalopods), and an intestine culminating in the anus. An ink sac, if present, is typically embedded in the ventral surface of the digestive gland and connected to the intestine (or at the level of the anus) via the ink duct. Many species, particularly those with an ink sac, possess a pair of small paddle-shaped appendages on each side of the anus, known as anal flaps. The well-developed beak and toothed tongue (radula) of all cephalopods may have evolved as a consequence of the oesophagus passing through the centre of the donut-shaped brain. This configuration probably requires prey to be macerated into a semi-liquid state in order to pass through the centre of the brain. Thus octopods (and cephalopods in general) are not able to swallow whole, large prey, compared to most fishes, birds and mammals. This has direct consequences for studies of cephalopod diets as stomach contents are macerated in comparison to many fishes.

Cephalopods have a protein-based metabolism - there is no lipid digestion or storage. Muscles can act as an energy store, with females of some squid species digesting so much of their own musculature as they approach spawning that their bodies literally start falling apart. The primary by-product of protein consumption in these carnivores is ammonia, which is excreted via two organ types. The first is the paired renal appendages, enclosed within membranes to form the renal sacs. These spongy tissues release ammonia directly from the blood and also are home to a unique phylum of highly specialized parasites – the dicyemids. Waste ammonia is then released through the paired renal pores. Octopus studies also have found that additional ammonia is excreted directly through the gill membranes.

Reproduction

The reproductive strategy of most octopods consists of males using a modified arm, or in a few groups the terminal organ of the male reproductive tract (penis), to pass encapsulated packages of sperm (spermatophores) to females. Processes prior to and after copulation vary between the major groups.

For benthic incirrate octopuses (family Octopodidae), the third arm (hectocotylus) of mature males (typically on the right hand side) is modified with a curled groove along the length of the arm on the ventral edge (the spermatophore groove), leading to a triangular to spoon-shaped tip (ligula) with a small triangular process at the base of a central groove (the calamus). During mating, males either mount the mantle of the female or simply place the tip of the extended hectocotylized arm into the female’s oviduct opening within the gill (mantle) cavity.

Egg fertilization occurs within the oviducts, oviducal glands or ovary (depending on the species) and then the female lays eggs singly or in strings (festoons). Eggs are typically attached to substrate or shells, or are carried in the web in some species (e.g. blue-ringed octopuses). All incirrate octopods are egg brooders, with the females tending, cleaning, jetting and protecting the eggs until they hatch.

Pelagic incirrate octopuses vary their strategy from brooding within the arm crown and webs, to carrying the eggs within a shell (genus Argonauta), to ovovivipary where brooding and hatching occurs from within elongate oviducts (genus Ocythoe).

The vast majority of incirrate octopuses appear to be semelparous - having a single egg-producing event and dying around the time of egg hatching. One of the possible exceptions is the pelagic argonautoids where egg spawning may be a prolonged process (see treatment for Family Argonautidae).

In stark contrast, the deep-sea finned cirrate octopuses and vampire squids lack arm tip modifications in the males, instead they appear to pass small barrel-shaped spermatophores directly to the female using the terminal organ of the male tract (penis). Females deposit their eggs directly on the seafloor and also may produce eggs over a prolonged period.

The mature males of many octopods (both groups) may possess distinctly enlarged suckers on the arms. In benthic incirrate octopuses, these suckers are thought to be visual cues to females of a male’s reproductive viability. The function in deep-sea cirrate octopuses remains unknown but may be a tactile equivalent.

Growth and life history

As for most cephalopods, the majority of octopods probably are fast growing and relatively short-lived. Some polar species are estimated to live for at least 6 years, but lifespan for most warmer-water species is probably only 1 to 2 years. Longevity of deep-sea cirrates and vampire squids is less well known.

At hatching, octopods tend to take one of two
developmental paths: either by direct development (taking on the habit and behaviours of the adult) or via a free-swimming planktonic stage (termed *paralarva*). For benthic incirrate octopods egg size relative to mantle length can be an indicator of hatching form. Species with eggs less than 10% of mantle length tend to have planktonic paralarvae while species with eggs greater than 12% of mantle length tend to be well-developed, benthic, crawl-away young. There is no post-hatching parental care in octopods. All hatchlings fend for themselves from hatching.

Diet and feeding behaviour

Like all cephalopods, octopods are carnivores, preying on diverse prey but particularly on crustaceans, fishes and shelled molluscs. Prey are gripped by the suckers and may be seized directly, enveloped in ensnaring webs, extracted from burrows or crevices by single arms, or flushed from the sand using the arm tips.

The radula and salivary toxins play a large role in prey immobilisation and manipulation. Active prey such as crabs and fishes are rapidly immobilized and partially digested by a combination of salivary neurotoxins and digestive enzymes. Commercially harvested lobsters that have been bitten by octopuses have semi-liquified flesh, so they have no sale value. With shelled mollusc prey, many benthic octopuses may prise shells apart or use a combination of the toothed salivary papillae adjacent to the radula and salivary chemicals to drill and dissolve through shells to paralyse the occupant and gain access. Some octopuses also use this technique to extract hermit crabs from their gastropod shell homes.

Defensive behaviours

The primary defense of most octopods is concealment or crypsis. Many benthic incirrate octopods have excellent camouflage capacities, matching both tonal and textural components of their backgrounds. In a few species, mimicry of distinct models (e.g. poisonous animals) also has been reported.

Benthic octopods often construct dens or occupy cave lairs. These refuges can be supplemented by barricading the entrances with rock, coral or shells. Some species that live on soft substrates, such as *Amphioctopus marginatus*, will carry coconut or bivalve shells as portable shelter to be assembled as required. Other species bury directly into the substrate.

Once disturbed or attacked, many species release ink either as a congealed decoy or a diffuse smoke screen. Many long-arm benthic octopuses also are able to sever an arm at a basal weak point, leaving a wriggling decoy for attackers. This is known as *arm autotomy* and the stump of the severed arm will regenerate a replacement arm within weeks to months.

The blue-ringed octopuses (genus *Hapalochlaena*) use the powerful neurotoxin, tetrodotoxin, for both prey immobilisation and as defence against their attackers. They advertise this toxicity using brilliant iridescent blue rings and/or lines distributed across their body.

Classification and taxonomic status

The largest group of octopods is the benthic octopuses of the family Octopodidae*, containing over 300 species. The taxonomy and classification of this group are undergoing considerable revision and many new species (>150) await formal scientific description, particularly in the tropical Indo-West Pacific. The higher-level classification (family level and above) and knowledge of the evolutionary history of these animals currently are under review, aided by recent developments in molecular phylogeny and analysis tools.

Concluding remarks

The octopods are a very large and important group in marine environments, playing significant roles as top-level predators in all ecosystems. Many species have a very high fisheries profile and value, worth more than $US1.5 billion in annual trade. Overall, the group is poorly studied, particularly away from the primary research centres of the US, Europe and east Asia. The group requires considerable further research, particularly into diversity, roles in ecosystems, reproductive biology, fisheries impacts and management, and conservation status (see Fisheries chapter below).

1.5 WORLD OCTOPOD FISHERIES

by Mark D. Norman and Julian K. Finn

Octopus fishery techniques

Benthic octopuses of the family Octopodidae are harvested throughout the world, being highly valued both for human consumption and, to a lesser degree, as bait (Boyle and Rodhouse, 2004). Diverse techniques are used to capture octopuses, ranging from small-scale subsistence and artisanal harvests to large-scale commercial fisheries. The primary techniques employed are: (1) direct capture by hand, hook, or spear; (2) line capture (using lures and/or baits); (3) use of weighted pots (baitless or baited); and (4) use of nets, including trawls (e.g. otter, seine, beam), cast, and static nets (e.g. fyke). In many regions of the world, hand, line, and cast net capture can include the use of lights at night to harvest nocturnally active species. A number of papers have summarized octopus harvest techniques (e.g. Pennington, 1979; Voss, 1985; Rathjen and Voss, 1987; Paust, 1988; Rathjen, 1992; Guerra, 1997; Lang and Hochberg, 1997; Roper, 1997; Gillespie et al., 1998).

Octopus harvests occur across diverse environments - from exposed intertidal habitats (e.g. *Octopus cyanea* collection from coral reef flats throughout the tropical Indo-West Pacific region), to continental shelf (e.g. trawl harvests of *O. vulgaris* off northwest Africa and *Amphioctopus* species from the Gulf of Thailand) and from the continental slope (e.g. *Enteroctopus dofleini* trawling off northern Japan).

In the last decade, a number of aquaculture trials for octopuses have been undertaken (e.g. *Octopus vulgaris* in Spain, see Vas-Peres *et al.*, 2004; *Enteroctopus megalocyathus* in Chile, see Perez *et al.*, 2006; *O. maya* in Mexico, FIS, 2009; and up to eight species in China, Liao...
et al., 2006; Lv et al., 2007; Cai et al., 2009), although none have reached commercial operation. The biggest challenges for octopus aquaculture are high mortality rates where stocking densities are high (including the prevalence of cannibalism), requirement for low cost and high quality feed, and raising the earliest life stages (particularly for species with planktonic young).

Octopus ongrowing, where wild caught small animals are fed in captivity to attain profitable sizes, has been investigated for Octopus vulgaris (e.g. Rodriguez et al., 2006; Pham and Isidro, 2009). As with full life cycle aquaculture, the issues of high mortality rates at higher stocking densities, along with cost and quality of feed, are challenges for the economic viability of this practice.

Parasites of octopods are reviewed by Hochberg (1983, 1989).

Global catch statistics

Octopuses form the basis of major and valuable fisheries throughout the world. The most recent global catch statistics for octopuses placed the 2010 total world octopus production (catch and culture of all species) as exceeding 350 710 tonnes (FAO, 2011). In 2009, world exports of this catch was valued at $US1.07 billion dollars, while import value was $US1.33 billion (FAO, 2011). The scale and value of this catch exceeds that of many valuable finfish fisheries. Despite this high value and profile, little synthesis of the composition and nature of the world octopus harvests has been made to date.

Commodity data for 2009 places export value at an average of $US4.48 per kilogram and import value at an average of $US4.38 per kilogram (FAO, 2011). In many regions of the world octopuses are more valuable per kilogram than many valued finfishes. In 2009, octopus commodity values per kilogram significantly exceeded those of the FAO commodities finfish category “tuna, bonito, billfish” (import $US3.19/kg, export $US3.02/kg, FAO, 2011).

Figure 3 presents the total reported global production of octopuses over the past three decades, indicating a relatively steady increase in catch, almost doubling from 179 042 tonnes in 1980 to 350 710 tonnes in 2010 (FAO, 2011). Economic value for this world octopus catch (using export sales as an indicator, Fig. 4) has increased almost sixfold over this timeframe, rising from $US231 million in 1980 to $US1.33 billion in 2009 (FAO, 2011). The trend in global octopus catch presented in Fig. 3 suggests a gradual rise in catch, potentially stabilising over the past seven years. This trend suggests sustained catches. However, a number of inherent attributes of the data that underpin this trend may be masking real trends in global production.

Production data attributes

Available summary statistics for world octopus harvests come from two sources: (1) production estimates provided by nation states to 2010 (‘Global Production’, FAO, 2011); and (2) estimates based on fishery commodities data to 2009 (i.e. export and import data, ‘Fisheries Commodities and Trade’, FAO, 2011). For many fisheries, these data sources can differ significantly from each other. Major issues associated with this data include poor species taxonomy, poor catch resolution, the failure of many regions of the world to collect (or provide) any cephalopod catch statistics, the lumping of octopus catch under the broader generic categories of ‘cephalopod’ or ‘squid, etc.’, and various failures to include subsistence/artisanal harvests, domestic consumption of commercial catches, bycatch, and/or harvests of octopuses used for bait. Three issues are discussed individually below.

Poor taxonomy

The single largest impediment to accurate catch statistics is the historically poor state of octopus taxonomy and the limited identification tools available. As a result there is little or no discrimination of catch composition for all but a handful of octopus harvests worldwide. Little is known of the biology, ecology, distributions and stocks of the vast majority of harvested species. Norman and Hochberg (2005a) estimated that there are likely to be more than 300 species of benthic octopuses in the world, many of them lacking formal description. Of these, we estimate that more than 100 species are likely to be taken in human harvests, yet global summary statistics list only four species: common octopus (Octopus vulgaris), Mexican four-eyed octopus (O. maya), horned octopus (Eledone cirrhosa) and musky octopus (E. moschatula). The remaining species, at most, are treated as ‘unidentified Octopus’.

Unreported catches

Many countries with octopus fisheries provide no specific catch statistics. Few countries from the northern and western Indian Ocean (including the Red Sea) report any cephalopod (and thus octopus) catch, for example, Iran and Iraq. Other nation states such as India, Pakistan, Somalia, and Madagascar include octopuses within general cephalopod categories, preventing specific estimations of octopus catch.

The majority of island nations of the tropical Pacific Ocean harvest octopuses in subsistence and/or small-scale commercial fisheries (mainly Octopus cyanea and members of the genus Callistoctopus), yet few report catch statistics. For half the tropical Pacific Ocean (FAO area 77: central and eastern Pacific), only the Cook Islands and Mexico provided octopus catch statistics (FAO, 2011), while other island groups known to harvest octopuses provide no statistics (e.g. Hawaii, Tonga and the Society Islands). Other notable absences from broader Pacific Ocean octopus catch statistics include Papua New Guinea, Vanuatu, and New Caledonia. The combined harvest of the many island nations around the tropical Pacific and Indian Oceans could prove to be very high.

Catch underestimates

Throughout the world, reported statistics of octopus catch also fail to include the majority of subsistence and artisanal harvests. These catches are very difficult to monitor due to their dispersed and small-scale nature, localized consumption, and rapid sale through small local markets.
For many countries with limited fishery management resources, the result is that such catches go unreported. In addition, the octopus catch statistics provided by many nation states appear to be based primarily on estimates from export data. Export data often are equivalent to, or even larger than, total production estimates. Such rough estimates of octopus production exclude domestic consumption, which for some countries is extremely significant.

Bycatch of octopuses by fisheries that target other species, particularly trawl, line and pot fisheries, also are largely unreported. One study in Western Australia estimated that more than 250 tonnes of octopus were caught each year as bycatch in the Western Australian rock lobster pot fishery alone, all of which were killed and discarded or used as bait (Joll, 1977). This non-target byproduct of a single fishery is not reported and constitutes more than half the reported harvest of all octopuses for all of Australia in 2010 (548 tonnes, FAO, 2011).

As a result of these inherent attributes and problems, global catch data for octopuses should be considered a very rough estimate of total harvest, and likely to be a considerable underestimate. Watson and Pauly (2001) highlighted the inherent difficulties in amassing and interpreting global catch statistics, stating that “(the) FAO must generally rely on the statistics provided by member countries, even if it is doubtful that these correspond to reality” (p. 534). These authors suggest that inaccuracies and underestimates can cause globally spurious trends that “influence unwise investment decisions by firms in the fishing sector and by banks, and prevent the effective management of international fisheries” (p. 534). We agree that statistics such as the available global octopus production data should be used and interpreted with caution.

World catch composition

The aim of this volume is to review the octopus species of highest fisheries value, profile or potential, and to present representatives of all world octopus genera for comparison/discrimination. The previous scarcity of information on taxonomy and biogeography has severely impeded species identification for many regions, particularly the Indo-West Pacific region, where octopus diversity is highest (Norman and Hochberg, 2005).

Catch statistics reported by FAO currently are listed under just four octopus species names (*Octopus vulgaris*, *O. maya*, *Eledone cirrhosa*, and *E. moschata*), the remainder being classified as unidentified octopuses. While the “Common Octopus”, *Octopus vulgaris*, and closely related taxa (see *O. vulgaris* species treatment below) are high-value, targeted species in a number of regions of the world, a much larger number of species is harvested throughout the world, particularly throughout Asia and the western Pacific Ocean. Table 1 presents a preliminary list of more than 50 octopus species collected in small-scale to large-scale harvests around the world. Catch varies significantly by region and may target single species or consist of multi-species catches (targeted or incidental).

Major producers and consumers

Producers

Asia reported the highest octopus production for 2010, at 217 506 tonnes, primarily as unidentified octopus species. This catch is highly diverse and consists of a large number of species. In tropical and subtropical regions of Asia, the most common species harvested are members of the genera *Amphioctopus*, *Callistoctopus*, and *Cistopus*, along with members of the ‘Octopus’ minor group. In cooler latitudes (e.g. Japan), the catch shifts to the northern Pacific *Octopus vulgaris* (see *O. vulgaris* species treatment), *Enteroctopus dofleini*, ‘*O*. conispadicus’, and members of the ‘Octopus’ minor group. The seven largest reported producers of octopuses in Asia in 2010 were China (125 776 t), Japan (41 700 t), Korea (20 759 t), Indonesia (10 860 t), Thailand (10 315 t), Philippines (5 506 t), and Malaysia (1 936 t).

Octopus production from Africa for 2010 was reported as 57 982 tonnes, the vast majority of which is the octopus harvest from off the northwest coast of Africa (for *Octopus vulgaris* with a small proportion of *Amphioctopus burryi*). Four countries take the majority of this harvest (Morocco, 32 006 t), Mauritania (15 801 t), Tunisia (3 764 t) and Senegal (3 317 t).

European production of octopuses for 2010 was 42 945 tonnes, which is primarily *Octopus vulgaris*, with some *Eledone cirrhosa* and *E. moschata*, from the western and central Mediterranean Sea and the Atlantic coasts of Spain and Portugal. The five largest producers are Spain (16 470 t), Portugal (10 934 t), Italy (9 884 t), Greece (2 676 t), and France (1 744 t).

The reported octopus catch from the Americas for 2010 was 31 546 tonnes, which is primarily *Octopus vulgaris* and related species: *O. maya*, *O. mimus*, and *O. insularis*. The largest American producers are Mexico (*O. vulgaris* 15 325 t, *O. maya* 5 713 t), Brazil (2 069 t), Chile (1 895 t), and Peru (1 030 t).

Importers and exporters

Based on commodities data, a total of 303 428 tonnes of octopuses were reported as being imported globally in 2009, worth $US1.33 billion (FAO, 2011). The two biggest importing regions were Europe (import value $US716 million) and Asia ($US538 million). For the same year, global octopus exports were reported as 239 314 tonnes, worth $US1.07 billion. The largest exporters by region were Asia (exports worth $US417 million), Africa ($US358 million) and Europe ($US247 million). The 20% discrepancy between global import and export figures is further evidence of the inaccuracies in current octopus catch estimates worldwide.

Octopuses as sustainable fishery targets

Many cephalopod species, including octopuses, may be better suited as targets for fisheries exploitation than finfishes and other harvested marine groups. Their fast
growth rates, high escapement (through speed and/or cryptic behaviour) and high fecundity (for small-egg species) have led to them being considered ‘weed-like’ species that are able to: (1) recover quickly from disturbance or overfishing; (2) occupy niches vacated by overexploited finfish stocks; and/or (3) flourish under ‘predator release’, where natural predators have been removed by fisheries (Caddy and Rodhouse, 1998; Chotiyaputta et al., 2002; Rigby and Sakurai, 2005). Some studies have suggested that the behavioural flexibility of octopuses may enable further resilience to fishing pressures. For example, Rigby and Sakurai (2005) found that *Enteroctopus dofleini* in northern Japan reduced normal home ranges to target and feed on finfishes captured in gill nets.

Octopus fisheries also are promoted as ecologically sustainable due to the low-impact fishing techniques that can be used for harvests, such as the use of baited or unbaited pots. Baeta et al. (2005) found baited octopus pots were the most sustainable fishery of seven estuary fisheries in the Tagus region of Portugal. Unbaited pots are considered even more sustainable as they collect no bycatch and cause negligible environmental disturbance. Due to such perceptions, octopuses historically rated higher on seafood sustainability indices than other marine seafood resources. However, more recent concerns about overfishing and the environmental impacts of trawl harvests have lowered the rating of octopuses with some conservation agencies (e.g. SeaChoice, Canada; Seafood Watch, Monterey Bay Aquarium; Environmental Defence Fund, USA).

Increasingly, environmental impacts and sustainability issues such as “food miles” are being considered in seafood harvests. Vasquez-Rowe et al. (2011) assessed the environmental impact of *Octopus vulgaris* captured in Mauritanian waters and exported frozen to Japan, finding discard and seafloor impacts as high during capture, while associated energy use post-harvest was low, due to the slow maritime transport of the frozen product to Japan.

For most harvested octopus species, the perception of octopuses as sustainable fishery targets is not backed up by detailed knowledge of the biology, ecology, distributions, stock assessments, and/or impacts of fisheries on stocks or reproductive cycles.

Interpreting catch trends

The relatively stable total catch trend in world octopus fisheries as presented in Figure 3 appears to run contrary to that of finfish catch trends worldwide over the same time period (e.g. total finfish catch, Fig. 5; shark and ray catch, Fig. 6). However, reported world octopus captures over recent years contain data attributes that may be clouding real trends in global harvest.

Recent contribution of catch statistics from China

The single largest impact on global octopus catch statistics has been the relatively recent inclusion of fishery statistics from China (see Fig. 8 for total SE Asian and Japanese production). Prior to 1987, China reported no octopus production figures to the Food and Agriculture Organisation. Over the 16 years between 1987 and 2003, Chinese octopus production figures reported to FAO consisted solely of catch from the west coast of Africa (*Octopus vulgaris*) and did not exceed 7 500 tonnes in any one year. Between 2003 and 2007, reported production jumped to around 100 000 to 140 000 tonnes and primarily represents catch in the western central Pacific Ocean. It is not considered here that the Chinese catch rapidly increased 20 fold in one year, but, rather, that FAO requests for global fisheries data around this time led to submission of Chinese octopus production data to these global statistics. Due to the high profile and value of octopuses in China, harvests in this country very likely are to have been at high levels for a considerable time. If Chinese catch data are excluded, the global trend appears less sustained and suggests that global octopus catch (as reported) may have peaked in 1999 (when excluding Chinese data) at around 350 000 tonnes (Fig. 3).

Regional catch trends

When catch trends are examined on a regional scale, it is evident that the majority of octopus fisheries as reported are now in decline. By region, it is clear that catches have peaked for many octopus fisheries. Comparisons of the most recent production data with historical peaks show distinct declines (FAO, 2011):

- **Africa**: 57 982 t (2010), peak: 140 476 t (1999).
- **Europe**: 42 945 t (2010), peak: 107 902 t (1983).
- **Oceania**: 731 t (2010), peak 1990: 3 161 t (1990)*

(*1995 record of 11 547 t from NZ is an error, NZ Ministry of Fisheries, pers. comm.).

The only region to have the highest octopus harvest within the past decade is Asia, where the 2007 production was the highest at 247 196 t (two-thirds of the global catch), with a 2010 production of 217 506 t. As discussed above, the relatively recent inclusions of data from China (i.e. 100 000+ t per annum since 2003) means that the scale of harvests through unreported years remain unknown.

Specific fishery examples

If two specific fisheries are examined in more detail, the same post-peak trends emerge. To date, the largest octopus fishery for a single species in the world has been the *Octopus vulgaris* fishery off northwest Africa, harvested primarily by Senegal, Mauritania and Morocco. Historically, Korea, the Russian Federation and two Central American nations, Honduras and St. Vincent, also targeted what has been identified as this species up until the early 1990’s. Figure 9 shows the total catch data by all nations for this fishery, demonstrating peaks of 112 461 tonnes and 137 722 tonnes in 1991 and 1999 respectively, compared with around 49 259 tonnes in 2010 (FAO, 2011). Studies by individual nations support this trend. Sato and Hatanaka (1983) assessed Japanese ‘distant-water’ exploitation of this fishery and diagnosed the stock as over-exploited. Gasquel et al. (2007) reported declines of *O. vulgaris* harvests from Mauritania from 70 000 to 15 000 tonnes between 1982 and 2006. Using commodity data, Yagi et al. (2009) plotted four
In order to achieve sustainable management of octopus fisheries, it is crucial that biological attributes of target species are considered. Two factors in particular are critical: reproductive output (recruitment) and breeding behaviour.

Egg size and recruitment

Benthic octopus species are relatively fixed in possessing one of two broad life history strategies (Boletzky, 1977): (1) production of numerous small eggs (<10% of mantle length) that hatch into abundant planktonic hatchlings; or (2) production of few large eggs (>10% of mantle length) that hatch as less abundant benthic ‘crawl-way’ young. As a consequence, fisheries that target large-egg species have much lower recruitment potential than for small-egg species with their abundant planktonic young (i.e. production of hundreds to thousands of offspring per female versus 10 000’s to millions of offspring per female). Regional depletions are much more likely for fisheries targeting large-egg octopus species, which should be managed on much smaller scales than small-egg species (see Narvarte, 2006 for *Octopus* *tehuelschius* in Argentina; Leporati et al., 2009 for *O.* *pallidus* in Australia).

Breeding behaviour

Breeding behaviour also must be taken into account as harvest techniques often inappropriately target breeding stocks. Octopus pot harvests typically target octopus species of soft-sediment substrates, as the pots provide rigid refuge from predators and are used by both sexes and all growth stages. However, mature females also use pots as a substrate/refuge in which to lay and brood their eggs, leading to this harvest technique depleting the reproductive output of populations (particularly for low fecundity, large-egg species, Leporati et al., 2009). As females reduce or cease feeding at the commencement of egg brooding, fisheries that target feeding animals, by contrast, may catch fewer breeding females.

For some fisheries, the problems of overexploitation, low fecundity (e.g. large-egg species) and the targeting of breeding aggregations have merged. For example, the harvest of an undescribed large-egg octopus species from the *Octopus* *minor* group on the Peng-hu Islands of Taiwan peaked in the mid-2000’s when high demand by the live-octopus restaurant trade resulted in sale prices of up to $US80 per kilogram (C.C. Lu, pers. comm.). This species aggregates to spawn on shallow coral reef flats in February each year, where it is targeted at night by long lines of walking fishers using headlamps and gaffs to hook active octopuses. In 2005, dramatic catch declines led to implementation of a one-month seasonal closure each year to protect spawning females.

It is critical for all octopus fisheries (current, developing, and potential) to both understand the biological attributes of the target species and to take these attributes into account in effecting appropriate and precautionary management regimes.

Impacts of climate change

In addition to the many factors discussed above, octopus fisheries around the world are likely to be significantly impacted by climate change. Several studies propose that observed population declines are strongly linked with the climatic fluctuations associated with climate change, declines correlating directly with increasing seawater temperatures (e.g. for *Eledone cirrhosa* in the Ligurian Sea, Italy, Relini, 2006; and *Octopus vulgaris*, from the northern Alboran Sea, southwestern Mediterranean, Vargas-Yanez et al., 2009). It is anticipated that distributions of octopus species will expand towards the poles as climatic conditions (particularly seawater
temperature) displace species from their historical distributions. Resulting impacts could include extinctions, invasion of adjacent biomes, resultant competition with resident octopus faunas, and disrupted broader ecosystem structure and function.

Species may variously be overwhelmed, be preyed upon or act in an equivalent manner to invading marine pests. As for all habitats and wildlife, potential larger-scale impacts of climate change on these animals remain poorly known.
Table 1. Harvested octopus species by region

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Octopodidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus Octopus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octopus bimaculatus</td>
<td>Southern California to Mexico</td>
<td>Minor artisanal harvests for food and bait (Ambrose, 1997). Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Octopus bimaculoides</td>
<td>Southern California to Mexico</td>
<td>Minor artisanal harvests for food and bait (Lang, 1997). Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Octopus hubbsorum</td>
<td>West coast of Mexico</td>
<td>Moderate artisanal harvests (Aguilar Chavez and Godínez-Domínguez, 1997; Espino-Barr et al., 2007; Alejo-Plata et al., 2009).</td>
</tr>
<tr>
<td>Octopus insularis</td>
<td>Brazil</td>
<td>Minor artisanal harvests (Leite, 2008).</td>
</tr>
<tr>
<td>Octopus maya</td>
<td>Gulf of Mexico</td>
<td>Major line fishery using bait or lure (Arocha, 1989; Solis-Ramirez, 1997; Arreguin-Sánchez et al., 2000; Juarez et al., 2010).</td>
</tr>
<tr>
<td>Octopus mimus</td>
<td>Western South America</td>
<td>Major commercial line harvest off Chile (Guerra and Fernández, 1990; Rocha and Vega, 2003).</td>
</tr>
<tr>
<td>Octopus oculifer</td>
<td>Galapagos Islands</td>
<td>Minor small-scale harvests for human consumption (Norman, unpubl. data).</td>
</tr>
<tr>
<td>Octopus cf. tetricus</td>
<td>Temperate western Australia</td>
<td>Minor lobster pot bycatch primarily for bait (Joll, 1983).</td>
</tr>
<tr>
<td>Octopus vulgaris</td>
<td>Mediterranean and North Atlantic</td>
<td>Major trawl, pot and trap harvests (Sánchez and Obartí, 1993; Guerra, 1997; Murphy et al., 2002; Jouffre, 2002; Katsanevakis, 2006).</td>
</tr>
<tr>
<td>Octopus “vulgaris” I</td>
<td>Caribbean and Gulf of Mexico</td>
<td>Minor to moderate harvest (Cabello, 2004).</td>
</tr>
<tr>
<td>Octopus “vulgaris” II</td>
<td>Brazil</td>
<td>Moderate scale pot harvest (Haimovici and Perez, 1992; Moreira et al., 2011).</td>
</tr>
<tr>
<td>Octopus “vulgaris” III</td>
<td>South Africa</td>
<td>Minor artisanal catch and minor bycatch in lobster potting (Smale and Buehner, 1981; Oosthuizen, 2004).</td>
</tr>
<tr>
<td>Octopus “vulgaris” IV</td>
<td>Japan, Korea, Taiwan (Province of China),</td>
<td>Major trawl harvest off western Japan. Scale of catch elsewhere not reported (Voss and Williamson, 1971; Okutani et al., 1987).</td>
</tr>
<tr>
<td></td>
<td>Hong Kong</td>
<td></td>
</tr>
<tr>
<td>Genus Abdopus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdopus aculeatus</td>
<td>Philippines, Indonesia</td>
<td>Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Genus Amphioctopus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphioctopus aegina</td>
<td>China, Philippines to India</td>
<td>Major commercial trawl harvests for human consumption, particularly Gulf of Thailand (Norman and Sweeney, 1997; Natesewathana, 1997; Norman, 1998; Chotiyaputta et al., 2002).</td>
</tr>
<tr>
<td>Amphioctopus burryi</td>
<td>East and west Atlantic Ocean</td>
<td>Minor bycatch in O. vulgaris fisheries off NW Africa (A. Caveriviere, unpubl. data).</td>
</tr>
<tr>
<td>Amphioctopus exannulatus</td>
<td>Taiwan to northern Australia</td>
<td>Minor bycatch in trawl fisheries at least in Taiwan and Australia (Norman, 1993b).</td>
</tr>
<tr>
<td>Amphioctopus fangsiao</td>
<td>Japan to Hong Kong and Taiwan (Province of China)</td>
<td>Major commercial trawl harvests for human consumption (Okutani et al., 1987, under the name O. ocellatus; Norman, 1998).</td>
</tr>
</tbody>
</table>
Table 1. Harvested octopus species by region

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphioctopus kagoshimensis</td>
<td>Japan to Taiwan (Province of China)</td>
<td>Minor to moderate trawl bycatch (Okutani et al., 1987, under the name O. aegina; Norman and Kubodera, 2006).</td>
</tr>
<tr>
<td>Amphioctopus cf. kagoshimensis</td>
<td>Temperate eastern Australia</td>
<td>Minor trawl bycatch for human consumption and as bait (Nottage, 2007).</td>
</tr>
<tr>
<td>Amphioctopus marginatus</td>
<td>Tropical Indian Ocean to Japan</td>
<td>Major commercial trawl harvests for human consumption (Nateewathana, 1997; Norman, 1998).</td>
</tr>
<tr>
<td>Amphioctopus cf. marginatus</td>
<td>At least Taiwan (Province of China)</td>
<td>Minor trawl bycatch (C.W. Ho, unpubl. data).</td>
</tr>
<tr>
<td>Amphioctopus neglectus</td>
<td>Kerala, India to Taiwan (Province of China)</td>
<td>Major trawl harvest at least in Thailand (Nateewathana and Norman, 1999, Sreeja et al., 2012).</td>
</tr>
<tr>
<td>Amphioctopus rex</td>
<td>Andaman Sea to Gulf of Thailand</td>
<td>Minor trawl harvest in Gulf of Thailand (Nateewathana and Norman, 1999).</td>
</tr>
<tr>
<td>Amphioctopus siamensis</td>
<td>Andaman Sea to Gulf of Thailand</td>
<td>Major trawl harvest at least in Thailand (Nateewathana and Norman, 1999) and minor bycatch in northern Australia (Norman, unpubl. data).</td>
</tr>
</tbody>
</table>

Genus *Callistoctopus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callistoctopus graptus</td>
<td>Northern Australia</td>
<td>Minor trawl bycatch, primarily for bait (Norman, 1993a).</td>
</tr>
<tr>
<td>Callistoctopus luteus</td>
<td>Gulf of Thailand to Philippines</td>
<td>Subsistence to significant commercial harvest for human consumption (Norman and Sweeney, 1997; Nateewathana, 1997; Norman, 1998).</td>
</tr>
<tr>
<td>Callistoctopus nocturnus</td>
<td>Philippines</td>
<td>Historical records of subsistence harvest for human consumption (Norman and Sweeney, 1997).</td>
</tr>
<tr>
<td>Callistoctopus ornatus</td>
<td>Tropical Indo-West Pacific</td>
<td>Subsistence and small-scale harvests (Norman, 1993c; Young and Harman, 1997).</td>
</tr>
</tbody>
</table>

Genus *Cistopus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cistopus indicus</td>
<td>At least Philippines</td>
<td>Scale of harvest unknown (Norman and Sweeney, 1997).</td>
</tr>
<tr>
<td>Cistopus chinensis</td>
<td>Emerging fishery and aquaculture interest</td>
<td>Zheng et al., 2012</td>
</tr>
<tr>
<td>Cistopus taiwanicus</td>
<td>Taiwan (Province of China)</td>
<td>Moderate trawl capture, often sold alive (Liao and Lu, 2009).</td>
</tr>
<tr>
<td>Cistopus sp.</td>
<td>India to Hong Kong</td>
<td>Major trawl harvest throughout range, particularly Thailand (Nateewathana, 1997; Chotiyaputta et al., 2002).</td>
</tr>
</tbody>
</table>

Genus *Eledone*

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eledone cirrhosa</td>
<td>Mediterranean Sea, N. Atlantic</td>
<td>Moderate trawl harvests for human consumption (Boyle, 1997; Sánchez, 2004; Relini, 2006; Fonseca et al., 2008).</td>
</tr>
<tr>
<td>Eledone massyae</td>
<td>Eastern South America</td>
<td>Minor trawl bycatch in Brazil and Argentina (Haimovici and Perez, 1992).</td>
</tr>
<tr>
<td>Eledone moschata</td>
<td>Mediterranean Sea</td>
<td>Minor trawl bycatch in Mediterranean Sea for human consumption (Mangold, 1983b).</td>
</tr>
</tbody>
</table>

Genus *Enteroctopus*

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteroctopus dofleini</td>
<td>Northern Pacific Ocean</td>
<td>Major trawl harvest (>20 000 t) off Hokkaido, Japan (Kubodera, 1992). Minor harvest, primarily by divers as bait for halibut fishery in NE Pacific (Mottet, 1975; Hartwick and Barriga, 1997).</td>
</tr>
<tr>
<td>Enteroctopus magnificus</td>
<td>South Africa</td>
<td>Minor trawl harvest (Villanueva et al., 1992; Groeneveld et al. 2006).</td>
</tr>
<tr>
<td>Enteroctopus megalocyathus</td>
<td>Southern South America</td>
<td>Minor catch by hooks in the intertidal zone and by diving in the subtidal zone (Re, 1980; Rocha and Vega, 2003; Ibáñez, 2008; Ortiz et al., 2011).</td>
</tr>
</tbody>
</table>
Table 1. Harvested octopus species by region

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Scale of catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Hapalochlaena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hapalochlaena lunulata</td>
<td>Philippines, Indonesia</td>
<td>Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Genus Thaumoctopus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thaumoctopus mimicus</td>
<td>Indonesia, Philippines</td>
<td>Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Genus Wunderpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wunderpus photogenicus</td>
<td>Indonesia</td>
<td>Collected live for aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>Unplaced ‘Octopus’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Octopus’ alecto</td>
<td>Mexico to Ecuador</td>
<td>Minor subsistence harvest (Roper et al., 1995).</td>
</tr>
<tr>
<td>‘Octopus’ australis</td>
<td>Temperate eastern Australia</td>
<td>Minor trawl bycatch for human consumption and as bait (Norman, 1998; Nottage, 2007).</td>
</tr>
<tr>
<td>‘Octopus’ berrima</td>
<td>Southern Australia</td>
<td>Minor pot fishery for human consumption (Stranks and Norman, 1993).</td>
</tr>
<tr>
<td>‘Octopus’ briareus</td>
<td>Gulf of Mexico, Caribbean Sea</td>
<td>Minor fishery using spears, hooks and pots (Voss, 1971b), popular in aquarium trade (C. Huffard, pers. comm.).</td>
</tr>
<tr>
<td>‘Octopus’ californicus</td>
<td>Mexico to Gulf of Alaska</td>
<td>Minor trawl bycatch (Hochberg, 1997a, 1998).</td>
</tr>
<tr>
<td>‘Octopus’ conispadiceus</td>
<td>Off northern Japan</td>
<td>Minor incidental catch in Enteroctopus dofleini harvests off northern Japan (Okutani et al., 1987; Gleadall, 1993).</td>
</tr>
<tr>
<td>‘Octopus’ cyanea</td>
<td>Tropical Indo-West Pacific</td>
<td>Minor to moderate subsistence and local catch with spears or lures for human consumption. Minor commercial harvests in Indonesia, Philippines and Hawaii (Norman, 1992a; Young and Harman, 1997); Tanzania (Guard and Mgaya, 2002); Rodrigues (Sauer et al. 2011).</td>
</tr>
<tr>
<td>‘Octopus’ hongkongensis</td>
<td>Japan</td>
<td>Minor trawl harvest (Okutani et al., 1987; Gleadall, 1993).</td>
</tr>
<tr>
<td>‘Octopus’ maorum</td>
<td>Southern Australia/New Zealand</td>
<td>Minor bycatch in lobster and trawl fisheries primarily as bait, with some targeted operations for human consumption (Stranks, 1988a; Brock and Ward, 2004; Brock, 2006; Harrington et al., 2006).</td>
</tr>
<tr>
<td>‘Octopus’ microphthalmals</td>
<td>Strait of Malacca and Singapore</td>
<td>Historical records from fish markets in Singapore (Norman, unpubl. data).</td>
</tr>
<tr>
<td>‘Octopus’ minor</td>
<td>Japan to Korea and Taiwan (Province of China)</td>
<td>Minor to moderate trawl bycatch (Okutani et al., 1987; Kim, 2008); species name may represent multiple species.</td>
</tr>
<tr>
<td>‘Octopus’ pallidus</td>
<td>Southern Australia</td>
<td>Minor harvest in pot fisheries (Stranks, 1988b; Leporati et al., 2009).</td>
</tr>
<tr>
<td>‘Octopus’ rubescens</td>
<td>NE Pacific Ocean</td>
<td>Minor trawl bycatch (Hochberg, 1997b).</td>
</tr>
<tr>
<td>‘Octopus’ tehuelchus</td>
<td>Brazil to Argentina</td>
<td>Minor intertidal artisanal fishery on North Patagonian coast, by hooks (Iribarne, 1991a; Narvarte, 2007).</td>
</tr>
<tr>
<td>‘Octopus’ vitiensis</td>
<td>Tropical Indo-West Pacific</td>
<td>Historical records from fish markets in Thailand (Norman, unpubl. data).</td>
</tr>
<tr>
<td>Family Argonautidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus Argonauta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argonauta argo</td>
<td>Indo-West Pacific</td>
<td>Historical collection and market sales following mass strandings (Okutani and Kawaguchi, 1983).</td>
</tr>
</tbody>
</table>
Fig. 3 Total octopus production 1980 to 2010

Fig. 4 Total export value for octopus fisheries 1980 to 2009
Fig. 5 Total fishery production - all marine fishes 1980 to 2010

Fig. 6 Total chondrichthyan production 1980 to 2010
Fig. 7 Total SE asia production (including Japan) 1980 to 2010

Fig. 8 Total octopus production 1980 to 2010
Fig. 9 West Africa octopus production 1980 to 2010

Fig. 10 Gulf of Thailand octopus production 1980 to 2010
1.6 ILLUSTRATED GLOSSARY OF TECHNICAL TERMS AND MEASUREMENTS*

*a) Schematic illustration of an incirrate octopod

b) Schematic illustration of a cirrate octopod
c) Schematic illustration of a vampire squid

Fig. 11 Schematic illustration of octopods and vampire squids

*According to cephalopod scientific terminology standards (see Roper and Voss, 1983; Norman and Sweneey, 1997).
Abdominal septum – Median septum that internally bisects the mantle cavity parallel to the body axis. It extends from the ventral surface of the visceral mass to the dorsal surface of the ventral mantle wall. The ventral mantle artery runs along the dorsal edge of this septum.

Aboral – Away from, or on the opposite side to, the mouth.

Abyssal – The great depths of the ocean: from 2 000 to 6 000 m.

Acetabulum – The central, open, water-filled cavity or cup of cephalopod suckers, responsible for suction on muscular expansion. Surrounded by an outer rim (infundibulum), often flared in incirrate octopods (Fig. 29).

Adult – A female whose ovary is filled with mature eggs or a male that has spermatophores present in the spermatophore storage sac (= Needham’s sac).

Anal flaps – A pair of small conical or paddle-like appendages, one on each lateral edge of the anus, present in octopus species that produce ink. The flaps function to direct releases of ink (Figs. 15).

Anterior – Toward the head-end or the arm-tips of cephalopods.

Anterior salivary glands – Glands on, or in, the buccal mass that aid in preliminary digestion (Fig. 15; see also Posterior salivary glands).

Anus – Terminal opening of the digestive tract in the anterior mantle cavity, occasionally extends to inside of the funnel, through which digestive waste products, as well as ink, are expelled (Fig. 15).

Apomorphic – Derived from a more ancestral condition. Loosely considered the ‘advanced’ condition.

Arm(s) – Recommended term for the circumoral appendages of coleoid cephalopods. Arms are designated by numbers or Roman numerals, i.e. 1 to 4 or I to IV, starting with 1 or I as the dorsal (or upper) pair (Fig. 16). Arms also are designated as being on either the right or left side (R1, R2, etc.). In vampire squids, a pair of long filamentous structures emerge from pits situated between arms I and II. Cirrate and incirrate octopods have only eight arms.

Arm formula – Comparative length of the four arm pairs expressed numerically in decreasing order: the longest arm is indicated first and the shortest last, e.g. 4>3>2>1. If 4=3=2=1, then arm pair 4 is the longest, followed by arm pair 3 which is the same length as arm pair 2 and both are longer than arm pair 2. In octopods, the non-hectocotylized arm 3 (right or left) is used in this formula.

Armature – (1) For limbs, the grappling structures of the arms and tentacular clubs, including suckers, sucker rings, and/or hooks. (2) For spermatophores, the internally facing teeth found within the ejaculatory apparatus of some octopod species (e.g. Eledone moschata or Amphioctopus aegina) that are splayed on the external surface of the everted spermatophore and aid in penetration into the female’s oviducts and/or ovary.

Bathypelagic – Descriptor of mode of life or habitat for midwater within the deep sea. Often refers to pelagic species that occur at great depths, e.g. greater than 1 000 m.

Beaks – The chitinous jaws of cephalopods, comprising of two halves bound in powerful muscles. The dorsal beak component is referred to as the ‘upper’ beak and it inserts within the ‘lower’ (ventral) beak. The two components act in concert to cut tissue with a scissors-like action.

Bilateral symmetry – The symmetry exhibited by an organism or organ where one plane can divide the form into two halves that are mirror images of each other.

Bioluminescence – The production of light by living organisms, sometimes called ‘living light’. The light is produced through a chemical reaction that generally takes place in complex organs called photophores or light organs.

Brachial – Pertaining to the arms.

Brachial crown – The combination of arms that surrounds the mouth. Also known as the Arm crown.

Branchial – Pertaining to the gills.

Branchial canal – A large opening at the base of each gill lamella and between the primary afferent and efferent blood vessels of the gill. A branchial canal is absent in cirrate octopods.

Branchial gland – Elongate or spheroidal gland adjacent and parallel to the gill’s attachment to the mantle wall.

Branchial heart(s) – Accessory hearts located at the base of each gill that function to pump blood to the gills.

Brooding – Incubation of eggs by the female. The eggs are attached to a substrate or held in the arms of the female. Characteristic feature of incirrate octopods.

Buccal – Pertaining to the mouth.

Buccal mass – Muscular bulb at the anterior-most part of the digestive system that consists of the mouth, beaks, radula, muscles, and anterior pair of salivary glands (Fig. 15).

Buoyancy (neutral, positive, negative) – The tendency to float in seawater. A neutrally buoyant object does not rise or sink but maintains its position in the water; a positively buoyant object will rise; and a negatively buoyant object will sink.
Calamus – The conical projection at the base of the ligula at the distal tip of the hectocotylized arm of octopods. Located at the distal terminus of the spermatophore groove, distal to the last sucker (Fig. 13) (see Ligula).

Cirri (singular cirrus) – Elongate, fleshy, finger-like projections that are present along the lateral edges of the sucker row in cirrate octopods and vampires squid (Fig. 14). Terms formerly used with reference to erected papillae on the skin of incirrate octopods, usually over the eyes.

Fig. 13 Distal tip of the hectocotylized arm in octopuses

Fig. 14 Cirri on arms of cirrate octopods (oral view)

Calcified – Chalky, calcareous material of calcium salts (calcium carbonate), formed through deposition.

Cement body – Structure within spermatophores that draws the sperm cord into a bulb during spermatophore eversion (Fig. 26).

Cephalic cartilage – Cartilage-like tissue that envelops the posterior part of the brain of cephalopods and encompasses the statocysts. The cartilage has a large central opening through which the oesophagus passes and minor foramina channels for nerves and blood vessels.

Cephalopoda – The Class within the Mollusca characterized by bilateral symmetry, internal ‘shell’ or absence of shell (except nautiluses and female argonauts), anterior head appendages and funnel, posterior mantle, mantle cavity with organs, and fins when present.

Character state – A particular condition of a morphological character of taxonomic value. For example, the character ‘sucker’ may include the two states: sucker with a chitinous or horny ring; or sucker without a horny ring.

Chemotactile – Sensory capacity to ‘taste’ chemicals through direct touch contact, e.g. as in octopus suckers (see also Olfactory organ).

Chitin(ous) – A horny, polysaccharide substance (fingernail-like) that forms the sucker rings, hooks, beaks, and stylets of octopods and other cephalopods.

Chorion – A tough secreted membrane that encapsulates the egg.

Chromatophores – Pigment-filled, muscular sacs in the skin under individual nervous control that collectively provide the background colour, colour patterns, and colour dynamics of cephalopods.

Circumoral appendages – Collective term for the limbs of cephalopods, e.g. the eight arms of Octopodiformes. All arise from the head and encircle the mouth (see Arm crown).

Coelom – An internal body cavity of mesodermal origin that is lined by an epithelium. Cephalopods have two coeloms: the visceropericardial (body organs and heart) coelom; and the nephridial (renal or kidney) coelom.

Coleoid – Cephalopods from the subclass Coleoidea, which includes the major living groups of squids, cuttlefishes, octopods and vampire squids. Nautiluses and extinct shelled cephalopods such as the ammonites belong in the subclass Nautiloidea (see Fig. 2).

Cornea – Smooth, thin, turgid, transparent skin without muscles that covers the eyes to protect the eye lenses of incirrate octopods.

Counter shading – Body pigmentation in cephalopods that is darker on the dorsal surface of the mantle, head, and arms, and lighter on the ventral mantle and arms. It allows an animal to conceal its body from predators looking up towards lighter shallow water or down against a dark bottom (see also Reverse counter shading).

Crop – Expansion (i.e. a broadening or a side pocket) of the oesophagus for storing ingested food, prior to its entering the stomach. Present in nautiluses and most octopods (Fig. 15).

Crop diverticulum - A distinct side-branch of the crop section of the gastrointestinal tract found in many octopod groups (Fig. 15).

Decapods (Decapodiformes) – Cephalopods with ten limbs, namely squids and cuttlefishes. As opposed to octopods (Octopodiformes) that have eight arms but lack the additional two feeding tentacles.

Demersal – Organisms that live close to the ocean floor.
Diel vertical migration – Vertical animal migration during twilight periods. Many mesopelagic animals migrate at sunset to shallow depths where they spend the night feeding. At sunrise they descend from near-surface waters to spend the day hiding at greater, darker depths. Some animals migrate vertically over 1,000 m, others migrate less than 100 m.

Digestive gland – The liver equivalent of cephalopods. The primary organ that secretes digestive enzymes and plays roles in digestion, absorption, and excretion (Fig. 15).

Fig. 15 Digestive system terminology

Distal – Away from the central region of the body or point of origin; toward the peripheral or outer parts (opposite of proximal).

Dorsal – The uppermost surface of a cephalopod, opposite to the ventral surface where the funnel is located (Fig. 16).

Ejaculatory apparatus – Portion of the spermatophore (distinct from the sperm reservoir) that performs the eversion of the spermatophore and extrusion of the sperm mass (Fig. 26).

Epipelagic zone – The uppermost pelagic zone of the ocean, typically considered the upper 200 m.

Epithelial pigmentation – The pigmentation contained in epithelial cells that are unable to change their shape/expression in the absence of muscles and nerves. Colour in most cephalopods, however, is created by pigment granules contained in specialized organs, the chromatophores, that can change shape rapidly, by muscular action under nervous control (see Chromatophores).

Eye (position and size) – Eyes are the primary sensory organs of cephalopods; they usually are large and located one on each side of the head (Fig. 16). In contrast, some species have small eyes, eyes on stalks, or telescopic eyes.

Family – The group (taxon) above the genus level, comprised of the most closely related genera.

Fin(s) – The pair of muscular flaps that arise along the dorsolateral surface of the mantle of vampire squids and cirrate octopods. Used for locomotion, steering, and stabilization (Figs. 11, 17).

Fin attachment – Point of attachment to the mantle, the opposite fin, or combination of both.

Fin cartilage – Cartilage associated with the fins of all fin-bearing cephalopods, including cirrate octopods and vampires.

Fin length – Length from anterior lobe, or anterior-most attachment of fin lobe, to posterior-most attachment of fin to mantle or tail (Fig. 11).
Foot – See Molluscan foot.

Funnel – The ventral, subconical tube through which water is expelled from the mantle cavity during locomotion and respiration. Ink and waste products also pass through the funnel (Fig. 16). Archaic term: siphon.

Funnel-adductor muscles – Muscles that support the lateral attachment of the funnel to the head.

Funnel organ – Glandular pad(s) on the internal surface of the funnel. In octopodiformes the form is species-specific and varies from a single W-shape, to a double V-shape, to three or four separate components (Fig. 18). Indistinct in frozen or poorly preserved material. Soluble dyes such as methylene blue can help to make the outline of this structure more obvious.

Funnel-retractor muscles – Large muscles that attach to the corners of the funnel and run posteriorly to attach to the sides of the shell sac (generally near the base of the gills) or, in some species, insert on the interior mantle wall.

Genus – The taxon (group) below the family level and above the species level.

Gill – Primary organ for the exchange of respiratory gases with seawater. Composed of multiple gill lamellae (Fig. 22).

Gill lamella (pl. lamellae) – The leaf-like, convoluted, individual components of the gill through which gas exchange occurs. Forms inner and outer rows on the gill with a medial terminal lamella (Fig. 22).

Gonoduct(s) – Tubular structure(s) of the reproductive system which serve to transport reproductive products from the gonad(s) to the exterior (see Oviducts).

Hatchling – Young cephalopod, newly hatched from the egg.

Head-mantle fusion – Zone of fusion of head and mantle; varies among groups/families; of systematic and biological significance.

Hectocotylized arm(s) – One (or more) modified arm(s) in male cephalopods used to transfer spermatophores to the female. In octopods, refers to the entire arm, typically the third right or third left arm (Figs. 11, 16). Often called the Hectocotylus. (See also Calamus, Ligula) (Fig. 13).

In some octopods (e.g. Argonauta), the entire arm is detached and left in the mantle cavity of the female. (Fig. 19).

Hectocotylus – See Hectocotylized Arm.

Holotype – The single specimen designated by the original author in formal taxonomic descriptions to represent a new species name. An international standard of reference that provides objectivity and stability for species names (see also Type material).

Horizontal arm septa – Septa that extend the length of the arms (i.e. parallel to the arm axis), that roughly divide the arms into oral and aboral regions (Fig. 20). This feature is characteristic of the arms of cirrate octopods as well as incirrate octopods of the family Bolitaenidae. The functional significance is unknown.

Hectocotylus – See Hectocotylized Arm.

Holotype – The single specimen designated by the original author in formal taxonomic descriptions to represent a new species name. An international standard of reference that provides objectivity and stability for species names (see also Type material).

Horizontal arm septa – Septa that extend the length of the arms (i.e. parallel to the arm axis), that roughly divide the arms into oral and aboral regions (Fig. 20). This feature is characteristic of the arms of cirrate octopods as well as incirrate octopods of the family Bolitaenidae. The functional significance is unknown.
ink of cephalopods. The sac is situated on (or embedded in) the ventral surface of the digestive gland. It is oriented parallel with the intestine and empties via the ink duct into the rectum (or at the level of the anus) (Fig. 15).

Intestine – Distal region of the alimentary canal between the stomach/caecum complex and the anus (Fig. 15).

Iridophores – Platelet-like components of the skin that form an iridescent or reflective sheen in cephalopods. May be concentrated in particular skin regions, as in the iridescent blue rings of some ocellate octopuses and members of the genus *Hapalochlaena*, or may be dispersed throughout the skin to produce a general body iridescence.

Iteroparous – A reproductive strategy in which females spawn repeatedly over a period of years as in *Nautilus*. Most extant cephalopods are semelparous and spawn only once towards the end of their lives (see *Semelparous*).

Juvenile – Immature life history stage between the hatchling and the nearly mature subadult stages.

Keel – A raised ridge of skin around the lateral margin of the mantle in incirrate octopods (also referred to as *Lateral ridge*) (Fig. 21).

Keel

Lectotype – See *Type material*.

Leucophores – The white-reflecting components of the skin of some octopods, particularly shallow-water members of the family Octopodidae.

Light organ – A simple or complex structure that produces bioluminescence by intrinsic (self-generated) or extrinsic (bacterial) means (also referred to as a *Photophore*).

Ligula – The spatulate or spoon-shaped terminal structure at the tip of the *hectocotylized arm* in males of most species of incirrate octopods. Used to hold spermatophores as they are inserted into the female’s oviducts (Fig. 13).

During mating, spermatophores are transferred from the terminal organ within the mantle cavity to the spermatophore groove that runs along the edge of the hectocotylized arm, then gripped by the ligula when they are transferred to the female. (see *Calamus*, *Hectocotylized arm*).

Mantle – The fleshy (muscular), tubular, or sac-like body of cephalopods; provides propulsion through jet-like expulsion of water through the funnel; contains the viscera (Fig. 11, 16).

Mantle cavity – Space enclosed by the mantle. In cephalopods, the mantle cavity contains the visceral organs, gills, anus, openings of the gonoducts, nephridial pores, plus various muscles and septa (Fig. 22).

Mantle length (ML) – The standard measure of length in coleoid cephalopods. In octopods, mantle length is measured from a line joining the mid-point of the eyes (rather than the anterior mantle margin, since the latter is obscured by the head/mantle fusion, as used in squid and cuttlefishes) to the posterior-most margin of the mantle (Fig. 11).

Mature – In cephalopods this term refers to sexual maturity which is determined for females by the presence of mature eggs in the ovary or free in the oviducts (Fig. 22), and for males by the presence of spermatophores in the spermatophore storage (formerly Needham’s) sac (Fig. 27) (see *Adult*).
Medial (Median) – Pertaining to a structure located toward, on, or along the dorsal or ventral midline.

Mesopelagic zone – The middle-depth zone of the pelagic realm of the ocean, generally considered to be from 200 to 1,000 m deep.

Mollusca – One of the major invertebrate phyla. Some of the more common molluscs are snails and clams. The Cephalopoda is a class within the Mollusca.

Molluscan foot – A major structure in molluscan morphology. In gastropods the foot is the muscular sole that the animal crawls with. In cephalopods the funnel, and possibly the arms and tentacles are derived from the molluscan foot. The evolutionary origin of the latter is still uncertain. They may represent outgrowths of the head (favoured by anatomical evidence of the nerve connections) or modifications of the molluscan foot that have migrated around the mouth (favoured by embryological evidence, the migration of arm primordia).

Monophyletic group – A natural group (taxon) that shares a common ancestor, compared to a polyphyletic group where members with multiple ancestry are artificially grouped.

Needham’s sac – See Spermatophoric storage sac.

Neocoleoid – The neocoleoids are a division of cephalopods within the subclass Coleoidea that contain the Recent cuttlefishes, squids, and octopods.

Neotype – See Type material.

Nephridial coelom – The cavity of the renal (kidney) sac. It connects with the exterior via the renal or nephridial pore and with the visceropericardial coelom via a pair of slender ducts. In incirrates two separate renal cavities are present.

Nephridial papillae – Small raised openings to the mantle cavity from the renal cavities (also referred to as renal pores).

Neritic – The region of the ocean that overlies the continental shelf.

Nominal species – A species that has been formally described and is based on a morphological type specimen. It is an available name but not necessarily a valid species.

Nuchal organ – Small sensory organ with photoreceptor-like sensory cells that is located in the nuchal (neck) region of coleoid cephalopods.

Nuchal region – The dorso-lateral area around the posterior part of the head in squids and the area immediately posterior to it (the neck analogue). Normally covered by the anterior mantle wall.

Ocellate – Referring to octopuses that possess false eyespots (see Ocellus).

Ocellus (pl. ocelli) – A pigmented spot or patch, used in alarm displays to give the appearance of the head of a larger animal. An ocellus usually consists of a dark round or ovoid spot of concentrated chromatophores, but also may possess an additional outer concentric dark or light ring. Ocelli occur in some octopus species (one each on the lateral arm crown in members of Octopus sensu stricto and Amphiocopus, or as a pair on the dorsal mantle in Euaxoctopus). Some species possess an iridescent blue, purple, gold, or green ring within the dark ocellus spot (also called False eyespot).

Octopodiformes – Higher-level taxon that includes all eight-limbed cephalopods: vampire squids, cirrate octopods, and incirrate octopods. Because of the long history of referring to these cephalopods by the common name ‘octopods’, this term is used as the common name for all members of the Octopodiformes (see Fig. 2 - Living Cephalopods).

Oesophagus – The portion of the digestive tract between the buccal mass and the stomach (Fig. 15). In some species the distal or posterior region of the oesophagus is expanded to form a crop for food storage (see Crop).

Olfactory organ – A chemosensory organ. In octopods in the form of a shallow rimmed pit, one each present at the inside of the lateral margins of the mantle aperture (also referred to as olfactory papilla or olfactory pit).

Optic lobes of brain – Large lobes of the brain associated with the eyes. In octopods and some squids the optic lobes may be separated from the rest of the brain by an optic stalk of varying length.

Oral – Toward, or pertaining to, the mouth.

Order – The taxonomic category above the family level.

Oviduct(s) – Female gonoduct(s). The oviduct(s) conduct eggs from the ovary to the mantle cavity. In octopods each oviduct is divided into proximal and distal portions on either side of the oviducal gland. Incirrate octopods and vampire squids have two oviducts while cirrate octopods possess a single oviduct (Fig. 23).

Fig. 23 Female octopus reproductive tract
Oviducal gland – Swollen glandular structure that surrounds the middle of the oviduct and secretes the external coating of the spawned eggs and produces the cement for egg or egg string attachment. This gland divides the oviduct into proximal and distal portions. It can also contain seminal receptacles for sperm storage (Fig. 23).

Papilla (pl. papillae) – Conical or flattened projections of skin present on the dorsal and lateral mantle, head, and arms of many incirrate octopods used in camouflage and other body displays. May consist of a single, simple digit or may possess side branches to form a tree-like structure. Depending on size and location papillae typically are defined as primary (1º), secondary (2º), tertiary (3º), etc. Large papillae over each eye are referred to as supracoacral papillae, and, formerly were referred to as “cirri” (e.g. Eledone cirrhosa, Octopus tetracirrhus, Scaeurgus unicirrhus).

Paralarva (pl. paralarvae) – The term for the first free-living life history stage (typically planktonic) for those cephalopods that differ in morphology and ecology from later growth stages (Fig. 24).

Pelagic – (1) Free swimming in open ocean; (2) The region of the ocean away from the ocean floor.

Penis – (See Terminal organ).

Photocytes – Cells that produce bioluminescence in photophores.

Photophore – An organ that produces and distributes bioluminescence or ‘living light’, either intrinsically through biochemical reaction or extrinsically through culture of luminescent bacteria. For octopods, photophores are only known in the vampire squid, Vampyroteuthis infernalis, the cirrate octopod, Stauroteuthis syrtensis, and females of the pelagic octopod family Bolitaenidae (also referred to as Light organ).

Phylogeny – The deduced evolutionary relationships that connect living and extinct creatures. The study of the tree of evolutionary origins.

Phylum – The major, formative, principal taxonomic level; above ‘Class’.

Polarity (evolutionary) – The direction of evolution. That is, one state is ‘primitive’ (plesiomorphic) and another is ‘derived’ (apomorphic).

Polarize (evolutionary) – To determine the direction, or polarity, of evolution. That is, to determine which state is ‘primitive’ (plesiomorphic) and which is ‘derived’ (apomorphic).

Posterior – Toward the closed end of the mantle; away from the head and arms.

Posterior salivary glands – Second pair of salivary glands located posterior to the buccal mass; typically much larger than the anterior salivary glands (Fig. 15).

Proximal – Situated nearest or next to the centre of the body or nearest the point of origin or attachment of a muscle or appendage (opposite of distal).

Pseudomorph – An ejected mass of ink and mucous that approximates the size and shape of the cephalopod that released it; i.e. a false body that fixes the attention of a predator while the cephalopod escapes.

Pseudoocellus – The term given to the pair of white oval spots, one each on the lateral arm crown between arms 2 and 3, formed by dense leucophores in the skin of certain octopuses, e.g. ‘Octopus’ micropyrsus.

Pseudophallus – (See Terminal organ).

Radula – The chitinous, ribbon-like band in the mouth of cephalopods (tongue equivalent), containing up to seven longitudinal rows of teeth that aid in the tearing and transport of food into the oesophagus (Fig. 25). Note: the radula is not used for drilling, this is done by the toothed Salivary proboscis.

Recent – Geological term referring to an organism or species that is living or has lived within the past 10 000 years, or to an object formed or events that have occurred within the past 10 000 years.

Renal appendages – Structures that form the nephridium kidney. The renal appendages are out-pockets of the veins within the renal sac that are covered with renal epithelium. The renal sac empties into the mantle cavity via the renal (or nephridial) pore.
Renal pore – The opening(s) of the renal cavities into the mantle cavity, through which urine is discharged.

Reverse counter shading – Body pigmentation in some incirrate octopods that is darker on the ventral and lateral surfaces of the mantle, head, and arms, and lighter on the dorsal mantle and arms. Considered an adaptation for life on light-coloured substrates in deep waters (see also Counter shading).

Salivary gland(s) – Paired glands that produce salivary enzymes and, in some octopod species, paralysing toxins. Typically consists of a pair of anterior salivary glands attached to the buccal mass and a pair of larger posterior salivary glands adjacent to the oesophagus/crop (Fig 15).

Salivary proboscis – A muscular papilla that lies just below the radula in incirrate octopods. The anterior tip is covered with very small teeth. Functions as an accessory radula to drill tiny holes in mollusc shells and crustacean carapaces in order to administer paralysing or muscle-relaxing toxins.

Secondary fin – A non-muscular, fin-shaped structure found in juvenile vampire squids; lost with growth.

Secondary web – The narrow membrane that connects the primary web to the arms in some cirrate octopods; e.g. Cirroteuthidae.

Semelparous – A reproductive strategy in which females spawn once then die. Sometimes called terminal or ‘big-bang’ spawners. Many octopods are semelparous but in some species reproduction is prolonged (up to 50% of the ontogenesis).

Seminal receptacle – A cavity or invagination for deposition/storage of spermatangia. Present within the oviducal glands of some incirrate octopods (see Spermatheca).

Sepioid gills – Gills of some cirrate octopods that take the form of a swollen half orange that is superficially like the gills of sepioid cephalopods. Contrasts to the tree-like shape of typical octopod gills.

Species – Populations of animals that interbreed or are potentially capable of interbreeding in nature. Considerable debate exists over the general definition of a species and how the theoretical definition should be applied in practice.

Cephalopod species generally are defined by distinct morphological traits not exhibited by any other species. This practice is valid if interbreeding does not occur. However, the amount of interbreeding (i.e. hybridization) that actually occurs in nature and contributes to or diminishes speciation is virtually unknown in cephalopods.

Sperm bulb – See Spermatangium.

Sperm cord – The coiled rope of sperm that lies within the sperm reservoir of the spermatophore (Fig. 26).

Spermatophore groove – Groove (sulcus) along the ventral edge of the hectocotylized arm in which spermatophores are gripped and transferred (Fig. 13).

Spermatangium (pl. spermatangia) – The encapsulated mass of sperm formed on eversion of spermatophores, often in the form of a round bulb.

Spermatheca (pl. Spermathecae) – Specialized structures for deposition and storage of sperm; found as pockets or invaginations of the oviducal gland in octopods. (Also referred to as Seminal or Sperm receptacles).

Spermatophore – A complex tubular structure produced by male cephalopods for encapsulating and transferring sperm to the female (Fig. 26). It typically consists of two parts: a sperm reservoir containing a coiled sperm cord; and an ejaculatory apparatus (often coiled) responsible for evertting the spermatophore. On eversion the sperm cord is drawn out into an expanded bulb (spermatangium) that is placed on or in the female’s skin or implanted in special receptacles (spermathecae), oviducts, oviducal glands, or the ovary.
Cephalopods of the World 31

Spermatophoric gland – Tubular organ in the male reproductive tract where the spermatophores are formed (Fig. 27).

Spermatophoric reaction – The evagination of a spermatophore with the extrusion of the sperm mass, caused by the penetration of water inside the spermatophoric cavity, where the osmotic pressure is higher.

Stalked eyes – See Eye (position and size).

Statocyst – A sense-organ that detects gravity, angular accelerations, and low-frequency sound. The statocyst is embedded within the cephalic cartilage and contains the statoliths.

Statolith – A tiny calcareous concretion in the statocyst that detects linear acceleration, angular acceleration, and orientation. Statoliths of many species can be ground down and used to estimate age on the basis of internal rings.

Stellate ganglion – Pair of major ganglia of the peripheral nervous system of neocoleoid cephalopods that controls nerves to the mantle muscles, located inside of the lateral mantle walls.

Stomach – The muscular organ of the digestive system where primary digestion occurs (Fig. 15). The stomach generally is lined with cuticular ridges to aid in grinding food, and is supplied with digestive enzymes from the digestive gland.

Stylets – A pair of rod-like, chitinous, structures considered remnants of the molluscan shell in incirrate octopods. Generally in the form of a slender, pointed rod tightly surrounded by the shell sac and buried in the mantle muscle at a dorso-lateral position. Possess a mineralized or calcareous core in some species (e.g. Scaurgus) (Fig. 28).

Fig. 28 Stylet in incirrate octopods

Sucker – Muscular, suction-cup structure on cephalopod arms and tentacles (occasionally on the buccal membrane in some squids). It consists of a cup-shaped portion, the acetabulum, and a flat, distal ring, the infundibulum, which contacts the substrate or prey. Suckers can be stalked, placed on muscular rods that contract (squids and cuttlefishes), or sessile, embedded without stalks on the oral surface of the arms (octopods) (Fig. 29). In octopods suckers are counted in longitudinal rows, i.e. 1 or 2 rows.

Fig. 29 Sucker

Sucker rows – The number of longitudinal rows of suckers on octopod appendages, sometimes called ‘series’. Typically 1-2 in octopods.

Superior buccal lobes – Lobes of the central nervous system that occur dorsal to the oesophagus where the latter enters the buccal mass.

Swimbladder – Gas-filled structure found in the dorsal visceral mass of the pelagic octopod, Ocythoe.

Synonym – One of two or more names applied to the same taxon/species. Senior synonyms are older names and Junior synonyms are more recent names.

Syntype – See Type material.

Systematics – The classification of organisms into hierarchal groups based on evolutionary (phylogenetic) relationships.

Taxon (Taxa) – A taxonomic group, or unit, of any rank.

Terminal organ – The muscular, terminal portion of the male reproductive tract that transfers spermatophores to the female or into the spermatophore groove on the hectocotylized arm of the male. Alternative name for penis, as the true definition of a penis is ‘organ of insertion’ (Fig. 27).

Total length (TL) – Length measured from the posterior margin of the mantle to the anterior or distal tip of the longest of the outstretched arms (octopods) (Fig. 11).
Type material – Formal taxonomic term referring to the original specimens (one or more) on which a scientific name of a species is formally based. Holotype refers to the primary specimen to which the scientific name attaches. Paratypes are a supporting series of specimens for the same species. Syntypes refer to multiple specimens that are presented in an original species descriptions as a series without a specific holotype. Lectotype refers to a specimen from a type series that is designated by subsequent authors as the equivalent of a holotype, where none had been designated in the original description. Neotype refers to a specimen designated by subsequent authors where the original type material has been lost, or destroyed.

Ventral – The lowermost or belly surface of a cephalopod, i.e. the surface on which the funnel is located. Opposite to the dorsal surface (Fig. 16).

Visceral sac – The body region posterior to the head surrounded by the mantle. The body wall that encases the viscera usually is rather thin-walled, hence the name ‘visceral sac’. Also called the ‘visceral dome’.

Water pores – (1) Large cephalic orifices at base of the arms of some pelagic octopods, e.g. Tremoctopus (Fig. 30, a); (2) Eight small openings to the web pouches located at the base of the arms on the oral web of the incirrate octopod genus Cistopus (Fig. 30, b).

Water pouches – Glandular pouches, each with a muscular pore or opening situated in the oral webs between the base of each arm in the incirrate octopods genus Cistopus. When full, these pouches contain mucous-like liquids. The “water” reference is historical interpretation of fixed specimens and there is no evidence that these pouches contain water (Fig. 30, b).

Web – The membranous skin and muscle sector that extends between the arms of many octopods, giving an umbrella-like appearance when the arms are spread out, especially conspicuous in cirrate octopods (Fig. 11, b).

Web nodule (cirrates) – A muscular spherical nodule attached to the webs of some deep-sea cirrate octopods.

White spots - Conspicuous spherical white spots on the dorsal mantle and head of some octopod species. The presence or absence, and location helps to define genera and species especially of octopuses.

![Fig. 30 Water pores](image)

1a) *Tremoctopus* - 2b) *Cistopus*
2. OCTOPODS AND VAMPIRE SQUIDS

by Mark D. Norman, Frederick G. Hochberg and Julian K. Finn

This group contains 13 families and over 300 species including all the bottom-living (benthic) and free-swimming (pelagic) octopuses, as well as the unusual vampire squid, Vampyroteuthis infernalis. These cephalopods share eight arms and lack the pair of elongate feeding tentacles of the true squids and cuttlefishes. Vampire squids possess a pair of long filament-like appendages that retract into pouches between the first and second arm pair. These structures have been considered by some researchers as limb homologues (see Young, 2012), placing the vampire squid in an intermediate position between the octopuses and the decapodiform cephalopods (cuttlefishes and squid). Octopodiforms lack the buccal crown found in many other cephalopods. The suckers are symmetrically rounded and lack a horny ring. They never possess hooks as found in some squid groups (e.g. family Gonatidae). Female octopodiforms lack nidamental glands, the glands that produce the jelly-like coatings of eggs in squids and cuttlefishes. The deep-sea cirrate octopuses and the vampire squid have fins on the body and rows of finger-like cirri adjacent to the suckers.

This group has representatives in all oceans, from intertidal reefs to depths of at least 7,000 m.

Key to incirrates, cirrates and vampire squids

1a. Fins present on mantle .. → 2
1b. Fins absent .. Incirrate Octopods

2a. Always a single pair of fins. Pits containing thread-like filament absent. Light organs absent or as highly modified suckers. Only left oviduct present .. Cirrate Octopods
2b. Two pairs of fins in juveniles. One pair of fins in adults. Pair of pits on external (aboral) web between bases of arms 1 and 2, each contains a long thread-like filament. Pair of large light organs on posterior mantle. Both oviducts present .. Vampire Squids

2.1 Incirrate Octopods

by Mark D. Norman, Frederick G. Hochberg and Julian K. Finn

Incirrate octopods contain the familiar benthic octopuses (family Octopodidae) and seven less familiar families of pelagic octopods. They are united by 8 arms with 1 to 2 rows of sessile suckers and the absence of fins or cirri. Females of all members of this order brood their young, tending and remaining with the eggs until hatching.

Key to families

1a. Eyes telescopic, situated close together on dorsal surface of head; body and arms soft, semi-gelatinous; funnel fused to ventral mantle to form two openings to the mantle cavity (Fig. 31) Family Amphitretidae (Ctenoglossan Octopods)*
1b. Eyes lateral, round to oblong, not telescopic; body and arms muscular or semi-gelatinous; funnel free from ventral mantle, single opening to mantle cavity. .. → 2

2a. Body and arms very soft and semi-gelatinous, transparent in all life stages .. → 3
2b. Body and arms muscular, transparent only in smallest juvenile .. → 5

At the time of going to press, Strugnell et al. (2013) published a major revision of the familial level classification of the incirrate octopods. They propose a single ctenoglossan family Amphitretidae, containing three subfamilies Amphitretinae, Bolitaeninae and Vitreledonellinae (see that work for new taxonomic structure).
3a. Suckers in single row ... → 4
3b. Suckers in double row for at least some portion of each arm (Fig. 32). Family Alloposidae (Argonautoid Octopods)

4a. Arms longer than mantle length (Fig. 33) Family Vitreledonellidae (Ctenoglossan Octopods)
4b. Arms shorter than mantle length (Fig. 34) Family Bolitaenidae (Ctenoglossan Octopods)

5a. Distinct locking apparatus present, joining inner edge of lateral mantle to funnel base. .. → 6
5b. Distinct locking apparatus absent (Fig. 35). Family Octopodidae

6a. Female specimens ... → 7
6b. Male specimens ... → 9

7a. Females with drastic web modifications on dorsal arms, either joined and greatly elongated or as large flared flanges off the distal end of the dorsal arm pair; network of cartilaginous structures absent from skin .. → 8
7b. Females with no obvious web modifications; network of semi-rigid cartilaginous rods present under skin on ventral mantle, (Fig. 36) .. Family Ocythoidae (Argonautoid Octopods)

Fig. 32 Alloposidae (Haliphron)
Fig. 33 Vitreledonellidae (Vitreledonella)
Fig. 34 Bolitaenidae (Bolitaena)

Fig. 35 Octopodidae (Octopus)
Cephalopods of the World
8a.

35

Two dorsal arm pairs joined by greatly expanded webs that extend beyond arm tips as semi-translucent banners;
external shell absent (Fig. 37) Family Tremoctopodidae (Argonautoid Octopods)

web

network of
cartilagenous
rods under skin

8b.

lateral view

ventral view

Fig. 36 Ocythoidae (Ocythoe)

Fig. 37 Tremoctopodidae (Tremoctopus)

Wide flange of web present on distal half of
dorsal arm pair; live animal produces and
resides within brittle white shell known as
“paper
nautilus”,
shell
(Fig.
38)
. Family Argonautidae

(Argonautoid Octopods)
9a.

9b.

Male with large, modified third right arm
coiled
within
membranous
pouch
. → 10*
Male with large, modified third left arm coiled
within membranous pouch.

Family Argonautidae (Argonautoid
Octopods)
(*Males of the Family Alloposidae also have
a modified third right arm coiled within a
membranous pouch)
10a. Dorsal arms longest, joined by deep web;
other arm pairs progressively shorter to
shortest ventral pair. Family

Tremoctopodidae
Octopods)

membrane

lateral view of female

(Argonautoid

10b. Dorsal and ventral arm pairs longer than
other arms Family

Ocythoidae (Argonautoid Octopods)

Fig. 38 Argonautidae (Argonauta)


2.1.1 Family OCTOPODIDAE* d’Orbigny, 1840

by Mark D. Norman, Julian K. Finn and Frederick G. Hochberg

OCTOPODIDAE d’Orbigny, 1840, Mollusques Vivants et Fossils, 1: 164.

Type Genus: Octopus sensu stricto Cuvier, 1797.

FAO Names: En — Octopuses; Fr — Pieuvres, Poulpes; Sp — Pulpitos, Pulpos.

Diagnostic Features: This family contains the vast majority of octopuses, with more than 200 valid species. They are bottom-living, muscular animals with eight arms. Each arm possesses 1 or 2 rows of suckers. All species lack fins and rows of cirri adjacent to suckers. The internal shell is reduced to a pair of small rod-like styles or is absent. One arm of the third arm pair (typically right-hand side) is modified in mature males (known as the hectocotylized arm). This arm bears a gutter-like groove (spermatophore groove) along the ventral margin of the arm and a modified arm tip (ligula) used to grip and pass spermatophores to the female. A funnel locking apparatus is absent.

Size: Benthic octopuses vary considerably in size from pygmy species weighing less than 1 g to giant species weighing more than 100 kg.

Geographical Distribution: Benthic octopuses occur in all oceans of the world from the equator to polar regions.

Habitat and Biology: Benthic octopuses occur from intertidal reefs to great depths (>3 000 m). The word ‘benthic’ means bottom-living and these octopuses live most or all of their lives on the seafloor. The juveniles of many species spend at least some time in the plankton. The adults of some species also swim in open water as a means of travelling between reefs. Octopuses occur in a wide range of habitats. Many species live on rocky or coral reefs where there is abundant cover. Some pygmy species spend most of their lives in the safety of small coral heads or kelp holdfasts. Other octopuses live on sand or mud habitats in which they can bury to hide from predators. Several groups of octopuses (particularly Abdopus and Ameloctopus) forage primarily in pools on exposed reef flats during low tide. Most octopuses are night active with only a few species that emerge during daylight hours to forage. Others restrict their hunting bouts to the half light of dusk and dawn (crepuscular). Many octopuses are excellent at camouflage, being able to match the tones and textures of their surroundings. Some species use these colour change abilities to warn off potential predators while others mimic poisonous animals. The vast majority of benthic octopuses have well-developed salivary glands which contain strong paralysing toxins used to quickly immobilise prey. Blue-ringed octopuses (genus Hapalochlaena) have salivary toxins that include tetrodotoxin, an extremely powerful toxin which has been responsible for a number of human deaths. Male octopuses possess a modified third arm, typically the third right arm. This arm, the hectocotylus, typically has a spoon-like tip ligula and a curved gutter or groove along its length. During mating, males insert the tip of this arm into the mantle cavity of the female and into the oviducts. Males then shunt small packets of sperm (spermatophores) into the proximal end of the spermatophore groove near the base of the arm; then, with muscular contractions, work them along the groove to the arm tip and thus into the female’s oviduct. Females then are capable of storing one or more spermatophores until required to fertilise eggs during spawning. All female benthic octopuses brood their eggs until they hatch, diligently oxygenating and cleaning them. Most species attach eggs singly or in strings (festoons) to hard surfaces, although the females of some species (e.g. Hapalochlaena and certain Amphiocotopus species) carry the egg bundles with them. The mother typically dies soon after egg hatching. Egg size in different species dictates the behaviour of the hatchlings. Species with small eggs (approximately 1 to 3 mm long) produce many tiny planktonic young which spend at least some time in the water column. Species with large eggs (10 to 40 mm long) produce few, large, “crawl-away”, benthic young.

Interest to Fisheries: Octopuses are a popular food source for humans around the world, yet there is negligible information available on biology, distribution or importance to fisheries for all but a handful of species. They are harvested in a range of fisheries from subsistence catches through to valuable, large-scale commercial fisheries. The largest documented harvests are off north-west Africa and throughout Asia. They are caught by hand, with spear, on lines using baited or unbaited lures, by trawl or by using unbaited pots that the octopuses use as shelters.

Remarks: The taxonomy of this group is in a state of flux. A total of more than 350 species names have been coined but many of these are known only from their original descriptions. More recently, over 150 undescribed species have been recognized, primarily from the tropical Indian and Pacific Oceans (see Norman and Hochberg, 2005a). The majority await formal taxonomic description. In support of earlier morphological studies, recent molecular studies (e.g. Strugnell et al., 2005; Guzik et al., 2005) indicate that the catch-all genus Octopus contains many distinct groups, and erection (or resurrection) of numerous distinct genera is warranted. As a consequence we have presented many species under their new combinations, primarily for members of the genera Abdopus Norman and Finn, 2001 (ex “Octopus horridus group”), Amphiocotopus Fischer, 1882 (ex “Octopus aegina group”), Callistoctopus Taki, 1964 (ex “Octopus macropus group”) and Enteroctopus Rochebrune and Mabille, 1889 (ex “Octopus dolfleini group”). The valid genus Octopus (Octopus sensu stricto) is here considered to be restricted to members of the “Octopus vulgaris group” (Guzik et al., 2005). Until a detailed generic revision is undertaken, we have provisionally retained a number of unplaced taxa under the generic designation ‘Octopus’, denoted by quotation marks.

*At the time of going to press, Strugnell et al. (2013) published a major revision of the familial level classification of the incirrate octopods. They establish six families: Octopodidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Amphitretidae, the latter containing three subfamilies Amphitretinae, Bolitaeninae and Vitreledonellinae (see that work for new taxonomic structure).
Key to genera in the family Octopodidae†

The following key treats clearly defined or named genera within the family Octopodidae. The generic placement of many species within this family remains unresolved and thus may not be covered by this key. Such taxa are treated in the species treatments below under the general category ‘unplaced Octopus’ (designated as ‘Octopus’). The same applies for the genus Eledone in relation to the Australian species, treated here as ‘Eledone palari’. Genera designated with an asterisk (*) are in urgent need of revision.

Notes for key and species treatments

Measurements based on preserved material: Due to the soft-bodied nature of octopods with their absence of a significant internal skeleton, the body and arms are prone to considerable distortion when fresh (unpreserved). This often manifests as extreme arm elongation when musculature starts to decay in fresh specimens. As a result it is necessary to “fix” reference and voucher material, where the animals are chemically preserved. The best method is to place specimens in a solution of 5-10% formalin in seawater, with a liquid volume of at least five times the volume of the specimen. The specimen is kept in this solution for at least two weeks and then rinsed and transferred to 70% ethanol for long-term preservation. All measurements presented here are based on material fixed by this method.

Note: Formalin cross-bonds DNA molecules, severely limiting the capacity to extract molecular sequence data. It is recommend that tissue samples (i.e. mantle or arm muscle) are taken and preserved separately (frozen and/or placed in 100% ethanol) before fixing whole specimens in formalin.

Male diagnostic features: As for many cephalopod groups, octopus taxonomy relies heavily on the reproductive characters of mature males, particularly structures of the modified reproductive arm (hectocotylized arm). Female material is more difficult to identify.

Arm length: Use of relative arm lengths requires intact arms. A sudden reduction in sucker diameter at any point along an arm generally is an indicator of partial arm regeneration. Such arms should not be considered in assessing relative arm lengths.

Funnel organ: The funnel organ is a pad (or a series of pads) of glandular tissue in the skin on the inside surface of the funnel. In frozen or poorly preserved material this structure can be indistinct. A temporary dye such as methylene blue can be used to distinguish the outline and thus shape of this organ.

