Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

Formulating a strategy, action plan and programme for fisheries and aquaculture

Regional Workshop Report
10–12 December 2012
Kingston, Jamaica

Fisheries and aquaculture are important to the lives and livelihoods of people in the Caribbean region for quality animal protein, essential fatty acids, vitamins and minerals, food security and income (personal and national). People involved in the sector are, however, vulnerable to climate change and disasters including hurricanes, floods, earthquakes and disease outbreaks. The regional workshop on the Formulation of a strategy, action plan and programme proposal on disaster risk management and climate change adaptation in fisheries and aquaculture in the CARICOM and Wider Caribbean Region was held in Kingston, Jamaica, from 10 to 12 December 2012. The workshop brought together 65 local, national and regional stakeholders involved in fisheries, aquaculture, disaster risk management (DRM) and climate change adaptation (CCA), including the Caribbean Regional Fisheries Mechanism (CRFM), the Western Central Atlantic Fishery Commission (WECAFC), the Caribbean Disaster Emergency Management Agency (CDEMA) and the Caribbean Community Climate Change Centre (CCCCC). Workshop discussions largely focused on reviewing and refining three documents prepared for the workshop: an assessment study on the impact of climate change and disasters on the fisheries and aquaculture sector in the CARICOM region; a strategy and action plan for integrating DRM and CCA into fisheries and aquaculture (as well as the reverse); and a results-based programme proposal. These proceedings include the report of the regional workshop and an assessment study on the impact of climate change and disasters on the fisheries and aquaculture sector in the CARICOM region. The strategy, action plan and programme proposals are published as separate documents. The workshop recommended that the strategy, action plan and programme proposal be finalized and implemented to strengthen regional and national cooperation and develop capacity in addressing climate change impacts and disasters in fisheries and aquaculture.
Cover photograph:
Canoe on rocks. Courtesy of Patrick McConney, Centre for Resource Management and Environmental Studies (CERMES), Barbados.
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

Formulating a strategy, action plan and programme for fisheries and aquaculture

Regional workshop report
10–12 December 2012
Kingston, Jamaica

Patrick McConney
Senior Lecturer
Centre for Resource Management and Environmental Studies (CERMES)
University of the West Indies, Cave Hill Campus, Barbados

John D. Charlery
Lecturer
University of the West Indies, Barbados

Maria Pena
Project Assistant
Centre for Resource Management and Environmental Studies (CERMES)
University of the West Indies
Barbados

Terrence Philips
Programme Manager
Fisheries Management and Development
CRFM Secretariat, Barbados

Raymon Van Anrooy
Fishery and Aquaculture Officer / Secretary of WECAFC
Food and Agriculture Organization of the UN
Sub-regional Office for the Caribbean (FAO-SLC)

Florence Poulain
Fisheries and Aquaculture Officer
Disaster Risk Management Coordination
Fisheries and Aquaculture Department
Rome, Italy

Tarub Bahri
Fishery Resource Officer
Food and Agriculture Organization of the United Nations
Rome, Italy

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2015
These proceedings present the outcome of the regional workshop on the Formulation of a Strategy, Action Plan and Programme Proposal on Disaster Risk Management and Climate Change Adaptation in Fisheries and Aquaculture in the CARICOM and Wider Caribbean Region held in Kingston, Jamaica, from 10 to 12 December 2012. The workshop was organized by the Caribbean Regional Fisheries Mechanism (CRFM) and the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the Western Central Atlantic Fishery Commission (WECAFC), Caribbean Community Climate Change Centre (CCCCC), Caribbean Disaster Emergency Management Agency (CDEMA) and the University of the West Indies (UWI). The Government of Jamaica hosted the workshop. Financial support for the workshop was provided by Sweden through the FAO Multidonor Mechanism (FMM/GLO/003/MUL) and by Japan through the project on “Fisheries management and marine conservation within a changing ecosystem context” (GCP/INT/253/JPN). This document was prepared under the supervision of Florence Poulain and Tarub Bahri of the FAO Fisheries and Aquaculture Department. The workshop was facilitated by Patrick McConney, John Charlery and Maria Pena (UWI), Terrence Philips (CRFM) and Florence Poulain, Tarub Bahri and Raymon Van Anrooy (FAO). Background documents for the workshop were drafted by Patrick McConney, John Charlery and Maria Pena and are reproduced as submitted.
Abstract

The regional workshop on the Formulation of a Strategy, Action Plan and Programme Proposal on Disaster Risk Management and Climate Change Adaptation in Fisheries and Aquaculture in the CARICOM and Wider Caribbean Region was held in Kingston, Jamaica, from 10 to 12 December 2012. The workshop brought together 65 local, national and regional stakeholders involved in fisheries, aquaculture, disaster risk management (DRM) and climate change adaptation (CCA). These proceedings include the report of the regional workshop. Overview presentations on fisheries and aquaculture covered: building resilience and reducing vulnerabilities; the regional trend towards CCA; a regional framework for disaster management; and regional initiatives in advancing DRM and CCA in fisheries and aquaculture. Discussions largely focused on reviewing and refining three documents prepared for the workshop: an assessment study on the impact of climate change and disasters on the fisheries and aquaculture sector in the CARICOM region; a strategy and action plan for integrating DRM and CCA into fisheries and aquaculture (as well as the reverse); and a results-based programme proposal. The workshop recommended that the strategy, action plan and programme proposal be finalized and implemented to strengthen regional and national cooperation and develop capacity in addressing climate change impacts and disasters in fisheries and aquaculture.

Contents

Preparation of this document iii
Abstract iv
Acknowledgements vi
Abbreviations and acronyms vii

Report of the workshop 1
 Workshop arrangement and opening session 1
 Introduction of participants 2
 Background and objectives of the workshop 2
 Overview presentations 3
 Presentations of draft reports 6
 Working groups 9
 Process for endorsement and the way forward 14
 Summary of main considerations, decisions and recommendations 14

Appendix 1 – List of participants 17
Appendix 2 – Agenda 25

Appendix 3 – Climate change adaptation and disaster risk management in fisheries and aquaculture in the CARICOM and wider Caribbean region: Volume 1 – assessment report 27
Acknowledgements

Special thanks are due to the Ministry of Agriculture and Fisheries of Jamaica and its staff for the logistical arrangements; in particular to Mr Andre Kong, acting Chief Executive Officer, for his opening speech at the workshop, and to the staff of the Fisheries Division for their hospitality and efficient support in all administrative matters. We also acknowledge the interest and participation of Mr Jerome Thomas, FAO Representative for Jamaica, the Bahamas and Belize.
Abbreviations and acronyms

ACP African, Caribbean and Pacific Group of States
ASSC/TMAC Agriculture Sub-Sector Committee / Technical Management Advisory Committee
CANARI Caribbean Natural Resources Institute
CARICOM Caribbean Community
CARISEC CARICOM Secretariat
CBO Community-based organization
CCA climate change adaptation
CCCFP Caribbean Community Common Fisheries Policy
CCCCC Caribbean Community Climate Change Centre
CCRIF Caribbean Catastrophe Risk Insurance Facility
CDEMA Caribbean Disaster and Emergency Management Agency
CDM comprehensive disaster management
CEHI Caribbean Environmental Health Institute
CERMES Centre for Resource Management and Environmental Studies
CLME Caribbean Large Marine Ecosystem (Project)
CNFO Caribbean Network of Fisherfolk Organizations
CRFM Caribbean Regional Fisheries Mechanism
DRM disaster risk management
DRR disaster risk reduction
EAF ecosystem approach to fisheries
EBM Ecosystem-based management
EWS early warning system
FAO Food and Agriculture Organization of the United Nations
FMM FAO Multidonor Mechanism
GEF Global Environment Facility
IP Implementation Plan
IPCC Intergovernmental Panel on Climate Change
MoU memorandum of understanding
NGO Non-governmental organization
OECS Organization of Eastern Caribbean States
OSPESCA Central American Fisheries and Aquaculture Organization
PIF Project Identification Form
SAP Strategic Action Programme
UWI University of the West Indies
WECAFC Western Central Atlantic Fishery Commission
Report of the workshop

WORKSHOP ARRANGEMENT AND OPENING SESSION
The Regional Workshop on the Formulation of a Strategy, Action Plan and Programme Proposal on Disaster Risk Management and Climate Change Adaptation in Fisheries and Aquaculture in the CARICOM and Wider Caribbean Region was held in Kingston, Jamaica, from 10 to 12 December 2012. It was organized by the Caribbean Regional Fisheries Mechanism (CRFM) and the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the Western Central Atlantic Fishery Commission (WECAFC), Caribbean Community Climate Change Centre (CCCCC), Caribbean Disaster and Emergency Management Agency (CDEMA) and the University of the West Indies (UWI). The Government of Jamaica was host to the workshop. Financial support was provided by Sweden through the FMM FAO Multidonor Mechanism (FMM/GLO/003/MUL) and by Japan through the project “Fisheries management and marine conservation within a changing ecosystem context” (GCP /INT/253/JPN).