In the following key, an asterisk (*) shows genera requiring detailed taxonomic revision

1a. Suckers in single row or as slight zigzag in live animals or contracted specimens ... →2
1b. Suckers clearly in two rows on all arms ... →14
2a. Ink sac present .. →3
2b. Ink sac absent ... →10
 [Note: The genus Bathypurpurata Vecchione, Allcock and Piatkowski, 2005* is a pygmy octopus from deep waters off the Antarctic Peninsula (500 m) that possesses a single row of suckers. It is not included in this key as it is known only from a single female specimen (mantle length 23 mm) and the original description does not provide details of radula and ink sac].
3a. Webs greatly enlarged at distal ends to form wing-like vanes (single species restricted to deep waters of western Indian Ocean) .. Velodona
3b. Web margins absent or as narrow bands to arms tips, not expanded in distal portion →4
4a. Mature males with distinct ligula and calamus; non-hectocotylized arm tips with or without sucker modification . . →5
4b. Mature males with hectocotylized arm tip that lacks a distinct ligula and calamus, or has a normal ligula but no calamus; suckers highly modified on tips of normal arms of mature males - as ridges, stellate suckers or frills of papillae (Atlantic Ocean). .. Eledone*
 [includes Aphrodoctopus Roper and Mangold, 1992, and excludes ‘Eledone palari’ Lu and Stranks, 1992, from Australia].
5a. Webs very deep (40-70% of arm length); body and dorsal arm crown with paired and widely spaced, large, erectile, papillae; non-hectocotylized arms of mature males with fleshy pads of spongiform tissue; thick fleshy skin ridge around lateral margin of mantle (single species from deeper Australian continental slope) . . . ‘Eledone palari’
5b. Webs moderate to deep (<40% of arm length); paired and widely spaced, large, papillae absent; non-hectocotylized arms of mature males with suckers unmodified to arm tips; skin ridge around lateral margin of mantle present or absent. ... →6

†At the time of going to press, Strugnell et al (2013) published a major revision of the familial level classification of the incirrate octopods. They establish six families: Octopodidae, Bathypolyopodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Amphitretidae, the latter containing three subfamilies Amphitretinae, Bolitaeninae and Vitreledonellinae (see that work for new taxonomic structure).
6a. Radula normal - with 9 elements, 7 rows of teeth plus marginal plates .. 7
6b. Radula reduced to 3 elements - a single row of highly modified teeth with vane-like lateral wings plus marginal plates (single species restricted to west and southwest Atlantic Ocean) .. 6
7a. Funnel organ as W, UU or V V-shaped pads; skin smooth or sculptured .. 8
7b. Funnel organ as four distinct short longitudinal pads (III); all dorsal and lateral body surfaces covered in large branched papillae (single species restricted to central western Atlantic Ocean) .. Tetracheledone
8a. Small to moderate species, never attaining large sizes; head width close to or greater than mantle width; gills with 6 to 11 lamellae per demibranch ... 9
8b. Large species (up to 14 kg) with loose soft gelatinous skin; head distinctly narrower than mantle; gills with 10 to 11 lamellae per demibranch (single, large species restricted to Antarctic waters) .. Megaleledone
9a. Ligula groove without transverse ridges; lower beak without sharp modified tip, rostrum curved ventrally in lateral profile; posterior salivary glands approximately equal in length with buccal mass; styles present (Antarctic waters) .. Pareledone
9b. Ligula groove with distinct transverse ridges; lower beak with sharp modified tip, rostrum straight or slightly turned dorsally in lateral profile; posterior salivary glands approximately twice length of buccal mass; styles absent (single species restricted to Antarctic waters) .. Adelieledone
10a. Skin beset with raised conical or composite papillae hardened with cartilaginous inclusions, less obvious in frozen material (deep-water species) .. Graneledone
10b. Skin lacks hardened papillae, sculpture soft or skin completely smooth 11
11a. Arms short, less than 2 times mantle length; posterior salivary glands large, more than half buccal mass length .. 12
11b. Arms of moderate length, approximately 2 to 3 times mantle length; posterior salivary glands small to tiny, significantly less than half buccal mass length .. 13
12a. Radula with 9 elements; 7 rows of teeth, lateral teeth flattened into broad plates; skin smooth (single species known only from deep water in the Tasman Sea) .. Microledone
12b. Radula with reduced number of elements: 3 to 5 rows of teeth; skin covered in low regular rounded papillae (deep-water species) ... Thaumeledone
13a. Radula with unicuspid rachidian tooth, small first lateral teeth, wide second lateral teeth with single cusp, elongate (conical) marginal teeth and marginal plates (1 to 2 Antarctic species) .. Benthaleledone
13b. Radula with all teeth in transverse series of approximately similar size and shape, marginal plates absent (single Antarctic species) .. Praealtus
14a. Small short-armed octopuses with repeated colour pattern of iridescent blue lines or rings over body, arms and webs, iridescent markings fade to white in preserved material (Indo-West Pacific region) .. Hapalochlaena
14b. Small to large octopuses without repeated iridescent markings over body, arms and webs (some species possess a single pair of iridescent rings within ocelli, one on each side of the arm crown on the web between the bases of arms 2 and 3). .. Euaxoctopus
15a. Ink sac present ... 16
15b. Ink sac absent ... 33
16a. Arms long (>4 times mantle length); arm autotomy present, evident as multiple arms severed or regenerating from set plane near arm base .. 17
16b. Arms short to long; arm damage and regeneration not at set plane at arm base .. 21
17a. Second arm pair longest; large longitudinally oriented crescent markings present on dorso-lateral posterior mantle; enlarged suckers absent (restricted to Central Americas) .. Euauxoctopus
17b. Third or fourth arm pair longest; large longitudinally oriented crescent-shaped markings on mantle absent, enlarged suckers present or absent .. 18
18a. Fields of enlarged suckers present on arms 2 and 3 of mature males (Indo-West Pacific only) Abdopus
18b. Enlarged suckers absent in mature males .. 19
19a. Gills with 11 lamellae per demibranch (shallow-water species of Atlantic Ocean and potentially tropical Indo-West Pacific) .. Macrotritopus
19b. Gills with less than 11 lamellae per demibranch .. 20
Cephalopods of the World

20a. Eyes small and stalked, mantle and arms with regular and defined colour pattern of white bands and spots over brown to red background colour; gills with 5 to 7 lamellae per demibranch; single blunt and rounded large papilla over each eye (single species, Indo-Malayan Archipelago and west Pacific) 21

20b. Eyes of moderate size, not obviously stalked, colour pattern variable from banded to even coloration; white U-shape marking on posterior dorsal mantle; gills with 9 lamellae per demibranch; two elongate and sharp papillae over each eye (single species, Indo-West Pacific region) Thaumoctopus

21a. Dorsal arms distinctly longer than remaining arms, arm formula 1>2>3>4 .. 22

21b. Arms approximately equal in length or lateral/ventral arms longest .. 23

22a. Series of water pouches on oral web in ring around mouth, small muscular pore of each pouch opening to exterior around level of 3rd to 6th proximal suckers; ligula tiny in mature males, calamus absent or present (3 shallow-water species in Indo-West Pacific) Cistopus

22b. Water pouches and pores absent; ligula and calamus well-developed in mature males (shallow-water tropical and temperate species worldwide) Callistoctopus

23a. Ligula with transverse ligula groove containing small teeth-like papillae; raised skin ridge present on lateral mantle (single deepwater species from 200 to 400 m in Western Pacific) Galeoctopus

23b. Ligula groove longitudinal, without teeth-like lugs; lateral mantle ridge present or absent 24

24a. Left third arm of males hectocotylized .. 25

24b. Right third arm of males hectocotylized .. 26

25a. Mantle opening narrow, one third or less of body circumference, fitting close to funnel; paired narrow to elongate papillae over each eye; skin loose and semi-gelatinous with regular small, pavement-like patches; skin ridge absent from lateral mantle; body markings absent (deep-water species, 200 to 800 m) left-handed species of Pteroctopus*

25b. Mantle opening moderate to wide, approximately one half of body circumference; single large papilla over each eye; lateral mantle skin ridge present; two pairs of dark spots visible on mantle of live and well-preserved material (deep-water species, 200 to 800 m) Scaeurgus

26a. Web margin extends as thin membrane along ventral face of all arms, flared towards distal tips 27

26b. Web margins not expanded at distal tips of arms .. 28

27a. Mantle opening narrow, significantly less than 50% of body circumference, fitting close to funnel; paired narrow elongate papillae over each eye; skin loose and semi-gelatinous with regular small, pavement-like patches; body markings absent (deep-water species worldwide, 200 to 800 m). . . . right-handed species of Pteroctopus*

27b. Mantle opening moderate to wide, around 50% of body circumference, papilla over eye single, robust, never elongate, skin firm (not semi-gelatinous), skin sculptured with evenly spaced small rounded papillae; markings over orange brown base dorsally, cream ventrally (deep-water species of western Pacific and eastern Indian Oceans, 300 to 600 m) Histoctopus

28a. Giant species (to >3 m total length); skin on mantle in loose branching and coalescing longitudinal folds (as lines in preserved specimens); ligula very long (to accommodate giant spermatophores up to several times mantle length) (at least 3 species in temperate and subtropical waters worldwide) Enteroctopus*

28b. Small to large species; skin not in loose longitudinal folds; spermatophores small to long, never giant 29

29a. Skin firm, texture of regular papillae or patch and groove system, colour pattern variable, funnel organ W-shaped .. 30

29b. Skin relatively smooth without regular papillae or patch and groove system, colour pattern variable, funnel organ W-shaped or UU-shaped .. 32

30a. Arms typically 2 to 3 times mantle length .. 31

30b. Arms typically 3 to 5 times mantle length, sculpture on oral surface of dorsal web not a continuation of mantle and aboral web sculpture; colour patterns of dark leading arm edges absent; four large primary papillae (round in cross section) in diamond arrangement on dorsal mantle; stylets present (shallow-water species typically of temperate waters worldwide) Octopus sensu stricto

31a. Skin sculpture of dorsal mantle, head and webs continues onto oral surface of shallow dorsal web; colour patterns often incorporate dark leading edges along dorso-lateral face of arms 1 to 3; four short longitudinal ridges of skin in diamond arrangement on dorsal mantle; stylets present (shallow-water species of tropical and subtropical waters worldwide) Amphioctopus

31b. Skin sculpture not extending to oral surface of web; skin texture as dense complete cover of small compound papillae over entire dorsal and ventral surfaces; dark leading edges of arms absent; larger papillae or ridges on dorsal mantle absent; (single deep-water species from northern Pacific Ocean) Sasakiopus
32a. Eyes large and bulging, funnel organ W-shaped, gills with 6 to 8 lamellae per demibranch (three central American shallow-water pygmy species) ... Paroctopus*

32b. Eyes small, head relatively flush with spherical mantle, funnel organ UU-shaped, gills with 8 to 10 lamellae per demibranch (single shallow-water Indian species) .. Macrochaena*

33a. Arms very long (6 to 10 times mantle length) and extremely thin, with regular equal width bands of brown and white, arms equal in length and thickness; webs minute (<5% of arm length); eyes tiny; branchial hearts visible through thin mantle wall, body uniform pink to brown in colour (single intertidal species, northern Australia) Ameloctopus

33b. Arms unequal in length; eyes moderate to large; webs >5% of arm length; mantle walls not semi-transparent →34

34a. Skin white, lacking any pigmentation; iris of eye absent; eyes small (single species from deep-sea hydrothermal vents) ... Vulcanoctopus

34b. Skin with at least some pigmentation (i.e. oral webs, ventral and/or dorsal surfaces); iris present; eyes moderate to large. ... →35

35a. Funnel organ with four short rounded longitudinal pads (two poorly known deep-water Indian Ocean species) ... Teretoctopus*

35b. Funnel organ W-, UU- or V V-shaped ... →36

36a. Calamus of mature males very large, over half ligula length (single species, southern Australia) Grimpella*

36b. Calamus small to moderate, much less than half ligula length. ... →37

37a. Ligula of mature males large and spoon-shaped, deeply excavated with a number of well-defined transverse ridges (laminae) (deep-water species of Arctic and Atlantic Ocean) ... Bathypolypus

37b. Ligula moderate to large, elongate, typically with closed ligula groove; raised laminae absent (over 25 deep-water worldwide) .. Benthoctopus* and Muusoctopus* (see Remarks in these genera)

Occopus sensu stricto Cuvier, 1797

Type Species: Occopus vulgaris Cuvier, 1797, by absolute tautonymy (see ICZN Opinion 233; 1954).

Diagnostic Features: Small to large shallow-water species. Mantle muscular, globose to rounded ovoid. Stylets present, long, chitinous (non-mineralized). Arms muscular, medium length, 3 to 5 times mantle length. Lateral arms longest (typically 2>3>4>1 or 3>2>4>1). Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 20 to 30% of longest arm. Webs deepest on lateral arms, webs between dorsal arms shallower (typically B=C=D>E>A). Interbranchial web pouches absent. Suckers in two rows. Enlarged suckers present in mature males, typically on arms 2 to 3, sometimes on arm 4. Slightly enlarged suckers on same arms in mature females. Funnel organ W-shaped. Gills with 6 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, slightly shorter than opposite arm. Ligula and calamus present. Spermatophores unarmed. Eggs small to large, stalks twisted into chords or braids, eggs always laid in festoons. Colour patterns variable. False eye-spots (ocelli) present in some species, in several species with complex blue iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). Skin with distinct patch and groove system that forms a dark trellis or reticulate pattern. Fixed diamond pattern of four large erectile primary papillae in midregion of dorsal mantle. One long primary papilla at posterior end of dorsal mantle, one large and two smaller primary papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 250 mm; total length to around 1.3 m; body weight to around 5 kg.

Geographical Distribution: Predominantly found in temperate waters of all oceans; several species found in warmer waters (Fig. 39).

Habitat and Biology: Typically subtidal, associated with rocky reefs in temperate waters and coral reefs in tropical waters.

Remarks: The genus Occopus to date has been treated as a catchall genus in which the vast majority of described octopuses have been placed; i.e. any species that possess two rows of suckers and an ink sac. Recent molecular studies (e.g. Guzik et al., 2005; Strugnell et al., 2005) have demonstrated that this genus is polyphyletic, meaning it is an artificial grouping of multiple groups of unrelated species. A major taxonomic revision of the classification of octopuses is currently underway. As a consequence we treat the core genus Occopus (known as “Occopus sensu stricto”, previously treated as the “Occopus vulgaris group”) as the group of species listed immediately below. Other species currently placed in the genus Occopus, but awaiting generic revision, are treated in the later section designated by parentheses on the generic name (i.e. ‘Occopus’) and are treated separately.
The species name *Octopus vulgaris* (meaning “common octopus”) was originally described by Cuvier (1797). No type specimen was designated and it is presumed he based his description on specimens from the Mediterranean Sea, where this species is the most commonly encountered octopus. Considered here as *Octopus vulgaris sensu stricto*, this form has a geographic range from the northeast Atlantic Ocean, south to the midcoast of western Africa, as well as to offshore central Atlantic islands. This taxon supports large commercial fisheries, particularly off northwest Africa (see World Octopod Fisheries chapter).

In addition to this form, the species name *Octopus vulgaris* is also currently applied to at least four additional, morphologically similar, but unresolved taxa with disjunct geographical distributions across tropical, subtropical and temperate waters worldwide. All are of high profile and high fisheries value. These species typically occur on, or in association with, reef habitats (rock and/or coral) in relatively shallow coastal waters. All taxa produce small eggs with planktonic hatchlings capable of wide dispersal across open ocean, thus potentially enabling gene flow between the disjunct distributions of at least some forms.

A number of studies have used molecular tools to seek insights into the relationships of the octopuses being treated under the name *Octopus vulgaris*. Söller et al. (2000) and Warnke et al. (2000, 2002) analyzed COIII, RAPD and 16S sequences to examine vulgaris-like taxa on both coasts of the Americas. These studies recognized *O. mimus* of the eastern Pacific Ocean as distinct, as well as more than one species being treated under the name *O. vulgaris* on the northeast coast of South America. Warnke et al. (2004) analyzed the mitochondrial genes 16S and COIII of taxa being treated under the name *O. vulgaris* in the Atlantic Ocean, South Africa and northwest Pacific Ocean (Japan and Taiwan, Province of China). They concluded that two taxa occurred off northeast Brazil and that all other material examined supports a single *O. vulgaris* species worldwide. Leite et al. (2008) used morphological and molecular data to describe one of the Brazilian taxa as a new species, *O. insularis*. Guerra et al. (2010) used mitochondrial genes COI and COIII to identify specimens from Amsterdam and Saint Paul islands in the southern Indian Ocean as a range extension for a single widely distributed *O. vulgaris*.

Due to the significant geographic and temperature boundaries that exist between the geographical distributions of these forms (particularly for the east Asian “vulgaris”) and the absence of any plausible gene flow mechanisms, we choose to treat these forms individually below until their relationships are better resolved. This approach also enables regional knowledge and literature to be presented. The geographically disjunct forms (Fig. 39) are treated here under the following names:

Form: *Octopus vulgaris sensu stricto*	Geographical Distribution: Mediterranean Sea, central and north-east Atlantic Ocean
Octopus vulgaris type I	Tropical western central Atlantic Ocean
Octopus vulgaris type II	Subtropical south-west Atlantic Ocean: Brazil
Octopus vulgaris type III	Temperate South Africa and southern Indian Ocean
Octopus vulgaris type IV	Subtropical/temperate east Asia

![Fig. 39 Distribution of members of the *Octopus vulgaris* complex](image-url)
As detailed morphological studies have not been undertaken on these forms for most regions, a morphological diagnosis and illustrations are presented only for *Octopus vulgaris* sensu stricto.

This species complex is in urgent need of revision, one that combines both morphological and molecular analyses, including a wider range of genes and techniques. *Octopus insularis* (Brazil), *O. maya* (Gulf of Mexico), *O. minus* (western South America) and *O. tetricus* (eastern Australia and northern New Zealand, the latter under the synonym *O. gibbsi*) all are closely related forms.

Literature: Söller et al. (2000), Warnke et al. (2000, 2002, 2004) Guzik et al. (2005), Strugnell et al. (2005), Leite et al. (2008), Guerra et al. (2010).

Octopus vulgaris Cuvier, 1797

Octopus vulgaris Cuvier, 1797, *Tableau Élémentaire de l'Histoire Naturelle des Animaux*, 380. [Type locality: Presumed western Mediterranean Sea].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Common octopus; Fr — Pieuvre; Sp — Pulpo común.

Diagnostic Features: Moderate to large muscular species. Mantle broadly oval to saccular. Arms long (4 to 5.5 times mantle length), robust, taper to narrow rounded tips. Lateral arms distinctly longer than median arms; arm formula typically 3>2>4>1 or 3=2>4>1. Arm autotomy at distinct plane absent. Webs of moderate depth (deepest 15 to 20% of longest arm). Web deepest on lateral arms, typically C>D>B>E>A, often variable but sector A always shallowest.

![dorsal view (outline)](image1)

![hectocotylus](image2)

![dorsolateral view](image3)

Fig. 40 Octopus vulgaris
Interbrachial web pouches absent. Two rows of suckers on each arm. **In larger animals, around 220 to 320 suckers on each normal arm. Both sexes with 2 to 3 enlarged suckers on lateral arms at level of 15th to 19th proximal suckers, larger in males (males: 18 to 21% of mantle length; females: 10 to 12%).** Gilts with 9 to 11 lamellae per outer demibranch. Funnel organ W-shaped. Radula with 9 elements, 7 rows of teeth plus marginal plate. Rachidian tooth of radula with 1 to 2 lateral cusps, migrating from medial to lateral position over 2 to 5 rows. Distinct crop present as sidebranch off esophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, shorter than opposite arm (75 to 82%), bearing 140 to 170 suckers. Ligula small to minute (1.2 to 2.1% of arm length), tip narrow, transverse striations faint. Calamus distinct, relatively long, 47 to 52% of ligula length. Terminal organ (penis) linear and moderately long (15 to 21% of mantle length), with small, rounded diverticulum. Spermatophores of moderate size (31 to 81% of mantle length). Mature eggs around 2 mm long, 1 mm wide; stalk about 2.5 times egg length. **Colour:** Colour in life variable from yellow brown, to red brown, dark brown or grey. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle ('dorsal mantle white spots' *sensu* Packard and Sanders, 1971). False eye-spots (ocelli) absent. **Sculpture:** Skin texture of regular patch and groove with small circular patches. Four large erectile papillae in diamond arrangement on dorsal mantle; 1 to 2 supraocular papillae over each eye. Skin ridge around lateral margin of mantle absent. *Based on Mediterranean and north-east Atlantic material (see Remarks above).*

Size: Mantle length to 250 mm; total length to more than 1 m; body weight to more than 2 kg.

Geographical Distribution: Mediterranean Sea: Western and eastern basins, Adriatic Sea. Eastern Atlantic Ocean: South coast of England; north-west and west coast of Africa; Azores, Canary Islands and Cape Verde Islands. Records from western Atlantic Ocean (Caribbean Sea and northern South America), Southern Atlantic Ocean, South Africa, Indian Ocean and east Asia are discussed separately below (Fig. 39).

Habitat and Biology: This species has been reported from depths ranging from 0 to 250 m, but typically occurs shallower than 100 m. The Mediterranean and northeastern Atlantic form is typically an intertidal to shallow subtidal species that lives on the continental shelf on rocky, sandy or muddy substrates. This species is primarily night active, typically spending daylight hours within a den. Captive animals have been found to shift to at least some day activity, often in response to visual detection of prey. Dens can consist of pre-existing crevices in rocky reefs and rubble or can be constructed by the octopus in softer sediments, sometimes incorporating loose rocks or shells. Dens can be relatively permanent or temporary refuge. Behavioural studies have found high movement of individuals between lairs, often in association with mating behaviour.

This species feeds by tactile probing for prey by the dorsal arm pairs or by enveloping rocks within the arm crown and webs and using the arm tips to detect and flush prey. This species feeds on a wide range of live prey, from crustaceans (typically crabs and lobsters), to fish (when they can be caught), to a range of shelled molluscs. The latter group typically are extracted by drilling through the shell with the toothed salivary papillae to paralyse/relax the occupant. Cannibalism also has been recorded for this species.

A wide range of predators prey on this species including many fishes such as serranid groupers, wrasses and eels, as well as sharks. Seals would have been historical predators of this species across its range.

Reproductive behaviour is well documented. In a number of regions, inshore migrations occur prior to breeding (Mediterranean Sea and northwest Africa). There is no pair formation, as both sexes mate with multiple partners. Mating consists of the male approaching a female with little display or courtship, and inserts the tip of the third right arm into the female’s mantle cavity and oviduct. The male then passes small sperm packets (spermatophores) along the sperm groove gutter of this arm and deposits them in the females mantle cavity. Males produce large numbers of spermatophores (in the hundreds) from relatively early life cycle stages. Females mate while immature and can store sperm within the oviduct. The female then passes small sperm packets (spermatophores) along the sperm groove gutter of this arm and deposits them in the females mantle cavity. Males produce large numbers of spermatophores (in the hundreds) from relatively early life cycle stages. Females mate while immature and can store sperm within the oviduct. The female then remains with the eggs, constantly ventilating and stroking the eggs to provide oxygenated water and prevent algal/bacterial growth on the surface of the eggs. She typically does not feed during this entire period, which can take up to 4-5 months in cool waters. Over this period, the female digests her own musculature as an energy source and can lose a third or more of her body weight. As the hatchlings emerge, the female weakens and dies. All females die after a single brooding event.

At the time of egg laying, females retreat to a sheltered den, often partially enclosing the entrance with rocks or debris. They produce between 100 000 and 500 000 eggs, which are bound together in strings (festoons) and cemented to the roof of the den. The female then remains with the eggs, constantly ventilating and stroking the eggs to provide oxygenated water and prevent algal/bacterial growth on the surface of the eggs. The she typically does not feed during this entire period, which can take up to 4-5 months in cool waters. Over this period, the female digests her own musculature as an energy source and can lose a third or more of her body weight. As the hatchlings emerge, the female weakens and dies. All females die after a single brooding event.

The duration of egg development to hatching is temperature-dependent and occurs faster in warmer waters. Hatchlings emerge at around 1-2 mm in length, then immediately swim into the water column to commence a planktonic phase. The hatchlings are known as paralarvae and are transparent, with only a few, simple, large chromatophores and short arms bearing few suckers. Paralarvae swim using jet propulsion of water through the funnel and they are typically night-active, hiding in deeper waters during the day and swimming up towards surface waters at night. Paralarvae feed primarily on crustacean larvae but will also take a wide range of live and inert prey in captivity. The duration of this planktonic phase in the wild is not known but is estimated to be in the order of weeks to months, again dependent on the temperature and other environmental conditions, including availability of suitable habitat for settlement. While in this planktonic phase,
oceanographic conditions can play significant roles in recruitment, dispersal and distribution of the species, which have been well documented off the northwest African coast.

On settlement, juveniles metamorphose into a form more typical of the adults, with well-developed arms equipped with numerous suckers and complex skin sculpture and chromatophores. They then commence a cryptic benthic lifestyle. Longevity of this species has been estimated in the range of one to two years.

Interest to Fisheries: This highly prized octopus is taken by amateur fishers and in small to large-scale harvests throughout its range. The hatchling stage has been extremely difficult to culture through to the benthic settlement phase, with considerable effort directed towards a food source for the earliest stages (Navarro and Villanueva 2003, Villanueva and Bustamante 2006, Villanueva et al., 2009, De Wolf et al., 2011, Feyjoo et al., 2011, García-Garrido et al., 2011). The brine shrimp, Artemia, has been widely investigated (Villanueva et al., 2002, Iglesias et al., 2004, Iglesias et al., 2006, Seixas et al., 2008, Seixas et al., 2010, Seixas et al., 2010). The hatchling stage has been extremely difficult to culture through to the benthic settlement phase, with considerable effort directed towards a food source for the earliest stages (Navarro and Villanueva 2003, Villanueva et al., 2004, Carrasco et al., 2006, Villanueva and Bustamante 2006, Iglesias et al., 2007, Villanueva et al., 2009, De Wolf et al., 2011, Feyjoo et al., 2011, García-Garrido et al., 2011). The brine shrimp, Artemia, has been widely investigated (Villanueva et al., 2002, Iglesias et al., 2004, Iglesias et al., 2006, Seixas et al., 2008, Seixas et al., 2010, Seixas et al., 2010).

Perhaps due to these difficulties, rearing of wild-caught juveniles also has received considerable interest, again due to the potential for high economic returns for adult octopuses. Offshore cages suspended below rafts have been the primary method (Oltra et al., 2005, Chapela et al., 2006, Rodríguez et al., 2006). Diet has included crabs and fishes (García García and Aguado-Giménez 2002, García García and Valverde 2006). Different stocking densities also have been trialed (García García et al., 2009).

Construction of artificial reefs has been proposed as a mechanism for increasing octopus population density and hence increased harvests (Ulas et al., 2002).

Octopus “vulgaris” type I

Geographical Distribution: Western central Atlantic Ocean. Throughout the Caribbean Sea and Gulf of Mexico, south to at least Venezuela and north to South Carolina (Fig. 39).

Habitat and Biology: In Venezuela, this form inhabits diverse substrates including sand, rock, mud, coral, and turtle grass (Thalassia) beds. It is primarily nocturnal and feeds on molluscs and crustaceans. It is caught from depths of 5 to 72 m, although high concentrations are reported around 24 to 38 m by commercial fishers. It is abundant from June until October with a peak in August-September when the animals come into shallow water to breed.
On the coral reefs of Bonaire and Bermuda, juveniles of this form forage on coral rubble substrates, being at least partially active during the day. Home range and den use have been extensively studied.

The diet consists primarily of molluscs and crustaceans. Prey middens on the island of Bonaire contained the remains of 35 species of gastropod snails, 19 bivalve species and 21 crustacean species. Drilling of shells is one strategy used to extract prey, including the drilling of crab claws.

Interest to Fisheries: Catch of this form reported through FAO includes around 10 000 to 20 000 tonnes annually, taken by Mexican fishers, primarily from the Gulf of Mexico. However many nations within the range of this form do not provide catch statistics for octopuses to FAO (or at least to the species level). This octopus is harvested on small and moderate scales throughout its range. It is harvested commercially in Venezuela, and it was proposed to be of potential commercial value in South Carolina.

Remarks: This form was first reported under the name *Octopus vulgaris* by d’Orbigny in 1840, although earlier records exist for this form under potentially synonymous names: *O. americanus* Baker in Denys de Montfort, 1802 and *O. bakerii* d’Orbigny, 1826. Through analyses of mitochondrial genes, Warnke *et al.* (2004) considered this form to be synonymous with the eastern Atlantic forms and concluded that they represent a single species.

Local Names: Unknown.

Octopus “vulgaris” type II

Geographical Distribution: In Brazil from Amapà (~2°00’N, 50°13’W) to Rio Grande do Sul (31°05’S, 50°32’W). Southern limits of distribution not known (Fig. 39).

Habitat and Biology: Little is reported of the biology and behaviour of this form.

Interest to Fisheries: Fished commercially in southeast and southern Brazil, where it probably constitutes the largest component of octopus catches. In 2005, the annual octopus catch in Brazil was reported as 1 783 tonnes, of which 86% was listed as *O. vulgaris*, primarily harvested by pot trapping (Moreira *et al.*, 2011).

Remarks: This form was first reported from Brazil under the name *Octopus vulgaris* by d’Orbigny in 1840. In 1849, Gray described this form from Brazil under the name *O. geryonea*. Through analyses of mitochondrial genes, Warnke *et al.* (2004) considered this form to be synonymous with the Caribbean and eastern Atlantic forms and concluded they represented a single species. Leite *et al.* (2008) described a closely related sympatric species as *O. insularis*. Morphological studies of the paralarvae of this form showed significant differences from eastern Atlantic *O. vulgaris* paralarvae (Vidal *et al.*, 2010), providing support for delineation of this form from *O. vulgaris sensu stricto*.

Local Names: BRAZIL: Polvo.

Octopus “vulgaris” type III

Geographical Distribution: Coastal waters off South Africa, from Luderitz on the west coast of Namibia in the southern Atlantic to Durban, South Africa in the east, at the boundary with the tropical Indian Ocean (Fig. 39).

Habitat and Biology: This form occurs on rocky reefs and adjacent soft substrates where it occupies/excavates dens. Male and females are found in the same or adjoining dens in all seasons, indicating mating activity year round.

Examination of stomach contents, middens and direct observation of this form found a diet dominated by the crab *Plagusia chabrus*, the abalone *Haliotis midae*, the clam *Venus vericosa* and the mussel *Perna perna*. Mussels are extracted by pulling apart of the valves of smaller individuals and drilling of larger animals. The diet also includes other crustaceans, molluscs (gastropods, bivalves and octopuses), fishes and polychaete worms. Tests of the sea urchin
Parechinus angulosus were found in four middens. Octopuses less than 300 grams were also found to eat blenny and goby eggs off rock nests.

A population off the southeast of South Africa was found to have a higher female-bias sex ratio in intertidal animals (2:1) than for subtidal animals (1:1). There appears to be migration of mature/maturing females into subtidal habitats. Spawning activity peaks in spring to summer in the cooler southwest end of this form’s distribution and in autumn and winter on the warmer southeast coast of South Africa. Egg numbers are estimated from one population to range from 42 000 to 790 000 per female.

Octopuses on the east coast of South Africa mature at around 3 months of age and have an estimated lifespan of 12 to 15 months. Females are estimated to have the potential to reach 4 kg in 240 days, while males can attain 4 kg in 290 days. Mating appears to occur year-round with some evidence supporting seasonal migrations by females. This form has been reported in the diet of fur seals, Risso’s dolphins and squaloid sharks. It also is likely to occur in the diets of diverse fishes throughout its range.

Interest to Fisheries: Artisanal and small-scale harvests occur for this species, primarily from intertidal rock reefs. The logistics and economics of a potential subtidal pot fishery also has been investigated, although to date this fishery does not appear to have been established.

Remarks: This form occurs in the temperate waters off South Africa. Guerra et al. (2010) reported a member of this complex (as Octopus vulgaris) from St Paul and Amsterdam Islands in the southern Indian Ocean based on analyses of COI and COIII mitochondrial genes. In these analyses this taxon was most closely aligned with South African material and may be the same or an additional member of this complex.

Local Names: Unknown.

Octopus “vulgaris” type IV

Geographical Distribution: Coastal subtropical and temperate waters of northwest Pacific Ocean, from at least Hong Kong and Taiwan (Province of China) in the south, to mid-Japan (Fig. 39).

Habitat and Biology: This form occurs on reef and soft substrate habitats where it occupies/excavates dens. On soft substrates it willingly occupies concave objects, leading to its easy capture in fisheries pot lines. It is reported as the most common octopus in middle and southern Japan. In Hong Kong, it has been reported historically to occur in low numbers, living amongst rocks along the coast or on adjacent stony substrates at depths between 5 and 25 metres.

Eggs are produced in the hundreds of thousands and hatch into planktonic paralarvae, approximately 2-3 mm in length. Off Nanji Island, China, spawning occurs when seawater temperatures reach 13°C, with most animals spawning when seawater temperatures reach around 16°C. The spawning period occurs between April and June. Egg number ranges from 22 000 to 170 000 per female and hatching success declines at seawater temperatures above 28°C. Egg laying to hatching period ranges from 20 to 47 days and is temperature dependent.

Captive hatchlings remain in the water column for around 40 days before exhibiting settlement behaviour and associated morphological transformation. Predators of this form include sharks of the genera Triakis, Hemitriakis and Mustelus (family Triakidae).

Interest to Fisheries: This form is harvested in small-to moderate-scale fisheries throughout the region. Primary collection techniques include pot traps and benthic trawls. Catch statistics across its distributional range are not well reported and the total scale of the combined catch is likely to be large.

Remarks: This form occurs in subtropical to temperate waters of east Asia where it has a high fisheries and economic profile. It was first reported from the region under the name Octopus vulgaris by Appellöf (1886) from Japan. Earlier records exist for this form under a potentially synonymous name: O. sinensis d’Orbigny (1834), also from Japan. Voss and Williamson (1972) reported this form from Hong Kong under the name Octopus sp. D. Due to the high market value of this form, Japanese catch statistics have been gathered and analyzed to investigate resource fluctuations (Boso Peninsula: Tanaka, 1958; Tokyo Bay: Shimizu, 1983; Seto Inland Sea: Uchida et al., 2005; Sakaguchi et al., 2000;
Distribution of planktonic juveniles also has been assessed in relation to estimating local stocks (Sakaguchi et al. 1999). In addition, considerable effort has been made to complete the life cycle in captivity (Itami et al. 1963, Sakaguchi et al., 1999, Hamasaki and Takeuchi 2001, Zhong and Ning, 2009). As the hatchlings are tiny planktonic paralarvae, the biggest challenge has been to determine suitable diet and environmental conditions. In preliminary investigations of captive propagation of this form in China, Lin et al. (2008) used 48 wild captured females and obtained 2 160 000 fertilized eggs, from which 1 390 000 paralarvae were hatched. Only 121 individuals were raised to settlement. Nauplii of Artemia salina, rotifers and copepods were assessed as early diet for this form, with the nauplii of Artemia salina being the most promising. In subsequent studies, brine shrimp (Artemia) and Pacific Sandeel (Ammodytes personatus) have proven effective as food in captive culturing of paralarvae (Hamasaki and Morioka, 2002; Okumura et al., 2005; Arai et al., 2008).

Investigations of optimum aquaculture techniques in China compared net cages versus cement tanks, raising 22,000 young (Cai et al., 2007). Survival rates were between 60 and 70% over 40 days. The economic benefits of net cages were higher than those of cement tanks, with a ratio of input to output of 1:1.210, while for cement tanks the ratio was 1:1.105. Cannibalism and autotomy contributed to captive mortality rates.

Octopus bimaculatus Verrill, 1883

Frequent Synonyms: None.

Misidentifications: Octopus bimaculoides Pickford and McConnaughey, 1949.

FAO Names: En — Two-spotted octopus; Fr — Poulpe à deux taches; Sp — Pulpo con dos manchas.

Diagnostic Features: Medium-sized muscular species. Arms moderately long, 4 to 5 times mantle length. Lateral arms longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 28% of arm length. Web deepest on lateral arms, webs shallowest in ventral and dorsal sectors. Narrow web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. Around 200 to 320 suckers on each normal arm in larger animals. Enlarged suckers present in mature males, 1 to 2 on arms 2 and 3, starting around the 11th proximal sucker. Gills with 8 to 10 lamellae per demibranch. Funnel organ W-shaped, outer limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 70% length of opposite arm. Ligula tiny, 1.2 to 2.8% of arm length. Calamus small to moderate size, 40 to 60% of ligula length. Hectocotylized arm with 134 to 157 suckers. Spermatophores of moderate size, up to 70% of mantle length. Spermatophores unarmed. Eggs small, capsule lengths 2 to 4 mm, around 5% of mantle length.
Colour: Dorsal surfaces variable, from dark purplish-black to yellow-green. Often mottled with dark and light patterns. **False-eye spots (ocelli) present,** consisting of a dark spot containing an iridescent blue ring. Blue ring made up of broken chain links with distinct spokes radiating to the edge of a wide outer dark ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Sculpture:** Skin texture of regular patch and groove with small circular patches. Four large primary papillae in diamond arrangement on dorsal mantle, 1 to 2 supraocular papillae. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 200 mm; total length to around 1.1 m; body weight to around 3 kg.

Geographical Distribution: Northeast Pacific from California (Point Conception) south to Bahia Magdelana on the Pacific coast of the Baja California Peninsula. Also reported in Mexico from the head of the Gulf of California. Southern limits unknown (Fig. 42).

Habitat and Biology: Depths range from 0 to 50 m. *Octopus bimaculatus* occurs on rocky substrates from intertidal reefs to shallow subtidal depths. This species occupies temporary to moderate-term lairs in any available shelter, primarily rock crevices and assorted man-made refuse. It is most active at dusk and dawn, but is also active throughout the day and night. Crabs are the preferred prey, but their rarity leads to inclusion of chitons, snails, limpets and bivalves in the diet. Mating and spawning occur throughout the year. Females lay strands of up to 20 000 eggs in protected rock shelters. Eggs take 1 to 2 months to develop, hatching as planktonic paralarvae.

Interest to Fisheries: There is no commercial harvest of this species. Small scale harvests for personal consumption, as bait and as aquarium animals, may occur across its range.

Local Names: Unknown.

Remarks: This species is a sibling species to *Octopus bimaculoides*. The taxonomic status of the population of ocellate octopus found in the head of the Gulf of California has not been resolved.

Fig. 42 Octopus bimaculatus

Octopus bimaculoides Pickford and McConnaughey, 1949

Frequent Synonyms: None.

Misidentifications: *Octopus bimaculatus* Verrill, 1883.

FAO Names: En — Lesser twospotted octopus; Fr — Poulpe à deux taches petit; Sp — Pulpito con dos manchas.

Diagnostic Features: Moderate-sized muscular species. Arms moderately long, 3-3.5 times mantle length. Lateral arms longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 25% of arm length. Web deepest on lateral arms, web sectors of dorsal and ventral arms shallowest. Narrow web margins extend to arm...
tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 140 to 190 suckers on each normal arm. Enlarged suckers present in mature males, 1 to 2 on arms 2 and 3. Gills with 8 to 10 lamellae per demibranch. Funnel organ W-shaped, outer limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 80% length of opposite arm. Ligula tiny, 1.4 to 2.3% of arm length. Calamus of moderate size, 40 to 50% of ligula length. Hectocotylized arm with 102 to 116 suckers. Spermatophores small, around 50 to 65% of mantle length. Spermatophores unarmed. Eggs large, capsule lengths 16 to 18 mm, 12 to 15% of mantle length. Colour: Variable, from dark grey to red, brown or olive. Faintly mottled with thin dark reticulate or polygonal pattern. False-eye spots (ocelli) present consisting of dark spot containing an iridescent blue ring. Blue ring made up of chain link pattern without radiating spokes. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle ("dorsal mantle white spots" sensu Packard and Sanders, 1971). Sculpture: Skin densely covered with papillae ("granular"), coarser on dorsal surfaces of head, mantle and arms. Four large primary papillae in diamond arrangement on dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 85 mm; total length to 500 mm; body weight to at least 800 g.

Geographical Distribution: Northeast Pacific, California (San Simeon) and the California Channel Islands south to at least Guerrero Negro, on the Pacific coast of the Baja California Peninsula, Mexico (Fig. 44).

Habitat and Biology: Depths range from the intertidal zone to at least 20 m. Octopus bimaculoides lives on rocky reefs and sand and mud substrates from the intertidal zone to shallow subtidal depths. This species forms dens in a range of substrates from intertidal boulders to kelp holdfasts, rock crevices, mollusc shells or holes in the substrate lined with shells or mane-made objects. Females often lay eggs within discarded aluminium cans. This species is active both day and night but appears to be more day active than O. bimaculatus, which co-occurs in many regions. Octopus bimaculoides feeds on a wide range of prey from crabs and shrimp, to bivalves, gastropods and octopuses. There appears to be a peak in spawning activity between February and May. Females lay up to 800 large eggs in small clusters. Hatchlings immediately adopt a benthic lifestyle.

Interest to Fisheries: There is no commercial harvest of this species. Small-scale harvests occur in intertidal areas such as La Jolla, California for personal consumption, as bait and as aquarium animals. Sold commercially as a favoured aquarium species.

Local Names: Unknown.
Remarks: This species was originally separated from the similar, co-occurring and related *Octopus bimaculatus* on the basis of the large eggs and distinct assemblages of dicyemid parasites (Pickford and McConnaughey, 1949). Sucker counts, colour patterns and skin sculpture clearly separate the two species (see Lang, 1997). Packard and Hochberg (1977) and Forsythe and Hanlon (1988a) have elucidated the chromatic, textural and postural components of body patterns in this species. As discussed above for *O. bimaculatus*, non-overlapping sucker counts on arms 2 and 3 of males and females provide an easy means of rapidly identifying preserved specimens to species. Due to its large egg size, this species has been easily reared in the laboratory and extensively utilized for experimental studies of biology and behaviour (Forsythe and Hanlon, 1988b; Boal, 1991; Boal et al., 2000; Sinn et al., 2001; Hvorecny et al., 2007).

Octopus hubbsorum Berry, 1953

Dorsal View Fig. 45

Octopus hubbsorum Berry, 1953, *Leaflets in Malacology*, 1(10): 53. [Type locality: Mexico (Gulf of California), Sonora, outer Bahia San Carlos (27º05'N, 110º47'W)].

Frequent Synonyms: None.

Misidentifications: *Octopus rugosus* Bosc, 1792; *O. vulgaris* Cuvier, 1797.

FAO Names: En — Hubb’s octopus; Fr — Poulpe de Hubb; Sp — Pulpo de Hubb.

Diagnostic Features: Moderate-sized muscular species. Arms of moderate length, 3 to 4 times mantle length. Lateral arms longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 30% of arm length. Web deepest on lateral arms, webs between dorsal arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 240 suckers on each normal arm. Enlarged suckers present in mature males and females, on arms 2 and 3. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 80% length of opposite arm. *Ligula tiny, around 1 to 2% of arm length.* Calamus small, around 20% of ligula length. Hectocotylized arm with around 140 suckers. Spermatophores not described. Eggs small, size unknown. **Colour:** Dorsal surfaces dark, varying from black, rusty red, purple to dark grey often with iridescent green or orange undertone, with conspicuous dark reticulated pattern. Patches lighter orange-brown. Ventral surfaces, especially funnel and mantle aperture, rusty orange. False-eye spots (ocelli) absent. **White dumb-bell shape on dorsal arm crown in front of eyes.** Few large white spots present along midline of arms. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots sensu Packard and Sanders, 1971’). **Sculpture:** Skin texture of patch and groove system, patches large and irregular, generally round in shape. Four large primary papillae in diamond pattern on mid-dorsal mantle. Two large compound (“warty”) papillae above and behind each eye with 1 to 2 smaller conical simple papillae in front of these. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 220 mm; total length to over 1 m.

Geographical Distribution: Mexico, Pacific coast of the Baja California Peninsula from Magadelen Bay into
southern half of the Gulf of California, south to Oaxaca and also Revillagigedo Islands. The presence of this species south into Panama and Colombia has not been confirmed (Fig. 46).

Habitat and Biology: Depths range from 0 to 30 m. The species lives in rocky areas from the intertidal to shallow subtidal. *Octopus hubbsorum* is a poorly known species that appears almost identical to *O. bimaculatus* except for the presence of the characteristic ocelli in the latter species. It is considered to be the most common medium-sized octopus in the mid-region of the Gulf of California. In general, *O. hubbsorum* is larger than *O. bimaculatus* wherever the two species co-occur.

In studies of reproductive development males were found to mature at around 140 mm and females at 160 mm ML. Eggs are small. Large numbers of eggs are laid and brooded by females throughout the year. Female fecundity ranges from about 62 500 to 425 000 oocytes per female.

Around Cabo San Lucas the species is extremely abundant in rocky areas in the intertidal and shallow subtidal zones. Animals are active during the day. They live in holes, crevices or under boulders. Den sites are often surrounded by middens of shell debris. This species is an opportunistic predator and feeds on a wide diversity of invertebrates and fishes. The diet primarily includes crustaceans (stomatopods, carideans, anomurans and brachyurans), molluscs (bivalves and gastropods [which are typically drilled] and cephalopods) and small fishes.

Interest to Fisheries: The species is fished in Mexico along the Baja California Peninsula, on both sides of the southern Gulf of California and south to Oaxaca. The species is typically fished from March to October.

Local Names: Unknown.

Remarks: *Octopus hubbsorum* appears to be closely related to *O. mimus* in South America. In turn, both are similar to *O. bimaculatus* and *O. oculifer* except for the lack of an ocellus. This is a confusing complex that needs to be carefully re-evaluated.

Octopus insularis Leite and Haimovici, 2008

Octopus insularis Leite and Haimovici *in:* Leite, Haimovici, Molina and Warnke, 2008, *Journal of Molluscan Studies, 74:* 66. [Type locality: Southwestern Atlantic Ocean, Brazil, St Peter and St Paul Archipelago, Belmont Island (00°55'S, 29°20'W)].

Frequent Synonyms: None.

Misidentifications: *Octopus vulgaris* Cuvier, 1797.

FAO Names: En — Brazil reef octopus; Fr — Poulpe brésilien de récif; Sp — Pulpo brasileño de arrecife.
Diagnostic Features: Medium size to large muscular species. Arms moderately long, around 3 to 4.2 times mantle length. Lateral arms longest (typically 3>4>2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web deepest on lateral arms, webs shallowest in ventral and dorsal sectors. Narrow web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 220 to 240 suckers on each normal arm. **Enlarged suckers present in mature males, 2 to 4 on arms 2 and 3, starting around the 8th to 9th proximal sucker.** Gills with 8 to 11 lamellae per demibranch. Funnel organ W-shaped, outer limbs slightly longer than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Inksac present. Anal flaps present. Right third arm of males hectocotylized, length around 90% of opposite arm. Ligula tiny, 0.6 to 1.4% of arm length. Calamus of small to moderate size, around 40 to 60% of ligula length. Hectocotylized arm with 96 to 142 suckers.**Eggs small, around 1.5 mm long.** **Colour:** Live animals yellow to reddish-brown with variable markings or patterns. False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin texture of irregular patch and groove system. Four large primary papillae in diamond arrangement on dorsal mantle, 3 supraocular papillae. Other large papillae can be raised on dorsal arm crown and lateral mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 120 mm; total length to 530 mm; body weight to 1.3 kg.

Geographical Distribution: Southeast Atlantic, off mainland Brazil (states of Rio Grande do Norte and Pernambuco) and north-east oceanic island groups: Fernando de Noronha Archipelago, Rocas Atoll, and St Peter and St Paul Archipelago (Fig. 48).

Habitat and Biology: Depths range from 0 to 45 m. The species is found on reefs, bedrock, rubble, gravel and sand beds, and rocky bottoms, regardless of the presence of algae, but never on sandy and muddy bottoms.

Interest to Fisheries: Harvested by local fishermen by hand or in traps set on coastal reefs off the mainland coast of Brazil.

Local Names: Unknown.

Literature: Leite (2007, 2008), Leite et al. (2008).

Fig. 47 Octopus insularis

Fig. 48 Octopus insularis

Known distribution
Octopus maya Voss and Solis, 1966

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Mexican foureyed octopus; Fr — Poulpe Mexicain; Sp — Pulpo mexicano.

Diagnostic Features: Large, robust and muscular species. Arms moderately long, 3 to 4.5 times mantle length. Lateral arms longest (typically 3>4=2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web deepest on lateral arms, webs between dorsal arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers absent. Gills with 9 to 10 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 80% of opposite arm. Ligula minute, 1.5 to 2% of arm length. Calamus of moderate size, around 25% of ligula length. Spermatophores of moderate size, around 60% of mantle length. Spermatophores unarmed. Eggs large, around 17 mm and produced in relatively low numbers (~2000). Colour: Variable colour patterns from uniform dark brown, to mottled to uniform pale cream. False-eye spots (ocelli) present, as dark spot with small central light spot, all bound in a light coloured outer ring. Ocellus without iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). Sculpture: Skin texture of irregular patches and grooves, capable of being raised as spiked texture aiding in camouflage against different backgrounds. Single large and several small papillae present above each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 120 mm; total length to around 1.3 m; body weight to around 5 kg.
Geographical Distribution: Gulf of Mexico along the coasts of Yucatan and Campeche, Mexico (Fig. 50).

Habitat and Biology: Depths range from 0 to 50 m. This species lives in shallow water on seagrass meadows, shell beds and reefs. The spawning season extends from September to December where females lay eggs in festoons in crevices or empty mollusc shells, brooding them for 50 to 65 days. The large hatchlings immediately settle to a benthic life. Life span is around 1 to 2 years. Diet includes crabs (such as the stone crab *Menippe mercenaria*), gastropods (such as *Nerita*), and fishes. Preyed on by groupers (Serranidae) and Spanish mackerels (Scombridae).

Interest to Fisheries: *Octopus maya* is harvested on a large scale using lines with bait or lures. In the late 1980's the catch of this species was reported at around 5 000 to 8 000 tonnes annually. In 2000 it was estimated at around 9 000 tons. FAO production statistic for 2010 placed the catch at around 8 000 tonnes.

Local Names: Unknown.

Octopus mimus Gould 1852

Octopus mimus Gould, 1852, *United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842, 12: 473.* [Type locality: Southeastern Pacific Ocean, Peru, Callao].

Frequent Synonyms: None.

Misidentifications: *Octopus vulgaris* Cuvier, 1797.

FAO Names: En — Changos octopus; Fr — Poulpe des Changos; Sp — Pulpo de los Changos.

Diagnostic Features: Large muscular species. Stylets present, non-mineralized. Arms long, around 4 to 6 times mantle length. Lateral arms longest (typically 2>3>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest 18 to 27% of arm length. Web deepest on lateral arms, webs between dorsal arms shallowest. Narrow web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. Normal arm sucker counts to around 330 in adults. Enlarged suckers present in mature males, 2 to 4 on arms 2 and 3. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Right third arm of males hectocotylized, around 77% length of opposite arm. Ligula tiny, 0.7 to 1.8% of arm length. Calamus large, 30 to 60% of ligula length. Spermatophores small, around 32 to 40% of mantle length. Egg size small, 2 to 3 mm long and produced in large numbers (to 400 000). **Colour:** Live animals orange to red-purple in colour. Preserved animals dark grey to purplish brown on dorsal surfaces, lighter ventrally. Obvious false-eye spots (ocelli) absent but dark spot visible in location of ocelli in some live animal colour patterns. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Mosaic of coarse, irregular reticulations over skin,**
forming repeated ovoid units. Sculpture: Skin rugose, densely covered in inflated patches and with numerous papillae. 2 to 3 large papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 190 mm; total length to around 1.2 m; body weight to around 4 kg.

Geographical Distribution: Southeast Pacific, along east coast of South America from northern Peru to Valparaiso, Chile (Fig. 51).

Habitat and Biology: Depths range from 0 to at least 30 m. This species lives on rocky reefs and is common on intertidal reefs to at least 30 m. It is common on intertidal reefs where it seeks cover in crevices and under boulders. It feeds on grapsid crabs and bivalve molluscs. This species drills to open bivalve shells. Reproduction, sexual maturity and embryonic development have been studied extensively (see Literature below).

Interest to Fisheries: This species supports commercial fisheries in both Peru and Chile. In Chile the fishery occurs as intertidal hand harvest (by fishermen known as pulperos) and subtidal collection in the surf zone by snorkel divers and deeper by hookah divers (Defeo and Castilla, 1998).

Local Names: Unknown.

Remarks: Many earlier publications treated this species along the east coast of South America as Octopus rugosus and later O. vulgaris. This was corrected in molecular studies by Söller et al. (2000) and Warnke et al. (2000, 2002, 2004).

Octopus oculifer (Hoyle, 1904)

Frequent Synonyms: *Octopus roosevelti* Stuart, 1941.

Misidentifications: None.

FAO Names: En — Galapagos octopus; Fr — Poulpe des Galapagos; Sp — Pulpo de las Galapagos.

Diagnostic Features: Large muscular species. Arms moderately long, 3.5 to 4.5 times mantle length. Lateral arms longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 22 to 27% of arm length. Web deepest on lateral arms, webs between dorsal arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 230 to 280 suckers on each normal arm. Enlarged suckers present in mature males, 1 to 3 on arms 2 and 3. Gills with 8 to 10 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Right third arm of males hectocotylized, length 70 to 80% of opposite arm. Ligula tiny, 0.7 to 1.4% of arm length. Calamus small. Hectocotylized arm with around 180 suckers. Spermatophore size unknown. Egg size unknown. Colour: Colour patterns variable from dark chocolate brown to mottled cream brown. Dark reticulations often displayed between light coloured patches. Regular cream coloured spots along arm tips. False-eye spots (ocelli) present as a dark spot with small pale central spot, bound in an outer pale ring. Ocellus without iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sense Packard and Sanders, 1971). Sculpture: Skin texture of round patches of various sizes. Four large papillae in diamond on dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 120 mm; total length to around 420 mm.

Geographical Distribution: Galapagos Archipelago (Fig. 54).

Habitat and Biology: Depths range from 0 to 50 m. This species is common throughout the Galapagos, particularly in intertidal and shallow subtidal areas. Found on rocky shores and reefs. They feed on red shore crabs, gastropods and bivalve molluscs. Lairs in rocky reefs are surrounded by the shell remains of their prey. The flightless cormorant is one of the main predators of this octopus.

Interest to Fisheries: Small-scale commercial harvests occur for this octopus, collected primarily for human consumption and as bait.

Local Names: Unknown.

Octopus tetricus Gould, 1852

Octopus tetricus Gould, 1852, *United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842, 12: 474*. [Type locality: Australia, New South Wales, Near Sydney].

Frequent Synonyms: *Octopus gibbsi* O’Shea, 1999.

Misidentifications: *Octopus cyanea* Gray, 1849.

FAO Names: En — Gloomy octopus; Fr — Poulpe somber; Sp — Pulpo tétrico.

Diagnostic Features: Large muscular species. Mantle broadly oval. Arms moderate to long, 3 to 4.5 times mantle length. Lateral arms longest, dorsal arms shortest (typically 3=2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 25% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 220 to 260 suckers on each normal arm. Enlarged suckers present in mature males, 3 to 5 on arms 2 and 3, starting around the 13th proximal sucker. Gills with 8 to 9 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of males hectocotylized, with 140 to 160 suckers. Ligula tiny, 1 to 2% of arm length. Calamus small. Spermatophore size unknown. Eggs small, 2 to 3 mm long. **Colour:** Active animals cream to mottled orange and dark brown. Transverse narrow dark bands along arms in some colour patterns. **Resting animals within lairs show grey dorsal surfaces, orange arm faces and eyes with a white iris.** False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (*dorsal mantle white spots* sensu Packard and Sanders, 1971). **Sculpture:** Skin sculptured in rounded patches separated by distinct grooves. Capable of raising large papillae over dorsal surfaces, including four in diamond pattern on dorsal mantle and one above each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 140 mm; total length to over 600 mm; body weight to at least 1 kg.

Geographical Distribution: Eastern Australia from eastern Victoria to southern Queensland, northern New Zealand (where it is treated under the name *Octopus gibbsi* O’Shea, 1999). A related form occurs at similar latitudes in Western Australia (Fig. 56).

Habitat and Biology: Depths range from 0 to at least 60 m. Known from shallow coastal waters where it lives subtidally on and adjacent to rocky reefs. Active primarily at night, although alert in the mouth of lairs throughout the day. Preys primarily on crabs, but will also take shellfishes and finfishes (at least in captivity). Occupies lairs in rock crevices or excavates under rocks on sand or mud. Females lay over 150 000 eggs in festoons, each egg around 2 to 3 mm long.
Interest to Fisheries: Moderate-scale harvest as bycatch in prawn and finfish trawl fisheries. Frequently sold in fish markets in New South Wales and southern Queensland.

Local Names: AUSTRALIA: Common Sydney octopus.

Remarks: A related octopus which occurs at similar latitudes in Western Australia has been treated under the name Octopus tetricus (Joll, 1983; Roper et al., 1984) and O. cf. tetricus (Norman, 2000). Preliminary molecular analyses (Guzik and Norman unpubl. data) suggest the western form is a distinct but related species. Anderson (1997) examined habitat and lair use in northern New Zealand.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Octopus filosus Howell, 1867

Octopus filosus Howell, 1867, American Journal of Conchology, 3(2): 240. [Type locality: (Caribbean Sea, U.S. Virgin Islands), St. Croix Island].

Synonym: Octopus hummelincki Adam, 1936.

Size: Mantle length to 70 mm; total length to 350 mm.

Geographical Distribution: Caribbean Sea, in shallow waters of reefs areas.

Habitat and Biology: Depth range unknown.

Remarks: We agree with and follow Toll (1990) and disagree with the ICZN decision (opinion 2147, 2006) suppressing this species name.

Abdopus Norman and Finn, 2001

Type Species: *Octopus horridus* d’Orbigny, 1826.

Diagnostic Features: Small to moderate-sized octopuses. Mantle muscular, ovoid to elongate amphora-shaped. Stylets present, small, chitinous (non-mineralized). Arms muscular and long, 4 to 8 times mantle length. Lateral arms longest (typically 2>3>4>1 or 3>2>4>1). Arm autotomy at distinct plane present at a set level near the arm base. Webs of moderate depth, deepest around 15% of longest arm. Webs deepest on lateral arms, webs between dorsal arms shallowest (typically C>D>B=E>A). Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers present in mature males, typically on arms 2 to 3, sometimes on arm 4. Slightly enlarged on same arms in mature females. Funnel organ W-shaped. Gills with 5 to 7 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, slightly shorter than opposite arm. Ligula small and narrow (<6% arm length). Terminal organ (penis) linear with simple small diverticulum. Spermatoophores small, narrow and unarmored with a highly coiled ejaculatory apparatus occupying one-third of spermatoaphore length. Eggs small to large, stalks twisted into chords or braids, eggs always laid in festoons. Colour patterns variable. False eye-spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). Skin sculptured in fine irregular patch and groove texture with large, often branched, papillae over dorsal surfaces and arms, forming bushy appearance. Fixed pattern of four larger primary papillae in diamond pattern in midregion of dorsal mantle. Papillae often with side branches. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to 430 mm; weight to 65 g.

Geographical Distribution: Pacific region. Tropical Indo-West Pacific and the Red Sea.

Habitat and Biology: Small long-armed octopuses, typically day active on intertidal reef flats and in shallow waters.

Interest to Fisheries: Unknown.

Remarks: This group was originally treated as a subgroup within the genus *Octopus*, under the name “*Octopus horridus* group” (Norman, 1992c). Norman and Finn (2001) raised this group to subgeneric status, still within the genus *Octopus*. Norman and Hochberg (2005a) raised the name to generic status. Gleadall (2004) suggests that the genus *Tritaxeopus* Owen, 1881 is the senior synonym for the genus *Abdopus*. Gleadall’s decision was based on superficial similarities between Owen’s inadequate description of *T. cornutus* and preservation artefacts observed in *A. aculeatus* (i.e. 3 rows of suckers). Owen’s holotype was collected from “Australia” and is lost (Lu et al., 1995). As other Australian taxa from different genera (e.g. *Octopus tetricus* Gould 1852) also show triple sucker rows on preservation as well as other morphological similarities to Owen’s species, we do not support Gleadall’s decision to place *Abdopus* in the genus *Tritaxeopus*.

Potential public health risk - an undescribed species [*Octopus* (*Abdopus*) sp. 5, Norman, 2000] collected at Port Hedland in the Pilbara region of northern Western Australia, was found to contain saxitoxin (STX) at a level more than three times the US, European and Australian regulatory limit for human consumption of shellfish (Robertson et al., 2004).

Literature: Norman (1992c), Norman and Finn (2001), Norman and Hochberg (2005a).
Abdopus horridus (d’Orbigny, 1826)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Red Sea octopus; Fr — Poulpe de la Mer Rouge; Sp — Pulpo del Mar Rojo.

Diagnostic Features: Small long-armed octopus. Arms moderately long, 4.2 to 4.7 times mantle length. Lateral arms longer (typically 3=2>4>1). **Arm autotomy at distinct plane present at level of 7 to 10th proximal sucker.** Webs shallow, deepest to 15% of arm length. Web deepest on lateral arms, web sectors of dorsal and ventral arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 130 suckers on each normal arm. **Enlarged suckers present on arms 2 to 4 of males.** Gills with 6 lamellae per demibranch. Funnel organ W-shaped, lateral limbs distinctly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, ~75% length of opposite arm. Ligula small and narrow, 3 to 4% of arm length. Calamus small. **Hectocotylized arm with around 90 suckers.** Spermatophores of moderate size, ~60% of mantle length. Eggs large type, mature eggs unknown. **Colour:** Live animals with mosaic arrangement of round light patches of various sizes bound by network of dark borders. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of irregular low papillae and fewer larger erectile papillae. Single large papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 30 mm; total length to around 120 mm.

Geographical Distribution: Red Sea (Fig. 58).

Habitat and Biology: Depths range from 0 to 30 m. Poorly known. Intertidal reefs and shallow subtidal habitats.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Norman and Finn (2001), Norman and Hochberg (2005a).

Fig. 57 Abdopus horridus

Fig. 58 Abdopus horridus
Abdopus aculeatus (d’Orbigny, 1834)

Frequent Synonyms: Octopus harmandi Rochebrune, 1882.

Misidentifications: Octopus horridus d’Orbigny, 1826.

FAO Names: En — Prickly octopus; Fr — Poulpe épineux; Sp — Pulpo espinoso.

Diagnostic Features: Small to moderate-sized long-armed octopus. Arms long, around 5 to 7 times mantle length. Lateral arms longest (typically 3>4=2>1). Arm autotomy at distinct plane present at base of arms, at level of 3rd to 7th sucker. Webs of short to moderate depth, deepest around 15% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend as narrow band to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 220 to 260 suckers on each normal arm. Mature males with 3 to 6 enlarged suckers on arms 2 and 3, largest at level of around 9th to 12th proximal sucker, diameter to 16% of mantle length. Gills with 6 to 7 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length 70 to 90% of opposite arm. Ligula of moderate size and open, around 2% of arm length. Calamus small and blunt, <25% of ligula length. Hectocotylized arm with around 150 to 170 suckers. Terminal organ thin and linear with tiny diverticulum. Spermatophores short relative to mantle length, around 15 to 20 mm, around 40 to 50% of mantle length, produced in high numbers (~100 to 200). Spermatophores unarmed. Eggs small, around 3 mm, to 7% of mantle length. **Colour:** Variable in life from pale cream, to mottled, to uniform dark brown. Excellent at camouflage. False eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Sculpture:** Complex skin sculpture of irregular patch and groove system over all dorsal and lateral surfaces, capable of erection and highly rugose skin capable of complex habitat camouflage, *e.g.* against algae. Four primary papillae in diamond pattern on dorsal mantle. Large supraocular papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to around 430 mm.

Geographical Distribution: Tropical western Pacific Ocean from Taiwan (Province of China) and Philippines south to northern Australia (Fig. 60).
Habitat and Biology: Depths range from 0 to 17 m. Resident of shallow and intertidal tropical reef areas, particularly coral bedrock pools. Emerges at low tide during daylight hours to forage using excellent camouflage. Occurs in available habitat on intertidal reef flats and seagrass beds often with strong tidal currents. Typically active during diurnal mid- and low tides, although some nocturnal activity has been reported.

Interest to Fisheries: *Abdopus aculeatus* is one of the most common octopuses sold in the home aquarium trade worldwide. It is fished on a small scale for subsistence consumption and bait use (e.g. chum for tuna fishery) in Sulawesi, Indonesia.

Local Names: INDONESIA (north Sulawesi): Boboca popo.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Abdopus abaculus (Norman and Sweeney, 1997)

Size: Mantle length to 33 mm; body weight to 21 g.

Geographical Distribution: Philippines.

Habitat and Biology: Depths range from 0 to 5 m.

Literature: Norman (2000).

Abdopus capricornicus (Norman and Finn, 2001)

Size: Mantle length to 42 mm; total length to 260 mm; body weight to 65 g.

Geographical Distribution: Australia, known only from Tryon Island, Great Barrier Reef.

Habitat and Biology: Depth range intertidal.

Literature: No additional literature.

Abdopus tenebricus (Smith, 1884)

Octopus tenebricus Smith, 1884, *Report on the Zoological Collections made in the Indo-Pacific Ocean during the Voyage of H.M.S. Alert 1881-1882*: 35. [Type locality: Northeastern Australia, Queensland, Port Denison (Bowen) (20°02'S, 148°15'E)].

Size: Mantle length to 20 mm; total length to 95 mm.

Geographical Distribution: Known only from two type specimens.

Habitat and Biology: Known depth range of types from 5 to 8 m.

Literature: Norman (1992c).
Abdopus tonganus (Hoyle, 1885)

Octopus tonganus Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 225. [Type locality: Tonga Islands, Tongatapu].

Size: Mantle length to 35 mm.

Geographical Distribution: Tonga.

Habitat and Biology: Depth range intertidal.

Literature: Toll and Voss (1998).

Abdopus undulatus Huffard, 2007

Size: Mantle length to 33 mm.

Geographical Distribution: Known only from islands in the Kingdom of Tonga.

Habitat and Biology: Depth range of type specimen from 7.5 to 19.5 m.

Literature: No additional literature.
Adelieledone Allcock, Hochberg, Rodhouse and Thorpe, 2003

Type Species: *Adelieledone polymorpha* (Robson, 1930).

Diagnostic Features: Moderate-sized octopuses, mantle length to 90 mm. Mantle saccular. Stylets absent. Arms short, around 1.5 to 2.5 times mantle length. Arms of similar length, dorsal pair slightly shorter. Arm autotomy at distinct plane absent. Webs deep, deepest to 35% of longest arm. Webs deepest on lateral arms; webs between dorsal arms and ventral arms shallowest. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent. Funnel organ W-shaped. Gills with 6 to 8 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian tooth with large central cusp. Distinct crop present as side-branch off oesophagus. Ink sac present. Posterior salivary glands very large, to twice the length of buccal mass. Third right arm of males hectocotylized with end of arm clearly differentiated into ligula and calamus. Ligula large (10 to 16% of arm length), ligula groove long, well-marked and deep with transverse ridges. Tips of other arms not modified. Diverticulum of terminal organ not coiled. Spermatophores of medium length (60 to 80% of mantle length) and slender. Rostral tip of lower beak sharp. Skin loose and gelatinous with scattered low papillae. Two short, longitudinal integumentary ridges on the mid-dorsal posterior mantle. Skin ridge present around lateral margin of mantle.

Size: Mantle length to 60 mm; total length to around 200 mm.

Geographical Distribution: Southern Ocean, Antarctica.

Habitat and Biology: Benthic species on Antarctic continental shelf and slope from 15 to over 1 500 m.

Remarks: Three Antarctic species. Allcock *et al.* (2003c) removed the species *adelieana* and *polymorpha* from the genus *Pareledone* Robson 1932 and erected *Adelieledone*, also describing a new species, *A. piatkowski*.

Literature: Allcock *et al.* (2003c).

Graneledone polymorpha (Robson, 1930)
Fig. 61

Graneledone polymorpha Robson, 1930, Cephalopoda. I. Octopoda, Discovery Reports: 2: 390. [Type locality: Southern Ocean, South Georgia Island].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Antarctic knobbled octopus; Fr — Élédone noueux; Sp — Pulpo nodoso.

Diagnostic Features: Moderate-sized robust species. Arms short, 1.5 to 2.6 times mantle length. Arms of similar length, dorsal arms shortest (typically 4=3>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest to 35% of arm length. Web deepest on lateral arms, web sectors of dorsal and ventral arms shallowest. Interbrachial web pouches absent. One row of suckers on each arm. In larger animals, around 48 to 67 suckers on each normal arm. Enlarged suckers absent. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped, thick limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, length 74 to 96% of opposite arm. Ligula robust and spoon like with 7 to 8 transverse ridges, 11 to 16% of arm length. Calamus large, 40 to 64% of ligula length. Hectocotylized arm with 30 to 34 suckers. Spermatophores of moderate size, 68 to 79% of mantle length. Eggs large, >10 mm, >15% of mantle length. **Colour:** Live animals with dense chromatophores varying from brown to green to blue. **Sculpture:** Skin texture of loose gelatinous skin with widely scattered papillae. Two short, longitudinal ridges present on mid-dorsal posterior mantle. Ventral surface of mantle smooth. Single slightly larger papilla over each eye. Skin ridge present around lateral margin of mantle.

![hectocotylus](dorsal view)
Fig. 61 *Adelieledone polymorpha*
Size: Mantle length to 60 mm; total length to around 200 mm.

Geographical Distribution: Southern Ocean, South Georgia Island and Antarctic Peninsula (Fig. 62).

Habitat and Biology: Depths range from 15 to 365 m. Collected in trawls around South Georgia Island. Biology poorly known.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Rodhouse and Prince (1993; as *Pareledone polymorpha*), Daly and Rodhouse (1994; as *P. polymorpha*), Yau et al. (2002; as *P. polymorpha*), Allcock et al. (2003c), Collins et al. (2004), Barratt et al. (2008), Strugnell et al. (2009a), Undheim et al. (2010a,b).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Adelieledone adelieana (Berry, 1917)

Size: Mantle length to 40 mm; total length to 160 mm.

Geographical Distribution: Antarctic continental shelf from 30°E to 90°E.

Habitat and Biology: Depths range from 139 to 680 m.

Literature: Kubodera and Okutani (1994; as *Paraledone adelieana*), Lu and Stranks (1994, as *P. adelieana*), Allcock et al. (2003b).

Adelieledone piatkowski Allcock, Hochberg, Rodhouse and Thorpe, 2003

Size: Mantle length to 55 mm; total length to 140 mm.

Geographical Distribution: Antarctic Peninsula.

Habitat and Biology: Depths range from 612 to 1 510 m.

Ameloctopus Norman, 1992

Type Species: *Ameloctopus litoralis* Norman, 1992.

Diagnostic Features: Small, elongate species with ovoid to greatly elongated mantle. Eyes tiny. Mantle walls very thin, branchial hearts visible as dark spots on lateral mantle. Stylets absent. Arms greatly elongated, up to 9 times mantle length. Arms approximately equal in length when intact. Arm autotomy present at distinct plane, around level of 10th to 12th proximal sucker. Webs shallow and subequal, deepest around 7 to 16% of arm length. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ greatly reduced to four separate components, "."-shaped. Gills with 5 to 6 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Crop diverticulum present as side-branch off oesophagus. Third right arm of submature males unspecialised, copulatory organ generates from stump of autotomized third right arm in mature males only. Ligula and calamus present. Terminal organ lacks diverticulum. Spermatophores with inflated sperm reservoir, unarmed. Colour pattern of white and red-brown transverse bands along arms. False eye-spots (ocelli) absent. Skin smooth to fine granular texture. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 30 mm; total length to around 260 mm; body weight to at least 15 g.

Geographical Distribution: Northern Australia from southern Great Barrier Reef to north-west Western Australia.

Remarks: Single species restricted to intertidal mudflats of northern Australia.

Literature: Norman (1992b).

Ameloctopus litoralis Norman, 1992

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Stringarm octopus; Fr — Poulpe à long bras; Sp — Pulpo brazos-largos.

Diagnostic Features: Small species with greatly elongated arms. Arms extremely long and narrow, up to 9 times mantle length. Arms approximately equal in length. Arm autotomy at distinct cleavage plane around 10th to 12th suckers. Webs very shallow, deepest around 7 to 16% of arm length. Web sectors of equal length. Web margins absent. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 180 suckers on each normal arm. Enlarged suckers absent. Gills with 5 to 6 lamellae per demibranch. Reduced funnel organ consisting of two to four small pads (typically ".".). Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac absent. Anal flaps absent. Young males with full length undifferentiated third right arm.

Fig. 63
Third right arm of males severed at maturity and ligula develops from stump, resulting in a hectocotylized arm 20 to 30% length of opposite arm. Ligula conical, 12 to 20% of arm length. Calamus of moderate size, 22 to 38% of ligula length. Spermatophores short with swollen reservoir, around 6 mm, 38 to 45% of mantle length, produced in moderate numbers (up to 70). Spermatophores unarmed. Eggs large, around 10 mm, around 35% of mantle length. Colour: Grey to purple-brown base colour on mantle and head. Regular bands of same colour against cream-grey along length of arms. False-eye spots (ocelli) absent. Sculpture: Skin smooth. No papillae. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 30 mm; total length to around 260 mm; body weight to at least 15 g.

Geographical Distribution: Northern Australia from southern Great Barrier Reef to northwestern Western Australia (Fig. 64).

Habitat and Biology: Depth range appears restricted to intertidal zone. Lives in coral, on rubble, sand, or mud flats. Forages during night low tides on open sand and rubble on intertidal reef flats in pools less than 10 cm deep. Also feeds from within its lair or under rocks by extending one or more arms to forage. Small crustaceans seem to be the primary prey items. The large eggs suggest that juveniles adopt a benthic lifestyle on hatching.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Amphioctopus Fischer, 1882

Type Species: *Octopus membranaceus* Quoy and Gaimard, 1832.

Diagnostic Features: Small to medium-sized species, mantle length less than 140 mm. Mantle muscular and ovoid. Styllets absent. Arms muscular, short to medium length, 2 to 3 times mantle length. Lateral arms longest (typically 4>3=2>1 or 4=3>2>1). Dorsal arms always shortest. Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 25% of longest arm. Webs deepest on lateral arms, webs between dorsal arms markedly shallowest (typically B=C=D=E>A). Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers present in mature males of many member species, on at least arms 2 and 3. Funnel organ W-shaped. Gills with 6 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Crop diverticulum present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, slightly shorter than opposite arm. Ligula and calamus present. Ligula of medium size, 5 to 9% of arm length. Spermatophores few in number (typically <10 in storage sac), armed in some species. Colour patterns: false eye-spots (ocelli) present in some species, often with blue iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). Dark leading edge occurs along dorsal face of arms 1 to 3 in many species. 4 to 6 thick longitudinal lines present on mantle in many ocellate species. Skin on dorsal surfaces distinctly granular, patch and groove system well developed; grooves deep, patches approximately uniform in size, oval or round in shape, often visible as dark reticulations between patches. This sculpture extending to oral surface of short dorsal web. A single conspicuous primary papilla present over each eye. Four large, longitudinally oriented, flap-like papillae arranged in diamond shape on dorsal mantle. Continuous skin ridge around lateral margin of mantle absent. Intermittent ridge present in some species.
Size: Mantle length to 100 mm; total length to >400 mm; body weight to 400 g.

Geographical Distribution: Tropical and subtropical waters of all oceans.

Habitat and Biology: Subtidal species typically occurring on sand and mud substrates in shallow waters.

Remarks: Members of this distinctive genus of small muscular octopuses form the basis of high value commercial fisheries, particularly in southeast Asia. The type species of this genus is *Amphioctopus membranaceus* described by Quoy and Gaimard in 1832 from a single specimen collected from Port Dorey in current West Papua. The type specimen is still in existence in the National Museum of Natural History in Paris but is in poor condition. It clearly belongs in this genus and possesses the iridescent ringed ocellus found in many ocellate *Amphioctopus* species. As one of the first ocellate members of this genus to be described and illustrated (showing the iridescent ring within a dark ocellus), the name *membranaceus* has been used widely for almost two centuries for many Indo-West Pacific species of ocellate octopuses. As no additional animals have been attributed to the original species, it remains poorly known and defined but is considered as valid as the type species. Other better-diagnosed members of this genus are presented below as representative of this genus. Despite the extensive use of the name *membranaceus* in regional fisheries, we treat the species as valid but of no known commercial interest.

Literature: Huffard and Hochberg (2005), Norman and Hochberg (2005a), Norman and Kubodera (2006).

Amphioctopus aegina (Gray, 1849)

Octopus aegina Gray, 1849, *Catalogue Mollusca... British Museum*: 7. [Type locality: Not stated in original description].

Frequent Synonyms: *Octopus hardwickei* Gray, 1849; *O. dollfusi* Robson, 1928.

Misidentifications: *Octopus kagoshimensis* Ortmann, 1888.

FAO Names: En — Sandbird octopus; Fr — Poulpe des sables; Sp — Pulpo reticulado.

Diagnostic Features: Moderate-sized and robust species. Arms short to moderate, 2 to 3 times mantle length. Lateral arms longest (typically 3=4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest up to 30% of arm length. Web deepest on lateral arms, webs between dorsal arms very shallow. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 110 to 130 suckers on each normal arm. Enlarged suckers present in mature males, 2 to 3 on arms 2 and 3, starting around the 6th proximal sucker. Gills with 8 to 9 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, its length 70 to 80% of opposite arm. Thin, moderate-sized ligula, 4 to 6% of arm length. Calamarysmall. Hectocotylized arm with around 60 to 70 suckers. Spermatophores of moderate size, around 30 to 50 mm, 50 to 90% of mantle length, produced in moderate numbers (~15 to 20). Spermatophores armed with inward pointing teeth, exposed on eversion. Eggs small, around 3% of mantle length. Colour: Pattern of dark grooves enclosing pale round spots to form a round net mesh on dorsal and lateral surfaces, most obvious on arm bases. Cream-coloured longitudinal stripe along dorsal midline. Cream, narrow transverse head bar sometimes present. False-eye spots (ocelli) absent. Transverse pair of white spots visible on dorsal mantle, slightly anterior to midpoint of mantle (’dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Sculpture:** Skin with regular round patches and grooves matching colour pattern. Oral surface of dorsal web sculptured with same texture as dorsal surfaces. Diamond shape of longitudinal ridges present on dorsal mantle. No obvious supraocular papillae. Skin ridge around lateral margin of mantle absent.
Size: Mantle length to 90 mm; total length to around 300 mm; body weight to around 100 g.

Geographical Distribution: Coastal waters of continental Asia, from China and Taiwan (Province of China), south to Malaysia and Indonesia, west to at least Chennai, India. Also reported from the Philippines (Fig. 66).

Habitat and Biology: Depths range to at least 40 m. Known from muddy coastal waters and typically found subtidally on soft substrates. Nothing known of diet or foraging behaviour. Females carry the egg strings in their webs rather than attaching the eggs to hard substrates.

Interest to Fisheries: This species forms the basis of large export trawl fisheries, particularly from the Gulf of Thailand where it is treated under the junior synonym name, *Octopus dollfusi* (Chotiyaputta 1993). Marketed widely around the world with other *Amphioctopus* species under the name ‘baby octopus’.

Local Names: Unknown.

Remarks: Toll and Voss (1998) designated the species name *aegina* as dubious due to the lack of a type locality. The type specimen exists (BMNH 1928.2.14.1) and is a mature female which clearly shows the diagnostic characters of this species. We recognise *Amphioctopus aegina* as a valid species name, the senior synonym of *A. hardwickei* and *A. dollfusi*. Toll and Voss (1998) incorrectly treated these latter two names as synonyms of *A. kagoshimensis*, a distinct species from further north (see treatment of that species). *Amphioctopus kagoshimensis* is frequently and incorrectly treated under the name *Octopus aegina* in Japan. Voss and Williamson’s (1971) reference to the common name of *A. aegina* as Saa Liu (Sand Bird) refers to *A. marginatus*. However, since “Sandbird octopus” was the name originally given to this species in FAO archives and has been used since for fisheries data and statistics, it was retained here as the official name. This species has also been treated under the common name “Marbled octopus” (e.g. Norman, 2000).

Literature: Voss and Williamson (1971; as *Octopus dollfusi*), Nateewathana (1997), Norman and Sweeney (1997).

Amphioctopus burryi (Voss, 1950)

Octopus burryi Voss, 1950, *Revista de la Sociedad Malacologia*, 7(2): 76. [Type locality: Gulf of Mexico, United States, Florida Keys, southeast of Sombrero Key Light].

Frequent Synonyms: *Octopus vincenti* Pickford, 1955.

Misidentifications: None.

FAO Names: En — Brown-striped octopus; Fr — Poulpe à rayures bleues; Sp — Pulpo granuloso

Diagnostic Features: Moderate-sized robust species. Arms short to moderate length, stout, 2 to 3 times mantle length. Lateral and ventral arms longest (typically 4=3>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 30% of arm length. Web deepest on lateral arms, webs between dorsal arms the shallowest. Web margins extend at least half of arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers absent. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, ~85% the length of opposite arm. Ligula small and narrow with an open groove, 4 to 6% of arm length. Calamus of moderate size, around 30% of ligula length. Number of sucker on hectocotylized arm unknown. Spermatophores of moderate size, around 24 mm, around 60% of mantle length, produced in moderate numbers (~10). Eggs small, around 2 mm.
Colour: Reddish brown on dorsal surfaces tending to orange on the ventral surfaces. Cream on the oral surfaces of the webs. **Conspicuous purplish brown stripe along entire leading edge of arms 1 to 3.** Dark eye-bar visible in some colour patterns. False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin sculptured in regular, small, raised, round to oval patches. Colour and sculpture of dorsal surfaces extends to mouth on oral surface of dorsal web. Single large papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to around 250 mm.

Geographical Distribution: Gulf of Mexico and tropical western Atlantic from North Carolina to northern Brazil. Tropical eastern Atlantic off west Africa (Fig. 68).

Habitat and Biology: Depths range to around 200 m. This small, shallow-water octopus is associated with substrates composed of sand, broken coral and shells. It emerges mainly at dusk and dawn to feed.

Interest to Fisheries: Taken rarely as bycatch in trawl fisheries.

Local Names: USA: Caribbean arm stripe octopus.

Remarks: The taxonomic status of this octopus is unresolved. At present it is unclear whether the eastern and western Atlantic forms are the same species. It is possible that *Octopus granulatus* Lamarck, 1799 from the western Atlantic is the senior synonym for this taxon.

Literature: Voss (1951b), Hanlon and Hixon (1980), Forsythe (1983), Forsythe and Hanlon (1985).
Amphioctopus exannulatus (Norman, 1993)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Plain-spot octopus; Fr — Poulpe annelé; Sp — Pulpo ensortijado.

Diagnostic Features: Small, muscular species. Arms of moderate length, 2 to 3 times mantle length. Lateral arms longest (typically 3>4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 25 to 37% of arm length. Web deepest on lateral arms; webs between dorsal arms distinctly shorter. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 120 to 190 suckers on each normal arm. Enlarged suckers present in mature males, 2 to 4 on arms 2 and 3, starting around the 6th proximal sucker. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped; outer limbs slightly shorter than medial limbs (80 to 100%). Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 80% length of opposite arm. Ligula small, roughly conical, 3.5 to 6% of arm length. Calamus of moderate size, 20 to 35% of ligula length. Hectocotylized arm with 62 to 77 suckers. **Spermatophores large, around 60 mm long, 130 to 160% of mantle length**, produced in low numbers (~10). Spermatophores unarmed. Eggs small, around 4 mm long, around 7% of mantle length. **Colour:** Base colour variable from grey-white to dark chocolate brown. **Alarm pattern of four broad longitudinal stripes along mantle, extending through eye and continuing as dark lines along leading edges of arms 1 to 3. False eye-spots (ocelli) present as plain dark spot lacking an iridescent ring.** Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin texture of regular rounded papillae over all surfaces, distinctly larger on ventral mantle. Four longitudinal raised skin ridges in diamond arrangement on dorsal mantle. Single large branching papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to around 200 mm; body weight to at least 75 g.

Geographical Distribution: From Philippines to northern Australia (Fig. 70).

Habitat and Biology: Depths range from 0 to 84 m. Little is known about the life history or biology of this species. It has been collected on exposed intertidal mudflats and subtidally on muddy, sandy and shelly sand substrates. This species appears to inhabit open bottom/inter-reef substrates and seagrass beds.
Interest to Fisheries: Prawn trawl operators fishing in Great Barrier Reef waters report catches of this distinctive species in fairly low numbers when trawling over sand or muddy substrata. This species was often retained for use as bait. No information is available on scale of catch.

Local Names: Unknown.

Literature: Norman (1993b), Norman and Sweeney (1997).

Amphioctopus fangsiao (d’Orbigny, 1839-1841)

Frequent Synonyms: *Octopus areolatus* de Haan, 1839-1841; *O. fangsiao typicus* d’Orbigny, 1839-1841; *O. fangsiao etchuanus* Sasaki, 1929; *O. ocellatus* Gray, 1849; ? *O. brocki* Ortmann, 1888.

Misidentifications: *Octopus membranaceus* Quoy and Gaimard, 1832.

FAO Names: En — Gold-spot octopus; Fr — Poulpe doré; Sp — Pulpo dorado.

Diagnostic Features: Small to moderate-sized robust species. Arms short, 2 to 3 times mantle length. Lateral arms longest (typically 3>4=2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 20% of arm length. Web deepest on lateral arms; webs between dorsal arms shallower. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 150 suckers on each normal arm. Enlarged suckers present in mature males, 1 to 3 on arms 2 and 3, starting around the 5th proximal sucker. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 80% of opposite arm. Ligula long and thin, around 6% of arm length. Calamus small and low, around 25% of ligula length. Hectocotylized arm with 75 to 95 suckers. Spermatophores small, around 30 mm, around 60% of mantle length, produced in moderate numbers (~60). Spermatophores unarmed. Eggs large, 8 to 13 mm, around 10 to 15% of mantle length. Colour: Generally pale in colour. False-eye spots (ocelli) present, containing gold-coloured iridescent ring. 4 to 6 dark bars shown on mantle and arm crown in some colour patterns, continuing as narrow dark lines along leading edges of arms 1 to 3. Pale oval to dumbbell-shaped patch present on head between eyes. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971).

Sculpture: Skin texture of regular small patches. Sculpture and patterns extend to oral surface of dorsal web. Four short ridges of skin in diamond arrangement on dorsal mantle, several small papillae present over each eye. Broken skin ridge present around lateral margin of mantle.

Size: Mantle length to 80 mm; total length to at least 200 mm; body weight to at least 100 g.
Geographical Distribution: From south coast of Hokkaido, Japan south to Taiwan (Province of China) and Hong Kong (Fig. 72).

Habitat and Biology: Depths to at least 100 m. Coastal species found on sand and mud substrates. Females brood large eggs in dead bivalve shells.

Interest to Fisheries: Harvested on a large scale, primarily as bycatch in coastal trawls. Popular for human consumption.

Local Names: JAPAN: Iidako.

Remarks: There is considerable confusion over standardized names for several ocellate octopus species that occur in south-east Asia. *Amphioctopus fangsiao* frequently is listed in fisheries statistics under the synonym names *Octopus ocellatus* and *O. areolatus*, or the unresolved name *O. membranaceus*. A thorough review of Asian ocellate octopuses is urgently required.

Amphioctopus kagoshimensis (Ortmann, 1888)

Frequent Synonyms: None.

Misidentifications: *Octopus aegina* Gray, 1849; *Octopus granulatus* Lamarck, 1799.

FAO Names: En — Stareye octopus; Fr — Poulpe étoilé; Sp — Poulpo estrellado.

Diagnostic Features: Small, robust species. Arms 2 to 3 times mantle length. Lateral and ventral arms longest (typically 4=3=2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 25% of arm length. Web deepest on lateral arms, webs between dorsal arms very shallow. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 150 to 170 suckers on each normal arm. Enlarged suckers absent. Gills with 8 to 9 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length 70 to 90% of opposite arm. Ligula of moderate size and open, around 6% of arm length. Calamus small and blunt, <20% of ligula length. Hectocotylized arm with 70 to 90 suckers. **Spermatophores very long, around 120 to 160 mm, much longer than mantle length (160 to 190%), produced in low numbers (<10).** Spermatophores unarmed. Eggs small, around 4 mm, 4 to 8% of mantle length. **Colour:** Uniform pale cream to mottled orange brown. **Net-like lattice of dark lines can be displayed in grooves between skin patches.** Four short white lines radiating from each eye. Irregular dark spot visible in some colour patterns in location of false-eye spots (ocelli). Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Sculpture:** Skin sculpture of regular raised polygonal patches over all dorsal and lateral surfaces. Sculpture and pattern extend to oral surface of dorsal web, visible as dark net-mesh pattern. Four short longitudinal ridges in diamond pattern on dorsal mantle. Large supraocular papilla over each eye. Skin ridge around lateral margin of mantle absent.
Size: Mantle length to 86 mm; total length to around 300 mm.

Geographical Distribution: Northwestern Pacific from southern Japan (Sanriku coast), south to at least Taiwan (Province of China) (Fig. 74).

Habitat and Biology: Little is known of this octopus. It has been collected in trawls on soft sediments.

Interest to Fisheries: Minor trawl bycatch in Japanese coastal waters.

Local Names: Unknown.

Remarks: Treated in Japan under the name *Octopus aegina*. A closely related species in eastern Australia is treated in Norman and Kubodera (2006) under the name *Amphioctopus cf. kagoshimensis*. An unresolved member of the genus *Amphioctopus* is treated under the name *O. kagoshimensis* as an Indo-Pacific incursion into the Mediterranean Sea from the Red Sea, following the opening of the Suez Canal (Salman et al., 1999; Salman et al., 2005). All taxa require further investigation.

Literature: Sasaki (1929; as *Octopus granulatus*), Okutani *et al.* (1987; as *O. aegina*), Salman *et al.* (1999), Salman *et al.* (2005), Norman and Kubodera (2006).

Fig. 73 Amphioctopus kagoshimensis

Fig. 74 Amphioctopus kagoshimensis

- Known distribution
Amphioctopus marginatus (Taki, 1964)

Octopus marginatus Taki, 1964, *Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University*: 5(2): 304. [Type locality: Northwest Pacific Ocean, Japan, Oita Prefecture, Minami-Amabe County, near Kamae Town].

Frequent Synonyms: *Octopus striolatus* Dong, 1976.

Misidentifications: *O. aegina* Gray, 1849; *O. dollfusi* Robson, 1928.

FAO Names: En — Veined octopus; Fr — Poulpe veiné; Sp — Pulpo venoso.

Diagnostic Features: Moderate-sized, robust species. Arms of moderate length, 2 to 3 times mantle length. Lateral arms longest (typically 3>4=2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 30% of arm length. Web deepest on lateral arms; webs between dorsal arms much shallower. Web margins extend at least halfway along arms. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 150 suckers on each normal arm. Slightly enlarged suckers present in mature males, 4 to 5 on arms 2 and 3, starting around the 7th proximal sucker. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped; limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 80% of opposite arm. Ligula small and triangular, 1.5 to 3.5% of arm length. Calamus well developed, around 50% of ligula length. Hectocotylized arm with 60 to 80 suckers. Spermatophores long, around 40 to 60 mm, approximately equal to mantle length; produced in low numbers (~5). Spermatophores unarmed. Eggs small, to around 3 mm, around 4% of mantle length. **Colour:** Typical pattern of orange-brown to purple background with dark purple-brown reticulations, defining distinct patches in irregular longitudinal rows. **Suckers white to pink, contrasting against dark brown to black border along leading edge of arms 1 to 3.** Narrow transverse “head bar” visible in live animals. **White triangle below each eye.** Dark vein-like reticulations distinctive on lateral arm crown in same position as false eye-spots in ocellate species. False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle ('dorsal mantle white spots' *sensu* Packard and Sanders, 1971). **Sculpture:** Skin sculpture of regular round to elongate patches separated by distinct grooves. **Patches arranged in irregular longitudinal lines on anterior lateral edges of mantle.** Diamond shape of four longitudinal skin ridges on dorsal mantle. Single large papilla over each eye. Sculpture and colour pattern extend to mouth on oral surface of dorsal web. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; total length to around 300 mm; body weight to around 400 g.
Geographical Distribution: Found in tropical continental waters of the Indian Ocean, from Durban, South Africa, to Red Sea, India, south-east Asia, Taiwan (Province of China), Philippines and Japan, as well as east to north-eastern Australia (Fig. 76).

Habitat and Biology: Depths range from shallow subtidal to at least 190 m. Known from coastal muddy waters on mud and sand substrates. Little is known about the biology or behaviour of this species. It forages for crustaceans, particularly crabs (Calappa), and bivalves. This species makes dens in clamshells, coconut shells, bottles, and other man-made discarded objects in sand and mud. This octopus will carry one mollusc shell or a half coconut shell while searching for another shell in which to enclose itself. Females lay about 100 000 small eggs, up to 3 mm long.

Interest to Fisheries: Important fisheries species collected by trawlers, pots, and lines.

Local Names: INDONESIA: Coconut octopus; CHINA: Saa liu (“sand bird”).

Remarks: This species has been confused regularly with two other related species, Amphioctopus aegina and A. kagoshimensis. It is easily distinguished from these species. Taki’s original description of marginatus was based on a female specimen. As Toll and Voss (1998) used spermatophore characters as the only means of distinguishing these three related species, they designated marginatus as a dubious species. We do not support this decision and recognise marginatus as a valid species (see Norman and Hochberg, 2005a).

Molecular and morphological research from Taiwan Province of China (C-W. Ho, pers. comm.) suggest that taxa treated under this species name may represent two cryptic species, at least in Taiwanese waters. Japanese type locality and records may represent vagrants of the typical tropical species carried north by the Kuroshio Current (Norman, 1992c).

Voss and Williamson’s (1971) reference to the common name of A. aegina as Saa Liu (Sand Bird) refers to A. marginatus. However, since “Sandbird octopus” was the name originally given to A. aegina in FAO archives and it has been used widely for fisheries data and statistics, it is retained as the official common name for Octopus aegina.

Amphioctopus mototi (Norman, 1993)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Poison ocellate octopus; Fr — Poulpe venimeux ocellé; Sp — Pulpo venenoso ocelado.

Diagnostic Features: Muscular species. Arms of moderate length, 2.5 to 3 times mantle length. Lateral arms longest (typically 3=4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 25 to 40% of arm length. Web deepest on lateral arms; webs between dorsal arms distinctly shallower. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 140 to 170 suckers on each normal arm. Enlarged suckers present in mature males, 2 to 3 on arms 2 and 3, starting around the 5th proximal sucker. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped, length of outer limbs around 90% of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized; length 80 to 100% of opposite arm. Ligula short and broad with wide groove, 3 to 7% of arm length. Calamus of moderate size, around 40 to 50% of ligula length. Hectocotylized arm with 95 to 106 suckers. Spermatophores of moderate size, around 40 to 50 mm (= 60 to 70% of mantle length), produced in low numbers (<10). Spermatophores unarmed. Eggs of moderate size, around 6 mm, around 8% of mantle length. Colour: Typically orange-brown with scattered dark spots. Petal arrangement of 5 dark spots present over each eye. Alarm colour pattern of white base colour and six dark maroon longitudinal stripes on mantle, continuing through eye and down leading edges of arms 1 to 3. False-eye spots (ocelli) present as dark spot containing simple iridescent blue ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle ('dorsal mantle white spots' sensu Packard and Sanders, 1971). Sculpture: Skin texture of regular low rounded papillae. Four longitudinal ridges in diamond arrangement on dorsal mantle. Single small papilla above and slightly behind each eye in centre of "flower" pattern of spots. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; total length to at least 320 mm; body weight to at least 300 g.
Geographical Distribution: South Pacific Ocean from Great Barrier Reef and northern New South Wales, Australia to New Caledonia and Rapa Iti Island. Similar form recorded from Okinawa in the northwestern Pacific. The taxonomic status of the northern form is unresolved (Fig. 78).

Habitat and Biology: Depths range from 1 to 54 m. *Amphioctopus mototi* occurs on sandy substrates, often associated with coral heads or rubble. Deep lairs are excavated under coral heads or coral rubble on sand substrate. From limited observations, this species appears to have crepuscular activity patterns. Lairs are surrounded by cast off gastropod shells which may have been collected for their secondary occupants, hermit crabs. Stomach contents have a high proportion of crustacean exoskeletal fragments. Eggs are laid in large numbers in festoons. The small egg size indicates hatchlings are planktonic. This octopus may prove to be venomous. This suggestion is supported by the prominent warning coloration and the report from Rapa Iti Island that this species is known locally as the "poison octopus" (G. Paulay, pers. comm.). Live animals willingly bite objects such as aquarium nets, behaviour not normally observed in other octopus species.

Interest to Fisheries: Unknown.

Local Names: FRENCH POLYNESIA: Rapa Iti Island: Fe'e mototi.

Literature: Norman (1993b), Norman (2000).
Amphioctopus neglectus (Nateewathana and Norman, 1999)

Frequent Synonyms: *Octopus sp. B* Nateewathana, 1997.

Misidentifications: *Octopus membranaceus* Quoy and Gaimard, 1832.

FAO Names: En — Neglected ocellate octopus; Fr — Poulpe négligé ocellé; Sp — Pulpo ocelado descuidado.

Diagnostic Features: Moderate-sized species with oval mantle and relatively slender arms. Arms of moderate length, 2 to 3 times mantle length. Lateral or ventral arms longest (typically 4=3>2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web deepest on lateral or ventral arms; webs between dorsal arms considerably shallower. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 110 to 125 suckers on each normal arm. Enlarged suckers present in mature males, around 4 on arms 2 and 3, starting around the 6th proximal sucker. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized; length 75 to 100% of opposite arm. Ligula slender and long, around 10% of arm length. Calamus short, 10 to 15% of ligula length. Hectocotylized arm with 50 to 70 suckers. Spermatophores of moderate size, around 20 mm, 35 to 40% of mantle length. Eggs small, around 7% of mantle length. **Colour:** Brownish-green colour dorsally and paler white ventrally. Numerous small, rounded white spots distributed on dorsal mantle. A narrow, small, slightly U-shaped transverse bar present between eyes. False-eye spots (ocelli) present, containing a simple blue/purple iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin texture of small, close-set tubercles over head, mantle and arms. 1 to 2 larger papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 64 mm; total length to around 270 mm.

Geographical Distribution: Andaman Sea, Gulf of Thailand, Cambodia, Vietnam, and Taiwan (Province of China), west to Kerala, India (Fig. 80).

Habitat and Biology: Depth range unknown. Nothing is known of the biology and behaviour of this species. Based on the small size of its eggs, the hatchlings are planktonic.

Interest to Fisheries: It is one of the major commercial species in Thailand, usually caught in large quantities by bottom trawls, in depths between 20 to 80 m. The species is normally mixed with other ocellate octopuses and is recorded as *Octopus membranaceus* Quoy and Gaimard, 1832. No statistics are available on the scale of its commercial harvest. It is commonly marketed with *Amphioctopus aegina* around the world under the name ‘baby octopus’. Though common in fisheries catches along the south-west coast of India (often treated as *O. membranaceus*), the scale of its commercial harvest in India is unknown.

Local Names: Unknown.

Literature: Nateewathana and Norman (1999), Sreeja *et al.* (2012).
Amphioctopus rex (Nateewathana and Norman, 1999)

Frequent Synonyms: *Octopus* sp. 5 – Norman and Hochberg 1994; *Octopus* sp. 1 – Norman and Sweeney 1997; *Octopus* ocellate sp. A – Nateewathana 1997; *Octopus* sp. A – Norman 1998.

Misidentifications: *Octopus membranaceus* Quoy and Gaimard, 1832.

FAO Names: En — King ocellate octopus; Fr — Poulpe royal ocellé; Sp — Pulpo rey ocelado.

Diagnostic Features: Moderate-sized species. Arms of moderate length, 2 to 3 times mantle length. Lateral and ventral arms longest (typically 4>3>2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web deepest on lateral and ventral arms; webs between dorsal arms obviously shallower. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 134 to 184 suckers on each normal arm. Enlarged suckers present in mature males, typically two pairs starting around the 5th proximal sucker. Gills with 8 to 9 lamellae per demibranch. Funnel organ W-shaped; limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 80% length of opposite arm. Ligula moderately elongate, 5 to 9% of arm length. Calamus small, around 15% of ligula length. Hectocotylized arm with 63 to 82 suckers. Spermatophores of moderate size, around 25 mm, length 45 to 60% of mantle length; produced in moderate numbers (~10 to 15). Spermatophores unarmed. Eggs small, around 2 to 3 mm; 4 to 6% of mantle length. **Colour:** Preserved animals reddish-brown on dorsal surfaces of head, arms and mantle, white and cream on ventral surfaces. A short longitudinal brownish black bar present through eye. Narrow dark stripe along dorso-lateral surface of arms 1 to 3. False-eye spots (ocelli) present containing a small simple pink/purple iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin texture consists of a pattern of fine, rounded and closely set epidermal tubercles that cover dorsal and ventral surfaces of arms, head and mantle. Single small papilla present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 76 mm; total length to around 210 mm.

Geographical Distribution: Tropical continental waters of south and east Asia, from Kerala, India, to the Gulf of Thailand, through Indonesia to Northern Australia (Fig. 82).

Habitat and Biology: Depths to around 80 m. This species has been
collected in coastal waters on mud and sandy mud substrates in the intertidal to shallow subtidal zones. Females lay small eggs, up to 3 mm long, often in mollusc shells or discarded. Based on egg size, hatchlings are planktonic.

Interest to Fisheries: This octopus is one of the most important fisheries species in Thai waters. It is harvested in large quantities by trawlers, both in the Andaman Sea and the Gulf of Thailand. The species is always mixed with other octopuses during fishing operations. No information is available on fishery statistics in Thailand since the species is lumped with other ocellate octopus under the unresolved name *Octopus membranaceus*. It is also mixed with other octopuses, particularly *Amphioctopus aegina*, in exports to Europe, Australia, and the United States, where it is marketed as “baby octopus”. Present in fisheries catches off Kerala, India. Scale of harvest unknown.

Local Names: Unknown.

Literature: Nateewathana and Norman (1999), Sreeja *et al.* (2012).

Amphioctopus siamensis (Nateewathana and Norman, 1999)

Frequent Synonyms: *Octopus ocellate* sp. C – Nateewathana, 1997.

Misidentifications: *Octopus membranaceus* Quoy and Gaimard, 1832.

FAO Names: En — Siamese ocellate octopus; Fr — Poulpe siamois ocellé; Sp — Pulpo siamés ocelado.

Diagnostic Features: Small to moderate-sized species. Arms of moderate length, 2 to 3 times mantle length. Lateral and ventral arms longest (typically 4=3>2>1). Arm autotomy at distinct plane absent. Webs moderate to deep, deepest up to 35% of arm length. Web deepest on lateral arms; webs between dorsal arms very shallow. Web margins extend to arm tips.
Interbrachial web pouches absent. Two rows of suckers on each arm. Larger animals have around 100 to 140 suckers on each normal arm. Enlarged suckers present in mature males, around 4 on arms 2 and 3, starting around the 5th proximal sucker. Gills with 7 to 8 lamellae per demibranch. Funnel organ W-shaped; limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length 75 to 80% of opposite arm. Ligula conical and of moderate length, 9 to 10% of arm length. Calamus small and sharply pointed. Hectocotylized arm with 56 to 61 suckers. Spermatophores not described. Eggs small, around 1.7 mm long, around 2.5% of mantle length. **Colour:** Brown to pink base colour with four dark longitudinal stripes on the mantle and head, continuing as fine dark lines along the leading edge of arms 1 to 3. False-eye spots (ocelli) present as dark spot with silver white iridescent ring. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin texture of small and regular rounded patches. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 64 mm; total length to around 200 mm.

Geographical Distribution: Andaman Sea and Gulf of Thailand (Fig. 84).

Habitat and Biology: Depth range unknown. Little is known of the biology of this octopus. The small egg size indicates that hatchlings are planktonic.

Interest to Fisheries: This ocellate species is caught in low numbers in trawl catches compared with the large commercial catches of two other co-occurring ocellate species: *Amphioctopus neglectus* and *A. rex*.

Local Names: Unknown.

Literature: Nateewathana and Norman (1999).

![Fig. 84 Amphioctopus siamensis](image-url)
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Amphioctopus arenicola Huffard and Hochberg, 2005

Size: Mantle length to 70 mm; total length to >400 mm; body weight to 245 g.

Geographical Distribution: Northeastern Pacific, Hawaiian Islands Archipelago.

Habitat and Biology: Depths range from 1 to >80 m.

Literature: Villanueva and Norman (2008).

Amphioctopus membranaceus (Quoy and Gaimard, 1832)

Octopus membranaceus Quoy and Gaimard, 1832. *Voyage de l'Astrolabe, pendant les annees 1826-1829. Zoology*, 2: 89. [Type locality: New Guinea (= West Papua), Port Dorey].

Size: Mantle length 19 mm; known only from single female type.

Geographical Distribution: Known only from type locality.

Habitat and Biology: Depth range unknown.

Remarks: This little-known taxon is the type species for the genus *Amphioctopus* (see discussion for genus above). As it is poorly diagnosed, other members of this genus are presented to characterise the genus. Additional material and full description of this taxon are required.

Literature: Norman (1993b).

Amphioctopus ovulum (Sasaki, 1917)

Size: Mantle length to 40 mm; total length to 150 mm.

Geographical Distribution: Known with certainty only from type specimen.

Habitat and Biology: Depth range unknown.

Remarks: Distinct from other Japanese ocellate *Amphioctopus* species on the basis of small eggs (versus large eggs in species such as *A. fangsiao*). The ocellate octopuses of Asia require extensive revision.

Literature: Sasaki (1929).
Amphioctopus polyzenia (Gray, 1849)

Size: Up to 38 mm mantle length; total length to 130 mm; weight to 19 g.

Geographical Distribution: Northern Australia from Bowen, Queensland to Dampier Archipelago, Western Australia.

Habitat and Biology: Depths range from 1 to 20 m.

Literature: Norman (1993b).

Amphioctopus robsoni (Adam, 1941)

Octopus robsoni Adam, 1941c, *Bulletin du Musée Royal d'Histoire Naturelle de Belgique*, 17(52): 1. [Type locality: Red Sea, Gulf of Suez].

Size: Mantle length to 60 mm.

Geographical Distribution: Known only from type specimens.

Habitat and Biology: Depth range unknown.

Literature: Toll (1998).

Amphioctopus varunae (Oommen, 1971)

Size: Mantle length to 62 mm.

Geographical Distribution: Known only from type specimens.

Habitat and Biology: Depths of types range from 125 to 135 m.

Literature: Toll (1998).
Bathypolypus Grimpe, 1921

Type Species: *Bathypolypus arcticus* (Prosch 1847).

Diagnostic Features: Small to moderate-sized, deep-living, cold water species. Mantle muscular, rounded ovoid. Stylets present, non-mineralized. Arms short to long, 1.5 to 5 times mantle length. Arms of subequal length; dorsal arms longest in some species (1>2>3>4 in *B. arcticus* and *B. bairdii*); ventral arm pairs longer in *B. pugniger* (3>4>2>1). Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 20 to 40% of longest arm. Webs subequal or deepest on lateral arms. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ V V-shaped. Gills with 6 to 8 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands small, significantly smaller than buccal mass. Distinct crop present as small side-branch off oesophagus in some species (e.g. *B. arcticus*), absent in other species (e.g. *B. bairdii* and *B. pugniger*). Ink sac and anal flaps absent. Third right arm of males hectocotylized. Copulatory organ clearly differentiated into ligula and calamus. Ligula spoon- or fist-shaped, ligula groove well marked and very deep with 4 to 16 transverse ridges. Diverticulum of terminal organ coiled. Spermatophores unarmed. Eggs large. Colour patterns violet to purple with or without spots. False eye-spots (ocelli) absent. Dorsal mantle and frontal white spots absent. Skin typically sculptured with large distinct warts. Single large papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; total length to 230 mm.

Geographical Distribution: Atlantic and Pacific Oceans at high latitudes.

Habitat and Biology: Benthic species at depths from 20 m to over 1 200 m.

Remarks: Seven species recognized. Muus (2002) reviewed existing museum material and found that the type species of the genus *Benthoctopus* is in fact *Bathypolypus bairdii* (Verrill, 1873). The genus *Benthoctopus* is in critical need of review.

Literature: Muus (2002).

Bathypolypus arcticus (Prosch, 1847)

Octopus arcticus Prosch, 1847, *Kongelige Danske Videnskabernes Selskabs Skrifter*, 5(1): 59. [Type locality: SW Greenland].

Frequent Synonyms: *Bathypolypus grenlandicus* (Dewhurst in Steenstrup, 1856); *Benthoctopus piscatorum* (Verrill, 1879); *Octopus obesus* Verrill, 1880; *Bathypolypus faeroensis* (Russell, 1909); *Benthoctopus sasakii* Robson, 1927.

Misidentifications: *Bathypolypus piscatorum* (Verrill, 1879) (= junior synonym of *B. bairdii* Verrill, 1873).

FAO Names: En — North Atlantic octopus ; Fr — Poulpe boreal; Sp — Pulpito violáceo.

Diagnostic Features: Small to moderate-sized muscular species. Arms short, approximately 2 times mantle length, decreasing in length from dorsal pair to ventral pair (typically 1>2=3>4). Arm autotomy at distinct plane absent. Webs deep, deepest around 34 to 46% of arm length. Webs approximately equal in depth, ventral sector slightly shallower. Web margins extend as thick flanges to arm tips. Interbrachial web pouches absent. Suckers in two rows. In larger animals, around 60 to 90 suckers on each normal arm. Enlarged suckers absent. Gills with 6 to 7 (rarely 8) lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac absent. Anal flaps absent. Right third arm of males hectocotylized; length 75 to 100% of opposite arm. Ligula spoon-shaped.
pointed, with 11 to 17 deep, well-separated transverse laminae, up to 23% of arm length. Calamus short, pointed. Hectocotylized arm with around 40 suckers. Spermatophores large and robust, around 100% to 130% of mantle length; produced in low numbers (typically 3 to 6). Sperm reservoir short, thick, length approximately one third of spermatophore length. Spermatophores unarmed. Eggs large, around 16 to 18 mm; produced in low numbers (~60 to 80). Colour: Violet to purple skin with lighter yellowish subcircular spots. False-eye spots (ocelli) absent. Sculpture: Skin texture of scattered large warts on dorsal surface, reduced or absent on ventral surfaces. Large papilla over each eye often surrounded by smaller papillae. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to 230 mm.

Geographical Distribution: Far northern Atlantic Ocean. Depths range from 37 to 1 210 m, typically over 400 m. In the northernmost limits of distribution caught mainly in less than 100 m (Fig. 86).

Habitat and Biology: Little is known of the biology of this cold-water species (prior reports refer to a different species, *Bathypolypus bairdii*; see Remarks below).

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: Muus (2002) presented a thorough revision of the genus *Bathypolypus* resolving many of the prior taxonomic problems associated with this deep water genus. Many prior reports of this species name refer primarily to *B. bairdii* (e.g. O’Dor and Macalaster, 1983; Roper et al., 1984; Wood et al., 1998; Wood, 2000; see Muus, 2002).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Bathypolypus bairdii (Verrill, 1873)

Size: Mantle length to 70 mm; total length to 210 mm.

Geographical Distribution: North Atlantic Ocean.

Habitat and Biology: Depths range from 20 to 1 545 m.

Remarks: Muus (2002) determined that *Benthoctopus piscatorum* (Verrill, 1879) is a junior synonym. Often reported in the literature as *Bathypolypus arcticus* (see O’Dor and Macalaster, 1983), Wood et al. (1998), Wood (2000).

Bathypolypus ergasticus (Fischer and Fischer, 1892)

Size: Mantle length to 100 mm.

Geographical Distribution: Northeast Atlantic, from Ireland to Cape Verde Islands and Senegal.

Habitat and Biology: Depths range from 450 to 1,400 m.

Remarks: *Benthoctopus profundicola* (Massy, 1907) and *B. lothei* (Chun, 1914) are junior synonyms.

Literature: Nesis (1987), Humes and Voight (1997; as *Benthoctopus ergasticus*), Muus (2002), Barratt *et al.* (2007).

Bathypolypus pugniger Muus, 2002

Size: Mantle length to 60 mm; total length to 200 mm.

Geographical Distribution: North Atlantic, Faroe Islands, Iceland and western Greenland.

Habitat and Biology: Depths range from 200 to 1,000 m.

Literature: Gardiner and Dick (2010a).

Bathypolypus rubrostictus Kaneko and Kubodera, 2008

Size: Mantle length 20 mm.

Geographical Distribution: Known only from type specimen. Northwestern Pacific, west of Amami Island, Japan.

Habitat and Biology: Depth 350 m.

Literature: No additional literature.

Bathypolypus sponsalis (Fischer and Fischer, 1892)

Size: Mantle length to 100 mm.

Geographical Distribution: Northeast Atlantic, western Mediterranean Sea to Senegal (Dakar) and Cape Verde Islands.

Habitat and Biology: Depths range from 930 to 1,250 m. Small individuals occur at greater depths than larger individuals, suggesting up-slope ontogenetic migration.

Bathypolypus valdiviae (Thiele, in Chun, 1915)

Size: Mantle length to 50 mm; total length to 130 mm.

Geographical Distribution: Southeast Atlantic, Namibia to SE South Africa.

Habitat and Biology: Depths range from 200 to 1,000 m.

Bathypurpurata Vecchione, Allcock and Piatkowski, 2005

Type Species: *Bathypurpurata profunda* Vecchione, Allcock and Piatkowski, 2005.

Diagnostic Features: Mantle globose. Stylets unknown. Arms short to moderate length, around 2.5 times mantle length. Arms of similar length, lateral arms slightly longer than other arms. Arm autotomy at distinct plane absent. Webs relatively shallow for a deep-water species, around 20% of arm length. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent in only known (female) specimen. Funnel organ W-shaped. Gills with 4 to 5 lamellae per demibranch. Radula not described. Ink sac absent. Posterior salivary glands very large, ~45% of mantle length. Digestive tract not dissected. Males unknown. Eggs large (4 mm, ~18% mantle length), produced in low numbers (~10 in gravid female). Colour of live animal purple on dorsal, ventral and oral surfaces. Skin with small papillae on at least dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Small-sized octopod; mantle length 23 mm; total length 80 mm; known only from the type specimen.

Geographical Distribution: Polar southern Atlantic Ocean.

Habitat and Biology: Unknown.

Remarks: Single, poorly known species from polar Atlantic Ocean. Male characters are unknown, the single species in this genus is known only from a single mature female that was subsequently damaged during preservation.

Literature: Vecchione et al. (2005).

Bathypurpurata profunda Vecchione, Allcock and Piatkowski, 2005.

Bathypurpurata profunda Vecchione, Allcock and Piatkowski, 2005, *Phuket Marine Biological Center Special Publication*, 66: 111. [Type locality: Southern Ocean, South Shetland Islands, off Elephant Island].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Purplish octopus; Fr — Poulpe pourpré; Sp — Pulpo morado.

Diagnostic Features: Small species; mantle length 23 mm in single known specimen; total length 80 mm. Arms of moderate length, ~2.5 times mantle length. Lateral arms slightly longer (2>3>1=4). Arm autotomy at distinct plane absent. **Webs relatively shallow for a deep-water species, around 20% of arm length.** Interbrachial web pouches absent. **One row of suckers on each arm.** 43 suckers on longest arm. Enlarged suckers absent in single known mature female. **Gills with 4 to 5 lamellae per demibranch.** Funnel organ W-shaped. Radula (tongue) unknown. Posterior salivary glands very large, ~45% of mantle length. **Ink sac absent.** Males unknown. Eggs large, around 4 mm, ~18% of mantle length, produced in low numbers (8 to 10). **Colour:** Purple on dorsal, ventral and oral surfaces. **Colour quickly leached in preservative (formalin).** **Sculpture:** Skin damaged but small papillae on dorsal mantle. Skin ridge around lateral margin of mantle absent.
Size: Mantle length 23 mm; total length 80 mm; known only from the type specimen.

Geographical Distribution: Known only from the South Shetland Islands, Southern Ocean (Fig. 88).

Habitat and Biology: Depth of capture of type specimen 509 to 565 m.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: Known from single mature female specimen.

Literature: Vecchione et al. (2005).

Bentheledone Robson, 1932

Type Species: *Eledone rotunda* Hoyle, 1885

Geographical Distribution: Known only from 1 to 2 described species in the Southern Ocean off Australia and one potential new species from the Pacific Ocean off the coast of Chile (E. F. Hochberg, unpubl. data).

Habitat and Biology: This genus is known only from very deep waters (> 2 000 m).

Remarks: This genus is poorly diagnosed and in urgent need of revision. Following O’Shea’s (1999) broadened definition of the genus *Thaumeledone*, Alcock et al. (2004) placed the type species of *Bentheledone, B. rotunda*, in the genus *Thaumeledone* (further amended) on the grounds of general size, arm shape, sucker count and gill count. These morphological characters show considerable overlap across many (distinct) deep-water octopodids that possess a single row of suckers. As the type specimen for *B. rotunda* is in poor condition, Alcock et al. (2004) justified this taxonomic decision primarily on additional octopus material collected off the Antarctic Peninsula that they attributed to *B. rotunda*. A number of characters, particularly attributes of radula, posterior salivary glands and arm length relative to mantle length,
distinguish \textit{B. rotunda} from \textit{Thaumeledone} (as diagnosed by Norman et al., 2004b). At this stage we prefer to retain \textit{Bentheledone} as distinct, albeit in need of thorough revision. Allcock et al. (2004) considered \textit{B. albida} Berry, 1917 as a \textit{nomen dubium}, justifying the elimination of the genus \textit{Bentheledone}. We do not support this decision. Vecchione et al. (2005) reported a specimen tentatively under the name "\textit{Bentheledone} cf. \textit{albida}" due to superficial similarities with \textit{B. albida}. Both member species of this poorly diagnosed genus are in urgent need of revision.

Literature: Allcock et al. (2004), Norman et al. (2004b).

\textit{Bentheledone rotunda} (Hoyle, 1885)

\textit{Eledone rotunda} Hoyle, 1885, \textit{Annals and Magazine of Natural History}, series 5. 15: 230. [Type locality: Southern Ocean, SW of Australia (53°55'S, 108°35'E)].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Rounded octopus; Fr — Pulpe arrondi; Sp — Pulpo redondeado.

Diagnostic Features: Small, squat, muscular species. Arms short, around 2 times mantle length, subequal in length. Arm autotomy at distinct plane absent. Webs deep, deepest around 40\% of arm length. Web approximately subequal with dorsal sector slightly deeper. Interbrachial web pouches absent. \textbf{One row of suckers on each arm.} Sucker counts on normal arms unknown. Enlarged suckers absent. Gills with 4 to 5 lamellae per demibranch. \textbf{Funnel organ consists of single broad V.} Radula (tongue) with 9 elements, 7 rows of teeth plus marginal plates. Rachidian tooth wide, lacks lateral cusps. \textbf{Posterior salivary glands small, much smaller than buccal mass length.} Oesophagus with swelling only, no distinct crop. Ink sac absent. Anal flaps absent. Males unknown. \textbf{Eggs very large, to 16 mm, ~33\% of mantle length.} Colour: Dull purple. False-eye spots (ocelli) absent. \textbf{Sculpture:} Skin smooth. Skin ridge around lateral margin of mantle absent.

Geographical Distribution: Known only with certainty from type locality (Fig. 90).

Habitat and Biology: Depth of type specimen 3 566 m.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: Allcock et al. (2004) placed this species in the genus \textit{Thaumeledone}. See comments on that taxon above.

Literature: Hoyle (1886), Robson (1932), Allcock et al. (2004).
Bentheledone albida (Berry, 1917)

Size: Mantle length to 35 mm; total length to 170 mm.

Geographical Distribution: Known only from type specimen.

Habitat and Biology: Depth of capture 3 100 m.

Remarks: Allcock *et al.* (2004) proposed that this species is a *nomen dubium*.

Literature: Allcock *et al.* (2004).
Benthoctopus Grimpe, 1921

Type Species: *Octopus piscatorum* Verrill, 1897.

Diagnostic Features: Small to moderate-sized deep-water species. Mantle muscular, globose to ovoid. Stylets present in at least some species. Arms short to medium length, 2.5 to 4 times mantle length. Arms typically subequal in length or arm pairs 1 and 2 longest. Arm autotomy at distinct plane absent. Webs moderate to deep. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers present in some species. Funnel organ UU- or W-shaped. Gills with 7 to 12 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus, but reduced in size. Ink sac and anal flaps absent, intestine often pigmented. Third right arm of male hectocotylized. Ligula short to large, narrow, slightly to moderately excavated, never laminate. Calamus present. Colour typically uniform cream, grey or purple. Reverse countershading occurs in some species. Oral web also is darkly pigmented in some species. Body entirely smooth or with low rounded papillae. Large mantle and ocular primary papillae absent. Skin ridge around lateral margin of mantle present or absent in different species.

Size: Mantle length to 140 mm; total length to 770 mm; body weight to at least 750 g.

Geographical Distribution: Deep-water habitats worldwide.

Habitat and Biology: Soft sediment substrates in deep water.

Remarks: The type species, *Benthoctopus piscatorum*, was found by Muus (2002) to be a junior synonym of *Bathyopolypus bairdii* (Verrill, 1873) and hence it belongs in a distinct genus. Norman *et al.* (1997) suggested that the genus *Benthoctopus* may represent a polyphyletic catchall genus. Molecular analyses by Strugnell *et al.* (2009c) of 9 *Benthoctopus* species found common ancestry in at least these taxa and proposed that *Vulcanoctopus* also might belong in the genus *Benthoctopus*. As the generic name *Benthoctopus* is in common use for deep-water octopuses with two rows of suckers and no ink sac, Muus (2002) and Strugnell *et al.* (2009c) propose that the name should be preserved until a thorough revision of the genus is undertaken. *Benthoctopus karubar* is treated below as a better-diagnosed representative of the genus *Benthoctopus* (as it is understood currently). The relationship between this nominal genus and *Muusoctopus* requires further investigation.

Benthoctopus karubar Norman, Hochberg and Lu, 1997

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Karubar octopus; Fr — Poulpe karubar; Sp — Pulpo karubar.

Diagnostic Features: Large muscular species. Skin soft, semi-gelatinous. Stylets present, non-mineralized. **Funnel organ UU-shaped.** Arms of moderate length, around 2 to 3 times mantle length. Arm autotomy at distinct plane absent. Arms approximately equal in length; dorsal lateral arms slightly longer. Suckers form two rows and are small to moderate-sized, 7 to 10% of mantle length. Enlarged suckers absent in both sexes. Up to 100 suckers on intact normal arms of males; up to 150 in females. **Webs deep (deepest 33 to 38% of longest arm).** Webs approximately equal in depth, ventral web shallower than other sectors. Third right arm of males hectocotylized. Modified arm around 80% length of opposite arm. **Ligula large (to 13% of arm length) and sharply pointed with open groove.** Calamus small and sharply pointed, around 25% of ligula length. 47 to 55 suckers on hectocotylized arm of males. **Gills with 8 to 9 lamellae per demibranch.**
Posterior salivary glands moderate-sized, equal in length with buccal mass. Distinct crop present as side-branch off oesophagus. **Ink sac and anal flaps absent.** Radula with seven teeth and two marginal plates in each transverse row. Rachidian tooth with 1 to 2 lateral cusps, typically 2, on each side of large medial cone. Lateral cusps in symmetrical to slightly asymmetrical seriation, migrating from lateral to medial position over approximately 6 to 7 transverse rows. Terminal organ ("penis") T-shaped with diverticulum distinctly longer than distal portion of organ. Spermatophores of moderate length (~70% of ML), produced in moderate numbers (26 in storage sac). Eggs large-type and produced in relatively low numbers (~150). **Colour:** Pink to dark purple base colour produced by tiny crimson to purple chromatophores. **Oral web dark purple in most specimens.** Multiple (~8) irregular rows of subdermal founder chromatophores on arms. **Sculpture:** Dorsal head and some of mantle scattered with small low rounded papillae. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; total length to at least 400 mm; body weight to at least 750 g.

Geographical Distribution: Tanimbar and Kai Islands, Arafura Sea, Indonesia (Fig. 92).

Habitat and Biology: Depth range from 400 to 800 m.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Norman *et al.* (1997).
Benthoctopus abruptus (Sasaki, 1920)

Size: Mantle length 100 mm; total length 520 mm.
Geographical Distribution: Northwestern Pacific Ocean, Japan, off Honshu.
Habitat and Biology: Depth of type 1 074 m.

Benthoctopus berryi Robson, 1924

Size: Mantle length 47 mm.
Geographical Distribution: Known only from type locality.
Habitat and Biology: Depth of type 2 200 m.

Benthoctopus canthylus Voss and Pearcy, 1990

Benthoctopus canthylus Voss and Pearcy, 1990, Proceedings of the California Academy of Sciences, 47(3): 69. [Type locality: Northeastern Pacific Ocean, United States, off Oregon, 44°58.1'N, 126°35.8'W].

Size: Mantle length to 83 mm; total length to 250 mm.
Geographical Distribution: Northeast Pacific.
Habitat and Biology: Depth range from 2 795 to 3 000 m.
Remarks: Benthoctopus macrophallus Voss and Pearcy, 1990 is a junior synonym.

Benthoctopus clyderoperi O’Shea, 1999

Size: Mantle length to 90 mm; total length to 380 mm.
Geographical Distribution: New Zealand and Chatham Rise.
Habitat and Biology: Depth range from 840 to 1 100 m.
Benthoctopus fuscus Taki, 1964

Size: Mantle length 115 mm; total length 575 mm.

Geographical Distribution: Northwest Pacific Ocean, off Japan.

Habitat and Biology: Depth range unknown.

Remarks: The status of this species is at present unresolved.

Literature: Kubodera (2001).

Benthoctopus hokkaidensis (Berry, 1921)

Polypus hokkaidensis Berry, 1921, *Annals and Magazine of Natural History*, series 9, 8: 352. [Type locality: Northwestern Pacific Ocean, Japan, off Hokkaido (42º11'10"N, 142º12'E)].

Size: Mantle length to 58 mm; total length to 245 mm.

Geographical Distribution: North Pacific Ocean, Japan to Oregon, United States.

Habitat and Biology: Depth range from 130 to 1 000 m.

Remarks: Originally described as *Polypus glaber* Sasaki, 1920 but it was a preoccupied name; *Benthoctopus violaceus* Taki, 1964 is a synonym.

Benthoctopus johnsoniana Allcock, Strugnell, Ruggiero and Collins, 2006

Size: Mantle length to 113 mm; total length to 510 mm.

Geographical Distribution: Atlantic coast of Europe between 49º to 59ºN; Porcupine Seabight to Rockall Trough.

Habitat and Biology: Depth range from 1 800 to 2 540 m.

Remarks: Specimens identified as *Benthoctopus piscatorum* in Collins *et al.* (2001b) were found by Allcock *et al.* (2006) to be this species.

Literature: Collins *et al.* (2001b).

Benthoctopus leioderma (Berry, 1911)

Size: Mantle length to 70 mm; total length to 270 mm; body weight to 148 g.

Geographical Distribution: North Pacific from California, United States to Sea of Okhotsk, Russia.

Habitat and Biology: Depth range from 90 to 500 m.

Literature: Hochberg (1998), Jorgensen (2009).
Benthocopus levis (Hoyle, 1885)

Octopus levis Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 229. [Type locality: Southern Indian Ocean, off Heard Island, 52º59'S, 73º33'E].

Size: Mantle length to 50 mm; total length to 180 mm.

Geographical Distribution: Known only from Heard Island.

Habitat and Biology: Depth range of type specimen 13 to 137 m.

Benthocopus normani (Massy, 1907)

Polypus normani Massy, A.L. 1907. *Annals and Magazine of Natural History*, 20(7): 379. [Type locality: Northeast Atlantic, northwestern boundary of the Celtic Sea, Ireland, off SW coast, 51º15'N, 11º47'W (type not extant); neotype locality: Northeast Atlantic, western boundary of Celtic Sea, 49º38'N 11º49'W].

Size: Mantle length to 107 mm; total length to 648 mm.

Geographical Distribution: Atlantic coasts of Europe between 38º to 60º N.

Habitat and Biology: Depth range from 537 to 1 835 m.

Remarks: Redescribed by Allcock *et al.* (2006). Specimens identified as *Benthocopus* sp. A in Collins *et al.* (2001b) were found to be this species.

Benthocopus oregonae Toll, 1981

Size: Mantle length to 58 mm; total length to 300 mm.

Geographical Distribution: Caribbean Sea.

Habitat and Biology: Depth range from 640 to 1 080 m.

Literature: Nesis (1987).

Benthocopus oregonensis Voss and Pearcy, 1990

Benthocopus oregonensis Voss and Pearcy, 1990, *Proceedings of the California Academy of Sciences*, 47(3): 73. [Type locality: United States, Oregon, Yaquina Bay, 44º37.0'N, 125º01.0'W].

Size: Mantle length to 93 mm.

Geographical Distribution: Northeastern Pacific Ocean, Oregon and Cascadia Abyssal Plain.

Habitat and Biology: Depth range from 1 000 to 1 260 m.

Literature: Jorgensen (2009).

Benthocopus profundorum Robson, 1932

Size: Total length to 290 mm.

Geographical Distribution: North Pacific from Japan to Gulf of Alaska.

Habitat and Biology: Depth range from 150 to 3 400 m.

Literature: Nesis (1987).
Benthoctopus pseudonymus (Grimpe), 1922

Benthoctopus pseudonymus Grimpe, 1922, _Sitzungsberichte der Naturforschenden Gesellschaft zu Leipzig_, 45: 41. [Type locality: Northeastern Atlantic Ocean (Azores Islands), south of Flores Island].

Size: Mantle length 40 mm (known only from type material).

Geographical Distribution: Known only from type locality, NE Atlantic Ocean, Azores Islands.

Habitat and Biology: Depth of type 1 600 m.

Remarks: The status of the genus _Atlantoctopus_, which also lacks an ink sac, has not been critically evaluated.

Literature: Robson (1932a).

Benthoctopus rigbyae Vecchione, Allcock, Piatkowski and Strugnell, 2009

Benthoctopus rigbyae Vecchione, Allcock, Piatkowski and Strugnell, 2009, _Malacologia_, 51(1): 13. [Type locality: Southern Ocean, Antarctica, South Shetland Islands, near Elephant Island, 61°17'S, 56°26'W].

Size: Mantle length to 105 mm; total length to 400 mm.

Geographical Distribution: Southern Ocean, Antarctica, South Shetland Islands.

Habitat and Biology: Depth range from 250 to 600 m.

Literature: Strugnell _et al._ (2009).

Benthoctopus robustus Voss and Pearcy, 1990

Size: Mantle length to 142 mm.

Geographical Distribution: Northeastern Pacific, Oregon, United States to Baja California, Mexico.

Habitat and Biology: Depth range from 1 200 to 3 850 m.

Literature: Hochberg (1998).

Benthoctopus sibiricus Loyning, 1930

Benthoctopus sibiricus Loyning, 1930, _Scientific Results, Norwegian North Polar Expeditions with the Maud 1918-1925_, 5(11): 1. [Type locality: Arctic Ocean, 76°N, 146°E].

Size: Not reported, type specimen damaged.

Geographical Distribution: Eastern Arctic Ocean.

Habitat and Biology: Depth specimen from 30 to 220 m.

Benthoctopus tangaroa O’Shea, 1999

Benthoctopus tangaroa O’Shea, 1999, _NIWA Biodiversity Memoir_, 112: 202. [Type locality: New Zealand, off east coast].

Size: Mantle length to 122 mm; total length to 720 mm.

Geographical Distribution: New Zealand, Chatham Rise and subantarctic islands to the south.

Habitat and Biology: Depth range from 500 to 1 500 m.

Literature: No additional literature.
Benthoctopus tegginmathae O’Shea, 1999

Size: Mantle length to 96 mm; total length to 330 mm.

Geographical Distribution: New Zealand and Chatham Rise.

Habitat and Biology: Depth range from 777 to 1 723 m.

Literature: No additional literature.

Benthoctopus thielei Robson, 1932

Size: Mantle length to 65 mm.

Geographical Distribution: Kerguelen Plateau.

Habitat and Biology: Depth range from 126 to 507 m.

Benthoctopus yaquinae Voss and Pearcy, 1990

Size: Mantle length to 83 mm.

Geographical Distribution: Northeastern Pacific Ocean, off Oregon and Cascadia Abyssal Plain.

Habitat and Biology: Depth range from 1 000 to 3 000 m.

Remarks: *Benthoctopus macrophallus* Voss and Pearcy, 1990 is a junior synonym (Strugnell *et al.*, 2009b).

Literature: Strugnell *et al.* (2009b).
Callistoctopus Taki, 1964

Type Species: Callistoctopus arakawai Taki, 1964 [= C. ornatus (Gould, 1852)].

Diagnostic Features: Medium-sized to large species. Mantle ovoid to elongate cylindrical. Stylets reduced or absent. Arms muscular and long, 5 to 8 times mantle length. Dorsal arms always longest (1>2>3>4). Arm autotomy at distinct plane absent. Web depths shallow to moderate, about 5 to 20% of longest arm length. Dorsal webs always deepest (typically A>B>C>D>E). Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent in both sexes. Funnel organ W- or UU-shaped, large. Gills with 10 to 15 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian tooth with 2 to 3 lateral cusps and very tall mesocone. Posterior salivary glands moderate to large, equal to or larger than buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, distinctly shorter than opposite arm. Ligula and calamus present; ligula cylindrical with deep groove. Spermatophores small, unarmed. Eggs small to large. Colour typically red-brown to red with white spots or bars on mantle, head and arms. False eye-spots (ocelli) absent. Skin smooth or with scattered low papillae, patch and groove system not evident. Conspicuous primary papillae present over each eye. Continuous skin ridge around lateral margin of mantle absent.

Size: Mantle length to 190 mm; total length to 1.3 m; body weight to at least 4.2 kg.

Geographical Distribution: Tropical and temperate waters of the world.

Habitat and Biology: Typically occur in shallow coastal waters on continental shelf to around 200 m. Occur on all habitats from reefs to seagrass beds and soft sediments.

Remarks: Members of this genus previously have been treated under the name “Octopus macropus group” (e.g. Norman, 1993a, 2000). Many undescribed species from this genus occur throughout the Indo-Pacific region. Members of this group frequently are incorrectly identified as Octopus macropus (= Callistoctopus macropus), a European member of this group restricted to the Mediterranean Sea and Atlantic Ocean.

Callistoctopus ornatus (Gould, 1852) Fig. 93

Octopus ornatus Gould, 1852, United States Exploring Expedition during the Years 1838-1842, 12: 476. [Type locality: Sandwich Islands (=Hawaii)].

Frequent Synonyms: Callistoctopus arakawai Taki, 1964.

Misidentifications: None.

FAO Names: En – White-striped octopus; Fr – Poulpe clouté; Sp – Pulpo listado.

Diagnostic Features: Large, muscular and elongate species. Arms long, 6 to 8 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs shallow, deepest around 10% of arm length. Web deepest on dorsal arm; webs between ventral arms shallowest. Web margins extend as narrow membranes for at least 70% of arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 300 to 400 suckers on each normal arm. Enlarged suckers absent. Gills with 13 to 14 lamellae per demibranch. Funnel organ W-shaped, lateral limbs approximately 75 to 85% of length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, 50 to 70% length of opposite arm. Ligula robust and cylindrical, up to 6% of arm length. Calamus small, around 15% of ligula length. Hectocotylized arm with 150 to 170 suckers. Spermatophores small, around 40 mm, around 40 to 50% of mantle length.
produced in low numbers (~8). Spermatophores unarmed. Eggs small, around 3 to 4 mm, around 3% of mantle length.

Colour: Red brown in colour with a distinctive colour pattern of short white longitudinal stripes on the dorsal mantle. Paired white spots present along the entire length of the arms. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of small low papillae over dorsal surfaces. Two moderate-sized erectile papillae over each eye. Continuous skin ridge around lateral margin of mantle absent. Short flaps of skin can be raised from within the longitudinal stripes on the lateral mantle.

Size: Mantle length 130 mm; total length to 1.2 m; body weight to at least 1 kg.

Geographical Distribution: Widely distributed in tropical waters of the Indian and western and central Pacific Oceans, from the Hawaiian Islands Archipelago and Easter Island in the east, through the Pacific Islands to Asia and Australia, and into the Indian Ocean to east Africa (Fig. 94).

Habitat and Biology: Depths range from 0 to ~10 m. This species occurs in shallow tropical waters, typically in association with coral reefs. It is a night active species, typically encountered on shallow reefs during night low tides. This species appears to occupy temporary lairs as deep vertical holes excavated in coral rubble. Foraging behaviour consists of moving over coral rubble at night, exploring burrows and holes with the dorsal arms. Diet includes fishes, shrimps, crabs, and other octopuses. The small egg size indicates that hatchlings are planktonic.

Interest to Fisheries: Harvested on a small scale throughout its range, primarily in local subsistence fisheries. It is sold in fish markets in the central and southern tropical Pacific, but less frequently than ‘Octopus’ cyanea. There are historical records of this species being harvested at night using torches and spears in Hawaii.

Local Names: Unknown.

Literature: Voss (1981), Norman (1993c), Yong and Armand (1997), Nagai et al. (2002; as Callistoctopus arakawai).

Callistoctopus alpheus (Norman, 1993)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Capricorn octopus; Fr — Poulpe capricorne; Sp — Pulpo capricornio.

Diagnostic Features: Moderate-sized, muscular species. Arms of moderate length, 3 to 4.5 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 200 suckers on each normal arm. Enlarged suckers absent. Gills with 10 to 12 lamellae per demibranch. Funnel organ UU-shaped, outer limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates.
Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 70% of opposite arm. Ligula of moderate size, robust and cylindrical, 5 to 9% of arm length. Calamus of moderate size, 20 to 30% of ligula length. Hectocotylized arm with 82 to 97 suckers. Spermatophores large, similar in length to mantle length, produced in low numbers (~2). Spermatophores unarmed. Eggs large. **Colour:** Orange to red with numerous large white spots over dorsal surfaces. White spots on arms in regular pairs. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of scattered low papillae over smooth skin. Single slightly larger papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 80 mm; total length to around 430 mm; body weight to at least 340 g.

Geographical Distribution: Australia, southern Great Barrier Reef, Capricorn Bunker Islands (Fig. 96).

Habitat and Biology: Depths range from intertidal to shallow subtidal. This octopus occurs on intertidal coral reefs where it emerges at night to forage, primarily for crabs. Densities can be locally high with 34 octopuses encountered in an area of reef in one night. The eggs are large and hatchlings presumably are benthic.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: No additional literature.

Fig. 95 Callistoctopus alpheus

Fig. 96 Callistoctopus alpheus

Known distribution
Callistoctopus aspilosomatis (Norman, 1993)

Fig. 97

Octopus aspilosomatis Norman, 1993a, Memoirs of the Museum of Victoria, 53(2): 279. [Type locality: Australia, Great Barrier Reef, Frankland Group, Russell Island].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Plain-body octopus; Fr — Poulpe aux taches blanches; Sp — Pulpo con manchas blancas.

Diagnostic Features: Moderate-sized, muscular and elongate species. Arms long and narrow, 4 to 6 times mantle length. **Dorsal arms longest (1>2>3>4).** Arm autotomy at distinct plane absent. **Webs shallow, deepest around 10 to 15% of arm length.** Web deepest on dorsal arms; webs between ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 230 suckers on each normal arm. Enlarged suckers absent. Gills with 10 to 11 lamellae per demibranch. Funnel organ W-shaped; outer limbs approximately 70% of the length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 60% of opposite arm. Ligula 6 to 9% of arm length. Calamus small, around 20% of ligula length. Hectocotylized arm with 78 to 95 suckers. Spermatophores of moderate size, around 28 to 40 mm, 50 to 80% of mantle length, produced in low numbers (~1 to 3). Spermatophores unarmed. Eggs small. **Colour:** Orange to red brown. **Paired white spots on arms and arm crown.** White spots absente on mantle. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of scattered low papillae over smooth skin. Single, slightly larger papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 80 mm; total length to around 440 mm; body weight to at least 120 g.

Geographical Distribution: Australia, Great Barrier Reef. Potentially also from Okinawa (N. Kaneko, pers. comm.; Yasumuro and Ikeda, 2011) and Moorea in the Society Islands (C. Huffard, pers. comm.) (Fig. 98).

Habitat and Biology: Depths range from intertidal to shallow subtidal. This species forages on exposed intertidal coral reef flats and sand areas during night low tides; it occupies lairs within coral bedrock and under living coral, blocking the entrance during the day with pieces of dead coral. Diet is mainly small crabs and other crustaceans. Larger individuals readily attack smaller conspecifics. The eggs are small and hatchlings planktonic.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Norman (2000), Yasumuro and Ikeda (2011).
Callistoctopus dierythraeus (Norman, 1993)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Red-spot octopus; Fr — Poulpe aux taches rouges; Sp — Pulpo con manchas rojas.

Diagnostic Features: Large, muscular species. Arms moderate to long, 4 to 5 times mantle length. **Dorsal arms longest (1>2>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 18 to 28% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 200 to 280 suckers on each normal arm. Enlarged suckers absent. Gills with 12 to 14 lamellae per demibranch. **Funnel organ UU-shaped,** outer limbs slightly shorter than medial limbs (75 to 90%). Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 75% length of opposite arm. Ligula cylindrical and muscular, around 6% of arm length. Calamus small, around 15% of ligula length. Hectocotylized arm with 103 to 125 suckers. Spermatophores large, around 100 mm, around 75% of mantle length, produced in low numbers (~4). Spermatophores unarmed. Eggs large, at least 14 mm long. **Colour:** Resting colour pattern of red base colour with numerous white and dark spots scattered over all dorsal and lateral surfaces. Alarm colour pattern of white background with numerous large red spots on dorsal and lateral surfaces. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of scattered rounded papillae over smooth skin. Papillae located in centres of spots. Single, slightly larger papilla over each eye, surrounded by low punctae. Skin ridge absent around lateral margin of mantle.

Size: Mantle length to 135 mm; total length to around 800 mm; body weight to at least 1.5 kg.

Geographical Distribution: Northern and northeast Australia from Great Barrier Reef to northwest Western Australia (Fig. 100).

Habitat and Biology: Depths range from 0 to 78 m. This species is nocturnally-active and forages on intertidal rock and mud flats, and shallow subtidal habitats. The diverse diet includes bivalves, gastropods, crabs, polychaete worms and octopuses of indeterminate identity. Active lairs are surrounded by clean bivalve shells and crab carapaces. One specimen had accumulated over 100 bivalve shells. Based on the large egg size, hatchlings are benthic. This species uses drilling or pulling to open bivalves, depending on prey size.

Interest to Fisheries: Based on the prevalence of this species in shallow coastal and intertidal areas across northern Australia, there is likely to be a minor recreational/subsistence harvest of this octopus.

Local Names: Unknown.

Literature: Norman (2000), Steer and Semmens (2003).
Callistoctopus graptus (Norman, 1993)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Scribbled octopus; Fr — Poulpe gribouillé; Sp — Pulpo pintarrajo.

Diagnostic Features: Large, robust and muscular species. Arms long, 4.5 to 7 times mantle length. **Dorsal arms longest and most robust (1>2>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web deepest between dorsal arms; webs between ventral arms shallowest. Web margins poorly developed. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 240 suckers on each normal arm. Enlarged suckers absent. Gill with 13 to 14 lamellae per demibranch. Funnel organ V V-shaped, outer limbs 60% of medial limb length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length 60 to 75% of opposite arm. Large cylindrical ligula with deep groove, around 6% of arm length. Calamus of moderate size, 20% of ligula length. Hectocotylized arm with around 90 suckers. Spermatophores large, around 130 mm long, around 90% of mantle length, produced in low numbers (~5). Spermatophores unarmed. Eggs large, around 28 mm, around 15% of mantle length. **Colour:** Background colour from uniform grey to uniform orange brown. **Short irregular dark brown lines and dots scattered over dorsal mantle and arm crown, forming a “scribbled” pattern.** False-eye spots (ocelli) absent. **Sculpture:** Skin texture of scattered low papillae over smooth skin. Single moderate papilla present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 190 mm; total length to 1.3 m; body weight to at least 4.2 kg.

Geographical Distribution: Northern Australian coastal waters from northern Queensland to northwest Western Australia (Fig. 102).

Habitat and Biology: Depths range from 11 to 36 m. This species is known only from trawled animals captured at night, which suggests nocturnal activities. It lives on soft substrates in the shallow subtidal zone. Stomach contents of trawl specimens contained mollusc remains suggesting a shellfish diet. Captive animals take all prey offered, including capturing live fish. A captive female attached the large eggs singly to hard surfaces. Based on the large egg size, young are benthic upon hatching.

Interest to Fisheries: Commercial prawn trawl operators report catches of this species when trawling at night over sandy substrates. Annual catch figures are not available, however it is likely that this large species makes up the bulk of the annual catch of octopuses in Queensland waters.

Local Names: Unknown.

Literature: Norman (2000).
Callistoctopus luteus (Sasaki, 1929)

Polypus luteus Sasaki, 1929, *Journal of the Faculty of Agriculture, Hokkaido Imperial University*, Vol XX, supplement: 45.
[Type locality: Taiwan, Pescadore Islands (Peng-hu)].

Frequent Synonyms: None.

Misidentifications: *Octopus macropus* Risso, 1826.

FAO Names: En — Small-spot octopus; Fr — Poulpe aux petites taches; Sp — Pulpo con pecas.

Diagnostic Features: Large, muscular species. Arms long, 4 to 6 times mantle length. **Dorsal arms longest and most robust (1>2>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 15 to 20% of arm length. Web deepest between dorsal arms; webs between ventral arms shallowest. Web margins extend along most of arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 180 to 240 suckers on each normal arm. Enlarged suckers absent. Gills with 12 to 13 lamellae per demibranch. Funnel organ W-shaped, outer limbs approximately 80% of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 60% length of opposite arm. Ligula short and elongate, around 4% of arm length. Calamus small. Hectocotylized arm with 80 to 90 suckers. Spermatophores of moderate size, around 75 mm, around 70% of mantle length, produced in low numbers (~3). Spermatophores unarmed. Eggs small, around 1 mm, around 1% of mantle length. **Colour:** Orange to red base colour with numerous small white spots scattered over all dorsal and lateral surfaces. False-eye spots (ocelli) absent. **Sculpture:** Skin sculptured with large patches (which can be raised as large papillae), interspersed by small fine patches. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 125 mm; total length to 700 mm; body weight to at least 500 g.

Geographical Distribution: At present known only from Taiwan and Philippines, south to Sulawesi, Indonesia, and Thailand (Fig. 104).

Habitat and Biology: Depths recorded to 82 m. Little is known of the biology of this species. It occurs on sand, seaweed, and rubble areas where it forages at night.

Interest to Fisheries: Important fisheries species in at least the Philippines. Likely to be regular bycatch in trawl fisheries throughout its range.

Local Names: Unknown. Other common names: Starry night octopus.

Remarks: Awaits detailed description. May represent more than one species.

Fig. 103 *Callistoctopus luteus*

Fig. 104 *Callistoctopus luteus*
Callistoctopus macropus (Risso, 1826)

Octopus macropus Risso, 1826, Histoire Naturelle... Europe méridionale..., 4: 3. [Type locality: Not stated, presumed to be western Mediterranean Sea, near Nice (Mangold, 1998)].

Frequent Synonyms: None.

Misidentifications: None.

Diagnostic Features: Medium-sized to large muscular and elongate species. Mantle shape variable, usually elongate or ovoid, widest in posterior half. Stylets present, non-mineralized, very small. Funnel organ W-shaped, lateral limbs shorter than median limbs. Arms long, up to 7 times mantle length. Dorsal arms longest and most robust; arm formula 1>2>3>4. Suckers medium-sized, dorsal arms with largest suckers up to 13.5% of mantle length, no noticeable difference between males and females, none dramatically enlarged. Web shallow, deepest 7 to 17% of arm length, web formula A>B>C>D>E. Ink sac present, well developed. Gills with 10 to 11 lamellae per demibranch. Radula with 9 elements. 7 rows of teeth plus marginal plates. Rachidian with large mesocone and up to 3 lateral cusps per side in asymmetrical seriation. Third right arm of male hectocotylized, significantly shorter than opposite arm (41 to 51%). Ligula small to medium-sized (4.5 to 8% of arm length), narrow, pointed rather than blunt, with swollen margins, deep groove with numerous delicate transverse laminae. Calamus short, 13 to 18% of ligula length. Terminal organ ("penis") small (12 to 28% of mantle length), with large forward- or backward-directed diverticulum. Spermatophores medium-sized (around 50% of mantle length). Radula with seven transverse rows of teeth plus marginal plates. Rachidian tooth with 2 to 3 lateral cusps. Mature eggs 2.5 mm long. Colour: In life brick red or brownish with distinct pattern of numerous white spots on dorsal mantle, head, and arms. Skin smooth, with large papilla over each eye. Lateral mantle skin ridge absent.

Size: Mantle length to 155 mm.

Geographical Distribution: Mediterranean Sea and eastern Atlantic Ocean to Dakar, Senegal (Fig. 106).

Habitat and Biology: Little known; most available data refer to other species historically treated under this name.

Interest to Fisheries: No catch statistics are available for this species. In the Mediterranean, it is likely to form a small proportion of the catch records for O. vulgaris.

Local Names: ITALY: Polpessa.

Remarks: The previous FAO treatment of this species (Roper et al., 1984) included information and distributions of many cryptic member species of the genus Callistoctopus. The taxonomic status of the western Atlantic form described by Voss (1957) is unresolved.

Callistoctopus nocturnus (Norman and Sweeney, 1997)

Frequent Synonyms: None.

Misidentifications: Octopus macropus Risso, 1826.

FAO Names: En — Philippine octopus; Fr — Poulpe philippin; Sp — Pulpo de Filipinas.

Diagnostic Features: Moderate-sized, elongate species. Arms long, 4 to 7.5 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs short, deepest around 10 to 15% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 180 to 240 suckers on each normal arm. Enlarged suckers absent. Gills with 10 to 11 lamellae per demibranch. Funnel organ W-shaped, outer limbs 60 to 80% of length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 60% of length of opposite arm. Ligula conical with deep ligula groove, of moderate size, 4 to 5% of arm length. Calamus small, around 35% of ligula length. Hectocotylized arm with 80 to 90 suckers. Spermatophores of moderate size, around 28 mm, 60% of mantle length, produced in low numbers (1 in single mature male). Spermatophores unarmed. Eggs small.

Colour: Colour in preserved material pink-brown with dorsal surfaces mottled with irregular dark red-brown blotches. Paired white spots visible along aboral surfaces of arms. Larger specimens show white spots scattered over dorsal mantle. False-eye spots (ocelli) absent. Sculpture: Skin texture of small low round papillae. Primary papillae not visible. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 60 mm; total length to 350 mm; body weight to at least 60 g.

Geographical Distribution: Known only from the Philippines (Fig. 108).

Habitat and Biology: Depths range from 0 to 5 m. Material examined was collected primarily from intertidal coral and rocky reefs.

Interest to Fisheries: Museum material dating back to 1908 was collected at night by local fishermen at Mansalay Bay on Mindoro Island, Philippines, who employed burning torches to locate these night-active intertidal animals. Scale of current fishery harvest is unknown.

Local Names: Unknown.

Callistoctopus rapanui (Voss, 1979)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: *En* — Rapanui octopus; *Fr* — Poulpe de Rapanui; *Sp* — Pulpo de Rapanui.

Diagnostic Features: Large, muscular species. Arms moderate to long, 3.5 to 4.5 times mantle length. **Dorsal arms longest (1>2>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web depths variable in limited material available. Web margins extend two thirds along arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers absent. Gills with 11 to 12 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, 70 to 95% length of opposite arm. Ligula small, 1.5 to 4% of arm length. Calamus of moderate size, around 30% of ligula length. Hectocotylized arm with 101 to 106 suckers. Spermatophores long, around 66 to 75% of mantle length. Egg size unknown. **Colour:** Known only from preserved material. Cream-grey with darker purple tinge to dorsal surfaces. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of scattered large low papillae over dorsal and lateral surfaces. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 115 mm; total length to at least 550 mm.

Geographical Distribution: Known only from Easter Island (Fig. 110).

Habitat and Biology: Depths range from 0 to 4 m. Nothing known of the biology of this species. Voss (1979) reported material collected from intertidal rock pools.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Toll and Voss (1998).
Callistoctopus lechenaultii (d’Orbigny, 1826)

Size: Mantle length to 62 mm.

Geographical Distribution: Known only from type material.

Habitat and Biology: Depth range unknown.

Remarks: *Callistoctopus cuvieri* (d’Orbigny, 1840) is a junior synonym. This species requires through description

Literature: No additional literature.
Cistopus Gray, 1849

Type Species: Cistopus indicus (Rapp, 1835).

Diagnostic Features: Moderate to large species. Mantle ovoid to elongate. Stylets long, non-mineralized. Arms long, up to 6 times length of mantle, dorsal arms longer than ventral pair (arm formula 1>2>3>4). Arm autotomy at distinct plane absent. Webs of moderate depth ~15 to 20% of longest arm, dorsal web deeper than ventral web (WF typically A>B>C>D>E). Interbrachial web pouches present on oral surface of webs close to mouth; pores located at level of 3rd to 4th proximal sucker. Suckers in two rows. Enlarged suckers present on arms in mature males of at least two member species. Funnel organ W-shaped. Gills with 9 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large, slightly larger than buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, around two thirds length of opposite arm. Ligula a tiny blunt stump (~0.5% of arm length), calamus present or absent. Spermatophores of moderate length, unarmed. Egg size small to large (species dependent). Colour uniform grey to pink, iridescent pink on lateral and ventral mantle in at least one species. Skin smooth with few, scattered, low papillae on dorsal mantle. Primary papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 180 mm; total length to 1 m; body weight to around 2 kg.

Geographical Distribution: Coastal waters of Asia from Philippines and Hong Kong west to India.

Habitat and Biology: Occurs on soft sediment substrates in shallow coastal waters.

Remarks: At least four shallow-water species occur from coastal waters of India, Indo-Malayan Archipelago and northern Australia. In addition to the named species treated below, an additional unresolved *Cistopus* species (misidentified as *C. indicus*) also occurs on muddy substrates on the mainland coasts of Asia from at least Singapore, west to southern India. It also possesses water pouches, an arm formula of 1<2<3<4 and a tiny ligula that lacks a calamus. The taxonomy of this genus requires further research.

Cistopus indicus (Rapp, 1835)

Frequent Synonyms: Cistopus bursarius Steenstrup *In: Hoyle, 1886.*

Misidentifications: None.

FAO Names: En — Old woman octopus; Fr — Poulpe vieille femme; Es — Pulpo perforado.

Diagnostic Features: Moderate-sized species. Arms long, length around 6 times mantle length. **Dorsal arms longest (1>2>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 15 to 20% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. **Water pouches present in oral surface of webs close to mouth; pores located adjacent to level of 3rd to 4th proximal sucker.** Two rows of suckers on each arm. In larger animals, around 180 to 210 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 3
dorsal view

oral view of webs showing location of water pouches

hectocotylus

Fig. 111 Cistopus indicus
200 suckers on each normal arm. Enlarged suckers absent. Gills with 9 to 10 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 75% of opposite arm. Ligula tiny and blunt, 0.5 to 0.7% of arm length. **Calamus absent.** Hectocotylized arm with **116 to 123 suckers.** Spermatophores of moderate length, around 30 mm, 60% of mantle length, produced in moderate numbers (~12). Spermatophores unarmed. Egg size unknown. **Colour:** Cream to grey on dorsal surfaces produced by low density of very small chromatophores. Lateral and ventral mantle and arm crown almost iridescent pink-purple, possibly produced by iridophore layer in skin. False-eye spots (ocelli) absent. **Sculpture:** Skin smooth with few, scattered, low papillae on dorsal mantle. Primary papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 180 mm; total length to 1 m; body weight to around 2 kg.

Geographical Distribution: At present known with certainty only from type locality (Celebes) and the Philippines. Many records of this species from coastal Asia to India refer to different species (see remarks above) (Fig. 112).

Habitat and Biology: Depths range to at least 50 m. A shallow subtidal species that occurs on soft sediment substrates. Norman (2000) suggests that the “water pouches” may be mucous glands, the resulting mucous being used to bind together soft sediments in forming a burrow in the mud or sand substrates in which this species lives.

Interest to Fisheries: Value of this specific taxon to fisheries is unknown. Distinct species (often treated under the name *Cistopus indicus*) form the basis of major harvests across coastal mainland Asia (see species treatments below).

Local Names: Unknown.

Remarks: Primary reports of catches under this species name are from Hong Kong (Voss and Williamson, 1972; Norman and Hochberg, 1994). It is not clear which *Cistopus* species are harvested in the different coastal countries from China to India.

Cistopus chinensis Zheng, Lin, Lu and Ma, 2012

Cistopus chinensis Zheng et al., 2012. *Journal of Natural History*, 46(5–6): 358 [Type locality: Xiamen, 24°31'N, 118°03'E].

Frequent Synonyms: None.

Misidentifications: *Cistopus indicus* (Rapp, 1835).

FAO Names: En — White-spotted pouched octopus; Fr — Poulpe bouffant; Sp — Pulpo suave.

Diagnostic Features: Moderate-sized species. Arms long, around 3-4 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs shallow, deepest around 12% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Water pouches present in oral surface of webs close to mouth, pores located adjacent to level of 2nd to 3rd proximal sucker. Two rows of suckers on each arm. In larger animals, around 81 to 126 suckers on each normal arm. Enlarged suckers present in mature males, 1 to 2 on arms 1, 2 and 4 (not 3), at level of 10th to 11th suckers. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped, lateral limbs approximately 71-77% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 60 to 90% length of opposite arm. Ligula small with distinct calamus, ligula around 2.4% of arm length. Calamus present, one half to one third of ligula length. Hectocotylized arm with 57 to 67 suckers. Spermatophores of moderate length, around 40 mm, around 45% of mantle length, produced in moderate numbers (~10 to 50). Spermatophores unarmed. Eggs moderate to large type, 11 to 15 mm long, produced in small numbers (up to 135 in reported material). **Colour:** Live animals light brown with small iridescent spots scattered over dorsal surfaces of mantle and arms, two lines forming V shape with anterior opening on dorsal head and arm crown. Preserved animals typically cream coloured. False-eye spots (ocelli) absent. Sculpture: Skin scattered with low papillae on dorsal mantle and arm crown in location of iridescent spots. Primary papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; body weight to around 1 kg.

Geographical Distribution: East China Sea and South China Sea, mainly coastal waters of Zhejiang and Fujian Provinces. Also found in Guangdong and Guangxi Provinces (Fig. 114).
Habitat and Biology: All reported material collected from intertidal mudflats. Broader depth range unknown. Occurs on soft sediment substrates.

Interest to Fisheries: This species has become the focus of an emerging fishery in China because of its fast growth rate and its nutritional and high economic value.

Local Names: CHINA: Bai Youshao ("White-spotted octopus"); HONG KONG: Laai Por ("Muddy old woman").

Remarks: Voss and Williamson (1972) reported historical annual harvests of 50 tonnes of this taxon from Hong Kong under the name *Cistopus indicus*.

Cistopus taiwanicus Liao and Lu, 2009

Frequent Synonyms: None.

Misidentifications: *Cistopus indicus* (Rapp, 1835).

FAO Names: En — Taiwan pouchoctopus; Fr — Poulpe bouffant de Taiwan; Sp — Pulpo suave de Taiwan.

Diagnostic Features: Moderate-sized species. Arms long, around 5 times mantle length. **Dorsal arms longest** \(1 \gg 2 \gg 3 \gg 4\). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. **Water pouches present in oral surface of webs close to mouth, pores located adjacent to level of 3rd to 4th proximal sucker.** Two rows of suckers on each arm. In larger animals, around 134 to 161 suckers on each normal arm. **Enlarged suckers present in mature males, 2 to 4 on arms 1 and 2, at level of 18th to 21st suckers.** Gills with 9 to 10 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 70 to 75% length of opposite arm. Ligula tiny and blunt, around 0.5% of arm length. **Calamus absent.** Hectocotylized arm with 106 to 117 suckers. Spermatophores of moderate length, around 24 to 33 mm, around 30% of mantle length, produced in high numbers (~200 to 250). Spermatophores unarmed. Eggs small type, 5 to 7 mm long, ~4 to 5% of mantle length, produced in large numbers (~7 000). **Colour:** Live animals grey to dark maroon red on all dorsal surfaces produced by dense small chromatophores. Lateral and ventral mantle and arm crown iridescent green to pink, produced by iridophore layer in skin. Scattered papillae on dorsal mantle dark in some colour patterns. Preserved animals uniform grey to cream. False-eye spots (ocelli) absent. Iridescent white/silver rings around water pore openings in mature males, function unknown. **Sculpture:** Skin smooth with few scattered low papillae on dorsal mantle. Primary papillae absent. Skin ridge around lateral margin of mantle absent.
Size: Mantle length 140 mm; body weight to around 1.2 kg.

Geographical Distribution: Taiwan, off the west coast from Hsinchu to Pingtung counties (Fig. 116).

Habitat and Biology: Depths range from 10 to 75 m. A shallow subtidal species that occurs on soft sediment substrates. Captive animals readily bury in soft sediments.

Interest to Fisheries: Collected in coastal trawl fisheries of western Taiwan and frequently sold live in local fish markets. Considered of high value, including live sales to restaurants. Scale of catch unknown but due to presence in fish markets year round, the scale is likely to be moderate (C.C. Lu, pers. comm.).

Local Names: Unknown.

Eledone Leach, 1817

Eledone Leach, 1817, _The Zoological Miscellany: Being Descriptions of New, or Interesting Animals_, 3(30): 137.

Synonym: _Moschites_ Schneider, 1784; _Aphrodactopus_ Roper and Mangold (1992).

Type species: _Octopus moschata_ Lamarck, 1798.

Diagnostic Features: Medium to large species. Mantle ovoid, broad. Stylets present, cartilaginous. Arms short, stout, subequal, 2 to 3 times length of mantle. Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 30 to 40% of longest arm. Webs approximately subequal in depth; ventral and dorsal webs slightly shorter. Interbrachial web pouches absent. Suckers in one row. Enlarged suckers present in mature males of several species. Suckers near tips of arms of mature males modified into flattened plate-like ridges or elongate filaments (occupy < 2% of arm length). Funnel organ variable between species, as W-, UU- or \(\cap\)-shaped. Gills with 8 to 13 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm hectocotylized, shorter than opposite arm. Copulatory organ small, 3 to 4% of arm length, in form of wrinkled rounded tip with convoluted brain-like texture, or as simple ligula (no calamus). Spermatophores medium-sized, armed or unarmed. Eggs small to large depending on the species, attached to substrate singly or in short festoons. Colour patterns variable. False eye-spots (ocelli) absent. Body covered with fine, closely set warts. Skin ridge around lateral margin of mantle present or absent (depending on species).

Size: Mantle length to 250 mm; total length to 550 mm.

Geographical Distribution: Restricted to the cooler waters of Atlantic Ocean and southern Africa. See comments below on ’Eledone’ _palari_ from Australia (Fig. 124).

Habitat and Biology: Found at depths of 5 to 500 m with most species occurring at depths less than 300 m. Typically occurs on soft sediment substrates but also found on rubble and rocky reefs.
Remarks: At least 6 species occur in this genus, which is in critical need of revision. The Australian species ‘Eledone’ palari Lu and Stranks, 1992 is morphologically distinct and its generic placement requires review. It is treated here under unplaced *Eledone*, designated as ‘Eledone’ palari. The South African species *Aphrodoctopus schultzei* (Hoyle, 1910) was placed in its own genus by Roper and Mangold (1992), primarily on the grounds of 1 to 2 rows of suckers on each arm instead of the single row typical of *Eledone*. This zigzag contraction of sucker rows also occurs in preserved and live specimens of other *Eledone* species. All other morphological attributes of *A. schultzei* justify its return to the genus *Eledone*.

Eledone moschata (Lamarck, 1798)

Octopus moschatus Lamarck, 1798, *Bulletin des Sciences, par la Société Philomatique de Paris*, 2(5): 130. [Type locality: not stated; presumed to be Mediterranean Sea].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Musky octopus; Fr — Elédone musquée; Sp — Pulpo almizclado.

Diagnostic Features: Moderate-sized muscular species. Arms of moderate length, 2.5 to 3 times mantle length. Arms approximately equal in length, ventral pair slightly shorter (typically 1=2=3>4). Arm autotomy at distinct plane absent. Webs deep, deepest are over 30% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arm pairs shallowest. Web margins thin and transparent, extend to arm tips. Interbrachial web pouches absent. **One row of suckers on each arm.**

Around 120 suckers on each normal arm in larger females. Mature males have modified suckers on arm tips in the form of paired transverse ridges, i.e. each non-hectocotylized arm has around 90 normal suckers followed distally by 30 pairs of low ridges. Enlarged suckers present in larger mature males, up to 8 on arms 2 to 4, starting around the 4th proximal sucker. Gillis with 11 to 12 lamellae per demibranch. Funnel organ *I*-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Very large crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 85 to 90% the length of opposite third arm. **Ligula appears glandular with brain-like convolutions, around 2% of arm length. Calamus absent.** Hectocotylized arm with 63 to 66 suckers. Spermatophores short and squat, around 15 mm, around 20% of mantle length, produced in large numbers (~150). Spermatophores unarmed with a very short ejaculatory apparatus. Eggs large, around 8 to 10 mm, around 12% of mantle length. **Colour:** Grey-brown with rows of large black spots on the dorsal mantle and arm crown. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of low rounded patches. Iridescent green to gold lines along arm margins in live animals.

Size: Mantle length to 140 mm; total length to 400 mm.
Geographical Distribution: Mediterranean Sea and Gulf of Cadiz (Atlantic Ocean), north to about 40°N (Fig. 118).

Habitat and Biology: Depths range from 10 to 300 m. This coastal species occurs on muddy substrates. Observations of captive animals suggest night and crepuscular feeding activity. The diet consists primarily of crustaceans with captive animals generally rejecting mollusc prey. Females lay up to 500 eggs in small clusters joined at the base of the egg stalks, each containing 3 to 10 eggs. The large eggs hatch into benthic young. Two species of dicyemid parasites, *Dicyema moschatum* and *Dicyemennea eledones*, are present in the renal coelom. Species of three genera of cestodes, *Acanthobothrium*, *Scolex* and *Nybelinia*, are reported from the digestive tract. The copepod, *Pennella varians*, often is found on the gills and in the mantle cavity.

Interest to Fisheries: *Eledone moschata* is fished throughout the Mediterranean Sea, being particularly important in the Adriatic Sea. As this species is caught and marketed with the co-occurring *E. cirrhosa* there are no catch statistics specifically for *E. moschata*.

Local Names: ITALY: Moscardino muschiato, Moscardino rosso; MALTA: Karnita tal misk; MONACO: Muscardin; TUNISIA: Bou msik; YUGOSLAVIA: Muzgavac.

Remarks: The common name of this species, musky octopus, comes from the pungent, musky odour given off by animals when they are removed from the water. The smell derives from secretions of glands in the skin. The function of this secretion is unknown. Mangold (1983b) reviewed the biology of this species. A recent update on the biology, ecology, fishery and distribution in European waters is currently in press (Jereb et al., in press).

Eledone cirrhosa (Lamarck, 1798)

Fig. 119

Eledone cirrhosa Lamarck, 1798, *Bulletin des Sciences, par la Société Philomatique de Paris*, 2(5): 130. [Type locality: not specified; presumed to be Mediterranean Sea].

Frequent Synonyms: *Octopus aldrovandi* Montfort, 1802.

Misidentifications: None.

FAO Names: En — Horned octopus; Fr — Elédone commune; Sp — Pulpo blanco.

Diagnostic Features: Moderate-sized muscular species. Arms short, 2.5 to 3 times mantle length. Arms approximately equal in length, ventral pair slightly shorter (typically 3:2:1:4). Arm autotomy at distinct plane absent. Webs deep, deepest to 40% of arm length. Web approximately equal in length; web sectors of dorsal and ventral arms slightly shallower. Web margins extend to arm tips. Interbrachial web pouches absent. One row of suckers on each arm. In larger females, around 120 to 140 suckers on each normal arm. Mature males have a series of modified suckers on non-hectocotylized arm tips in the form of transverse ridges, the free ends of which form free cirri. Enlarged suckers present in mature males and females, 1 to 3 obviously enlarged on arms 1 to 3, starting around the 4th proximal sucker. Gills with 11 to 13 lamellae per demibranch. Funnel organ W-shaped, outer limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, length around 70 to 80% of opposite arm length. **Ligula short with simple groove, 2 to 4% of arm length. Calamus absent.** Hectocotylized arm with around 65 suckers.

Size: Mantle length to 250 mm; total length to 550 mm; body weight to 1.2 kg.

Geographical Distribution: Iceland to Mediterranean Sea, south to about 33 °N (Fig. 120).

Habitat and Biology: Depths range from 5 to 500 m. *Eledone cirrhosa* occurs most commonly at depths between 60 to 120 m on the continental shelf throughout its range. The species occurs on a wide range of habitats from sand and mud, to broken rock and rocky reefs. It captures a wide range of prey including shrimps, lobsters, crabs, brittlestars, polychaetes, gastropods, fishes and other cephalopods. In the western Mediterranean, spawning occurs between May and September with a peak in July. Females lay up to 1 500 large eggs that take around 100 days to hatch. Based on egg size, hatchlings are presumed to be benthic. In the western Mediterranean, lifespan appears to be 2 to 3 years and longer in colder waters further north in the eastern Atlantic. Two species of dicyemids, *Dicyemennea eledones* and *D. lameerei*, plus the ciliate, *Chromidina coronata*, inhabit the renal coelom of this species. An unidentified digene and three cestode
genera, *Scolex*, *Phyllobothrium* and *Eutetrarhynchus* have been reported from the digestive tract. A fungus, *Cladosporium sphaerospermum*, and a fungus-like protozoan, *Labyrinthula*, have been reported from the skin of *E. cirrhosa*. Although these organisms produce ulcers in the skin of laboratory animals, it is not known at present whether they should be considered to be pathogens or merely opportunistic saprophytes.

Interest to Fisheries: *Eledone cirrhosa* is harvested on a large scale in the Mediterranean Sea where catch statistics report it combined with the smaller catch of *E. moschata*. These species are caught primarily with bottom trawls and to a lesser extent with seines. The best catches occur between July and December.

Local Names: GREECE: Moscoctapoda; ITALY: Moscardino bianco; TUNISIA: Qarnit; UK: Curled octopus.

Eledone massyae Voss, 1964

Frequent Synonyms: Moschites brevis Massy, 1916.

Misidentifications: None.

FAO Names: En — Combed octopus; Fr — Elédone peigne; Sp — Pulpo desflecado.

Diagnostic Features: Moderate-sized muscular species. Arms short, around 1.7 to 2.5 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, deepest around 25 to 37% of arm length. Web deepest on lateral arms; webs between ventral arms slightly shallower. Interbrachial web pouches absent. One row of suckers on each arm. In larger females, around 57 suckers on each normal arm. Mature males have a series of modified suckers on last 5 to 6 mm of non-hectocotylized arm tips in the form of two rows of thin cirri. Enlarged suckers absent. Gills with 8 to 10 lamellae per demibranch. Funnel organ UU-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, length around 65 to 90% of opposite arm length. Ligula appears glandular, with brain-like convolutions, around 6% of arm length. Calamus absent. Hectocotylized arm with around 24 suckers. Spermatophores produced in low numbers, small, around 17 mm, length around 35% of mantle length. Spermatophores unarmed with a very short ejaculatory apparatus. Eggs large. Colour: Pale purple red in colour with scattered white spots and a pale bar across the head. False-eye spots (ocelli) absent. Sculpture: Skin texture of fine round papillae interspersed by a few larger, simple warts over mantle and arm crown. 2 to 4 branching papillae over each eye. Skin ridge present around lateral margin of mantle. Size: Mantle length to 75 mm; total length to at least 150 mm.

Geographical Distribution: Southeast coast of South America from Brazil to Argentina (20°S to 43°S) (Fig. 122).

Habitat and Biology: Depths of occurrence range from 30 to 300 m. Little is known of the biology of this species. Most specimens have come from trawl fisheries on sandy and muddy substrates. This species is likely to move to rocky substrates of the upper slope to spawn and breed. Off Cabo Frio, specimens move to shallow water only in spring and summer, with the upwelling of the South Atlantic Central Water. An undescribed species of the protozoan parasite, Aggregata, occurs in the digestive tract of this host species. Scolex polymorphus, a cestode parasite has been found in the wall of the caecum.

Interest to Fisheries: This octopus is taken as bycatch in trawl fisheries in Brazil and Argentina.

Local Names: Unknown.

‘Eledone’ palari Lu and Stranks, 1992

Eledone palari Lu and Stranks, 1992, Bulletin of Marine Science, 49(1-2): 73. [Type locality: Eastern Australia, Queensland, east of North Stradbroke Island, 27°35’S, 153°50’E].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Spongetip octopus; Fr — Poulpe éponge; Sp — Pulpo esponja.

Diagnostic Features: Soft-bodied, squat species with short arms. Body flattened. Stylets large and very robust (length ~30% of mantle length). **Arms 1.5 to 2.5 times mantle length**, approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, 38 to 67% of arm length. Interbrachial web pouches absent. **Suckers in single row.** No sucker enlargement in either sex. Gills with 5 lamellae per demibranch. Funnel organ UU-shaped. Radula with 7 rows of teeth plus marginal plates, rachidian tooth with 2 to 3 lateral cusps per side, in asymmetrical seriation. Distinct crop present as side-branch off oesophagus. **Ink sac present. Ink duct opens directly to exterior, anterior to anus.** Anal flaps absent. Right third arm hectocotylized, shorter than opposite arm (70 to 100%). **Ligula well developed,** 5 to 9% of hectocotylized arm length, groove open with weak transverse ridges. Calamus well developed, 50 to 75% of ligula length. Hectocotylized arm with 31 to 50 suckers. **All other arm tips of mature males bear pads of special spongy tissue of unknown function.** Spermatophores robust, about two thirds of length of mantle. Eggs large, to 16 mm long. **Colour:** Live animals yellow with iridescent green sheen. Cream to brown on upper surfaces, slightly lighter ventrally. **Sculpture:** Small, low, rounded papillae over upper surfaces. Around four rows of larger dark red brown papillae on dorsal mantle and arm crown. Thick skin ridge present around lateral margin of mantle.

Size: Mantle length to 76 mm; total length to 180 mm.

Geographical Distribution: Circum-Australia and southern Indonesia (Fig. 124).