Mr Andre Kong, Chief Executive Officer of the Fisheries Division in the Ministry of Agriculture and Fisheries of Jamaica welcomed participants. He said that climate change adaptation (CCA) and disaster risk management (DRM) had long been recognized as significant gaps in fisheries and aquaculture planning and policy in Jamaica and most other countries in the Caribbean. Mr Kong looked forward to informative interaction and discussion. He was sure that the timely initiative would benefit the region.

Mr Milton Haughton, Executive Director of the CRFM Secretariat based in Belize, noted the high degree of representation from fisherfolk organizations, fisheries authorities, agencies responsible for DRM and diverse bodies involved in CCA in region. He said that variability and changes in climate were compounding factors that fisheries managers and those connected to the sector could not ignore. Evidence from recent disasters (e.g. in Japan and Indonesia) showed that fishing communities tended to bear the brunt of coastal impacts owing to their location and vulnerability. The mystery of the 2011 Sargassum seaweed abundance that affected much of the Caribbean illustrated the uncertainty for which the region should be prepared, but over which it may have little influence. The workshop should help to strengthen approaches and interventions to ensure a more safe and secure future, despite the changing climate.

Mr Jerome Thomas, FAO Representative for Jamaica, the Bahamas and Belize, also welcomed all partner agencies and workshop participants. He said that fishers, fish farmers and the communities they lived in were vulnerable to climate change and disasters because of their location at the interface between land and water – whether on the coast or inland – and also because their social, economic and political reality often included poverty, marginalization and overall high levels of vulnerability to shocks and change, especially in developing countries. He noted that FAO had a long history of providing support before, during and after disasters, and that climate variability and change would add to the complexity of such work because the frequency and intensity of weather-related natural disasters were likely to increase in the future. He also noted that climate change also had other impacts on fishing and fish farming communities and on the resources and environment on which they depended. He stressed that this might have far-reaching impacts on livelihood strategies that needed to be understood and taken into consideration in fisheries and aquaculture governance and development planning. He further noted that, at the same time, DRM and CCA strategies and
programmes needed to take the characteristics of the sector, its people and environment into consideration in order to become effective. He added that the work of the FAO Fisheries and Aquaculture Department in DRM and CCA was aligned to priorities expressed in international, regional and national policies and agreements, including the United Nations Framework Convention on Climate Change, RIO+20, the FAO Committee on Fisheries, etc. He wished all a productive workshop, which he then formally declared open.

INTRODUCTION OF PARTICIPANTS
Following the opening, the participants introduced themselves (see Appendix 1). Attending the workshop were 40 participants representing 24 wider Caribbean governments and 25 participants from national, regional and international organizations and agencies, including civil society organizations and non-governmental organizations (NGOs). Mr Andre Kong acted as chair of the workshop. Serving as resource persons were: Tarub Bahri, Florence Poulain and Raymon Van Anrooy of FAO; John Charley and Patrick McConney of the UWI; and Terrence Phillips of the CRFM. The rapporteurs were John Charley and Maria Pena of the UWI and Terrence Phillips of the CRFM.

BACKGROUND AND OBJECTIVES OF THE WORKSHOP
Mr Milton Haughton of the CRFM presented the background and objectives of the workshop. He pointed out that CCA and DRM had been discussed at the fourteenth session of WECAFC, held in Panama in February 2012. Delegates had indicated the importance of these matters to fisheries and aquaculture in the Wider Caribbean Region, and the need for broad stakeholder engagement. Not only should CCA and DRM be incorporated into fisheries and aquaculture plans, but fisheries and aquaculture must also be included in CCA and DRM plans. This bi-directional integration must occur at the regional, national and local levels.

The overall purpose of the workshop was thus to contribute to strengthening regional and national intersectoral cooperation and the development of capacity to address climate change impacts and disasters in the fisheries and aquaculture sector. The workshop had been convened in order for governmental and non-governmental stakeholders to advise the above-mentioned organizing and collaborating agencies on the content of three draft reports that had been produced for the workshop. It had also been convened to guide these agencies on the way to implement the strategy, action plan and programme proposal in order to benefit the people of the region.

The Workshop Agenda is attached as Appendix 2, and its outputs were to inform the finalization of the:

1. **Assessment study** on the impact of climate change and disasters on the fisheries and aquaculture sector in the Caribbean Community (CARICOM) region that:
 a) identifies major gaps in the existing knowledge in order to assess vulnerability in these systems;
 b) determines potential measures for reducing vulnerability to disasters and climate change.

2. **Strategy and action plan** for integrating DRM, CCA and fisheries and aquaculture, with a focus on small-scale fisheries and small-scale aquaculture, that provides policy guidance to enable diverse stakeholders to reduce vulnerability to disasters and climate change within a regional framework of wider sustainable development objectives.

3. **Results-based programme proposal** with supporting project concept notes that has sufficient buy-in and approval from stakeholders, such as to favour successful resource mobilization and implementation.
OVERVIEW PRESENTATIONS

Four presentations were given by the organizing and collaborating agencies to provide background information on CCA and DRM in fisheries and aquaculture at the global and regional levels. These were:

4. Regional initiatives in advancing disaster risk management and climate change adaptation in fisheries and aquaculture, presented by Terrence Phillips (CRFM).

Building resilience and reducing vulnerabilities to climate change, disasters and crises in the fisheries and aquaculture sector

Ms Poulain (FAO) noted that more than 500 million people depend – directly or indirectly – on fisheries and aquaculture for their livelihoods. Aquatic foods provide essential nutrition for four billion people and at least 50 percent of animal protein and minerals to 400 million people in the poorest countries. Moreover, fish products are among the most widely traded foods, with more than 37 percent by volume of world production traded internationally.

Having established this context Ms Poulain indicated the potential effects and impacts of climate change and the types of disasters that affect the fisheries and aquaculture sector, including:

- natural disasters such as storms, cyclones/hurricanes with associated flooding and tidal surges, tsunamis, earthquakes, droughts, floods and landslides;
- technological disasters of human origin such as oil and chemical spills, and nuclear/radioactive material;
- food and nutrition security, post-conflict and protracted crises; and HIV/AIDS;
- sector-specific hazards such as transboundary aquatic animal diseases and pest outbreaks that can have significant impacts on aquaculture production and fisheries;
- changes in fish species composition, spatial distribution and abundance, potential effects on coral bleaching and calcification and consequences on communities’ livelihoods and local and national economies.

Understanding vulnerabilities is a critical first step towards successfully addressing them. The approach taken is to address adaptation to climate change and DRM through broader vulnerability reduction. Ecological, economic and social resilience must incorporate technological innovation, preparedness, information and early warning and planned adaptation. Both mitigation and adaptation need to be addressed. Considerations here include removing and reducing emissions and developing alternative sources of energy.

The work of the FAO Fisheries and Aquaculture Department in DRM and CCA includes: building the bridge between science and policy; providing technical support to national planning processes; developing guidance on how to cope with climate change; assisting the sector in designing and implementing effective adaptation and DRM strategies and plans; and assisting partners to build and develop capacity in DRM (including emergency response) through the development of guidelines, tools and approaches, and strengthening collaboration and coordination of CCA and DRM.
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

in fisheries and aquaculture through, for example, the Global Partnership on Climate, Fisheries and Aquaculture. This could be of interest to the Caribbean. In addition to this, the FAO Fisheries and Aquaculture Department continues to provide support to Members and partners in responding to emergencies that affect the sector. The overall objective is to restore food production and livelihoods by means aligned to the Code of Conduct for Responsible Fisheries and good management practices.

The regional trend towards climate change adaptation

Mr Keith Nichols (CCCCC) reviewed the policy context for addressing climate change in the CARICOM region. The Liliendaal Declaration on Climate Change and Development provides a vision of transformational change in response to the challenges of a changing climate. CARICOM heads of government issued the declaration in July 2009. It makes commitments, endorsements and specific declarations on the actions needed to manage the effects of climate change and development. The Regional Framework is to: “Establish and guide the Caribbean’s direction for the continued building of resilience to the impacts of global climate change by CARICOM States”.

Its five strategic elements are to:

1. Mainstream climate change adaptation strategies into the sustainable development agendas of CARICOM States.
2. Promote the implementation of specific adaptation measures to address key vulnerabilities in the region.
3. Promote actions to reduce greenhouse gas emissions through fossil fuel reduction and conservation, and switching to renewable and cleaner energy sources.
4. Encourage action to reduce the vulnerability of natural and human systems in CARICOM countries to the impacts of a changing climate.
5. Promote action to derive social, economic and environmental benefits through the prudent management of standing forest on CARICOM countries.

Taking into account several other regional policies and initiatives, there is an Implementation Plan (IP) for the Regional Framework for the period 2012–2022, which was approved by CARICOM heads of government in March 2012. The IP:

- Considers responsibilities and functional cooperation between regional organizations and national governments.
- Seeks to guide the identification and prioritization of actions by stakeholders under each strategic element and goal area of the Regional Framework through the use of risk management approaches to decision-making.
- Recognizes that there are existing significant resource and capacity challenges that constrain the region’s sustainable development and growth and adopts the “three ones” principle (integrated coordination, planning and monitoring) to assist in resource mobilization.
- Proposes a monitoring and evaluation framework.

A biannual review of both the Regional Framework and the IP is proposed. Institutional arrangements include a Regional Coordinating Committee and a Regional Technical Committee. Mr Nichols explained these and ended by noting that the CDEMA Comprehensive Disaster Management (CDM) Strategy and the CCCCC Regional Framework provide numerous linkages for facilitating further integration in DRM.

A regional framework for disaster management

Mr Ricardo Yearwood (CDEMA) provided an introduction to the Strategy and Programme Framework for 2007–2012. It addresses the management of all hazards through all phases of the disaster management cycle by all people (public and private sectors, civil society and the general population). Comprehensive disaster management involves risk reduction and management, with integration of vulnerability assessments
Report of the workshop

Mr Mr Yearwood explained that the CDM governance structure comprises a Coordination and Harmonization Council and six sector subcommittees for education, health, civil society, agriculture, tourism and finance. FAO is sector lead for agriculture via the Agriculture Sector Sub-Committee (ASSC). The ASSC was amalgamated with the Jagdeo Initiative Technical Management Advisory Committee (TMAC) to form the Agriculture Disaster Risk Management Committee (ASSC/TMAC), which includes the CRFM and CCCCC as members. There is a multi-year work programme for mainstreaming CDM within the agriculture sector in the Caribbean. Among the expected results are:

- enhanced culture of agricultural risk management at multiple levels;
- risk transfer mechanisms with a focus on agricultural insurance;
- hazard information and DRM incorporated into planning and development;
- agricultural risk management protocols and resource facility developed;
- capacity for damage assessment and rehabilitation/reconstruction plans enhanced;
- measures aimed at the reduction of praedial larceny promoted and supported;
- improved capacities for hurricane disaster mitigation, preparedness and response.

Regional initiatives in advancing disaster risk management and climate change adaptation in fisheries and aquaculture

Mr Terrence Phillips (CRFM Secretariat) informed participants that in 2008 the economic contribution of fisheries in the Caribbean ranged from 0.01 to 2.5 percent of gross domestic product, valued at from US$115 000 to US$77 million. The sector employs about 332 000 fishers, boat owners/operators, boat builders, dockworkers and processors. Marine production in 2007 exceeded 102 000 tonnes, with total exports being about 47 800 tonnes with a value of US$208 million. He noted that the fisheries sector contributes to food security and poverty alleviation by providing important sources of protein and incomes to many persons, especially in rural communities.

The CRFM was inaugurated in March 2003 with headquarters in Belize and an Eastern Caribbean Office in Saint Vincent and the Grenadines. Its mission is to promote and facilitate the responsible utilization of the region’s fisheries and other aquatic resources for the economic and social benefit of the current and future population of the region. Current programme areas include the development and promotion of risk reduction programmes for fishers, strengthening of fishers’ organizations and improved community participation.

In terms of the strengthening of fishers organizations, one such initiative involved the CRFM partnering with UWI – Centre for Resource Management and Environmental Studies (CERMES), fisheries authorities and fisherfolk organizations to promote and support the development of the Caribbean Network of Fisherfolk Organizations (CNFO). This organization now represents national fisherfolk organizations at the Caribbean Fisheries Forum. The next phase of this project is “Implementing the Caribbean Community Common Fisheries Policy: positioning and engaging fisherfolk organisations”. The purpose is to facilitate the continuous engagement of fisherfolk organizations with policy processes and decision-makers for the implementation of key regional fisheries policies. One aspect of this phase involves obtaining policy commitment for the mainstreaming of the ecosystem approach to fisheries (EAF), CCA and DRM in the governance and management of small-scale fisheries. Another initiative, undertaken in collaboration with the Fish II Programme of the African, Caribbean and Pacific Group of States (ACP) and the Caribbean Natural Resources...
Institute (CANARI), has involved building fisherfolk capacity in EAF, CCA and DRM.

In relation to disaster risk reduction (DRR), DRM and CCA, it was pointed out that the CRFM recognized CDEMA and the CCCCC as the respective leads in these areas and, as such, worked in partnership with them. The CRFM, as part of the CDEMA ASSC/TMAC, has participated in activities such as the Caribbean Agriculture Symposium: Disaster Risk Management, and the FAO Regional Writershop to Prepare Disaster Risk Management Plans for Hurricanes, Droughts and Floods in the Agriculture Sector (including Fisheries). It has also participated in the CDEMA/Austrian Development Agency: Mainstreaming Climate Change into DRM for the Caribbean Region (CCDM) Project; the 2012 CIMH Caribbean Regional Climate Outlook Forum; and the CCCCC Workshop Delivering Transformational Change 2011–2021: Implementing the CARICOM Regional Framework for Achieving Development Resilient to Climate Change (the Regional Framework). The CRFM is currently involved as a partner in the delivery of the Inter-American Development Bank’s Caribbean Regional Strategic Program for Climate Resilience.

It was pointed out that the project that led to the present workshop was conceptualized by the FAO, WECFA, CDEMA and the CRFM at an informal meeting in Barbados in 2011, following the 2010 FAO/OSPESCA/INCOPEsca Strategic Meeting on Reducing Vulnerability of Fishing and Fish Farming Communities to Natural Disasters and Climate Change, in Costa Rica.1

Discussion
Provision was made for discussion after each presentation and to wrap up each session. There was discussion about the need for more affordable research in order to better understand the dynamics of climate and disasters. Some participants emphasized the need for more regular monitoring in order to learn and adapt. Technological innovation and early warning systems (EWSs) for both social and ecological impacts are required in the region. Such EWSs, e.g. as for coral bleaching, earthquakes and tsunamis, are already receiving attention, but more attention should be paid to potential impacts that more directly threaten food security, such as drought and prolonged rough seas. Participants were concerned about how ecological phenomena such as Sargassum seaweed abundance and spreading of the alien invasive lionfish (Pterois spp.) may be linked to climate change.

PRESENTATIONS OF DRAFT REPORTS
The overview presentations were followed by three more on the draft reports prepared for the workshop by the CERMES consultancy team of Patrick McConney, John Charlery and Maria Pena.

Draft assessment study
Mr Charlery started with key observations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. The IPCC stated that warming of the climate system is “unequivocal”, with consequent increases in both drought

and heavy precipitation events, sea-level rise and hurricane activity. He shared model predictions for the region. Good generic understanding exists of the potential impacts of climate change and climate variability on many key fisheries-related factors that influence both fish stocks and the human components of fisheries. Many climate-induced changes are likely to be exacerbated by other well-documented anthropogenic stresses, including overfishing.

Mr McConney continued by noting how well the overview presentations had set the scene for fully understanding the assessment study. Therefore, he only briefly reviewed some of the key concepts and concerns such as the DRM cycle, vulnerability, adaptive capacity, livelihoods, value chains, EAF, social-ecological systems and stakeholder engagement. Noting the importance of both direct and indirect pathways, he summarized information on exposure, sensitivity and impacts on the social-ecological systems of Caribbean marine fisheries, inland fisheries, marine aquaculture and freshwater and brackish-water aquaculture.

He addressed adaptive capacity and the means of reducing vulnerability with frequent reference to the country consultations undertaken in Belize, Grenada, Guyana and Jamaica as part of the consultancy. Mr McConney ended with examples from the report of the practical measures that could be taken at the regional, national and local levels to deal with CCA and DRM in the fisheries and aquaculture sector. These measures, in the context of a similarly multilevel strategy and action plan, could form the basis of specific programme proposals.

Draft strategy and action plan

Mr McConney presented a conceptual model for delivering transformational change based on resilience and networking that was consistent with the IP. Showing how the guiding policies of the CCCCC, CDEMA and CRFM framed the draft strategy and action plan, he suggested an integrated vision such as “regional society and economy that is resilient to a changing climate and enhanced through comprehensive disaster management and sustainable use of aquatic resources”. He noted that the Caribbean Community Common Fisheries Policy (CCCFP) provided a new opportunity for mainstreaming CCA and DRM.

Mr McConney observed that the strategy elements and goals of the Regional Framework that formed the basis for the IP were sufficient for crafting the strategy and action plan focused on fisheries and aquaculture. This involved expanding existing provisions and integrating new provisions in an iterative and participatory approach that would:

- recognize the relevant current content of the IP; expand on it and integrate actions;
- develop actions from the existing strategic elements (top-down) but also fit in actions based on “fieldwork” measures (bottom-up);
- use the programme proposals to develop schedules and budgets for strategic action.