Habitat and Biology: Depths range from 200 to 600 m. This species is known only from trawl specimens. The function of the male spongy arm tip modifications is unknown.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: The distinctive morphology of this species, particularly the male arm tip spongiform modifications and the distinct ligula and calamus, warrants review of its generic placement within *Eledone*.

Literature: Lu and Stranks (1992), Norman et al. (1997).
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Eledone caparti Adam, 1950

Size: Mantle length to 47 mm.

Geographical Distribution: West Africa, Mauritania to Angola. Depths range from 64 to 146 m.

Literature: Nesis and Nigmatullin (1978), Nesis (1987).

Eledone gaucha Haimovici, 1988

Size: Mantle length to 65 mm.

Geographical Distribution: Southern Brazil, off Rio Grande do Sul, between 30º to 34ºS. Depths range from 52 to 140 m.

Eledone schultzei Hoyle, 1910

Size: Mantle length to 100 mm; total length to 500 mm; body weight to 350 g.

Geographical Distribution: Southeastern Atlantic, southwest Africa from Namibia to South Africa, 15º to 34ºS and 15º to 24ºE. Depths range from 0 to 18 m.

Literature: Roper and Mangold (1992; as *Aphrodoctopus schultzei*), Villanueva and Sánchez (1993; as *Eledone nigra*), Voight (1993b; as *Aphrodoctopus schultzei*), Smith (1999), Norman (2000; as *Aphrodoctopus schultzei*).
Enteroctopus Rochebrune and Mabille, 1889

Type Species: *Octopus megalocyathus* Gould, 1852, by subsequent designation of Hochberg (1998).

Diagnostic Features: Large to very large coastal to deep-water species. Mantle muscular and ovoid. Stylets present, non-mineralized. Arms long and muscular, typically 3.5 to 5 times mantle length. Arms of similar length; dorsal arm pairs slightly longer in some species. Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 20 to 30% of longest arm. Webs deepest on lateral arms; webs between ventral arms shallowest (typically C>D>B>A>E). Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers present in some species, several pairs (typically 3 to 5 pairs) on all arms of mature males and females, larger in males. Funnel organ W-shaped, outer limbs about 1/2 the length of inner limbs. Gills with 12 to 15 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands of moderate size. Distinct crop as side-branch off oesophagus absent or weakly developed. Ink sac present. Anal flaps present but tiny. Third right arm of male hectocotylized with large elongate copulatory organ; ligula extremely long and narrow (typically >20% of arm length). Calamus minute (typically <10% of ligula length). Spermatophores extremely large, their length up to several times mantle length. Eggs small, deposited in festoons. Colour patterns typically red-brown to orange, uniform to mottled. False eye-spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). Skin soft, semi-gelatinous, with distinct longitudinal wrinkles or folds dorsally and laterally, patch and groove system present. Conspicuous primary papillae present on mantle and head, 4 elongate papillae in diamond pattern on mid-dorsal mantle. one to 2 large flap-like primary papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 600 mm, total length to at least 3 m.

Geographical Distribution: Temperate and cooler waters of Indian and Pacific Oceans in both hemispheres, and southern Atlantic and indina Ocean.

Habitat and Biology: This species occurs on reef and soft sediment substrates from intertidal habitats to at least 1 500 m deep.

Remarks: Three or more species occur in temperate waters in the Pacific, Indian and Atlantic Oceans. In 1889, Rochebrune and Mabille erected the genus *Enteroctopus* to include the new species *E. membranaceus*. They also placed *E. megalocyathus* (Gould, 1852) in the same genus. Because *E. membranaceus* is the first-named species listed in the new genus, it has been regarded by some workers as the type species of the genus (by order of precedence). The name *E. membranaceus* has been considered as a *nomen dubium* by many authors because: 1) the original description is insufficient to identify individuals to species; 2) the holotype was an immature specimen; and 3) the type no longer exists. Robson (1929) considered it a junior synonym of *E. megalocyathus*. We agree with this decision and herein transfer the type species status for *Enteroctopus* to the second-named species in the genus, *E. megalocyathus* Gould, 1852.

Literature: Strugnell et al. (2005).

Enteroctopus megalocyathus (Gould, 1852)

Octopus megalocyathus Gould, 1852, *United States Exploring Expedition during the Years 1838-1842*, 12: 471. [Type locality: Chile, Tierra del Fuego Archipelago, Bahia Nassau].

Frequent Synonyms: *Octopus patagonicus* Lonnberg, 1899; *Enteroctopus zealandicus* Benham, 1944.

Misidentifications: None.

FAO Names: En — Patagonian giant octopus; Fr — Poulpe géant de Patagonie; Sp — Pulpo gigante de Patagonia.

Diagnostic Features: Large, muscular species. Arms long, 3.5 to 5 times mantle length. Lateral arms slightly longer (typically 2>3>1>4). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 18 to 23% of arm length. Webs equal in length for lateral and dorsal arm pairs; webs between ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 180 to 210 suckers on each normal arm. Enlarged suckers present in mature males and females, 8 to 10 on all arms, starting around the 14th proximal sucker. Gills with 11 to 13 lamellae per demibranch. Funnel organ W-shaped, outer limbs distinctly

122 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 3
shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as a side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of males hectocotylized, its length 70 to 90% of opposite arm length. Ligula very long and narrow, 11 to 22% of hectocotylized arm length. Calamus tiny, 10 to 15% of ligula length. Hectocotylized arm with 78 suckers. Spermatophores very long, up to 3 times mantle length, produced in low numbers (~3). Eggs large, around 17 mm. Colour: Reddish purple dorsally, paler ventrally. Suckers whitish. False-eye spots (ocelli) absent. Sculpture: Skin loose and folded in parallel longitudinal folds or flaps. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 190 mm; total length to around 1 m.

Geographical Distribution: Southeastern Pacific to southwestern Atlantic; Chile to Argentina (Rio del Plata) (Fig. 126).

Habitat and Biology: Depths range from 5 to 25 m. Along the Patagonian coast the species lives in caves and large crevices in the shallow subtidal zone. Middens around dens consist principally of the shells of crabs. In some areas bivalve molluscs (Chlamys) are the primary prey. During the breeding season this species migrates offshore into deeper waters. The large eggs of this species presumably hatch into benthic young. Enteroctopus megalocyathus is preyed on by the South American sea lion, Otaria flavescens.

Interest to Fisheries: This species supports an extensive artisanal seasonal fishery off the coast of Argentina.

Local Names: Unknown.

Remarks: Molecular analysis (Hudelot, 2000) and morphological studies indicate that Enteroctopus magnificus and E. zealandicus Benham, 1944 may be conspecific.

Enteroctopus dofleini (Wülker, 1910)

Polypus dofleini Wülker, 1910, Abhandlungen der mathematische-physikalische Klasse der Koeniglich Bayerischen Akademie der Wissenschaften, 3 (Suppl. 1): 7. [Type locality: Northwestern Pacific Ocean, Japan, Hokkaido Island].

Frequent Synonyms: *Octopus punctatus* Gabb, 1862; *Polypus apollyon* Berry, 1912; *Polypus gilbertianus* Berry 1912, *Octopus dofleini martini* Pickford, 1964.

Misidentifications: None.

FAO Names: En — North Pacific giant octopus; Fr — Poulpe géant; Sp — Pulpo gigante.

Diagnostic Features: Massive, muscular species. Arms of moderate length, 3 to 5 times mantle length. **Arms almost equal in length, ventral pair shortest (typically 2=1>3>4).** Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 18 to 28% of arm length. Webs on lateral arms slightly deeper; web sectors of dorsal and ventral arm pairs shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, over 500 suckers on each normal arm. Suckers large but none conspicuously enlarged. Gills with 12 to 15 lamellae per demibranch. Funnel organ W-shaped, outer limbs approximately half the length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Anal flaps present. Right third arm of males hectocotylized; length 80 to 100% of opposite arm length. **Ligula very long, slender and pointed, 20 to 24% of hectocotylized arm length.** Calamus short, 5 to 8% of ligula length. Hectocotylized arm with around 100 suckers. Spermatophores extremely long, in excess of 1 m long, around 3.5 times mantle length, produced in low numbers (~2 to 10). Spermatophores unarmed. Eggs small relative to body size, around 6 to 8 mm, laid in festoons. **Colour:** Typically orange to red-brown base colour with fine irregular dark lines scattered over dorsal surfaces. Animals in lairs sometimes show grey colour pattern with short dark red-brown bar through eye. False-eye spots (ocelli) absent. **Sculpture:** Skin appears loose in live animals, typically wrinkled into parallel longitudinal ridges or folds. Four large papillae in diamond arrangement on dorsal mantle. Two large flattened papillae above each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to at least 600 mm; total length to more than 3 m; body weight greater than 180 kg.

Geographical Distribution: North Pacific Ocean from Japan (including Okhotsk and Bering Seas) to Baja California, Mexico (Fig. 128).

Fig. 127 *Enteroctopus dofleini*

Fig. 128 *Enteroctopus dofleini*
Habitat and Biology: Depths range from 0 to 1,500 m. *Enteroctopus dofleini* typically occurs in dens on rocky reefs or boulder areas with sand-shell substrate; the same den is utilized for up to several months. Individuals also have been observed in sand and mud habitats. At the northern end of its range, it occurs commonly on reefs in the intertidal zone. At the southern end of its range it has been recorded to depths over 1,500 m. It is primarily night active, emerging to hunt for a wide diversity of invertebrate and vertebrate prey. Diet consists mainly of bivalve and gastropod molluscs and decapod crustaceans. Shelled prey are drilled. Other prey includes echinoderms, brachiopods, assorted fishes, shark eggs, and even seabirds. Primary predators of this octopus are large fishes, sharks, seals, sea lions and even land mammals (mink). *Enteroctopus dofleini* migrates offshore into deeper water in summer in order to mate. In autumn and winter animals migrate back inshore where eggs are spawned. Females lay up to 100,000 small eggs in festoons in rock crevices, typically at depths of less than 50 m. Egg laying has been reported throughout the year. Egg development time averages 5 to 6 months, depending on water temperature. Hatchlings are planktonic and are thought to spend 1 to 2 months in the plankton. Acoustic radio tracking of this species off Japan found individuals remained around (and fed from) gill nets. This giant species typically is shy and retiring in the presence of humans, although on occasions individuals have been observed to be aggressive toward divers, in several cases resulting in non-lethal bites.

Interest to Fisheries: *Enteroctopus dofleini* is an important commercial resource for bait and food wherever it occurs in abundance. It is targeted in relatively large fisheries in the northeast Pacific and off Japan. It is typically harvested using pots or traps. Dive harvests off British Columbia account for most of the catch of this species. Larger animals are popular as display animals in public aquaria.

Local Names: JAPAN: Mizudako.

Remarks: The taxonomy of the giant octopuses of the north Pacific is in need of thorough review. It is thought that the populations currently being treated under the name *Enteroctopus dofleini* may represent a complex of species that are yet to be resolved (Hochberg, 1998).

Enteroctopus magnificus (Villanueva, Sánchez and Compagno, 1992)

Frequent Synonyms: None.

Misidentifications: *Octopus dofleini* Wülker, 1910.

FAO Names: En — Southern giant octopus; Fr — Poulpe géant méridional; Sp — Pulpo gigante austral.

Diagnostic Features: Large, muscular species. Arms of moderate length, 3.5 to 5 times mantle length. Arms almost equal in length, first two arm pairs slightly longer (typically 2=1>3=4). Arm autotomy at distinct plane absent. Webs of moderate depth,
deepest around 20% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Web margins extend along majority of arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. Up to 300 suckers on each normal arm in larger animals. Suckers large; conspicuously enlarged suckers absent. Gills with 12 to 15 lamellae per demibranch. Funnel organ W-shaped, lateral limbs conspicuously shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac present. Anal flaps present but minute. Right third arm of males hectocotylized, length 80 to 95% of opposite arm length. Ligula very long and pointed, 14 to 22% of hectocotylized arm length. Calamus small, 5 to 19% of ligula length. Hectocotylized arm with 92 to 126 suckers. Spermatophores very long, to 870 mm, 1.6 to 2.8 times mantle length, produced in low numbers (to 8). Eggs small, around 6 to 8 mm. **Colour:** Dorsal surfaces of live animals variable from yellowish ochre to mottled cream and brown to uniform chocolate brown; paler ventrally. Edges of longitudinal skin folds frequently white. False-eye spots (ocelli) absent. **Sculpture:** Skin soft and loose, erected as large longitudinal folds and smaller papillae. Single large papilla present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 360 mm; total length to 1.6 m; body weight to at least 11 kg.

Geographical Distribution: Southern Africa from Lüderitz, Namibia to Port Elizabeth, South Africa (Fig. 122).

Habitat and Biology: Depths range from 2 to 560 m. Limited biological information is available for this species. This large muscular octopus primarily has been collected by trawls on soft sediment habitats. This octopus appears to be a generalist feeder, preying on lobsters, crabs (including hermit crabs), amphipods, euphausid shrimps, gastropods, polychaetes, fishes (including hagfish) and octopuses. Females produce up to 20 000 small eggs that presumably hatch into planktonic young.

Interest to Fisheries: Harvests of this species are small, primarily as bycatch from finfish trawl fisheries. As it preys on spiny lobster, it is collected as bycatch in lobster fisheries in South Africa.

Local Names: Unknown.

Literature: Villanueva et al. (1992), Villanueva (1993), Smith (1999), Groeneveld et al. (2006).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Enteroctopus zealandicus (Benham, 1944)

Size: Mantle length to 270 mm; total length to around 1.4 m.

Geographical Distribution: New Zealand, South Island and associated plateaus and islands (Chatham, Antipodes, Stewart, Auckland, Campbell, Macquarie islands). Depth range from intertidal areas to at least 500 m.

Literature: O’Shea (1999), Childerhouse et al. (2001), Meynier et al. (2009).
Euaxoctopus Voss, 1971

Type Species: Euaxoctopus panamensis Voss, 1971; by monotypy.

Diagnostic Features: Small slender and elongate shallow-water species. Mantle thin-walled and amphora-shaped. Stylets present, non-mineralized. Arms long and thin, length 5 to 11 times mantle length. Second arm pair always the longest, typically 2>3>1>4. Arms easily detached; arm autotomy probable. Webs very shallow, deepest <10% of longest arm. Funnel organ V-shaped. Gills with 7 to 13 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Skin with two primary papillae on mid-dorsal mantle (one in the centre of each crescent spot). Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 32 mm; total length to around 200 mm.

Geographical Distribution: Endemic to both coasts of the Panamanian Isthmus, Central America.

Habitat and Biology: Unknown, shallow in two species. The only known specimen of *E. scalenus* was collected swimming over deep water (>2 km).

Remarks: Three small poorly known species.

Literature: Voss (1971a).

Euaxoctopus panamensis Voss, 1971

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Crescent octopus; Fr — Poulpe croissant; Sp — Pulpo medialuna.

Diagnostic Features: Small, elongate species with long arms. Long, fine arms, taper to delicate tips, their length 7 to 8 times mantle length. Second arms longest (2>3>1>4). Arms frequently broken, likely to show autotomy at a distinct plane. Webs very shallow, deepest less than 10% of arm length. Web sectors approximately equal. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 100 to 140 suckers on each normal arm. Enlarged suckers absent. Gills with 11 to 13 lamellae per demibranch.
Funnel organ V V-shaped, slender limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Left third arm of males hectocotylized, length around 30 to 40% of opposite arm. Ligula small, 6 to 9% of hectocotylized arm length. Calamus large, 30 to 55% of ligula length. Hectocotylized arm with 51 suckers. Eggs small, around 1.5 mm. Colour: Live animal colours unknown. Preserved material grey-cream in colour with darker mottling on dorsal surfaces. Two conspicuous crescent-shaped, dark spots on dorso-lateral mantle, each bordered by light bluish or pink line (iridescent in life?). Sculpture: Skin in preserved material with faint patch and groove texture. One large papilla in middle of each crescent plus one papilla on mid-dorsal mantle between crescents. Single large papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 32 mm; total length to around 200 mm.

Geographical Distribution: Pacific Ocean: Costa Rica, Gulf of Panama from Panama Canal to Ecuador (Fig. 132).

Habitat and Biology: Depths range from 30 to 40 m; broader depth range unknown. An offshore species restricted to soft mud substrates on the continental shelf. Small eggs hatch into planktonic young with long second arms. Paralarvae have been captured offshore from Costa Rica. Nothing else is known of biology or behaviour.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Euaxoctopus pillsburyae Voss, 1975

Size: Mantle length to 30 mm; total length to 200 mm.

Geographical Distribution: Tropical western Atlantic Ocean.

Habitat and Biology: Depth range from 20 to 60 m.

Euaxoctopus scalenus (Hoyle, 1904)

Size: Mantle length to 17 mm; total length to 120 mm.

Geographical Distribution: Known only from type specimens.

Habitat and Biology: Type captured swimming in midwater over a bottom depth of 2 298 m.

Literature: No additional literature.
Galeoctopus Norman, Boucher and Hochberg, 2004

Type Species: *Galeoctopus lateralis* Norman, Boucher-Rodoni and Hochberg, 2004.

Diagnostic Features: Small, muscular, deep-water octopus. Mantle round to squarish. Stylets present, long, chitinous (non-mineralized). Arms of moderate length, 2.7 to 4.4 times mantle length. Arms approximately equal in length, dorsal pair slightly shorter. Arm autotomy at distinct plane absent. Webs deep, deepest around 30% of longest arm. Webs approximately equal in depth; dorsal web slightly shorter. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ W-shaped. Gill with 10 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm of male hectocotylized, significantly shorter than opposite arm (~40 to 60%). Ligula large with unique barrel-shape (11 to 20% of hectocotylized arm length), with large calamus (>55% of ligula length). Ligula groove enclosed deep within tip of ligula, opening reduced to transverse crescent-shaped mouth, floor of groove with paired raised papillae. Spermatophores large (~ equal to mantle length) and unarmed. Females with swollen distal oviducts. Egg size unknown. Colour pattern mottled orange to red-brown on dorsal surfaces of body and arms. False eye-spots (ocelli) absent. Skin texture of numerous raised rounded papillae on dorsal surfaces, larger ones being stellate. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 37 mm; total length to 165 mm.

Geographical Distribution: Central and southwest Pacific Ocean.

Habitat and Biology: Deep-water species from tropical latitudes at depths between 200 and 400 m.

Remarks: Single deep-water species known from limited trawl material from the central and southwest Pacific Ocean.

Literature: Norman (2004a).

Galeoctopus lateralis Norman, Boucher and Hochberg, 2004

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Shark club octopus; Fr — Poulpe armé; Sp — Pulpo armado.

Diagnostic Features: Small, moderately-muscular species. Arms short, 2.7 to 4.4 times mantle length. Arms approximately equal in length, dorsal pair slightly shorter. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Webs approximately equal in depth; dorsal sector slightly shorter. Web margins poorly developed. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 130 to 150 suckers on each normal arm. **Enlarged suckers absent.** Gill with 10 to 11 lamellae per demibranch. Funnel organ W-shaped. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Posterior salivary glands large, as large as buccal mass. Third right arm of males hectocotylized, length about 40 to 60% of opposite arm. **Distinctive fleshy ligula with deep transverse groove containing raised tooth-like lugs. Ligula large, 11 to 20% of arm length. Calamus over half ligula length, 57 to 76% of ligula length. Hectocotylized arm with 35 to 43 suckers. Spermatophores large (~ equal to mantle length) and produced in low numbers.** Egg size unknown. **Colour:** Mottled orange-brown with three irregular transverse bands across arm crown. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of numerous small, rounded...
papillae interspersed by larger papillae roughly stellate in shape. Single large and several smaller papillae over each eye. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 37 mm; total length to 165 mm.

Geographical Distribution: Central and southwest Pacific Ocean (Fig. 134).

Habitat and Biology: Depths range from 200 to 400 m. The biology of this deep-water octopus is poorly known. The presence of a lateral ridge on the mantle is a character found in many octopuses that live on soft sediment substrates. Stomach contents contained remains of fishes and crustaceans.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Norman *et al.* (2004a).

Graneledone Joubin, 1918

Type Species: *Eledone verrucosa* Verrill, 1881.

Diagnostic Features: Robust, deep-water species. Mantle spherical to slightly ovoid. Stylets present, non-mineralized. Arms moderate to long, length 2 to 4 times mantle length. Arms subequal in length. Arm autotomy at distinct plane absent. Webs variable between species, deepest 15 to 40% of longest arm. Webs approximately equal in depth. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent. Funnel organ V V-shaped. Gills with 5 to 8 lamellae per demibranch. Radula of most species with 9 elements, 7 rows of teeth plus marginal plates. Some specimens of *Graneledone challengeri* have been reported with an extra pair of lateral teeth elements. *Graneledone antarctica* can have 5 elements (no first laterals, no marginal plates) or 7 elements (no marginal plates). Posterior salivary glands small (35 to 40% of length of buccal mass). Oesophagus with swelling only; no distinct crop. Ink sac absent. Anal flaps absent. Third right arm of males hectocotylized with arm tip clearly differentiated into ligula and calamus. Ligula short to moderate (3 to 8% of arm length) in most species but may be longer in *G. yamana* (LLI 5 to 14).
Calamus long (30 to 60% of ligula length) in most species, very long in *G. yamana* (50 to 100%). Spermatophores long (1.2 to 1.8 times mantle length), unarmed. Eggs large, attached to a secreted solid mass in some species. Colour pattern of relatively uniform grey to pink-purple, often darker around the eye rim and on the oral surface of the webs and arms. Skin of dorsal mantle, head, eyes and bases of arms 1 and 2 covered with permanent rosette-like clusters of raised rugose cartilaginous (wart-like) tubercles. Tubercle expression variable, depending on preservation techniques. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 170 mm; total length to 683 mm.

Geographical Distribution: Deep waters of southern hemisphere and northern Pacific Ocean.

Habitat and Biology: Deep water species attaining depths of at least 3 000 m.

Remarks: At least 10 deep-water species from all oceans. Freezing specimens of this genus can mask the cartilaginous skin inclusions, giving the impression of smooth skin. This preservation artifact has lead to some confusion and resulted in placement of some members of this genus into other genera. Strugnell et al. (2008) used molecular evidence to demonstrate that members of this genus arose from shallow-water Antarctic ancestors and moved into deeper habitats along an isothermic gradient from southern polar waters.

Graneledone verrucosa (Verrill, 1881)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Warty octopus; Fr — Poulpe verruqueux; Sp — Pulpo verrugoso.

Diagnostic Features: Moderate-sized, robust species covered with raised cartilage-like warts. Arms short, 2.3 to 3.5 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 30% of arm length. Webs approximately equal in depth. Web margins extend to arm tips. Interbrachial web pouches absent. **One row of suckers on each arm.** In larger animals, around 70 to 90 suckers on each normal arm. Enlarged suckers absent. Gills with 6 to 8 lamellae per demibranch. **Funnel organ V V-shaped.** Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac absent. Right third arm of males hectocotylized, length around 85% length of opposite arm length. Ligula of moderate size, around 5% of arm length. Calamus large, around 50% of ligula length. Hectocotylized arm with 42 to 45 suckers. Spermatophores large (~1.5 x ML) and produced in low numbers. Eggs large, to 17 mm. **Colour:** Dark purplish-brown with darker undersides. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of large raised patches scattered over dorsal and lateral surfaces. Each patch contains clusters of 3 to 7 cartilage-like white knobs. Four to 5 larger patches present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to at least 110 mm; total length to 500 mm.
Geographical Distribution: North Atlantic Ocean (Fig. 136).

Habitat and Biology: Depth range from 850 to 2 300 m. Little is known of the biology of this deep-water octopus. Barratt et al. (2007) investigated fecundity and reproductive strategy of this species.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Collins et al. (2001b), Allcock et al. (2003a), Barratt et al. (2007).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY A FEW RECORDS EXIST

Graneledone antarctica Voss, 1976

Size: Mantle length to 45 mm.

Geographical Distribution: Southern Ocean, Antarctica, Ross Sea.

Habitat and Biology: Known depth 2 341 m.

Graneledone boreopacifica Nesis, 1982

Size: Mantle length to 145 mm.

Geographical Distribution: A widely distributed boreal species known to occur in the North Pacific off Japan, in the Sea of Okhotsk off Russia, and off the west coast of the United States from Alaska to southern California.

Habitat and Biology: Depth range 1 000 to 3 000 m.

Remarks: *Graneledone pacifica* Voss and Pearcy, 1990 is a synonym (Hochberg, 1998).

Graneledone challengeri (Berry, 1916)

Size: Mantle length to 145 mm; total length to 600 mm.

Geographical Distribution: Kermadec Islands, eastern New Zealand and Chatham Rise.

Habitat and Biology: Depth range 766 to 1 500 m.

Literature: O’Shea (1999).

Graneledone gonzalezii Guerra, González and Cherel, 2000

Size: Mantle length to 84 mm; total length to 335 mm; body weight to 344 g.

Geographical Distribution: Off Kerguelen Island.

Habitat and Biology: Depth range 500 to 540 m.

Literature: Roura *et al.* (2009).

Graneledone macrotyla Voss, 1976

Size: Mantle length to 35 mm.

Geographical Distribution: Known only from type locality; Atlantic Ocean off Falkland Islands.

Habitat and Biology: Depth range 1 647 to 2 044 m.

Literature: Kubodera and Okutani (1994).
Graneledone taniwha taniwha O’Shea 1999

Size: Mantle length to 170 mm; total length to 660 mm.

Geographical Distribution: New Zealand and Chatham Rise to Auckland and Campbell Islands.

Habitat and Biology: Depth range 447 to 1 157 m.

Literature: O’Shea and Kubodera (1996; as *Graneledone* sp.).

Graneledone taniwha kubodera O’Shea 1999

Graneledone taniwha kubodera O’Shea 1999, *NIWA Biodiversity Memoir*, 112. [Type locality: Bounty Plateau, off New Zealand].

Size: Mantle length to 147 mm; total length to 683 mm.

Geographical Distribution: Bounty Plateau, Campbell Rise, off New Zealand.

Habitat and Biology: Depth range 500 to 840 m.

Literature: O’Shea and Kubodera (1996; as *Graneledone* sp.).

Graneledone yamana Guerrero-Kommritz, 2000

Size: Mantle length to 80 mm.

Geographical Distribution: Southwest Atlantic from 26° to 55°S.

Habitat and Biology: Depth range 90 to 1 000 m.

Literature: No additional literature.
Grimpella Robson, 1928

Type Species: *Grimpella thaumastocheir* Robson, 1928

Diagnostic Features: Moderate-sized muscular species. Mantle round to ovoid. Styles absent. Arms of moderate length, ~4 times mantle length. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest up to 32% of arm length. Web sectors approximately equal in depth. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers present in mature males, 2 to 3 on all arms. Funnel organ UU-shaped, limbs of approximately equal length. Gills with 7 to 9 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate to large, ~1.5 times buccal mass length. Distinct crop present as side-branch off oesophagus. Ink sac absent. Anal flaps absent. Third right arm of males hectocotylized, around 70% length of opposite arm. Ligula large and robust, length 5 to 7% of arm length. Calamus very large and pointed, length around 80% of ligula length. Spermatophores of moderate length, unarmored with swollen sperm reservoir containing few coils. Eggs large, attached singly. Colour uniform grey purple to deep velvet red with iridescent green sheen. Skin with regularly spaced low rounded papillae. Larger papillae absent over eyes. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to around 250 mm.

Geographical Distribution: Restricted to southern Australia.

Habitat and Biology: Occurs on rocky substrates 0 to 420 m.

Remarks: Single shallow-water to mid depth species from southern Australia. The relationship between this genus and the deep-water genus *Benthoctopus* is yet to be resolved. Both genera possess two rows of suckers, lack an ink sac and require taxonomic revision.

Literature: Norman (2000).

Grimpella thaumastocheir Robson, 1928

Grimpella thaumastocheir Robson, 1928, *Annals and Magazine of Natural History*, series 10, 2: 110. [Type locality: South Australia, Port Lincoln].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Velvet octopus; Fr — Poulpe velouté; Sp — Pulpo aterciopelado.

Diagnostic Features: Moderate-sized muscular species. Arms of moderate length, 4 to 4.5 times mantle length. Arms of similar length. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest up to 32% of arm length. Web sectors approximately equal in depth. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 130 suckers on each normal arm. **Enlarged suckers present in mature males, 2 to 3 on each arm, starting around the 8th proximal sucker.** Gills with 7 to 9 lamellae per demibranch. Funnel organ UU-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac absent. Anal flaps absent.
Right third arm of males hectocotylized, length around 70% of opposite arm. Ligula large and robust, 5 to 7% of arm length. Calamus very large and pointed, length around 80% of ligula length. Hectocotylized arm with 52 suckers in examined male. Spermatophores of moderate length, 25 to 30 mm, around 80% of mantle length, produced in moderate numbers (~15). Eggs large, around 15 mm, 45 to 60% of mantle length. Colour: Uniform grey purple to maroon red with iridescent green sheen on lateral surfaces. False-eye spots (ocelli) absent. Sculpture: Skin texture of scattered low rounded papillae. No large papillae over eyes. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to around 250 mm.

Geographical Distribution: Southern Australia (Fig. 138).

Habitat and Biology: Depth range 0 to 420 m. Night active in rocky reef and rubble areas near shore, adjacent to deep water. The large eggs hatch into benthic young.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Robson (1932), Stranks (1988a), Norman (2000).

Hapalochlaena Robson, 1929

Type Species: *Hapalochlaena lunulata* (Quoy and Gaimard, 1832).

Diagnostic Features: Small to moderate-sized, muscular species. Mantle squat to ovoid, posterior tip pronounced in some postures. Stylets absent. Arms short to moderate, 1.5 to 2.5 times mantle length. Lateral arms longest, dorsal arms always shortest (typically 2=3<4<1 or 4=3<2<1). Arm autotomy at distinct plane absent. Webs moderate to deep, deepest around 20 to 35% point on longest arm. Webs on lateral arms deepest; dorsal web always shortest. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ W-shaped. Gills with 5 to 7 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands large to very large, much larger than buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present, reduced and non-functional in adults of some species. Anal flaps present. Third right arm of male hectocotylized, slightly shorter than opposite arm. Ligula and calamus present. Spermatophores short, narrow, unarmed. Eggs small to large, laid in strings and brooded unattached in web by females. Colour patterns of distinctive rings and/or lines of iridocytes producing brilliant iridescent blue in live individuals. Ring size varies between species. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (“dorsal mantle white spots” *sensu* Packard and Sanders, 1971). Skin with sculpture of small, low papillae. Longitudinal flap-like papillae in diamond arrangement on mid dorsal mantle. Large papilla on posterior tip of mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 57 mm; total length to 220 mm.

Geographical Distribution: Central Indo-West Pacific Ocean north to Japan and south to southern Australia.

Habitat and Biology: Shallow coastal waters on rocky and coral reefs, seagrass and algal beds. Collected from 0 to 50 m.

Remarks: At least 10 species from tropical to temperate waters of eastern Indian Ocean, western Pacific Ocean and Australia. Only three species adequately described to date.

Public health risk: Members of this genus possess powerful neurotoxins including tetrodotoxin. Bites by these small octopuses have resulted in human fatalities. Live animals should never be directly handled.
Octopus lunulatus Quoy and Gaimard, 1832, *Voyage de Découvertes de l’Astrolabe pendant les Années 1826-1829*, Zoologie, 2(1): 86. [Type locality: Papua New Guinea, New Ireland (Bismarck Archipelago), Havre Carteret].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Greater blue-ringed octopus; Fr — Poulpe annelé majeur; Sp — Pulpo anillado mayor.

Diagnostic Features: Small, brilliantly coloured, muscular species. Arms short, around 2 times mantle length. Lateral and ventral arms longest (typically 3=4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 35% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 60 suckers on each normal arm. Enlarged suckers absent. Gills with 7 lamellae per demibranch. Funnel organ W-shaped, outer limbs approximately 60% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized. Ligula conical, moderately elongate, 10% of arm length. Calamus of moderate size, around 30% of ligula length. Hectocotylized arm with 43 suckers on examined male. Spermatophores undescribed. Egg size undescribed. **Colour:** Base colour of cream to yellow with pattern of large iridescent blue rings covering dorsal surfaces, largest on posterior dorsal mantle (up to 3.2 mm, 18% of ML). Each iridescent ring set in a broader ring of dark chromatophores. Short horizontal iridescent line through eye. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). **Sculpture:** Skin sculpture of low relief patch and groove system, patches small and circular. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to around 120 mm.

Geographical Distribution: Indonesia, Philippines, Papua New Guinea, Vanuatu and Solomon Islands (Fig. 140).
Habitat and Biology: Depths range 0 to 20 m. A resident of coral reefs and rubble areas in shallow waters. The colour pattern advertises strong toxicity, potentially tetrodotoxin. Hatchlings are planktonic. Tetrodotoxin is distributed throughout the body organs and skin of this species.

Interest to Fisheries: *Hapalochlaena lunulata* is collected at least in the Philippines for export in the aquarium trade.

Local Names: Unknown.

Remarks: Numerous undescribed species of blue-ringed octopus have been treated under this species name. No human fatalities have been linked specifically to this species but direct handling should be avoided.

Hapalochlaena fasciata (Hoyle, 1886)
Fig. 141

Octopus pictus var. *fasciata*
Hoyle, 1886, *Report on the Scientific Results of the Voyage of the H.M.S. Challenger during the years 1873-76, Zoology*, 16(44): 94. [Type locality: Australia, New South Wales, Port Jackson, (33°50’S, 151°17’E)].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Blue-lined octopus; Fr — Poulpe aux lanières bleues; Sp — Pulpo rayas-azules.

Diagnostic Features: Small, muscular species. Arms short, 2 to 3 times mantle length. Lateral and ventral arms longest (typically 4=3=2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 30% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 100 suckers on each normal arm. Enlarged suckers absent. Gills with 5 to 7 lamellae per demibranch. Funnel organ W-shaped. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, shorter than opposite arm. Ligula of moderate size, 7 to 12% of hectocotylized arm length. Calamus large. Hectocotylized arm with 32 to 43 suckers. Spermatophores undescribed. Eggs large, around 6 to 9 mm, around 12% of mantle length. Colour: Cream to orange base colour with iridescent blue lines (not rings) on dorsal mantle and single or linked blue rings on arm crown and arms. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ *sensu* Packard and Sanders, 1971). Sculpture: Skin texture consists of small low papillae. Diamond of four short longitudinal ridges on dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 45 mm; total length to around 150 mm.

Geographical Distribution: Subtropical waters of eastern Australia from southern Queensland to southern New South Wales (Fig. 142).

Habitat and Biology: Depth range from 0 to at least 20 m. Occurs on intertidal and shallow rocky reefs. Primarily active at night, feeding on small crustaceans. Females carry the eggs within the web. Hatchlings are benthic. Tetrodotoxin is distributed throughout the body organs and skin of this species.

Interest to Fisheries: No fisheries value but extremely venomous, tetrodotoxin venom produced in the salivary glands. Responsible for at least one human death.

Local Names: Unknown.
Remarks: A related undescribed species with blue lines is also present in Japan.

Hapalochlaena maculosa (Hoyle, 1883)

Octopus maculosus Hoyle, 1883, Proceedings of the Royal Physical Society of Edinburgh, 7: 319. [Type locality: "Australia"].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Southern blue-ringed octopus; Fr — Poulpe annelé méridional; Sp — Pulpo anillado austral.

Diagnostic Features: Small, muscular species. Arms short, length to 3 times mantle length. Lateral and ventral arms longest (typically 4>3>2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips.
Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 90 suckers on each normal arm. Enlarged suckers absent. Gills with 6 to 7 lamellae per demibranch. Funnel organ W-shaped, outer limbs approximately 75% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present in juveniles, reduced or absent in sub-adults and adults. Anal flaps present. Right third arm of males hectocotylized, length 75 to 85% of opposite arm length. Calamus large, 33 to 62% of ligula length. Hectocotylized arm with 45 to 56 suckers. Spermatophores of moderate size, around 118% of mantle length. Eggs large, around 7 to 9 mm, 25 to 30% of mantle length. Colour: Dorsal and lateral surfaces with grey-green to cream base colour covered with approximately 50 to 60 small dark spots containing small iridescent blue rings (0.5 to 2.0 mm in diameter). Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). Sculpture: Skin has wrinkled texture containing small, closely-set, low papillae. Diamond of four short longitudinal ridges on dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 57 mm; total length to around 220 mm.

Geographical Distribution: Southern Australia from eastern Victoria to southern Western Australia (Fig. 144).

Habitat and Biology: Depths range from 0 to over 50 m. This small octopus lives on intertidal and shallow subtidal reefs, seagrass meadows, and rubble areas. It emerges mainly at night to forage for small crustaceans and fishes. Females carry the eggs within the web. Hatchlings are benthic. Tetrodotoxin has been detected in the eggs, arms, abdomen and ‘cephalothorax’ of this species.

Interest to Fisheries: No fisheries value but extremely venomous; tetrodotoxin venom produced in the salivary glands has potential to cause human deaths.

Local Names: Unknown.

Histoctopus Norman, Boucher-Rodoni and Hochberg, 2009

Type Species: *Histoctopus zipkasae* Norman, Boucher-Rodoni and Hochberg, 2009.

Diagnostic Features: Small to moderate-sized deep-water species. Mantle muscular, globose to rounded ovoid. Stylets present, long, chitinous (mineralized). Arms muscular, medium length, 2.5 to 3.8 times mantle length. Arms approximately equal in length, lateral arms slightly shorter (typically 2>3>4>1 or 3>2>4>1). Arm autotomy at distinct plane absent. Web sectors approximately equal in depth, slightly deeper on lateral arms (typically B=C=D>E>A). Web margins along ventral faces of all arms very wide, forming loose semi-transparent membranes in preserved material. Interbrachial web pouches absent. Webs moderate to deep, deepest around 20 to 30% of longest arm. Webs approximately equal in depth; lateral webs slightly deeper (typically B=C=D>E>A). Webs extend as membranous flared margins along entire length of arms, very well developed towards arm tips. Suckers in two rows. Sucker counts to around 168 on normal arms. Large W-shaped funnel organ. Gill count 9 lamellae per demibranch. Ink sac and anal flaps present. Third right arm hectocotylized. Ligula of moderate size, 4.5 to 8% of hectocotylized arm length. Calamus large and pronounced, approximately 40 to 60% of ligula length. Terminal organ (penis) large and T-shaped with diverticulum longer than distal portion. Spermatothecae large (equal to or longer than mantle length), bulbous with swollen short sperm reservoir containing few coiled (<10) of sperm cord coiled in a double strand. Eggs (where known) of moderate size (6.5 to 8 mm, 7 to 9% of mantle length). Colour patterns orange brown dorsally, cream ventrally. Transverse rows of small white papillae/leucophores visible in live animal and in some preserved material. False eye-spots (ocelli) absent. Skin sculptured with evenly spaced small rounded papillae. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 107 mm; total length to 380 mm.

Geographical Distribution: Southwest Pacific Ocean (New Caledonia) and southeastern Indian Ocean (Western Australia).

Habitat and Biology: Collected from 350 to 550 m.

Remarks: Members of the genus *Histoctopus* share extreme web margin development with three other octopodid genera, *Velodona* Chun, 1915, *Pteroctopus* Fischer, 1882 and *Graneledone* Joubin, 1918.
Distal oviducts thickened along length. Eggs of moderate size (6.5 to 7.8 mm, 7.2 to 9.1% ML). **Colour:** Pink orange dorsally, cream ventrally. Orange brown basal colour on first three arm pairs. **Two transverse rows of small white spots on dorsal mantle.** Regularly spaced white spots present along aboral midline of first three arm pairs. **Sculpture:** Skin scattered with regular, small, round papillae over all dorsal surfaces. Larger supraocular papillae absent. Lateral mantle ridge absent.

Size: Mantle length to 107 mm; total length to 380 mm.

Geographical Distribution: Continental slop of Western Australia (Fig. 146).

Habitat and Biology: Depth range 350 to 450 m. Collected by trawl from soft sediments and rubble in deep water. No additional information available on biology or behaviour.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Norman et al. (2009).
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Histoctopus discus Norman, Boucher-Rodoni and Hochberg, 2009

Size: Mantle length to 51 mm; total length to 238 mm.

Geographical Distribution: Known only from the type locality.

Habitat and Biology: Available material captured from 500-545 m.

Literature: No additional literature.
Macrochlaena Robson, 1929

Type Species: *Octopus winckworthi* Robson, 1926

Diagnostic Features: Small, squat, fleshy species. Eyes small; head relatively flush with spherical mantle. Stylets unknown. Arms short, around 1.5 to 2.5 times mantle length. Arms subequal in length, lateral arms slightly longer. Arm autotomy at distinct plane absent. Webs deep, approximately one third of arm length. Webs subequal in length; lateral webs slightly deeper. Interbrachial web pouches absent. Enlarged suckers absent. Funnel organ UU-shaped. Gills with 8 to 10 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Details of digestive tract unknown. Ink sac present, small. Third right arm of males hectocotylized, shorter than opposite arm (~80%). Simple, short, conical ligula (~6% of arm length) with open groove and ~8 weak transverse ridges, calamus poorly developed. Spermatophores small, length approximately 30% of mantle length. Eggs large. Colour pattern red-brown to purple with darker mottling giving marbled effect. Skin relatively smooth. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 33 mm; total length to at least 93 mm.

Geographical Distribution: From off India and into eastern Indian Ocean.

Habitat and Biology: Unknown. One record from relatively shallow oyster beds.

Remarks: Single, poorly known species. Characters that clearly distinguish this genus from *Octopus sensu stricto* include the short, subequal arms, small eyes but broad head, small suckers without enlargement in either sex, UU funnel organ with short outer limbs, reduced ink sac and smooth skin. This genus (and species) is in need of revision.

Macrochlaena winckworthi (Robson, 1926)

Octopus winckworthi Robson, 1926, *Annals and Magazine of Natural History*, series 9, 17: 161. [Type locality: South India, Tuticorin].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Winckworth’s octopus; Fr — Poulpe de Winckworth; Sp — Pulpo de Winckworth.

Diagnostic Features: Small, squat, fleshy species. **Eyes small, head relatively flush with mantle. Arms short, around 1.5 to 2.5 times mantle length. Subequal in length, lateral arms slightly longer. Arm autotomy at distinct plane absent. Webs deep, approximately one third of arm length.** Webs subequal in length; lateral webs slightly deeper. Interbrachial web pouches absent. **Suckers in two rows, small: 3.6 to 6.9% of mantle length. None enlarged in either sex.** Around 65 suckers on normal arms. **UU funnel organ.** Gills with 8 to 10 lamellae per demibranch. Radula with nine elements, seven teeth rows and marginal plates. Rachidian tooth with single lateral cusp in symmetrical seriation. Ink sac present, small. Third right arm of males hectocotylized, shorter than opposite arm (~80%). Simple, short, conical ligula (~6% of arm length) with open groove and ~8 weak transverse ridges, calamus poorly developed. Hectocotylized arm with 36 to 40 suckers. Terminal organ linear with simple, slightly swollen diverticulum. Spermatophores small, 8 to 10 mm, approximately 30% of mantle length. **Colour:** Red-brown to purple with darker mottling giving marbled effect. **Sculpture:** Skin relatively smooth.

Size: Mantle length to 33 mm; total length to at least 93 mm.
Geographical Distribution: Off Thoothukudi, southern India, potentially east to Java, Indonesia (Fig. 148).

Habitat and Biology: Depth range unknown; type specimen presumed to be from shallow oyster beds (~20 m). Biology and behaviour unknown.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Robson (1929a), Toll (1998).

Macrotritopus Grimpe, 1922

Type Species: *Octopus gracilis* Vérany, 1851 [= *M. equivocus* (Robson, 1929a)]

of darker brown narrow lines on dorsal mantle and regular narrow dark brown bands along arms. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). False eye-spots (ocelli) absent. Skin with low rugose sculpture with scattered, moderate-size papillae. Patch and groove skin sculpture absent. Small papillae over eyes. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 55 mm.

Geographical Distribution: Unclear, at least Mediterranean Sea and Atlantic Ocean. Potential members of this genus also are present in the tropical Indo-West Pacific Ocean.

Habitat and Biology: Poorly known with some species occurring on soft sediment substrates. Reported from 0 to 200 m.

Remarks: This genus is in need of revision. Currently, it contains one described species, *Macrotritopus defilippi*, two poorly described unresolved species known only from planktonic hatchlings (*M. equivocus* and *M. scorpio*), and potentially three undescribed Indo-Pacific species (Norman and Hochberg unpubl. data), including ‘*Octopus* sp. 17’ of Norman (2000) from Australia. *Macrotritopus* was originally described from a single juvenile specimen (*M. equivocus*) with elongate third arms. This form of paralarva gained the name “*Macrotritopus* larva” and was identified incorrectly as the hatchlings of *Scaeurgus unicirrhus* (see Hochberg et al., 1992). Captive rearing of *M. defilippi* eggs hatched into this distinctive larval type (see Hanlon et al., 1985), thus connecting the juveniles with adult forms. As the type species is juvenile, *M. defilippi* is presented here as representative of this genus. “*Macrotritopus* larvae” also have been identified off South Africa and the Indo-West Pacific from Hawaii to Australia (Hochberg et al., 1992), suggesting that there may be a suite of undescribed species within this poorly known genus.

Literature: Hanlon et al. (1985), Hochberg et al. (1992).

Macrotritopus defilippi (Verany, 1851)

Octopus defilippi Verany, 1851, *Mollusques Méditeranéens Observés, Décrits Figurés et Chromolithographiés d’après le Vivant Ouvrage Dedie à SM le Roi Charles Albert*, 1: 30. [Type locality: Western Mediterranean Sea, Italy].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names:
- En — Lilliput longarm octopus;
- Fr — Poulpe à longs bras;
- Sp — Pulpito patilargo.

Diagnostic Features: Small to medium-sized species. Mantle small in relation to total length, elongate or pear-shaped, widest in posterior third and ending in a small point. Head narrower than mantle.
- **Eyes prominent, projecting.** Arms long, slender, with delicate tips, tending to autotomize at level of 10 to 11th proximal sucker. Third arms distinctly longer than other arms, typically 3>2>4>1 or 3>4>2>1. Webs shallow, depth 7 to 11% of length of longest arm, extend as narrow web margin to middle of arms along ventral edge, especially on lateral arms. Lateral webs deepest, typically C>D>B>E>A. Interbrachial web pouches absent. Suckers in two rows, widely set, of medium size. Enlarged suckers absent in both sexes. Funnel organ W-shaped, slender, posterior angles rounded, lateral limbs shorter than medial limbs. Gills with 11 to 12 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands moderate, slightly larger than buccal mass length. Crop diverticulum present as side-branch off oesophagus. Ink sac present. Anal flaps present.

![Fig. 149 *Macrotritopus defilippi*](image-url)
Third right arm of male hectocotylized, **significantly shorter than opposite arm** (35 to 67%), bearing 60 to 100 suckers. Ligula minute (0.5 to 3% of hectocotylized arm length), well differentiated with blunt tip and fine cross striations. Calamus small to moderate size, around 15 to 40% of ligula length. Hectocotylized arm with 60 to 100 suckers. Spermatophores small, around 30 to 50% of mantle length. Mature eggs small, around 2 mm long. **Colour:** In life brown yellow, grey brown, or red brown with dark transverse arm bars and heart-shaped pattern on dorsal mantle, often with greenish iridescence, especially around eyes. Darker markings form an irregular netlike pattern on the dorsal mantle. False eye-spots (ocelli) absent. **Sculpture:** Skin soft, relatively smooth and loose. Papillae transient except over eyes. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 55 mm.

Geographical Distribution: Mediterranean Sea and northeastern Atlantic Ocean (Fig. 150).

Habitat and Biology: Depth range to 200 m. A shallow-water species that occurs on sandy and muddy substrates of the continental shelf. Little is known of the biology and behaviour.

Interest to Fisheries: Unknown.

Local Names: ITALY: Polpetto braccialunghe.

Remarks: Unresolved species are treated under the same name in the western Atlantic (Voss, 1964; Hanlon et al. 2010).

Literature: Naef (1923), Voss (1964, western Atlantic form), Mangold (1998), Norman (2000), Rosa et al. (2004a), Hanlon et al. (2010; western Atlantic form), Krustulović Šifner et al. (2011, as O. defilippi).
Megaleledone Taki, 1961

Type Species: *Megaleledone senoi* Taki, 1961 [=*M. setebos* (Robson, 1932)].

Diagnostic Features: Large, semi-gelatinous species. Mantle ovoid to slightly flattened dorso-ventrally. Stylets present, non-mineralized. Arms robust and of moderate length (2 to 3 times mantle length). Arm autotomy at set level absent. Web deep, well developed (40 to 60% length of longest arm). Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Suckers in single row, small to medium in size (6 to 12% of mantle length). Enlarged suckers absent. Funnel organ V V-shaped. Gills with 10 to 13 lamellae per demibranch. Radula composed of seven elements, seven teeth per transverse row but marginal plates absent. Rachidian tooth without lateral cusps. Posterior salivary glands medium sized (70 to 80% length of buccal mass). Oesophagus with swelling only, no distinct crop. Ink sac present. Ink duct opens to exterior anterior to anus. Anal flaps absent. Third right arm of males hectocotylized, slightly shorter than opposite arm. Ligula and calamus present. Ligula small to medium (3 to 6% of arm length). Calamus large, 30 to 50% of ligula length. Arm tips not otherwise modified. Spermatophores short to moderate length (40 to 60% of mantle length), slender. Eggs large. Colour uniform cream-pink to grey-pink, sometimes mottled with red-pink patches. Skin soft, loose and semi-gelatinous. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 280 mm; total length to around 900 mm.

Geographical Distribution: Circumpolar Antarctica, but does not extend to sub-Antarctic islands.

Habitat and Biology: Poorly known. Collected from 32 to 850 m.

Remarks: Single Antarctic species. Allcock *et al.* (2003b) synonymised *Megaleledone senoi* with *M. setebos* and redescribed the genus.

Literature: Allcock *et al.* (2003c).

Megaleledone setebos (Robson, 1932)

Frequent Synonyms: *Megaleledone senoi* (Taki, 1961).

Misidentifications: None.

FAO Names: En — Giant Antarctic octopus; Fr — Poulpe géant antarctique; Sp — Pulpo gigante antártico.

Diagnostic Features: Large, muscular species with loose skin. Arms short, 2 to 3 times mantle length. Arms of similar length; dorsal pair slightly shorter (typically 4=3=2>1). Arm autotomy at distinct plane absent. **Webs deep, deepest over 40% of arm length.** Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. **One row of suckers on each arm.** In larger animals, around 40 to 69 suckers on each normal arm. Enlarged suckers absent. Gills with 10 to 13 lamellae per demibranch. Funnel organ V V-shaped, thick limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac present. Ink duct opens to exterior anterior to anus. Anal flaps absent.

Fig. 151 Megaleledone setebos

[Diagram of Megaleledone setebos]
Cephalopods of the World

Right third arm of males hectocotylized, length 90 to 95% of opposite arm. Ligula small, 3 to 4% of arm length. Calamus of moderate size, around 40% of ligula length. Hectocotylized arm with 35 to 40 suckers. Spermatophores large, 150 to 235 mm, around 80 to 95% of mantle length. Eggs large, up to 42 mm, 15 to 22% of mantle length. Colour: Upper surfaces cream-pink to grey-pink mottled with red-pink patches. Ventral surfaces cream. False-eye spots (ocelli) absent. Sculpture: Skin loose with fine, rounded and widely spaced papillae on dorsal surfaces. No large papillae over eyes. Skin ridge present around lateral margin of mantle.

Size: Mantle length to 280 mm; total length to around 900 mm.

Geographical Distribution: Circumpolar Antarctica; does not extend to sub-Antarctic islands (Fig. 152).

Habitat and Biology: Depth range from 32 to 850 m. Collected from continental shelf at temperatures of -1.4° to -1.9°C. Found on mud and sand substrates with pebbles and rocks, and among sponges and bryozoans.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Microeledone

Microeledone Norman, Hochberg and Boucher-Rodoni, 2004

Type Species: Microeledone mangoldae Norman, Hochberg and Boucher-Rodoni, 2004

Size: Mantle length to 18 mm; total length to around 46 mm.

Geographical Distribution: Southwest Pacific Ocean, Coral Sea.

Habitat and Biology: Unknown.

Remarks: Known only from a single well-preserved male.

Literature: Norman et al. (2004b).
Microeledone mangoldae Norman, Hochberg and Boucher-Rodoni, 2004

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Sickletooth pygmy octopus; Fr — Poulpe pygmée de Mangold; Sp — Pulpo pigmeo de Mangold.

Diagnostic Features: Small muscular species with **loose skin**. Arms short, ~1.3 times mantle length. Arms of similar length. Arm autotomy at distinct plane absent. **Webs deep, deepest over 40% of arm length**. Webs approximately equal in depth, ventral sector slightly shallower. Web margins absent. Interbrachial web pouches absent. **One row of suckers on each arm**. In single known animal (male), 31 to 32 suckers on normal arms. Enlarged suckers absent. Gills with 4 to 5 lamellae per demibranch. **Funnel organ UU-shaped, limbs of approximately equal length**. Radula with 7 elements, 7 rows of teeth, marginal plates absent. **Central rachidian tooth wide with elongate, flattened and curved central cone, lateral cusps absent. Other teeth flattened and blade-like. Oesophagus with swelling only, no distinct crop. Ink sac and anal flaps absent.** Right third arm of males hectocotylized, length ~95% of opposite arm length. Ligula of moderate size, 7.6% of arm length in single male. Calamus large, around 45% of ligula length. Hectocotylized arm with 22 suckers. Spermatophores and eggs unknown. **Colour:** Surfaces of mantle, arm crown and aboral surfaces of arms pink cream. Chromatophores absent. Oral surface of web dark maroon for proximal third of arms. False-eye spots (ocelli) absent. **Sculpture:** Skin loose and smooth. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 18 mm; total length to around 46 mm.

Geographical Distribution: Known only from type locality (Fig. 154).

Habitat and Biology: Depth of type specimen 980 to 1 000 m. Collected from bathyal plain. Stomach contained remains of polychaete worm. Presence of *Aggregata* parasites suggest crustaceans also are included in diet. Pigmented intestine suggests consumption of luminescent prey.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: The original description coined the Latin ending of the species name incorrectly for the gender. As the species was named in honour of Dr. Katharina Mangold, the epithet should be ‘ae’ not ‘i’ and is corrected here.

Literature: Norman *et al.* (2004b).
Muusoctopus Gleadall, 2004

Type Species: *Octopus januarii* Hoyle, 1885

Diagnostic Features: Mantle globose to ovoid; head broad; eyes relatively large. Stylets present, non-mineralized. Arms moderately long, slender, cylindrical, (3 to 4 times mantle length); arms subequal or 1 and 2 longer than arms 3 and 4. Arm autotomy absent. Suckers in 2, moderately spaced rows. Web of moderate, subequal depth, slightly shallower between arms 3 and 4. Interbrachial web pouches absent. Third right arm hectocotylized; ligula slender, conical shape; calamus of modest size or reduced; sculpting of oral surface of ligula weak or absent. Terminal organ relatively large; with 2 chambers. Funnel moderately large, free for half its length. Funnel organ typically W-shaped. Ink sac and anal flaps absent or present. Gills with 7 to 10 lamellae per demibranch. Radula with well defined pentacuspid rachidian. Posterior salivary glands of modest size, smaller than buccal mass; flattened, triangular, to discoid. Crop diverticulum present. Skin without well defined patch and groove system.

Size: Mantle length of females to 170 mm; males to 140 mm; total length to 770 mm.

Geographical Distribution: West and southwest Atlantic Ocean and southeast Pacific Ocean.

Habitat and Biology: Typically soft sediment substrates at depths from 30 to 1 000 m.

Remarks: Gleadall (2004) coined the genus *Muusoctopus* to contain the species *januarii*. Subsequently Gleadall *et al.* (2010) described several additional species that were placed in this genus, as well as *eureka* and *longibrachus*, which had originally been treated under the genus name *Benthoctopus* (see Toll, 1981; Ibáñez *et al.*, 2006). In the absence of comparative material and tissue samples for molecular analyses, Strugnell *et al.* (2009c, 2011) treated the genus *Muusoctopus* as unresolved. A number of complex internal characters are used to diagnose this genus; they require dissection and critical examination to identify specimens to species (see Gleadall, 2004 and Gleadall *et al.*, 2010). A broad-scale morphological and molecular revision of all taxa currently or historically treated under the genus *Benthoctopus* is urgently required. For this volume, we treat the genus *Muusoctopus* as valid and as containing four species.

Literature: Strugnell *et al.* (2009c, 2011), Gleadall *et al.* (2010).

Muusoctopus januarii (Hoyle, 1885)
Fig. 155

Octopus januarii Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 229 (in part). [Type locality: Southwestern Atlantic Ocean, Brazil, off Barra (09°05’S, 34°50’W)].

Frequent Synonyms: *Benthoctopus januarii*.

Misidentifications: None.

FAO Names: En — January octopus; Fr — Poulpe filamentueux; Sp — Pulpo filamentoso.

Diagnostic Features: Small to medium-sized species. Mantle globose, aperture wide. Eyes large. Funnel robust, tapered, free for half its length; funnel organ not described. Gills with 7 to 8 lamellae per demibranch. Arms long and slender, cylindrical in cross-section; arm length 3-4 times mantle length, in the order 1=2>3=4; arms 1 and 2 markedly longer than 3 and 4. Webs subequal, slightly shorter in sectors D and E. Suckers small, with small infundibulum, in two moderately spaced rows directly from mouth. **Enlarged suckers absent.** Hectocotylized third right arm two-thirds the length of third left arm, bearing approximately 80 suckers. Longest unmodified arms with sucker count of approximately 180. **Ligula modest in size (approx. 8% length of third right arm),** with distinct margin surrounding wide, flat, shallow inner surface, tapering evenly to an acute point; approximately 20 weakly developed transverse ridges within ligula groove; calamus well defined, sharply pointed. Spermatophoric groove well developed. Terminal organ large, spermatophoric duct joining close to anterior, turning in posterior direction as it joins. Spermatophores in spermatophore sac 10 to 15, slim, approximately 85 mm in length. **Eggs large, capsule length to 14 mm.** **Coloration:** In ethanol uniform pinkish grey, slightly paler beneath. Some specimens show evidence of approximately 9 rows of short, thin, straight dark lines arranged longitudinally on the dorsal mantle.
Size: Mantle length to 65 mm; total length to 465 mm.

Geographical Distribution: West Atlantic, from Gulf of Mexico to mid-coast of Brazil (Fig. 156).

Habitat and Biology: Depth range from 350 to 750 m.

Interest to Fisheries: Unknown.

Local Names: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES
FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Muusoctopus bizikovi Gleadall, Guerro-Kommritz, Hochberg and Laptikhovsky, 2010

Size: Mantle length to about 60 mm.

Geographical Distribution: Southwest Atlantic, restricted to the southeastern continental shelf of South America that extends around the Falkland Islands.

Habitat and Biology: Depths range from 467 to 796 m.

Remarks: An ink sac reported to be present unlike other members of the genus (*Gleadall et al.*, 2010).

Literature: No additional literature.

Muusoctopus eureka (Robson, 1929)

Size: Mantle length of females to 110 mm, of males to 80 mm; total length to 300 mm.

Geographical Distribution: Southwest Atlantic, northern Argentina to Falkland Islands.

Habitat and Biology: Depth range from 30 to 500 m.

Remarks: *Octopus hyadesi* Rochebrune and Mabille, 1889 and *Benthoctopus magellanicus* Robson, 1930 are treated as synonyms by *Gleadall et al.* (2010), see also Robson (1930).

Muusoctopus longibrachus akambei Gleadall, Guerro-Kommritz, Hochberg and Laptikhovsky, 2010

Size: Mantle length of females to 170 mm; males to 100 mm.

Geographical Distribution: Southwest Atlantic, Argentina.

Habitat and Biology: Depth range from 147 to 377 m.

Literature: No additional literature.

Muusoctopus longibrachus longibrachus (Ibáñez, Sepúlveda and Chong, 2006)

Size: Mantle length of females to 170 mm; males to 140 mm; total length to 770 mm.

Geographical Distribution: Southeast Pacific, coast of Chile and Juan Fernández Archipelago.

Habitat and Biology: Depth range from 436 to 1 000 m.

Literature: Gleadall *et al.* (2010).
Pareledone Robson, 1932

Type Species: *Eledone charcoti* Joubin 1905.

Diagnostic Features: Small to moderate-sized, muscular Antarctic octopuses. Mantle round to ovoid. Stylets present, non-mineralized. Arms short to moderate length, 1.3 to 3 times mantle length. Arms of similar length, ventral arms slightly shorter in some species. Arm autotomy at distinct plane absent. Webs well developed, up to 50% of arm length in some species. Webs subequal in depth. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent. Funnel organ V V- or W-shaped (depending on species). Gills with 6 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands of moderate size, approximately equal to length of buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present or absent (absent in *Pareledone panchroma*). Third right arm of males hectocotylized with copulatory organ clearly differentiated into ligula and calamus. Ligula groove shallow and without marked transverse ridges. Spermatophores long (1 to 2 times mantle length), unarmed. Eggs large. Colour pattern variable between species, base colour typically cream, pink or orange-brown. White leucophore markings present in many species. Skin smooth to papillate. Papillate species with even covering of regular small papillae patches. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 100 mm; total length to 350 mm.

Geographical Distribution: Antarctic and Southern Ocean waters.

Habitat and Biology: At depths between 0 and 4 000 m.

Remarks: This genus contains 20 or more Antarctic species. Allcock *et al.* (2003b) and Allcock (2005) reviewed this genus, describing many new species.

Pareledone charcoti (Joubin, 1905)

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Charcot’s octopus; Fr — Poulpe de Charcot; Sp — Pulpo de Charcot.

Diagnostic Features: Moderate-sized, robust species. Arms short, 1.5 to 2.3 times mantle length. Arms of similar length, dorsal arms shortest (typically 4>3>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest to 45% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Interbrachial web pouches absent. One row of suckers on each arm. In larger animals, around 37 to 54 suckers on each normal arm. Enlarged suckers absent. Gills with 7 to 8 lamellae per demibranch. Funnel organ V V-shaped, with thick limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, 88 to 92% length of opposite arm. Ligula robust and spoon like, 5 to 9% of arm length. Calamus large, 35 to 67% of ligula length. Hectocotylized arm with 31 to 38 suckers. Spermatophores long, to 1.6 times mantle length. Eggs large, around 11 to 14 mm, 18 to 24% of mantle length. Colour: Resting animals uniform pink-brown. Alarmed animals are dark purple-brown dorsally and cream white ventrally. False-eye spots (ocelli) absent.

![Fig. 157 Pareledone charcoti](image)
Single white spots on medial upper arm crown and mid-dorsal posterior mantle. White transverse head bar present. **Sculpture:** Skin texture a patchwork of regular fine, rounded and closely-set papillae. Ventral surface of mantle smooth. Single slightly larger papilla over each eye. Skin ridge present around lateral margin of mantle.

Size: Mantle length to 65 mm; total length to around 210 mm.

Geographical Distribution: Circumpolar Antarctic (Fig. 158).

Habitat and Biology: Depths range from 100 to 700 m. Species occurs on the Antarctic continental shelf at temperature ranges of -1.6 to -2.1°C. Lives on mud and sand substrates with pebbles and rocks amongst sponges, gorgonaceans, and bryozoans.

Interest to Fisheries: Unknown.

Local Names: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Pareledone aequipapillae Allcock, 2005

Size: Mantle length to 63 mm; total length to 190 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depths range from 110 to 465 m.

Literature: Undheim et al. (2010a).

Pareledone albimaculata Allcock, 2005

Size: Mantle length to 38 mm; total length to 133 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 190 to 465 m.

Literature: No additional literature.
Pareledone aurata Allcock, 2005

Size: Mantle length to 49 mm; total length to 136 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 89 to 465 m.

Literature: No additional literature.

Pareledone aurorae (Berry, 1917)

Size: Holotype mantle length 24 mm; total length 88 mm.

Geographical Distribution: Known only from type material.

Habitat and Biology: Depth of type specimen: 219 m.

Remarks: Removed from synonymy of *Pareledone charcoti* by Allcock (2005).

Literature: Allcock (2005).

Pareledone cornuta Allcock, 2005

Size: Mantle length to 60 mm; total length to 162 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 130 to 454 m.

Literature: No additional literature.

Pareledone felix Allcock, Strugnell, Prodohl, Piatkowski and Vecchione, 2007

Size: Mantle length to 60 mm; total length to 150 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 200 to 800 m.

Literature: No additional literature.
Pareledone framensis Lu and Stranks, 1994

Size: Mantle length to 70 mm; total length to 270 mm.

Geographical Distribution: Eastern Antarctica.

Habitat and Biology: Depth range from 150 to 300 m.

Literature: Allcock *et al.* (2003b).

Pareledone harrissoni (Berry, 1917)

Synonym: *Pareledone antarctica* (Thiele, 1920).

Size: Mantle length to 100 mm; total length to 350 mm.

Geographical Distribution: Southern Ocean, East Antarctica.

Habitat and Biology: Depth range from 25 to 743 m.

Literature: Kubodera and Okutani (1994), Lu and Stranks (1994).

Pareledone panchroma Allcock, 2005

Size: Mantle length to 43 mm; total length to 105 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 427 to 804 m.

Literature: No additional literature.

Pareledone prydzensis Lu and Stranks, 1994

Size: Mantle length to 30 mm; total length to 95 mm.

Geographical Distribution: Antarctica, Prydz Bay.

Habitat and Biology: Depth range from 526 to 676 m.

Literature: No additional literature.
Pareledone serperastrata Allcock, 2005

Pareledone serperastrata Allcock, 2005, *Zoological Journal of the Linnean Society*, 143: 94. [Type locality: South Shetland Islands, 61°01'S, 55°46'W].

Size: Mantle length to 36 mm; total length to 104 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 130 to 454 m.

Literature: No additional literature.

Pareledone subtilis Allcock, 2005

Size: Mantle length to 44 mm; total length to 109 mm.

Geographical Distribution: South Shetland Islands.

Habitat and Biology: Depth range from 190 to 427 m.

Literature: No additional literature.

Pareledone turqueti (Joubin, 1905)

Eledone turqueti Joubin, 1905, *Mémoires de la Société Zoologique de France*, 18: 29. [Type locality: Southern Ocean, Antarctica, Wandel Island (=Booth Island), 65°05'S, 64°00'W].

Size: Mantle length to 60 mm; total length to 180 mm.

Geographical Distribution: Southern Ocean, western Antarctica.

Habitat and Biology: Depth range from 0 to 4 000 m.

Paroctopus Naef, 1923

Frequent Synonyms: *Pseudoctopus* Grimpe, 1925.

Type Species: *Octopus digueti* Perrier and Rochebrune, 1894.

Diagnostic Features: Small-bodied; mantle short, bursiform. Stylets present, non-mineralized. Arms short, stocky, 2 to 3 times mantle length. 1 to 3 enlarged suckers on all arms of males only. Right third arm hectocotylized, shorter than opposite arm. Copulatory organ (ligula) medium size; calamus short. Gills with 6-8 lamellae per outer demibranch. Oviducal glands without braiding obvious chambers. Spawned eggs small to medium size, stalks very short, attached singly in small clusters in empty gastropod and bivalve shells. Body (in life) uniformly coloured with little pattern variability; patch and groove system absent; dorsal mantle and large arm base white spots absent, frontal white spot complex present but faint. Skin without large primary papillae.

Size: Mantle length to 60 mm.

Geographical Distribution: Northeastern Pacific Ocean off Mexico and in the Gulf of California; southern limits of distribution unknown. Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico.

Habitat and Biology: Depths typically range from intertidal to 30 m.

Remarks: The genus *Paroctopus* was proposed by Naef (1923) based on the relatively large size of the eggs of *P. digueti* (capsule length 10 mm) that was unlike anything Naef was familiar with in the Mediterranean. Two years later Grimpe (1925) erected the genus *Pseudoctopus* based on the same type species citing the single attachment of eggs as well as egg size. Naef abandoned the genus name *Paroctopus* in 1928 apparently because he felt it was not valid, although he did not discuss the reasons for his decision. Robson (1929a) resurrected the name but had reservations about erecting a new genus based solely on egg size. In an attempt to validate Naef’s genus he amplified the diagnosis with several additional characters, namely: 1) possession of relatively long copulatory organ (LLI 7-20); 2) short arms; and 3) squat, bursiform body. Pickford (1945, 1946) initially accepted the validity of the genus in her treatment of the octopodine fauna of the western Atlantic. However, she later rejected the name when discussing the generic placement of the large-egg species, *Octopus bimaculoides* (Pickford and McConnaughey, 1949). As currently understood, the genus is represented by a trans-isthmian geminate species complex endemic to tropical and subtropical waters in the Americas (see Berry, 1953, Nesis, 1975, 1978 and Voight, 1988a). In the western Atlantic *O. joubini* Robson, 1929 and *O. mercatoris* Adam, 1937 have been reported as possible congeners. We consider *mercatoris* and a large-egg species being incorrectly treated under the name *joubini* as belonging in this genus. The existence of at least three distinct species in a well-defined clade strongly supports the validity of the genus *Paroctopus* with *digueti* as the type species. Whether the genus is restricted to the Americas or has broader geographic ties has not been determined. In Australia *O. superciliosus* Quoy and Gaimard, 1832 and *O. warringa* Stranks, 1990 appear closely related and need to be compared in detail (see Stranks, 1988b, 1990). Robson (1929a), Pickford (1945, 1946), and workers in Japan (see especially Okutani et al. 1987), have variously placed a number of species endemic to the North Pacific Ocean in the genus *Paroctopus*, namely: *apollyon*, *briareus*, *conispadiceus*, *dofleini*, *hongkongensis*, *joubini*, *megalops*, *mercatoris*, *tenuicirrus* and *yendoi*. Of these only the large-egg *joubini* and *mercatoris* are correctly placed.

Paroctopus digueti (Perrier and Rochebrune, 1894)

Type locality: Mexico, Gulf of California.

Frequent Synonyms: Octopus digueti.

Misidentifications: None.

FAO Names: En — Diguet’s pygmy octopus; Fr — Pouple pygmée de Diguet; Sp — Pulpo pigmeo de Diguet.

Diagnostic Features: Pygmy species. Eyes large, protrude from head. Web relatively shallow (~25% of arm length), formula typically C.D.B.E.A. **Arms short, about 2 to 3 times mantle length;** formula typically 4>3>2>1 or 3>4>2>1. Suckers medium-sized (8 to 14% of mantle length), 1 to 3 conspicuously enlarged suckers (up to 23% of mantle length) on all arms of mature males near web insertion, occasionally slightly enlarged in females. Sucker counts on normal arms to 138. Funnel organ W-shaped, limbs subequal in length. Gillsl with 6 to 8 lamellae per outer demibranch. Third right arm hectocotylized; approximately equal in length with opposite arm (85 to 105%), with 70 to 90 suckers. Ligula medium size (5 to 8% of arm length), spatulate, copulatory groove deep, smooth or with distinct mid-rib and several faint grooves. Calamus small, 35% of ligula length. Spawned eggs medium size (capsule length 7 to 10 mm), stalk short (length 3 to 5 mm); attached singularly, in small clusters or sets of 2 to 5 eggs, deposited inside empty bivalve or gastropod shells. Hatchlings large (4.5 to 6.0 mm mantle length), benthic.

Colour: In life uniform dull cream to bright red, often with dark reticulations or mottled with red and white; occasionally with irregular rows of white spots dorsally and white transverse bands on arms. Dorsal mantle white spots absent; **frontal mantle white spot complex (sensu Packard and Sanders, 1971) present but very faint.** Large arm base white spots absent. False eye spots (ocelli) absent. **Sculpture:** Patch and groove system absent. Skin smooth or wrinkled in shallow longitudinal folds, often entirely covered with minute to small transient papillae (granular) situated on anastomosing lines or reticulations; large primary papillae absent; 1 prominent papilla above and 1 to 2 papillae below each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 74 mm; total length to 220 mm; body weight to 85 g.

Geographical Distribution: Mexico, Gulf of California and Pacific coast of southern half of Baja California Peninsula; southern limits of distribution unknown (Fig. 160).

Habitat and Biology: Depths range from intertidal to 30 m. The species lives in sandy and muddy intertidal areas. It is typically found in areas of permanent standing water such as small tidal pools and sand channels where empty shells accumulate. Like its presumed congeners in the western Atlantic, adults of this species live in the shelter of a wide diversity of empty gastropod and bivalve shells. The octopus often plugs the apertures of large gastropod shells with small...
bivalves or gastropod shells. Anatomical features of the species have been described and extensive field and laboratory studies have been conducted on the biology and behaviour. Growth, reproduction and life span have been studied in the laboratory because of the ease of rearing this small, large egg species. Males develop the copulatory organ (hectocotylus) and begin to mate 3 months after hatching. Females spawn 50 to 250 eggs gradually over a 2 to 3 week period. Eggs are attached singly inside empty shells. Females spawn year round but eggs are most commonly encountered in March to April. Development takes 36 to 50 days during which time the female broods and guards the eggs. The entire life cycle is completed in 125 to 240 days (average 7 months) indicating that there may be 1 to 2 generations per year. Based on egg size the young are benthic on hatching. Diet consists of a diversity of shrimps, crabs, especially hermit crabs and brachyurans, small molluscs and fishes. The species will bite handlers if agitated. They are active during periods of high tides, especially during new moon periods. An undescribed species of dicyemid parasite inhabits the renal coelom of this octopus.

Interest to Fisheries: May be collected for food by coastal inhabitants in Mexico. Extensively utilized in laboratory studies on biology, behaviour, anatomy and physiology.

Local Names: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Paroctopus mercatoris (Adam, 1937)

Octopus mercatoris Adam, 1937, Mémoires du Musée Royal d'Histoire Naturelle de Belgique, series 2(9): 76. [Type locality: Gulf of Mexico, United States, Florida, off Dry Tortugas and Tampa].

Size: Mantle length to 20 mm.

Geographical Distribution: Known only from type material.

Habitat and Biology: Depth range unknown.

Remarks: The generic placement of this species requires review. Sometimes appears in aquarium trade (C. Huffard, pers. comm.).

Praealtus Allcock, Collins, Piatkowski and Vecchione, 2004

Size: Mantle length to 82 mm; total length to 380 mm.

Geographical Distribution: Known only from off Antarctic Peninsula.

Habitat and Biology: Unknown habitat. Known only from 2 896 to 3 222 m.

Remarks: Single deep water species. The relationship between this genus and the poorly diagnosed genus Bentheledone (which also possesses tiny posterior salivary glands) requires revision.

Literature: No additional literature.

Praealtus paralbida Allcock, Collins, Piatkowski and Vecchione, 2004

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — White octopus; Fr — Poulpe blanc; Sp — Pulpito blanco.

Diagnostic Features: Animals medium-sized. Mantle approximately round, head narrower than mantle. Stylets absent. Arms of moderate length, 2.5 to 3.4 times mantle length, subequal; arm order usually 1=2=3>4. Arm autotomy at distinct plane absent. Webs deep (~30% of arm length), damage prevents estimation of relative web depths. Interbrachial web pouches absent. Suckers uniserial, small (~6% of mantle length), without sucker enlargement. Normal sucker count to 66 suckers. Funnel organ V V-shaped. Gills with 7 to 8 lamellae per demibranch. Radula with 7 elements, rachidian unicuspid, 3 slightly smaller unicuspid elements on each side of rachidian. Posterior salivary glands tiny. Oesophagus with swelling only, no distinct crop. Ink sac absent. Anal flaps absent. Marginal plates absent. Third right arm of males hectocotylized, usually slightly shorter than...
opposite number (~93%). Ligula small to medium (~5% of arm length); ligula groove round and shallow, without transverse ridges. Calamus distinct and large to very large (typically >50% of ligula length). Hectocotylized arm with 38-42 suckers. Spermatophores long, almost twice mantle length. Mature females unknown. Colour: Newly captured specimens are uniformly pale slaty grey to very pale violet (almost white). Sculpture: Numerous small, simple, papillae scattered over the dorsal surface. Supraocular papillae not apparent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 82 mm; total length to 380 mm.

Geographical Distribution: Known only from off the Antarctic Peninsula (Fig. 162).

Habitat and Biology: Depths range from 2 896 to 3 222 m. Biology and behaviour unknown.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: No additional literature.

Pteroctopus Fischer, 1882

Frequent Synonyms: *Berrya*, Adam, 1939.

Type Species: *Octopus tetracirrhus* Delle Chiaje, 1830.

Diagnostic Features: Small to moderate-sized muscular species. Mantle roughly square to spherical. Mantle aperture distinctly narrow, <40% of mantle circumference at level of aperture. Stylets present, non-mineralized. Arms approximately 3 to 4.5 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, deepest >40% length of longest arm. Web margins extend and widen toward arm tips to form net-like flanges off distal portions of arms. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ V V-shaped, with narrow limbs. Gills with 9 to 10 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands of moderate size, around size of buccal mass. Oesophagus with swelling only or slight diverticulum, enlarged crop absent. Ink sac present. Anal flaps present. Third left or right arm of male hectocotylized (depending on species), distinctly shorter than opposite arm (60 to 80%). Ligula broad and conical, 5 to 11% of arm length with obvious calamus. Colour pattern of uniform cream to red-brown. Skin loose and semi-gelatinous, sculptured in small and regular low patches. Two elongate papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 130 mm; total length to around 280 mm.

Geographical Distribution: Indo-West Pacific Ocean and Atlantic Ocean.

Habitat and Biology: Soft substrates typically at depths of 200 to 800 m.

Remarks: Two or more species from deep waters of all oceans. The right-handed species, *Pteroctopus hoylei*, previously has been treated under the generic synonym *Berrya*. This genus requires revision.

Pteroctopus tetracirrhus (Delle Chiaje, 1830)

Octopus tetracirrhus Delle Chiaje, 1830, *Memorie Sulla Storia e Notomia Degli Animali Senze Vertebre del Regno di Napoli*, pl.72. [Type locality: Mediterranean Sea, Italy, Naples].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Fourhorn octopus; Fr — Poulpe à quatre cornes; Sp — Pulpo cuatro cuernos.

Diagnostic Features: Moderate-sized, muscular species with loose skin. Opening to mantle cavity very narrow, <40% of body circumference at level of opening. Stylets present, non-mineralized. Arms of moderate length, around 3.5 to 4 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. **Webs deep, deepest >40% of arm length.** Web sectors approximately equal in depth. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 130 to 150 suckers on each normal arm. Enlarged suckers absent. **Funnel organ V V-shaped, limbs very slender and of approximately equal length.** Gills with 9 to 10 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swallowing only, no distinct crop. Ink sac present. Anal flaps present. **Left third arm of males hectocotylized,** length around 60 to 80% of length of opposite arm. Ligula broad and conical, 5 to 11% of arm length. Calamus large. Hectocotylized arm with around 80 suckers. Spermatophores large, around 50 mm, approximately equal to mantle length, produced in low numbers (1 in material examined). Eggs moderate to large, to 8 mm. **Colour:** Live animal uniform red-orange. False-eye spots (ocelli) absent. **Sculpture:** Skin soft and loose, sculptured in small regular raised patches. Two large digit-like papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 130 mm; total length to around 280 mm.

Geographical Distribution: Mediterranean Sea and eastern Atlantic Ocean on west coast of Africa to the equator, including the Cape Verde and Azores Islands (Fig. 164). Related form(s) of unresolved taxonomic status present in Caribbean Sea, eastern Americas from Uruguay to North Carolina and off Australia and Indonesia.

Habitat and Biology: Depths range from 25 to 720 m. Typically found in deeper part of range. Occurs primarily on muddy substrates. Males and females mature consecutively by May/June and June/July respectively. Young immature animals appear in catches from November and December. Lifespan considered to be 2 or 3 years.
Interest to Fisheries: Taken on a minor scale as bycatch in shrimp or finfish trawl fisheries in the western Mediterranean and western Atlantic. Separate catch statistics for this species are not reported.

Local Names: ITALY: Polpo incamiciato.

Literature: Mangold-Wirz (1963), Bonichon-Laubier (1971), Toll and Binger (1991), Quetglas et al. (2000, 2009), Krustulović Šifner et al. (2005).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Pteroctopus hoylei (Berry, 1909)

Size: Mantle length to 60 mm; total length to 230 mm.

Geographical Distribution: Hawaiian Islands Archipelago.

Habitat and Biology: Depth range from 200 to 800 m.

Literature: Norman (2000).
Robsonella Adam, 1938

Type Species: *Octopus fontanianus* d’Orbigny, 1834: 28.

Frequent Synonyms: Joubinia Robson, 1929.

Diagnostic Features: Moderate-sized species. Mantle muscular, ovoid. Stylets present, non-mineralized. Arms moderate to long length, 3.5 to 5 times mantle length. Arms subequal in length or lateral and ventral pairs slightly longer. Arm autotomy at distinct plane absent. Webs moderately deep, deepest around 16 to 32% longest arms. Interbrachial web pouches absent. Suckers in two rows, medium-sized (7 to 12% ML); distinctly enlarged in mature males on arms 2 and 3. Funnel organ W-shaped. Gills with 8 to 10 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian with two cusps on either side, in asymmetrical seriation. First lateral tooth with crescent to bicuspid form. Posterior salivary glands of moderate size, approximately same size as buccal mass. Distinct crop as side branch off oesophagus absent. Ink sac present. Anal flaps present. Right third arm hectocotylized, slightly shorter than opposite arm (~75%). Ligula of moderate size, 5 to 9% of arm length, stout margins fleshy and inrolled, copulatory groove deep with shallow transverse furrows. Calamus large and prominent (50 to 60% ligula length). Terminal organ T-shaped with diverticulum longer than distal portion. Spermatophores of medium length (83 to 174% ML), slender with singly coiled sperm cord in 15 to 17 coils, produced in low numbers (<10). Eggs small. Colour in life bluish to violet to dark brown. Preserved material pale purple to dark brown dorsally, light pink ventrally. Frontal white spot and dorsal mantle white spots present. Skin texture of patch and groove system of regular circular patches. Single large papilla over each eye. Posterior mid to dorsal mantle papilla present; others not visible. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to around 270 mm.

Geographical Distribution: Pacific coast of South America from Peru and Chile.

Habitat and Biology: On rocky reefs and soft sediments from 0 to 200 m.

Remarks: Since the syntype is a female it is difficult to justify using *fontanianus* as the type species for the genus *Robsonella*, which is based primarily on male characters. At present, there are not enough characters to consistently and confidently separate it at the generic level as distinct from *Octopus sensu stricto*. In addition, the status of this genus and its relation to Australian and New Zealand species (*O. australis*, *O. berrima*, *O. campbelli* and *O. huttoni*) require critical revision. This species currently is represented by a single species from the coast of South America (Peru, Chile, and potentially Argentina). See Pickford (1955), Thore (1959), and Ibáñez et al. (2008) for reviews and redescriptions.

Robsonella fontanianus (d’Orbigny, 1834)

Octopus fontanianus d’Orbigny, 1834 [In 1834 to 1847], Voyage dans l’Amerique Meridionale, 5(3): 28. [Type locality: Southeastern Pacific Ocean, Chile, Valparaiso].

Frequent Synonyms: None.

Misidentifications: *Octopus minus* Gould, 1852.

FAO Names: En — Fontaine's octopus; Fr — Poulpe de Fontaine; Sp — Pulpo de Fontaine.

Diagnostic Features: Moderate-sized muscular species. Arms moderate to long, around 3.5 to 5 times mantle length. Arms of similar length, ventral arm longest. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 16 to 32% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, up to 150 suckers on each normal arm. **Enlarged suckers present in mature males, 1 to 4 (typically 3) on arms 2 and 3, diameter 13 to 17% ML.** Gills with 8 to 10 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. **First lateral tooth crescent-shaped to bicuspid.** Distinct crop as side branch off oesophagus absent. Ink sac and anal flaps present. Right third arm of males hectocotylized, length ~75% length of opposite arm. **Ligula stout and conical, 5 to 9% of arm length, copulatory groove deep with around 7 transverse shallow furrows.** Calamus large and robust, around half ligula length. Hectocotylized arm with 47 to 60 suckers. Spermatophores of moderate size, around 80 to 170% of mantle length.
Eggs small, around 3.5 mm. **Colour:** Bluish to violet to dark brown. **Large white frontal white spot present on dorsal arm crown,** as well as pair of small dorsal mantle white spots. False eye spots (ocelli) absent. **Sculpture:** Skin texture of regular patch and groove sculpture with circular patches. Single large papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to around 270 mm.

Geographical Distribution: Common along rocky coasts in South America. Occurs in the southeastern Pacific from north of Peru to Chile (56°S) and in the southwestern Atlantic off Tierra del Fuego (Fig. 166).

Habitat and Biology: Depth range from 0 to 200 m. Found in the intertidal and subtidal zones in association with both rocky reefs and soft substrates. Small crustaceans and fishes are the main prey. Eggs are small and hatchlings planktonic.

Interest to Fisheries: A small artisanal fishery has been reported that targets this species in Chile (Osorio et al., 1979). Currently being investigated for potential aquaculture (Pereda et al., 2009).

Local Names: Unknown.

Remarks: The species name often is presented incorrectly as *Robsonella fontanianus*.

Sasakiopus Jorgensen, 2009

Type Species: *Polypus salebrosus* Sasaki, 1920.

Diagnostic Features: Moderate-sized species. Mantle muscular and roughly spherical. Styles present. Arms short, approximately twice mantle length. Arms subequal in length (typically 3>4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 35% of longest arms. Interbrachial web pouches absent. Suckers in two rows, none enlarged in either sex. Funnel organ W-shaped, lateral limbs half length of medial limbs. Gills with 7 to 10 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary glands of moderate size, approximately same size as buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present, greatly reduced; anal flaps absent. Right third arm hectocotylized, slightly shorter than opposite arm (~75%). Ligula large, ~15% of arm length, elongate with shallow open groove, lacking transverse ridges or laminae. Calamus moderate, ~30% of ligula length. Spermatophores approximately 70% of mantle length, produced in moderate to high numbers (~70). Eggs large (>20% of mantle length). Colour in life uniform red to purple, brown in preserved material. Dorsal mantle white spots (*sensu* Packard and Sanders, 1971) absent. Ocelli absent. Skin sculpture of extensive, closely-set, irregularly-shaped, flat-topped papillae that form pavement over entire dorsal and ventral surfaces. Supraocular or other enlarged papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 65 mm; total length to 200 mm.

Geographical Distribution: Northern Pacific Ocean.

Habitat and Biology: From 200 to 1 100 m.