The report includes a draft strategy and action plan that contains existing components of the IP and new recommendations prepared by the consultants based on their examination of the literature and their consultations with the public and private sectors and civil society in several countries. Examples were presented under each of the strategic elements of the Regional Framework and IP. They included actions related to poverty, gender, the Hyogo Framework for Action, crisis prevention and management, rebuilding and rehabilitation, the capacity of the CRFM, policy development, hazard identification and analysis, education and training, partnerships to mobilize resources, network and institutional analysis, local knowledge, economic valuation, investment funding, livelihoods analysis and diversification. Improving the use of livelihoods approaches was considered to be critical, especially for community-level adaptation.
Draft programme proposals
Mr McConney presented the results-based programme proposals by first reminding participants of the logical framework principles and structure used to fill the gap between the current situation and desired impacts with the most appropriate action. He revealed a simple visualization scheme for mapping the level of integration of specific proposals to illustrate their scope. Limitations to the draft programme proposals were acknowledged. He said that, prior to implementation, countries needed to negotiate their participation, taking into account stakeholder capacity to engage and benefit without unnecessary duplication or burden. Country consultations had made it clear that core constraints lay mainly in governance. The level of involvement and content of proposals would change with the number and capacities of participants. He briefly addressed resource mobilization, stating that it depended on developing relationships and would require the CRFM to operate more like a network than a highly centralized organization. All of the proposals were intended to incorporate adaptive management in their execution.

The proposals were presented using the logframes in the draft report, and participants were encouraged to be creative and innovative in suggesting improvements and even additional proposals that should be formulated. At different levels, proposals included:

Regional
- Develop a protocol that specifically addresses integrating CCA and DRM into the CCCFP and national fisheries and aquaculture policies.
- Disseminate CDEMA CCA2DRR tools (e.g. G tool) and supporting material to stakeholders, select preferred tools, and create learning networks to develop active communities of practice within the CRFM.
- Increase the content related to climate and disasters in fisheries and aquaculture in university courses and research.
- Determine data sharing required between fisheries stock assessment and climate models; and initiate data exchanges.
- Develop post-harvest processing and marketing capacity to use unfamiliar, altered season or more abundant species.

National
- Mainstream CCA and DRM into national ecosystem-based, livelihood-centred management plans for fisheries and aquaculture.
- Undertake gender analyses in fisheries and aquaculture to demonstrate usefulness in policy, planning and management.
- Intensify boat registration and licensing, vessel monitoring, safety at sea training and such preparatory measures.

Local
- Strengthen CCA and DRM linkages especially at the local level in order to encourage synergistic interventions, messages.
- Document what coping strategies are or have been used for climate variability and disasters to inform interventions.
- Develop and implement education/awareness about climate and disasters specifically for fisherfolk and fish farmers.

Climate change adaptation in the Eastern Caribbean fisheries sector – project proposal
Mr Raymon Van Anrooy (FAO/WECAFC) gave a brief presentation on the status of the project proposal on climate change adaptation in the Eastern Caribbean fisheries sector that FAO aimed to submit to the Global Environment Facility (GEF) in January.
Report of the workshop

2013 in an application for assistance under the Special Climate Change Fund. He outlined the process of the proposal formulation, which started with an analysis of regional priority issues and strategies carried out by The CaribSave Partnership. The regional analysis was followed by the formulation of a first draft Project Identification Form (PIF), which was discussed at a side event of the fourteenth session of WECAFC held in Panama City on 9 February 2012. The partners in the project formulation process included, among others, CRFM, FAO/WECAFC, CNFO, CaribSave, UWI/CERMES and the Eastern Caribbean States. They agreed on the main outcomes, objectives and expected results from the project, and in the period March–December 2012 the PIF was finalized. The PIF obtained support from the participating countries (Saint Vincent and the Grenadines, Grenada, Dominica, Saint Lucia, Trinidad and Tobago, Antigua and Barbuda, and Saint Kitts and Nevis) through the submission of formal endorsement letters by the GEF national focal points to FAO. Agreement was also reached on the development of a request for a Project Preparation Grant. It was argued that this project, once endorsed, would contribute largely to the implementation of the regional strategy and would form an integrated component of the action plan. The workshop participants were invited to submit further comments on the PIF before January 2013, and to generate awareness in their respective countries about the project and its objectives. Some non-eastern Caribbean States (e.g. Dominican Republic, Cuba, Haiti, Jamaica and the Caribbean Netherlands) expressed interest in participating in the project, and FAO undertook to seek guidance from the GEF Secretariat on whether a wider scope would be possible.

Discussion

The discussion that wrapped up the session started with a clarification of model predictions and the likely responses in fisheries systems. Participants considered whether large-scale fisheries and aquaculture were likely to be more resilient than small-scale fisheries. Information was exchanged on the recent impacts of hazards such as heavy rainfall. Opportunities for insurance of fisheries and aquaculture were discussed, both at the enterprise level and through the Caribbean Catastrophe Risk Insurance Facility (CCRIF).

There was a need to prioritize actions that countries wished to urgently proceed with because these need to be set into the programmes of regional agencies. It was suggested that a protocol to the CCCFP to address CCA and DRM would be useful for regional policy. There was also discussion on the livelihoods approach to fisheries and the Hyogo Framework for Action that reinforced the call for organizations to communicate more on areas of responsibility and activities. Some participants suggested that, in addition to adaptation, more attention should be paid to mitigation of climate change because this should benefit everyone. Energy policies and green economy initiatives were recommended.

Participants and the organizing agencies agreed that the draft reports provided sound foundations for achieving the aims of the workshop. The strategy and action plan provided a feasible way forward. The next step would be to examine these outputs more closely and determine areas for improvement.

WORKING GROUPS

The second day of the workshop comprised mainly working group sessions. Participants organized themselves into three working groups, each with the task of reviewing the three draft reports prepared for the workshop. The three groups examined the reports from the perspectives of stakeholders at the regional, national and local levels of governance, with each group focusing on one level only. Group guidance notes and reporting slide templates were provided. Technical resource persons were assigned to each group. In order to focus thinking on the perspective of resource-user
stakeholders, each group conducted a brief livelihoods scenario exercise. With the exception of this exercise, the working groups’ outputs and the discussion about them that took place on the third day are summarized below.

Regional
This group comprised 16 persons with Ricardo Yearwood (CDEMA) as leader, Natalie Boodram (Caribbean Environmental Health Institute [CEHI]) as recorder, and Lester Gittens (Bahamas) as reporter.

Assessment study
The regional group made the following major comments on the assessment report:
- Coordination and communication between organizations and arrangements is critical.
- More research is needed to address climate change impacts and mitigation in the Caribbean.
- Support from the CCRIF requires further exploration, especially for DRM initiatives.
- It should be noted that the Strategic Action Programme (SAP) of the Caribbean Large Marine Ecosystem (CLME) requires endorsement by countries. In this context, proposals for CRFM and other regional institutional strengthening, as well as greater reference to DRM, can be made under climate mainstreaming in the SAP.
- The CRFM requires strengthening to be able to carry out additional CCA and DRM activities.
- Links also need to be established with national environmental strategies.
- Funding of stakeholder engagement in such strategies needs to be addressed more fully.
- Highlight existing tools, new tools and best practices in CCA and DRM.
- The Central American Fisheries and Aquaculture Organization (OSPESCA), the Dominican Republic and Cuba (non-CARICOM countries and organizations) need better coverage in the assessment if the scope is the wider Caribbean.
- More reference needs to be made to the recently signed CRFM/OSPESCA memorandum of understanding (MoU).
- Adapt existing tools for use at the community level, such as the benchmarking tool developed by the Organization of Eastern Caribbean States (OECS) for assessing the readiness of communities to mitigate disasters.
- If valuation of ecosystems is not being adequately addressed at the national level, then perhaps it should be at the regional level.

Strategy and action plan
The following comments were made on the strategy and action plan by the regional group:
- DRM involves issues that are not related to climate change that should be included, e.g. technological hazards.
- Availability of goods and services that may be affected by disasters but need continuity in supply for a functioning economy (e.g. food) needs to be addressed.
- Actions in the current draft need to be focused more on solving current fisheries issues.
- Need to make sure there is a link between the effects/impacts and adaptation measures identified in the assessment and the actions outlined in the strategy and action plan.
- In strategic element 3, include promotion and use of alternative energy sources (e.g. biofuels) as well as more fuel efficient engines.
• The action plan should take advantage of best practices in non-CARICOM countries.
• A possible regional approval process can be through the WECAFC but it may be best to start with the CRFM and OSPESCA countries.

Programme proposals
Regional-level proposals were commented on in detail, with a few highlights listed below:
• Non-CARICOM countries in the Caribbean should participate in the programmes to be developed.
• There is a need to clearly define “protocol” in the context of the CCCFP.
• In all proposals, the cost of producing products should include dissemination costs.
• The Community B-Tool should be linked with the CDEMA G-Tool in activities.
• The meaning of the term “community” should be clarified for each level.
• Indicator suites should meet the criteria of being both necessary and sufficient.
• A stronger proposal is needed on livelihoods research and information acquisition.
• There is a need to monitor environmental parameters for resilience and environmental change.
• There is a need to ensure a link between the effects/impacts and adaptation measures identified in the assessment, the actions outlined in the strategy and action plan, and the proposals.

National
This group comprised 23 persons with Frederick Ming (Bermuda) as leader, Billy Darroux (Montserrat) as recorder and Steven Russell (Bahamas) as reporter.