Literature: Muus (2002), Jorgensen (2009), Jorgensen *et al.* (2010).

Sasakiopus salebrosus (Sasaki, 1920)

Frequent Synonyms: *Bathypolypus salebrosus* (Sasaki, 1920).

FAO Names: En — Rough octopus; Fr — Poulpe rugueux; Sp — Pulpo àspero.

Misidentifications: *Enteroctopus dofleini* (Wülker, 1910) (juveniles).

Diagnostic Features: Moderate-sized muscular species. Arms of moderate length, around 2 times mantle length. **Arms of similar length; lateral pairs slightly longer** (typically 3>4>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 35% of arm length. Webs approximately equal in depth, deepest on lateral arms (typically C>D>B>A>E). Interbrachial web pouches absent. Arms with two rows of small suckers, around 8% of mantle length. In larger animals, up to 87 suckers on each normal arm. Enlarged suckers absent. Gills with 7 to 10 lamellae per demibranch, typically 8 to 9. **Funnel organ W-shaped; outer limbs approximately 50% length of medial limbs.** Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus.

Fig. 167

dorsal view

![Fig. 167 Sasakiopus salebrosus](image-url)
Ink sac present, greatly reduced. Anal flaps absent. Right third arm of males hectocotylized, ~75% length of opposite arm. Ligula large (~15% of arm length), stout and conical, evenly tapered to a sharp tip. Ligula groove shallow without transverse ridges or laminae. Calamus of moderate size, around 30% of ligula length. Hectocotylized arm with around 38 to 43 suckers. Spermatophores of moderate size, around 30 mm, around 70% of mantle length, produced in large numbers (~70). Eggs large, capsule length to 15 mm. **Colour:** Live animals uniform deep red to purple, preserved animals cream. False-eye spots (ocelli) absent. **Sculpture:** Skin texture as dense complete cover of small compound papillae over entire dorsal and ventral surfaces. Enlarged papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 65 mm; total length to 200 mm.

Geographical Distribution: Northwestern Pacific from Sea of Japan to the Okhotsk and Bering seas (Fig. 168).

Habitat and Biology: Depth range from 212 to 1 160 m. This species primarily is known from trawl material collected at depths. Habitat associations are not known. The large eggs of this species indicate that young are benthic upon hatching.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: This species recently was transferred to the genus *Sasakiopus* by Jorgensen (2009). The relationship of this species to Sasaki’s (1920) *Polypus validus* from deep water off Japan requires further resolution, as does its relationship to *Bathypolypus arcticus* found in the North Atlantic and Arctic regions.

Literature: Laptikovsky (1999), Muus (2002), Jorgensen (2009), Jorgensen et al. (2010).
Scaeurgus Troschel, 1857

Type Species: *Octopus cocco* Verany, 1846 [= *Scaeurgus unicirrhus* (Delle Chiaje, 1839-1841)].

Diagnostic Features: Small to moderate-sized species. Mantle muscular ovoid. Stylets present, large, often mineralized. Arms short, 2 to 3 times mantle length. Arms of similar length, lateral pairs longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs moderately deep, deepest around 25-30% longest arms. Interbrachial web pouches absent. Suckers in two rows, medium-sized and slightly to distinctly enlarged in males of different species. Funnel organ W-shaped. Gills with 8 to 14 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian with one to two cusps on each side (typically two), in asymmetrical seriation. Posterior salivary glands of moderate size, approximately same size as buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Left third arm hectocotylized, slightly shorter than opposite arm (~80%). Ligula of moderate size, elongate with fleshy thick rims, often peanut-shaped. Calamus small to very large (up to 70% ligula length). Spermatophores with double-strand coiled sperm cord, forming a braided pattern. Spermatophores produced in low numbers (<10). Distal oviducts fleshy and swollen. Eggs small to moderate-sized (3 to 10% of mantle length in different species). Colour pattern of cream to orange-brown with four paired black spots on mantle, anterior pair on lateral mantle adjacent to mantle aperture and dorsal to lateral skin ridge. Posterior pair on posterior tip of mantle dorsal to lateral ridge, faint in some species. Dorsal mantle white spots (*sensu* Packard and Sanders, 1971) visible in live animals and some preserved material. Skin texture of regular numerous rounded papillae, dense on dorsal surfaces, present but less dense on ventral mantle, absent from aboral surface of fourth arm pair and ventral half of third arms from midline. Diamond of primary papillae present on dorsal mantle. Single large papilla present over each eye and large papilla present on posterior tip of mantle. Skin ridge around lateral margin of mantle present (interrupted dashed line in pygmy species, *Scaeurgus tuber*).

Size: Mantle length to 90 mm.

Geographical Distribution: Pacific, Indian and Atlantic Oceans, and Mediterranean Sea.

Habitat and Biology: Deep-water species; typically on continental slopes and associated with seamounts at depths usually between 100 and 500 m.

Remarks: At least seven species found on seamounts and continental slopes in all oceans.

Literature: Norman *et al.* (2005).

Scaeurgus unicirrhus (Delle Chiaje, 1839-1841)

Octopus unicirrhus Delle Chiaje, 1839-1841, *Memorie Sulla Storia e Notomia Degli Animali Senze Vertebre del Regno di Napoli*: 70. [Type locality: None designated but presumed to be western Mediterranean Sea (Mangold, 1998); neotype locality: Mediterranean Sea, France, off Banyuls sur Mer].

Frequent Synonyms: *Octopus cocco* Verany, 1846.

Misidentifications: None.

FAO Names: En — Unihorn octopus; Fr — Poulpe licorne; Sp — Pulpo unicornio.

Diagnostic Features: Moderate-sized muscular species. Arms of moderate length, around 3 to 4.5 times mantle length. Arms of similar length, lateral pairs longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 15 to 23% of arm length. Web deepest on lateral arms; webs between dorsal arms shallower.

Fig. 169 *Scaeurgus unicirrhus*
Web margins extend halfway along arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, up to 200 suckers on each normal arm. Enlarged suckers absent. Gills with 12 to 14 lamellae per demibranch. Funnel organ W-shaped (sometimes V V), outer limbs approximately 80% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Left third arm of males hectocotylized, 60 to 75% length of opposite arm. Ligula large and peanut-shaped with deep groove, 7 to 11% of arm length. Calamus long and sharp, over half ligula length. Hectocotylized arm with around 85 suckers. Spermatophores of moderate size, around 45 mm, around 70 to 100% of mantle length, produced in low numbers (~8). Eggs small, around 2.5 mm. Colour: Red-brown to orange with irregular darker brown markings. Two pairs of black spots often visible on the dorsal mantle. False-eye spots (ocelli) absent. Sculpture: Skin texture of regular blunt rounded papillae fused in places on the dorsal arm crown to form short longitudinal ridges. Single large papilla over each eye. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 90 mm.

Geographical Distribution: Mediterranean Sea and northeastern Atlantic (Portugal). Voss (1951a) reported this species from the western Atlantic Ocean (see Remarks below) (Fig. 170).

Habitat and Biology: Depth range from 50 to 500 m (typically >100 m). This species lives on the continental shelf and slope, on sandy, coralline, or muddy substrates. It feeds on molluscs, crustaceans, and small fishes. The spawning period in the Mediterranean Sea is from May to August. Females attach festoons of eggs to the substrate. Hatchlings are planktonic.

Interest to Fisheries: Unknown.

Local Names: ITALY: Polpo riccio; USA: Atlantic warty octopus.

Remarks: Norman et al. (2005) reviewed the genus Scaeurgus and described a neotype. There is still very little voucher material available for this species. The status of the western Atlantic form is yet to be resolved from the Mediterranean form.

Scaeurgus jumeau Norman, Hochberg and Boucher-Rodoni, 2005

Size: Mantle length to 44 mm.

Geographical Distribution: Known only from East Jumeau Bank seamount, South New Caledonia.

Habitat and Biology: Depth range from 378 to 530 m.

Literature: No additional literature.

Scaeurgus nesisi Norman, Hochberg and Boucher-Rodoni, 2005

Size: Mantle length to 56 mm.

Geographical Distribution: Known only from Nova Bank seamount, Coral Sea.

Habitat and Biology: Depth range from 295 to 340 m.

Literature: No additional literature.

Scaeurgus patagiatus Berry, 1913

Size: Mantle length to 63 mm.

Geographical Distribution: Hawaii and Japan.

Habitat and Biology: Depth range to 325 m.

Literature: Toll and Voss (1998), Norman *et al.* (2005).

Scaeurgus tuber Norman, Hochberg and Boucher-Rodoni, 2005

Size: Mantle length to 24 mm.

Geographical Distribution: New Caledonia and Norfolk Ridge.

Habitat and Biology: Depth range from 230 to 391 m.

Literature: No additional literature.
Teretoctopus Robson, 1929

Type Species: *Teretoctopus indicus* Robson, 1929

Diagnostic Features: Small to moderate-sized species. Arms short, ~2 to 3 times mantle length. Arms subequal in length. Arm autotomy at distinct plane absent. Webs deep, deepest >30% length of longest arm. Dorsal and lateral webs subequal; ventral web slightly shorter. Interbrachial web pouches absent. Suckers in two rows. Enlarged suckers absent. Funnel organ consists of an arched transverse row of four short, rounded, longitudinal pads. Gills with 10 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Posterior salivary gland size not reported. Distinct crop present as side-branch off oesophagus. Ink sac absent. Radula with 9 elements, 7 rows of teeth and marginal plates. Third right arm hectocotylized, distinctly shorter than opposite arm (60%). Ligula elongate and moderate to large in size, 6 to 16% of arm length. Calamus present. Spermatophores unknown. Egg size unknown. Colour pattern of preserved material pale buff with minute yellow-brown chromatophores, interspersed with a few larger ones. Skin smooth. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 60 mm.

Geographical Distribution: Northern Indian Ocean.

Habitat and Biology: Poorly known; from depths of 300 to 1 200 m.

Remarks: The genus *Teretoctopus* remains poorly diagnosed, based on two poorly known species from deep waters off India.

Teretoctopus indicus Robson, 1929

Teretoctopus indicus Robson, 1929b, *Annals of the Magazine of Natural History*, (10), III: 608. [Type locality: Arabian Sea, 24°45'N, 63°50'15"E].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Fourpad octopus; Fr — Poulpe quatre-tampons; Sp — Pulpo con almohadillas.

Diagnostic Features: Small to moderate-sized species. Arms short, around 2 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, 30 to 40% of arm length. Dorsal and lateral webs subequal; ventral web slightly shorter. Interbrachial web pouches absent. Suckers biserial and small, around 3% of mantle length. Sucker counts unknown. Enlarged suckers absent. Gills with 10 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. **Ink sac absent.** Right third arm of males hectocotylized, around 60% length of opposite arm. Ligula elongate (~6% of arm length), narrow with small calamus. Hectocotylized arm sucker count unknown. Spermatophores unknown. Egg size unknown. **Colour:** Preserved material pale buff with minute yellow-brown chromatophores, interspersed with a few larger ones. **Two alternating longitudinal rows of large, subdermal, light-coloured chromatophores (founder chromatophores) on outer surface of each arm.** False-eye spots (ocelli) absent. **Sculpture:** Skin smooth. Skin ridge around lateral margin of mantle absent.

Size: Mantle length 34 mm; Known only from type specimen.
Geographical Distribution: Known only from the type material (Fig. 171).

Habitat and Biology: Depth range to 1 000 m. Biology and behaviour unknown.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: This poorly known deep-water species requires thorough revision.

Literature: Robson (1932a), Voss (1988a).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Teretoctopus alcocki Robson, 1932

Size: Mantle length to 60 mm.

Geographical Distribution: Andaman Sea to Gulf of Oman.

Habitat and Biology: Depth range from 360 to 1 200 m.

Literature: No additional literature.
Tetracheledone Voss, 1955

Type Species: *Tetracheledone spinicirrus* Voss, 1955.

Diagnostic Features: Small, muscular species. Mantle spherical to ovoid, broad. Stylets present, large and mineralized. Arms short, stout, 1.5 to 2 times length of mantle. Arms subequal in length. Arm autotomy at distinct plane absent. Webs deep, up to 45% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms slightly shallower. Interbrachial web pouches absent. Suckers in single row, small and deeply set, 5 to 9% of mantle length. Enlarged suckers absent. Funnel organ of 4 short longitudinal bars (IIII). Gills with 7 to 9 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian tooth with long central cusp. Posterior salivary glands of moderate size, approximately equal in length with buccal mass. Oesophagus with swelling only, no distinct crop. Ink sac present, free from digestive tract, unpigmented. Anal flaps absent. Third right arm of males hectocotylized, shorter than opposite arm (~85%). Ligula large, approximately 4 to 7% of arm length, triangular with open groove. Calamus present, of moderate size, around 40% of ligula length. Spermatophores of moderate size, approximately 60% of mantle length, unarmed. Mature females and eggs unknown. Colour of preserved material pale pink. Skin texture of body, arms and webs closely set with large, stellate papillae, giving spinous appearance. Two large stellate papillae over each eye. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 100 mm; total length to 260 mm.

Geographical Distribution: Off Florida, Cuba and Gulf of Mexico.

Habitat and Biology: Deep-water species from 200 to 400 m.

Remarks: Known only from a single species.

Tetracheledone spinicirrus Voss, 1955

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Spiny-horn octopus; Fr — Poulpe cornu; Sp — Pulpo cornudo.

Diagnostic Features: Moderate-sized, robust species. Arms short, 2 to 2.5 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, deepest >40% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms slightly shallower. Web margins extend to

[Fig. 172](#) **Tetracheledone spinicirrus**
arm tips. Interbrachial web pouches absent. **One row of suckers on each arm.** In larger animals, around 65 suckers on each normal arm. Enlarged suckers absent. Gills with 6 to 9 lamellae per demibranch. **Funnel organ of 4 short longitudinal pads.** Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac present. Right third arm of males hectocotylized, around 85% length of opposite arm. Ligula leaf-shaped, 4 to 10% of arm length. Calamus of moderate size, around 40% of ligula length. Hectocotylized arm with 34 suckers in examined material. Spermatophores of moderate size, around 45 mm, around 60% of mantle length, produced in moderate numbers (~25). Egg size unknown.

Colour: Preserved material with pale pink base colour and crimson papillae. False-eye spots (ocelli) absent. **Sculpture:** Pavement-like skin texture of numerous regular stellate papillae. Two large branched papillae over each eye. Skin ridge around lateral margin of mantle present.

Size: Mantle length to 100 mm; total length to 260 mm.

Geographical Distribution: Gulf of Mexico, Straits of Florida, and Caribbean Sea; limits unknown (Fig. 173).

Habitat and Biology: Depth range from 200 to 400 m. Occurs on mud substrates. Nothing known of biology or behaviour.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Voss (1956), Humes and Voight (1997).

Thaumeledone Robson, 1930

Type Species: *Eledone brevis* Hoyle 1885. By original designation.

Diagnostic Features: Small to moderate-sized deep-water species. Mantle shape round to slightly ovoid. Stylets present, non-mineralized. Arms short, around 1.5 to 2 times mantle length. Arms subequal in length. Arm autotomy at distinct plane absent. Web depth moderate to very deep, deepest 30 to 65% length of longest arm. Webs subequal in depth. Interbrachial web pouches absent. Suckers in single row, small (3 to 8% of mantle length). Enlarged suckers absent. Funnel organ V V-shaped or 4 separate linear components (IIII). Gills with 4 to 6 lamellae per demibranch. Radula degenerate with 1 to 5 rows of teeth, marginal plates absent. Posterior salivary glands of moderate size (70 to 80% length of buccal mass). Oesophagus with swelling only, no distinct crop. Ink sac absent. Anal flaps absent. Third right arm of males hectocotylized with end of arm clearly differentiated into ligula and calamus, ligula large (9 to 17% of arm length), club-shaped with deep ligula groove without transverse ridges. Calamus very long, 60 to 85% of ligula length. Spermatophores long (1.2 to 1.4 times mantle length) and slender. Colour pattern variable among species. A deep purple base is a common component of colour patterns, either in base colour, on oral web and/or in skin papillae. Skin texture papillosse, typically with irregular and slightly stellate papillae, densely packed and intertwined to form fine-scale leopard-skin appearance. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to 170 mm.

Geographical Distribution: Southern Atlantic Ocean, perhaps broader.

Habitat and Biology: Deep waters between 350 and at least 1 500 m.
Remarks: O’Shea (1999) expanded the definition of the genus *Thaumeledone* to include two difficult-to-place taxa, *T. marshalli* and *T. zeiss*. Norman et al. (2004b) challenged this decision and proposed condensation of the generic diagnosis for *Thaumeledone* back to the original member taxa, *T. brevis* and *T. gunteri* only. Allcock et al. (2004) described a new species for this genus, *T. peninsulae*. This work also placed the type species for the genus *Bentheledone*, *B. rotunda* (Hoyle, 1885) in the genus *Thaumeledone*, a decision not supported herein (see discussion for the genus *Bentheledone*). Strugnell et al. (2008) reviewed relationships of the genus based on molecular sequences. As the type species for the genus *Thaumeledone*, *T. brevis*, is poorly diagnosed, *T. gunteri* is presented here as an example of this genus. O’Shea’s (1999) two taxa, *marshalli* and *zeiss*, are listed below under the generic form ‘*Thaumeledone*’, awaiting further review.

Thaumeledone gunteri Robson, 1930

Thaumeledone gunteri Robson, 1930b, *Discovery Reports*, 2: 392. [Type locality: South Atlantic Ocean (off South Georgia Island), 53°48’S, 35°57’W].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Gunter’s octopus; Fr — Poulpe de Gunter; Sp — Pulpo de Gunter.

Diagnostic Features: Small to moderate-sized deep-water species. Eyes large and slightly pronounced. Styles present, non-mineralized. **Arms short (1.5 to 2 times mantle length), subequal; dorsal pair slightly shorter (arm formula typically 4>3=2>1).** Arm autotomy at distinct plane absent. Webs deep, around 40% length of longest arm. Webs subequal; ventral web slightly shorter (A=B=C=D>E). Interbrachial web pouches absent. One row of suckers on each arm. Sucker counts on normal arms to 36. Enlarged suckers absent. Funnel organ V V-shaped. **Gills with 5 lamellae per demibranch.**

Radula with 5 elements: unicuspid rachidian, 1st lateral tooth low and conical, 2nd lateral tooth broad and nearly acuspid. Marginal plates absent. Posterior salivary glands of moderate size, approximately 80% length of buccal mass. Oesophagus with swelling only; no distinct crop. Ink sac absent. Anal flaps absent. Third right arm of males hectocotylized, ~85% length of opposite arm. Ligula large, around 17% length of hectocotylized arm, club-like with well-developed, deep groove lacking transverse ridges. **Calamus very large, around 80% length of ligula.** Hectocotylized arm with 19 to 22 suckers. Spermatophores large (around 110% of mantle length), unarmed. Eggs large (>10 mm). **Colour:** Dorsal surfaces of live animals with densely packed irregular and roughly stellate dark purple papillae over white base colour. Ventral surfaces deep purple. **Sculpture:** Skin relatively smooth with low rugose sculpture formed by stellate papillae. Larger papillae over eyes. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 50 mm; total length to 107 mm.

Geographical Distribution: South Atlantic Ocean, off South Georgia (Fig. 175).
Habitat and Biology: Depth range from 365 to 965 m. Nothing known of the biology or behaviour of this deep-water species. Large eggs indicate hatchlings are benthic.

Interest to Fisheries: Unknown.

Local Names: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Thaumeledon brevis (Hoyle, 1885)

Size: Mantle length to 20 mm.

Geographical Distribution: Known only from the type locality in southwestern Atlantic Ocean.

Habitat and Biology: Depth range to 1 000 m.

Literature: Robson (1932a).

Thaumeledon peninsulae Allcock, Collins, Piatkowski and Vecchione, 2004

Size: Mantle length to 48 mm; total length to 120 mm.

Geographical Distribution: Southern Ocean, Antarctic Peninsula.

Habitat and Biology: Depth range from 377 to 1 512 m.

Literature: Strugnell et al. (2008).

‘Thaumeledon’ marshalli O’Shea, 1999

Thaumeledon marshalli O’Shea, 1999, *NIWA Biodiversity Memoir*, 112: 249. [Type locality: New Zealand, off east coast of North Island].

Size: Mantle length to 44 mm; total length to 100 mm.

Geographical Distribution: New Zealand and Chatham Rise.

Habitat and Biology: Depth range from 2 000 to 2 500 m.

Remarks: Generic placement questioned in Norman et al. (2004b).

‘Thaumeledon’ zeiss O’Shea, 1999

Size: Mantle length to 55 mm; total length to 120 mm.

Geographical Distribution: New Zealand and Chatham Rise.

Habitat and Biology: Depth range from 1 000 to 1 400 m.

Remarks: Generic placement questioned in Norman et al. (2004b).

Literature: Norman et al. (2004b).
Thaumoctopus Norman and Hochberg, 2005

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Mimic octopus; Fr — Poulpe mimétique; Sp — Pulpo mimico.

Diagnostic Features: Moderate-sized, elongate, muscular species. Eyes of moderate size and slightly pronounced. Stylets present, short and non-mineralized. **Arms long (7-10 times mantle length),** ventral arms longest (arm formula 4>3>2>1). **Arm autotomy present at level of 12th to 13th proximal sucker.** Webs thin and retractile, extending as well-developed margins along ventral edges of all arms, lateral webs deepest with sector A typically most shallow. Interbrachial web pouches absent. Two rows of suckers on each arm. Sucker counts on normal arms to 283. Enlarged suckers absent. Funnel organ W-shaped with short outer limbs. **Gills with 9 lamellae per demibranch.** Third right arm of males hectocotylized, ~50% length of opposite arm. **Ligula small**, length 1.7 to 1.9% of hectocotylized arm length, elongate with well developed groove. **Calamus absent, replaced by slight thickening of rim of proximal ligula groove.** Hectocotylized arm with 130 and 146 suckers in the two available males. Spermatophores unarmed and short (around 40% mantle length), produced in moderate numbers (~25). Eggs small-type (mature females unknown). **Colour:** patterns variable, dorsal mantle typically with irregular longitudinal white markings against dark brown background. Two mantle pattern components are consistently present: 1) teardrop ring in mid to anterior dorsal mantle, and 2) white “U” on posterio-dorsal mantle. Arms with regular white bands against dark brown base colour. Arm white spots present in dark arm bands. **Sculpture:** Skin relatively smooth with a rim of secondary papillae around lateral and posterior mantle forming spiked appearance; patch and groove.
system absent. Paired, sharply pointed, elongate papillae present over each eye: larger above eye, smaller on anterior face of eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 58 mm; total length to over 480 mm.

Geographical Distribution: New Caledonia and north-east Australia (Lizard Island) and Papua New Guinea, through Indonesia and north to the Philippines. Also recorded from the Red Sea (Fig. 177).

![Map of Thaumoctopus mimicus distribution](image)

Habitat and Biology: Depth range from 0.5 to at least 37 m. Inhabits open plains of sand and/or mud. Often found in areas adjacent to silt-laden river outflows. The species is active during the day, making foraging bouts from the safety of a lair throughout daylight hours. This octopus often occupies the vacated burrows of other animals. These lairs appear temporary or may form a network of regular lairs within a home range. Individuals were observed to occupy a particular hole for periods of between one and four days. Some individuals were observed to leave one hole at first light, forage throughout the day (including entering and exiting from various animal burrows throughout the day) and remaining overnight within the last hole encountered during foraging bouts. These animals were observed to emerge from the same hole at first light the next day.

This species is best known for its mimicry of toxic models that co-occur in the same habitat, namely banded soles, sea snakes, and lionfish, with other distinct postures and behaviours currently being open to interpretation.

Interest to Fisheries: Some aquarium trade occurs for this species. High fatality rates would make such harvest a potential conservation issue. The high tourism, photography and documentary profile of this species means that it is of significant commercial value alive and in its natural habitat, particularly in places such as Bali and northern Sulawesi, Indonesia.

Local Names: Unknown.

Velodona Chun, 1915

Type Species: *Velodona togata* Chun, 1915.

Diagnostic Features: Large, muscular, deep-water species. Mantle spherical to ovoid. Stylets present, showing some calcification. Arms muscular, moderate to long, 3 to 4.5 times mantle length. Dorsal arms longest, arm formula $1>2>3>4$. Arm autotomy at distinct plane absent. Webs of moderate depth, 18 to 26% of arm length. Web margins extend to arm tips, flaring to form veil-like extensions in distal portions. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent. Funnel organ V V-shaped. Gills with 9 to 11 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Anal flaps absent. Third right arm of males hectocotylized, shorter than opposite arm. Ligula and distinct calamus present. Spermatophores large, around 110% of mantle length. Eggs large, around 19 mm. Colour pattern of live animals unknown. Preserved material shows uniform orange-brown. Skin texture of regular scattering of rounded warts on all dorsal surfaces. Single large papilla on each base of the dorsal arm pair. Larger patch of papillae present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 150 mm; total length to around 680 mm.

Geographical Distribution: Genus restricted to southwest Indian Ocean.

Habitat and Biology: Known depth range 290 to 749 m.

Remarks: Single, deep-water species from off the south-east coast of Africa.

Velodona togata Chun, 1915

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Angel octopus; Fr — Poulpe ange; Sp — Pulpo angel.

Diagnostic Features: Large, muscular species with veil-like webs on arm tips. Arms moderate to long, 3 to 4.5 times mantle length. Dorsal arms longest (typically $1>2>3>4$). Arm autotomy at distinct plane absent. Webs of moderate length, deepest around 18 to 26% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Web margins expand towards arm tips to form wide veil-like extensions on the arm tips, particularly obvious on larger dorsal arm pair. Interbrachial web pouches absent. One row of suckers on each arm. In larger animals, up to 102 suckers on each normal arm. Enlarged suckers absent. Gills with 9 to 11 lamellae per demibranch. Funnel organ V V-shaped, outer limbs much shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac poorly developed. Third right arm of males hectocotylized, shorter than opposite arm. Ligula of moderate size with thick margins, 6 to 9% of arm length. Calamus of moderate size and sharp, 30 to 34% of ligula length. Hectocotylized arm with 38 to 47 suckers. Spermatophores large, around 120 mm, around 110% of mantle length, produced in low numbers (<10). Eggs large, around 19 mm. **Colour:** Live animal colour patterns unknown. Preserved material shows uniform orange-brown. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of numerous, raised, rounded papillae of various sizes scattered over dorsal and lateral surfaces. Single, large papilla on base of each dorsal arm. Larger patch of papillae present over each eye. Skin ridge around lateral margin of mantle absent.

Fig. 178 Velodona togata
Size: Mantle length to 150 mm; total length to around 680 mm.

Geographical Distribution: Western Indian Ocean: south-east coast of Africa from Durban, South Africa to Mozambique (Fig. 179).

Habitat and Biology: Depth range from 290 to 749 m. Biology and behaviour poorly known. Large eggs hatch into benthic young.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Glaubrecht and Salcedo-Vargas (2000).

Vosseledone Palacio, 1978

Type Species: *Vosseledone charrua* Palacio, 1978.

Diagnostic Features: Moderate-sized, robust, deep-water species. Mantle spherical, broad. Stylets not reported. Arms short, approximately 2 times mantle length. Arms subequal in length. Arm autotomy at distinct plane absent. Webs deep, deepest around 40% length of longest arm. Web deepest on lateral arms; web sectors of dorsal and ventral arms shallowest. Interbrachial web pouches absent. Suckers in single row. Enlarged suckers absent. Funnel organ V V-shaped, limbs of approximately equal length. Gills with 6 to 7 lamellae per demibranch. Radula highly modified with only 3 elements, 3 rows of teeth, a central rachidian tooth with wide paddle-like flanges between two rows of wide flattened teeth. Posterior salivary glands not described. Distinct crop present as side-branch off oesophagus. Ink sac present. Third right arm of males hectocotylized, shorter than opposite arm. Ligula large and wide with open groove. Calamus large. Spermatophores large, approximately equal to mantle length. Eggs large. Colour patterns unknown. Preserved material a uniform cream-brown. Skin texture of numerous well-spaced, small, papillose warts on dorsal and lateral surfaces. Ventral surfaces smooth. Two papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 76 mm; total length to around 200 mm.

Geographical Distribution: Known only from western Atlantic Ocean off Brazil and Uruguay.

Habitat and Biology: Collected from 10 to 200 m.

Remarks: Single, poorly known species from shallow waters off southern Brazil and Uruguay, Atlantic Ocean.
Vosseledone charrua Palacio, 1978

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Charrua octopus; Fr — Poulpe charrua; Sp — Pulpo charrúa.

Diagnostic Features: Small, muscular species. Arms short, around 2 times mantle length. Arms approximately equal in length. Arm autotomy at distinct plane absent. Webs deep, deepest around 40% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arms shallower. Interbrachial web pouches absent. **One row of suckers on each arm.** Sucker counts unknown. Enlarged suckers absent. Gills with 6 to 7 lamellae per demibranch. **Funnel organ** V V-shaped, limbs of approximately equal length. Radula highly modified with three rows of teeth, a central rachidian tooth with wide paddle-like flanges between two rows of wide flattened teeth. Distinct crop present as side-branch off oesophagus. Ink sac present. Right third arm of males hectocotylized, 73 to 86% length of opposite arm. Ligula large and wide with open groove, 8 to 11% of arm length. Calamus large, 43 to 59% of ligula length. Hectocotylized arm sucker count unknown. Spermatophores large, around 50 mm, approximately equal to mantle length, produced in low numbers (~3). **Eggs** large, around 13 mm. **Colour:** Live colour patterns unknown. Preserved material is uniform cream-brown in colour. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of numerous, well-spaced, small, papillose warts on dorsal and lateral surfaces. Ventral surfaces smooth. Two papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 76 mm; total length to around 200 mm.

Geographical Distribution: Known only from western Atlantic, off southern Brazil and Uruguay (Fig. 181).

Habitat and Biology: Depth range from 10 to 200 m. Nothing known of the biology or behaviour of this species.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Literature: Palacio (1978).
Vulcanoctopus González and Guerra, 1998

Type Species: *Vulcanoctopus hydrothermalis* González and Guerra, 1998.

Diagnostic Features: Small, deep-water, vent species. Mantle amphora-shaped. Eyes small. Stylets absent. Arms of moderate length, 3 to 4 times mantle length, thin and finely attenuate. Dorsal arms longest, typically 1>2>3>4. Arm autotomy at distinct plane absent. Webs shallow, deepest 10 to 15% of arm length. Webs deepest between dorsal arms, shortest between ventral arms. Interbrachial web pouches absent. Suckers in two rows, very small, ~6% of mantle length. Enlarged suckers absent. Funnel organ W-shaped with wide and short outer limbs. Gills with 8 to 10 lamellae per demibranch. Rachidian with long central cusp and 1 to 2 lateral cusps. Posterior salivary glands large, larger than buccal mass. Distinct crop present as side branch off oesophagus. Ink sac absent. Anal flaps absent. Third right arm of males hectocotylized, distinctly shorter than opposite arm (60 to 70%). Ligula as sharply pointed cone with open groove. Calamus present. Spermatophores moderate to large, as long or longer than mantle length, produced in high numbers (up to 50). Eggs of intermediate size, approximately 10% of mantle length. Colour white, chromatophores absent. Skin smooth in life without apparent papillae. Preserved specimens with convoluted contractions forming uniform finely wrinkled or rugose texture. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 55 mm; total length to around 180 mm; body weight to 45 g.

Geographical Distribution: Hydrothermal vents of the East Pacific Rise, Pacific Ocean.

Habitat and Biology: Associated with hydrothermal vent systems and associated biota. Collected from depths between 2 600 and 2 832 m.

Remarks: Strugnell et al. (2009b) found close phylogenetic affinities between this octopus and the deep-sea genus *Benthoctopus*, proposing that they belong in the same family.

Literature: Voight (2008), Strugnell et al. (2009b).

Vulcanoctopus hydrothermalis González and Guerra, 1998

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Vent octopus; Fr — Poulpe thermal; Sp — Pulpo de fumarola.

Diagnostic Features: Small, deep-sea, benthic octopus. Mantle amphora-shaped. **Eyes small. Stylets absent.** Arms thin, finely attenuate, of moderate length, 3 to 4 times mantle length. Dorsal arms longest (typically 1>2>3>4). Arm autotomy at distinct plane absent. Webs shallow, deepest 10 to 15% of arm length. In larger animals, around 130 to 150 suckers on each normal arm. Enlarged suckers absent. **Funnel organ W-shaped, wide with short lateral limbs.** Gills with 8 to 10 lamellae per outer demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Rachidian with long central cusp and 1 to 2 lateral cusps. Posterior salivary glands large, larger than buccal mass. Distinct crop present as side branch off oesophagus. **Ink sac and anal flaps absent.** Third right arm of males hectocotylized, distinctly shorter than opposite arm. Ligula of moderate-size, 7 to 10% of arm length. Calamus of moderate size, 25 to 40%. Hectocotylized arm with 65 to 75 suckers. Spermatophores long, around 25 to 60 mm, 75 to 110% of mantle length; produced in moderate numbers (~15 to 50). Spermatophores unarmed. Eggs relatively small, around 10% of mantle length. **Colour: Uniformly white, chromatophores absent.** False-eye spots (ocelli) absent. **Sculpture:** Skin smooth; lateral mantle ridge, supraocular and dorsal mantle papillae absent.

Size: Mantle length to 55 mm; total length to around 180 mm; body weight to 45 g.

Geographical Distribution: Hydrothermal vents of the East Pacific Rise, Pacific Ocean.

Habitat and Biology: Associated with hydrothermal vent systems and associated biota. Collected from depths between 2 600 and 2 832 m.

Remarks: Strugnell et al. (2009b) found close phylogenetic affinities between this octopus and the deep-sea genus *Benthoctopus*, proposing that they belong in the same family.

Literature: Voight (2008), Strugnell et al. (2009b).
Size: Mantle length to 55 mm; total length to around 180 mm; body weight to 45 g.

Geographical Distribution: Pacific Ocean, hydrothermal vents of the East Pacific Rise (Fig. 183).

Habitat and Biology: Depth range from around 2 600 to 2 832 m. Known to live in association with hydrothermal vents. Found in very high densities with highly male-biased sex ratios. Feeds on amphipods.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Wunderpus Hochberg, Norman and Finn, 2006

Wunderpus Hochberg, Norman and Finn, 2006, Molluscan Research, 26(3): 129.

Type Species: *Wunderpus photogenicus* Hochberg, Norman and Finn, 2006.

Diagnostic Features: Small, shallow-water species. Mantle thin-walled, elongate ovoid to amphora-shaped. Eyes small on elongate stalks. Stylets present, short, chitinous (non-mineralized). Arms long, thin and muscular, >5 times mantle length. Dorsal arms shortest; arm formula typically 4=3=2>1. Arm autotomy present at the level of the 8th to 12th proximal sucker. Webs shallow in preserved material (deepest 7 to 10% length of longest arm), thin and elastic in life, extend for length of arms as well-developed margins. Interbrachial web pouches absent. Suckers in two rows, small and widely spaced. Enlarged suckers absent. Funnel organ small, W-shaped with very short lateral limbs. Gills with 6 to 7 (rarely 5) lamellae per demibranch plus terminal lamella. Radula with 9 elements, 7 transverse rows of teeth plus marginal plates. Posterior salivary glands larger than buccal mass. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Third right arm hectocotylized, very short, less than one third of opposite arm. Copulatory organ with ligula and calamus; ligula size small to moderate (<6% of arm length) with distinct groove. Spermatophores short, around 50% of mantle length, unarmed. Eggs small (chorion capsule 2.9 to 3.6 mm long). Diagnostic colour pattern of distinct white bands along arms and white spots and bars or stripes on mantle, head and eye stalks. Ocelli absent. Skin largely smooth between erectile primary and secondary papillae. Single long conical papilla present above each eye, tip bluntly rounded. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 36 mm; total length to over 230 mm.

Geographical Distribution: Indo-Malayan Archipelago, Pacific Ocean.

Habitat and Biology: Occurs on soft sediment substrates and rubble at depths between 0.5 and 20 m.

Wunderpus photogenicus Hochberg, Norman and Finn, 2006

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Wunderpus; Fr — Poulpe photogénique; Sp — Pulpo fotogénico.

Diagnostic Features: Small, elongate muscular species. Eyes small and stalked, often raised in live animals so head appears Y-shaped. Stylets present, short and chitinised. Arms long (5 to 7 times mantle length), ventral or lateral arms typically longest, dorsal arms slightly shorter. Arm autotomy appears present at level of 8th to 12th proximal sucker. Webs thin and retractile, extend as well-developed margins along ventral edges of all arms; short relative to arm length in preserved (retracted specimens), depth around 7 to 10% length of longest arm. Dorsal web typically most shallow. Interbrachial web pouches absent. Suckers in two rows. Sucker counts on normal arms to 230. Enlarged suckers absent. Funnel organ W-shaped with very short outer limbs. **Gills with 6 to 7 lamellae per demibranch (rarely 5).** Third right arm of males hectocotylized, very short, less than one third length of opposite arm. **Ligula small,** length 3.4 to 5.3% of hectocotylized arm length, squat with well developed groove. **Calamus low, around 30 to 50% of ligula length.** Hectocotylized arm with 64 suckers in two available males. Spermatophores unarmed and short (around 50% mantle length), produced in moderate numbers (~25). Eggs small. **Colour:** Base colour of pale orange to red. Distinct white bands along arms and distinctive contrasting pattern of white spots and bars or stripes on mantle, head and eye stalks. **Sculpture:** Skin smooth, patch and groove system absent. Single elongate and blunt-tipped papilla present over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 36 mm; total length to over 230 mm.

Geographical Distribution: Tropical Indo-Malayan Archipelago from Philippines to Vanuatu (Fig. 185).
Habitat and Biology: Depths range from 0.5 to 20 m. This species has been encountered primarily on soft sediment substrates where it occupies burrows in deep sand. Individuals were found to occupy the same burrow for periods of at least three weeks. This species appears to have a crepuscular activity pattern, emerging to forage during half-light periods at dusk and dawn. Reports of day activity from photographers and film crews were determined to be observations of another long-armed species, *Thaumoctopus mimicus*.

Interest to Fisheries: Some aquarium trade occurs for this species. High fatality rates would make such harvest a potential conservation issue. The high tourism, photography and documentary profile of this species means that it is of significant commercial value alive and in its natural habitat, particularly in places such as Bali and northern Sulawesi, Indonesia.

Local Names: Unknown.

Remarks: This species frequently is confused with the mimic octopus (*Thaumoctopus mimicus*) which co-occurs in similar tropical habitats.

SPECIES PROVISIONALLY PLACED IN THE GENUS ‘Octopus’

As outlined above, recent molecular studies (Guzik *et al.*, 2005, Strugnell *et al.*, 2005) indicate that numerous distinct genera are represented within the genus *Octopus* as it currently is defined. Many of the 100+ species previously placed within this genus are likely to belong in distinct genera (both existing or currently undescribed). As this major taxonomic revision of the family Octopodidae has only recently commenced, many of the species historically treated under the genus name *Octopus* are yet to be reviewed. Until these revisions are undertaken, these species are provisionally retained under the generic name ‘Octopus’, with quotation marks indicating their unknown position. The following species fall into this category and it is likely that the majority will be transferred to genera distinct from *Octopus sensu stricto* over the coming decade.

These disparate species share the following morphological attributes:

- two rows of suckers on arms
- ink sac and anal flaps present
- third right arm of males hectocotylized.

‘Octopus’ alecto Berry, 1953

Octopus alecto Berry, 1953, *Leaflets in Malacology*, 1(10): 56. [Type locality: Mexico, Sonora, south of Estero Doldado].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Snakearm octopus; Fr — Poulpe serpent; Sp — Pulpo serpiente.

Diagnostic Features: Moderate-sized, elongate species with squat body. Arms long and snake-like, 4 to 6 times mantle length. Lateral arms longest (typically 2=3>1>4). Arm autotomy present; many animals have one or more arms missing. Webs of moderate depth, deepest 14 to 22% of arm length. Web thin and translucent, deepest on lateral arms; webs between dorsal and ventral arm pairs shallowest. Web margins extend to arm tips when webs are inflated. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 130 suckers on each normal arm. Enlarged suckers present in mature males on arms 2 and 3. Gills with 6 to 7 lamellae per demibranch. Funnel organ W-shaped. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, approximately equal in length with opposite arm. Ligula narrow and recurved with a deep groove. Ligula length around 10% of arm length.
Calamus minute, weakly developed. Hectocotylized arm with around 130 suckers. Spermatophores ~18 mm long, produced in moderate numbers (32 in storage sac of one individual). Eggs small, around 2 to 2.5 mm. Colour: Reddish brown with small, conspicuous white spots on dorsal mantle, head, web and arms. Green iridophores scattered over dorsal surfaces. Ventral mantle pale cream with few large dark chromatophores. False-eye spots (ocelli) absent. Sculpture: Skin soft and puffy, generally smooth but can appear wrinkled. Dorsal mantle and area around eyes densely covered with minute papillae. One large and three smaller papillae over each eye. One large primary flap on posterior dorsal mantle. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 65 mm; total length to at least 300 mm.

Geographical Distribution: Gulf of California, Mexico to Ecuador (Fig. 187).

Habitat and Biology: Depths range from 0 to 4 m. Little is known about the biology of this rarely seen intertidal to shallow subtidal species. *Octopus alecto* lives amongst rocks in tide pools and in rocky and coral reef areas. It appears to be nocturnally active and often is found at night foraging during low tide in rocky intertidal areas. The species is presumed to feed on small crabs and hermit crabs. Festoons of small eggs are laid in June and July. Hatchlings are planktonic.

Interest to Fisheries: *Octopus alecto* supports a small subsistence fishery in Mexico.

Local Names: Unknown.

Literature: Hochberg et al. (1992), Roper et al. (1995).
‘Octopus’ australis Hoyle, 1885

Octopus australis Hoyle, 1885, Annals and Magazine of Natural History, series 5, 15: 224. [Type locality: Australia, New South Wales, Port Jackson 3°50’S, 151°17’E].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Hammer octopus; Fr — Poulpe tambour; Sp — Pulpo martillo.

Diagnostic Features: Moderate-sized, robust species. Arms of moderate length, 2.5 to 4 times mantle length. Lateral arms longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs deep, deepest to 30% of arm length. Web deepest on lateral arms; shallowest between dorsal arms. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, up to 220 suckers on each normal arm. Slightly enlarged suckers present in mature males, up to five on arms 2 and 3, starting around the 16th proximal sucker. Gills with 7 to 9 lamellae per demibranch. Funnel organ V V-shaped; limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, 70 to 90% length of opposite arm. Ligula large, swollen and club-like, 8 to 17% of arm length. Calamus of moderate size, 15 to 30% of ligula length. Hectocotylized arm with 60 to 80 suckers. Spermatophores large, 30 to 40 mm long, 70 to 90% of mantle length. Eggs large, to 12 mm, 10 to 20% of mantle length. Colour: Cream to purple-brown dorsally, cream on ventral surfaces. White dumbbell marking often visible between eyes. False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). Sculpture: Skin texture of regular and small, rounded patches. Scattered, small papillae over dorsal surfaces, single small supraocular papilla over each eye. Skin ridge present around lateral margin of mantle.

Size: Mantle length 70 mm; total length to around 300 mm.

Geographical Distribution: Australia, southern Queensland to southern New South Wales (Fig. 189).
Habitat and Biology: Depth range to at least 134 m. Lives on sand and mud substrates. Emerges at night to forage. Hides during the day in shells, human refuse, or buries directly in the sand.

Interest to Fisheries: Small-scale trawl harvest for human consumption and as bait. Nottage (2007) reported presence of this species in multispecies benthic trawl catches in New South Wales, Australia.

Local Names: Unknown.

Remarks: Reports of *Octopus australis* from Victoria, Tasmania and South Australia refer to the sister species, *Octopus berrima*.

‘Octopus’ berrima Stranks and Norman, 1993

Frequent Synonyms: None.

Misidentifications: *Octopus australis* Hoyle, 1885.

FAO Names: En — Southern keeled octopus; Fr — Poulpe membraneux méridional; Sp — Pulpo membranoso austral.

Diagnostic Features: Moderate-sized species. Arms of moderate length, 2 to 4 times mantle length. Lateral arms longest (typically 3=2>4>1). Arm autotomy at distinct plane absent. Webs deep, deepest to 30% of arm length. Web deepest on lateral arms, shallowest between dorsal arms. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 220 suckers on each normal arm. Enlarged suckers absent. Gills with 7 to 8 lamellae per demibranch. Funnel organ V V-shaped; limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch of oesophagus. Ink sac present. Right third arm of males hectocotylized, 70 to 100% length of opposite arm. **Large, tapering ligula, 11 to 16% of arm length.** Calamus of moderate size, 15 to 20% of ligula length. Hectocotylized arm with 66 to 78 suckers. Spermatophores of moderate size, around 35 to 50 mm, 60 to 130% of mantle length. Eggs large, 10 to 14 mm, 11 to 23% of mantle length. **Colour:** Cream to dark brown in colour. False-eye spots (ocelli) absent. Transverse pair of large white spots present on dorsal mantle. **Sculpture:** Skin texture of regular and small rounded patches. Scattered, small papillae over dorsal surfaces, single small supraocular papilla over each eye. **Skin ridge (‘lateral ridge’) present around lateral margin of mantle.**

Size: Mantle length to 105 mm; total length to around 360 mm.

Geographical Distribution: Australia: Victoria, Tasmania and South Australia to the Great Australian Bight (Fig. 183).

Habitat and Biology: Depth range to over 250 m. Sand and mud habitats. Active at night feeding on crustaceans and shellfish. Hides during the day by burying in the sand, in dead tunicate (sea squirt) tests or human refuse. Buried animals often raise a single eye above the sand, presumably to scan for predators. They also temporarily extend the funnel out of the sand to access clean water. In the presence of females, males raise themselves on their arm tips, fully extend their webs and display a colour pattern of violet purple arm tips and a cream-coloured mantle prior to mating attempts. Females attach eggs individually to hard surfaces including the insides of bivalve shells, rock surfaces, or bottles.

Interest to Fisheries: There are intermittent small-scale fisheries for this species in Victoria, Tasmania and South Australia. Most fishers use PVC plastic pots attached to set lines in shallow coastal waters. Catch rates vary with some winter catches synchronised with mating activity and resulting in catch rates of up to 110%. Most of the catch is used as bait in recreational and commercial line fisheries, although several operators directly service the restaurant trade.

Local Names: Unknown.

Literature: Stranks and Norman (1993), Norman (2000).
Octopus briareus Robson, 1929b, *Annals of the Magazine of Natural History*, (10)3: 612. [Type locality: Western tropical Atlantic Ocean, Netherlands West Indies, off Curaçao].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Caribbean reef octopus; Fr — Poulpe ris; Sp — Pulpo de arrecife.

Diagnostic Features: Moderate-sized, elongate species. Eyes large, prominent. Arms long (~4 to 6 times mantle length), arms 2 and 3 longer, thicker, somewhat swollen in midregion; arm order 2>3>4>1. Arm autotomy at distinct plane absent. Webs loose, deep and thin in live animals (almost billowing), used to envelope coral heads and rubble when hunting. Web moderate in depth in preserved material (deepest to 20% of longest arm length), web formula A=B=C=D>E. Interbrachial web pouches absent. Two rows of suckers on each arm, large (13 to 22% of mantle length), largest on arms 2 and 3; none especially enlarged in either sex. Normal sucker count unknown. Funnel organ W-shaped. Ink sac and anal flaps present. Gills with 6 to 8 lamellae per demibranch. Radula with 9 elements, 7 rows of teeth plus marginal plates. Third right arm of males hectocotylized; ligula small but well developed (3 to 4% of arm length), broad, rounded distally, with lateral fringing membranes and with central ridge and about 12 to 16 transverse laminae. Calamus moderate in size (28 to 32% of ligula length). Number of suckers on hectocotylized arm unknown. Terminal organ (penis) small (PLI 31-34% of mantle length), with well-developed diverticulum; entire penile apparatus boomerang-shaped. Spermatophores long (126% of mantle length). Mature eggs large, capsule 10 to 14 mm long and 4 to 5 mm wide, stalk 5 to 10 mm long; egg masses with 200 to 500 (rarely to 1 000) eggs arranged in clusters of 7 to 34 (mean= 25). Hatchlings benthic, mean mantle length 5.5 mm. Colour in life iridescent blue-green with irregular red-brown marbled effect. Eye often dark red-brown. Regular red-brown transverse bands shown along arms in some colour patterns. Skin sculptured in numerous small rounded papillae. Skin ridge around lateral margin of mantle absent.
Size: Mantle length to 120 mm; body weight to around 1 kg.

Geographical Distribution: United States from South Florida, southeastern Gulf of Mexico, Bahamas, Caribbean Sea to northern South America (to 40°W) (Fig. 193).

Habitat and Biology: Depth range from 3 to 20 m. Typically found associated with coral reefs. Feeds at night amongst live coral and coral rubble, often enveloping small coral heads within ballooning webs.

Interest to Fisheries: Minor. Fished locally throughout its range using spears, hooks and clay pots (Voss, 1985). May be reported under the species name *Octopus vulgaris* in western central Atlantic catch. A popular species in the aquarium trade in the United States (C. Huffard, pers. comm.).

Local Names: Unknown.

‘Octopus’ bunurong Stranks, 1990

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Southern white-spot octopus; Fr — Poulpe bunurong; Sp — Pulpo bunurong.

Diagnostic Features: Moderate-sized, elongate species. Arms long, to 7 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs shallow, deepest around 10 to 15% of arm length. Web deepest on dorsal arm; webs between ventral arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers absent. Gills with 9 to 10 lamellae per demibranch. Funnel organ V V-shaped, outer limbs approximately 75% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 60% length of opposite arm. Ligula robust, 9 to 12% of arm length. Calamus small, 13 to 22% of ligula length. Hectocotylized arm with 70 to 96 suckers. Spermatophores of moderate size, around 65% of mantle length. Eggs large, around 8 to 10 mm. Colour: Typically orange-red with numerous small white spots on dorsal mantle. Regular narrow transverse rows of small white spots along arms. Capable of pale colour displays of pink-grey base colour with iridescent green sheen. False-eye spots (ocelli) absent. Sculpture: Skin texture of scattered low papillae over smooth skin. Broken ridge of skin present around lateral margin of mantle.
Size: Mantle length to 95 mm; total length to around 475 mm.

Geographical Distribution: Southeast Australia from southern New South Wales and northern Tasmania to the Great Australian Bight (Fig. 195).

Habitat and Biology: Depth range from 1 to 130 m. This octopus typically occurs in sand and seagrass habitats where it emerges at night to forage. It remains buried in the sand during the day. Little is known of the biology or behaviour of this species. Large eggs indicate hatchlings are benthic.

Interest to Fisheries: Unknown.

Local Names: Unknown.

'Octopus' californicus Berry, 1911

Octopus californicus Berry, 1911, Proceedings of the United States National Museum, 40(1838): 590. [Type locality: Northeastern Pacific Ocean, United States, California, off San Diego].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — North Pacific big-eye octopus; Fr — Poulpe du Pacifique Nord; Sp — Pulpo del Pacifico norte.

Diagnostic Features: Moderate-sized, robust, muscular species with large eyes. Arms short, 2.5 to 3.5 times mantle length. Arms 2 slightly longer (typically 2>1>3>4). Arm autotomy at distinct plane absent. Webs deep, deepest to 30% of arm length. Web deepest on lateral arms; webs between dorsal and ventral arm pairs shallowest. Web margins extend to tip of arms along ventral margins. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 120 to 160 suckers on each normal arm. Enlarged suckers present in mature males, 8 to 10 on all arms, starting around the 14th proximal sucker. Gills with 12 to 13 lamellae per demibranch. Funnel organ V V-shaped, outer limbs half length of inner limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Oesophagus with swelling only, no distinct crop. Ink sac present. Anal flaps present.
Right third arm of males hectocotylized, 70 to 81% length of opposite arm. Large, conical and narrow ligula, 10 to 22% of arm length. Calamus tiny, 2 to 6% of ligula length. Spermatophores of moderate size, 75 to 80% of mantle length, produced in moderate numbers (~75). Eggs large, around 14 to 17 mm. **Colour:** Uniform orange-brown dorsally, ventral surfaces of mantle, head and arms lighter in colour. Eyelids gold, often with green iridophore sheen. False-eye spots (ocelli) absent. **Sculpture:** Skin densely covered with large star-like patches each of which can produce a raised papilla. Single large unbranched papilla over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 140 mm; total length to around 375 mm.

Geographical Distribution: Northeastern Pacific from Gulf of Alaska to Baja California, Mexico. Also reported to occur in the Sea of Japan and off Russia (however, see Remarks) (Fig. 197).

Habitat and Biology: Depth range from 100 to 900 m. It is a mid-depth cool water species that lives on soft mud and muddy-sand substrates. This species occurs in the hypoxic Santa Barbara Basin where it is able to regulate oxygen consumption down to the limit of detectable oxygen partial pressures. Captive animals forage at night and can move off the bottom to chase fishes, shrimps or crabs. The beaks of juvenile *Octopus californicus* have been found in stomachs of rockfishes. Males mature at about 60 mm mantle length and females at about 90 mm. Captive females lay between 100 to 500 eggs that are attached singly in small clusters to hard surfaces.

Interest to Fisheries: No specific statistics available but the species appears to constitute an important by-catch element in the bottom trawl fishery for prawns and groundfishes at depths below 150 m.
Local Names: Unknown.

Remarks: In the northeastern Pacific *Octopus* californicus is known to occur off Magdalena Bay, Mexico northward to the Gulf of Alaska (Berry, 1912; Phillips, 1933; Morrison, 1944; Talmadge, 1967; Hochberg, 1997a; Hochberg, 1998). The northern limit of the range in the northeastern Pacific is not well documented due to the paucity of specimens in museum collections. *Octopus* californicus also is reported to occur in the Sea of Japan off Japan and Russia (Kondokov, 1941; Taki, 1944; Akimushkin, 1965) and in the Okhotsk Sea (Bogolepova, 1957; Bogolepova-Dobrokhotova, 1963). Nesis (pers. comm.) has indicated that populations in the eastern and western Pacific may represent a distinct species. Data on depth ranges support Nesis’ opinion. *Octopus* californicus lives at depths of 100-900 m and is the most common deep water species off the coasts of California and Mexico. The highest densities occur between 200-500 m. In southern California, *O*. californicus overlaps with *O*. rubescens in a narrow transition zone from 90 to 145 m. The identity of the juvenile specimen reported by Berry (1912) from over 1800 m off Monterey is questionable. No positively identified specimens are known from waters deeper than 900 m. Off Russia, Akimuskin (1965) reported that *O*. californicus typically occurs in 20-40 m which is considerably shallower than records from the Eastern Pacific and perhaps is further argument that two distinct species are present. Two species of dicyemid parasites were reported from Russia in *O*. californicus by Bogolepova (1957) and Bogolepova-Dobrokhotova (1963) in both the Japan and Okhotsk seas. In her publications *Dicyemennea nouveli* McConnaughey, 1959 and *Dicyemodeca dogieli* Bogolepova, 1957 were described. However, judging from the dicyemid species recorded the host species may be either *Enteroctopus dofleini* or an as yet undescribed octopod host.

‘Octopus’ conispadiceus (Sasaki, 1917)

Polypus conispadiceus (Sasaki, 1917), *Annotationes Zoologicae Japonenses*, 9(3): 367. [Type locality: Japan, Hokkaido Island, Sapporo, fish market].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Chestnut octopus; Fr — Poulpe casse-noix; Sp — Pulpo espadaña.

Diagnostic Features: Large, muscular species. Arms of moderate length, around 3 times mantle length. Arms approximately equal in length, ventral pair slightly shorter (typically 1=2=3>4). Arm autotomy at distinct plane absent. Webs deep, deepest up to 30% of arm length. Web deepest on lateral arms; web sectors of dorsal and ventral arm pairs slightly shallower. Web margins well developed, extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 140 to 190 suckers on each normal arm. Enlarged suckers absent. Gills with 10 to 12 lamellae per demibranch. Funnel organ V V-shaped, lateral limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, 70 to 80% length of opposite arm. **Ligula very large, muscular and cylindrical, 15 to 20% of arm length. Calamus small and pointed, around 12% of ligula length. Hectocotylized arm with 52 to 58 suckers. Spermatophores long, around 110 to 140 mm, produced in high numbers (~100). Eggs very large, up to 28 to 30 mm in length. Colour: Bluish green-brown with numerous yellow spots and dark mottles. Narrow, transverse, white line across head. False-eye spots (ocelli) absent. White to pink on ventral surfaces. Sculpture: Skin generally smooth with small low warts scattered over head. Ventral surfaces smooth. Single papilla above each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 210 mm; total length to at least 1.2 m.

Fig. 198 ‘Octopus’ conispadiceus
Geographical Distribution: Northwestern Pacific off northern Japan and Kuril Islands (Fig. 199).

Habitat and Biology: Depth range from 50 to >100 m. A benthic shelf species that lives on sandy to muddy substrates. It migrates seasonally in response to changes in temperature, tending to alternate between deeper waters in summer and shallower waters in the colder seasons. Mating takes place during the inshore migration. Females lay up to 1 200 large eggs. The large eggs indicate hatchlings are benthic. Lifespan is suggested to be around 3 to 4 years.

Interest to Fisheries: Harvested in large numbers by trawl, bottom longline, and trap in northern Japan and as bycatch in Soviet bottom trawl fishery in the Japan Sea and around the southern Kuril Islands. It is the second most common species in Hokkaido markets after *Enteroctopus dofleini*.

Local Names: JAPAN: Yanagidako.

Literature: Sasaki (1929), Okutani *et al.* (1987), Gleadall (1993).

‘Octopus’ cyanea Gray, 1849

Octopus cyanea Gray, 1849, *Catalogue Mollusca ... British Museum*: 15. [Type locality: “Coast of New Holland” (= Australia)].

Frequent Synonyms: *Octopus tonganus* Hoyle, (in part) 1885; *Octopus marmoratus* Hoyle, 1885; *Octopus horsti* Joubin, 1898; *Polypus herdmani* Hoyle, 1904; *Callistoctopus magnocellatus* Taki, 1964.

Misidentifications: None.

FAO Names: **En** — Big blue octopus; **En** — Gros poulpe bleu; **Sp** — Pulpo azulón.

Diagnostic Features: Large, robust, muscular species. Arms moderate to long, 4 to 6 times mantle length. Lateral arms longest (typically 4=3>2>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 15 to 23% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend along ventral border of arms to tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 450 to 500 suckers on each normal arm. Enlarged suckers present in mature males, 2 to 4 on arms 2 and 3, starting around the 6th to 7th proximal sucker. Gills with 9 to 11 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, 70 to 90% length of opposite arm.
Ligula tiny, triangular, 1 to 2% of arm length. Calamus small and blunt, 35 to 40% of ligula length. Hectocotylized arm with 180 to 230 suckers. Spermatophores small, around 30 to 50 mm, 30 to 50% of mantle length, produced in large numbers (in hundreds, to at least 300). Spermatophores unarmed. Eggs small, around 2 to 3 mm, ~2% of mantle length. **Colour:** Variable colour patterns from uniform white to various mottled patterns to uniform dark chocolate brown. Excellent at camouflage against numerous backgrounds. False-eye spots (ocelli) present as dark oval patches within a dark narrow outer ring. Ocellus without iridescent ring. Regular short dark bars along ventro-lateral faces of all arms adjacent to suckers. Arm tips with 3 to 7 longitudinal rows of small white spots, often pronounced against dark base colour (Fig. 200). Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971). **Sculpture:** Skin with patch and groove texture forms large circles on dorsal arm crown. Four large primary papillae in diamond arrangement on dorsal mantle; single large supraocular papilla present over each eye. Skin ridge absent around lateral margin of mantle.

Size: Mantle length to 160 mm; total length to greater than 1 m; body weight to at least 6 kg.

Geographical Distribution: Tropical Indo-West Pacific from the east coast of Africa to Hawaii, southern Japan to northern Australia (Fig. 201).

Habitat and Biology: This species occurs on tropical coral reefs from intertidal flats to at least 22 m deep. It is a day-active species with higher activity peaks at dusk and dawn. It occupies lairs in coral bedrock, live and dead coral heads and excavations in sand and rubble. Males and females can occupy adjacent dens. Established lairs often are discernible by the scattering of empty crab carapaces surrounding the opening. Prey remains around established lairs consist solely of crab remains. Carapaces to 120 mm wide were found around lairs of larger octopuses. Captive animals readily feed on dead prawns and fishes. There is no evidence of inclusion of bivalves or gastropods in the diet. No mollusc shells were observed around lairs and captive animals would not feed on live or dead molluscs. Stomach contents of 49 *Octopus cyanea* from Hawaiian waters contained 89% crab remains, 41% stomatopods, 27% alpheid shrimps, 10% fish bones and in one individual, remains of a small moray eel. The small size of the eggs indicates hatchlings are planktonic. This species is eaten by the Hawaiian monk seal in Hawaii. Sexual cannibalism was reported in this species.

Interest to Fisheries: Taken in subsistence and local catches throughout its range for human consumption. Primarily collected with spears or lures. Treated in Norman (1992a) and Young and Harman (1997).

Local Names: HAWAII: He’e; AUSTRALIA, INDONESIA, PAPUA NEW GUINEA: Day octopus.

Remarks: Guzik *et al.* (2005) demonstrated that this species is not a member of the genus *Octopus sensu stricto* (i.e. *O. vulgaris* group). It shows stronger affinities with the genus *Abdopus*. At this stage, its generic placement remains unresolved.

‘Octopus’ kaurna Stranks, 1990

Octopus kaurna Stranks, 1990, Memoirs of the Museum of Victoria, 50 (2): 460. [Type locality: Australia, Victoria, Hobsons Bay].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Southern sand octopus; Fr — Poulpe du sable meridional; Sp — Pulpo de l’arena austral.

Diagnostic Features: Moderate-sized, elongate species. Arms long and fine, to 7 times mantle length. Dorsal arms longest (1>2>3>4). Arm autotomy at distinct plane absent. Webs shallow, deepest around 10 to 20% of arm length. Web deepest on dorsal arms, webs between ventral arms shallowest. Web margins extend approximately 30% along arms. Interbrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers absent. Gills with 9 to 11 lamellae per demibranch. Funnel organ V V-shaped, outer limbs around 75% of length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, 55 to 70% length of opposite arm. Ligula small and narrow, 5 to 8% of arm length. Calamus of moderate length, 33 to 48% of ligula length. Hectocotylized arm with 66 to 129 suckers. Spermatophores of moderate size, around 80% of mantle length. Eggs large, around 9 to 11 mm. Colour: Base colour of uniform orange-cream to maroon red. Sometimes forage while exhibiting an elongate form and pink base colour with a dark maroon stripe on each side from the mantle to the arm tips, running through the eye. False-eye spots (ocelli) absent. Sculpture: Skin texture generally smooth or covered with numerous tiny bumps. Larger scattered low papillae present on lateral faces of mantle. supraocular papillae absent. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 85 mm; total length to around 420 mm.

Geographical Distribution: Southern Australia from eastern Victoria and northern Tasmania west to the Great Australia Bight (Fig. 203).

Habitat and Biology: Depth range to 50 m. Shallow-water species found on sand, mud, and seagrass beds. Remains buried during the day in a burrow in the sand formed using mucous to bind the sand grains together. Emerges at night to forage for small crustacean prey. Novel peptides have been reported as venoms in this species.

Interest to Fisheries: Unknown.

Local Names: Unknown.

'Octopus' maorum Hutton, 1880

Frequent Synonyms: Octopus communis Park, 1885; O. flindersi Cotton, 1932.

Misidentifications: Pinoctopus cordiformis Quoy and Gaimard, 1832.

FAO Names: En — Maori octopus; Fr — Poulpe maori; Sp — Pulpo maori.

Diagnostic Features: Large, muscular species. Arms long, to 5.5 times mantle length. Dorsal arms longest and thickest (1>2>3>4). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Web margins wide and fleshy extend to the arm tips. Intercrachial web pouches absent. Two rows of suckers on each arm. Enlarged suckers present in mature males and females, around 6 on all arms, starting around the 15th proximal sucker. Gills with 13 to 15 lamellae per demibranch. Funnel organ W-shaped, outer limbs approximately 75% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Inksac present. Anal flaps present. Right third arm of males hectocotylized, 60 to 80% length of opposite arm. Ligula small and narrow, around 5% of arm length. Calamus of moderate size and pointed, around 25% of ligula length. Hectocotylized arm with 95 to 135 suckers. Eggs of moderate size, around 6 to 7 mm. Colour: Orange brown to dark brick red base colour with numerous small white spots scattered over mantle and dorsal arm crown. Orange lateral faces of arms. False-eye spots (ocelli) absent. Sculpture: Skin texture of small irregular patches and papillae over all dorsal and lateral surfaces. More than 20 large spike-like papillae can be raised on the body and upper arm crown. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 300 mm; total length to around 1 m; body weight to around 10 kg.

Geographical Distribution: New Zealand and southern Australia from eastern Victoria to Perth, Western Australia (Fig. 205).

Habitat and Biology: Depth range from 0 to 549 m. This large, muscular octopus occurs on rocky reefs, kelp forests and seagrass beds. Smaller animals are generally night active while larger adults can be seen actively foraging during the day. They are speculative foragers, engulfing crevices and weed within their extensive webs and flushing prey with their arm tips. The diet includes large crabs, rock lobster, abalone, mussels, fish and other octopuses. Lairs often have fresh abalone and mussel shells scattered around the entrance. This species has been recorded in the diet of fur seals in Australia and seals and albatrosses in New Zealand.

Interest to Fisheries: This species is collected by hand and seine nets in Tasmania. It is captured occasionally on line by recreational fishers.
This octopus species harms the rock lobster pot fisheries as it enters the pots, consumes the lobsters and departs leaving empty carapaces. Introduction of escape hatches in lobster pots in some Australian states in recent years has prevented lobster fishers’ harvests of the octopuses as bycatch used for bait. This species is popular for human consumption in the form of Greek-style pickled octopus.

Local Names: Unknown.

Remarks: O’Shea (1999) treats this octopus species under the name *Pinnoctopus cordiformis* Quoy and Gaimard, 1832, a previously unresolved name based on a poorly preserved type specimen. The generic name *Pinnoctopus* refers to a preservation artefact in the type specimen where the skin had become soft around the mantle and flattened out in the form of an apparent ridge or fin around the body. The original description for *P. cordiformis* describes the arms as subequal, with the third arm pair slightly shorter. This species can not possibly be *Octopus maorum* as the dorsal arms of *O. maorum* are significantly larger and thicker than the other arms, with the ventral arm pair being the shortest and thinnest. It is more likely that *P. cordiformis* is the same as O’Shea’s *Enteroctopus zelandicus*, a large species with arms of subequal length. The latter species has been collected close to the type locality for *P. cordiformis*: Tasman Bay at the top of the South Island, New Zealand. A freshly dead *E. dofleini* observed by the authors in Santa Barbara, California exhibited the wide flange of loose skin around the mantle. Robson made *maorum* the type species for his genus *Macroctopus*. Until the phylogenetic relationships of this species are determined (particularly in relation to members of the genus *Callistoctopus*), we choose to treat this species as an unplaced *Octopus* species.

‘Octopus’ minor (Sasaki, 1920)

Frequent Synonyms: *Polypus variabilis* var. *typicus* Sasaki, 1929; *Octopus variabilis* (Sasaki, 1929).

Misidentifications: *Octopus macropus* Risso, 1826.

FAO Names: En — Whiparm octopus; Fr — Poulpe fouet; Sp — Pulpo antenado.

Diagnostic Features: Small to moderate, elongate species. Arms long and slender, around 4 to 5 times mantle length. Dorsal arms significantly longer and thicker, twice length of third or fourth arms (1>2>3=4). Arm autotomy at distinct plane absent. Webs shallow and poorly developed, deepest around 10% of arm length. Web deepest on dorsal arms; webs between ventral arms shallowest. Web margins poorly developed. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 180 suckers on each normal arm. Enlarged suckers present in mature males, around level of 8th or 9th sucker pair, largest on dorsal arms (to 17% of mantle length). Gills with 10 to 12 lamellae per demibranch. Funnel organ V V shape, outer limbs slightly shorter than medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates, 2 (rarely 3) lateral cusps on each side of rachidian tooth. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 50% length of opposite arm. Ligula large (around 18 to 23% of arm length) and spoon-like with wide hollow groove, incurled lips and 10 to 14 well marked transverse grooves. Calamus small and pointed, <20% of ligula length. Hectocotylized arm with around 40 to 60 suckers. Spermatophores around 42 mm long and very thick throughout. Sperm cord coiled in around 40 whorls. Eggs of moderate size, around 8 mm. **Colour:** Live animals red-brown with light yellow spots on dorsal surfaces. False-eye spots (ocelli) absent. **Sculpture:** Skin soft and typically smooth but capable of raising irregular warty texture. Skin ridge around lateral margin of mantle absent.

Fig. 206 ‘Octopus’ minor
Size: Mantle length to 80 mm; total length to around 700 mm.

Geographical Distribution: Sakhalin (Russia) to all Japanese waters and potentially south to Hong Kong (see Remarks below) (Fig. 207).

Habitat and Biology: Depth range unknown. This elongate octopus occurs on soft sediments around Japan and coastal Korea and China.

Interest to Fisheries: This species is an important commercial species in Japan where it was reported by Sasaki (1929) as common in Honshu, especially Seto-umi. Optimal fishing effort was reported by Kim (2008). Heavy metal concentrations have been reported in this species from Korea (Lee and Kim, 2010).

Local Names: Unknown.

Remarks: ‘Octopus’ minor is in urgent need of review. There is a high likelihood that this name is being applied to a suite of related soft-bodied, long-armed species from the cooler waters of Russia and northern Japan to the warmer waters of southern coastal China.

‘Octopus’ pallidus Hoyle, 1885

Octopus pallidus Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 223. [Type locality: Australia, Victoria, off East Moncoeur Island (39°10’S, 146°37’E)].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Pale octopus; Fr — Poulpe blême; Sp — Pulpo pálido.

Diagnostic Features: Moderate-sized, squat, muscular species. Arms short, around 2.5 times mantle length. Ventral or lateral arms longest (typically 4>3>2>1). Arm autotomy at distinct plane absent. Webs deep, deepest around 25 to 40% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 200 suckers on each normal arm. Enlarged suckers absent. Gills with 7 to 9 lamellae per demibranch. Funnel organ V V-shaped, outer limbs approximately 75% length of medial limbs. Radula with 9 elements, 7 rows of teeth plus marginal plates. Ink sac present. Right third arm of males hectocotylized, 80 to 90% length of opposite arm. Ligula cylindrical and robust, 10 to 16% of arm length. Calamus of moderate size, 30 to 50% of ligula length. Hectocotylized arm with 72 to 86 suckers. Spermatophores of moderate length, around 80% of mantle length. Eggs large, around 11 to 13 mm. **Colour:** Typically mottled cream and
orange-brown. Capable of becoming uniformly dark brown. False-eye spots (ocelli) absent. **Sculpture:** Skin texture of close-set regular "rosette" patches forming tile-like skin sculpture. More than 20 large branched papillae can be raised on all dorsal surfaces, including several large papillae over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 150 mm; total length to around 540 mm.

Geographical Distribution: Southeast Australia from central New South Wales to Tasmania and the Great Australian Bight (Fig. 209).

Habitat and Biology: Depth range from 0 to 600 m. Typically found on sand and mud substrates, often in association with sponge gardens or tunicate beds. Diet consists mainly of bivalves which are pulled apart or drilled. Large eggs hatch into benthic young. This species has been reported in the diet of Australian fur seals. *Octopus pallidus* has been used as an indicator species for toxic pollutants. Influence of temperature on juvenile growth has also been examined.

Interest to Fisheries: This species is harvested on a small scale in pot fisheries in Victoria, primarily for bait. Leporati *et al.* (2009) examined stock status and the effectiveness of CPUE as an assessment tool.

Local Names: Unknown.

‘Octopus’ rubescens Berry, 1953

Octopus rubescens Berry, 1953, *Leaflets in Malacology*, 1: 51. [Type locality: Mexico, Pacific coast of northern Baja California, off South Coronado Island].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Red octopus; Fr — Poulpe rouge; Sp — Pulpo rojo.

Diagnostic Features: Small, muscular species. Arms slender and of moderate length, 3.5 to 4.5 times mantle length. Lateral arms longest (typically 2>3>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web deepest on lateral arms, webs between dorsal arms shallowest. Web margins extend along 50% of arm length. Intebrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 150 to 190 suckers on each normal arm. Enlarged suckers present in mature males, 1 to 2 on arms 1 to 3, typically starting around the 10th sucker. **Gills with 11 to 13 lamellae per demibranch.** Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, around 70 to 90% length of opposite arm. **Ligula well developed, elongate and conical with distinct groove,** 8 to 11% of arm length. Calamus small, around 20% of ligula length. Hectocotylized arm with around 80 to 110 suckers. Spermatophores of moderate size, around 80 to 130% of mantle length, produced in moderate numbers (~10 to 15). Spermatophores unarmed. Eggs small, around 3 to 4 mm. **Colour:** Reddish on dorsal surfaces of head, mantle and arms, with darker red-brown reticulate pattern, often mottled with white. Arms with row of white spots down each side. Paler ventrally, often
orange-ish. Bluish iridescence around eyes. False-eye spots (ocelli) absent. Transverse pair of white spots present on dorsal mantle, slightly anterior to midpoint of mantle (‘dorsal mantle white spots’ sensu Packard and Sanders, 1971).

Sculpture: Skin texture of patch and groove system, patches small, round or circular. Often textured with tessellate pattern of low relief, inflated or raised patches (“blister-like welts” Hochberg, 1998). Four primary papillae in diamond pattern on dorsal mantle. One large papilla on mid-posterior dorsal mantle and one over each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 100 mm; total length to around 250 mm; body weight to around 400 g.

Geographical Distribution: Gulf of California, Mexico north to Gulf of Alaska (Fig. 211).

Habitat and Biology: Depths range from 0 to 300 m. ‘Octopus’ rubescens probably is the most common species of octopus in the northeastern Pacific. The species typically occupies a depth range intermediate between Octopus bimaculatus/bimaculoides inshore and ‘O’. californicus in deeper water offshore. The species lives in rocky areas or inhabits large shells of dead gastropods or barnacles, empty bottles, and cans. The life cycle spans 12 to 18 months. It is a migratory species, moving offshore in winter months. Mating occurs at depth in the spring followed by an onshore migration prior to spawning. Depending on the size of the female from 20 000 to 50 000 small eggs are laid in the spring and fall. Paralarvae are thought to remain in the plankton for 1 to 2 months. Juveniles up to 20 mm ML have been reported in the plankton in large numbers. The animals are nocturnally active and feed principally on crustaceans, molluscs, and occasionally fishes. The species is known to bite when handled or disturbed and is capable of injecting a potent toxin via the salivary proboscis.

Interest to Fisheries: There is no significant harvest of this species. It occasionally appears as bycatch in inshore groundfish trawls.

Local Names: Unknown.

‘Octopus’ selene Voss, 1971

Octopus selene Voss, 1971a, Bulletin of Marine Science, 21(1): 11. [Type locality: Pacific Ocean, Panama, NE of Punta Mala, 7°50 2’N, 79°50 5’W].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Moon octopus; Fr — Poulpe lune; Sp — Pulpo lunero.

Diagnostic Features: Moderately small, muscular species. Arms short, 1.7 to 2.5 times mantle length. Lateral arms typically longest (typically 3>2>4>1). Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 20 to 30% of arm length. Web generally deepest on lateral arms. Web margins extend around two thirds of arm length. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 80 to 90 suckers on each normal arm. Single slightly enlarged sucker at web junction on all arms of male. Gills with 12 to 16 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 9 elements, 7 rows of teeth plus marginal plates. Distinct crop present as side-branch off oesophagus. Ink sac present. Anal flaps present. Right third arm of males hectocotylized, 70 to 85% length of opposite arm. Ligula small, narrow and pointed, 5 to 10% of arm length. Calamus small, 15 to 25% of ligula length. Hectocotylized arm with 23 to 48 suckers. Spermatophores not described. Eggs small, around 1.6 mm. Colour: Light to dark reddish purple on the dorsal surfaces, light to pale brown on ventral surfaces with four dark spots on the mantle, a pair at the posterior tip and an anterior pair close to the opening of the mantle aperture. False-eye spots (ocelli) absent. Sculpture: Skin texture of numerous low papillae over all dorsal surfaces. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 60 mm; total length to around 200 mm.

Geographical Distribution: Gulf of Panama; limits of distribution unknown (Fig. 213).

Habitat and Biology: Depth range from 50 to 210 m. Typically found on sandy and rocky bottoms. Small eggs hatch into planktonic young. This octopus was so numerous at several stations in the Gulf of Panama that densities were calculated at 1.5 octopuses per square metre.
Interest to Fisheries: Some fisheries potential has been predicted due to the high densities in some locations.

Local Names: Unknown.

Remarks: The relationship of this octopus with the similar ‘Octopus’ veligero has not been resolved.

Literature: Voss (1971a).

‘Octopus’ tehuelchus’ d’Orbigny, 1834 [In 1834-1847]

Octopus tehuelchus d’Orbigny, 1834 [In 1834-1847], Voyage dans l’Amerique Meridionale, 5(3): 27. [Type locality: Coast of Patagonia, 40°S, inside large bay of San Blas].

Frequent Synonyms: None.

FAO Names: En — Tehuelche octopus; Fr — Poulpe tehuelche; Sp — Pulpo tehuelche.

Diagnostic Features: Small to moderate-sized, muscular species. Arms of moderate length, 3 to 4 times mantle length. Lateral arms longest, first two pairs of dorsal arms shortest. Arm autotomy at distinct plane absent. Webs of moderate depth, deepest around 30% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Interbrachial web pouches absent. Two rows of suckers on each arm. Sucker counts unknown. Enlarged suckers present in mature males, 1 to 3 on arms 2 and 3. Gills with 6 lamellae per demibranch. Funnel organ W-shaped, limbs of approximately equal length. Radula with 7 rows of teeth plus marginal plates. Rachidian tooth with 2 to 3 lateral cusps in asymmetrical series, migrating over 3 to 4 rows. Ink sac present. Anal flaps present. Right third arm of males hectocotylized. Ligula small, 3.4 to 4.5% of arm length. Calamus small, approximately 15% of ligula length. Hectocotylized arm sucker count unknown. Spermatophores 23 to 30 mm long. Eggs large, 9 to 12 mm long, attached singly to shelter. Colour: Preserved material dark brown or purplish black. Live animal colour patterns not described. Sculpture: Preserved material described as smooth with minute granulations above the eyes (Palacio, 1977). Skin sculpture of live animals not described. Skin ridge around lateral margin of mantle absent.

Size: Total length to 200 mm; body weight to at least 120 g.

Geographical Distribution: Southwest Atlantic from southern Brazil (30°S) to northern Patagonia (44°S) (Fig. 215).
Habitat and Biology: This small octopus lives in intertidal and shallow subtidal habitats (reef and sand areas) where it uses crevices, boulders and empty gastropod and bivalve shells as shelter. Shows prey selection for grapsid crabs and small bivalves. This species also drills gastropod shells to extract resident hermit crabs. This species is a major component of the diet of juvenile school shark in Argentinean waters.

Interest to Fisheries: There is a small-scale artisanal fishery for this species in Patagonia where fishermen harvest during daytime low tides by turning over rocks or extracting octopuses from crevices using a 30 to 40 cm long gaff (Iribarne, 1991a). Catch is sold to buyers who process and freeze it for distribution around Argentinean cities. A significant decline in catch from the early 1970’s to the present has been suggested to be caused by degradation of fishing areas from increased tourism degrading habitat, consequent increased competition between fishers and/or decrease in number of skilled fishers (Iribarne, 1991a).

Local Names: BRAZIL: Pulpo.

Remarks: Iribarne and Fernandez (1994) clarified that Octopus lobensis is a junior synonym of this species.

‘Octopus’ veligero Berry, 1953

Octopus veligero Berry, 1953, Leaflets in Malacology, 1(10): 57. [Type locality: Northeastern Pacific Ocean, Mexico (Baja California Sur), off San Juanico].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Veiled octopus; Fr — Poulpe veillé; Sp — Pulpo velado.

Diagnostic Features: Moderate-sized, muscular species. Arms short, 2 to 2.5 times mantle length. Lateral arms longest (typically 2>3>4>1). Arm autotomy at distinct plane absent. Webs thin, delicate and easily torn, of moderate depth, deepest around 30% of arm length. Web deepest on lateral arms; webs between dorsal arms shallowest. Web margins extend to arm tips as thin diaphanous flaps. Interbrachial web pouches absent. Two rows of suckers on each arm. In larger animals, around 120 to 160 suckers on each normal arm. Enlarged suckers absent. Gills with 15 to 17 lamellae per demibranch. Funnel organ in three parts, IΛ-shaped, limbs of approximately equal length. Right third arm of males hectocotylized, around 75% length of opposite arm. Ligula small and conical, around 5% of arm length. Calamus small, around 5% of ligula length. Hectocotylized arm with 57 suckers. Spermatophores not described. Eggs small. Colour: Mottled red-brown with gold and silver iridescence around the eyes and along the sides of the head. Four dark spots can be displayed on the dorsal mantle. False-eye spots (ocelli) absent. Sculpture: Skin texture of closely set papillae of different sizes. Larger erectile papillae present on dorsal mantle and above each eye. Skin ridge around lateral margin of mantle absent.

Size: Mantle length to 70 mm; total length to around 150 mm.
Geographical Distribution: Northeast Pacific Ocean, Mexico from Punta Eugenia to tip of Baja California and into Gulf of California to La Paz (Fig. 217).

Habitat and Biology: Depth range from 90 to 200 m. The biology and behaviour are not known.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: The taxonomic relationship of this octopus with the similar *Octopus* selene has not been resolved.

Literature: No additional literature.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

‘Octopus’ argus Krauss, 1848

Size: Mantle length to 18 mm.

Geographical Distribution: Southwest Atlantic, off Africa.

Habitat and Biology: Depth range unknown.

‘Octopus’ balboai Voss, 1971

Size: Mantle length to 34 mm.

Geographical Distribution: Central Pacific Ocean, El Salvador and Panama.

Habitat and Biology: Depth range from intertidal to shallow subtidal.

Literature: No additional literature.
‘Octopus’ berenice Gray, 1849

Size: Mantle length 17 mm (female type specimen).

Geographical Distribution: Indian Ocean and Singapore; limits unknown.

Habitat and Biology: Depth range unknown.

Remarks: Pygmy species.

Literature: Robson (1929a).

‘Octopus’ bocki Adam, 1941a

Size: Mantle length to 25 mm; body weight to 9 g.

Geographical Distribution: Currently reported only from Fiji, Philippines, Moorea and Tonga.

Habitat and Biology: Depth range from 0 to 10 m.

Remarks: Pygmy species.

‘Octopus’ bulbus Norman, 2001

Size: Mantle length to 53 mm; total length to 340 mm total length, weight to 47 g.

Geographical Distribution: Australia, off southern Queensland; known from only three specimens.

Habitat and Biology: Depth range from 18 to 195 m.

Literature: No additional literature.

‘Octopus’ campbelli (Smith, 1902)

Polypus campbelli (Smith, 1902), *Report on the Collections of Natural History made in the Antarctic Regions during the Voyage of the Southern Cross*, 7: 201. [Type locality: New Zealand, Campbell Island, (52°30’S, 169°E)].

Size: Mantle length to 34 mm; total length to 135 mm.

Geographical Distribution: Southern New Zealand to Campbell Island.

Habitat and Biology: Depth range from 43 to 600 m.

Literature: Stranks and Norman (1993), O’Shea (1999).

‘Octopus’ chierchiae Jatta, 1889

Octopus chierchiae Jatta, 1889, *Bollettino della Società dei Naturalisti in Napoli*, series 1, 3(1): 64. [Type locality: Pacific coast of Panama].

Size: Mantle length to 25 mm; total length to 40 mm.

Geographical Distribution: Gulf of California, Mexico to Ecuador.

Habitat and Biology: Depth range from 0 to 30 m.

Literature: Rodaniche (1984), Hofmeister *et al.* (2011).
'Octopus' diminutus Kaneko and Kubodera, 2008

Size: Mantle length to 17 mm.

Geographical Distribution: Known only from the type locality, off Japan.

Habitat and Biology: Depth 364 m.

Remarks: Pygmy species.

Literature: No additional literature.

'Octopus' favonius Gray, 1849

Size: Mantle length to 55 mm.

Geographical Distribution: Currently known only from Singapore.

Habitat and Biology: Depth range intertidal.

Literature: Robson (1929a).

'Octopus' fitchi Berry, 1953

Octopus fitchi Berry, 1953, *Leaflets in Malacology*, 1(10): 54. [Type locality: Gulf of California, Mexico, Baja California, Punta San Felipe].

Size: Mantle length to 45 mm; total length to 150 mm; body weight to 20 g.

Geographical Distribution: Gulf of California, Mexico to Ecuador.

Habitat and Biology: Depth range from 0 to 20 m.

Literature: No additional literature.

'Octopus' gardineri (Hoyle, 1905)

Polypus gardineri Hoyle, 1905, *Fauna and Geography of the Maldive and Laccadive Archipelago*, 2(1): 976. [Type locality: Indian Ocean, Maldive Islands, Male Atoll].

Size: Mantle length to 18 mm.

Geographical Distribution: Indian Ocean, Maldive Islands.

Habitat and Biology: Depth range unknown.

Remarks: Pygmy species.

Literature: Robson (1929a).

'Octopus' gorgonus Huffard, 2007

Size: Mantle length to 24 mm.

Geographical Distribution: Known only from Tongan Islands, Pacific Ocean.

Habitat and Biology: Depth range from 10 to 30 m.

Remarks: Pygmy species.

Literature: No additional literature.
‘Octopus’ harpediton Norman, 2001

Size: Mantle length to 86 mm; total length to 1 m; body weight to 104 g.

Geographical Distribution: Known from only two specimens, both collected in Australia from the eastern Gulf of Carpentaria.

Habitat and Biology: Depth range to 2 m.

Literature: No additional literature.

‘Octopus’ hattai (Sasaki, 1929)

Polypus hattai Sasaki, 1929, Journal of the College of Agriculture, Hokkaido Imperial University, 20 (supplement), 87. [Type locality: Japan, Izu Province, Kominato].

Size: Mantle length to 120 mm; total length to 750 mm.