Assessment study
The national group made the following major comments on the assessment report:
• Monitoring and evaluation are critical, as is the need to identify appropriate indicators.
• Document best practices for CCA and DRM in the fisheries and aquaculture sectors.
• Learning by doing and adapting at all levels are important for success.
• Identify existing technical resources in fisheries and aquaculture as a starting point.
• A communication strategy, sensitive to the various governance levels and that includes a consultation process in its design, is needed.
• Data collection and information management and sharing are needed at the national level.
• Countries must have comprehensive education policies to sensitize and empower communities, with special emphasis on youth.
• National-level research agendas for CCA and DRM in fisheries and aquaculture are needed to complement regional level research.
• Capacity building at the national level will be essential.

Strategy and action plan
The following comments were made on the strategy and action plan by the national group, referring mainly to the measures in the assessment report that should be incorporated:
• Insurance for small-scale fishers must be improved.
• Creating greater awareness of the Hyogo Framework for Action outside the DRM community is essential.
Education must be specifically addressed in relation to fisheries and aquaculture stakeholders.

In evaluating the risks associated with aquaculture development, action should be aimed at ecosystem-based aquaculture, which would include CCA and DRM.

National legislation and policies should encompass all hazards (strategy to include technological and geological hazards).

Improving facilities for vessel and equipment lift-out and storage needs emphasis.

Identify appropriate action to address risks associated with aquaculture assets.

Consider how tools such as the CARIBSAVE Risk Atlas may be applied to fisheries and aquaculture.

Damage and loss analysis data must be made more accessible.

Programme proposals
National-level proposals were commented on in detail, with a few highlights listed below:

- The budgets are too small and the implementation periods too short for some proposals.
- Other Caribbean countries may need to be included in overall budgetary calculation.
- There is a need for the regional promotion and development of fisheries management plans.
- Both national and community plans should be gender aware and linked.
- Some of the national proposals are too large and need to be broken down into components, with each part being a project.

Local
This group comprised 13 persons with Sandra Grant (ACP Fish II) as leader and Beverly Wade (Belize) as both recorder and reporter.

Assessment study
The local group made the following major comments on the assessment report:

- A definition for the term “aquaculture” should be included in the glossary.
- Incentives are needed to promote responsible fishing that would create or result in greater resilience to climate change and disasters.
- Adaptation includes broadening fisherfolk community education programmes to include disaster and climate change issues.
- Some information on Dominica appears outdated in the country summary annex.

Strategy and action plan
The following comments were made on the strategy and action plan by the local group:

- EWSs need to inform research and hazard monitoring systems.
- “Stoplight” colour coding associated with priority rankings should be reversed.
- Develop education and training to apply to the entire DRM cycle.
- Income insurance should be guided by specific climate parameters.
- Collaboration and partnerships with different agencies are needed to ensure that the fisheries authorities can respond accordingly to the CCA and DRM needs.
- Utilize existing databases and protocols for the collection of data relevant to rapid disaster assessments.
- There is a need for greater coordination between the national disaster management agencies that are the direct links to donors and the mobilization of resources for recovery activities.
Programme proposals

Local-level proposals were commented on in detail, with a few highlights listed below:

- CCA and DRM are two-way processes that require the fisheries communities and fisheries authorities to be incorporated into all activities.
- It is advisable to collaborate with diverse partners (e.g. civil society, private sector).
- Better fisheries databases are required in order to supply information for damage assessment and recovery activities.
- Proposals must enable communities (and fisherfolk organizations) to collect, monitor and analyse data required for rapid damage assessments and recovery activities.
- Establish and maintain baseline database in communities to reflect the condition and location of various livelihood assets.
- Capacity building of fisheries authorities is required to coordinate the collection of required data.

Discussion

Participants opted to discuss matters in a cross-cutting manner rather than according to each governance level. In addition to general comments, organizations were asked to suggest what expertise they could contribute to regional capacity development and networking, as well as stating their expectations.

General comments

- Attitudes towards risk-taking and the consequences for policy and planning must be better understood, with policies subjected to cost–benefit analysis, to ensure that public funds are not used to unnecessarily support high personal risks.
- More research on appropriate incentives to influence personal and community-level risk-taking attitudes and behaviour is necessary to inform policy.
- Evacuation plans and procedures for both mandatory and voluntary evacuation are needed. This is being addressed in Saint Lucia.
- In some cases, the forced or voluntary relocation of entire communities may be necessary, and, therefore, the legal, institutional and ethical basis for such moves must be clear.
- More attention needs to be paid to technological innovations such as fish trap construction in order to reduce losses, damage and ghost fishing. Dominica has experience it can share.
- Capacity must be built to improve advocacy, lobbying and negotiation in international circles.
- Individual, household and community plans need to be strengthened as part of DRM, but these plans would be more effective if EWSs were in place and trusted.
- Inadequate insurance for fisheries and aquaculture enterprises is a persistent problem, requiring renewed effort to tackle and solve at both the national and regional levels.
- Although insurance may remain problematic, better information on fisheries and aquaculture assets can be obtained through regular registration and computerized licensing systems.

Comments by organizations

- OSPECSA countries, the Dominican Republic and Cuba should be included in the initiative. They have information and experience to share and interests similar to the CARICOM States.
- The Nature Conservancy has experience in economic valuation that may be of interest.
• The CEHI is interested in ensuring connections are made to ecosystem resilience, watersheds and marine pollution, especially if technological hazards are also to be taken into account.
• Opportunities exist for countries to craft the CLME SAP to better cover CCA and DRM needs.
• Fisheries policies being produced under the ACP Fish II project can address CCA and DRM.
• The OECS Secretariat wishes to see more CCA and DRM aquatic content in formal education.
• The CCCCC reiterated that the Regional Framework and IP are designed to address regional needs.
• The CARICOM Secretariat (CARISEC) noted that effective networking and communication would reduce duplication and wastage of scarce resources and capacity, and improve efforts for resource mobilization.
• The CDEMA remains a full partner in the process, from design to outcome.
• The UWI offers expertise in climate modelling and many facets of regional capacity development.

PROCESS FOR ENDORSEMENT AND THE WAY FORWARD
Milton Haughton of the CRFM indicated that, in light of the fact that several key agencies and potential partner organizations were unable to attend the workshop, there would be continued communication to share information on this initiative as it progressed. The consultants and organizing agencies would address the completion of the reports based on the input of workshop participants. Final reports would be tabled at the Caribbean Fisheries Forum in late April 2013 and, if endorsed, go to the Ministerial Council in May 2013. The CCCCC and CDEMA would also shepherd the final outputs through their respective endorsement processes. Consistent with the discussions that took place on resource mobilization, all opportunities for integrating the strategy, action plan and programme proposals into existing or planned initiatives in the region would be exploited and new relationships would be sought with various agencies.

SUMMARY OF MAIN CONSIDERATIONS, DECISIONS AND RECOMMENDATIONS
The process leading to the present workshop started in 2009 with a global workshop in Rome, the purpose of which was to develop an assistance programme for fisheries and aquaculture. Reducing vulnerability to disasters and climate change was identified as a priority area by workshop participants, which included experts from the Caribbean region. Further consultations were undertaken with partners at the regional and national levels to identify actions and a way forward. The process aims to build resilience and reduce the vulnerability of fisherfolk, fish farmers and their communities to disasters and the impacts of climate change and climate variability.

Workshop participants reviewed and agreed, with refinements, to the three following draft reports on DRM and CCA in fisheries and aquaculture: (i) a draft assessment study; (ii) a draft strategy and action plan; and (iii) a draft programme proposal for funding for the region.

Workshop participants stressed the need for mainstreaming DRM and CCA in fisheries and aquaculture, and highlighted major points for consideration at the local, national and regional levels. They stressed the need for community-level attention and

2 Inception Workshop of the FAO Extra-Budgetary Programme on Fisheries and Aquaculture for Poverty Alleviation and Food Security.
encouraged livelihoods approaches towards CCA and DRM. They also emphasized the need for improved cooperation between all sections of society, including government, civil society and the private sector.

Workshop participants underscored the need to assess and value the region’s coastal and marine ecosystems functions, goods and services in a clear and consistent manner, and the value of conducting cost–benefit analyses to determine the most appropriate policies, plans and programmes. In addition, they emphasized the need at all levels (regional, national and local) for: innovative insurance schemes for small-scale fishers and fish farmers; EWSs; rapid damage impact assessments; and the provision of rapid emergency relief assistance and support where it is needed. They further emphasized the need for: gender mainstreaming and special attention to the plight of vulnerable youths in the region; developing capacity, promoting learning by doing and adaptive management approaches; and building resilience through the application of the EAF and the ecosystem approach to aquaculture. Collectively, these actions will facilitate the ability to quickly recover and rebuild with improvements in the aftermath of a disaster event as well as help reduce impacts.

At the regional level, workshop participants stressed the importance of: coordination and collaboration between agencies; research on region specific climate change impacts including increasing the knowledge base; and improving linkages between CARICOM and non-CARICOM States and organizations. Strengthening the CRFM (human and financial capacity) to cooperate with the CCCCC and CDEMA in relation to fisheries, aquaculture, CCA and DRM was highlighted, along with strengthening partnerships with NGOs and the private sector at all levels.