Geographical Distribution: Northwest Pacific Ocean, Japan.

Habitat and Biology: Depth range unknown.

Literature: Toll and Voss (1998).

‘Octopus’ hawiiensis Eydoux and Souleyet, 1852

Octopus hawiiensis Eydoux and Souleyet, 1852, Voyage Autour du Monde Exécuté pendant.... 1836 et 1837 sur... la Bonite, Commandée par M. Vaillant, Zoologie, 2: 9. [Type locality: Sandwich Islands (Hawaiian Island)].

Size: Mantle length to 30 mm; total length to >100 mm.

Geographical Distribution: Hawaii.

Habitat and Biology: Depth range from 0 to over 10 m.

Literature: Norman (2000).

‘Octopus’ hongkongensis (Hoyle 1885)

Polypus hongkongensis Hoyle, 1885, Annals and Magazine of Natural History, (series 5), 15: 224. [Type locality: Japan, off Sagami Bay, Enoshima Island, 35°11’N, 139°28’E].

Synonyms: Polypus madokai Berry, 1921: 352; P. tenuicurris Sasaki, 1929: 78; Octopus megalops Taki, 1964: 310.

Size: Mantle length of type 90 mm; total length to 1 m.

Geographical Distribution: Northwest Pacific, Japan; limits unknown.

Habitat and Biology: Depth range from 150 to 630 m.

Remarks: This species (or species group) is in need of thorough revision. Despite the species name, there is no record of this species from Hong Kong. The scientific name was borrowed by Hoyle on the basis of similarities between his Japanese material and description of a Hong Kong species in an unpublished Steenstrup manuscript. Hoyle’s species was described from deep-water material collected around 630 m. Octopuses treated under this name are reported to be of some commercial fishery value (Okutani et al., 1987; Gleadall, 1993).

Literature: Emanuel and Martin (1956), Okutani et al. (1987, as Paroctopus megalops and P. tenuicirrus), Gleadall (1993), Toll and Voss (1998).
‘Octopus’ *humilis* Huffard, 2007

Size: Mantle length to 26 mm.

Geographical Distribution: Known only from Tongan Islands.

Habitat and Biology: Depth range from 8 to 20 m.

Remarks: Pygmy species.

Literature: No additional literature.

‘*Octopus’ huttoni* (Benham, 1943)

Synonym: *Octopus adamsi* Benham, 1944: 259.

Size: Mantle length to 57 mm; total length to 240 mm.

Geographical Distribution: New Zealand.

Habitat and Biology: Depth range from 0 to 260 m.

Literature: O’Shea (1999).

‘*Octopus’ incella* Kaneko and Kubodera, 2007

Size: Mantle length to 31 mm.

Geographical Distribution: Northwest Pacific, Japan, Okinawa Island.

Habitat and Biology: Depth range from 0 to 1 m.

Remarks: Intertidal species.

Literature: No additional literature.

‘*Octopus’ joubini* Robson, 1929

Octopus joubini Robson, 1929a, *A Monograph of the Recent Cephalopoda, I: Octopodinae*: 161. [Type locality: Danish West Indies (Virgin Islands), St. Thomas Island].

Size: Mantle length to 45 mm; total length to 135 mm.

Geographical Distribution: Gulf of Mexico and Caribbean Sea.

Habitat and Biology: Depth range from 0 to >10 m.

Remarks: Sometimes appears in aquarium trade (C. Huffard, pers. comm.). A distinct large-egg pygmy species in the genus *Paroctopus* often is incorrectly identified as this species.

Literature: Forsythe and Toll (1991), Hanlon (1983b).

‘*Octopus’ kaharoa* O’Shea, 1999

Size: Mantle length to 90 mm; total length to 390 mm.

Geographical Distribution: Northern half of New Zealand.

Habitat and Biology: Depth range from 7 to 540 m.

Literature: No additional literature.
‘Octopus’ kermadecensis (Berry, 1914)

Size: Mantle length to 80 mm; total length to 420 mm.

Geographical Distribution: Kermadec Islands.

Habitat and Biology: Depth range unknown; type specimen washed up dead on the beach.

Literature: O’Shea (1999; as *Pinnoctopus kermadecensis*).

‘Octopus’ laqueus Kaneko and Kubodera, 2005

Size: Up to 48 mm mantle length.

Geographical Distribution: Japan, Okinawa Island and Australia, northern Great Barrier Reef.

Habitat and Biology: Depth range from 0 to 18 m.

Literature: Norman (2000; as *Octopus* sp. 15), Kaneko and Kubodera (2005), Kaneko et al. (2006).

‘Octopus’ mariles Huffard, 2007a

Size: Mantle length to 25 mm.

Geographical Distribution: Known only from Tongan Islands.

Habitat and Biology: Depth range <7 m.

Remarks: Pygmy species.

Literature: No additional literature.

‘Octopus’ mernoo O’Shea, 1999

Size: Mantle length to 85 mm; total length to 260 mm.

Geographical Distribution: Eastern New Zealand and Chatham Rise.

Habitat and Biology: Depth range from 368 to 550 m.

Literature: No additional literature.

‘Octopus’ microphthalmus Goodrich, 1896

Size: Mantle length to 110 mm.

Geographical Distribution: Singapore to Andaman Islands.

Habitat and Biology: Depth range unknown.

Literature: Robson (1929a).
‘Octopus’ micropyrus Berry, 1953

Octopus micropyrus Berry, 1953, *Leaflets in Malacology*, 1(10): 52. [Type locality: Northeastern Pacific Ocean, United States, California, La Jolla Cove].

Size: Mantle length to 28 mm; total length to 100 mm; body weight to 12 g.

Geographical Distribution: Northeast Pacific, United States, from central California to Baja California, Mexico.

Habitat and Biology: Depth range from 0 to 20 m.

‘Octopus’ micros Norman, 2001

Size: Mantle length to 25 mm; total length to 91 mm; body weight to 6 g.

Geographical Distribution: Australia, southern Queensland.

Habitat and Biology: Depth range of capture of type specimen 166 to 195 m.

Remarks: Pygmy species.

Literature: No additional literature.

‘Octopus’ mutilans Taki, 1942

Octopus mutilans Taki, 1942, *Venus*, 12(1-2): 71. [Type locality: Japan, Seto Sea, Mutsushima].

Size: Mantle length to 55 mm.

Geographical Distribution: Japan.

Habitat and Biology: Depth range unknown.

‘Octopus’ nanus Adam, 1973

Octopus nanus Adam, 1973, *Bulletin of the Sea Fisheries Research Station, Haifa*, 60: 42. [Type locality: Red Sea, Cundabilu].

Size: Mantle length to 13 mm.

Geographical Distribution: Red Sea.

Habitat and Biology: Depth range from 2 to 8 m.

Remarks: Pygmy species.

‘Octopus’ oliveri (Berry, 1914)

Size: Mantle length to 70 mm; total length to 260 mm.

Geographical Distribution: Kermadec Islands.

Habitat and Biology: Depth range unknown.

Remarks: To date all specimens collected from intertidal rock pools.

‘Octopus’ parvus (Sasaki, 1917)

Size: Mantle length to 40 mm.

Geographical Distribution: Northwest Pacific, Japan.

Habitat and Biology: Depth range unknown.

‘Octopus’ penicillifer Berry, 1954

Size: Mantle length to 40 mm.

Geographical Distribution: Gulf of California, Mexico, south to Panama.

Habitat and Biology: Depth range from 30 to 35 m.

Literature: No additional literature.

‘Octopus’ pumilus Norman and Sweeney, 1997

Size: Mantle length to 31 mm; body weight to 12 g.

Geographical Distribution: Philippines, southern Negros, Siquijor Island, Batangas, Luzon.

Habitat and Biology: Depth range from 0 to 3 m.

Remarks: Pygmy species.

Literature: No additional literature.

‘Octopus’ pyrum Norman, Hochberg and Lu, 1997

Size: Mantle length to 35 mm; total length to 170 mm; body weight to 19 g.

Geographical Distribution: Indonesia, Banda and Arafura Seas; northeastern Australia, off Brisbane.

Habitat and Biology: Depth range from 329 to 511 m.

Literature: No additional literature.

‘Octopus’ salutii Verany, 1839

Size: Mantle length to 165 mm; body weight to 750 g.

Geographical Distribution: Mediterranean Sea and northeastern Atlantic.

Habitat and Biology: Depth range from ~100 to 700 m; typically 250 to 500 m.

Literature: Incidental fisheries catch and biology (Quetglas *et al.*, 2005).
‘Octopus’ superciliosus Quoy and Gaimard, 1832

Octopus superciliosus Quoy and Gaimard, 1832, *Voyage de Découvertes de l’Astrolabe pendant les Années 1826-1829, Zoologie*, 2(1): 88. [Type locality: New Holland (Australia), Bass Strait, Victoria, Western Port].

Size: Mantle length to 26 mm; total length to 94 mm.

Geographical Distribution: Southeast Australia.

Habitat and Biology: Depth range from 0 to 69 m.

Remarks: Pygmy species.

‘Octopus’ vitiensis Hoyle, 1885

Octopus vitiensis Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 226. [Type locality: Fiji, Kandavu, on reefs].

Size: Mantle length to 60 mm; total length to 250 mm.

Geographical Distribution: At present known from Fiji, Tonga, and Papua New Guinea.

Habitat and Biology: Depth range from 0 to about 20 m.

‘Octopus’ warringa Stranks, 1990

Size: Mantle length to 35 mm; total length to 125 mm.

Geographical Distribution: Southeastern Australia.

Habitat and Biology: Depth range from 0 to 144 m.

Remarks: Small to pygmy species. O’Shea (1999) proposes that this species is a junior synonym of *Octopus huttoni* (Benham, 1943).

‘Octopus’ wolfi (Wülker, 1913)

Polypus wolfi (Wülker, 1913), *Abhandlungen Hrsg. von der Senckenbergischen Naturforschenden Gesellschaft*, 34: 458. [Type locality: Tahiti, Popeete (sic)].

Size: Mantle length to 15 mm; total length to 45 mm.

Geographical Distribution: Indo-Pacific from Red Sea to Tahiti.

Habitat and Biology: Depth range from 0 to 30 m.

Remarks: Pygmy species.

‘Octopus’ zonatus Voss, 1968

Size: Mantle length to 30 mm; total length to 88 mm.

Geographical Distribution: Western Atlantic and Caribbean from Venezuela west to the Gulf of Darien.

Habitat and Biology: Depth range from 30 to 75 m.

Ctenoglossan octopods

by Mark D. Norman and Julian K. Finn

In members of this tribe mantle and arms are transparent and gelatinous. Fins and shell are absent. Suckers occur in a single row on the arms. Eyes are significantly modified in some species, from elongate or rectangular to telescopic (*Amphitretus*). The name of this tribe (*Ctenoglossa*) refers to the comb-like teeth in the radula of most member species. Large, simple chromatophores are present in some species.

Size: Members of all three families are small, typically less than 150 mm total length.

Habitat and Biology: Pelagic residents of the open ocean, present at tropical and temperate latitudes worldwide.

Interest to Fisheries: None, due to rarity of capture and gelatinous flesh.

Remarks: This group of gelatinous pelagic octopods collectively is known as the ctenoglossans, a term referring to the comb-like teeth found in the radula of these octopods. The group contains three families*: Amphitretidae, Vitreledonellidae and Bolitaenidae. Recent molecular studies (Strugnell *et al.* 2004) suggest that the ctenoglossans have evolved via an evolutionary step by the transparent planktonic young of the familiar benthic octopuses (family Octopodidae). The ancestors of these pelagic octopuses appear to be planktonic young that never returned to the seafloor, instead carrying out their entire life cycle in midwater. Many of their morphological features are shared with the planktonic juveniles of benthic octopuses, particularly transparent flesh, simple chromatophores and teeth on the rostrum of the beak.

Two relatives of the argonauts also are gelatinous in consistency and may be confused with ctenoglossans. *Tremoctopus gelatus* Thomas, 1977 (family Tremoctopodidae) and *Haliphron atlanticus* Steenstrup, 1861 (family Alloposidae) are easily separated from *Amphitretus* in that they have normal (non-telescopic) eyes. They are distinct from bolitaenids and *Vitreledonella* in that they possess two rows of suckers on each arm compared with the single row present in these two ctenoglossan families.

 Literature: Naef (1923).

Key to families of ctenoglossan octopods:

1a. Eyes telescopic and situated close together on dorsal surface of head; body and arms soft, semi-gelatinous; funnel fused to ventral head to form two openings to the mantle cavity Family Amphitretidae

1b. Eyes lateral, round to oblong, not telescopic; funnel free from ventral head, single opening to mantle cavity. \(\rightarrow 2\)

2a. Arms longer than mantle length Family Vitreledonellidae

2b. Arms shorter than mantle length Family Bolitaenidae

*At the time of going to print, Strugnell *et al.* (2013) used molecular evidence to merge these families into a single family Amphitretidae (see that work)."
2.1.2 Family AMPHITRETIDAE Hoyle, 1886 by Mark D. Norman and Julian K. Finn

Type Genus: *Amphitretus* Hoyle, 1885.

FAO Names: En — Telescope octopods; Fr — Poulpes téléscopes; Sp — Pulpos telescópicos.

Diagnostic Features: Small to moderate-sized, gelatinous octopuses. Mantle, arms and webs transparent. Internal shell absent. Each of the eight arms possesses one row of suckers for the majority of the arm length, with two rows present on distal tips beyond the margins of the webs. Eyes telescopic, tubular in shape, oriented vertically. Ventral mantle fused to funnel restricting mantle aperture to two lateral openings. Digestive gland (liver) elongate and narrow, oriented vertically in live animal to minimise silhouette seen by predators from below. Digestive viscera dorsal to digestive gland. Radula comb-like with multiple cusps on central and first two lateral teeth rows. Ink sac present. Third right arm of male modified, consisting of distinct calamus and whip-like distal tip.

Size: Mantle length to 135 mm; total length to ~300 mm.

Geographical Distribution: Tropical and subtropical.

Habitat and Biology: Depth range from 0 to around 2 000 m. Little is known of the biology of these rarely encountered octopuses. They are pelagic inhabitants of midwater in the open ocean always over deep water. It is likely that females brood the eggs within their arm crown as has been reported for *Vitreledonella*.

Remarks: Two species are currently recognized within this family: *Amphitretus pelagicus* and *A. thielei*.

Literature: O’Shea (1999).

Amphitretus Hoyle, 1885

Type Species: *Amphitretus pelagicus* Hoyle, 1885.

Diagnostic Features: With characters of the family. Monogeneric.

Size: Mantle length to 100 mm; total length to around 300 mm.

Geographical Distribution: Tropical to subtropical waters of Indo-Pacific region, temperate waters of southern Indo-Pacific region.

Habitat and Biology: Pelagic species of open waters, from near surface depths to at least 2 000 m.

Remarks: The two member species of this genus are semi-gelatinous, transparent, mesopelagic octopuses easily distinguished by their telescopic eyes used to detect prey above them in the water column.

Literature: Young (1991).

Amphitretus pelagicus Hoyle, 1885

Amphitretus pelagicus Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 235. [Type locality: South Pacific Ocean, off Kermadec Islands, 29°55'S, 178°14'W].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Telescope octopod; Fr — Poulpe télescope; Sp — Pulpo telescópico.

Diagnostic Features: Small to medium-sized, gelatinous species. Mantle, arms and webs transparent. Ventral mantle fused with funnel so that aperture consists of two lateral slits, one below each eye. Eyes telescopic with bases close together in V-shaped arrangement. Suckers in single row to web margin, forming two rows in distal tips. Normal arms with 22 to 32 suckers. Males with modified third right arm consisting of whip-like tip bearing two rows of low papillae and a distinct calamus. Hectocotylized arm with 27 to 28 suckers. Webs very deep, greater than 60%
of arm length. Gills with 10 lamellae in the outer demibranch. Cigar-shaped elongate liver, always held in vertical orientation in live animal.

Size: Mantle length to 100 mm; total length to around 300 mm.

Geographical Distribution: Tropical and subtropical waters of Indo-Pacific region (Fig. 219).
Habitat and Biology: Depth range from 100 to 2,000 m. This midwater species lives at depths between the epipelagic and bathypelagic zones. The telescopic eyes are always oriented upwards, presumably used to detect the silhouettes of prey from below. The octopus minimises its own silhouette by being mostly transparent and by maintaining both eyes and the digestive gland (liver) in a vertical orientation. Juveniles appear to occur in shallower water.

Interest to Fisheries: Unknown.

Local Names: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Amphitretus thielei Robson, 1930

Amphitretus thielei Robson, 1930, *Discovery Reports*, II: 372. [Type locality: Southeastern Atlantic Ocean, South Africa, off west coast].

Size: Mantle length to 135 mm; total length to >200 mm.

Geographical Distribution: Poorly known, at this stage recorded from cooler waters off South Africa, southern Australia and New Zealand.

Habitat and Biology: Depth range from near surface to 1,145 m.

2.1.3 Family VITRELEDONELLIDAE Robson, 1932

by Mark D. Norman and Julian K. Finn

Type Genus: *Vitreledonella* Joubin, 1918.

FAO Names: En — Glass octopods; Fr — Poulpes vitreux; Sp — Pulpos vitreos.

Diagnostic Features: Small to moderate-sized, gelatinous, pelagic octopuses with transparent mantle, arms and webs. Ventral mantle edge free from funnel (i.e. not fused). Single wide mantle opening. Internal shell absent. Each arm possesses one row of suckers. Eye shape in form of vertical rectangle with lateral lens. Tapered rostrum present on ventral surface of eye. Optic lobes of brain widely spaced with long optic nerve stalks. Gills with outer demibranch only. *Vitreledonella* differs from other members of the Tribe Ctenoglossa in that the lateral teeth of the radula do not bear numerous cusps (i.e. are not comb-like). The first lateral tooth bears an extra cusp compared with the radula of the more familiar benthic octopuses (family Octopodidae). Digestive gland elongate and narrow, held vertically in live animal to minimise silhouette from below. Digestive viscera dorsal to digestive gland. Ink sac present. Third left arm of mature male modified as bulbous oval tip bearing a slender papilla. Simple chromatophores present.

Size: Mantle length to 100 mm; total length to 450 mm.

Geographical Distribution: Tropical and subtropical regions of the world’s oceans.

Habitat and Biology: Depth range from near the surface to at least 1,000 m, typically over deep water (beyond continental shelf). Little is known of the biology and behaviour of this rarely encountered pelagic octopus. Video sequences from submersibles suggest that the male envelops the female within his webs during mating. Females are thought to brood their eggs within their arm crown.

Remarks: This family contains a single species, *Vitreledonella richardi*.

Literature: Joubin (1918, 1937).
Vitreledonella Joubin, 1918

Type Species: *Vitreledonella richardi* Joubin, 1918.

Diagnostic Features: With characters of the family. Monotypic.

Size: Mantle length to 110 mm; total length to around 450 mm.

Geographical Distribution: Tropical and temperate waters worldwide.

Habitat and Biology: As above for the family.

Remarks: Single species, *Vitreledonella richardi*.

Fig. 220

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Glass octopod; Fr — Poulpe vitreux; Sp — Pulpo vitreo.

Diagnostic Features: Small to medium-sized, gelatinous species. **Body, arms and webs transparent. Eyes as vertical rectangles with lateral lens. Single row of suckers on arms, suckers significantly larger in diameter in distal portion, beyond limit of webs.** Webs deep, approximately 60% of arm length. Gills with 7 lamellae in outer demibranch, inner demibranch absent. Scattering of simple orange chromatophores over mantle, arms and webs.

hectocotylus
male - lateral view
female - dorsolateral view

Fig. 220 Vitreledonella richardi
Size: Mantle length to 110 mm; total length to around 450 mm.

Geographical Distribution: Tropical and temperate waters worldwide (Fig. 221).

Habitat and Biology: As above for the family.

Interest to Fisheries: Unknown.

Local Names: Unknown.

2.1.4 Family BOLITAENIDAE Chun, 1911 by Mark D. Norman and Julian K. Finn

Type Genus: Bolitaena Steenstrup, 1859.

FAO Names: En — Pelagic octopods; Fr — Poulpes pélagiques; Sp — Pelagopulpos.

Diagnostic Features: Small, gelatinous and mostly transparent octopuses. Arms short, shorter than mantle length. Single row of suckers. Internal shell absent. Eyes lateral and laterally compressed. The long axis of the digestive gland (liver) is parallel to the body axis. Digestive viscera posterior to digestive gland. Radula comb-like with multiple cusps on central and first two lateral teeth rows. Mature females possess a circular light organ that forms a ring surrounding the mouth. Large chromatophores scattered over body, arms and webs.

Size: Mantle length to 85 mm; total length to around 160 mm.

Geographical Distribution: Tropical and temperate latitudes of all oceans.

Habitat and Biology: Meso- to bathypelagic in open ocean to depths of 1 400 m. Little is known of the biology and behaviour of these small pelagic octopuses. Females are presumed to use the circumoral light organ to attract males at depths greater than 1 000 m. Females brood the eggs by holding the egg mass within their arm crown. Eggs are stalked with the stalks attached to the capsules of other eggs, thus holding the egg mass together. Off Hawaii, young are released around 800 m and move up to shallower waters (150 to 250 m). As they grow they descend gradually to adult depths of around 800 to 1 400 m.

Remarks: Two genera are recognized, each with a single species: Bolitaena pygmaea and Japetella diaphana.

Bolitaena Steenstrup, 1859

Type Species: Bolitaena pygmaea (Verrill, 1884).

Diagnostic Features: Small gelatinous species. Arm length less than mantle length. Eyes small and extended away from brain on long optic stalks. Mature males with third left arm hectocotylized with an elongate ligula. Third right arm in males also modified with 1 to 3 greatly enlarged suckers. Mature females with circumoral light organ.

Size: Mantle length to around 60 mm.

Geographical Distribution: Throughout tropical and subtropical waters worldwide.

Habitat and Biology: Semi-transparent pelagic species occurring midwater between 100 and 1 400 m, typically over deeper water.

Remarks: Single widely distributed species.

Bolitaena pygmaea (Verrill, 1884) Fig. 222

Eledonella pygmaea Verrill, 1884, Transactions of the Connecticut Academy of Sciences, 6(1): 145. [Type locality: Northwestern Atlantic Ocean, United States, off Virginia, 37°12'20"N, 69°39'W].

Frequent Synonyms: Eledonella pygmaea (Verrill 1884); Bolitaena microcotyla Steenstrup In Hoyle, 1886.

Misidentifications: None.

FAO Names: En — Pygmy pelagic octopod; Fr — Poulpe pélagique pygmée; Sp — Pelagopulpo pigmeo.

Diagnostic Features: With characters of the genus. Monotypic.

Size: Mantle length to around 60 mm.

Geographical Distribution: Throughout tropical and subtropical waters worldwide (Fig. 223).

Habitat and Biology: Depth range from 100 to 1 400 m. These small pelagic octopuses typically live over deeper water. Young animals tend to occur in the shallower end of the range. As members of this species reach sexual maturity the iridescence of the digestive gland and eyes is lost and animals migrate to deeper darker waters. Pigmentation greatly increases in females as they mature and the arms become relatively longer. Increased pigmentation may be associated with the need to mask output from the female’s circumoral light organ. This light organ may be used for reproductive signalling to males. The posterior salivary glands of mature males are greatly enlarged and have been suggested to produce a chemical attractant for females.
Interest to Fisheries: Unknown.

Local Names: Unknown.

Remarks: Confusion exists relating to the identification of animals in this family and whether more than one species is valid. Often placed in the genus *Eledonella* or identified as *Bolitaena microcotyla*.

Japetella Hoyle, 1885

Type Species: *Japetella diaphana* Hoyle, 1885.

Diagnostic Features: Small gelatinous species. Arm length less than mantle length. Eyes relatively large, diameter approximately equal with optic stalk length. Mature males without hectocotylized arm. Third right arm in mature males modified with enlargement of distal suckers, not as extreme as in *Bolitaena*. Mature females with circumoral light organ.

Size: Mantle length to 85 mm; total length to around 160 mm.

Geographical Distribution: Throughout tropical and subtropical waters worldwide; extends into boreal waters in the North Pacific Ocean.

Habitat and Biology: Pelagic residents of water column in the open ocean at depths between 200 and 1 000 m, typically over deeper water.

Remarks: Single species.

Japetella diaphana Hoyle, 1885

Japetella diaphana Hoyle, 1885, *Annals and Magazine of Natural History*, series 5, 15: 232. [Type locality: Southwestern Pacific Ocean, north of Papua New Guinea, 00°42'S, 147°E].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Diaphanous pelagic octopod; Fr — Poulpe pélagique translucide; Sp — Pelagopulpo translucido.

Diagnostic Features: With characters of the genus. Monotypic.

Size: Mantle length to 85 mm; total length to around 160 mm.

Geographical Distribution: Throughout tropical and subtropical waters worldwide; extends into boreal waters in the north Pacific Ocean (Fig. 225).

Habitat and Biology: Depth range from 200 to 1000 m. These small pelagic octopuses typically occur over deeper water as adults. Young animals tend to occur in the shallower end of the range. As members of this species reach sexual maturity the iridescence of the digestive gland and eyes is lost, and animals migrate to deeper darker waters in the later stages of the life cycle. Nearly mature males have salivary glands that are much larger than those of comparable females. As in _Bolitaena_, salivary products may be used as a chemical attractant for females. The female light organ may be used for reproductive signalling to males.

Interest to Fisheries: Unknown.

Local Names: Unknown.

Argonautoid octopods

Argonautoid octopods encompass four families of pelagic octopods believed to have derived from a benthic origin. Morphological modifications suited to a benthic habitat (e.g., the presence of corneas; absence of a shell, fins, and cirri; fully formed inferior frontal lobe system, albeit reduced; and brooding) indicate that their ancestral mode was a benthic lifestyle.

All members of this group are united by the presence of the following characters:

1. marked sexual size dimorphism (females much larger than males);
2. in males one arm of third pair developed in a specialized sac, completely hectocotylized, autotomous;
3. funnel locking apparatus present in both sexes.

The presence or absence of paired cephalic water pores (a character unique to some argonautoid families; also known as 'aequiferous pores') can be helpful in distinguishing argonautoid families. Cephalic water pores are essentially oval holes in the skin located ventrally (on the surface of the head, adjacent to the opening of the funnel, at the base of the fourth arms) and/or dorsally (on the surface of the head, slightly anterior to the eyes, at the base of the first arms). The precise function of cephalic water pores remains unknown.

Key to families of argonautoid octopods:

1a. Cephalic water pores absent .. 2
1b. Cephalic water pores present .. 3

2a. Body gelatinous; funnel embedded in head tissue; web deep between all arms; third right arm of male hectocotylized, developed in inconspicuous sac in front of right eye Family Alloposidae
2b. Body muscular; funnel not fused in head; web shallow between all arms; dorsal arms of female with distal (terminal) expansion for secretion of an external shell; third left arm of male hectocotylized, developed in sac under left eye Family Argonautidae

3a. One pair of cephalic water pores (ventral only); first and fourth arm pairs longer than other arms; male hectocotylus in sac that extends from base of third right arm Family Ocythoidae
3b. Two pairs of cephalic water pores (dorsal and ventral); first and second arms of female longest, connected by a broad web; male hectocotylus develops in sac embedded between funnel and right eye (note: right ventral cephalic water pore of males may be crowded and degenerate due to development of hectocotylus in pouch below right eye) Family Tremoctopodidae

2.1.5 *Family ALLOPOSIDAE* Verrill, 1881

Type Genus: *Haliphron* Steenstrup, 1861.

FAO Names: En — Gelatinous giant octopods; Fr — Poulpes gelées géants; Sp — Megapulpos gelatinosos.

Diagnostic Features: Body tissue gelatinous, smooth; cephalic water pores absent; stylets present; funnel embedded in head tissue; funnel locking apparatus simple, fused in adults; ink sac present; webs deep between all arms; suckers in two rows, can form single row in basal portion of arms; male third right arm hectocotylized, developed in inconspicuous sac in front of right eye.

Size: Mantle length of females to 690 mm; males to over 100 mm; total length of females estimated to reach 4 m; males estimated to 210 mm.

Geographical Distribution: Circumglobal in the Atlantic, Indian, and Pacific oceans between 43°N and 45°S; extends northerly in the Atlantic Ocean to off Ireland (52°N), Scotland (59°N), and Norway (60-68°N).

Habitat and Biology: Members of the family Alloposidae are commonly known as the 'seven-arm octopus', due to the completely embedded hectocotylized arm of males that gives them the appearance of possessing only seven arms, or 'giant octopus', on account of the female's gigantic maximum size. Female alloposids attain the largest size of all
argonautoids with a mantle length of at least 690 mm and an estimated total length of 4 m. Male alloposids are similarly the largest of all argonautoid males, attaining a mantle length of at least 100 mm and an estimated total length of over 200 mm. Female alloposids are characteristically gelatinous — their large mass unable to retain form when out of the water and prone to damage and fragmentation in fishing nets. Unlike other argonautoids, which are presumed to be entirely pelagic, it is believed that alloposids may spend only short periods in the open ocean, soon returning to a life on the sea floor, particularly on continental slopes. The remains of alloposids have been recovered from the stomachs of a range of predators including fishes, marine mammals and seabirds.

Remarks: The suggestion in the literature that the family Alloposidae must be corrected to Haliphronidae (Hochberg et al., 1992) is inconsistent with the recent International Code of Zoological Nomenclature (1999), Article 40.1. A single species, Haliphron atlanticus, is currently recognized in this family.

Haliphron Steenstrup, 1861

Haliphron Steenstrup, 1861, Videnskabelige Meddelelser fra den Naturhistoriske Forening i Kjøbenhavn, 1860: 332.

Type species: _Haliphron atlanticus_ Steenstrup, 1861.

Frequent Synonyms: _Alloposus_ Verrill, 1880.

Diagnostic Features: With characters of the family. Monotypic.

Haliphron atlanticus Steenstrup, 1861

Haliphron atlanticus Steenstrup, 1861, Videnskabelige Meddelelser fra den Naturhistoriske Forening i Kjøbenhavn, 1860: 332. [Type locality: Atlantic Ocean, 38°N, 34°W].

Frequent Synonyms: _Alloposus mollis_ Verrill, 1880.

Misidentifications: None.

FAO Names: En — Gelatinous giant octopod; Fr — Poulpes gelée géant; Sp — Megapulpo gelatinoso.

Webs deep between all arms. Suckers small, mostly in two series but may be in single series near mouth. Enlarged suckers absent. Funnel long, **entirely embedded in head tissue**, opening antero-ventrally to eyes. Funnel organ W-shaped. Funnel locking apparatus present, consists of hook-like muscular folds on funnel corners with corresponding ridge/groove system on the mantle, fused in adults. Visceral sac small. Ink sac present. Stylets relatively small, wide, thick, drop-like bodies of soft consistency embedded in lateral walls of mantle.

Males much smaller than females but not dwarfed. Third right arm of males hectocotylized; develops in inconspicuous pocket produced by interbrachial membrane in front of right eye; male appears to have only seven arms. **Spermatophore groove completely formed; leads to terminal spermatophore reservoir branched off arm at base of penile filament; penile filament hangs free, not enclosed within sac; 2 rows of large suckers present; papillate lateral fringes from base to spermatophore reservoir.**

Size: Mantle length of females to 690 mm; males to over 100 mm; total length of females estimated to reach 4 m; males estimated to 210 mm.

Geographical Distribution: Widespread pelagic species. Circumglobal in the Atlantic, Indian, and Pacific oceans between 43°N and 45°S; extends northerly in the Atlantic Ocean to off Ireland (52°N), Scotland (59°N), and Norway (60-68°N) (Fig. 227).

Habitat and Biology: Reported to occupy a depth range in open-ocean from the surface to at least 1 260 m, over depths of up to 6 787 m. Collected in bottom trawls on continental shelves and slopes at depths of 100 to 3 173 m. It has been proposed that *Haliphron atlanticus* may not be entirely pelagic, but might pass only relatively short periods of its life cycle in the open waters, soon returning to a life at the bottom especially on continental slopes. A limited number of captures with opening/closing nets suggest that *H. atlanticus* may undertake diel migration with some animals being caught from the surface to 100 m at night and at 600 to 700 m during the day. Based on small number of captures in the western Atlantic Ocean, displaying an increase in individual size from February through to September, it has been proposed that spawning may occur in the northern hemisphere during winter (December to February). Females are reported to brood their eggs, attached to the oral side of the arm bases near the mouth. Variation in the size of immature ovarian eggs indicates that *H. atlanticus* may be an intermittent spawner. The locomotion methods employed by female *H. atlanticus* appear to vary with size. Small females are reportedly fast swimmers, based on both musculature and direct swimming observations. Observations of a young female swimming faster than a net towed in direct pursuit has lead to the proposal that this apparent net avoidance could be the reason for scarcity of material captured in trawls. By contrast, large females are very ‘soft and flabby’ and it has been doubted, based on body consistency and water resistance, that they are fast swimmers. The body of a 767 mm total length female was reported to be so soft and gelatinous that when out of water it could not retain its natural form. When placed in a large pan it flattened out and filled the vessel like a mass of rather stiff jelly. It has been proposed that the deep umbrella formed by the arms and webs of female *H. atlanticus* serves as the main organ of locomotion. This proposal is consistent with morphological examinations that reveal reduction of the stylets and live observations from a submersible of an adult female swimming with slow medusoid motion (using the arms and web to swim in a manner similar to the bell swimming of medusae) just above the sea floor. When mature,
and before being autotomized, the hectocotylus of males protrudes from the pouch opening on the inner surface of web between the second and fourth pairs of arms. *Haliphron atlanticus* is reported to feed on crustaceans and cephalopods.

Interest to Fisheries: Limited fisheries interest due to scarcity of encounters. The gelatinous flesh of this species is not considered palatable. Occasional landings have netted multiple individuals, e.g. a single otter trawl fished at 682 m caught 26 large specimens. Occasionally taken as by-catch in commercial fishing trawls. Gelatinous consistency of flesh can result in large trawled specimens being badly fragmented.

Local Names: JAPAN: Kantendako.

2.1.6 Family ARGONAUTIDAE Tryon, 1879 by Julian K. Finn

Type Genus: *Argonauta* Linnaeus, 1758.

FAO Names: En — Argonauts, Paper nautiluses; Fr — Argonautes papier; Sp — Argonautas.

Diagnostic Features: Body tissue muscular, smooth; cephalic water pores absent; stylets absent; funnel not embedded in head tissue; funnel locking apparatus developed by funnel corners hooked into mantle; ink sac present; all arms with 2 rows of suckers; webs shallow between all arms; first (dorsal) pair of arms of females expanded as broad membranous webs, used to secrete shell; third left arm of males hectocotylized, developed in sac under left eye (males with third right arm hectocotylized reported, but extremely rare).

Habitat and Biology: Argonauts are most commonly recognized by the brittle white ‘shells’ of females, commonly known as a ‘paper nautiluses’. Unlike the true shells of other molluscs, the ‘paper nautilus’ shell is actually a brood case, secreted by webs at the distal tips of the female’s dorsal arms, and used for protection of long strands of eggs laid within. Similarity in external appearance with the shells of chambered nautiluses (family Nautilidae) regularly leads to confusion between these two distantly related families. In life, the female is typically positioned within the shell with her head forward and her lateral and ventral arms bent backwards adhering to the inside of the shell faces. The expanded lobes on the dorsal arms either cover the outside faces of the shell or are held within. In the event that a shell is damaged a female argonaut can repair the shell or where necessary completely rebuild it. Male argonauts are tiny dwarves that never develop a shell. Their third left arm is a modified hectocotylus that develops in a sac under the left eye. Mature female argonauts are often found with multiple male hectocotyls (each from a different male) wrapped around the gills inside their mantle cavities. Intact males also have been found within female shells. Eggs are laid in long festoons and mature in up to five batches at different stages of development. Egg strings are anchored to the innermost coil of the shell.

Argonauts generally are considered to be epipelagic in oceanic waters, as they are collected in surface tows, midwater trawls, oblique hauls, and hand-netted at the surface. Adult females are most regularly encountered at the surface during the day, at dusk and at night, while males and juvenile females have been reported from the surface to at least 200 and 300 m respectively. Female argonauts have a tendency to cling to objects floating or drifting on the water surface. Female argonauts have been observed ‘riding’ jellyfishes, attached to floating seaweed, or attached to each other forming large chains of up to 20 to 30 individuals. Males and juvenile females also have been observed riding inside the salp, *Pegea socia*, behaviour more commonly associated with the football octopus (family Ocythoidae). The remains of argonauts have been recovered from the stomachs of a range of predators including squids, fishes, marine mammals, penguins and other marine birds.

Remarks: This family contains a single genus (*Argonauta*) and four species (*A. argo*, *A. hians*, *A. nodosus* and *A. nouryi*).

Argonauta Linnaeus, 1758

Argonauta Linnaeus, 1758, Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis, Holmiae: 708.

Type species: Argonauta argo Linnaeus, 1758.

Frequent Synonyms: None.

Diagnostic Features: With characters of the family. Monogeneric.

Remarks: Variations in female shell shape within species have caused considerable confusion to taxonomists over the centuries and have resulted in a large number of synonymous species names. At present four species within the single genus Argonauta are recognized: A. argo, A. hians, A. nodosus and A. nouryi (see Finn, 2009, 2013).

Key to species in the genus Argonauta based on characters of the female argonaut:

1a. Fourth arms longer than second arms .. A. argo
1b. Second arms longer than fourth arms .. → 2

2a. Sucker numbers: 280 to 360 on first arms, 140 to 220 on second and third arms, and 80 to 135 on fourth arms; 14 to 21 gill lamellae per demibranch .. A. nodosus
2b. Sucker numbers: 135 to 210 on first arms, 70 to 120 on second and third arms, and 30 to 70 on fourth arms; 9 to 15 gill lamellae per demibranch .. → 3

3a. Sucker numbers: 135 to 160 on first arms, 70 to 115 on second and third arms, and 30 to 50 on fourth arms; 9 to 13 gill lamellae per demibranch; (absent from the eastern Pacific Ocean) .. A. hians
3b. Sucker numbers: 145 to 210 on first arms, 75 to 120 on second and third arms, and 45 to 70 on fourth arms; 13 to 15 gill lamellae per demibranch; (restricted to the eastern Pacific Ocean) .. A. nouryi

Key to species in the genus Argonauta based on characters of the female argonaut's shell:

1a. Lateral ribs tuberculated (composed of rows of separate tubercles) .. A. nodosus
1b. Lateral ribs smooth, continuous .. → 2

2a. Keel thin, with consistent width; keel tubercles of consistent size and shape .. A. argo
2b. Keel width and keel tubercle size increase with shell growth .. → 3

3a. Keel tuberculation never present; argonaut does not occur in the eastern Pacific Ocean .. A. hians
3b. Keel tuberculation expressed in some shells; argonaut occurs in the eastern Pacific Ocean .. A. nouryi

Key to species in the genus Argonauta based on characters of the male argonaut*:

1a. Sucker numbers: 17 to 20 on all normal arms, 58 to 64 on hectocotylized arm; 8 to 10 gill lamellae per demibranch .. A. nodosus
1b. Sucker numbers: 10 to 11 on all normal arms, 37 to 44 on hectocotylized arm; 6 to 7 gill lamellae per demibranch .. A. hians
1c. Sucker numbers: 12 to 13 on normal arms, approximately 95 on hectocotylized arm; number of gill lamellae per demibranch unknown .. A. argo

* Details of male A. nouryi currently unknown
Argonauta argo Linnaeus, 1758

Fig. 228

Argonauta argo Linnaeus, 1758, *Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis, Holmiae: 708*. [Type locality: Mediterranean Sea].

Frequent Synonyms: *Argonauta cygnus* Monterosato, 1889; *A. pacifica* Dall, 1871.

Misidentifications: None.

FAO Names: En — Greater argonaut Fr — Argonaute papier; Sp — Argonauta común.

Diagnostic Features: Body muscular. Skin smooth. Cephalic water pores absent. Funnel organ conspicuous, \(\Lambda\)-shaped with elongate ovate limbs, outer limbs slightly shorter than median limbs. Funnel locking apparatus present, well developed, consists of small, ovate, cartilaginous pits on funnel corners, with corresponding posterior-directed nodules on inner surface of mantle. Suckers small, in two rows. Adult female large in size. Mantle roughly conical, widest anteriorly, flattened laterally, posterior with sharp upward torsion (most pronounced in animals preserved within shells), deep crease in ventral mantle posterior to funnel locking apparatus. Mantle-opening wide. Stylets absent. Head small, embedded within mantle. Eyes large, protrude from level of head, separated by distinct constriction at base. Funnel broad-based and muscular, extremely long, anterior opening projects between fourth arms. Arms long, typically 2 to 3.5 times mantle length in adult females. First (dorsal) arms long, wide, terminate with conspicuous wide lobes used for shell secretion/formation. In female argonauts, first arm lengths are extremely variable due to varied constriction of the shell-secreting lobes and hence are of limited diagnostic value. Other arms unequal in length (*arm formula: 4>2>3*). Fourth (ventral) arms longest, over 3 times mantle length and 20 to 30% longer than second arms. Suckers of moderate size, largest on dorsal arms, approximately 7 to 8% of mantle length. Webs shallow between all arms. Gills with approximately 16 to 17 lamellae per demibranch. Colour in life variable from deep maroon to silver; dorsal mantle adorned with large chromatophores, smaller chromatophores present on ventral mantle. Shells large, thin walled, laterally compressed, calcareous, with one chamber. Ribs present on lateral surfaces, formed by
corrugations in shell walls, radiate out from central axis, smooth (not a series of tubercles), continuous (from axis to keel) or branched. **Aperture narrow**. Ears (i.e. lateral extensions of shell axis beyond surfaces of shell) may be present in smaller shells, become less conspicuous with increased size. **Keel width consistent around circumference of shell** (does not increase significantly during growth of shell), extremely narrow, smooth (without inter-keel tuberculation). **Keel tubercles paired** (ridge present across keel between opposing tubercles), consistent in size and shape around circumference of shell. Surface may appear polished or matt. Colour white, approximate first third of keel tubercles stained black. Eggs extremely small (approximately 1.5 mm long), attached in long strands to internal axis of female’s shell, brooded until hatching. Males tiny, dwarfed, shell-less, with third left arm hectocotylized. Hectocotylus detaches from interbrachial membrane early in development; smaller specimens appear to have only seven arms. Hectocotylized arm develops in sac under left eye; as a result male appears asymmetrical; once developed it projects free between arms, enclosed in sac formed from web. Hectocotylus with 2 rows of suckers; proximal spermatophore reservoir formed from spermatophore groove; spermatophore duct visible as shiny muscular tube on dorsal side of hectocotylus; terminal motile penis not enclosed in sac; papillate lateral fringes absent. Males with **12 to 13 suckers on normal arms**, and approximately 95 suckers on hectocotylized arm.

Size: Female mantle length to at least 97 mm; total length to 438 mm; shell length to at least 300 mm. Male total length to 15 mm (excluding hectocotylus).

Geographical Distribution: Widespread tropical-subtropical cosmopolitan species. Circumglobal distribution in the northern and southern hemispheres (between approximately 40°N and 40°S), incorporating the waters of the Atlantic Ocean, Indian Ocean and Pacific Ocean. Known as far south as South Africa, Western Australia, southern Peru and Brazil, and as far north as the Mediterranean Sea, Japan and California (Fig. 229).

Habitat and Biology: Mating has not been observed. On contact with the female it is presumed that the male autotomizes the hectocotylus. Multiple hectocotyli can persist in shells and mantle cavities of females for extended periods. Eggs of up to five different developmental stages may be present within a single shell. Females use the shell to trap air, gathered at the sea surface, to attain neutral buoyancy.

Interest to Fisheries: The fisheries potential of this species is limited due to the scarcity and infrequency of encounters. Females occasionally are found in markets in India, Japan, and Taiwan (Province of China). Although there are no directed fisheries, fortuitous catches can exceed several hundred kilograms. Between June 17 and July 3, 1982, an estimated 630 female *A. argo* weighing some 600 kg were caught in set nets in the western Sea of Japan and sold at market. The flesh is known to be edible. Shells have a high value and are regularly sold through the shell trade worldwide.

Local Names: CHINA: Baak Hoi Ma Chau (White Sea-horse’s Nest); ITALY: Argonauta; JAPAN: Aoigai.

Remarks: The name *Argonauta cygnus* Monterosato, 1889 often is attributed to specimens of *A. argo* obtained from the Mediterranean. The name *A. pacifica* Dall, 1871 commonly is applied to specimens resembling *A. argo* when encountered in California. Both names (*cygnus, pacifica*) are currently considered to be synonyms of *A. argo* (see Finn, 2009, 2013).

Fig. 229 *Argonauta argo*

Known distribution
Argonauta hians [Lightfoot, 1786]

Fig. 230

Frequent Synonyms: *Argonauta boetgeri* Maltzan, 1881.

Misidentifications: None.

FAO Names: En — Lesser argonaut; Fr — Argonaute mineur; Sp — Argonauta menor.

Diagnostic Features: Body muscular. Skin smooth. Cephalic water pores absent. Funnel organ conspicuous, V-shaped with elongate ovate limbs; outer limbs slightly shorter than median limbs. Funnel locking apparatus present, well developed; consists of small, ovate, cartilaginous pits on funnel corners, with corresponding posterior-directed nodules on inner surface of mantle. Females large. Mantle roughly conical, widest anteriorly, flattened laterally, posterior with sharp upward torsion (most pronounced in animals preserved within shells), deep crease in ventral mantle posterior to funnel locking apparatus. Mantle-opening wide. Stylets absent. Head small, embedded within mantle. Eyes large, protrude from level of head, separated by distinct constriction at base. Funnel broad-based and muscular, extremely long; anterior end projects between fourth arms.

Arms of moderate length; typically 1 to 2 times mantle length in adult females. First (dorsal) arms long, wide, distal ends with conspicuous wide lobes used for shell secretion/formation. In female argonauts, first arm lengths are extremely variable due to varied constriction of the shell-secreting lobes and hence are of limited diagnostic value. Other arms unequal in length; arm formula: 2≥3>4. **Second arms longest, 1.4 to 2 times mantle length; fourth (ventral) arms shortest, 1 to 1.3 times mantle length and 50-80% second arm length.** Suckers moderate in size, largest on dorsal arms, approximately 7 to 8% of mantle length; with approximately 140 to 160 suckers on first arms, 80 to 110 on second arms, 70 to 110 on third arms, 30 to 50 on fourth arms. Webs shallow between all arms. Gills with approximately 9 to 13 lamellae per demibranch. Colour in life variable from deep maroon to silver; dorsal mantle adorned with large chromatophores, smaller chromatophores present on ventral mantle. Shell thin walled, calcareous, with one chamber; medium in size. Ribs present on lateral faces, formed by corrugations in shell walls, radiate out from central axis, smooth (series of tubercles not present), continuous (from axis to keel) or branched. **Aperture wide; width approximately 60 to 90% aperture length.** Ears (i.e. lateral extensions of shell axis beyond surfaces of shell) may be present. **Keel wide; width 20**
to 30% shell length, increases during shell growth, smooth (without inter-keel tuberculation). Keel tubercles increase in size around circumference of shell, alternate on opposing surfaces. Surface may appear polished or matt. Colour off-white to brown, approximately first third of keel tubercles stained black. Eggs extremely small, attached in long strands to the axis of the female’s shell; eggs brooded until hatching. Males tiny, dwarfed, shell-less; third left arm hectocotylized. Hectocotylus detached from interbrachial membrane early in development; smaller specimens appear to have only seven arms. Hectocotylized arm develops in sac under left eye; as a result male appears asymmetrical; once developed the hectocotylus projects free between arms, enclosed in sac formed by web. Hectocotylus with 2 rows of suckers; proximal spermatophore reservoir formed from spermatophore groove; spermatophore duct visible as shiny muscular tube on dorsal side of hectocotylus; terminal motile penis not enclosed in sac; papillate lateral fringes absent. Males with 6 to 7 gill lamellae per demibranch; normal arms with 10 to 11 suckers, hectocotylized arm with approximately 37 to 44 suckers.

Size: Female mantle length to at least 40 mm; total length to at least 118 mm; shell length to 106 mm. Male mantle length to at least 7 mm; total length to at least 12 mm (excluding hectocotylus), and 40 mm (including hectocotylus).

Geographical Distribution: Widespread pelagic species. Occurs from South Africa in the west, to Papua New Guinea in the east, and Japan in the north — incorporating at least the north Indian Ocean, Arabian Sea, Andaman Sea, Moluccas, Philippines and China Sea. Absent from eastern Pacific Ocean (Fig. 231).

Habitat and Biology: Mating behaviour has not been observed. On contact with the female it is presumed that the male autotomizes the hectocotylus. Multiple hectocotyli can persist in the mantle cavity of females for extended periods. Australian females were found to mature between 17 mm ML (27 mm shell length) and 19 mm ML (29 mm shell length). Egg laying commences between 19 mm ML (29 mm shell length) and 21 mm ML (31 mm shell length). Females attain a maximum size of at least 40 mm ML (52 mm shell length). Eggs of up to three different developmental stages may be present within a single female’s shell. Females have been observed ‘riding’ jellyfish. Female *Aronauta hians* are specialized consumers of pelagic molluscs, chiefly heteropods and pteropods, in addition to octopods (possibly male Argonautidae), crustaceans, comb jellies and fishes.

Interest to Fisheries: Fisheries potential limited due to scarcity of encounters. Shells occasionally sold through shell trade.

Local Names: CHINA: Fooi Hoi Ma Chau (Grey Sea-horse’s Nest); JAPAN: Takobuné.

Remarks: While Lightfoot (1786) mentioned China as a locality, designation of a lectotype by Moolenbeek (2008) makes the type locality “Amboina” (Ambon, Indonesia). The name *Argonauta boetgeri* Maltzan, 1881 is often attributed to specimens of *A. hians* with ‘ear-less’ shells (i.e. shells without lateral extensions of the shell axis). Lateral extensions are a variable character in this species and *A. boetgeri* is currently considered to be synonym of *A. hians* (Finn, 2009).

Argonauta nodosus [Lightfoot], 1786

Frequent Synonyms: *Argonauta tuberculata* [Röding], 1798.

Misidentifications: None.

FAO Names: En — Knobbed argonaut; Fr — Argonaute noueux; Sp — Argonauta nodoso.

Diagnostic Features: Body muscular. Skin smooth. Cephalic water pores absent. Funnel organ conspicuous, Λ/-shaped with elongate ovate limbs; outer limbs slightly shorter than median limbs. Funnel locking apparatus present, well developed, consists of small, ovate, cartilaginous pits on funnel corners, with corresponding posterior-directed nodules on inner surface of mantle. Female large. Mantle roughly conical, widest anteriorly, flattened laterally; posterior with sharp upward torsion (most pronounced in animals preserved within shells), deep crease in ventral mantle posterior to funnel locking apparatus. Mantle aperture wide. Stylets absent. Head small, embedded within mantle. Eyes large, protrude from level of head, separated by distinct constriction at base. Funnel broad-based and muscular, extremely long; anterior end projects between fourth arms. Arms of moderate length, typically 1.5 to 2.5 times mantle length in adult females. First (dorsal) arms long, wide; distal ends with conspicuous wide lobes used for shell secretion/formation. In female argonauts, first arm lengths are extremely variable due to varied constriction of the shell-secreting lobes and hence are of limited diagnostic value. Other arm pairs unequal in length (arm formula: 2≠3≥4 or 2≠4≥3). **Second arms longest, 2 to 2.8 times mantle length;** fourth (ventral) arms short, 1.3 to 2 times mantle length and 60-80% of second arm length. Suckers of moderate size, largest on dorsal arms, approximately 6 to 8% of mantle length. Sucker counts: approximately 280 to 360 on first arms, 190 to 220 on second arms, 180 to 210 on third arms, 110 to 140 on fourth arms. Webs shallow between all arms. Gills with approximately 17 to 21 lamellae per demibranch. Colour in life variable, from deep maroon to silver; dorsal mantle adorned with large chromatophores, grading to smaller chromatophores on ventral mantle. Shell thin-walled, calcareous, with one chamber, medium in size. Ribs present on lateral faces, formed by corrugations in shell walls, radiate out from central axis, *tuberculated* (series of tubercles present), continuous (from axis to keel) or branched. **Aperture moderately wide;** width approximately 50 to 60% aperture length. Ears (i.e. lateral extensions of shell axis beyond surfaces of shell) may be present. **Keel moderately wide, width 10 to 14% shell length, width**...
increases with shell size; smooth (without inter-keel tuberculation). Keel tubercles increase in size around circumference of shell, alternate on opposing surfaces. Surface may appear polished or matt. Colour white, approximately the first third of keel tubercles stained black. Eggs extremely small, attached in long strands to axis of female’s shell, brooded until hatching. Males tiny, dwarfed, shell-less; third left arm hectocotylized. Hectocotylus detached from interbrachial membrane early in development; smaller specimens appear to have only seven arms. Hectocotylized arm develops in sac under left eye, as a result, male appears asymmetrical; once developed the hectocotylus projects freely between arms, enclosed in sac formed by web. Hectocotylus with 2 rows of suckers; proximal spermatophore reservoir formed from spermatophore groove; spermatophore duct visible as shiny muscular tube on dorsal side of hectocotylus; terminal motile penis not enclosed in sac; papillate lateral fringes absent. Males with 8 to 10 gill lamellae per demibranch; normal arms with 17 to 21 suckers; hectocotylized arm with approximately 57 to 64 suckers.

Size: Female mantle length to at least 138 mm; total length to 497 mm; shell length to 292 mm. Male mantle length to at least 11 mm; total length to 20 mm (excluding hectocotylus), and 62 mm (including hectocotylus).

Geographical Distribution: Widespread pelagic species. Circumglobal distribution in the Southern Hemisphere, between 10°S and 44°S incorporating the southern extremities of South Africa, Australia, New Zealand and south America, north to Brazil, Indo-West Pacific, and south Pacific islands. Most common in Australia and New Zealand (Fig. 233).

Habitat and Biology: Mating behaviour unknown. On contact with the female it is presumed that the male autotomizes the hectocotylus. Multiple hectocotyls can persist in the mantle cavities of females for extended periods. Eggs of up to five different developmental stages may be present within a single shell. Captive females have been observed to feed on euphausiids, and the presence of female argonauts in southern Australian waters is believed to coincide with euphausiid schools. Female *Argonauta nodosus* have been observed ‘riding’ jellyfishes. It is presumed that females of this species use air trapped in their shells to regulate their buoyancy. Mass strandings have been recorded in New Zealand, southern Australia and Uruguay.

Interest to Fisheries: Fisheries potential limited due to scarcity of encounters. Shells sold occasionally through the shell trade. Beach-cast animals reportedly used as bait in eastern Australia.

Local Names: Unknown.

Remarks: In compliance with the International Code of Zoological Nomenclature (1999) the species name *nodosa* is corrected here to the masculine form *nodosus* (Article 34.2).

Argonauta nouryi Lorois, 1852

Frequent Synonyms: *Argonauta gruneri* Dunker, 1852; *A. cornuta* Conrad 1854; *A. expansa* Dall, 1872.

Misidentifications: None.

FAO Names: En — Rough-keeled argonaut; Fr — Argonaute tuberculé; Sp — Argonauta tuberculado.

Diagnostic Features: Body muscular. Skin smooth. Cephalic water pores absent. Funnel organ conspicuous, VV-shaped with elongate ovate limbs; outer limbs slightly shorter than median limbs. Funnel locking apparatus present, well-developed; consists of small, ovate, cartilaginous pits on funnel corners, with posterior-directed nubbins on inner surface of mantle. Suckers small, in two rows. Female large in size. Mantle roughly conical, widest anteriorly, flattened laterally, a sharp upward torsion posteriorly (most pronounced in animals preserved within shells), a deep crease in ventral mantle posterior to funnel locking apparatus. Mantle-opening wide. Stylets absent. Head small, embedded within mantle. Eyes large, protrude from head, separated by distinct constriction at base. Funnel broad-based and muscular, extremely long; anterior end projects between fourth arms. Arms of moderate length, **typically 1 to 2.4 times mantle length** in adult females. First (dorsal) arms long, wide, with conspicuous wide lobes distally, used for shell secretion/formation. In female argonauts, first arm lengths are extremely variable due to varied constriction of the shell-secreting lobes and hence are of limited diagnostic value. Other arm pairs unequal in length (arm formula: 2≥3≥4). **Second arms longest, 1.2 to 2.4 times mantle length**; fourth (ventral) arms shortest, 1 to 1.5 times mantle length and 60 to 90% second arm length. Webs shallow between all arms. Suckers of moderate size, largest on dorsal arms, approximately 9 to 11% of mantle length. Sucker counts: approximately 150 to 210 on first arms, 80 to 120 on second arms, 80 to 110 on third arms, 50 to 70 on fourth arms. Gill with approximately 13 to 15 lamellae per demibranch. Colour in life variable from deep maroon to silver, dorsal mantle adorned with large chromatophores, that grade to smaller chromatophores on ventral mantle. Shell thin walled, calcareous, with one chamber, medium in size. Ribs present on lateral faces, formed by corrugations in shell walls, radiate out from central axis, smooth (series of tubercles absent), continuous (from axis to keel) or branched. **Aperture moderately wide, width approximately 45 to 70% of aperture length.** Ears (i.e. lateral extensions of shell axis beyond surfaces of shell) may be present. **Keel moderately wide; width 10 to 14% shell length;** width increases with shell size, **inter-keel tuberculation present in some shells.** Keel tubercules increase in size around circumference of shell and alternate on opposite faces. Surface may appear polished or matt. Colour white, approximately first third of keel tubercles stained black. Eggs extremely small, attached in long strands to axis of female’s shell; brooded until hatching. Males tiny, dwarfed, shell-less; third left arm hectocotylized. Hectocotylus detached from interbrachial membrane early in development, smaller specimens appear to have only seven arms. Hectocotylized arm develops in sac under left eye; as a result male appears asymmetrical; once developed it projects free between arms, enclosed in sac formed by web. Hectocotylus with 2 rows of suckers; proximal spermatophore reservoir formed from spermatophore groove; spermatophore duct visible as shiny muscular tube on dorsal side of hectocotylus; terminal motile penis not enclosed in sac; papillate lateral fringes absent. Details of the intact males of this species are unknown.

Size: Female mantle length to at least 52 mm; total length to 174 mm; shell length to 94 mm. Male size unknown.

Fig. 234 *Argonauta nouryi*

a, c: anterior view
b, d: lateral view

shell - top: Type 1; bottom: Type 2
Geographical Distribution: Pelagic species restricted to the equatorial eastern Pacific Ocean. Eastern Pacific Ocean from Marquesas Islands to the west coast of North and South America, from southern California south to Peru (Fig. 235).

Habitat and Biology: Mating behaviour unknown. On contact with the female presumably the male autotomizes the hectocotylus. Multiple hectocotyli can persist in the mantle cavities of females for extended periods. Eggs of up to three different developmental stages may be present within a single shell. Large numbers of females have been observed at the surface in open-ocean during daylight hours. Females may attach to each other forming large chains of up to 18 individuals. Females are known to strand on beaches in the southern Gulf of California, Mexico, during late winter and early spring (January to March).

Interest to Fisheries: Fisheries potential limited due to scarcity of encounters. Shells occasionally sold through shell trade.

Local Names: Unknown.

Remarks: Females of this species produce shells of varied appearance that are regularly attributed to the synonyms *Argonauta cornuta* and *A. expansa* (Finn, 2009). Description of this species and designation of the species name *A. nouryi* Lorois (1852) preceded the description and erection of the species name *A. gruneri* Dunker (1852), by a period of two months (Keen, 1971).

2.1.7 Family OCYTHOIDAE Gray, 1849

by Julian K. Finn

Type Genus: *Ocythoe* Rafinesque, 1814.

FAO Names: En — Football octopods; Fr — Poulpes balonné; Sp — Pulpos abalonados.

Diagnostic Features: Body tissue muscular; ventral surface of mantle sculptured in females; cephalic water pores present, one pair opening on ventral side of head; stylets absent; funnel not embedded in head tissue; funnel locking apparatus developed; funnel corner coiled into snail-like knob enclosed in mantle depression; webs absent between all arms; third right arm of males hectocotylized, developed in sac that extends from base of third right arm.

Habitat and Biology: Members of the family Ocythoidae are commonly known as the ‘football octopod’ based on the size and shape of the female’s mantle. Very little is known about this rarely encountered pelagic octopod. The ventral mantle of adult females is adorned with reticular sculpture of crossing skin ridges and tubercles of cartilage under the skin — its function is unknown. Female ocythoids possess functional swim bladders. A specialized dorsal sac on top of the visceral mass is connected to the mantle cavity by a posterior duct. Gas stored in the swim bladder allows the female to attain and regulate buoyancy. The swim bladder is well developed in females that are heavy with young and is absent in dwarf males. Mating behaviour is unknown. The hectocotylus is freed from the sac before being filled with spermatophores prior to copulation. Hectocotylus retrieved from the mantle cavity of females often have a penile filament that is still coiled within its sac. Female ocythoids are the only cephalopods known to be ovoviviparous, giving birth to live young that hatch internally within greatly elongated oviducts from encapsulated eggs. Mature female ocythoids are considered to be continuous spawners. The potential fecundity of a medium-sized female is reported to be approximately 200,000 eggs, while the fecundity of the largest females is thought to be much higher — potentially as high as one million eggs. The remains of ocythoids have been recovered from the stomachs of a range of predators including squids, fishes, marine mammals, penguins and other marine birds.

Remarks: The family Ocythoidae is monotypic, consisting of a single species, *Ocythoe tuberculata*.

Ocythoe Rafinesque, 1814

Type species: *Ocythoe tuberculata* Rafinesque, 1814.

Frequent Synonyms: None.

Diagnostic Features: With characters of the family. Monotypic.

Fig. 236

Ocythoe tuberculata Rafinesque, 1814

Ocythoe tuberculata Rafinesque, 1814, *Précis des découvertes et travaux somiologiques de Mr. C. S. Rafinesque-Schmaltz entre 1800 et 1814; ou choix raisonné de ses principales découvertes en zoologie et en botanique, pour servir d’introduction à ses ouvrages futurs*, Palermo: 29. [Type locality: Mediterranean Sea].

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Football octopod; Fr — Poulpe balonné; Sp — Pulpo abalonado.

Diagnostic Features: Body muscular. Cephalic water pores present, one pair only, on ventral surface of head at base of fourth arms in both sexes; not present on dorsal surface. Arms long, **dorsal (first)** and **ventral (fourth) arms much longer than lateral (second and third) arms at all growth stages**. Suckers small, in 2 rows. Web almost completely absent between bases of all arms; arm fringe absent. Funnel very long; funnel organ **I Λ I**-shaped. Locking apparatus well developed, strong; funnel corner coiled into snail-like knob, firmly enclosed in depression in mantle. Stylets absent. Females large; body firm. Adult females with reticular sculpture of criss-crossed skin ridges, tubercles at cross points, on ventral side of mantle. Colour translucent, milky-white, lateral and ventral sides of mantle with bright silvery sheen; predominant tones of blue and violet mainly on dorsal side of mantle, head, and dorsal arms. Males dwarfed; third right arm hectocotylized, developed in sac that extends from base of third right arm. Proximal spermatophore reservoir formed from spermatophore groove. Penile filament coiled within sac attached to terminal end of hectocotylus; end of filament protrudes through opening between last suckers. Hectocotylized arm with suckers in 2 rows; papillate lateral fringes absent. Eggs brooded to hatching within female’s elongate oviducts.

Size: Female mantle length to 310 mm; total length to at least 960 mm. Males dwarfed; mantle length to 30 mm; total length to at least 69 mm.
Geographical Distribution: Temperate latitudes of the world’s oceans. Recorded in the northern hemisphere from the Mediterranean Sea, North Atlantic, and North Pacific Oceans. Recorded in the southern hemisphere from the eastern South Atlantic Ocean (off Namibia and South Africa), western South Pacific Ocean (off Australia and New Zealand) and eastern South Pacific Ocean (off Peru). Most frequently encountered in the vicinity of landmasses and islands (Fig. 237).

Habitat and Biology: Female *Ocythoe* typically occupy near-surface waters, having been encountered in the upper 10 m and captured in plankton hauls and on hook and line. While male *Ocythoe* have been collected in pelagic tows at the sea surface, they are not restricted to surface waters, having been collected in closing nets at 100 to 200 m. *Ocythoe* are reported to be edible. Both male and small female *Ocythoe* have been encountered inhabiting tests of the gigantic salp, *Tethys vagina*, in surface waters during the day. *Ocythoe* are reported to feed on pteropod and heteropod molluscs, sardines, and crustaceans.

Interest to Fisheries: Limited interest to fisheries due to scarcity of capture. Reported to be edible.

Local Names: ITALY: Polpo pignatta; JAPAN: Amidako.

Remarks: The current distributional records of this species suggest that it may be limited to the temperate latitudes of both hemispheres. If this distribution is correct, it suggests two separate populations and potentially two separate species might exist. The population structure of this group requires further investigation.

2.1.8 **Family TREMOCTOPODIDAE** Tryon 1879 by Julian K. Finn

Type Genus: *Tremoctopus* Delle Chiaje, 1830.

FAO Names: En — Blanket octopods; Fr — Poulpes manteau; Sp — Pulpos manta.

Diagnostic Features: Body tissue muscular or gelatinous, smooth; two pairs of cephalic water pores present, one pair located on dorsal surface of head, slightly anterior to eyes, and second pair located ventrally, adjacent to funnel opening; stylets present; funnel not embedded in head tissue; funnel locking apparatus developed; funnel corner hooked into pocket in mantle; extensive webs between first two pairs of arms of females; male third right arm hectocotylized, developed in sac between funnel and right eye.

Habitat and Biology: Members of the family Tremoctopodidae are commonly known as ‘blanket octopods’ on account of the expanded dorsal webs (or ‘blankets’) that unite the dorsal arms of females. These expansive webs are divided into sequential subunit components, which can be autotomized as long free strips by the animal. Female tremoctopods attain a large size, often reaching 1 m total length, while the mantle length of dwarf males seldom exceeds 15 mm. Males and small females usually carry fragments of nematocyst-bearing tentacles of the siphonophore *Physalia* (Portuguese Man-of-War). The fragments are held on arms 1 and 2 in two rows that correspond to the two rows of suckers. It is not known whether the *Physalia* tentacle fragments are used to aid in food capture and/or defence. *Physalia* tentacles are absent from females greater than 70 mm in total length. The stomach of an Australian specimen was found to contain fish scales, cephalopod flesh, algae and polychaete jaws. The remains of tremoctopods have been recovered from the stomachs of a range of predators including fishes, marine mammals and birds.

Remarks: Four species currently are considered to be valid in the family: *Tremoctopus violaceus, T. gracilis, T. gelatus* and *T. robsoni* (Sweeney in Tree of Life, 2009), although the group still requires further revision. Females of three species (*T. violaceus, T. gracilis* and *T. robsoni*) are moderately large, muscular, firm-bodied and deeply pigmented with colour patterns of purple dorsally and silver ventrally (counter-shading typical of surface dwellers). The fourth species (*T. gelatus*) is a very gelatinous, fragile, deep-water form of larger size, with few chromatophores and is almost completely transparent (Voss, 1967).

Tremoctopus Delle Chiaje, 1830

Tremoctopus Delle Chiaje, 1830, *Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli*, pls. 70, 71.

Type species: *Tremoctopus violaceus* Delle Chiaje, 1830.

Frequent Synonyms: None.

Diagnostic Features: With characters of the family. Monogeneric.

Tremoctopus violaceus Delle Chiaje, 1830

Pteroctopus violaceus, Delle Chiaje, 1830, *Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli*: pls 70, 71. [Type locality: Mediterranean Sea].

Frequent Synonyms: *Tremoctopus violaceus violaceus* Delle Chiaje, 1830.

Misidentifications: None.

FAO Names: En — Violet blanket octopods; Fr — Poulpe manteau violet; Sp — Pulpo manta violaceo.
Diagnostic Features: Extreme sexual dimorphism by size; males are dwarfed. Mantle smooth, thick, muscular. Cephalic water pores present, conspicuous, oval, in two pairs: dorsal pair on surface of head, slightly anterior to eyes, at base of first arms; ventral pair adjacent to tip of funnel, at base of fourth arms. Arms unequal in length; arm formula 2>1>4>3 or 1>2>4>3. Suckers biserial, elevated on broad bases. Funnel of moderate size, extends beyond level of eyes, distal one quarter free. Funnel-mantle locking apparatus present, consists of rigid recurved portion of posterior margin of funnel that articulates with depression in mantle wall. Funnel organ W-shaped in males and very young females; present as numerous longitudinal, parallel folds of glandular tissue in adult females. Ink sac present. Stylets present.

Females large. Body firm. Head narrower than mantle, constricted in neck region. Eyes large, laterally directed. Nuchal folds posterior to eyes, 8 to 10 in number. First and second arms much longer than third and fourth arms. First arms very long in young females, suckers on ends arranged in single row spaced widely apart; shallow grooves pass across arms. First arms of adult females truncated. Second arms stout and flattened along oral surface, suckers degenerated in adults and appear as 2 rows of inconspicuous lateral projections. Third and fourth arms exhibit no unusual modifications. Web well developed. Dorsal web deep, extends to tip of truncated arms; V-shaped cleft present medially. Web connects arms of first two pairs, with a wide fringe present on both sides of first arms and on dorsal side of second arms. Web fringe absent on third and fourth arms. Web between third and fourth arms poorly developed. Suckers biserial, elevated on broad bases. Gills with 13 to 16 filaments on outer demibranch. Eggs small, brooded in arm crown attached to "rod" secreted by female. In life dorsal surface of head and body dark bluish-purple; ventral surface iridescent silvery gold colour; web deep maroon.

Males dwarfed. Mantle smooth, bowl-shaped and broad posteriorly. Head slightly wider than mantle, separated laterally by prominent constriction. Dorsal surface of head continuous with mantle. Dorsal surface of mantle and head with few scattered chromatophores. Eyes large, laterally directed. Gills with 9 to 11 filaments on outer demibranch. First arms intact and unmodified. Web thin, of uniform structure, without epithelial modifications. Third right arm hectocotylized; develops in pouch between second and fourth right arms. As hectocotylized arm grows, the animal appears asymmetrical. Right ventral cephalic water pore often crowded and degenerate due to development of hectocotylus in pouch. Proximal half of hectocotylized arm contains approximately 22 to 23 pairs of suckers (in two rows). Fringed area with closely spaced filaments (arranged in rows, 4 to 5 filaments per row) located lateral to each sucker pair. Distal portion of arm with 15 to 19 pairs of suckers. Spermatophore groove absent; terminal spermatophore reservoir with terminal opening. Penile filament enclosed in sac proximal to spermatophore reservoir between suckers on inner surface of arm; penile filament protrudes from proximal opening in sac. Single large spermatophore typically present.

Fig. 238 *Tremoctopus violaceus*
Size: Female mantle length to 250 mm; total length to approximately 1 m. Frequently cited total length measurements of 2 m are not supported by a known specimen. Male mantle length to at least 15 mm.

Geographical Distribution:
Widespread pelagic species found in the Atlantic Ocean, Gulf of Mexico, Caribbean and Mediterranean seas, between latitudes 40°N and 36°S (Fig. 239).

Habitat and Biology: Observed at the surface at night but may undergo small diel vertical migrations. Juveniles have been collected at depths ranging from 0 to 250 m. Females brood eggs within the arm crown and webs, attached as strings to a secreted, mineralized rod. Egg strings at different stages of development indicate prolonged spawning and potentially high fecundity. Up to five different egg stages can be carried by a single female. Female *Tremoctopus violaceus* are reported to feed on pteropod molluscs and small fishes. Known to occur, on occasion, in plague proportions.

Interest to Fisheries: Unknown.

Local Names: ITALY: Polpo palmato.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Tremoctopus gelatus Thomas, 1977

Size: Female mantle length to at least 328 mm. Male mantle length to at least 10 mm.

Geographical Distribution: Western Atlantic Ocean, Indian Ocean, and eastern Pacific Ocean.

Literature: Voss (1967), Thomas (1977), Mangold *et al.* (1996c).

Tremoctopus gracilis (Eydoux and Souleyet, 1852)

Frequent Synonyms: *Tremoctopus violaceus gracilis* (Eydoux and Souleyet, 1852).

Size: Female mantle length to at least 320 mm; total length to approximately 1 m. Male mantle length to 15.5 mm.

Geographical Distribution: Indian and Pacific oceans, between latitudes 39°N and 30°S, and Mediterranean Sea.

Habitat and Biology: Females and males observed live in surface waters at night.

Tremoctopus robsoni Kirk, 1884

Tremoctopus robsoni, Kirk, 1884, *Transactions and Proceedings of the New Zealand Institute*, 16(1883): 549. [Type locality: New Zealand, Mayor Island].

Size: Female mantle length to 137 mm. Male mantle length to 15.3 mm.

Geographical Distribution: New Zealand waters.

Habitat and Biology: Depths range from 0 to 305 m, over bottom depths of 1 002 to 1 352 m.

Literature: Kirk (1884), Mangold *et al.* (1996c), O’Shea (1999).
The cirrate octopods are collectively known as the finned or cirrate octopods. They are medium- to large-sized residents of deep waters. The largest are estimated to be 4 m in total length (Voss, 1988a). They are characterised by soft, semi-gelatinous bodies, a single pair of fins on the mantle and typically deep webs. Their eight arms bear a single row of suckers, each side of which is a row of narrow finger-like projections ("cirri"). All species lack an ink sac and anal flaps. Many species lack a radula. An internal cartilaginous shell* supports and attaches to the fin bases. Sexual dimorphism is minimal. Males lack a hectocotylus, but males of some species possess a series of enlarged suckers. Spermatophores are simple barrel-like structures with an opercular cap on each end. Females have a single oviduct on the left side, and they produce large encapsulated eggs that are laid singly on hard surfaces on the seafloor. Cirrate octopods occur in all deep waters of the world, including both polar regions, at depths from 100 to 7 000 m. Most species associate with the seafloor (benthic, epibenthic or benthopelagic), although individuals sometimes are caught in midwater or close to the surface in cooler (polar) regions.

Remarks: Based on a single mitochondrial gene (16S), Piertney et al. (2003) proposed four families within this order: Cirroteuthidae (including Stauroteuthidae), Opisthoteuthidae (for Opisthoteuthis), Grimpoteuthidae (for Grimpoteuthis and Luteuthis) and a new family, Cirroctopodidae (for Cirroctopus). There was limited support for Grimpoteuthidae in the resulting trees. At this stage we choose to follow Vecchione et al., 1998 (Tree of Life website), which recognises only three families but have added the Cirroctopodidae based on the publication by Collins and Villanueva (2006). In spite of a comprehensive review of the cirrates (Collins and Villanueva, 2006), the systematics and taxonomy of this group continue to be in a state of flux and are in critical need of further molecular and morphological study.

Key to Families:

1a. Web sectors between arms in single layer, not as two separate layers; anterior-posterior elongation of body and arms not pronounced .. \(\rightarrow 2 \)

1b. Web sectors between arms in two distinct layers (known as primary and secondary webs), capable of being inflated with water enabling the animal to inflate like a ball ("ballooning" behaviour); anterior-posterior elongation pronounced ... \(\rightarrow 3 \)

2a. Fins small, subterminal; shell U-shaped; ... Family Opisthoteuthidae

2b. Fins large, paddle-like; shell V-shaped; ... Family Cirroctopodidae

3a. Mantle opening forms a complete tube around the funnel; shell simple U-shaped Family Stauroteuthidae

3b. Mantle opening as slit opening, not tube-like; shell saddle-shaped, broad with two lobe-like, deeply excavated flared wings ... Family Cirrocteuthidae

* The internal cartilage structure in the dorsal mantle of cirrate octopods that supports the fin is often referred to as a “shell”. It is not a true shell as it is not formed by the true molluscan shell gland. It is more appropriate to refer to this structure as a "fin support cartilage".
2.2.1 **Family CIRROCTOPODIDAE** Collins and Villanueva, 2006

Type Genus: *Cirroctopus* Naef, 1923, *Fauna e Flora de Golfo di Napoli*, Monograph 35: 675.

FAO Names: En — Finned octopods; Fr — Poulpes à oreilles; Sp — Pulpos cirrados.

Size: Mantle length to 180 mm; total length to >600 mm.

Geographical Distribution: Restricted to the southern hemisphere.

Remarks: This family contains a single genus and four species.

Literature: Vecchione et al. (1998), Nesis (1999), O’Shea (1999), Collins and Villanueva (2006).
Cirroctopus Naef, 1923

Cirroctopus Naef, 1923, Fauna e Flora del Golfo di Napoli, Monograph 35: 675

Type species: Cirroctopus mawsoni (Berry, 1917).

Frequent Synonyms: Grimpoteuthis Robson, 1932.

Diagnostic Features: With characters of the family. Monogeneric.

Remarks: Type species of genus not treated as the descriptor for the genus as it is known only from the original specimen, which is in poor condition.

Cirroctopus glacialis (Robson, 1930)

Grimpoteuthis glacialis Robson, 1930, Discovery Report, 2: 375. [Type locality: Southern Ocean, Antarctica, Palmer Archipelago, Schollaert Channel, 64º21'S, 62º58'W].

Frequent Synonyms: Cirroteuthis glacialis (Robson, 1930).

FAO Names: En — Icy finned octopod; Fr — Poulpe à oreilles glacial; Sp — Pulpo cirrado glacial.

Diagnostic Features: Medium-sized, relatively muscular species. Pair of large fins present on mantle; fin length equal to mantle length, width nearly 75% of fin length. Eyes able to be tilted dorsally. V-shaped shell present, shell surface smooth, basal shelf present. Mantle septum very thick. Gills with 6 primary lamellae. All eight arms have a single row of small suckers, none enlarged in either sex. Each arm bears a double row of short cirri, each approximately equal in length with sucker diameter. Longest arm with 74 suckers. Arm formula: 1>2>3>4. Webs deep, extend to near arm tips, formula A>B>C>D>E, sector E half the length of sector A. Ink sac and radula absent. Colour pattern of large pale triangles on oral webs on each side of midsection of arms.

Size: Mantle length to 165 mm; total length to >600 mm.

Geographical Distribution: Southern Ocean, off Antarctic Peninsula (Fig. 245).
Habitat and Biology: Depths range from 333 to 879 m. The species occupies a primarily benthic habit, with individuals typically captured living over soft mud substrates. This species swims primarily by fin action. Males tend to be larger than females in total length and body mass for the same mantle length. Males mature at much smaller sizes. Males produce tiny ovoid capsules of sperm. Females lay large eggs (16 x 12 mm) with a sticky outer coating which hardens on contact with seawater to form a hard outer coating. Brood time is estimated to be between 2.5 to 3.5 years. A dicyemid parasite, *Dicyemennea discocephala*, is known to occur in the renal coelom of this cirrate species.

Interest to Fisheries: Unknown.

Remarks: Due to preservation/condition problems with the specimen of *Cirroctopus mawsoni*, the type species for this genus, *C. glacialis* is presented instead as a better-known example of this genus.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Cirroctopus antarctica (Kubodera and Okutani, 1986)

Size: Mantle length to 180 mm (known only from type specimens).

Geographical Distribution: Known only from the type locality, off Antarctica.

Habitat and Biology: Depths of types range from 509 to 804 m.

Remarks: This species is considered to represent a possible junior synonym of *Cirroctopus glacialis*.

Cirroctopus hochbergi O’Shea, 1999

Cirroctopus hochbergi O’Shea, 1999, NIWA Biodiversity Memoir, 112: 35. [Type locality: New Zealand, 39º54’S, 178º16’E].

Size: Mantle length to 160 mm; total length to 493 mm.

Geographical Distribution: New Zealand, off east coast of North Island.

Habitat and Biology: Depths range from 700 to 1 350 m.

Literature: No additional literature.

Cirroctopus mawsoni (Berry, 1917)

Size: Mantle length 12 mm; total length 32 mm; known only from type the specimen.

Geographical Distribution: Known only from the type locality, Antarctica.

Habitat and Biology: Depth of type 527 to 549 m.

Remarks: Type species for genus but known only from original specimen, which is in poor condition.

Literature: No additional literature.
2.2.2 **Family OPISTHOTEUTHIDAE** Verrill 1896

Type Genus: *Opisthoteuthis* Verrill, 1893.

FAO Names: En — Flapjack octopods; Fr — Discopoulpes; Sp — Discopulpos.

Diagnostic Features: Members of this family united by anterior-posterior compression, so bodies appear relatively squat or flat. Body gelatinous to fragile; fins small to moderate size. Eyes laterally oriented. Single row of small suckers and two rows of short cirri (0.4 to 2.5 times largest sucker diameter), extending to arm tips. Enlarged suckers present in mature males of several genera. Shells simple U- or W-shaped structures; significantly expanded lateral wings absent. Secondary web absent.

Size: Mantle length to 140 mm; total length to >480 mm.

Geographical Distribution: Worldwide. Present in all oceans.

Remarks: In this work we follow Vecchione *et al.* (1998) in which O’Shea’s families Grimpoteuthidae and Luteuthidae are treated as junior synonyms of the Opisthoteuthidae. Collins (2003) recognized Grimpoteuthidae and treated Luteuthidae as a junior synonym of Grimpoteuthidae. Collins (2004) placed his new genus *Cryptoteuthis* in the family Grimpoteuthidae. We take the conservative path of recognising only Opisthoteuthidae until a major revision of the group is undertaken.

Literature: Collins (2003, 2004).

Key to genera in the family Opisthoteuthidae:

1. Shell strongly W-shaped; sucker aperture with tooth-like structures (two very fragile gelatinous species known from only three specimens in China and off New Zealand) *Luteuthis*

2. Shell U- or slightly W-shaped; sucker apertures without tooth-like structures → 2

2a. Body form round to slightly elongate, not greatly compressed in anterior-posterior axis; shell U- or slightly W-shaped

2b. Body extremely compressed in anterior-posterior axis; shell U-shaped *Opisthoteuthis*

3. Moderate compression in anterior-posterior axis; fins of moderate size, length approximately equal with mantle width; cirri ~3.5 times largest sucker diameter; shell U- or slightly W-shaped *Grimpoteuthis*

3a. Bell-shaped species; fins small, length ~50% of mantle width; cirri slightly longer than maximum sucker diameter; shell simple, U-shaped (known only from a single immature female from northeast Atlantic Ocean). *Cryptoteuthis*

Opisthoteuthis Verrill, 1883

Type Species: *Opisthoteuthis agassizii* Verrill, 1883.

Frequent Synonyms: None.

Diagnostic Features: With characters of the family. Cirri commence between suckers 1 and 4. Enlarged suckers present in males. Mantle transversely divided by mantle margin invagination. Shell simple; solid or vacuolate; lateral wings with terminal prolongation into fine tips. Digestive gland bilobed or entire. Ink sac absent. Radula absent.

Size: Mantle length to 140 mm; total length to greater than 480 mm.

Geographical Distribution: Present in all oceans.

Remarks: O’Shea (1999) divided the genus into 3 ‘groups’ based on a number of distinct morphological differences. It was not specified whether these groups might represent subgenera or distinct genera.

Literature: O’Shea (1999).
Cephalopods of the World

Opisthoteuthis agassizii Verrill, 1883

Opisthoteuthis agassizii Verrill, 1883, *Bulletin of the Museum of Comparative Zoology, Harvard, 11(5)*: 113. [Type locality: West Indies, off Grenada, 12°03.30’N, 61°47.10’W].

Frequent Synonyms: None.

FAO Names: En — Agassiz’s flapjack octopod; Fr — Discopoulpe de Agassiz; Sp — Discopulpo de Agassiz.

Diagnostic Features: Moderate-sized, gelatinous species. Pair of relatively small narrow fins present on mantle, length approximately 60% of head width. Arms approximately equal in length. U-shaped shell present. Up to 80 suckers on all arms. Sucker aperture without tooth-like structures. Mature males with enlarged suckers in two fields: 6 to 10 in proximal arms, 7 to 8 in distal arms around level of suckers 30 to 34. Each arm bears a double row of cirri, each approximately 4 to 9% of mantle length. Series of web supports present on ventral margins of arms between suckers 26 and 53. Gills with 6 to 8 (typically 7) large primary lamellae. Ink sac absent. Radula absent. Skin reddish brown in preservation. Series of white spots (areolae) present on head and 8 to 12 in medial row along arms.

Size: Mantle length to 55 mm; total length to 186 mm.

Geographical Distribution: Northwestern Atlantic Ocean from Gulf of Mexico and Caribbean Sea north to 40°N. (Fig. 247).

Habitat and Biology: Depth range from 227 to 1,935 m. Males mature at about 22 mm ML and females at about 23 mm ML. Mature egg capsules measure 10 x 7 mm. A total of 320 eggs have been reported in the ovary of one female.

Interest to Fisheries: Unknown.

Opisthoteuthis albatrossi (Sasaki, 1920)

Size: Mantle length to 36 mm; total length to 200 mm.

Geographical Distribution: North Pacific Ocean from Japan to Sea of Okhotsk.

Habitat and Biology: Depth range from 457 to 3 400 m.

Literature: Sasaki (1929), Kondokov (1941), Katugin et al. (2010).

Opisthoteuthis borealis Collins, 2005

Size: Mantle length to 75 mm.

Geographical Distribution: North Atlantic Ocean, off east and west coasts of Greenland.

Habitat and Biology: Depth range from 957 to 1 321 m.

Literature: Collins (2002; as Opisthoteuthis sp.).

Opisthoteuthis bruuni (Voss, 1982)

Grimpoteuthis bruuni Voss, 1982, Bulletin of Marine Science, 32(2): 426. [Type locality: Southeastern Pacific Ocean, Chile, off Antofagasta, 23º41’S, 70º34’W].

Size: Mantle length to 29 mm; known only from 16 juvenile specimens.

Geographical Distribution: Southeastern Pacific Ocean, off the west coast of South America.

Habitat and Biology: Depth range from 250 to 360 m.

Remarks: The female has been briefly described. The species was transferred to the genus Opisthoteuthis by Collins and Villanueva (2006). What appears to be a similar, or closely related, undescribed species, occurs in the northeastern Pacific Ocean off California.

Opisthoteuthis californiana Berry, 1949

Opisthoteuthis californiana Berry, 1949, Leaflets in Malacology, 1(6): 23. [Type locality: Northeastern Pacific Ocean, (United States), California, bearing NW by W of Eureka Bar].

Size: Mantle length to 80 mm; males larger than females.