Participants also discussed and suggested a way to endorse and implement the strategy, action plan and programme proposal in order to benefit the people of the region.
Appendix 1 – List of participants

GOVERNMENT INSTITUTIONS

ANGUILLA

GUMBS, Kafi
Deputy Director, Scientific Research
Department of Fisheries and Marine Resources
Ministry of Home Affairs, Environment, Agriculture, Fisheries and Lands
P.O. Box 60
The Valley
Tel.: (+264) 4972871 / 4978705
E-mail: kafi.gumbs@gov.ai

RUSSELL, Stephen
Director
National Emergency Management Agency
P.O. Box N7174
Rawson Square
Nassau
Tel.: (+242) 3226081/5
(+242) 3259981
Fax: (+242) 3265456
E-mail: steverusssr@hotmail.com

ANTIGUA AND BARBUDA

MULLIN, Philmore
Director
National Office of Disaster Services
American Road
St John’s
Tel.: (+268) 5622144
E-mail: nodsanu@gmail.com
pfmullin@gmail.com

BARBADOS

LESLIE, Joyce
Deputy Chief Fisheries Officer
Fisheries Division
Ministry of Agriculture, Food, Fisheries, and Water Resource Management
Princess Alice Highway
Bridgetown
Tel.: (+246) 4263745
E-mail: fishbarbados.dcko@caribsurf.com
dcko@agriculture.gov.bb

ARUBA

PEREZ, Castro
Department of Agriculture, Fisheries and Husbandry
Dlvv Santa Rosa
Piedra Plat
Tel.: (+297) 5860820
E-mail: info@santarosa.aw
castroeperez@gmail.com

BELIZE

WADE, Beverly
Fisheries Administrator
Fisheries Department
Ministry of Forestry, Fisheries and Sustainable Development
P.O. Box 148, Belize City
Tel.: (+501) 2244552 / 2232187
E-mail: bawade@yahoo.com
fisheries_department@fisheries.gov.bz

BAHAMAS

GITTENS, Lester
Assistant Fisheries Officer
Department of Marine Resources
Ministry of Agriculture and Marine Resources
East Bay Street, P.O. Box N-3028
Nassau
Tel.: (+242) 3931777
E-mail: lestergittens@yahoo.com

BAHAMAS
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

BERMUDA
TROTT, Tammy Dr
Senior Marine Resources Officer
Government of Bermuda
Ministry of Environment, Planning and Infrastructure Strategy
Department of Environmental Protection
Marine Resources Section
#3 Coney Island Rd.
St George’s CR04, Bermuda
P.O. Box CR52
Crawl CRBX
Tel.: (+441) 2935600 ext. 2225441 705 2716
E-mail: ttrott@gov.bm

MING, Frederick Dr
Director
Ministry of Environment, Planning and Infrastructure Strategy
c/o Department of Environment Protection
169 South Rd., Paget
DV04
Tel.: (+441) 2392300 / 2301 / 2317
(+441) 2367582
E-mail: dsbinns@gov.bm
fwming@gov.bm

BRITISH VIRGIN ISLANDS
CHRISTOPHER, Abbi
Fish Technologist (Acting)
Ministry of Natural Resources and Labour
Government of the Virgin Islands
33 Admin Drive
Roadtown
Tortola, VG 1110
Tel.: (+284) 4943701 ext. 2147
E-mail: aechristopher@gov.vg

CARIBBEAN NETHERLANDS
VAN BAREN, Pieter
Policy Advisor Agriculture & Fisheries
Ministry of Economic Affairs
Rijksdienst Caribisch Nederland
Kaya Internashonal z/n
P.O. Box 357, Kralendijk
Bonaire
Tel.: (+599) 7158321
E-mail: pieter.vanbaren@rijksdienstcn.com

CUBA
TIZOL CORREA, Rafael Dr
Director
Ministry of Food Industry and Fisheries Research Center
5th Ave. and 248, Barlovento, Playa Havana
Tel.: (+537) 2097875
E-mail: tizol@cip.telemar.cu

DOMINICA
GUISTE, Harold
Senior Fisheries Officer
Ministry of the Environment, Natural Resources, Physical Planning and Fisheries Government Headquarters
Roseau
Tel.: (+767) 4480140
E-mail: fisheriesdivision@dominica.gov.dom
hguiste@hotmail.com

JOSEPH, Steve
Programme Officer
Office of Disaster Management of Dominica
Ministry of National Security, Immigration, Labour
Tel.: (+767) 4487777
E-mail: odmdominica@gmail.com

DOMINICAN REPUBLIC
MATEO, Jeannette
Director of Fisheries
Dominican Council for Fishery and Aquaculture
(Consejo Dominicano de Pesca Aquacultura)
Ministry of Agriculture, CODOPESCA
Km 6.5 Autopista Duarte, Los Jardine del Norte
Santo Domingo
Tel.: (+809) 6830990
E-mail: codopesca@hotmail.com
jeannettemateo@gmail.com
Appendix 1 – List of participants

ALVAREZ, Moises
Technical Director
National Council for Climate Change and Clean Development Mechanism
Av. Winston, Churchill No. 77, Edificio Grucomsa 5to Piso
Santo Domingo
Tel.: (+809) 4720537
E-mail: m.alvarez@cambioclimatico.gob.do
onmdl@cambioclimatico.gob.do

JAMAICA
KONG, Andre
Chief Executive Officer (Acting)
Fisheries Division
Ministry of Agriculture and Fisheries
Marcus Garvey Drive
P.O. Box 470
Kingston
Tel.: (+876) 92388113
E-mail: fisheries@moa.gov.jm

GRENADA
RENNIE, Justin
Chief Fisheries Officer
Fisheries Division
Ministry of Agriculture, Forestry and Fisheries
Ministerial Complex
Tanteen
St George’s
Tel.: (+473) 4403814 / 3831 / 435 2921
E-mail: Justinar7368@hotmail.com

COOKE-PANTON, Kimberlee
Senior Fisheries Officer (Acting)
Fisheries Division
Ministry of Agriculture and Fisheries
Marcus Garvey Drive
Kingston 13
P.O. Box 470
Tel.: (+876) 9238811
E-mail: fisheries@moa.gov.jm
kimberleecooke@gmail.com

FLETCHER, Kenton
Land Use Division / Water Resource Management
Ministry of Agriculture
Tanteen
St George’s
Tel.: (+473) 4402708
E-mail: Kenflet@hotmail.com

HANSEL, Farrah
Fisheries Officer
Fisheries Division
Ministry of Agriculture and Fisheries
Marcus Garvey Drive
Kingston 13
P.O. Box 470
Tel.: (+876) 92388113
E-mail: farrah.hansel@yahoo.com

WALTERS, Terrence
National Disaster Coordinator (ag.)
National Disaster Management Agency
Fort Frederick
Richmond Hill
St George’s
Tel.: (+473) 44083904 / 0838
E-mail: nadma@spiceisle.com

BROWN, DeHaan
Research Officer
Fisheries Division, Aquaculture Branch
Ministry of Agriculture and Fisheries
Hope Gardens
Kingston 6
Tel.: (+876) 92388113 / 92717315
E-mail: fisheries@moa.gov.jm
brown1_de@yahoo.com

HAITI
BADIO, Jean Robert
Director of Fisheries
Ministry of Agriculture and Natural Resources
Damien, Route Nationale #1
Port au Prince
Tel.: (+509) 36570507
E-mail: robertbadio@yahoo.com

MONTSERRAT
JEFFERS, John
Fisheries Assistant
Department of Fisheries
P.O. Box 272
Brades
Tel.: (+664) 4912546 / 2076
E-mail: malhe@gov.ms
jeffersaj@gov.ms
DARROUX, Billy
Director
Disaster Management Coordination Agency
Yellow Hill
St John’s
Tel.: (+664) 4917166
E-mail: darrouxb@gov.ms

PUERTO RICO
FARCHETTE, Carlos
Caribbean Fisheries Management Council
268 Muñoz Rivera Ave.
Suite 1108
San Juan 00918-1920
Tel.: (+787) 7665926
E-mail: carlosfarchette@gmail.com

SAINT KITTS AND NEVIS
HEYLIGER, Samuel
Fisheries Officer
Department of Marine Resources
Ministry of Marine Resources
Church Street
P.O. Box 03
Basseterre
Tel.: (+869) 4671016 / 4658045
E-mail: dmrskn@gmail.com
fishingkid67@hotmail.com

PEETS, Perry
Deputy National Disaster Coordinator
National Emergency Management Agency
Lime Kiln
Basseterre
Tel.: (+869) 4665100
E-mail: perrypeets@gmail.com

SAINT LUCIA
GEORGE, Rufus
Chief Fisheries Officer (ag.)
Department of Fisheries
Ministry of Agriculture, Food Production, Fisheries and Rural Development
Point Seraphine
Castries
Tel.: (+758) 4684135 / 43
E-mail: cfo@maff.egov.lc
rufus.george@govt.lc
chieffish@govt.lc

FRENCH, Dawn
Director
National Emergency Management Organisation
P.O. Box 1517
Castries
Tel.: (+758) 4523802
E-mail: director@nemo.gov.lc

SAINT MAARTEN
BUTCHER, Mervyn
Medewerker LVV
Ministry of Tourism, Economic Affairs, Traffic & Telecommunication
c/o Government Administration Building
Clem Labega Square
Philipsburg
Tel.: (+721) 5424509 / 11 / 19
(+721) 5809443
E-mail: Mervyn.Butchers@sintmaartengov.org

BRATHWAITE-PHILIP, Chantal
Training and Education Spec.
Office of Disaster Preparedness and Management
No. 4A Orange Grove Road
Tacarigua
Tel.: (+868) 6401285
E-mail: chantalb15@yahoo.com
cbraithwaite@mns.gov.tt

SAINT VINCENT AND THE GRENADINES
GRANT, Lucille Dr
Fisheries Officer
Fisheries Division
Ministry of Agriculture, Rural Transformation, Forestry, Fisheries and Industry
Kingstown
Tel.: (+784) 4562738 / 1178
E-mail: fishdiv@vincysurf.com

FORBES, Michelle
Deputy Director
National Emergency Management Organization
Ministry of National Security
Old Montrose
Kingstown
Tel.: (+784) 4562975
E-mail: nemosyg@gmail.com
vincymichelle@yahoo.co.uk
Appendix 1 – List of participants

SURINAME
CHOTKAN, Anand
Junior Veterinary Officer / Acting Head Aquaculture
Fisheries Department
Ministry of Agriculture, Animal Husbandry and Fisheries
P.O. Box 1807, Cornelis Jongbawstraat 50
Paramaribo
Tel.: (+597) 479112 ext. 3101
E-mail: visserijdienst@sr.net
a_chotkan@hotmail.com

TRINIDAD AND TOBAGO
MIEUX, Recardo
Fisheries Officer
Fisheries Division
Ministry of Food Production
#35 Cipriani Boulevard
Port-of-Spain
Tel.: (+868) 6236028 / 8525
E-mail: recardomieux@yahoo.com

TURKS AND CAICOS ISLANDS
CLERVEAUX, Luc
Department of Environment and Maritime Affairs Resources
Ministry of Environment and Marine Affairs
Grand Turk
Tel.: (+649) 9415122 / 2461958
E-mail: lclerveaux@gmail.com

PARDO, Rikardia
Hazard Mitigation Officer
The Department of Disaster Management and Emergencies
South Base
Grand Turk
Tel.: (+649) 9462177
E-mail: rpardo.ddme@gmail.com

TALBOT, Oscar
Fisheries Advisory Council
Providenciales
Tel.: (+649) 9415122

INSTITUTIONS
ACP FISH II
GRANT, Sandra
Regional Manager for the Caribbean ACP FISH II Programme
Princess Margaret Drive
P.O. Box 1944
Belize City
Belize
Tel.: (+501) 2232974
E-mail: s.grant@acpfish2-eu.org

CANADA CARIBBEAN DISASTER RISK MANAGEMENT FUND
WALLING, Leslie
Coordinator
Canada Caribbean Disaster Risk Management c/o Caribbean Disaster Emergency Management Agency (CDEMA)
Building #1, Manor Lodge Complex
Lodge Hill, St Michael
Barbados
Tel.: (+246) 4250306
E-mail: ccdrm.fund@gmail.com

CARIBBEAN DISASTER EMERGENCY MANAGEMENT AGENCY (CDEMA)
YEARWOOD, Ricardo
Caribbean Disaster Emergency Management Agency (CDEMA)
Building #1, Manor Lodge Complex
Lodge Hill
St Michael
Barbados
Tel.: (+246) 4250388
E-mail: Ricardo.yearwood@cdema.org

CARIBBEAN COMMUNITY CLIMATE CHANGE CENTRE
NICHOLS, Keith
Project Development Specialist
Caribbean Community Climate Change Centre
2nd Floor, Lawrence Nicholas Building
Ring Road
Belmopan City, Cayo District
Belize
Tel.: (+501) 8221094
E-mail: knichols@caribbeanclimate.bz
FISHERIES AND AQUACULTURE OF CHILE
GALLARDO, Catalina
Lawyer
Under-Secretariat for Fisheries and Aquaculture of Chile
Bellavista 168, 18th Floor
Valparaiso
Chile
Tel.: (+56) 322502792
E-mail: cgallardo@subpesca.cl

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
VAN ANROOY, Raymon Dr
Fishery and Aquaculture Officer / Secretary of WECAFC
Food and Agriculture Organization of the UN Sub-regional Office for the Caribbean (FAO-SLC)
2nd Floor, United Nations House
Marine Gardens, Hastings
Christ Church, BB11000
Barbados
Tel.: (+246) 4267110 / 11 ext. 249
(+246) 2301741
E-mail: Raymon.vanAnrooy@fao.org

POULAIN, Florence
Fisheries and Aquaculture Officer
Disaster Risk Management Coordination
Fisheries and Aquaculture Department
Food and Agriculture Organization of the United Nations
Viale Terme di Caracalla
00153 Rome
E-mail: Florence.poulain@fao.org

BAHRI, Tarub
Fishery Resource Officer
Food and Agriculture Organization of the United Nations
Viale Terme di Caracalla
00153 Rome
Tel.: (+39) 06 57055233
E-mail: Tarub.Bahri@fao.org

INTERNATIONAL COLLECTIVE FOR THE SUPPORT OF SMALL SCALE FISHERS (ICSF)
SOLIS RIVERA, Vivienne
Coope SoliDar R.L.
International Collective for the Support of Small Scale Fishers (ICSF)
Costa Rica
Tel.: (+506) 22812890
E-mail: volis@coopesolidar.org

ORGANISATION OF EASTERN CARIBBEAN STATES
MURRAY, Peter
Programme Officer III
Ocean Governance Unit
Organisation of Eastern Caribbean States
Morne Fortuné
P.O. Box 1383
Castries
Saint Lucia
Tel.: (+758) 4556327 ext. 6327
E-mail: pamurray@oecs.org

OSPESCA
PEREZ, Manuel
Central America Fisheries and Aquaculture Organisation
Boulevard Cancilleria
Edificio SICA
San Salvador
El Salvador
Tel.: (+503) 22631123 ext. 618
E-mail: mperez@oirsa.org

THE NATURE CONSERVANCY
ZENNY, Nathalie
Caribbean Programme
The Nature Conservancy (TNC)
255 Alhambra Circle, Ste. 520
Coral Gables, Fl. 33134
United States of America
Tel.: (+1) 772 5633966
E-mail: nzenny@tnc.org

AGOSTINI, Vera Dr
Senior Scientist
The Nature Conservancy (TNC)
255 Alhambra Circle, Ste. 520
Coral Gables, Fl. 33134
United States of America
E-mail: vagostini@TNC.ORG
Appendix 2 – Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.30 – 09.00</td>
<td>Registration of participants, and distribution of documents</td>
</tr>
<tr>
<td>09.00 – 09.15</td>
<td>Brief welcome</td>
</tr>
<tr>
<td></td>
<td>Election of a chairperson and introduction of participants</td>
</tr>
<tr>
<td>09.15 – 09.25</td>
<td>Review of Agenda and meeting arrangements</td>
</tr>
<tr>
<td>09.25 – 09.30</td>
<td>Workshop objectives – CRFM</td>
</tr>
<tr>
<td>09.30 – 10.15</td>
<td>Presentations:</td>
</tr>
<tr>
<td></td>
<td>• Global overview of FAO work on disasters and climate change in fisheries and aquaculture – FAO</td>
</tr>
<tr>
<td></td>
<td>• Implementing the CARICOM Regional Framework for Achieving Development Resilient to Climate Change – CCCCC</td>
</tr>
<tr>
<td>10.15 – 10.30</td>
<td>Discussion</td>
</tr>
<tr>
<td>10.30 – 11.00</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>11.00 – 11.30</td>
<td>• Implementing the Comprehensive Disaster Management Strategy – CDEMA</td>
</tr>
<tr>
<td></td>
<td>• Regional initiatives in advancing disaster risk management and climate change adaptation in fisheries and aquaculture – CRFM</td>
</tr>
<tr>
<td>11.30 – 11.45</td>
<td>Discussion</td>
</tr>
<tr>
<td>11.45 – 12.15</td>
<td>Presentation: Draft Assessment Study on Climate Change Adaptation, Disaster Risk Management and Fisheries and Aquaculture in the CARICOM Region and Country Summaries – UWI – CERMES</td>
</tr>
<tr>
<td>12.15 – 12.45</td>
<td>Discussion</td>
</tr>
<tr>
<td>12.45 – 13.45</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.45 – 14.30</td>
<td>Presentation: Draft Strategy and Action Plan on Climate Change Adaptation, Disaster Risk Management and Fisheries and Aquaculture, with a focus on Small Scale Fisheries and Small Scale Aquaculture, in the CARICOM Region – UWI–CERMES</td>
</tr>
<tr>
<td>14.30 – 15.00</td>
<td>Discussion</td>
</tr>
<tr>
<td>15.00 – 15.30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>15.30 – 16.15</td>
<td>Presentation: Draft Programme Proposal on Climate Change Adaptation, Disaster Risk Management and Fisheries and Aquaculture, with a focus on Small Scale Fisheries and Small Scale Aquaculture, in the CARICOM Region – UWI–CERMES</td>
</tr>
<tr>
<td>16.15 – 16.45</td>
<td>Discussion</td>
</tr>
<tr>
<td>16.45 – 17.00</td>
<td>Presentation: Status of GEF Project Proposal on Adaptation to Climate Change in the Eastern Caribbean Fisheries Sector – FAO</td>
</tr>
<tr>
<td>17.00 – 17.15</td>
<td>Discussion & Close</td>
</tr>
</tbody>
</table>
Day 2 – Tuesday, 11 December 2012