Geographical Distribution: North Pacific boreal species. In the northeastern Pacific Ocean it has been recorded from off the Aleutian Islands, Alaska [59ºN] south to Pt. Arguello, California [35ºN]. In the northwestern Pacific Ocean it has been found off Japan and Russia to the Sea of Okhotsk.

Habitat and Biology: Depth range from 125 to 1 285 m. A copepod parasite, Cholidyella breviseta, has been reported from the mantle cavity of this cirrate octopod.

Remarks: Appears very similar to Opisthoteuthis albatrossi and O. californicus but the three species have not been critically evaluated. Eggs are large 10 x 5 mm capsule length. Development time is estimated to be about 600 days.

Opisthoteuthis calypso Villanueva, Collins, Sánchez and Voss, 2002

Size: Mantle length to 50 mm; total length to 482 mm.

Geographical Distribution: Northeastern Atlantic Ocean and Mediterranean Sea.

Habitat and Biology: Depth range from 365 to 2 208 m.

Literature: Cuccu *et al.* (2009), Rosa *et al.* (2009).

Opisthoteuthis chathamensis O’Shea, 1999

Size: Mantle length to 54 mm; total length to 180 mm.

Geographical Distribution: Southwestern Pacific Ocean, New Zealand, off east coast, and Chatham Rise.

Habitat and Biology: Depth range from 900 to 1 438 m.

Literature: No additional literature.

Opisthoteuthis depressa Ijima and Ikeda, 1895

Opisthoteuthis depressa Ijima and Ikeda, 1895, *Journal of the College of Science, Imperial University of Tokyo*, 8(2): 323. [Type locality: Northwest Pacific Ocean, Japan, Sagami Prefecture, south of Misaki].

Size: Mantle length to 38 mm.

Geographical Distribution: Northwestern Pacific Ocean, off Japan.

Habitat and Biology: Depth range from 130 to 1 100 m.

Remarks: Appears very similar to *Opisthoteuthis japonica*, but these species have not been critically evaluated.

Literature: Meyer (1906a,b), Sasaki (1929), Takumiya *et al.* (2005).

Opisthoteuthis dongshaensis Lu, 2010

Size: Mantle length to 46 mm; total length to 226 mm.

Geographical Distribution: Known only from vicinity of type locality, South China Sea.

Habitat and Biology: Depth range from 660 to 1 015 m.

Literature: No additional literature.

Opisthoteuthis extensa Thiele, *in* Chun, 1915

Size: Not indicated.

Geographical Distribution: Known only from the type locality.

Habitat and Biology: Depth of type 768 m.

Remarks: Systematic status unresolved. Appears to be similar to *Grimpoteuthis meangensis* but both species have not been critically evaluated.

Literature: Glaubrecht and Salcedo-Vargas (2000), Vecchione and Collins (2002).
Opisthoteuthis grimaldii (Joubin, 1903)

Cirroteuthis grimaldii Joubin, 1903, *Compte Rendu des Seances de l’Academie des Sciences*, 136(2): 100. [Type locality: Central Atlantic Ocean, Azores Islands, NNW of Fayal, 39º30’N, 29º02’W].

Size: Mantle length to 50 mm; total length to 250 mm.

Geographical Distribution: Eastern Atlantic Ocean from Namibia to Rockall Trench.

Habitat and Biology: Depth range from 1 135 to 2 287 m.

Opisthoteuthis hardyi Villanueva, Collins, Sánchez and Voss, 2002

Size: Mantle length to 64 mm; total length to 285 mm.

Geographical Distribution: Known from the type locality off South Georgia Island north to the southwestern Atlantic Ocean on the Patagonian Slope near the Falkland Islands.

Habitat and Biology: Depth range from 630 to 1 390 m.

Literature: Collins *et al.* (2010).

Opisthoteuthis japonica Taki, 1962

Size: Mantle length to 45 mm.

Geographical Distribution: Northwestern Pacific Ocean, off Japan.

Habitat and Biology: Depth of types 152 m.

Remarks: Appears very similar to *Opisthoteuthis albatrossi*, *O. depressa* and *O. californiana*, but these species have not been critically evaluated.

Literature: Taki (1963).

Opisthoteuthis massyae (Grimpe, 1920)

Size: Mantle length to 76 mm; total length to 350 mm.

Geographical Distribution: Eastern Atlantic Ocean from Ireland to Namibia.

Habitat and Biology: Depth range from 1 226 to 1 450 m.

Remarks: *Opisthoteuthis vossi* Sànchez and Guerra (1989) has been reported to be a junior synonym (Villanueva *et al.* 2002).

Literature: Massy (1924), Sànchez and Guerra (1989), Collins *et al.* (2001b), Villanueva *et al.* (2002).

Opisthoteuthis medusoides Thiele, 1915

Size: Known only from juveniles.

Geographical Distribution: Known only from the type locality off Tanzania.

Habitat and Biology: Depth of types 400 m.

Literature: No additional literature.
Opisthoteuthis mero O’Shea, 1999

Opisthoteuthis mero O’Shea, 1999 *NIWA Biodiversity Memoir*, 112: 17. [Type locality: New Zealand, off northern coast, 36º54.84’S, 176º19.15’E].

Size: Mantle length to 90 mm; total length to 340 mm.

Geographical Distribution: New Zealand.

Habitat and Biology: Depth range from 360 to 1 000 m.

Literature: No additional literature.

Opisthoteuthis persephone Berry, 1918

Opisthoteuthis persephone Berry, 1918, *Biological Results of the Fishing Experiments Carried on by the F.I.S. Endeavour, 1909-1914*, 4(5): 290. [Type locality: Australia, Victoria, Bass Straits, 42 miles South and East of Genoa Peak].

Size: Total length to >200 mm.

Geographical Distribution: Southern Australia.

Habitat and Biology: Depth range from 277 to 554 m.

Literature: Healy (1993).

Opisthoteuthis philipii Oommen, 1976

Size: Mantle length to 140 mm; total length to 470 mm.

Geographical Distribution: Arabian Sea.

Habitat and Biology: Depth range from 275 to 365 m.

Literature: No additional literature.

Opisthoteuthis pluto Berry, 1918

Opisthoteuthis (Teuthidiscus) pluto Berry, 1918, *Biological Results of the Fishing Experiments Carried on by the F.I.S. Endeavour, 1909-1914*, 4(5): 284. [Type locality: Great Australian Bight, South Australia].

Size: Arm span to 540 mm.

Geographical Distribution: Southern Australia.

Habitat and Biology: Depth range from 275 to 830 m.

Literature: Nesis (1987), O’Shea (1999).

Opisthoteuthis robsoni O’Shea, 1999

Size: Mantle length to 65 mm; total length to 362 mm.

Geographical Distribution: Known only from the type locality off New Zealand.

Habitat and Biology: Depth of types 1 180 to 1 723 m.

Literature: No additional literature.
Cryptoteuthis Collins, 2004

Type Species: *Cryptoteuthis brevibracchiata* Collins, 2004.

Frequent Synonyms: None.

Size: Mantle length 35 mm; total length 121 mm; known only from immature female specimen.

Geographical Distribution: Known only from the northeast Atlantic Ocean.

Remarks: This genus is considered midway between *Opisthoteuthis* and *Grimpoteuthis*. Body shape and short fins are similar to *Opisthoteuthis*; shell, suckers, and cirri are similar to *Grimpoteuthis*.

Cryptoteuthis brevibracchiata Collins, 2004

Frequent Synonyms: None.

Misidentifications: None.

FAO Names: En — Short-arm flapjack octopod; Fr — Discopoulpe aux bras courts; Sp — Discopulpo de brazos cortos.

Diagnostic Features: Fins small and round; length equal to about half of head width. Eyes lateral. Simple U-shape shell. Gills with 7 primary lamellae. Arms with single row of small suckers, none enlarged in female type. Each arm with double row of short cirri; each cirrus slightly longer than largest sucker diameter. Longest arm with 48 suckers. Arm formula of 1>2>3>4. Webs approximately half of arm length; formula A>B>C>D>E. Ink sac and radula absent. Gelatinous body semi-transparent. Oral web and fin tips darkly pigmented.
Size: Mantle length 35 mm; total length 121 mm (known only from an immature female type specimen).

Geographical Distribution: Known only from the type locality, northeastern Atlantic Ocean (Fig. 249).

Habitat and Biology: Depth range of type specimen 274 to 2300 m.

Interest to Fisheries: Unknown.

Literature: Collins (2004).

Grimpoteuthis Robson, 1932

Grimpoteuthis Robson, 1932, _A Monograph of the Recent Cephalopoda_, Part II: 136.

Type Species: _Grimpoteuthis umbellata_ (Fischer, 1883).

Frequent Synonyms: _Stauroteuthis_ Verrill, 1836; _Cirroteuthis_ Eschricht, 1836.

Diagnostic Features: Small to large octopods with bell-shaped semi-gelatinous body. Primary web thick; intermediate (secondary) web absent. Fins medium to large, lateral, with distinct lobe near anterior fin insertion. Shell U-shaped; lateral sides parallel, not tapered to fine points. Radula homodont or ink sac absent. Sucker sexual dimorphism present in some species, but with single enlarged field.

Size: Mantle length to 115 mm; total length to 475 mm.

Geographical Distribution: Species reported from the North Atlantic and both the north and south Pacific Oceans.

Habitat and Biology: Depth range from 280 to 4870 m.

Remarks: Over the years, species recognized herein and placed in the genus _Grimpoteuthis_, formerly have been treated under several other generic names: _Stauroteuthis_, _Cirroteuthis_ and _Enigmatiteuthis_. Type species of the genus is not treated as the descriptor for the genus as it is poorly known.

Literature: Villanueva _et al._ (1997), Collins (2003).
Grimpoteuthis wuelkeri (Grimpe, 1920)

Frequent Synonyms: In the literature the species name often is spelled “wülkeri” with the umlaut.

Misidentifications: None.

FAO Names: En — Wülker’s flapjack octopod; Fr — Discopoulpe de Wülker; Sp — Discopulpo de Wülker.

Diagnostic Features: Medium-sized, relatively gelatinous species. *Pair of large fins present on mantle; fin span 70% of total length.* Shell U-shaped; lateral edges of wings almost parallel. Gills with 6 to 7 primary lamellae. Arms long, subequal in length. Single row of small suckers present on each arm; *none enlarged in either sex.* A double row of short cirri present on each arm. Longest arm with 62 to 70 suckers. Arm formula of 1>2>3>4. Webs deep, 2/3rd of arm length; formula A=B=C=D=E. *Single web nodule present on ventral side of each arm, located around level of suckers 22 to 28.* Ink sac absent. Radula present, poorly developed.

Size: Mantle length to 115 mm; total length to 400 mm.

Geographical Distribution: Northeast Atlantic Ocean (Fig. 251).
Habitat and Biology: Depth range for type specimen 1 550 to 2 056 m. Little information is available on this species. An egg from the oviducal gland of the single available female measured 14 mm in diameter.

Interest to Fisheries: Unknown.

Remarks: Due to condition/preservation problems with *Grimpoteuthis umbellata* (Fischer, 1883), the type species for this genus, *G. wuelkeri*, is presented instead as a better known example of this genus.

Literature: Collins (2003), Piatkowski and Diekmann (2005).

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Grimpoteuthis abyssicola O’Shea, 1999

Size: Mantle length to 75 mm; total length to 305 mm; known only from the female type specimen.

Geographical Distribution: Known only from the type locality Tasman Sea.

Habitat and Biology: Depth range of type specimen 3 154 to 3 180 m.

Literature: Collins (2003).

Grimpoteuthis bathynectes Voss and Pearcy, 1990

Size: Mantle length to 85 mm; total length to 240 mm.

Geographical Distribution: Northeastern Pacific, off Oregon, Cascadia and Tufts Abyssal plains.

Habitat and Biology: Depth range from 2 816 to 3 932 m.

Literature: Collins (2003).

Grimpoteuthis boylei Collins, 2003

Size: Mantle length to 115 mm; total length to 470 mm.

Geographical Distribution: Northeastern Atlantic Ocean.

Habitat and Biology: Depth range from 4 190 to 4 848 m.

Literature: No additional literature.
Grimpoteuthis challengeri Collins, 2003

Size: Mantle length to 75 mm; total length to 370 mm.

Geographical Distribution: Northeastern Atlantic Ocean.

Habitat and Biology: Depth range from 4 800 to 4 850 m.

Literature: No additional literature.

Grimpoteuthis discoveryi Collins, 2003

Size: Mantle length to 58 mm; total length to 210 mm.

Geographical Distribution: Northeastern Atlantic Ocean.

Habitat and Biology: Depth range from 2 600 to 4 870 m.

Literature: No additional literature.

Grimpoteuthis hippocrepium (Hoyle, 1904)

Stauroteuthis hippocrepium Hoyle, 1904, Bulletin of the Museum of Comparative Zoology at Harvard College, 43: 6. [Type locality: Northeastern Pacific Ocean, off Colombia, SW of Malpelo Island, 2°35'N, 83°53'W].

Size: Total length ~80 mm; known only from the type specimen.

Geographical Distribution: Known only from the type locality, off Colombia.

Habitat and Biology: Depth of type 3 332 m.

Grimpoteuthis innominata (O’Shea, 1999)

Enigmatiteuthis innominata O’Shea, 1999, NIWA Biodiversity Memoir, 112: 48. [Type locality: Chatham Rise, off New Zealand, 42°37'S, 176°10'W].

Size: Mantle length to 43 mm; total length to 156 mm (all specimens immature).

Geographical Distribution: Chatham Rise, off New Zealand.

Habitat and Biology: Depth range from 1 705 to 2 002 m.

Literature: Collins (2003).

Grimpoteuthis meangensis (Hoyle, 1885)

Cirroteuthis meangensis Hoyle, 1885a, Annals and Magazine of Natural History, series 5, 15: 234. [Type locality: Near the Philippines [South Philippines, Kepulauan Talaud], off Meangis Islands, (4°33'N, 127°06'E)].

Size: Mantle length to 53 mm; total wet weight to at least 500 g 1 345 g.

Geographical Distribution: Philippines and Sumatra (as synonym extensa Thiele, 1915).

Habitat and Biology: Depth range from 280 to 1 050 m.

Remarks: The generic placement of this taxon is currently in review.

Literature: Collins (2003).
Grimpoteuthis megaptera (Verrill, 1885)

Size: Total length to 107 mm.

Geographical Distribution: Known only from the type locality northwestern Atlantic Ocean.

Habitat and Biology: Depth of type 4 592 m.

Literature: Collins (2003).

Grimpoteuthis pacifica (Hoyle, 1885)

Cirroteuthis pacifica Hoyle, 1885a, *Annals and Magazine of Natural History*, series 5, 15: 235. [Type locality: Southwestern Pacific Ocean, Papua New Guinea, 13°50'S, 151°49'E].

Size: Fin length 55 mm; known only from damaged type specimen.

Geographical Distribution: Known only from the type locality off Papua New Guinea.

Habitat and Biology: Depth of type 4 463 m.

Grimpoteuthis plena (Verrill, 1885)

Cirroteuthis plena Verrill, 1885, *Transactions of the Connecticut Academy of Sciences*, 6(1): 404. [Type locality: Northwestern Atlantic Ocean, United States, off New Jersey, 39°35'00"N, 71°18'45"W].

Size: Mantle length to 57 mm; total length to 185 mm; known only from the type specimen.

Geographical Distribution: Known only from the type locality, northwestern Atlantic Ocean.

Habitat and Biology: Depth of type 1 963 m.

Remarks: The latitude as originally published by Verrill (37°35'N) is incorrect.

Grimpoteuthis tuftsi Voss and Pearcy, 1990

Grimpoteuthis tuftsi Voss and Pearcy, 1990, *Proceedings of the California Academy of Sciences*, 47(3): 63. [Type locality: Northeastern Pacific Ocean, United States, off Oregon, 45°05.2'N, 134°43.4'W].

Size: Mantle length to 102 mm; total length to 475 mm.

Geographical Distribution: Northeastern Pacific Ocean, off Oregon, Tufts Abyssal Plain.

Habitat and Biology: Depth range from 3 585 to 3 900 m.

Remarks: Generic placement in need of critical review.

Grimpoteuthis umbellata (Fischer, 1883)

Size: Mantle length to 46 mm; total length to 250 mm.

Geographical Distribution: North Atlantic Ocean.

Habitat and Biology: Depth range from 2 235 m.

Remarks: Although this species represents the type of the genus *Grimpoteuthis* it is poorly known.

Luteuthis O’Shea, 1999

Type Species: *Luteuthis dentatus* O’Shea, 1999.

Frequent Synonyms: None.

Diagnostic Features: Cephalopodal mass with pronounced anteroposterior elongation; areolar spots absent. Web simple; web nodules absent. Cirri very short; commence between suckers 1 and 2; extend to arm tip. Sucker aperture crenulate. Interpalial septum thick, short. Gills of ‘half-orange’ type, Shell W-shaped; lateral wings with inrolled margins, taper to acute points; basal shelf deflected beneath saddle. Ink sac and salivary glands absent. Radular and palatine teeth present; palatine teeth large.

Size: Mantle length to 98 mm; total length to 524 mm.

Geographical Distribution: South China Sea and off west coast of New Zealand.

Remarks: Two member species from depths between 754 to 991 m.

Literature: O’Shea (1999), O’Shea and Lu (2002), Collins (2003).

Luteuthis dentatus O’Shea, 1999

Luteuthis dentatus O’Shea, 1999, *NIWA Biodiversity Memoir*, 112: 57. [Type locality: New Zealand (off west coast), 40º01.3’S, 167º49.9’E].

Frequent Synonyms: None.

FAO Names: En — Toothed flapjack octopod; Fr — Discopoulpe denté; Sp — Discopulpo dentado.

Diagnostic Features: Relatively gelatinous. **Pair of small fins present on mantle; fin length less than mantle width.** Mantle and funnel attached entirely to head. W-shaped shell present. Dorsal arms 75% of total length; ventral arms 38% of total length. **Sucker apertures with inward pointing skin projections forming star shape.** Each arm bears a double row of short cirri, each approximately a half sucker diameter. Up to 58 suckers on all arms. Web nodules absent. Gills with 7 large primary lamellae. Ink sac and salivary glands absent. Radula present.

Size: Mantle length 98 mm; total length 524 mm.

Geographical Distribution: Known only from the type locality (Fig. 253).

Habitat and Biology: Depth of type 991 m.

Interest to Fisheries: Unknown.

Literature: Collins (2003).
SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Luteuthis shuishi O’Shea and Lu, 2002

Luteuthis shuishi O’Shea and Lu, 2002, *Zoological Studies*, 41: 120. [Type locality, South China Sea, off Pratas Islands, 19°30’N, 114°10’E].

Size: Mantle length 87.5 mm; total length >300 mm; known only from type the specimen.

Geographical Distribution: Known only from the type locality.

Habitat and Biology: Depth range of type 754 to 767 m.

Literature: No additional literature.
Family CIRROTEUTHIDAE Keferstein, 1866

Type Genus: *Cirroteuthis* Eschricht, 1836.

FAO Names: En — Cirroctopods; Fr — Cirropoulpes; Sp — Cirropulpos.

Diagnostic Features: Very fragile, gelatinous, finned octopods; elongate in anterior-posterior axis. Eyes range from very large to small; some taxa have degenerate, barely-functional eyes. Two sets of webs present: primary webs between each arm, and secondary webs as inflatable pouches along arm bases. Cirri very long, up to eight times largest sucker diameter. Cartilaginous shell present; broad saddle-shaped structure at base of fins with flared, deeply excavated wings.

Size: Mantle length to 330 mm; total length to 1.7 m.

Geographical Distribution: North Atlantic, North Pacific and Indian Oceans.

Habitat and Biology: Cirroteuthids are typically found near the seafloor in very deep water but also have been caught in the water column and near the surface in polar waters.

Remarks: Two genera are recognized in this family.

Key to genera in the family Cirroteuthidae:

1a. Eyes well developed with lens and iris. .. → 2
1b. Eyes reduced without lens or iris. ..

2a. Arm tips lack suckers; nodules present on webs; shell with saddle more than half shell length in anterior-posterior plane. .. → **Cirroteuthis**
2b. Suckers continue to arm tips; nodules absent on webs; shell with saddle length less than half shell length in anterior posterior plane. .. → **Cirrothauma** (in part)

Cirroteuthis Eschricht, 1836

Type Species: *Cirroteuthis muelleri* Eschricht, 1836.

Frequent Synonyms: *Sciadephorus* Reinhardt and Prosch, 1846.

Diagnostic Features: Medium to large species. Body soft, gelatinous; elongate in anterior-posterior axis. Pair of large fins present on mantle, attached closer to head than posterior mantle. Eyes well developed; with lenses. **Shell present with broad saddle and wings in anterior-posterior plane. Saddle length more than half shell length. Wings ovoid from lateral view.** The eight subequal arms have a single row of small suckers, none enlarged in either sex. **Each arm bears a double row of long cirri, longest ~9 to 13 times sucker diameter. Suckers and cirri absent from arm tips beyond web limit. Web nodules present.** Webs deep, extend to near arm tips. **Secondary webs present along majority of arm length.**

Size: Total length to 1.5 m.

Geographical Distribution: Northwestern Atlantic Ocean and north Pacific Ocean.

Remarks: Single described species recognized.

Literature: Voss (1988a), Collins *et al.* (2001a), Collins (2002).
Cirroteuthis muelleri Eschricht, 1836

Frequent Synonyms: Sciadephorus muelleri (Eschricht, 1836). In the literature the species name is often spelled "müllerti" with the umlaut.

FAO Names: En — Müller’s cirroctopod; Fr — Cirropoulpe de Müller; Sp — Cirropulpo de Müller.

Diagnostic Features: With characters of the genus. Monotypic.

Size: Medium to large species; total length to 1.5 m.

Geographical Distribution: Circum-Arctic, in north Atlantic and north Pacific oceans (Fig. 255).

Habitat and Biology: Depth range from 500 to 4,854 m, with highest abundance around 3,000 to 3,500 m. Most captures have been made near the seafloor. Egg capsules are large (10.5 x 6.5 mm) and protected by a strong chitinous shell. The eggs are laid singly on the bottom and brooding duration is estimated to be about 20 to 32 months.

Interest to Fisheries: Unknown.

Remarks: A similar form, Cirroteuthis cf. muelleri, has been reported off the Chatham Rise in New Zealand (O’Shea, 1999).

Cirrothauma Chun, 1911

Type Species: *Cirrothauma murrayi* Chun, 1911.

Frequent Synonyms: None.

Diagnostic Features: Eyes well developed, lenses present (in *Cirroteuthis magna*), or poorly developed, without lenses (in *C. murrayi*). Web nodules absent. Suckers extend to arm tips. Cirri may extend to arm tip (*C. murrayi*) or terminate at web margin (*C. magna*). Shell saddle-shaped but with a saddle of moderate length. Shell with anterior-posterior length of wings more than 2.5 times length of saddle antero-posteriorly. Shell wings triangular in lateral view.

Size: Total length to about 1.7 m.

Geographical Distribution: Reported to be present in all oceans except for the Southern Ocean.

Remarks: Chun erected the genus name in 1913, but it was considered to be preoccupied by prior use of the name in his PhD dissertation in 1911 (see Voss, 1988a).

Literature: Chun (1913); Voss (1988a,b).

Cirrothauma murrayi Chun, 1911

Frequent Synonyms: None.

FAO Names: En — Murray’s cirroctopod; Fr — Cirropoulpe de Murray; Sp — Cirropulpo de Murray.

Diagnostic Features: Medium to large species. Body gelatinous; elongate in anterior-posterior axis. Pair of large fins present on mantle, attached closer to head than posterior mantle. Eyes poorly developed, lacking lenses and exposed to exterior. Shell with moderate saddle and large, flared wings. Saddle length less than half shell length. Wings triangular from lateral view. The eight arms have a single row of small suckers, first six sessile, the remainder long and spindle-shaped with gelatinous stalks. Photophores located in bases of stalked suckers. Long cirri present. Web nodules absent. Webs deep, extend nearly to arm tips. Secondary webs present along majority of arm length.

Size: Total length to at least 1 m.

Geographical Distribution: Pacific, Atlantic, and Arctic oceans (Fig. 248).

Habitat and Biology: Depth range from 2 430 to 4 850 m, with most captures deeper than 3 000 m. The poorly developed eyes of this animal indicate that it may be nearly blind. This species has possible light organs in the base of the suckers as reported for *Stauroteuthis*, the function of which is unknown.

Interest to Fisheries: Unknown.

Remarks: The author and date for this species often are cited as Chun, 1913 but this is preoccupied by the name in Chun, 1911.

Fig. 247

Species of no current interest to fisheries, or rare species for which only few records exist to date

Cirrothauma magna (Hoyle, 1885)

Cirrothauma magna Hoyle, 1885a, *Annals and Magazine of Natural History*, series 5, 15: 232. [Type locality: Indian Ocean, between Prince Edward Island and Crozet Island, 45°46'S, 45°31'E].

Size: Mantle length to 330 mm; total length to 1 700 mm.

Geographical Distribution: Atlantic and Indian oceans.

Habitat and Biology: Depth range from 1 300 to 3 351 m.

Remarks: This species has been placed in the genus *Cirrothauma* based on shell shape.

2.2.4 Family STAuroTEuthidae Grimpe, 1916

Type Genus: Stauroteuthis Grimpe, 1879.

FAO Names: En — Balloon octopods; Fr — Poulpes ballons; Sp — Pulpos globo.

Diagnostic Features: Distinctive gelatinous octopods. Body elongate in anterior-posterior axis. Mantle aperture highly modified, forms complete tube around funnel; funnel can be withdrawn from tube into mantle cavity. Eyes well developed, with lenses. Deep primary webs and well-developed secondary webs present; web nodules absent. Bell-shaped posture in life; webs can be inflated to form “balloon” posture. Gills distinctive in appearance; secondary and tertiary lamellae branched to form cauliflower-like appearance, i.e. primary lamellae not in symmetrical series as in other octopods. Shell U-shaped. Suckers small, enlarged in mature males. Cirri long, more than twice arm diameter; absent from arm tips beyond suckers 18 to 24.

Size: Mantle length to 114 mm; total length to 540 mm.

Geographical Distribution: Atlantic Ocean.

Remarks: This family contains a single genus and two species.

Stauroteuthis Verrill, 1879

Stauroteuthis Verrill, 1879, American Journal of Science and Arts, 18(58): 468.

Type Species: Stauroteuthis syrtensis Verrill, 1879, American Journal of Science and Arts, 18(58): 468.

Frequent Synonyms: Chunioteuthis Grimpe, 1916.

Diagnostic Features: With characters of the family. Monogeneric.

Stauroteuthis syrtensis Verrill, 1879

Stauroteuthis syrtensis Verrill, 1879, American Journal of Science and Arts, 18(58): 468. [Type locality: Northwest Atlantic Ocean, Canada, off Nova Scotia, 43º54'N, 58º44'W].

Frequent Synonyms: Chunioteuthis unguiculatus Blainville, 1826.

FAO Names: En — Balloon octopod; Fr — Poulpe ballon; Sp — Pulpo globo.

Diagnostic Features: Moderate-sized. Body gelatinous, elongate anterior-posteriorly. Pair of fins present on mantle. Mantle opening reduced to fused cylinder as sheath around funnel. Mantle cavity lined with darkly pigmented skin. U-shaped shell present. Arms approximately equal in length. Suckers small and cylindrical; enlarged suckers present in males. Total of 55 to 65 suckers on each arm. Each arm with double row of long cirri; longest more than twice arm diameter. Primary and secondary webs present; enable ballooning behaviour. Gills in distinctive cauliflower form without obvious boundaries between primary lamellae. Ink sac absent. Radula absent.

Size: Mantle length to 114 mm; total length to 500 mm.
Geographical Distribution: Widespread in the North Atlantic Ocean (Fig. 250).

Habitat and Biology: Depths range from 450 to 4,000 m. Typically captured within about 100 m off the bottom. Bioluminescence has been reported from the sucker bases of this octopod. The function of this light production is unknown. A cestode parasite, *Tentacularia coryphaenae*, has been reported from this species of cirrate.

Interest to Fisheries: Unknown.

SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLY FEW RECORDS EXIST TO DATE

Stauroteuthis gilchristi (Robson, 1924)

Cirroteuthis gilchristi Robson, 1924, *Annals and Magazine of Natural History*, series 9, 13: 204. [Type locality: Southeastern Atlantic Ocean, South Africa, SW of Cape Town].

Size: Mantle length to 70 mm; total length to 540 mm.

Geographical Distribution: Southern Atlantic Ocean.

Habitat and Biology: Depth of type locality 2,561 m.

2.3 Vampire squids

by Mark D. Norman and Julian K. Finn

This group contains a single family (Vampyroteuthidae) with a single unique species, *Vampyroteuthis infernalis*, which lives in the deep waters of the open ocean. It has many unusual features and is thought to be related to the ancestors of the octopuses. It is recognized by a jelly-like consistency, black pigmentation, fins on the body (two pairs in juveniles), eight arms with deep webs and a pair of long thin filament-like limbs which can retract into pits on the outer arm crown, between the first and second arm pair.

2.3.1 Family VAMPYROTEUTHIDAE Thiele, in Chun, 1915

Type Genus: *Vampyroteuthis* Chun, 1903.

FAO Names: En — Vampire squids, vampires; Fr — Calmars vampire; Sp — Calamars vampiro.

Diagnostic Features: Small to medium-sized species. Body gelatinous, with black pigmentation. Fins present on mantle: one pair on adults, two pairs on juveniles. The eight arms have a single row of stalked suckers starting from half way along their length extend to arm tips. Horn suckers rings absent. Each arm bears a double row of long thin fingers of skin (cirri). **Pair of pits in web between bases of arms 1 and 2, each pit contains a long thread-like filament.** Webs very deep; extend to near arm tips. Ink sac absent. Females store sperm in deep receptacles in front of each eye. **Pair of large light organs present on the posterior mantle at the base of the adult fins.** These light organs can be masked using black shutter-like lids. Other light organs present on the tips of the arms and in a scatter of small light organs on the ventral side of the head, body and arms. Arm tips capable of exuding bioluminescent particles.

Size: Mantle length to 130 mm; total length to ~300 mm.

Geographical Distribution: Tropical and temperate waters worldwide, between approximately 35°N and 35°S.

Remarks: Single genus containing single species.

Literature: Pickford (1949a, 1949b).

Vampyroteuthis

Frequent Synonyms: None.

Diagnostic Features: With characters of the family. Monogeneric.
Vampyroteuthis infernalis Chun, 1903

Frequent Synonyms: None.

FAO Names: En — Vampire squid; Fr — Calmar vampire; Sp — Calamar vampiro.

Diagnostic Features: With characters of the family and genus. Monotypic.

Size: Mantle length to 130 mm; total length to ~300 mm.

Geographical Distribution: Tropical and temperate waters worldwide, between approximately 35°N and 35°S (Fig. 252).

Habitat and Biology: Depths range from 600 to 1 200 m. This is a mid-water species. The long filaments in pits between the first two arm pairs may be used to feel for or chemically detect prey. Live animals observed in situ typically orient in the water column with the dorsal mantle surface facing upwards and one filament extended well beyond the arms. Disturbed animals pull the arms and webs over their body to take on an inverted shape that exposes the black skin and cirri, on the oral surfaces of the webs. In addition to the large four photophores, this species can produce light on its arm tips and squirt luminous clouds from the arm tips consisting of discrete glowing particles, which can glow for up to 10 minutes. The physiological source of these particles is unknown.

Interest to Fisheries: Unknown.

Remarks: Young (1964, 1972a) indicated that there are distinct morphological differences in specimens he examined from near the type locality and off California, which suggests that more than one species may be present in this genus.

3. LIST OF NOMINAL SPECIES

The following list gives information (horizontally) in the order (i) the scientific name as it originally appeared, in alphabetical order according to the specific name; (ii) the author(s); (iii) date of publication; and (iv) present allocation of valid species.

<table>
<thead>
<tr>
<th>NOMINAL SPECIES</th>
<th>PRESENT ALLOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOPOSIDAE Verrill, 1881</td>
<td></td>
</tr>
<tr>
<td>Haliphron atlanticus Steenstrup, 1861</td>
<td>Haliphron atlanticus</td>
</tr>
<tr>
<td>AMPHITRETIDAE Hoyle, 1886</td>
<td></td>
</tr>
<tr>
<td>Amphitretus pelagicus Hoyle, 1885</td>
<td>Amphitretus pelagicus</td>
</tr>
<tr>
<td>Amphitretus thielei Robson, 1930</td>
<td>Amphitretus thielei</td>
</tr>
<tr>
<td>ARGONAUTIDAE Tryon, 1879</td>
<td></td>
</tr>
<tr>
<td>Argonauta argo Linnaeus, 1758</td>
<td>Argonauta argo</td>
</tr>
<tr>
<td>Argonauta hians [Lightfoot, 1786]</td>
<td>Argonauta hians</td>
</tr>
<tr>
<td>Argonauta nodosus [Lightfoot, 1786]</td>
<td>Argonauta nodosus</td>
</tr>
<tr>
<td>Argonauta nouryi Lorois, 1852</td>
<td>Argonauta nouryi</td>
</tr>
<tr>
<td>BOLITAENIDAE Chun, 1911</td>
<td></td>
</tr>
<tr>
<td>Eledonella pygmaea Verrill, 1884</td>
<td>Bolitaena pygmaea</td>
</tr>
<tr>
<td>Japetella diaphana Hoyle, 1885</td>
<td>Japetella diaphana</td>
</tr>
<tr>
<td>CIRROCTOPODIDAE Collins and Villanueva, 2008</td>
<td></td>
</tr>
<tr>
<td>Cirroctopus hochbergi O’Shea, 1999</td>
<td>Cirroctopus hochbergi</td>
</tr>
<tr>
<td>Grimpoteuthis antarctica Kubodera and Okutani, 1986</td>
<td>Cirroctopus antarctica</td>
</tr>
<tr>
<td>Grimpoteuthis glacialis Robson, 1930</td>
<td>Cirroctopus glacialis</td>
</tr>
<tr>
<td>Stauroteuthis (?) mawsoni Berry, 1917</td>
<td>Cirroctopus mawsoni</td>
</tr>
<tr>
<td>CIRROTEUTHIDAE Keferstein, 1866</td>
<td></td>
</tr>
<tr>
<td>Cirroteuthis muelleri Eschricht, 1836</td>
<td>Cirroteuthis muelleri</td>
</tr>
<tr>
<td>Cirroteuthis magna Hoyle, 1885</td>
<td>Cirrothauma magna</td>
</tr>
<tr>
<td>Cirrothauma murrayi Chun, 1911</td>
<td>Cirrothauma murrayi</td>
</tr>
<tr>
<td>OCTOPODIDAE d’Orbigny, 1840 [in Ferussac and d’Orbigny, 1834-1848]</td>
<td></td>
</tr>
<tr>
<td>Abdopus undulatus Huffard, 2007</td>
<td>Abdopus undulatus</td>
</tr>
<tr>
<td>Adelieledone piatkowski Alcock, Hochberg, Rodhouse and Thorpe, 2003</td>
<td>Adelieledone piatkowski</td>
</tr>
<tr>
<td>Ameloctopus litoralis Norman, 1992</td>
<td>Ameloctopus litoralis</td>
</tr>
<tr>
<td>Amphioctopus arenicola Huffard and Hochberg, 2005</td>
<td>Amphioctopus arenicola</td>
</tr>
<tr>
<td>Atlantoctopus pseudonymus Grime, 1922</td>
<td>Benthoctopus pseudonymus</td>
</tr>
<tr>
<td>Bathypolypus pugniger Muus, 2002</td>
<td>Bathypolypus pugniger</td>
</tr>
<tr>
<td>Bathypolypus rubrostictus Kaneko and Kubodera, 2008</td>
<td>Bathypolypus rubrostictus</td>
</tr>
<tr>
<td>Bathypurpurata profunda Vecchione, Alcock and Piatkowski, 2005</td>
<td>Bathypurpurata profunda</td>
</tr>
<tr>
<td>Benthoctopus berryi Robson, 1924</td>
<td>Benthoctopus berryi</td>
</tr>
<tr>
<td>Benthoctopus canthylus Voss and Pearcy, 1990</td>
<td>Benthoctopus canthylus</td>
</tr>
<tr>
<td>Benthoctopus clyderoperi O’Shea, 1999</td>
<td>Benthoctopus clyderoperi</td>
</tr>
</tbody>
</table>
Benthoctopus fuscus Taki, 1964
Benthoctopus johnsoniana Allcock, Strugnell, Ruggiero and Collins, 2006
Benthoctopus karubae Norman, Hochberg and Lu, 1997
Benthoctopus oregonae Toll, 1981
Benthoctopus oregonensis Voss and Pearcy, 1990
Benthoctopus profundorum Robson, 1932
Benthoctopus rigbyae Vecchione, Allcock, Platkowski and Strugnell, 2009
Benthoctopus robustus Voss and Pearcy, 1990
Benthoctopus sibiricus Loyning, 1930
Benthoctopus tangaroa O’Shea, 1999
Benthoctopus tegginmathae O’Shea, 1999
Benthoctopus thielei Robson, 1932
Benthoctopus yaquinae Voss and Pearcy, 1990
Cistopus chinensis Zheng, Lin, Lu and Ma, 2012
Cistopus taiwanicus Liao and Lu, 2009
Eledone brevis Hoyle, 1885
Eledone caparti Adam, 1950
Eledone charcoti Joubin, 1905
Eledone gaucha Haimovici, 1988
Eledone massyae Voss, 1964
Eledone palari Lu and Stranks, 1992
Eledone rotunda Hoyle, 1885
Eledone schultzei Hoyle, 1910
Eledone turqueti Joubin, 1905
Eledone verrucosa Verrill, 1881
Enteroctopus eureka Robson, 1929
Euaxoctopus panamensis Voss, 1971
Euaxoctopus pillsburyae Voss, 1975
Galeoctopus lateralis Norman, Boucher-Rodoni and Hochberg, 2004
Graneledone antarctica Voss, 1976
Graneledone boreopacifica Nesis, 1982
Graneledone gonzalezi Guerra, González and Cherel, 2000
Graneledone macrotyla Voss, 1976
Graneledone polymorpha Robson, 1930
Graneledone setebos Robson, 1932
Graneledone taniwha kubodera O’Shea, 1999
Graneledone taniwha taniwha O’Shea, 1999
Graneledone yamana Guerrero-Kommritz, 2000
Grimpella hausturismotheir Robson, 1928
Cephalopods of the World

Histoctopus discus Norman, Boucher-Rodoni and Hochberg, 2009

Histoctopus zipkasae Norman, Boucher-Rodoni and Hochberg, 2009

Microeledone mangoldi Norman, Hochberg and Boucher-Rodoni, 2004

Moschites adelieana Berry, 1917

Moschites albida Berry, 1917

Moschites aurora Berry, 1917

Moschites challenger Berry, 1916

Moschites harrissoni Berry, 1917

Muusoctopus bizikovi Gleadall, Guerro-Kommritz, Hochberg and Laptikhovsky, 2010

Muusoctopus longibrachus akambei Gleadall, Guerro-Kommritz, Hochberg and Laptikhovsky, 2010

Muusoctopus longibrachus longibrachus Ibáñez, Sepúlveda and Chong, 2006

Octopus (Abdopus) abaculus Norman and Sweeney, 1997

Octopus aculeatus d'Orbigny, 1834 [in Ferrusac and d'Orbigny, 1834-1848]

Octopus aegina Gray, 1849

Octopus alecto Berry, 1953

Octopus alpheus Norman, 1993

Octopus arcticus Prosch, 1847

Octopus argus Krauss, 1848

Octopus aspilosomatis Norman, 1993

Octopus australis Hoyle, 1885

Octopus bairdii Verrill, 1873

Octopus balboai Voss, 1971

Octopus berenice Gray, 1849

Octopus berrima Stranks and Norman, 1993

Octopus bimaculatus Verrill, 1883

Octopus bimaculoides Pickford and McConnaughey, 1949

Octopus bocki Adam, 1941

Octopus briareus Robson, 1929

Octopus bulbus Norman, 2001

Octopus bunurong Stranks, 1990

Octopus burryi Voss, 1950

Octopus californicus Berry, 1911

Octopus (Abdopus) capricornicus Norman and Finn, 2001

Octopus chierchiae Jatta, 1889

Octopus cirrhosa Lamarck, 1798

Octopus cyanea Gray, 1849

Octopus cyanea Gray, 1849

Octopus (Abdopus) capricornicus Norman and Finn, 2001

Octopus chierchiae Jatta, 1889

Octopus cirrhosa Lamarck, 1798

Octopus cyanea Gray, 1849
Octopus defilippi Verany, 1851
Octopus dierythraeus Norman, 1993
Octopus diminutus Kaneko and Kubodera, 2008
Octopus ergaticus Fischer and Fischer, 1892
Octopus exannulatus Norman, 1993
Octopus digueti Perrier and Rochebrune, 1894
Octopus fangsiiao d’Orbigny, 1839-1841
 [in Ferrusac and d’Orbigny, 1834-1848]
Octopus favonius Gray, 1849
Octopus filosus Howell, 1867
Octopus fitchi Berry, 1953
Octopus fontanianus d’Orbigny, 1834 [in Ferrusac and d’Orbigny, 1834-1848]
Octopus gorgonus Huffard, 2007
Octopus graptus Norman, 1993
Octopus harpedon Norman, 2001
Octopus hawiiensis Eydoux and Souleyet, 1852
Octopus horridus d’Orbigny, 1826
Octopus hubbsorum Berry, 1953
Octopus humilis Huffard, 2007
Octopus incella Kaneko and Kubodera, 2007
Octopus indicus Rapp, 1835 [in Ferrusac and d’Orbigny, 1834-1848]
Octopus insularis Leite and Haimovici in Leite,
 Haimovici, Molina and Warnke, 2008
Octopus januarii Hoyle, 1885
Octopus joubini Robson, 1929
Octopus kagoshimensis Ortmann, 1888
Octopus kaharoa O’Shea, 1999
Octopus kaurna Stranks, 1990
Octopus laqueus Kaneko and Kubodera, 2005
Octopus lechenaultii d’Orbigny, 1826
Octopus levus Hoyle, 1885
Octopus lunulata Quoy and Gaimard, 1832
Octopus macropus Risso, 1826
Octopus maculosa Hoyle, 1883
Octopus magnificus Villanueva, Sánchez and Compagno, 1992
Octopus mariles Huffard, 2007
Octopus maorum Hutton, 1880
Octopus marginatus Taki, 1964
Octopus maya Voss and Solis, 1966

Macrotritopus defilippi
Callistoctopus dierythraeus
‘Octopus’ diminutus
Bathypolypus ergaticus
Amphioctopus exannulatus
Paroctopus digueti
Amphioctopus fangsiiao
‘Octopus’ favonius
Octopus filosus
‘Octopus’ fitchi
Robsonella fontanianus
‘Octopus’ gorgonus
Callistoctopus graptus
‘Octopus’ harpedon
‘Octopus’ hawiiensis
Abdopus horridus
Octopus hubbsorum
‘Octopus’ humilis
‘Octopus’ incella
Cistopus indicus
Octopus insularis
Mausoctopus januarii
‘Octopus’ joubini
Amphioctopus kagoshimensis
‘Octopus’ kaharoa
‘Octopus’ kaurna
‘Octopus’ laqueus
Callistoctopus lechenaultii
Benthoctopus levus
Hapalochlaena lunulata
Callistoctopus macropus
Hapalochlaena maculosa
Enteroctopus magnificus
‘Octopus’ mariles
‘Octopus’ maorum
Amphioctopus marginatus
Octopus maya
Octopus megalocyathus Gould, 1852

Octopus membranaceus Quoy and Gaimard, 1832

Octopus mercatoris Adam, 1937

Octopus mernoo O’Shea, 1999

Octopus microphthalmus Goodrich, 1896

Octopus micropyrsus Berry, 1953

Octopus micros Norman, 2001

Octopus minus Gould, 1852

Octopus moschata Lamarck, 1798

Octopus mototi Norman, 1993

Octopus mutilans Taki, 1942

Octopus nanus Adam, 1973

Octopus neglectus Nateewathana and Norman, 1999

Octopus nierstraszi Adam, 1938

Octopus nocturnus Norman and Sweeney, 1997

Octopus ornatus Gould, 1852

Octopus pallidus Hoyle, 1885

Octopus penicillifer Berry, 1954

Octopus pictus var. fasciata Hoyle, 1886

Octopus polyzenia Gray, 1849

Octopus pumilus Norman and Sweeney, 1997

Octopus pyrum Norman, Hochberg and Lu, 1997

Octopus rapanui Voss, 1979

Octopus rex Nateewathana and Norman, 1999

Octopus robsoni Adam, 1941

Octopus rubescens Berry, 1953

Octopus salutii Verany, 1839

Octopus selene Voss, 1971

Octopus siamensis Nateewathana and Norman, 1999

Octopus sponsalis Fischer and Fischer, 1892

Octopus superciliosus Quoy and Gaimard, 1832

Octopus tehuelchus d’Orbigny, 1834 [in Ferrusac and d’Orbigny, 1834-1848]

Octopus tenebricus Smith, 1884

Octopus tetracirrhus Delle Chiaje, 1830

Octopus tetricus Gould, 1852

Octopus tonganus Hoyle, 1885

Octopus uncinirrhus Delle Chiaje, 1839-1841

Octopus varunae Oommen, 1971

Octopus veligero Berry, 1953

Enteroctopus megalocyathus

Amphioctopus membranaceus

Paroctopus mercatoris

‘Octopus’ mernoo

‘Octopus’ microphthalmus

‘Octopus’ micropyrsus

‘Octopus’ micros

Octopus minus

Eledone moschata

Amphioctopus mototi

‘Octopus’ mutilans

‘Octopus’ nanus

Hapalochlaena nierstraszi

Callistocopus nocturnus

Callistococcus ornatus

‘Octopus’ pallidus

‘Octopus’ penicillifer

Hapalochlaena fasciata

Amphioctopus polyzenia

‘Octopus’ pumilus

‘Octopus’ pyrum

Callistococcus rapanui

Amphioctopus rex

Amphioctopus robsoni

‘Octopus’ rubescens

‘Octopus’ salutii

‘Octopus’ selene

Amphioctopus siamensis

Bathypolypus sponsalis

‘Octopus’ superciliosus

‘Octopus’ tehuelchus

Abdopus tenebricus

Pteroctopus tetracirrhus

Octopus tetricus

Abdopus tonganus

Scaeurgus uncinirrhus

Amphioctopus varunae

‘Octopus’ veligero
Octopus vitiensis Hoyle, 1885
Octopus vulgaris Cuvier, 1797
Octopus warringa Stranks, 1990
Octopus winckworthi Robson, 1926
Octopus zealandicus Benham, 1944
Octopus zonatus Voss, 1968
Pareledone aequipapillae Allcock, 2005
Pareledone albimaculata Allcock, 2005
Pareledone aurata Allcock, 2005
Pareledone cornuta Allcock, 2005
Pareledone felix Allcock, Strugnell, Prodzinski, Piatkowski and Vecchione, 2007
Pareledone framensis Lu and Stranks, 1994
Pareledone panchroma Allcock, 2005
Pareledone prydzensis Lu and Stranks, 1994
Pareledone serperastrata Allcock, 2005
Pareledone subtilis Allcock, 2005
Polypus abruptus Sasaki, 1920
Polypus campbelli Smith, 1902
Polypus conispadiceus Sasaki, 1917
Polypus dolfeini Wülker, 1910
Polypus gardineri Hoyle, 1905
Polypus hattai Sasaki, 1929
Polypus hokkaidensis Berry, 1921
Polypus hongkongensis Hoyle 1885
Polypus hoylei Berry, 1909
Polypus kermadecensis Berry, 1914
Polypus leioderma Berry, 1911
Polypus luteus Sasaki, 1929
Polypus minor Sasaki, 1920
Polypus normani Massy, 1907
Polypus oculifer Hoyle, 1904
Polypus oliveri Berry, 1914
Polypus ovulum Sasaki, 1917
Polypus parvus Sasaki, 1917
Polypus salebrosus Sasaki, 1920
Polypus valdiviae Thiele in Chun, 1915
Polypus wolfi Wülker, 1913
Praealtus paralbida Alcock, Collins, Prodzinski and Vecchione, 2004
Robsonella huttoni Benham, 1943
‘Octopus’ vitiensis
Octopus vulgaris
‘Octopus’ warringa
Macrochaena winckworthi
Enteroctopus zealandicus
‘Octopus’ zonatus
Pareledone aequipapillae
Pareledone albimaculata
Pareledone aurata
Pareledone cornuta
Pareledone felix
Pareledone framensis
Pareledone panchroma
Pareledone prydzensis
Pareledone serperastrata
Pareledone subtilis
Benthoctopus abruptus
‘Octopus’ campbelli
‘Octopus’ conispadiceus
Enteroctopus dolfeini
‘Octopus’ gardineri
‘Octopus’ hattai
Benthoctopus hokkaidensis
‘Octopus’ hongkongensis
Pteroctopus hoylei
‘Octopus’ kermadecensis
Benthoctopus leioderma
Callistoctopus luteus
‘Octopus’ minor
Benthoctopus normani
Octopus oculifer
‘Octopus’ oliveri
Amphioctopus ovulum
‘Octopus’ parvus
Sasakiopus salebrosus
Bathypolypus valdiviae
‘Octopus’ wolfi
Praealtus paralbida
‘Octopus’ huttoni
Cephalopods of the World

Scaeurgus jumeau Norman, Hochberg and Boucher-Rodoni, 2005

Scaeurgus nesisi Norman, Hochberg and Boucher-Rodoni, 2005

Scaeurgus patagiatus Berry, 1913

Scaeurgus tuber Norman, Hochberg and Boucher-Rodoni, 2005

Teretocotopus alcocki Robson, 1932

Teretocotopus indicus Robson, 1929

Tetracheledone spinicirrus Voss, 1955

Thaumeledone gunteri Robson, 1930

Thaumeledone marshalli O’Shea, 1999

Thaumeledone peninsulae Allcock, Collins, Piatkowski and Vecchione, 2004

Thaumeledone zeiss O’Shea, 1999

Thaumoctopus mimicus Norman and Hochberg, 2005

Teretocotopus scalenus Hoyle, 1904

Velodona togata Chun, 1915

Vosseledone charrau Palacio, 1978

Vulcanoctopus hydrothermalis

González and Guerra in González, Guerra, Pascual and Briand, 1998

Wunderpus photogenicus Hochberg, Norman and Finn, 2006

OCYTHOIDAE Gray, 1849

Ocythoe tuberculata Rafinesque, 1814

OPISTHOTEUTHIDAE Verrill 1896

Cirroteuthis grimaldii Joubin, 1903

Cirroteuthis (Cirroteuthopsis) massyae Grimpe, 1920

Cirroteuthis meangensis Hoyle, 1885

Cirroteuthis megaptera Verrill, 1885

Cirroteuthis pacifica Hoyle, 1885

Cirroteuthis plena Verrill, 1885

Cirroteuthis umbellata Fischer, 1883

Cryptoteuthis brevibracchiata Collins, 2004

Enigmatiteuthis innominata O’Shea, 1999

Grimpoteuthis abyssicola O’Shea, 1999

Grimpoteuthis bathynectes Voss and Pearcy, 1990

Grimpoteuthis boylei Collins, 2003

Grimpoteuthis bruuni Voss, 1982

Grimpoteuthis challenger Collins, 2003

Grimpoteuthis discoveryi Collins, 2003

Grimpoteuthis tuftsi Voss and Pearcy, 1990

Luteuthis dentatus O’Shea, 1999

Luteuthis shuishi O’Shea and Lu, 2002

OCYTHOIDAE Gray, 1849

Ocythoe tuberculata

OPISTHOTEUTHIDAE Verrill 1896

Cirroteuthis grimaldii Joubin, 1903

Cirroteuthis (Cirroteuthopsis) massyae Grimpe, 1920

Cirroteuthis meangensis Hoyle, 1885

Cirroteuthis megaptera Verrill, 1885

Cirroteuthis pacifica Hoyle, 1885

Cirroteuthis plena Verrill, 1885

Cirroteuthis umbellata Fischer, 1883

Cryptoteuthis brevibracchiata Collins, 2004

Enigmatiteuthis innominata O’Shea, 1999

Grimpoteuthis abyssicola O’Shea, 1999

Grimpoteuthis bathynectes Voss and Pearcy, 1990

Grimpoteuthis boylei Collins, 2003

Grimpoteuthis bruuni Voss, 1982

Grimpoteuthis challenger Collins, 2003

Grimpoteuthis discoveryi Collins, 2003

Grimpoteuthis tuftsi Voss and Pearcy, 1990

Luteuthis dentatus O’Shea, 1999

Luteuthis shuishi O’Shea and Lu, 2002

Scaeurgus jumeau

Scaeurgus nesisi

Scaeurgus patagiatus

Scaeurgus tuber

Teretocotopus alcocki

Teretocotopus indicus

Tetracheledone spinicirrus

Thaumeledone gunteri

Thaumeledone marshalli

Thaumeledone peninsulae

Thaumeledone zeiss

Thaumoctopus mimicus

Euaxoctopus scalenus

Velodona togata

Vosseledone charrau

Vulcanoctopus hydrothermalis

Wunderpus photogenicus

Ocythoe tuberculata

Opisthoteuthis grimaldii

Opisthoteuthis massyae

Grimpoteuthis meangensis

Grimpoteuthis megaptera

Grimpoteuthis pacifica

Grimpoteuthis plena

Grimpoteuthis umbellata

Cryptoteuthis brevibracchiata

Grimpoteuthis innominata

Grimpoteuthis abyssicola

Grimpoteuthis bathynectes

Grimpoteuthis boylei

Opisthoteuthis bruuni

Grimpoteuthis challenger

Grimpoteuthis discoveryi

Grimpoteuthis tuftsi

Luteuthis dentatus

Luteuthis shuishi
Opisthoteuthis agassizii Verrill, 1883
Opisthoteuthis borealis Collins, 2005
Opisthoteuthis californiana Berry, 1949
Opisthoteuthis calypso Villanueva, Collins, Sánchez and Voss, 2002
Opisthoteuthis chathamensis O’Shea, 1999
Opisthoteuthis depressa Ijima and Ikeda, 1895
Opisthoteuthis dongshaensis Lu, 2010
Opisthoteuthis hardyi Villanueva, Collins, Sánchez and Voss, 2002
Opisthoteuthis japonica Taki, 1962
Opisthoteuthis medusoides Thiele in Chun, 1915
Opisthoteuthis mero O’Shea, 1999
Opisthoteuthis persephone Berry, 1918
Opisthoteuthis philippii Oomen, 1976
Opisthoteuthis pluto Berry, 1918
Opisthoteuthis roboni O’Shea, 1999
Stauroteuthis albatrossi Sasaki, 1920
Stauroteuthis hippocrepium Hoyle, 1904
Stauroteuthis wuelkeri Grimppe, 1920

STAUROTEUTHIDAE Grimppe, 1916
Stauroteuthis gilchristi Robson, 1924
Stauroteuthis syrtensis Verrill, 1879

TREMOCTOPODIDAE Tryon, 1879
Octopus gracilis Eydoux and Souleyet, 1852
Pteroctopus violaceus Delle Chiave, 1830 in 1823-1831
Tremoctopus gelatus Thomas, 1977
Tremoctopus roboni Kirk, 1884

VAMPIROTEUTHIDAE Thiele in Chun, 1915
Vampyroteuthis infernalis Chun, 1903

VITRELEDONELLIDAE Robson, 1932
Vitreledonella richardi Joubin, 1918

Opisthoteuthis agassizii
Opisthoteuthis borealis
Opisthoteuthis californiana
Opisthoteuthis calypso
Opisthoteuthis chathamensis
Opisthoteuthis depressa
Opisthoteuthis dongshaensis
Opisthoteuthis hardyi
Opisthoteuthis japonica
Opisthoteuthis medusoides
Opisthoteuthis mero
Opisthoteuthis persephone
Opisthoteuthis philippii
Opisthoteuthis pluto
Opisthoteuthis roboni
Stauroteuthis albatrossi
Stauroteuthis hippocrepium
Stauroteuthis wuelkeri

STAUROTEUTHIDAE
Stauroteuthis gilchristi
Stauroteuthis syrtensis

TREMOCTOPODIDAE
Octopus gracilis
Pteroctopus violaceus
Tremoctopus gelatus
Tremoctopus roboni

VAMPIROTEUTHIDAE
Vampyroteuthis infernalis

VITRELEDONELLIDAE
Vitreledonella richardi
4. LIST OF SPECIES BY MAJOR FISHING AREAS

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdopus abaculus</td>
<td>62</td>
</tr>
<tr>
<td>Abdopus aculeatus</td>
<td>61</td>
</tr>
<tr>
<td>Abdopus capricornicus</td>
<td>62</td>
</tr>
<tr>
<td>Abdopus horridus</td>
<td>60</td>
</tr>
<tr>
<td>Abdopus tenebricus</td>
<td>62</td>
</tr>
<tr>
<td>Abdopus tonganus</td>
<td>63</td>
</tr>
<tr>
<td>Abdopus undulatus</td>
<td>63</td>
</tr>
<tr>
<td>Adelieledone adelieana</td>
<td>65</td>
</tr>
<tr>
<td>Adelieledone piatkowski</td>
<td>65</td>
</tr>
<tr>
<td>Adelieledone polymorpha</td>
<td>64</td>
</tr>
<tr>
<td>Ameloctopus litoralis</td>
<td>66</td>
</tr>
<tr>
<td>Amphioctopus aegina</td>
<td>68</td>
</tr>
<tr>
<td>Amphioctopus arenicola</td>
<td>83</td>
</tr>
<tr>
<td>Amphioctopus baryi</td>
<td>69</td>
</tr>
<tr>
<td>Amphioctopus exannulatus</td>
<td>71</td>
</tr>
<tr>
<td>Amphioctopus fangssiao</td>
<td>72</td>
</tr>
<tr>
<td>Amphioctopus kagoshimens</td>
<td>73</td>
</tr>
<tr>
<td>Amphioctopus marginatus</td>
<td>75</td>
</tr>
<tr>
<td>Amphioctopus membranaceus</td>
<td>83</td>
</tr>
<tr>
<td>Amphioctopus mototi</td>
<td>77</td>
</tr>
<tr>
<td>Amphioctopus neglectus</td>
<td>79</td>
</tr>
<tr>
<td>Amphioctopus ovulum</td>
<td>83</td>
</tr>
<tr>
<td>Amphioctopus polyzenia</td>
<td>84</td>
</tr>
<tr>
<td>Amphioctopus rex</td>
<td>80</td>
</tr>
<tr>
<td>Amphioctopus robsoni</td>
<td>84</td>
</tr>
<tr>
<td>Amphioctopus siamensis</td>
<td>81</td>
</tr>
<tr>
<td>Amphioctopus varunae</td>
<td>84</td>
</tr>
<tr>
<td>Amphitretus pelagicus</td>
<td>217</td>
</tr>
<tr>
<td>Amphitretus thielei</td>
<td>219</td>
</tr>
<tr>
<td>Argonauta argo</td>
<td>230</td>
</tr>
<tr>
<td>Argonauta hians</td>
<td>232</td>
</tr>
<tr>
<td>Argonauta nodosus</td>
<td>234</td>
</tr>
<tr>
<td>Argonauta nosuryi</td>
<td>236</td>
</tr>
<tr>
<td>Bathypolypus arcticus</td>
<td>85</td>
</tr>
<tr>
<td>Bathypolypus bairdi</td>
<td>86</td>
</tr>
<tr>
<td>Bathypolypus ergasticus</td>
<td>87</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Bathypolypus pugniger</td>
<td>87</td>
</tr>
<tr>
<td>Bathypolypus rubrostictus</td>
<td>87</td>
</tr>
<tr>
<td>Bathypolypus sponsalis</td>
<td>87</td>
</tr>
<tr>
<td>Bathypolypus valdiviae</td>
<td>87</td>
</tr>
<tr>
<td>Bathypurpurata profunda</td>
<td>88</td>
</tr>
<tr>
<td>Bentheledone albida</td>
<td>91</td>
</tr>
<tr>
<td>Bentheledone rotunda</td>
<td>90</td>
</tr>
<tr>
<td>Benthoctopus abruptus</td>
<td>94</td>
</tr>
<tr>
<td>Benthoctopus berryi</td>
<td>94</td>
</tr>
<tr>
<td>Benthoctopus canthylus</td>
<td>94</td>
</tr>
<tr>
<td>Benthoctopus clyderoperi</td>
<td>94</td>
</tr>
<tr>
<td>Benthoctopus fuscus</td>
<td>95</td>
</tr>
<tr>
<td>Benthoctopus hokkaidensis</td>
<td>95</td>
</tr>
<tr>
<td>Benthoctopus johnsoniana</td>
<td>95</td>
</tr>
<tr>
<td>Benthoctopus karubar</td>
<td>92</td>
</tr>
<tr>
<td>Benthoctopus leioderma</td>
<td>95</td>
</tr>
<tr>
<td>Benthoctopus levis</td>
<td>96</td>
</tr>
<tr>
<td>Benthoctopus normani</td>
<td>96</td>
</tr>
<tr>
<td>Benthoctopus oregonae</td>
<td>96</td>
</tr>
<tr>
<td>Benthoctopus oregonensis</td>
<td>96</td>
</tr>
<tr>
<td>Benthoctopus profundorum</td>
<td>96</td>
</tr>
<tr>
<td>Benthoctopus pseudonymus</td>
<td>97</td>
</tr>
<tr>
<td>Benthoctopus rigbyae</td>
<td>97</td>
</tr>
<tr>
<td>Benthoctopus robustus</td>
<td>97</td>
</tr>
<tr>
<td>Benthoctopus sibiricus</td>
<td>97</td>
</tr>
<tr>
<td>Benthoctopus tangaroa</td>
<td>97</td>
</tr>
<tr>
<td>Benthoctopus tegginmathae</td>
<td>98</td>
</tr>
<tr>
<td>Benthoctopus thielei</td>
<td>98</td>
</tr>
<tr>
<td>Benthoctopus yaquinae</td>
<td>98</td>
</tr>
<tr>
<td>Bolitaena pygmaea</td>
<td>222</td>
</tr>
<tr>
<td>Callistoctopus alpheus</td>
<td>100</td>
</tr>
<tr>
<td>Callistoctopus aspilosomatis</td>
<td>102</td>
</tr>
<tr>
<td>Callistoctopus dierythraeae</td>
<td>103</td>
</tr>
<tr>
<td>Callistoctopus graptus</td>
<td>104</td>
</tr>
<tr>
<td>Callistoctopus lechenaultii</td>
<td>109</td>
</tr>
<tr>
<td>Callistoctopus lateus</td>
<td>105</td>
</tr>
<tr>
<td>Callistoctopus macropus</td>
<td>106</td>
</tr>
<tr>
<td>Callistoctopus nocturnus</td>
<td>107</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Callistoctopus ornatus</td>
<td>98</td>
</tr>
<tr>
<td>Callistoctopus rapanui</td>
<td>108</td>
</tr>
<tr>
<td>Cirroctopus antarctica</td>
<td>247</td>
</tr>
<tr>
<td>Cirroctopus glacialis</td>
<td>246</td>
</tr>
<tr>
<td>Cirroctopus hochbergi</td>
<td>247</td>
</tr>
<tr>
<td>Cirroctopus mawsoni</td>
<td>247</td>
</tr>
<tr>
<td>Cirroteuthis mülleri</td>
<td>283</td>
</tr>
<tr>
<td>Cirrothauma magna</td>
<td>285</td>
</tr>
<tr>
<td>Cirrothauma murrayi</td>
<td>284</td>
</tr>
<tr>
<td>Cistopus chinensis</td>
<td>112</td>
</tr>
<tr>
<td>Cistopus indicus</td>
<td>110</td>
</tr>
<tr>
<td>Cistopus taiwanicus</td>
<td>113</td>
</tr>
<tr>
<td>Cryptoteuthis brevibracchiata</td>
<td>254</td>
</tr>
<tr>
<td>Eledone caparti</td>
<td>121</td>
</tr>
<tr>
<td>Eledone cirrhosa</td>
<td>117</td>
</tr>
<tr>
<td>Eledone gaucha</td>
<td>121</td>
</tr>
<tr>
<td>Eledone massyae</td>
<td>119</td>
</tr>
<tr>
<td>Eledone moschata</td>
<td>115</td>
</tr>
<tr>
<td>'Eledone' palari</td>
<td>120</td>
</tr>
<tr>
<td>'Eledone' schultzei</td>
<td>121</td>
</tr>
<tr>
<td>Enteroctopus dofelini</td>
<td>124</td>
</tr>
<tr>
<td>Enteroctopus magnificus</td>
<td>125</td>
</tr>
<tr>
<td>Enteroctopus megalocyathus</td>
<td>122</td>
</tr>
<tr>
<td>Enteroctopus zealandicus</td>
<td>126</td>
</tr>
<tr>
<td>Euaxoctopus panamensis</td>
<td>127</td>
</tr>
<tr>
<td>Euaxoctopus pillsburyae</td>
<td>128</td>
</tr>
<tr>
<td>Euaxoctopus scalenus</td>
<td>128</td>
</tr>
<tr>
<td>Galeoctopus lateralis</td>
<td>129</td>
</tr>
<tr>
<td>Graneledone antarctica</td>
<td>132</td>
</tr>
<tr>
<td>Graneledone boreospatica</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone challengeri</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone gonzalezii</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone macrotyla</td>
<td>133</td>
</tr>
<tr>
<td>Graneledone taniwha kubodera</td>
<td>134</td>
</tr>
<tr>
<td>Graneledone taniwha taniwha</td>
<td>134</td>
</tr>
<tr>
<td>Graneledone verrucosa</td>
<td>131</td>
</tr>
<tr>
<td>Graneledone yamana</td>
<td>134</td>
</tr>
<tr>
<td>Grimpella thaumastocheir</td>
<td>135</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Grimpoteuthis abyssicola</td>
<td>257</td>
</tr>
<tr>
<td>Grimpoteuthis bathynectes</td>
<td>257</td>
</tr>
<tr>
<td>Grimpoteuthis boylei</td>
<td>257</td>
</tr>
<tr>
<td>Grimpoteuthis challengeri</td>
<td>258</td>
</tr>
<tr>
<td>Grimpoteuthis discoveryi</td>
<td>258</td>
</tr>
<tr>
<td>Grimpoteuthis hippocrepium</td>
<td>258</td>
</tr>
<tr>
<td>Grimpoteuthis innominata</td>
<td>258</td>
</tr>
<tr>
<td>Grimpoteuthis meangensis</td>
<td>258</td>
</tr>
<tr>
<td>Grimpoteuthis megaptera</td>
<td>259</td>
</tr>
<tr>
<td>Grimpoteuthis pacifica</td>
<td>259</td>
</tr>
<tr>
<td>Grimpoteuthis plena</td>
<td>259</td>
</tr>
<tr>
<td>Grimpoteuthis tuftsi</td>
<td>259</td>
</tr>
<tr>
<td>Grimpoteuthis umbellata</td>
<td>259</td>
</tr>
<tr>
<td>Grimpoteuthis wülkeri</td>
<td>259</td>
</tr>
<tr>
<td>Haliphron atlanticus</td>
<td>226</td>
</tr>
<tr>
<td>Hapalochlaena fasciata</td>
<td>138</td>
</tr>
<tr>
<td>Hapalochlaena lunulata</td>
<td>137</td>
</tr>
<tr>
<td>Hapalochlaena maculosa</td>
<td>139</td>
</tr>
<tr>
<td>Hapalochlaena nierstraszi</td>
<td>140</td>
</tr>
<tr>
<td>Histoctopus discus</td>
<td>143</td>
</tr>
<tr>
<td>Histoctopus zipkasae</td>
<td>141</td>
</tr>
<tr>
<td>Japetella diaphana</td>
<td>224</td>
</tr>
<tr>
<td>Luteuthis dentatus</td>
<td>280</td>
</tr>
<tr>
<td>Luteuthis shuishi</td>
<td>281</td>
</tr>
<tr>
<td>Macrochlaena winckworthi</td>
<td>144</td>
</tr>
<tr>
<td>Macrotritopus defilippi</td>
<td>146</td>
</tr>
<tr>
<td>Megaleledone setobos</td>
<td>148</td>
</tr>
<tr>
<td>Microledone mangoldae</td>
<td>150</td>
</tr>
<tr>
<td>Muusoctopus bijikovi</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus eureka</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus januarii</td>
<td>151</td>
</tr>
<tr>
<td>Muusoctopus longibrachus akambei</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus longibrachus</td>
<td>153</td>
</tr>
<tr>
<td>'Octopus' alecto</td>
<td>187</td>
</tr>
<tr>
<td>'Octopus' argus</td>
<td>207</td>
</tr>
<tr>
<td>'Octopus' australis</td>
<td>188</td>
</tr>
<tr>
<td>'Octopus' balboai</td>
<td>207</td>
</tr>
<tr>
<td>'Octopus' berenice</td>
<td>208</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Octopus’ berrima</td>
<td>190</td>
</tr>
<tr>
<td>Octopus bimaculatus</td>
<td>47</td>
</tr>
<tr>
<td>Octopus bimaculoides</td>
<td>48</td>
</tr>
<tr>
<td>Octopus’ bocki</td>
<td>208</td>
</tr>
<tr>
<td>Octopus’ briareus</td>
<td>191</td>
</tr>
<tr>
<td>Octopus’ bulbus</td>
<td>208</td>
</tr>
<tr>
<td>Octopus’ bunarong</td>
<td>192</td>
</tr>
<tr>
<td>Octopus’ californicus</td>
<td>193</td>
</tr>
<tr>
<td>Octopus’ campbell</td>
<td>208</td>
</tr>
<tr>
<td>Octopus’ chierchia</td>
<td>208</td>
</tr>
<tr>
<td>Octopus’ conspicadiceus</td>
<td>195</td>
</tr>
<tr>
<td>Octopus’ cyanea</td>
<td>196</td>
</tr>
<tr>
<td>Octopus’ diminutus</td>
<td>209</td>
</tr>
<tr>
<td>Octopus’ favonius</td>
<td>209</td>
</tr>
<tr>
<td>Octopus filosus</td>
<td>58</td>
</tr>
<tr>
<td>Octopus’ fitchi</td>
<td>209</td>
</tr>
<tr>
<td>Octopus’ gardineri</td>
<td>209</td>
</tr>
<tr>
<td>Octopus’ gorgonus</td>
<td>209</td>
</tr>
<tr>
<td>Octopus’ harpedon</td>
<td>210</td>
</tr>
<tr>
<td>Octopus’ hattai</td>
<td>210</td>
</tr>
<tr>
<td>Octopus’ hawiiensis</td>
<td>210</td>
</tr>
<tr>
<td>Octopus’ hongkongensis</td>
<td>210</td>
</tr>
<tr>
<td>Octopus hubbsorum</td>
<td>50</td>
</tr>
<tr>
<td>Octopus’ humilis</td>
<td>211</td>
</tr>
<tr>
<td>Octopus’ huttoni</td>
<td>211</td>
</tr>
<tr>
<td>Octopus’ incella</td>
<td>211</td>
</tr>
<tr>
<td>Octopus insularis</td>
<td>51</td>
</tr>
<tr>
<td>Octopus’ jouhini</td>
<td>211</td>
</tr>
<tr>
<td>Octopus’ kaharoa</td>
<td>211</td>
</tr>
<tr>
<td>Octopus’ kaharoa</td>
<td>211</td>
</tr>
<tr>
<td>Octopus’ laqueus</td>
<td>212</td>
</tr>
<tr>
<td>Octopus’ maorum</td>
<td>199</td>
</tr>
<tr>
<td>Octopus’ mariles</td>
<td>212</td>
</tr>
<tr>
<td>Octopus maya</td>
<td>53</td>
</tr>
<tr>
<td>Octopus’ mernoo</td>
<td>212</td>
</tr>
<tr>
<td>Octopus’ microphthalmus</td>
<td>212</td>
</tr>
<tr>
<td>Octopus’ micropyrsus</td>
<td>213</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>'Octopus' micros</td>
<td>213</td>
</tr>
<tr>
<td>Octopus mimus</td>
<td>54</td>
</tr>
<tr>
<td>'Octopus' minor</td>
<td>200</td>
</tr>
<tr>
<td>'Octopus' mutilans</td>
<td>213</td>
</tr>
<tr>
<td>'Octopus' nanus</td>
<td>213</td>
</tr>
<tr>
<td>Octopus oculifer</td>
<td>56</td>
</tr>
<tr>
<td>'Octopus' oliveri</td>
<td>215</td>
</tr>
<tr>
<td>'Octopus' pallidus</td>
<td>201</td>
</tr>
<tr>
<td>'Octopus' parvus</td>
<td>214</td>
</tr>
<tr>
<td>'Octopus' penicillifer</td>
<td>214</td>
</tr>
<tr>
<td>'Octopus' pumilus</td>
<td>214</td>
</tr>
<tr>
<td>'Octopus' pyrum</td>
<td>214</td>
</tr>
<tr>
<td>'Octopus' rubescens</td>
<td>202</td>
</tr>
<tr>
<td>'Octopus' salutii</td>
<td>214</td>
</tr>
<tr>
<td>'Octopus' selene</td>
<td>204</td>
</tr>
<tr>
<td>'Octopus' superciliosus</td>
<td>215</td>
</tr>
<tr>
<td>'Octopus' tehuelchus</td>
<td>205</td>
</tr>
<tr>
<td>Octopus tetricus</td>
<td>57</td>
</tr>
<tr>
<td>'Octopus' veligero</td>
<td>206</td>
</tr>
<tr>
<td>'Octopus' vitiensis</td>
<td>215</td>
</tr>
<tr>
<td>Octopus vulgaris sensu stricto</td>
<td>42</td>
</tr>
<tr>
<td>Octopus vulgaris type I</td>
<td>44</td>
</tr>
<tr>
<td>Octopus vulgaris type II</td>
<td>45</td>
</tr>
<tr>
<td>Octopus vulgaris type III</td>
<td>45</td>
</tr>
<tr>
<td>Octopus vulgaris type IV</td>
<td>46</td>
</tr>
<tr>
<td>'Octopus' warringa</td>
<td>215</td>
</tr>
<tr>
<td>'Octopus' wolfi</td>
<td>215</td>
</tr>
<tr>
<td>'Octopus' zonatus</td>
<td>215</td>
</tr>
<tr>
<td>Ocythoe tuberculata</td>
<td>238</td>
</tr>
<tr>
<td>Opisthoteuthis agassizii</td>
<td>249</td>
</tr>
<tr>
<td>Opisthoteuthis albatrossi</td>
<td>250</td>
</tr>
<tr>
<td>Opisthoteuthis borealis</td>
<td>250</td>
</tr>
<tr>
<td>Opisthoteuthis bruani</td>
<td>250</td>
</tr>
<tr>
<td>Opisthoteuthis californiana</td>
<td>250</td>
</tr>
<tr>
<td>Opisthoteuthis calypso</td>
<td>251</td>
</tr>
<tr>
<td>Opisthoteuthis chathamensis</td>
<td>251</td>
</tr>
<tr>
<td>Opisthoteuthis depressa</td>
<td>251</td>
</tr>
<tr>
<td>Opisthoteuthis dongshaensis</td>
<td>251</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Opisthoteuthis extensa</td>
<td>251</td>
</tr>
<tr>
<td>Opisthoteuthis grimaldii</td>
<td>252</td>
</tr>
<tr>
<td>Opisthoteuthis hardyi</td>
<td>252</td>
</tr>
<tr>
<td>Opisthoteuthis japonica</td>
<td>252</td>
</tr>
<tr>
<td>Opisthoteuthis massyae</td>
<td>252</td>
</tr>
<tr>
<td>Opisthoteuthis medusoides</td>
<td>252</td>
</tr>
<tr>
<td>Opisthoteuthis mero</td>
<td>253</td>
</tr>
<tr>
<td>Opisthoteuthis persephone</td>
<td>253</td>
</tr>
<tr>
<td>Opisthoteuthis philippi</td>
<td>253</td>
</tr>
<tr>
<td>Opisthoteuthis pluto</td>
<td>253</td>
</tr>
<tr>
<td>Opisthoteuthis robsoni</td>
<td>255</td>
</tr>
<tr>
<td>Pareledone aequipapillae</td>
<td>155</td>
</tr>
<tr>
<td>Pareledone albimaculata</td>
<td>155</td>
</tr>
<tr>
<td>Pareledone aurata</td>
<td>156</td>
</tr>
<tr>
<td>Pareledone aurorae</td>
<td>156</td>
</tr>
<tr>
<td>Pareledone charcoti</td>
<td>154</td>
</tr>
<tr>
<td>Pareledone cornuta</td>
<td>156</td>
</tr>
<tr>
<td>Pareledone felix</td>
<td>156</td>
</tr>
<tr>
<td>Pareledone framensis</td>
<td>157</td>
</tr>
<tr>
<td>Pareledone harrisoni</td>
<td>157</td>
</tr>
<tr>
<td>Pareledone panchroma</td>
<td>157</td>
</tr>
<tr>
<td>Pareledone pydzensis</td>
<td>157</td>
</tr>
<tr>
<td>Pareledone serperastrata</td>
<td>158</td>
</tr>
<tr>
<td>Pareledone subtilis</td>
<td>158</td>
</tr>
<tr>
<td>Pareledone turqueti</td>
<td>158</td>
</tr>
<tr>
<td>Paroctopus digueti</td>
<td>160</td>
</tr>
<tr>
<td>Paroctopus mercatoris</td>
<td>161</td>
</tr>
<tr>
<td>Praealtus paralbida</td>
<td>162</td>
</tr>
<tr>
<td>Pteroctopus hoylei</td>
<td>165</td>
</tr>
<tr>
<td>Pteroctopus tetracirrhus</td>
<td>164</td>
</tr>
<tr>
<td>Robsonella fontanianus</td>
<td>166</td>
</tr>
<tr>
<td>Sasakiopus salebrosus</td>
<td>168</td>
</tr>
<tr>
<td>Scaeurgus jumeau</td>
<td>172</td>
</tr>
<tr>
<td>Scaeurgus nesiisi</td>
<td>172</td>
</tr>
<tr>
<td>Scaeurgus patagiatus</td>
<td>172</td>
</tr>
<tr>
<td>Scaeurgus tuber</td>
<td>172</td>
</tr>
<tr>
<td>Scaeurgus unicirrhus</td>
<td>170</td>
</tr>
<tr>
<td>Stauroteuthis gilchristi</td>
<td>287</td>
</tr>
<tr>
<td>SPECIES</td>
<td>PAGE</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Stauroteuthis syrtensis</td>
<td>286</td>
</tr>
<tr>
<td>Teretoctopus alcocki</td>
<td>174</td>
</tr>
<tr>
<td>Teretoctopus indicus</td>
<td>173</td>
</tr>
<tr>
<td>Tetracheledone spinicirrus</td>
<td>175</td>
</tr>
<tr>
<td>Thaumeledone brevis</td>
<td>178</td>
</tr>
<tr>
<td>Thaumeledone gunteri</td>
<td>177</td>
</tr>
<tr>
<td>'Thaumeledone' marshalli</td>
<td>178</td>
</tr>
<tr>
<td>Thaumeledone peninsulae</td>
<td>178</td>
</tr>
<tr>
<td>'Thaumeledone' zeiss</td>
<td>178</td>
</tr>
<tr>
<td>Thaumoctopus mimicus</td>
<td>179</td>
</tr>
<tr>
<td>Tremoctopus gelatus</td>
<td>243</td>
</tr>
<tr>
<td>Tremoctopus gracilis</td>
<td>243</td>
</tr>
<tr>
<td>Tremoctopus robsoni</td>
<td>243</td>
</tr>
<tr>
<td>Tremoctopus violaceus</td>
<td>240</td>
</tr>
<tr>
<td>Vampyroteuthis infernalis</td>
<td>289</td>
</tr>
<tr>
<td>Velodona togata</td>
<td>181</td>
</tr>
<tr>
<td>Vireledonella richardi</td>
<td>220</td>
</tr>
<tr>
<td>Vosseledone charra</td>
<td>183</td>
</tr>
<tr>
<td>Vulcanoctopus hydrothermalis</td>
<td>184</td>
</tr>
<tr>
<td>Wunderpus photogenicus</td>
<td>186</td>
</tr>
</tbody>
</table>
MAJOR FISHING AREAS FOR STATISTICAL PURPOSES
5. REFERENCES

Bogolepova, I.I. 1957. [Concerning the existence of Dicyemodeca Wheeler, 1897]. Transactions of the Leningrad Society of Naturalists (St. Petersburg), 73: 52-57. [In Russian].

De Wolf, T., Lenzl, S. & Lenzl, F. 2011. Paralarval rearing of *Octopus vulgaris* (Cuvier) in Tuscany, Italy. *Aquaculture

Cephalopods of the World

Morales, E. 1959. Sobre la presencia de Opisthoteuthis agassizi Verrill, en el Mediterraneo. Investigacion Pesquera, 15: 113-123.

Cephalopods of the World

Cephalopods of the World

Cephalopods of the World

Cephalopods of the World

Taki, I. 1963. On four newly known species of Octopoda from Japan. *Journal of the Faculty of Fisheries and Animal Husbandry Hiroshima University*, 5: 57-93.

Verrill, A.E. 1881. The cephalopods of the northeastern coast of America. Part II. The smaller cephalopods, including the squids and the octopi and other allied forms. *Transactions of the Connecticut Academy of Arts and Sciences*, 5: 259-446.

Verrill, A.E. 1885. Third catalogue of Mollusca, recently added to the Fauna of the New England coast and the adjacent parts of the Atlantic, consisting mostly of deep-sea species, with notes on others previously recorded. *Transactions of the Connecticut Academy of Arts and Sciences*, 6(2): 395-452.

LINKS TO AVAILABLE DATA ONLINE:

Cephalopod International Advisory Council (CIAC):
http://www.abdn.ac.uk/CIAC

Cephalopods at the National Museum of Natural History:
http://invertebrates.si.edu/cephs

Coleoid Cephalopods through Time, International Symposium:
http://www.symposium.lu

FAO FishFinder Web Page:

FAO Statistical Database:
http://faostat.fao.org

GlobeFish (Cephalopods):
http://www.globefish.org/cephalopods-market-reports.html

Integrated Taxonomic Information System:
http://www.itis.gov

Interactive Key to the Cephalopoda:
http://tolweb.org

International Directory of Cephalopod Workers:

James Wood’s Cephalopod Page:
http://www.thecephalopodpage.org/JWood/cv.php

Marine Resource Center: Laboratory of Roger Hanlon:
http://hermes.mbl.edu/mrc/hanlon

National Museum of Natural History (NMFS):
http://www.mnh.si.edu/cephs
National Resource Center for Cephalopods:

Review of the state of world marine fishery resources, World squid resources:

Sea Around Us Project:
 http://www.seaaroundus.org/project.htm

SeaMounts Online:
 http://seamounts.sdsc.edu

Smithsonian Giant Squid electronic exhibition:
 http://sites.si.edu/exhibitions/exhibits/archived_exhibitions/squid/main.htm

Smithsonian Institution Research Information System (SIRIS):
 http://sirisbibliographies.si.edu/#focus

Species 2000:
 http://www.sp2000.org

Squid Atlas, Geographical Information System (GIS):
 http://www.nerc-bas.ac.uk/public/mlsd/squid-atlas

SquidFish:
 http://www.squidfish.net

The Cephalopod Page:
 http://www.thecephalopodpage.org

The Euro Squid World Web Page:
 http://www.abdn.ac.uk/eurosquid

The Octopus News Magazine Online (TONMO):
 http://www.tonmo.com

Tree of Life (Cephalopods):
 http://tolweb.org/tree?group=Cephalopoda&contgroup=Mollusca
6. INDEX OF SCIENTIFIC AND VERNACULAR NAMES

Explanation of the system

Italics: Valid taxonomic allocation (double entry by genera and species).

‘*Italics*’: Provisional taxonomic allocation (double entry by genera and species).

Italics: Previous taxonomic allocation of species placed under provisional taxonomic allocation (double entry by genera and species).

Italics: Synonyms, misidentifications, subgenera, subspecies and other combinations (double entry by genera and species).

ROMAN: Family names.

ROMAN: Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies.

Roman: FAO names.

Roman: Local names.
Amphioctopus membranaceus68,83,275,279
Amphioctopus mototi77,78,275,279
Amphioctopus neglectus16,79,82,275,279
Amphioctopus ovalum83,275,279
Amphioctopus polyzenia84,275,279
Amphioctopus rex16,80,82
Amphioctopus robooni84,275,279
Amphioctopus siamensis16,81,82,275,279
Amphioctopus varunae84
AMPHITRETIDAE6,34,216,217,271
Amphitretus33,216,217
Amphitretus pelagicus7,217,218
Amphitretus thielei219
Angel octopus181
Antarctic knobby octopus64
antarctica, Cirroctopus247
antarctica, Graneledone131,133
antarctica, Grimpoteuthis247
Aoiga231
Aphrodoctopus83
Argonauta argo17,229,230,231,233
Argonauta17,229
Argonauta argo17,229,230,231
Argonauta boettgeri232,233
Argonauta común230
Argonauta cornuta236,237
Argonauta cygnus230
Argonauta expansa236,237
Argonauta grumeri236,237
Argonauta hians26,229,232,233
Argonauta menor232
Argonauta nodosa234,235
Argonauta nosophos234,235
Argonauta nosophos229,234,235
Argonauta nouri229,236,237
Argonauta pacifica230,231
Argonauta tuberculata236
Argonauta tuberculata234
Argonautas228
Argonaute mineur232
Argonaute nouveau234
Argonaute papier230
Argonaute tuberculé236
Argonautes papier238
ARGONAUTIDAE228,233
Argonauts228
argus, ‘Octopus’207
argus, Octopus207
aspilosomatis, Callistoctopus102
aspilosomatis, Octopus102
Atlantic warty octopus171
Cephalopods of the World

atlanticus, Haliphron 216, 226, 227, 228
Atlantoctopus pseudonymus 97
aurata, Pareledone 156
aurorae, Moschites 156
aurorae, Pareledone 156
australis, 'Octopus' 17, 189, 190
australis, Octopus 17, 189, 190

B

Baak Hoi Ma Chau 23
Bai Youshao 113
bairdii, Bathypolyopus 85, 86, 92
bairdii, Octopus 86
balboai, 'Octopus' 207
balboai, Octopus 207
Balloon octopod 266
Balloon octopods 266
Bathynectes, Grimpoteuthis 257
Bathypolyopus 85, 168
Bathypolyopus arcticus 85, 169
Bathypolyopus bairdi 85, 86, 92
Bathypolyopus ergasticus 87
Bathypolyopus faeroensis 85
Bathypolyopus grenlandicus 85
Bathypolyopus pugniger 87
Bathypolyopus rubrostictus 87
Bathypolyopus salebrosus 168
Bathypolyopus sponsalis 87
Bathypolyopus valdiviae 87
Bathypurpurata 37, 88
Bathypurpurata profunda 88, 89
Bâtei-Zhao-Yú 47
Bentheledone 38, 89, 90, 177
Bentheledone albida 90, 91
Bentheledone cf. albida 90
Bentheledone rotunda 90, 177
Benthoctopus 40, 85, 92, 135, 151
Benthoctopus abruptus 94
Benthoctopus berryi 94
Benthoctopus canthylus 94
Benthoctopus clyderoperi 94
Benthoctopus ergasticus 87
Benthoctopus fuscus 95
Benthoctopus hokkaidensis 95
Benthoctopus januarii 151
Benthoctopus johnsoniana 95
Benthoctopus karubar 92, 93
Benthoctopus leioiderna 95
Benthoctopus levis 96
Benthoctopus longibrachus 96, 153
Benthoctopus lothei 87
Benthoctopus macrophallus 94, 98
Benthoctopus magellanticus 153
Benthoctopus normani 96
Benthoctopus oregonae 96
Benthoctopus oregonensis 96
Benthoctopus piscatorum 87
Benthoctopus profundicola 87
Benthoctopus profundorum 96
Benthoctopus pseudonymus 97
Benthoctopus rigbyae 97
Benthoctopus robustus 97
Benthoctopus sasakii 85
Benthoctopus sibiricus 97
Benthoctopus tangaroa 97
Benthoctopus tegginmathe 98
Benthoctopus thielei 98
Benthoctopus violaceus 95
Benthoctopus yauquinae 98
berenice, 'Octopus' 208
berenice, Octopus 208
berrima, 'Octopus' 17, 166, 190, 191
berrima, Octopus 190
Berrey 163
berryi, Bentheoctopus 94
Big blue octopus 196
bimaculatus, Octopus 15, 47, 48, 50, 203
bimaculoides, Octopus 15, 47, 48, 49, 159
bizikovi, Muusoctopus 153
Blanket octopods 240
Blue-lined octopus 138
Boboca popo 62
Bobtail squids 3
bokii, 'Octopus' 208
bokii, Octopus 208
boettgeri, Argonauta 232
Bolitaena 34, 221, 222, 223, 224
Bolitaena microcotyla 223
Bolitaena pygmaea 221, 222, 223
BOLITAENIDAE 6, 26, 29, 34, 216, 221
borealis, Opisthoteuthis 250
boreopacifica, Graneledone 133
boreopacifica, Graneledone cf. 133
Bottletail squids 3
Bou msk 116
boyfei, Grimpoteuthis 257
Brazil reef octopus 51
brevis, Octopus 254, 255
brevis, Eledone 176, 178
brevis, Moschites 119
brevis, Thaumeleledon 178
brieareus, 'Octopus' 17, 159, 191, 192
brieareus, Octopus 191
brieack, Octopus 72
Brown-striped octopus 69
brunui, Opisthoteuthis 250
brunui, Grimpoteuthis 250
bubbus, 'Octopus' 208
bubbus, Octopus 208
bunurog, 'Octopus' 192, 193
bunurog, Octopus 192
burrei, Amphioctopus 11, 15, 69, 70
burrei, Octopus 69
bursarius, Cistopus 110
<table>
<thead>
<tr>
<th>Species Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calmar vampiro</td>
<td>269</td>
</tr>
<tr>
<td>Calmars vampire</td>
<td>268</td>
</tr>
<tr>
<td>Californiana, Opisthoteuthis</td>
<td>250, 252</td>
</tr>
<tr>
<td>Californicus, ‘Octopus’</td>
<td>17, 193, 194, 195, 203, 250</td>
</tr>
<tr>
<td>Californicus, Octopus</td>
<td>193</td>
</tr>
<tr>
<td>Californicus, Opisthoteuthis</td>
<td>250</td>
</tr>
<tr>
<td>Callistocetus alphus</td>
<td>100, 101</td>
</tr>
<tr>
<td>Callistocetus arakawai</td>
<td>99, 100</td>
</tr>
<tr>
<td>Callistocetus aspilosomatic</td>
<td>102</td>
</tr>
<tr>
<td>Callistocetus cuvieri</td>
<td>109</td>
</tr>
<tr>
<td>Callistocetus dierythraeus</td>
<td>103</td>
</tr>
<tr>
<td>Callistocetus gratus</td>
<td>16, 104</td>
</tr>
<tr>
<td>Callistocetus lechenuaulti</td>
<td>109</td>
</tr>
<tr>
<td>Callistocetus luteus</td>
<td>16, 105</td>
</tr>
<tr>
<td>Callistocetus macropus</td>
<td>99, 106</td>
</tr>
<tr>
<td>Callistocetus magnocellatus</td>
<td>196</td>
</tr>
<tr>
<td>Callistocetus nocturnus</td>
<td>16, 107</td>
</tr>
<tr>
<td>Callistocetus ornatus</td>
<td>16, 99, 100</td>
</tr>
<tr>
<td>Callistocetus rapanui</td>
<td>108</td>
</tr>
<tr>
<td>Calmar vampire</td>
<td>269</td>
</tr>
<tr>
<td>Calmars vampire</td>
<td>268</td>
</tr>
<tr>
<td>Calypso, Opisthoteuthis</td>
<td>251</td>
</tr>
<tr>
<td>Capricorn octopus</td>
<td>166, 208</td>
</tr>
<tr>
<td>campbelli, ‘Octopus’</td>
<td>208</td>
</tr>
<tr>
<td>campbelli, Octopus</td>
<td>208</td>
</tr>
<tr>
<td>Canthylus, Benthoctopus</td>
<td>94</td>
</tr>
<tr>
<td>Capartii, Eledone</td>
<td>121</td>
</tr>
<tr>
<td>Capricornicus, Abdopus</td>
<td>100</td>
</tr>
<tr>
<td>capricornicus, Octopus</td>
<td>62</td>
</tr>
<tr>
<td>capricornicus, Octopus</td>
<td>62</td>
</tr>
<tr>
<td>Caribbean reef octopus</td>
<td>191</td>
</tr>
<tr>
<td>carlgreni, Pareledone</td>
<td>121</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td>3, 24, 28</td>
</tr>
<tr>
<td>Challengeri, Grimpoteuthis</td>
<td>258</td>
</tr>
<tr>
<td>Challengeri, Graneledone</td>
<td>130, 133</td>
</tr>
<tr>
<td>Challengeri, Moschites</td>
<td>133</td>
</tr>
<tr>
<td>Chambered Nautilus</td>
<td>1</td>
</tr>
<tr>
<td>Changos octopus</td>
<td>54</td>
</tr>
<tr>
<td>Charcot’s octopus</td>
<td>154</td>
</tr>
<tr>
<td>charcoti, Eledone</td>
<td>154</td>
</tr>
<tr>
<td>charcoti, Pareledone</td>
<td>154, 156</td>
</tr>
<tr>
<td>Charrua octopus</td>
<td>183</td>
</tr>
<tr>
<td>charrua, Vosseledone</td>
<td>182, 183</td>
</tr>
<tr>
<td>chathamensis, Opisthoteuthis</td>
<td>251</td>
</tr>
<tr>
<td>Chestnut octopus</td>
<td>195</td>
</tr>
<tr>
<td>chierciae, ‘Octopus’</td>
<td>208</td>
</tr>
<tr>
<td>chierciae, Octopus</td>
<td>208</td>
</tr>
<tr>
<td>chinensis, Cistopus</td>
<td>16, 112</td>
</tr>
<tr>
<td>Chiptodi</td>
<td>44</td>
</tr>
<tr>
<td>Chunioteuthis</td>
<td>266</td>
</tr>
<tr>
<td>Chunioteuthis unguiculatus</td>
<td>266</td>
</tr>
<tr>
<td>Cirrate octopods</td>
<td>3, 33, 244</td>
</tr>
<tr>
<td>cirrhosa, Eledone</td>
<td>10, 11, 16, 29, 116, 117, 118</td>
</tr>
<tr>
<td>cirrhosus, Octopus</td>
<td>117</td>
</tr>
</tbody>
</table>

Cirriformes

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirroctopus</td>
<td>244, 245, 246</td>
</tr>
<tr>
<td>Cirroctopus Antarctica</td>
<td>247</td>
</tr>
<tr>
<td>Cirroctopus glacialis</td>
<td>246, 247</td>
</tr>
<tr>
<td>Cirroctopus hochbergi</td>
<td>247</td>
</tr>
<tr>
<td>Cirroctopus mawsoni</td>
<td>246, 247</td>
</tr>
<tr>
<td>Cirropoulpe de Müller</td>
<td>263</td>
</tr>
<tr>
<td>Cirropoulpe de Murray</td>
<td>264</td>
</tr>
<tr>
<td>Cirropoulpe</td>
<td>262</td>
</tr>
<tr>
<td>Cirropulpe de Müller</td>
<td>263</td>
</tr>
<tr>
<td>Cirropulpe de Murray</td>
<td>264</td>
</tr>
<tr>
<td>Cirropulpe</td>
<td>262</td>
</tr>
<tr>
<td>Cirrooctopod</td>
<td>262</td>
</tr>
<tr>
<td>Cirrooctopod</td>
<td>262</td>
</tr>
<tr>
<td>Cirroteuthidae</td>
<td>30, 244, 245, 246</td>
</tr>
<tr>
<td>Cirroteuthis</td>
<td>245, 262, 255</td>
</tr>
<tr>
<td>Cirroteuthis (Cirroteuthopsis) massuae</td>
<td>252</td>
</tr>
<tr>
<td>Cirroteuthis cf. mueller</td>
<td>263</td>
</tr>
<tr>
<td>Cirroteuthis gilchrist</td>
<td>267</td>
</tr>
<tr>
<td>Cirroteuthis glacialis</td>
<td>246</td>
</tr>
<tr>
<td>Cirroteuthis grimaldi</td>
<td>252</td>
</tr>
<tr>
<td>Cirroteuthis magna</td>
<td>264, 265</td>
</tr>
<tr>
<td>Cirroteuthis meangensis</td>
<td>258</td>
</tr>
<tr>
<td>Cirroteuthis megaperta</td>
<td>259</td>
</tr>
<tr>
<td>Cirroteuthis mueller</td>
<td>262, 263</td>
</tr>
<tr>
<td>Cirroteuthis pacifica</td>
<td>259</td>
</tr>
<tr>
<td>Cirroteuthis plena</td>
<td>259</td>
</tr>
<tr>
<td>Cirroteuthis umbellate</td>
<td>259</td>
</tr>
<tr>
<td>Cirrotauma</td>
<td>221, 262, 264</td>
</tr>
<tr>
<td>Cirrotauma magna</td>
<td>265</td>
</tr>
<tr>
<td>Cirrotauma murray</td>
<td>7, 264, 265</td>
</tr>
<tr>
<td>Cistopus</td>
<td>11, 13, 16, 32, 39, 110, 111</td>
</tr>
<tr>
<td>Cistopus bursarius</td>
<td>110</td>
</tr>
<tr>
<td>Cistopus chinensis</td>
<td>16, 112</td>
</tr>
<tr>
<td>Cistopus indicus</td>
<td>16, 110, 111, 112, 113</td>
</tr>
<tr>
<td>Cistopus taiwanicus</td>
<td>16, 113</td>
</tr>
<tr>
<td>Clyveroperi, Benthoctopus</td>
<td>94</td>
</tr>
<tr>
<td>coco, Octopus</td>
<td>170</td>
</tr>
<tr>
<td>Coconut octopus</td>
<td>76</td>
</tr>
<tr>
<td>COLEOIDEA</td>
<td>3, 24, 28</td>
</tr>
<tr>
<td>Combed octopus</td>
<td>119</td>
</tr>
<tr>
<td>Common octopus</td>
<td>10, 11, 41, 42, 46, 62</td>
</tr>
<tr>
<td>Common Sydney octopus</td>
<td>58</td>
</tr>
<tr>
<td>commonis, Octopus</td>
<td>199</td>
</tr>
<tr>
<td>consipadiceus, ‘Octopus’</td>
<td>11, 17, 159, 195</td>
</tr>
<tr>
<td>consipadiceus, Polyopus</td>
<td>195</td>
</tr>
<tr>
<td>cordiformis, Pinnoctopus</td>
<td>199, 200</td>
</tr>
<tr>
<td>cornuta, Argonaua</td>
<td>236, 237</td>
</tr>
<tr>
<td>cornuta, Pareledone</td>
<td>156</td>
</tr>
<tr>
<td>cornutus, Tritaxoepus</td>
<td>59</td>
</tr>
<tr>
<td>Crescent octopus</td>
<td>127</td>
</tr>
<tr>
<td>Cryptoteuthis</td>
<td>248, 254</td>
</tr>
<tr>
<td>Cryptoteuthis brevibracchiata</td>
<td>254, 255</td>
</tr>
<tr>
<td>Curled octopus</td>
<td>118</td>
</tr>
<tr>
<td>Curletishes</td>
<td>3</td>
</tr>
<tr>
<td>cuvieri, Callistocetus</td>
<td>109</td>
</tr>
<tr>
<td>cyanoe, ‘Octopus’</td>
<td>9, 10, 17, 100, 196, 197</td>
</tr>
<tr>
<td>cyanoe, Octopus</td>
<td>57, 196</td>
</tr>
<tr>
<td>cygnus, Argonaua</td>
<td>230, 231</td>
</tr>
</tbody>
</table>
Cephalopods of the World

D

Day octopus .. 197
DECAPODIFORMES 24
Decapods .. 24
defilippi, Macrotritopus 146,147
defilippi, Octopus 146
dentatus, Luteuthis 260,261
depressa, Opisthoteuthis 251,252
diaphana, Japetella 221,223,224
Diaphanous pelagic octopus 224
dierythraeus, Callistoctopus 103
dierythraeus, Octopus 103
Diguet’s pygmy octopus 160
digueti, Octopus 159,160
digueti, Paroctopus 159,160
diminutus, ‘Octopus’ 209
diminutus, Octopus 209
Discopolpe aux bras courts 254
Discopolpe de Agassiz 249
Discopolpe de Wülker 256
Discopolpe denté 260
Discopolpes ... 248
Discopolpe de Agassiz 249
Discopolpe de brazos cortos 254
Discopolpe de Wülker 256
Discopolpe dentado 260
Discopolpos ... 248
discoveryi, Grimpoteuthis 258
discus, Histoctopus 143
dofleini, Enteroctopus 6,9,11,12,16,17,124,125,
... 159,168,195,196,200
dofleini martini, Octopus 124
dofleini, Octopus 36
dofleini, Polypus 124
dolfini, Octopus 124,125
dongshaensis, Opisthoteuthis 251
E

Eledone ... 16,37,114,115,120,121
Eledone brevis 176,178
Eledone caparti 121
Eledone charcoti 154
Eledone cirrhosa 10,11,13,16,29,116,117,118
Eledone commune 117
Eledone gaucha 121
Eledone massyae 16,119
Eledone moschata 10,11,16,23,115,116,118
Eledone musquée 115
Eledone nigra 121
Eledone nouveau 64
‘Eledone’ palari 37,114,115,120
Eledone palari 120
Eledone peigne 119
Eledone rotunda 89,90
Eledone schultzei 121
Eledone thysanophora 121

Eledone turqueti 158
Eledone verrucosa 130,131
Eledonella .. 223
Eledonella pygmaea 222
Enigmatiteuthis 255,258
Enigmatiteuthis inominata 258
Enteroctopus 6,16,36,39,122
Enteroctopus dofoleni 6,9,11,12,16,17,
.. 124,125,159,168,195,196,200
Enteroctopus eureka 153
Enteroctopus magnificus 16,123,125,126
Enteroctopus megalocyathus 9,16,122,123
Enteroctopus membranaceous 122
Enteroctopus zealandicus 122,123,126,200
equivocus, Macrotritopus 145,146
ergasticus, Bathypolypus 87
ergasticus, Benthoctopus 87
ergasticus, Octopus 87
Euaxoctopus 28,38,127
Euaxoctopus panamensis 127,128
Euaxoctopus pillsburyae 128
Euaxoctopus scalenus 127,128
eureka, Enteroctopus 153
eureka, Muusoctopus 151,153
exannulatus, Amphioctopus 15,71
exannulatus, Octopus 71
expansa, Argonauta 236,237
extensa, Opisthoteuthis 251,258

F

faeroensis, Bathypolypus 85
fangsiao etchuanus, Octopus 72
fangsiao typicus, Octopus 72
fangsiao, Amphioctopus 15,72,73,83
fasciata, Hapalochlaena 138,139
favitius, ‘Octopus’ 209
tantius, Octopus 209
Fe’e mototai 78
felix, Pareledone 156
filosus, Octopus 58
Finned octopods 245
fitchi, ‘Octopus’ 209
fitchi, Octopus 209
Flapjack octopods 248
flindersi, Octopus 199
Fontaine’s octopus 166
fontianianus, Octopus 166
fontianianus, Robsonella 166,167
Fool Hoi Ma Chau 233
Football octopod 238
Football octopods 237
Fourhorn octopus 164
Fourpad octopus 173
framensis, Pareledone 157
fuscus, Benthoctopus 95
G

Galapagos octopus ..56
Galeoctopus ...9,129
Galeoctopus lateralis ...129,130
gardineri, ‘Octopus’ ...209
gardineri, Polypus ..209
gaucha, Eledone ..121
Gelatinous giant octopod ..226
Gelatinous giant octopods225
gelatus, Tremoctopus ...216,240,243
Gemeiner Krake ...44
Giant Antarctic octopus ...148
gibbsi, Octopus ..42,57
gilbertianus, Polypus ..124
gilchristi, Cirroteuthis ..267
gilchristi, Stauroteuthis ..267
glacer, Polypus ...95
glacialis, Cirroteuthis ...246,247
glacialis, Cirroteuthis ...246,247
glacialis, Grimpoteuthis ...246
Glass octopus ...220
Glass octopods ..219
Gloomy octopod ..57
Gold-spot octopus ...72
gonzalezii, Graneledonegonorus, ‘Octopus’133
gorgonius, Octopus ..209
gracilis, Tremoctopus ...240,243
gracilis, Octopus ...145,243
Graneledone ..38,130,134,141
Graneledone antarctica ..130,132
Graneledone boreopacifica133
Graneledone challengeri ...130,133
Graneledone gonzalezii ..133
Graneledone macroyti ...133
Graneledone pacifica ...133
Graneledone polymorpha ..64
Graneledone setebos ..148
Graneledone taniwha kubodera134
Graneledone taniwha taniwha134
Graneledone verrucosa ...131,132
Graneledone yamana ...130,134
granulatus, Octopus ...70,73,74
graptus, Callistoctopus ..16,104
graptus, Octopus ..104
Greater argonaut ...230
Greater blue-ringed octopus137
grimalderi, Opisthototeuthis252
grimalderi, Cirroteuthis ...252
Grimpella ...40,135
Grimpella thamaestocheir135
GRIMPOTEUTHIDAE ...244,248
Grimpoteuthis ...6,244,246,248,251,254,259,258,259
Grimpoteuthis abyssicola ...257
Grimpoteuthis antarctica ..247
Grimpoteuthis bathynectes257
Grimpoteuthis boylei ...257
Grimpoteuthis brauni ...250

Grimpoteuthis challenger ..258
Grimpoteuthis discoveryi258
Grimpoteuthis glacialis ..246
Grimpoteuthis hippocrepium258
Grimpoteuthis innominata258
Grimpoteuthis meangensis258
Grimpoteuthis megaptera259
Grimpoteuthis pacifica ..259
Grimpoteuthis plea ..259
Grimpoteuthis tuftsi ..259
Grimpoteuthis umbellata257,259
Grimpoteuthis wuelkeri ...256
grönlandicus, Bathypolypus85
gros poulpe bleu ..196
gruneri, Argonauta ..236,237
Gunter’s octopus ..177
gunteri, Thaumeledone ..177
Haliphron ..34,225,226
Haliphron atlanticus ...6,216,226,227,228
HALIPHRONIDAE ..226
Hammer octopus ..189
Hapalochlaena ...7,9,17,27,36,38,136
Hapalochlaena fasciata ...138,139
Hapalochlaena lunulata ...17,136,137,138
Hapalochlaena maculosa139,140
Hapalochlaena nierstraszi140
hardwickei, Octopus ...68
hardyi, Opisthototeuthi ...252
hamandi, Octopus ...61
harpedon, ‘Octopus’ ..210
harpedon, Octopus ...210
harrissoni, Moschites ...157
harrissoni, Pareledone ..157
hattai, ‘Octopus’ ..210
hattai, Polypus ...210
hawiensis, ‘Octopus’ ...210
hawiensis, Octopus ...210
He’e ...197
herdmanii, Polypus ...196
hians, Argonauta ..26,228,229,232,233
hippocrepium, Grimpoteuthis258
hippocrepium, Stauroteuthis258
Histoctopus ...39,141
Histoctopus discus ..143
Histoctopus zikasae ..141,142
hochbergii, Cirroteuthis ...247
hokkaidensis, Benthoctopus95
hokkaidensis, Polypus ..95
hongkongensis, ‘Octopus’17,159,210
hongkongensis, Polypus ...210
Horned octopus ...10,117
horridus, Abdopus ...60
horridus, Octopus ..36,59,61
horstii, Octopus ...196
hoylei, Pteroctopus ...163,165
hoylei, Polypus ..165
Hubb’s octopus ...50
hubbsorum, Octopus ...50
humilis, ‘Octopus’ ...211
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laai Por</td>
<td>113</td>
</tr>
<tr>
<td>Icy finned octopus</td>
<td>246</td>
</tr>
<tr>
<td>Iridako</td>
<td>73</td>
</tr>
<tr>
<td>Incirrate octopods</td>
<td>3,33</td>
</tr>
<tr>
<td>indicus, Cistopus</td>
<td>16,110,111,112,113</td>
</tr>
<tr>
<td>indicus, Octopus</td>
<td>110</td>
</tr>
<tr>
<td>indicus, Teretoctopus</td>
<td>173</td>
</tr>
<tr>
<td>infernalis, Vampyroteuthis</td>
<td>5,25,29,33,268,269</td>
</tr>
<tr>
<td>innominata, Grimpoteuthis</td>
<td>258</td>
</tr>
<tr>
<td>innominata, Enigmatiteuthis</td>
<td>258</td>
</tr>
<tr>
<td>insularis, Octopus</td>
<td>11,15,41,42,45,51,52</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>januarii, Benthoctopus</td>
<td>151</td>
</tr>
<tr>
<td>januarii, Muusoctopus</td>
<td>151,152</td>
</tr>
<tr>
<td>januarii, Octopus</td>
<td>151</td>
</tr>
<tr>
<td>January octopus</td>
<td>151</td>
</tr>
<tr>
<td>Japetella</td>
<td>223</td>
</tr>
<tr>
<td>Japetella diaphana</td>
<td>221,223,224</td>
</tr>
<tr>
<td>japonica, Opisthoteuthis</td>
<td>251,252</td>
</tr>
<tr>
<td>johnsoniana, Benthoctopus</td>
<td>95</td>
</tr>
<tr>
<td>joubini, ‘Octopus’</td>
<td>159,211</td>
</tr>
<tr>
<td>joubini, Octopus</td>
<td>211</td>
</tr>
<tr>
<td>Joubinina</td>
<td>166</td>
</tr>
<tr>
<td>juneau, Scaeurgus</td>
<td>172</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>kagoshimensis, Amphiocopus</td>
<td>16,69,73,74,76</td>
</tr>
<tr>
<td>kagoshimensis, Amphiocopus cf.</td>
<td>16,74</td>
</tr>
<tr>
<td>kagoshimensis, Octopus</td>
<td>68,73,74</td>
</tr>
<tr>
<td>kaharoa, ‘Octopus’</td>
<td>211</td>
</tr>
<tr>
<td>kaharoa, Octopus</td>
<td>211</td>
</tr>
<tr>
<td>Kantendako</td>
<td>228</td>
</tr>
<tr>
<td>Karnita tal misk</td>
<td>116</td>
</tr>
<tr>
<td>karubar, Benthoctopus</td>
<td>92</td>
</tr>
<tr>
<td>Karubar octopus</td>
<td>92</td>
</tr>
<tr>
<td>kaurna, ‘Octopus’</td>
<td>198</td>
</tr>
<tr>
<td>kaurna, Octopus</td>
<td>198</td>
</tr>
<tr>
<td>kerdacedensis, ‘Octopus’</td>
<td>212</td>
</tr>
<tr>
<td>kerdacedensis, Pinnoctopus</td>
<td>212</td>
</tr>
<tr>
<td>King ceculate octopus</td>
<td>80</td>
</tr>
<tr>
<td>Knobbed Argonaut</td>
<td>234</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Laai Por</td>
<td>113</td>
</tr>
<tr>
<td>laqueus, ‘Octopus’</td>
<td>212</td>
</tr>
<tr>
<td>laqueus, Octopus</td>
<td>212</td>
</tr>
<tr>
<td>lateralis, Galeoctopus</td>
<td>129,130</td>
</tr>
<tr>
<td>lechenauntii, Callistoctopus</td>
<td>109</td>
</tr>
<tr>
<td>lechenauntii, Octopus</td>
<td>109</td>
</tr>
<tr>
<td>leididerma, Benthoctopus</td>
<td>95</td>
</tr>
<tr>
<td>leididerma, Polyopus</td>
<td>95</td>
</tr>
<tr>
<td>Lesser argonaut</td>
<td>232</td>
</tr>
<tr>
<td>Lesser twospotted octopus</td>
<td>48</td>
</tr>
<tr>
<td>levis, Benthoctopus</td>
<td>96</td>
</tr>
<tr>
<td>levis, Octopus</td>
<td>96</td>
</tr>
<tr>
<td>Lilliput long-arm octopus</td>
<td>146</td>
</tr>
<tr>
<td>litoralis, Ameloctopus</td>
<td>66,67</td>
</tr>
<tr>
<td>lobensis, Octopus</td>
<td>206</td>
</tr>
<tr>
<td>longibrachus akambei, Muusoctopus</td>
<td>153</td>
</tr>
<tr>
<td>longibrachus longibrachus, Muusoctopus</td>
<td>153</td>
</tr>
<tr>
<td>longibrachus, Benthoctopus</td>
<td>153</td>
</tr>
<tr>
<td>lothei, Benthoctopus</td>
<td>87</td>
</tr>
<tr>
<td>lunulata, Hapalochlaena</td>
<td>17,136,137,138</td>
</tr>
<tr>
<td>lunulatus, Octopus</td>
<td>137</td>
</tr>
<tr>
<td>luteus, Callistoctopus</td>
<td>16,105</td>
</tr>
<tr>
<td>luteus, Octopus cf.</td>
<td>105</td>
</tr>
<tr>
<td>luteus, Polyopus</td>
<td>105</td>
</tr>
<tr>
<td>LUTEUTHIDAE</td>
<td>248</td>
</tr>
<tr>
<td>Luteuthis</td>
<td>244,248,260</td>
</tr>
<tr>
<td>Luteuthis dentatus</td>
<td>260,261</td>
</tr>
<tr>
<td>Luteuthis shuishi</td>
<td>261</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Macrochelaena</td>
<td>40,144</td>
</tr>
<tr>
<td>Macrochelaena winckworth</td>
<td>144,145</td>
</tr>
<tr>
<td>macrophallus, Benthoctopus</td>
<td>94,98</td>
</tr>
<tr>
<td>macropus, Callistoctopus</td>
<td>99,106</td>
</tr>
<tr>
<td>macropus var. minor, Polyopus</td>
<td>200</td>
</tr>
<tr>
<td>macropus, Octopus</td>
<td>36,99,105,106,107,200</td>
</tr>
<tr>
<td>macropus, Polyopus</td>
<td>200</td>
</tr>
<tr>
<td>Macrotritopus</td>
<td>38,145,146</td>
</tr>
<tr>
<td>Macrotritopus defilippi</td>
<td>146,147</td>
</tr>
<tr>
<td>Macrotritopus equivocus</td>
<td>145,146</td>
</tr>
<tr>
<td>macrotyla, Graneledone</td>
<td>133</td>
</tr>
<tr>
<td>maculosa, Hapalochlaena</td>
<td>139,140</td>
</tr>
<tr>
<td>maculosis, Octopus</td>
<td>139</td>
</tr>
<tr>
<td>Madako</td>
<td>47</td>
</tr>
<tr>
<td>madokai, Polyopus</td>
<td>210</td>
</tr>
<tr>
<td>magellanicus, Benthoctopus</td>
<td>153</td>
</tr>
<tr>
<td>magna, Cirroteuthis</td>
<td>264</td>
</tr>
<tr>
<td>magna, Cirrothauma</td>
<td>265</td>
</tr>
<tr>
<td>magnificus, Enteroctopus</td>
<td>16,123,125,126</td>
</tr>
<tr>
<td>magnificus, Octopus</td>
<td>125</td>
</tr>
<tr>
<td>magnocellatus, Callistoctopus</td>
<td>196</td>
</tr>
<tr>
<td>mangoldae, Microedone</td>
<td>150</td>
</tr>
<tr>
<td>mangoldi, Microedone</td>
<td>149,150</td>
</tr>
<tr>
<td>Maori octopus</td>
<td>199</td>
</tr>
<tr>
<td>marorum, ‘Octopus’</td>
<td>17,199,200</td>
</tr>
<tr>
<td>marorum, Octopus</td>
<td>199</td>
</tr>
<tr>
<td>marginatus, Amphiocopus</td>
<td>9,16,69,75,76</td>
</tr>
<tr>
<td>marginatus, Amphiocopus cf.</td>
<td>16</td>
</tr>
<tr>
<td>marginatus, Octopus</td>
<td>75</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Mariles, ‘Octopus’</td>
<td>212</td>
</tr>
<tr>
<td>marmoratus, Octopus</td>
<td>196</td>
</tr>
<tr>
<td>marshalli, ‘Thaumoctopus’</td>
<td>177, 178</td>
</tr>
<tr>
<td>marshalli, Thaumoctopus</td>
<td>178</td>
</tr>
<tr>
<td>massae, Opisthoteuthis</td>
<td>252</td>
</tr>
<tr>
<td>massae, Cirroteuthis (Cirroteuthopsis)</td>
<td>252</td>
</tr>
<tr>
<td>mawsoni, Cirroctopus</td>
<td>246, 247</td>
</tr>
<tr>
<td>moy, Octopus</td>
<td>9, 10, 11, 15, 42, 53, 54</td>
</tr>
<tr>
<td>meangensis, Cirroctopus</td>
<td>258</td>
</tr>
<tr>
<td>meangensis, Grimpoteuthis</td>
<td>251, 258</td>
</tr>
<tr>
<td>medusoides, Opisthoteuthis</td>
<td>252</td>
</tr>
<tr>
<td>Megaleledone</td>
<td>38, 148</td>
</tr>
<tr>
<td>Megaleledone seni</td>
<td>148, 149</td>
</tr>
<tr>
<td>Megaleledone setebo</td>
<td>148, 149</td>
</tr>
<tr>
<td>megalocyathus, Enteroctopus</td>
<td>9, 16, 122, 123</td>
</tr>
<tr>
<td>megalocyathus, Octopus</td>
<td>122</td>
</tr>
<tr>
<td>megalops, Octopus</td>
<td>20</td>
</tr>
<tr>
<td>megalops, Paroctopus</td>
<td>210</td>
</tr>
<tr>
<td>megaperta, Grimpoteuthis</td>
<td>259</td>
</tr>
<tr>
<td>megaperta, Cirroteuthis</td>
<td>259</td>
</tr>
<tr>
<td>Megapulpo gelatinoso</td>
<td>226</td>
</tr>
<tr>
<td>Megapulpos gelatinosos</td>
<td>225</td>
</tr>
<tr>
<td>membraneceus, Amphioctopus</td>
<td>68, 83</td>
</tr>
<tr>
<td>membraneceus, Enteroctopus</td>
<td>122</td>
</tr>
<tr>
<td>membranecus, Octopus</td>
<td>67, 72, 73, 79, 80, 81, 83</td>
</tr>
<tr>
<td>mercurialis, Octopus</td>
<td>159, 161</td>
</tr>
<tr>
<td>mercatoris, Paroctopus</td>
<td>161</td>
</tr>
<tr>
<td>mero, ‘Octopus’</td>
<td>212</td>
</tr>
<tr>
<td>mero, Octopus</td>
<td>212</td>
</tr>
<tr>
<td>meso, Opisthoteuthis</td>
<td>253</td>
</tr>
<tr>
<td>Mexican foureyed octopus</td>
<td>10, 53</td>
</tr>
<tr>
<td>microcotyla, Bolitaena</td>
<td>222, 223</td>
</tr>
<tr>
<td>Microledone</td>
<td>38, 149</td>
</tr>
<tr>
<td>Microledone mangoldae</td>
<td>149, 150</td>
</tr>
<tr>
<td>Microledone mangoldi</td>
<td>150</td>
</tr>
<tr>
<td>microphalones, ‘Octopus’</td>
<td>17, 212</td>
</tr>
<tr>
<td>microphalones, Octopus</td>
<td>212</td>
</tr>
<tr>
<td>micropyrus, ‘Octopus’</td>
<td>29, 213</td>
</tr>
<tr>
<td>micropyrus, Octopus</td>
<td>213</td>
</tr>
<tr>
<td>micro, ‘Octopus’</td>
<td>213</td>
</tr>
<tr>
<td>micro, Octopus</td>
<td>213</td>
</tr>
<tr>
<td>Mimic octopus</td>
<td>179, 187</td>
</tr>
<tr>
<td>mimicus, Thaumoctopus</td>
<td>17, 179, 180, 187</td>
</tr>
<tr>
<td>mimicus, Octopus</td>
<td>11, 15, 41, 42, 51, 54, 55, 166</td>
</tr>
<tr>
<td>minor, ‘Octopus’</td>
<td>11, 13, 17, 200, 201</td>
</tr>
<tr>
<td>Mizudako</td>
<td>125</td>
</tr>
<tr>
<td>mollis, Alloposus</td>
<td>226</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td>3, 24, 28</td>
</tr>
<tr>
<td>Moon octopus</td>
<td>204</td>
</tr>
<tr>
<td>Moscardino bianco</td>
<td>118</td>
</tr>
<tr>
<td>Moscardino muschiato</td>
<td>116</td>
</tr>
<tr>
<td>Moscardino rosso</td>
<td>116</td>
</tr>
<tr>
<td>moschata, Octopus</td>
<td>114</td>
</tr>
<tr>
<td>moschata, Eledone</td>
<td>10, 11, 16, 23, 115, 116, 118</td>
</tr>
<tr>
<td>moschatus, Octopus</td>
<td>115</td>
</tr>
<tr>
<td>Moschites</td>
<td>114</td>
</tr>
<tr>
<td>Moschites adelieana</td>
<td>65</td>
</tr>
<tr>
<td>Moschites albida</td>
<td>91</td>
</tr>
<tr>
<td>Moschites aurorae</td>
<td>156</td>
</tr>
<tr>
<td>Moschites brevis</td>
<td>119</td>
</tr>
<tr>
<td>Moschites challenger</td>
<td>133</td>
</tr>
<tr>
<td>Moschites harrissoni</td>
<td>157</td>
</tr>
<tr>
<td>Moschites nigra</td>
<td>121</td>
</tr>
<tr>
<td>Moscocotapa</td>
<td>118</td>
</tr>
<tr>
<td>mototi, Amphioctopus</td>
<td>77, 78</td>
</tr>
<tr>
<td>mototi, Octopus</td>
<td>77</td>
</tr>
<tr>
<td>Müller’s cirroctopod</td>
<td>263</td>
</tr>
<tr>
<td>muelleri, Cirroteuthis</td>
<td>262, 263</td>
</tr>
<tr>
<td>muelleri, Scieadophorus</td>
<td>263</td>
</tr>
<tr>
<td>Murray’s cirroctopod</td>
<td>264</td>
</tr>
<tr>
<td>murrayi, Cirrothauma</td>
<td>7, 264, 265</td>
</tr>
<tr>
<td>Muscardin</td>
<td>116</td>
</tr>
<tr>
<td>Musky octopus</td>
<td>10, 116, 116</td>
</tr>
<tr>
<td>mutilans, ‘Octopus’</td>
<td>213</td>
</tr>
<tr>
<td>mutilans, Octopus</td>
<td>213</td>
</tr>
<tr>
<td>Muusoctopus</td>
<td>40, 92, 151</td>
</tr>
<tr>
<td>Muusoctopus bizkoi</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus eureka</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus januarii</td>
<td>151, 152</td>
</tr>
<tr>
<td>Muusoctopus longibrachus akambei</td>
<td>153</td>
</tr>
<tr>
<td>Muusoctopus longibrachus longibrachus</td>
<td>153</td>
</tr>
<tr>
<td>Muzgavac</td>
<td>116</td>
</tr>
<tr>
<td>Myopsid squids</td>
<td>1, 3</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>nanus, ‘Octopus’</td>
<td>213</td>
</tr>
<tr>
<td>nanus, Octopus</td>
<td>213</td>
</tr>
<tr>
<td>NAUTILOIDEA</td>
<td>3, 24</td>
</tr>
<tr>
<td>Nautilus</td>
<td>3, 27</td>
</tr>
<tr>
<td>Nautiluses</td>
<td>3</td>
</tr>
<tr>
<td>Neglected ocellate octopus</td>
<td>79</td>
</tr>
<tr>
<td>neglectus, Amphioctopus</td>
<td>16, 79</td>
</tr>
<tr>
<td>neglectus, Octopus</td>
<td>79, 82</td>
</tr>
<tr>
<td>nesi, Sciaegurus</td>
<td>162</td>
</tr>
<tr>
<td>nierstraai, Hapalocheleana</td>
<td>140</td>
</tr>
<tr>
<td>nierstraai, Octopus</td>
<td>140</td>
</tr>
<tr>
<td>nigra, Eledone</td>
<td>121</td>
</tr>
<tr>
<td>nigra, Moschites</td>
<td>121</td>
</tr>
<tr>
<td>nocturnus, Callistocotopus</td>
<td>16, 107</td>
</tr>
<tr>
<td>nocturnus, Octopus</td>
<td>107</td>
</tr>
<tr>
<td>nodosa, Argonauta</td>
<td>234</td>
</tr>
<tr>
<td>nodosus, Argonauta</td>
<td>234</td>
</tr>
<tr>
<td>normani, Benthoctopus</td>
<td>96</td>
</tr>
<tr>
<td>normani, Polypus</td>
<td>96</td>
</tr>
<tr>
<td>North Atlantic octopus</td>
<td>85</td>
</tr>
<tr>
<td>North Pacific big-eye octopus</td>
<td>193</td>
</tr>
<tr>
<td>North Pacific giant octopus</td>
<td>124</td>
</tr>
<tr>
<td>Northern starrey octopus</td>
<td>73</td>
</tr>
<tr>
<td>nouryi, Argonauta</td>
<td>228, 229, 236, 237</td>
</tr>
</tbody>
</table>

O

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>obesus, Octopus</td>
<td>85</td>
</tr>
<tr>
<td>ocellate, Octopus sp.A</td>
<td>7, 68</td>
</tr>
</tbody>
</table>
OCTOPODIFORMES

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octopus</td>
<td>abaculus</td>
<td>1, 24</td>
</tr>
<tr>
<td>Octopus</td>
<td>aculeatus</td>
<td>36, 69, 73, 74, 76</td>
</tr>
<tr>
<td>Octopus</td>
<td>adamsi</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>aegina</td>
<td>36, 68, 69, 73, 74, 76</td>
</tr>
<tr>
<td>Octopus</td>
<td>alecto</td>
<td>17, 187, 188</td>
</tr>
<tr>
<td>Octopus</td>
<td>alpaeus</td>
<td>100</td>
</tr>
<tr>
<td>Octopus</td>
<td>arcticus</td>
<td>85</td>
</tr>
<tr>
<td>Octopus</td>
<td>areolatus</td>
<td>72</td>
</tr>
<tr>
<td>Octopus</td>
<td>argus</td>
<td>207</td>
</tr>
<tr>
<td>Octopus</td>
<td>aspilosomatis</td>
<td>102</td>
</tr>
<tr>
<td>Octopus</td>
<td>australis</td>
<td>17, 189, 190</td>
</tr>
<tr>
<td>Octopus</td>
<td>australis</td>
<td>189</td>
</tr>
<tr>
<td>Octopus</td>
<td>bairdi</td>
<td>86</td>
</tr>
<tr>
<td>Octopus</td>
<td>balboai</td>
<td>207</td>
</tr>
<tr>
<td>Octopus</td>
<td>balboai</td>
<td>207</td>
</tr>
<tr>
<td>Octopus</td>
<td>berenice</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>berrima</td>
<td>17, 190, 191</td>
</tr>
<tr>
<td>Octopus</td>
<td>berrima</td>
<td>190</td>
</tr>
<tr>
<td>Octopus</td>
<td>bimaculatus</td>
<td>15, 47, 48, 50, 203</td>
</tr>
<tr>
<td>Octopus</td>
<td>bimaculoides</td>
<td>15, 47, 48, 49, 159, 208</td>
</tr>
<tr>
<td>Octopus</td>
<td>bocki</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>bocki</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>briaeus</td>
<td>17, 191, 192</td>
</tr>
<tr>
<td>Octopus</td>
<td>briaeus</td>
<td>191</td>
</tr>
<tr>
<td>Octopus</td>
<td>brocki</td>
<td>72</td>
</tr>
<tr>
<td>Octopus</td>
<td>bulbus</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>bulbus</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>bunurong</td>
<td>192, 193</td>
</tr>
<tr>
<td>Octopus</td>
<td>bunurong</td>
<td>192</td>
</tr>
<tr>
<td>Octopus</td>
<td>burri</td>
<td>69</td>
</tr>
<tr>
<td>Octopus</td>
<td>californicus</td>
<td>17, 193, 194, 195</td>
</tr>
<tr>
<td>Octopus</td>
<td>californicus</td>
<td>193, 194</td>
</tr>
<tr>
<td>Octopus</td>
<td>campbelli</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>capricornicus</td>
<td>62</td>
</tr>
<tr>
<td>Octopus</td>
<td>cf. luteus</td>
<td>105</td>
</tr>
<tr>
<td>Octopus</td>
<td>cf. tetricus</td>
<td>15, 58</td>
</tr>
<tr>
<td>Octopus</td>
<td>chierchieae</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>chierchieae</td>
<td>208</td>
</tr>
<tr>
<td>Octopus</td>
<td>cirrhosus</td>
<td>117</td>
</tr>
<tr>
<td>Octopus</td>
<td>coco</td>
<td>170</td>
</tr>
<tr>
<td>Octopus</td>
<td>communis</td>
<td>199</td>
</tr>
<tr>
<td>Octopus</td>
<td>conispadiceus</td>
<td>17, 195, 196</td>
</tr>
<tr>
<td>Octopus</td>
<td>cyanea</td>
<td>8, 10, 17, 57, 100, 196, 197</td>
</tr>
<tr>
<td>Octopus</td>
<td>cyanea</td>
<td>196</td>
</tr>
<tr>
<td>Octopus</td>
<td>defilippi</td>
<td>146</td>
</tr>
<tr>
<td>Octopus</td>
<td>dierythraeus</td>
<td>103</td>
</tr>
<tr>
<td>Octopus</td>
<td>digueti</td>
<td>159, 160</td>
</tr>
<tr>
<td>Octopus</td>
<td>diminutus</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>dofleini</td>
<td>36, 125</td>
</tr>
<tr>
<td>Octopus</td>
<td>dofleini martini</td>
<td>124</td>
</tr>
<tr>
<td>Octopus</td>
<td>dolfini</td>
<td>69</td>
</tr>
<tr>
<td>Octopus</td>
<td>ergaticus</td>
<td>87</td>
</tr>
<tr>
<td>Octopus</td>
<td>examnatus</td>
<td>71</td>
</tr>
<tr>
<td>Octopus</td>
<td>fangsiou etchuanus</td>
<td>72</td>
</tr>
<tr>
<td>Octopus</td>
<td>fangsiou typicus</td>
<td>72</td>
</tr>
<tr>
<td>Octopus</td>
<td>favonius</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>filosus</td>
<td>58</td>
</tr>
<tr>
<td>Octopus</td>
<td>fitchi</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>flindersi</td>
<td>199</td>
</tr>
<tr>
<td>Octopus</td>
<td>fontanius</td>
<td>166</td>
</tr>
<tr>
<td>Octopus</td>
<td>gardineri</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>gardineri</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>gibbsi</td>
<td>57</td>
</tr>
<tr>
<td>Octopus</td>
<td>gorgonus</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>gorgonus</td>
<td>209</td>
</tr>
<tr>
<td>Octopus</td>
<td>gracilis</td>
<td>145, 243</td>
</tr>
<tr>
<td>Octopus</td>
<td>granulatus</td>
<td>70, 73, 74</td>
</tr>
<tr>
<td>Octopus</td>
<td>grantus</td>
<td>104</td>
</tr>
<tr>
<td>Octopus</td>
<td>hardwicki</td>
<td>68</td>
</tr>
<tr>
<td>Octopus</td>
<td>harmandi</td>
<td>61</td>
</tr>
<tr>
<td>Octopus</td>
<td>hubbsorum</td>
<td>15, 50, 51</td>
</tr>
<tr>
<td>Octopus</td>
<td>humilis</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>humilis</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>hummelincki</td>
<td>58</td>
</tr>
<tr>
<td>Octopus</td>
<td>huttoni</td>
<td>211, 215</td>
</tr>
<tr>
<td>Octopus</td>
<td>hyades</td>
<td>153</td>
</tr>
<tr>
<td>Octopus</td>
<td>incella</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>incella</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>indicus</td>
<td>110</td>
</tr>
<tr>
<td>Octopus</td>
<td>insularis</td>
<td>15, 42, 51, 52</td>
</tr>
<tr>
<td>Octopus</td>
<td>januarii</td>
<td>151</td>
</tr>
<tr>
<td>Octopus</td>
<td>joubini</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>joubini</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>kagoshimensis</td>
<td>88, 73</td>
</tr>
<tr>
<td>Octopus</td>
<td>kaharaoa</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>kaharaoa</td>
<td>211</td>
</tr>
<tr>
<td>Octopus</td>
<td>kauina</td>
<td>198</td>
</tr>
<tr>
<td>Octopus</td>
<td>kauina</td>
<td>198</td>
</tr>
<tr>
<td>Octopus</td>
<td>kermadecensis</td>
<td>212</td>
</tr>
<tr>
<td>Octopus</td>
<td>laqueus</td>
<td>212</td>
</tr>
<tr>
<td>Octopus</td>
<td>laqueus</td>
<td>212</td>
</tr>
<tr>
<td>Octopus</td>
<td>lechenaultii</td>
<td>109</td>
</tr>
<tr>
<td>Octopus</td>
<td>levis</td>
<td>96</td>
</tr>
<tr>
<td>Octopus</td>
<td>lobensis</td>
<td>206</td>
</tr>
<tr>
<td>Octopus</td>
<td>lumulatus</td>
<td>137</td>
</tr>
<tr>
<td>Octopus</td>
<td>macroopus</td>
<td>36, 99, 105, 106, 107, 200</td>
</tr>
</tbody>
</table>
Octopus maculosus ... 139
Octopus magnificus ... 125
‘Octopus’ maorum .. 17,199,200
Octopus maorum ... 199
Octopus marginatus .. 75
‘Octopus’ mariles ... 212
Octopus mariles ... 212
Octopus marmoratus .. 196
Octopus maya ... 15,53,54
Octopus megalocyathus ... 122
Octopus megalops .. 210
Octopus mercatoris .. 161
‘Octopus’ mernoo .. 212
Octopus mernoo ... 212
‘Octopus’ microphthalmus 17,212
Octopus microphthalmus .. 212
‘Octopus’ micropyrus ... 29,213
Octopus micropyrus ... 213
‘Octopus’ micros ... 213
Octopus micros ... 213
Octopus minus ... 15,54,55,166
‘Octopus’ minor ... 17,200,201
Octopus moschata .. 114
Octopus moschatus .. 115
Octopus mutila ... 77
‘Octopus’ mutilans .. 213
Octopus mutilans .. 213
‘Octopus’ nanus ... 213
Octopus nanus ... 213
Octopus neglectus ... 79
Octopus nierstraszi .. 140
Octopus nocturnus ... 107
Octopus obsesus .. 85
Octopus ocellata sp. A .. 80
Octopus ocellata sp. C .. 81
Octopus ocellatus ... 73
Octopus oculifer .. 15,56
‘Octopus’ oliveri .. 213
‘Octopus’ pallidus .. 13,17,201,202
Octopus pallidus ... 201
‘Octopus’ parvus .. 214
Octopus patagonicus ... 122
‘Octopus’ penicillifer .. 214
Octopus penicillifer .. 214
Octopus pictus var. fasciata 138
Octopus polyzenia ... 84
‘Octopus’ pumilus ... 214
Octopus pumilus .. 214
Octopus punctatus ... 124
‘Octopus’ pyrum ... 214
Octopus pyrum ... 214
Octopus rapanui .. 108
Octopus rex ... 80
Octopus roboroni ... 84
Octopus roosevelti .. 56
‘Octopus’ rubescens .. 17,202,203
Octopus rubescens .. 202
Octopus rugosus .. 50,55
‘Octopus’ salutii ... 214

Octopus salutii ... 214
‘Octopus’ selene .. 204,207
Octopus selene ... 204
Octopus sensu stricto ... 28,36,39,40,144,166,187,197
Octopus siamensis ... 81
Octopus sinensis ... 46
Octopus sp. 1 ... 80
Octopus sp. 5 ... 80
Octopus sp. 15 .. 212
Octopus sp. 17 .. 146
Octopus sp. A ... 80
Octopus sp. B ... 79
Octopus sp. D ... 46,47
Octopus sponalis .. 87
Octopus striolatus ... 75
‘Octopus’ superciliosus ... 215
Octopus superciliosus .. 215
‘Octopus’ tehuelchus ... 13,17,205
Octopus tehuelchus ... 205
Octopus tenebricans ... 62
Octopus tetracirrhus ... 29,163,164
Octopus tetricus ... 15,57,58,59
Octopus tonganus ... 63,196
Octopus unicirrhus ... 170
Octopus variabilis ... 200,201
Octopus varuna ... 84
‘Octopus’ veligeri .. 205,206,207
Octopus veligeri ... 207
Octopus vincenti ... 69
‘Octopus’ vitiensis .. 17,215
Octopus vitiensis .. 215
Octopus vulgaris .. 80,47,54,56,192
‘Octopus’ warringa ... 215
Octopus warringa ... 215
Octopus winckworthi ... 144
‘Octopus’ wolf ... 215
Octopus zealandicus ... 226
‘Octopus’ zonatus ... 215
Octopus zonatus ... 215
Octopuses .. 36
oculifer, Octopus ... 15,51,56
Octyphoe ... 8,31,35,237,238
Ocythoe tuberculata ... 237,238,239
OCYTHOIDAE .. 34,35,225,228,237
Oegopsid squids ... 1,3
Old woman octopus ... 110
oliveri, ‘Octopus’ ... 213
oliveri, Octopus ... 213
oliveri, Polyplu ... 213
OPISTHOTEUTHIDAE ... 244,245,248
Opiosthoteuthis ..244,245,248,250
Opiosthoteuthis agassizii ... 249
Opiosthoteuthis albatrossi .. 250
Opiosthoteuthis borealis .. 250
Opiosthoteuthis bruuni .. 250
Opiosthoteuthis californiana 250
Opiosthoteuthis californicus 250
Opiosthoteuthis calypso .. 251
Opisthoteuthis chathamensis .. 251
Opisthoteuthis depressa .. 251
Opisthoteuthis dongshaensis .. 251
Opisthoteuthis extensa .. 251
Opisthoteuthis grimaldii ... 252
Opisthoteuthis hardyi .. 252
Opisthoteuthis japonica .. 252
Opisthoteuthis medusae ... 252
Opisthoteuthis mero .. 253
Opisthoteuthis persephone ... 253
Opisthoteuthis philippi .. 253
Opisthoteuthis pluto ... 253
Opisthoteuthis robsoni ... 253
Opisthoteuthis (Teuthidiscus) pluto 253
Oregonae, Benthoptus .. 96
Oregonensis, Benthoptus .. 96
Ornatus, Callistoctopus ...16,99,100
Ovulum, Amphiocopus .. 83
Ovulum, Polypus ... 83

P

Pacific, Grimpoteuthis .. 259
Pacific, Argonauta ... 230,231
Pacific, Cirroteuthis .. 259
Pacific, Graneledone ... 133
Pali, ‘Eledone’ ..37,114,115,120
Pali, Eledone ... 120
Pale octopus .. 202
Pallidus, ‘Octopus’ .. 13,17,201,202
Pallidus, Octopus .. 201
Panamensis, Euaxoctopus ... 127
Panchroma, Pareledone ... 154,157
Paper nautiluses .. 6,228
Paralbidia, Praeaultus ... 162,163
Pareledone ... 38,64,154
Pareledone aequipapillae .. 155
Pareledone albmaculata ... 155
Pareledone aurata ... 156
Pareledone aurea .. 156
Pareledone carlgreni ... 121
Pareledone charcoti ... 154,155
Pareledone cornuta .. 156
Pareledone felix .. 156
Pareledone framensis .. 157
Pareledone harrisoni ... 157
Pareledone panchroma ... 157
Pareledone polymorpha ... 65
Pareledone pydzensis .. 157
Pareledone serperstraata .. 158
Pareledone subitize .. 158
Pareledone turqueti ... 158
Paroctopus ... 40,159
Paroctopus digueti ... 159,160
Paroctopus megalops ... 159,210
Paroctopus mercatoris .. 159,161
Paroctopus tenuicirrus .. 159,210
Parvus, ‘Octopus’ .. 214
parvus, Octopus .. 214
parvus, Polypus ... 214
Patagonius, Scaeurges ... 172
Patagonian giant octopus .. 122
patagonicus, Octopus .. 122
Pelagic octopods .. 221
Pelagicus, Amphipretus============= 7,217,218
Pelagopulpo pigmeo ... 222
Pelagopulpo translucido .. 224
Pelagopulpo ... 221
Penicillifer, ‘Octopus’ ... 214
Penicillifer, Octopus .. 214
Peninsulae, Thaumeledone ...177,178
persephone, Opisthoteuthis ... 253
philippii, Opisthoteuthis ... 253
Philippine octopus .. 107
Photogenicus, Wunderpus ... 17,186
Piatkowski, Adeliedone ... 65
Picus var. fasciata, Octopus ... 138
Pieuvre ...42
Pieuvres ... 36
Pillsburyae, Euaxoctopus .. 128
Pinnoctopus cordiformis ...199,200
Pinnoctopus kermadecensis .. 212
Piscatorum, Benthoptus .. 85,86
Plain-body octopus ... 102
Plain-spot octopus ... 71
Plena, Grimpoteuthis .. 259
Plena, Cirroteuthis ... 259
Pluto, Opisthoteuthis ... 253
Pluto, Opisthoteuthis (Teuthidiscus)253
Poison ocellate octopus ... 77
Polpessa ... 106
Polpetto braccialunghe ... 147
Polpo ... 44
Polpo comune .. 44
Polpo incamiciato ... 165
Polpo palmato .. 242
Polpo pignatta .. 239
Polpo riccio .. 171
Polpo verace ... 44
Polvo ...44,45
Polymera, Adeliedone .. 64,65
Polymera, Graneledone ... 64
Polybus abruptus .. 94
Polybus apolliony ... 124,159
Polybus campbelli ... 166,208
Polybus conispadiceus .. 195
Polybus dofeini .. 124
Polybus gardineri .. 209
Polybus gilbertianus .. 124
Polybus glaber ... 95
Polybus hattai .. 210
Polybus hermani .. 196
Polybus hokkaidensis .. 95
Polybus hongkongensis ... 210
Polybus hoylei .. 165
Polybus kermadecensis .. 202
Polyus leiderma .. 95
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypus luteus</td>
<td>105</td>
</tr>
<tr>
<td>Polypus macrops var. minor</td>
<td>200</td>
</tr>
<tr>
<td>Polypus madokai</td>
<td>210</td>
</tr>
<tr>
<td>Polypus normani</td>
<td>96</td>
</tr>
<tr>
<td>Polypus oliveri</td>
<td>213</td>
</tr>
<tr>
<td>Polypus ovalum</td>
<td>.83</td>
</tr>
<tr>
<td>Polypus parvus</td>
<td>214</td>
</tr>
<tr>
<td>Polypus salbrosus</td>
<td>168</td>
</tr>
<tr>
<td>Polypus validia</td>
<td>.87</td>
</tr>
<tr>
<td>Polypus validus</td>
<td>169</td>
</tr>
<tr>
<td>Polypus variabilis var. typicus</td>
<td>200</td>
</tr>
<tr>
<td>Polypus wolffi</td>
<td>215</td>
</tr>
</tbody>
</table>

polyzenia, Amphiocopus 84
polyzenia, Octopus 84

Poulpe à bras allongé 66
Poulpe à deux taches 47
Poulpe à deux taches petit 47
Poulpe à longs bras 146
Poulpe à oreilles glacial 246
Poulpe à quatre cornes 164
Poulpe à rayures bleues 69
Poulpe gelée géant 226
Poulpe ange 181
Poulpe anéle 71
Poulpe anéle majeur 137
Poulpe anéle méridional 139
Poulpe armé 129
Pulpe arrondi 90
Poulpe aux lanières bleues 138
Poulpe aux petites taches 105
Poulpe aux taches blanches 102
Poulpe aux taches rouges 103
Poulpe baloon 266
Poulpe balonné 238
Poulpe blanc 162
Poulpe blême 201
Poulpe boreal 85
Poulpe bouffant 112
Poulpe bouffant de Taiwan 113
Poulpe brésilien de récif 51
Poulpe bunurong 192
Poulpe capricorne 100
Poulpe casse-noix 195
Poulpe charrua 183
Poulpe clouté 99
Poulpe cornu 175
Poulpe croissant 127
Poulpe de Charcot 154
Poulpe de Fontaine 166
Poulpe de Gunter 177
Poulpe de Hubb 50
Poulpe de la Mer Rouge 60
Poulpe de Rapanui 108
Poulpe de Winckworth 144
Poulpe de Zippy 141
Poulpe des Changos 54
Poulpe des Galapagos 56
Poulpe des sables 68
Poulpe doré 72

Poulpe du Pacifique Nord 193
Poulpe du sable méridional 198
Poulpe épineux 61
Poulpe éponge 120
Poulpe étoilé 73
Poulpe filamenteux 151
Poulpe fouet 200
Poulpe géant 124
Poulpe géant antarctique 148
Poulpe géant de Patagonie 122
Poulpe géant méridional 125
Poulpe gelée géant 226
Poulpe gribouillé 100
Poulpe karubar 92
Poulpe licorne 170
Poulpe lune 204
Poulpe manteau violet 240
Poulpe Maori 199
Poulpe membreux Méridional 190
Poulpe Mexicain 53
Poulpe mimétique 177
Poulpe négliçé ocelé 79
Poulpe pélagique pygmée 222
Poulpe pélagique translucide 224
Poulpe philippin 107
Poulpe photogénique 186
Poulpe pourpré 88
Poulpe pygmée de Digueut 160
Poulpe pygmée de Mangold 150
Poulpe quatre-tampons 173
Poulpe ris 191
Poulpe rouge 202
Poulpe royal ocelé 80
Poulpe rugueux 168
Poulpe serpent 187
Poulpe siamois ocelé 81
Poulpe somber 57
Poulpe tacheté 106
Poulpe tambour 189
Poulpe tehuelche 205
Poulpe télescope 217
Poulpe thermal 184
Poulpe veillé 206
Poulpe veiné 75
Poulpe velouté 135
Poulpe venimeux ocelé 77
Poulpe verruqueux 131
Poulpe vieille femme 110
Poulpe vitreux 220
Poulpes 36
Poulpes à oreilles 245
Poulpes ballons 266

Praealtus 38,162
<table>
<thead>
<tr>
<th>Cephalopods of the World</th>
<th>347</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praealtus paralbida</td>
<td>162, 163</td>
</tr>
<tr>
<td>Prickly octopus</td>
<td>62</td>
</tr>
<tr>
<td>profunda, Bathypurpurea</td>
<td>88, 89</td>
</tr>
<tr>
<td>profundicola, Benthoctopus</td>
<td>87</td>
</tr>
<tr>
<td>profundorum, Benthoctopus</td>
<td>96</td>
</tr>
<tr>
<td>prydzensis, Pareledone</td>
<td>157</td>
</tr>
<tr>
<td>Pseudoctopus</td>
<td>159</td>
</tr>
<tr>
<td>psuedonymus, Atlantoctopus</td>
<td>97</td>
</tr>
<tr>
<td>pseudonymus, Benthoctopus</td>
<td>97</td>
</tr>
<tr>
<td>Pteroctopus</td>
<td>39, 141, 163</td>
</tr>
<tr>
<td>Pteroctopus hoylei</td>
<td>163, 165</td>
</tr>
<tr>
<td>Pteroctopus tetricirrhus</td>
<td>164</td>
</tr>
<tr>
<td>Pteroctopus violaceus</td>
<td>240</td>
</tr>
<tr>
<td>pugniger Bathypolyopus</td>
<td>85, 87</td>
</tr>
<tr>
<td>Pulpo blanco</td>
<td>162</td>
</tr>
<tr>
<td>Pulpo con dos manchas</td>
<td>48</td>
</tr>
<tr>
<td>Pulpo patilargo</td>
<td>146</td>
</tr>
<tr>
<td>Pulpo violáceo</td>
<td>85</td>
</tr>
<tr>
<td>Pulpios</td>
<td>36</td>
</tr>
<tr>
<td>Pulpo</td>
<td>44</td>
</tr>
<tr>
<td>Pulpo abalonado</td>
<td>238</td>
</tr>
<tr>
<td>Pulpo almizclado</td>
<td>115</td>
</tr>
<tr>
<td>Pulpo angel</td>
<td>181</td>
</tr>
<tr>
<td>Pulpo anillado austral</td>
<td>139</td>
</tr>
<tr>
<td>Pulpo anillado mayor</td>
<td>137</td>
</tr>
<tr>
<td>Pulpo antenado</td>
<td>200</td>
</tr>
<tr>
<td>Pulpo armado</td>
<td>129</td>
</tr>
<tr>
<td>Pulpo áspero</td>
<td>168</td>
</tr>
<tr>
<td>Pulpo aterciopelado</td>
<td>135</td>
</tr>
<tr>
<td>Pulpo azulón</td>
<td>196</td>
</tr>
<tr>
<td>Pulpo blanco</td>
<td>117</td>
</tr>
<tr>
<td>Pulpo brasileño de arrecife</td>
<td>51</td>
</tr>
<tr>
<td>Pulpo brazos-largos</td>
<td>66</td>
</tr>
<tr>
<td>Pulpo bunurong</td>
<td>192</td>
</tr>
<tr>
<td>Pulpo capricornio</td>
<td>100</td>
</tr>
<tr>
<td>Pulpo charrúa</td>
<td>183</td>
</tr>
<tr>
<td>Pulpo cirrado glaciar</td>
<td>246</td>
</tr>
<tr>
<td>Pulpo común</td>
<td>42</td>
</tr>
<tr>
<td>Pulpo con almohadillas</td>
<td>173</td>
</tr>
<tr>
<td>Pulpo con dos manchas</td>
<td>47</td>
</tr>
<tr>
<td>Pulpo con manchas blancas</td>
<td>102</td>
</tr>
<tr>
<td>Pulpo con manchas rojas</td>
<td>103</td>
</tr>
<tr>
<td>Pulpo con pecas</td>
<td>105</td>
</tr>
<tr>
<td>Pulpo cornudo</td>
<td>135</td>
</tr>
<tr>
<td>Pulpo cuatro cuernos</td>
<td>164</td>
</tr>
<tr>
<td>Pulpo de arrecife</td>
<td>191</td>
</tr>
<tr>
<td>Pulpo de Charcot</td>
<td>154</td>
</tr>
<tr>
<td>Pulpo de Filipinas</td>
<td>107</td>
</tr>
<tr>
<td>Pulpo de Fontaine</td>
<td>166</td>
</tr>
<tr>
<td>Pulpo de Fumarola</td>
<td>184</td>
</tr>
<tr>
<td>Pulpo de Gunter</td>
<td>177</td>
</tr>
<tr>
<td>Pulpo de Hubb</td>
<td>50</td>
</tr>
<tr>
<td>Pulpo de l’arena austral</td>
<td>198</td>
</tr>
<tr>
<td>Pulpo de las Galapagos</td>
<td>56</td>
</tr>
<tr>
<td>Pulpo de los Changos</td>
<td>54</td>
</tr>
<tr>
<td>Pulpo de Rapanui</td>
<td>108</td>
</tr>
<tr>
<td>Pulpo de Winckworth</td>
<td>144</td>
</tr>
<tr>
<td>Pulpo de Zippy</td>
<td>141</td>
</tr>
<tr>
<td>Pulpo del Mar Rojo</td>
<td>60</td>
</tr>
</tbody>
</table>

- Pulpo del Pacífico norte .. 193
- Pulpo desflacado .. 119
- Pulpo dorado .. 72
- Pulpo ensortijado ... 71
- Pulpo españaña .. 195
- Pulpo espinoso .. 61
- Pulpo esponja .. 120
- Pulpo estrellado ... 73
- Pulpo filamentososo ... 151
- Pulpo fotogénico ... 186
- Pulpo gigante .. 124
- Pulpo gigante antártico ... 148
- Pulpo gigante austral .. 125
- Pulpo gigante de Patagonia 122
- Pulpo globo ... 266
- Pulpo granuloso .. 69
- Pulpo karubar .. 92
- Pulpo listado ... 99
- Pulpo lunero .. 284
- Pulpo manchado .. 106
- Pulpo manta violaco ... 240
- Pulpo maori .. 199
- Pulpo maritillo ... 189
- Pulpo medio luna ... 127
- Pulpo membranosos austral 190
- Pulpo mexicano ... 53
- Pulpo mimico .. 170
- Pulpo morado .. 88
- Pulpo nodoso .. 64
- Pulpo ocelado descuidado 79
- Pulpo pálido .. 201
- Pulpo perforado ... 110
- Pulpo pigmeo de Diguet .. 160
- Pulpo pigmeo de Mangold 150
- Pulpo pintarrajo ... 104
- Pulpo rayas azules ... 138
- Pulpo redondeado ... 90
- Pulpo reticulado ... 68
- Pulpo rey ocelado ... 80
- Pulpo rojo ... 202
- Pulpo serpiente ... 187
- Pulpo siames ocelado ... 81
- Pulpo suave ... 112
- Pulpo suave de Taiwan .. 113
- Pulpo tehuelche .. 205
- Pulpo téscopico ... 217
- Pulpo tétrico .. 57
- Pulpo unicornio ... 170
- Pulpo velado .. 206
- Pulpo venenos ocelado .. 77
- Pulpo venoso .. 75
- Pulpo verrugoso ... 131
- Pulpo vitreo ... 220
- Pulpos ... 36
- Pulpos abalonados .. 237
- Pulpos cirrados .. 245
- Pulpos globo .. 266
- Pulpos manta .. 240
- Pulpos teléscopicos .. 217
Pulpos vitreos .. 219
pumilus, ‘Octopus’ .. 214
pumilus, Octopus .. 214
punctatus, Octopus 124
Porishus octopus .. 88
pygmaea, Bolitaena 221, 222, 223
pygmaea, Eledonella 222
Pygmy pelagic octopod 222
pyrum, ‘Octopus’ .. 214
pyrum, Octopus .. 214
Q
Qarnit ... 118
R
Ram’s horn squid .. 3
Rapanui octopus .. 108
rapanui, Callistoctopus 108
rapanui, Octopus .. 108
Red octopus .. 202
Red Sea octopus .. 60
Red-spot octopus ... 103
rex, Amphioctopus 16, 80, 82
rex, Octopus ... 80
richardi, Vitreledonella 6, 219, 220, 221
rigbyae, Benthoctopus 97
Robsonella .. 166
Robsonella fontianus 166, 167
Robsonella huttoni 211
robsoni, Amphioctopus 84
robsoni, Octopus ... 84
robsoni, Opisthoteuthis 253
robsoni, Tremoctopus 240, 243
robustus, Benthoctopus 97
roosevelti, Octopus 56
rotunda, Benthledon 90, 177
rotunda, Eledone .. 89, 90
Rough octopus ... 168
Rough-keeled argonaut 236
Rounded octopus 90
rubescens, ‘Octopus’ 17, 195, 202, 203
rubescens, Octopus 202
rubrostictus, Bathypolyptus 87
rugosus, Octopus ... 50
S
Saa liu ... 69, 76
salebrosus, Bathypolyptus 168
salebrosus, Polyptus 168
salebrosus, Sasakiopus 168, 169
salutii, ‘Octopus’ 214
salutii, Octopus .. 214
Sandbird octopus .. 68, 69, 76
sasaki, Benthoctopus 85
Sasakiopus .. 39, 168
Sasakiopus salebrosus 168, 169
Scaeurgus .. 31, 39, 170, 171
Scaeurgus jumeau 172
Scaeurgus nesisi .. 172
Scaeurgus patagius 172
Scaeurgus tuber ... 170, 172
Scaeurgus unicolor 29, 146, 170, 171
salenus, Euauxoctopus 128
salenus, Tremoctopus 128
schultzei, Aphrodoctopus 115, 121
schultzei, Eledone 121
Sciadephorus ... 262
Sciadephorus muelleri 263
Scribbled octopus 104
Sek Baat Jau Yue .. 47
selene, ‘Octopus’ ... 204
selene, Octopus .. 204
senoi, Megaleledone 148, 149
sensu stricto, Octopus 28, 36, 39, 40, 144, 166, 187, 197
serrusutra, Pareledone 158
sesetos, Graneledone 148
sesetos, Megaleledone 148, 149
Sharkclub octopus 129
Short-arm flapjack octopod 254
shuishi, Luteuthis 261
siamensis, Amphioctopus 16, 81, 82
siamensis, Octopus 81
Siamese ocellate octopus 81
sibiricus, Benthoctopus 97
Sickletooth pygmy octopus 150
sinensis, Octopus ... 46
Small-spot octopus 105
Snakearm octopus 187
Southern blue-ringed octopus 139
Southern giant octopus 125
Southern keeled octopus 190
Southern sand octopus 198
Southern white-spot octopus 192
spinicirrus, Tetracheledone 175, 176
Spiny-horn octopus 175
Spongetip octopus 120
sponsalis, Bathypolyptus 87
sponsalis, Octopus 87
Stareye octopus .. 73
STAUROTEUTHIDAE 244, 245, 266
Stauroteuthis ... 245, 255, 264, 266
Stauroteuthis albatrossi 250
Stauroteuthis gilchristi 268
Stauroteuthis hippocrepium 258
Stauroteuthis (?) mawsoni 247
Stauroteuthis syrtensis 29, 266, 267
Stauroteuthis wuelkeri 256
Stringarm octopus 66
striolatus, Octopus 75
subtilis, Pareledone 158
superciliosus, ‘Octopus’ 160, 215
superciliosus, Octopus 215
syrtensis, Stauroteuthis 29, 266, 267
<table>
<thead>
<tr>
<th>Page</th>
<th>Cephalopods of the World</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.217</td>
<td>172</td>
<td>349</td>
</tr>
<tr>
<td>113</td>
<td>173</td>
<td>349</td>
</tr>
<tr>
<td>6,113,114</td>
<td>178</td>
<td>349</td>
</tr>
<tr>
<td>47</td>
<td>181</td>
<td>349</td>
</tr>
<tr>
<td>238</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>159,210</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>40,173</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>38,175</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>175,176</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>163,164</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>29,164</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>15,57,58,59</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>135,136</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>38,89,90,176,177</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>177,178</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>17,39,179</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>17,179,180,187</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>217,219</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>181,182</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>200,201</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>200,201</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>205,206,207</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>181,182</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>130,131</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>131,132</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>243</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>240,241,242,243</td>
<td>184</td>
<td>349</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>Species</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Warty octopus</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Whiparm octopus</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>White octopus</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>White-spotted octopus</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>White-spotted pouched octopus</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>White-striped octopus</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Winckworth’s octopus</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>winckworthi, Macrochaena</td>
<td>144,145</td>
<td></td>
</tr>
<tr>
<td>winckworthi, Octopus</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>wolff, ‘Octopus’</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>wolff, Polyopus</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Wülker’s flapjack octopod</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>wuelkeri, Grimpoteuthis</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>wuelkeri, Stauroteuthis</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Wunderpus</td>
<td>17,39,185</td>
<td></td>
</tr>
<tr>
<td>Wunderpus photogenicus</td>
<td>17,185,186</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yamana, Graneledone</td>
<td>130,131,134</td>
<td></td>
</tr>
<tr>
<td>Yanagidako</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>yaquinae, Benthoctopus</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zealandicus, Enteroctopus</td>
<td>123,126,200</td>
<td></td>
</tr>
<tr>
<td>zealandicus, Octopus</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>*zeiss, ‘Thaumeledone’</td>
<td>177,178</td>
<td></td>
</tr>
<tr>
<td>zeiss, Thaumeledone</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Zhāng-Yū</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Zhēn-Xiāo</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>zipkasae, Histoctopus</td>
<td>141,142</td>
<td></td>
</tr>
<tr>
<td>Zippy’s octopus</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>*zonatus, ‘Octopus’</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>zonatus, Octopus</td>
<td>215</td>
<td></td>
</tr>
</tbody>
</table>
7. LIST OF COLOUR PLATES

PLATE I
1. Abdopus abaculus (Roger Munns/SCUBAZOO) 5. Amphioctopus aegina (Mark Norman)
2. Abdopus aculeatus (Mark Norman) 6. Amphioctopus arenicola (Jerry Kane)
3. Abdopus capricornicus (Mark Norman) 7. Amphioctopus burryi (Roger Steene)
4. Ameloctopus litoralis (Mark Norman) 8. Amphioctopus exannulatus (Mark Norman)

PLATE II
9. Amphioctopus fangsiao (Hideki Abe) 13. Amphioctopus siamensis (Paul Humann)
10. Amphioctopus kagoshimensis (Julian Finn) 14. Bathypolyergus bairdi (James Wood)
11. Amphioctopus marginatus (Mark Norman) 15. Benthoctopus canthylus (Neptune Canada)
12. Amphioctopus mototi (Mark Norman) 16. Benthoctopus levic (Tim Stranks)

PLATE III
17. Callistoctopus Alpheus (Mark Norman) 21. Callistoctopus macropus (Helmut Debelius)
18. Callistoctopus aspilosomatis (Mark Norman) 22. Callistoctopus ornatus (Mark Norman)
19. Callistoctopus dierythraeus (Mark Norman) 23. Cistopus chinensis (Xiaodong Zheng)
20. Callistoctopus luteus (Roger Steene) 24. Cistopus taiwanicus (Mark Norman)

PLATE IV
25. Eledone cirrhosa (Jean Lecomte) 29. Enteroctopus dofleni (Fred Bavendam)
27. ‘Eledone’ palari (Tom Bowling) 31. Enteroctopus megacyathus (Dirk Schories)
28. Eledone schulzei (Mark Norman) 32. Enteroctopus zeala (Julian Finn)

PLATE V
33. Graneledone boreopacifica (Neptune Canada) 37. Hapalochlaenamaculosa (Mark Norman)
34. Grimpella thumastocheir (Mark Norman) 38. Megaleledone setebos (Uwe Piatkowski)
35. Hapalochlaena fasciata (Mark Norman) 39. Octopus bimaculatus (Roger Hanlon)
36. Hapalochlaena lunulata (Roy Caldwell) 40. Octopus bimaculoides (Roger Hanlon)

PLATE VI
41. Octopus hubbsorum (Clay Bryce) 45. Octopus tetricus (Mark Norman)
42. Octopus maya (Roger Hanlon) 46. Octopus vulgaris sensu stricto (Helmut Debelius)
43. Octopus minus (Jim Black) 47. Octopus vulgaris type I – Caribbean (Roger Steene)
44. Octopus oculifer (Fred Bavendam) 48. Octopus vulgaris type III – South Africa (Mark Norman)
<table>
<thead>
<tr>
<th>Plate VII</th>
<th>Plate VIII</th>
<th>Plate IX</th>
<th>Plate X</th>
<th>Plate XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>50. ‘*Octopus’ australis’ (David Paul)</td>
<td>54. ‘*Octopus’ californicus’ (Norbert Wu)</td>
<td>66. Robsonella fontanianus (Dirk Schories)</td>
<td>78. Argonauta nodosus (David Paul)</td>
<td>82. Tremoctopus gracilis female (Julian Finn)</td>
</tr>
<tr>
<td>51. ‘*Octopus’ berrima’ (Julian Finn)</td>
<td>55. ‘*Octopus’ chierchiae’ (Roy Caldwell)</td>
<td>67. Scaeurgus unicirrhus (Oceana Ranger Expedition)</td>
<td>79. Haliphron atlanticus (Nan Daeschler Hauser)</td>
<td>83. Tremoctopus gracilis male (David Paul)</td>
</tr>
<tr>
<td>52. ‘*Octopus’ briareus’ (Roger Steene)</td>
<td>56. ‘*Octopus’ cyanea’ (Mark Norman)</td>
<td>68. Thaumeledone gunteri (Inigo Everson)</td>
<td>80. Ocythoe tubercolata (Uwe Piatkowski)</td>
<td>84. Grimpoteuthis sp. (Ed McSweeney)</td>
</tr>
<tr>
<td>57. ‘*Octopus’ gorgonus’ (Roy Caldwell)</td>
<td>61. ‘*Octopus’ minor’ (Ryo Minemizu)</td>
<td>69. Thaumoctopus mimicus (Mark Norman)</td>
<td>70. Vulcanoctopushydrothermalis/ unidentified Benthoctopus (Rich Lutz)</td>
<td>85. Opisthoteuthis grimaldii (Michael Vecchione)</td>
</tr>
<tr>
<td>58. ‘*Octopus’ huttoni’ (Peter Batson)</td>
<td>62. ‘*Octopus’ rubescens’ (Howard Hall)</td>
<td>71. Wunderpus photogenicus (Alex Kerstitch)</td>
<td>71. Wunderpus photogenicus (Alex Kerstitch)</td>
<td>86. Cirroteuthis muelleri (NOAA)</td>
</tr>
<tr>
<td>59. ‘*Octopus’ kaurna’ (Julian Finn)</td>
<td>63. ‘*Octopus’ vitiensis’ (Roger Steene)</td>
<td>72. Amphitretus pelagicus (Dick Young)</td>
<td>87. *Stauroteuthis syrtensis’ (David Shale)</td>
<td>88. Vampyroteuthis infernalis (Brad Seibel)</td>
</tr>
<tr>
<td>60. ‘*Octopus’ maorum’ (Mark Norman)</td>
<td>64. Pareledone charcoti (Michael Vecchione/ Uwe Piatkowski)</td>
<td>73. Bolitaena pygmaea (Dick Young)</td>
<td>74. Japetella diaphana (Dick Young)</td>
<td>75. Vitreledonella richardi (David Wrobel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76. Argonauta argo (Julian Finn)</td>
<td>77. Argonauta hians (Koji Nakamura)</td>
<td>78. Argonauta nodosus (David Paul)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>79. Haliphron atlanticus (Nan Daeschler Hauser)</td>
<td>80. Ocythoe tubercolata (Uwe Piatkowski)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81. Tremoctopus violaceus (Peter Wirtz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82. Tremoctopus gracilis female (Julian Finn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83. Tremoctopus gracilis male (David Paul)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84. Grimpoteuthis sp. (Ed McSweeney)</td>
</tr>
</tbody>
</table>
COLOUR PLATES

photo by E. F. Hochberg
1. *Abdopus abaculus*
(Roger Munns/SCUBAZOO)

2. *Abdopus aculeatus*
(Mark Norman)

3. *Abdopus capricornicus*
(Mark Norman)

4. *Ameloctopus litoralis*
(Mark Norman)

5. *Amphioctopus aegina*
(Mark Norman)

6. *Amphioctopus arenicola*
(Jerry Kane)

7. *Amphioctopus burryi*
(Roger Steene)

8. *Amphioctopus exannulatus*
(Mark Norman)
9. *Amphioctopus fangsiao* (Hideki Abe)
10. *Amphioctopus kagoshimensis* (Julian Finn)
11. *Amphioctopus marginatus* (Mark Norman)
12. *Amphioctopus mototi* (Mark Norman)
13. *Amphioctopus siamensis* (Paul Humann)
14. *Bathypolypus bairdii* (James Wood)
15. *Benthoctopus canthylus* (Neptune Canada)
16. *Benthoctopus levis* (Tim Stranks)
17. *Callistoctopus alpheus*
(Mark Norman)

18. *Callistoctopus aspiosomatis*
(Mark Norman)

19. *Callistoctopus dierythraeus*
(Mark Norman)

20. *Callistoctopus luteus*
(Roger Steene)

21. *Callistoctopus macropus*
(Helmut Debelius)

22. *Callistoctopus ornatus*
(Mark Norman)

23. *Cistopus chinensis*
(Xiaodong Zheng)

24. *Cistopus taiwanicus*
(Mark Norman)
25. Eledone cirrhosa
(Jean Lecomte)

26. Eledone moschata
(Jean Lecomte)

27. ‘Eledone’ palari
(Tom Bowling)

28. Eledone schultzei
(Mark Norman)

29. Enteroctopus dofleini
(Fred Bavendam)

30. Enteroctopus magnificus
(Dane Gerneke)

31. Enteroctopus megalocyathus
(Dirk Schories)

32. Enteroctopus zealandicus
(Julian Finn)
33. *Graneledone boreopacifica*
(Neptune Canada)

34. *Grimpella thaumastocheir*
(Mark Norman)

35. *Hapalochlaena fasciata*
(Mark Norman)

36. *Hapalochlaena lunulata*
(Roy Caldwell)

37. *Hapalochlaena maculosa*
(Mark Norman)

38. *Megaleledone setebos*
(Uwe Piatkowski)

39. *Octopus bimaculatus*
(Roger Hanlon)

40. *Octopus bimaculoides*
(Roger Hanlon)
41. *Octopus hubbsorum*
 (Clay Bryce)

42. *Octopus maya*
 (Roger Hanlon)

43. *Octopus mimus*
 (Jim Black)

44. *Octopus oculifer*
 (Fred Bavendam)

45. *Octopus tetricus*
 (Mark Norman)

46. *Octopus vulgaris sensu stricto*
 (Helmut Debelius)

47. *Octopus vulgaris* type I – Caribbean
 (Roger Steene)

48. *Octopus vulgaris* type III – South Africa
 (Mark Norman)
PLATE VII

49. *Octopus vulgaris* type IV - Japan
 (Hideki Abe)

50. *Octopus* *australis*
 (David Paul)

51. *Octopus* *berrima*
 (Julian Finn)

52. *Octopus* *briareus*
 (Roger Steene)

53. *Octopus* *bunurong*
 (Julian Finn)

54. *Octopus* *californicus*
 (Norbert Wu)

55. *Octopus* *chierchiae*
 (Roy Caldwell)

56. *Octopus* *cyanea*
 (Mark Norman)
57. *Octopus* gorgonus
(Roy Caldwell)

58. *Octopus* huttoni
(Peter Batson)

59. *Octopus* kaurna
(Julian Finn)

60. *Octopus* maorum
(Mark Norman)

61. *Octopus* minor
(Ryo Minemizu)

62. *Octopus* rubescens
(Howard Hall)

63. *Octopus* vitiensis
(Roger Steene)

64. Pareledone charcoti
(Michael Vecchione / Uwe Piatkowski)
65. *Pteroctopus tetracirrhus* (Oceana Europe)

66. *Robsonella fontanianus* (Dirk Schories)

67. *Scaeurgus unicirrhus* (Oceana Ranger Expedition)

68. *Thaumeledone gunteri* (Inigo Everson)

69. *Thaumoctopus mimicus* (Mark Norman)

70. *Vulcanoctopus hydrothermalis/unidentified Benthoctopus* (Rich Lutz)

71. *Wunderpus photogenicus* (Alex Kerstitch)

72. *Amphitretus pelagicus* (Dick Young)
73. Bolitaena pygmaea
(Dick Young)

74. Japetella diaphana
(Dick Young)

75. Vitreledonella richardi
(David Wrobel)

76. Argonauta argo
(Julian Finn)

77. Argonauta hians
(Koji Nakamura)

78. Argonauta nodosus
(David Paul)

79. Haliphron atlanticus
(Nan Daeschler Hauser)

80. Ocythoe tuberculata
(Uwe Piatkowski)
81. *Tremoctopus violaceus*
(Peter Wirtz)

82. *Tremoctopus gracilis* female
(Julian Finn)

83. *Tremoctopus gracilis* male
(David Paul)

84. *Grimpoteuthis* sp.
(Ed McSweeney)

85. *Opisthoteuthis grimaldii*
(Michael Vecchione)

86. *Cirroteuthis muelleri*
(NOAA)

87. *Stauroteuthis syrtensis*
(David Shale)

88. *Vampyroteuthis infernalis*
(Brad Seibel)
This is the third volume of the entirely rewritten, revised and updated version of the original FAO Catalogue of Cephalopods of the World (1984). The present Volume is a multi-authored compilation that reviews 13 families, i.e. (in alphabetical order), *Alloposidae, Amphitretidae, Argonautidae, Bolitaenidae, Cirroctopodidae, Cirroteuthidae, Octopodidae, Ocythoidae, Opisthoteuthidae, Stauroteuthidae, Tremoctopodidae, Vampyroteuthidae, Vitreledonellidae*, with 56 genera and the 280 species known and named to the date of the completion of the volume. It provides accounts for all families and genera, as well as illustrated keys. Information under species accounts includes: valid modern systematic name and original citation of the species (or subspecies); synonyms; English, French and Spanish FAO names for the species; illustrations of dorsal aspects of the whole animal (as necessary) and other distinguishing illustrations; field characteristics; diagnostic features; geographic and vertical distribution, including GIS map; size; habitat; biology; interest to fishery; local names when available; a remarks section (as necessary) and literature. The Volume is fully indexed and also includes sections on terminology and measurements, an extensive glossary, an introduction with an updated review of the existing biological knowledge on Octopods and Vampire squids (including fisheries information and main catch data for recent years) and a dedicated bibliography.