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00 – 09.15</td>
<td>Presentation: Summary of the previous day’s proceedings, highlighting</td>
</tr>
<tr>
<td></td>
<td>matters to be addressed in the Draft Assessment Study, Draft Strategy</td>
</tr>
<tr>
<td></td>
<td>and Action Plan and Draft Programme Proposal.</td>
</tr>
<tr>
<td>09.15 – 10.00</td>
<td>Discussion</td>
</tr>
<tr>
<td>10.00 – 10.30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>10.30 – 12.30</td>
<td>Deliberations in small groups assisted by resource persons</td>
</tr>
<tr>
<td>12.30 – 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 – 15.00</td>
<td>Deliberations in small groups assisted by resource persons</td>
</tr>
<tr>
<td>15.00 – 15.30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>15.30 – 17.00</td>
<td>Presentation and plenary discussion of working group reports</td>
</tr>
<tr>
<td>17.00</td>
<td>Close</td>
</tr>
</tbody>
</table>

Day 3 – Wednesday, 12 December 2012

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00 – 09.15</td>
<td>Presentation: Summary of the previous day’s proceedings, highlighting matters still to be addressed in the drafts of the Assessment Study, Strategy and Action Plan and Programme Proposal.</td>
</tr>
<tr>
<td>09.15 – 10.00</td>
<td>Resumption of small groups to address any matters brought up upon reflection.</td>
</tr>
<tr>
<td>10.00 – 10.30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>10.30 – 11.30</td>
<td>Continuation of small groups to address any matters brought up upon reflection and to finalise their presentations for the plenary.</td>
</tr>
<tr>
<td>11.30 – 12.25</td>
<td>Presentations and discussion:</td>
</tr>
<tr>
<td></td>
<td>Final interactive presentations by the working groups on the main matters identified for attention within the drafts of the Assessment Study, Strategy and Action Plan and Programme Proposal.</td>
</tr>
<tr>
<td></td>
<td>Process for the endorsement of the Assessment Study, Strategy and Action Plan and Programme Proposal by the CRFM and partner agencies as well as the way forward in terms of resource mobilisation and implementation of the Programme Proposal.</td>
</tr>
<tr>
<td></td>
<td>Summary of main considerations, decisions and recommendations to be included in the workshop report and for other further action.</td>
</tr>
<tr>
<td>12.25 – 12.30</td>
<td>Close of the workshop</td>
</tr>
<tr>
<td>12.30 – 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 – 15.00</td>
<td>FAO, CRFM, CCCCCC, CDEMA and UWI–CERMES will conduct post-evaluation, debriefing and planning session for the way forward.</td>
</tr>
<tr>
<td>15.00</td>
<td>Close of Lead Agencies discussions.</td>
</tr>
</tbody>
</table>
Appendix 3 – Climate change adaptation and disaster risk management in fisheries and aquaculture in the CARICOM and wider Caribbean region: Volume 1 – assessment report

P. McConney, J. Charlery and M. Pena
University of the West Indies
Contents

Executive summary 31
Abbreviations and acronyms 33

1. Introduction 37
 1.1 Context and purpose 37
 1.2 Scope and implementation 39
 1.3 About the outputs 40

2. Setting the scene 43
 2.1 Key concepts and their connections 43
 2.2 Fisheries and aquaculture social-ecological systems in the CARICOM region 47
 2.3 Major actors and interests 48
 2.4 Themes, trends and linkages 50

3. Overview of climate change and disasters in the Caribbean 57
 3.1 Key conditions and evidence 57
 3.2 Enhancing our understanding 61
 3.3 Forecasting the future 61
 3.4 Summary 67

4. Fisheries and aquaculture sector 69
 4.1 Exposure, sensitivity and impacts 72
 4.2 Adaptive capacity and reducing vulnerability 81
 4.3 Conclusion 96

5. Measures for Caribbean fisheries and aquaculture 99

6. References and further reading 103

7. Annexes 111
 7.1 Glossary 111
 7.2 Participants in the four country consultations 114
 7.3 Extract from summary of physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture 116
Executive summary

This assessment is the first of four outputs in an initiative of CRFM and FAO on “Climate change adaptation and disaster risk management in fisheries and aquaculture in the CARICOM and wider Caribbean region”.

Using available information the assessment is intended to:
• assess vulnerability to disasters and climate change in CARICOM countries by understanding potential impacts on the system, the sensitivity of the system to such changes and the current adaptive capacity of the system;
• identify gaps in the existing knowledge to assess vulnerability in the system;
• identify potential measures for reducing vulnerability to disasters and climate change;
• provide policy guidance to reduce the system’s vulnerability within the wider sustainable development objectives.

Fisheries and aquaculture in the CARICOM region are extremely vulnerable to the impacts of climate change and variability, and to several hazards that typically result in disasters. The concern is with hydro-meteorological and geological hazards, while also acknowledging the threat of technological hazards. Agencies in the region see considerable convergence between CCA and DRM and encourage an integrated approach. Of prime concern to many stakeholders are the negative impacts of storms and hurricanes on small-scale marine fisheries. Despite the regional downscaling of global climate models there remains considerable uncertainty about the physical and chemical changes, variability and hazards that may arise – especially as they interact with each other – and the biological responses of flora and fauna, including humans. The region needs to be prepared for unfortunate surprises.

Numerous completed, ongoing and planned activities are aimed at increasing adaptive capacity and reducing vulnerability, but few focus specifically on fisheries and aquaculture. A concerted and comprehensive approach to mainstreaming CCA and DRM into fisheries and aquaculture is urgently required. Such an approach will need to focus on institutional arrangements for building the capacity to deliver and absorb initiatives, as well as the more technical aspects of interventions if they are to be sustainable.

Several measures for accomplishing this are recommended in this assessment report. These measures should be integrated into existing regional frameworks related to climate, disasters, fisheries and aquaculture in order to take advantage of political will and endorsement, and to leverage resources committed to these areas. A strategy and action plan, and a programme proposal for implementation, are contained in two other reports in this series.
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCC</td>
<td>Adaptation to Climate Change in the Caribbean Project</td>
</tr>
<tr>
<td>ACS</td>
<td>Association of Caribbean States</td>
</tr>
<tr>
<td>AMMP</td>
<td>Anguilla Marine Monitoring Programme</td>
</tr>
<tr>
<td>AOSIS</td>
<td>Alliance of Small Island States</td>
</tr>
<tr>
<td>AR4</td>
<td>Fourth Assessment Report (IPCC)</td>
</tr>
<tr>
<td>ASSC/ TMAC</td>
<td>Agriculture Sub-Sector Committee/Technical Management Advisory Committee</td>
</tr>
<tr>
<td>CANARI</td>
<td>Caribbean Natural Resources Institute</td>
</tr>
<tr>
<td>CARDIN</td>
<td>Caribbean Disaster Information Network</td>
</tr>
<tr>
<td>CAREC</td>
<td>Caribbean Epidemiological Centre</td>
</tr>
<tr>
<td>CARICOM</td>
<td>Caribbean Community</td>
</tr>
<tr>
<td>CAS</td>
<td>Complex adaptive system</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBO</td>
<td>Community-based organization</td>
</tr>
<tr>
<td>CCA</td>
<td>Climate change adaptation</td>
</tr>
<tr>
<td>CCA2DRR</td>
<td>Mainstreaming climate change adaptation into disaster risk reduction</td>
</tr>
<tr>
<td>CCCFP</td>
<td>Caribbean Community Common Fisheries Policy</td>
</tr>
<tr>
<td>CCCCC</td>
<td>Caribbean Community Climate Change Centre</td>
</tr>
<tr>
<td>CCCRA</td>
<td>CARIBSAVE Climate Change Risk Atlas</td>
</tr>
<tr>
<td>CCDM</td>
<td>Mainstreaming climate change into disaster risk management</td>
</tr>
<tr>
<td>CCRF</td>
<td>Code of Conduct for Responsible Fisheries</td>
</tr>
<tr>
<td>CCRIF</td>
<td>Caribbean Catastrophe Risk Insurance Facility</td>
</tr>
<tr>
<td>CDB</td>
<td>Caribbean Development Bank</td>
</tr>
<tr>
<td>CDEMA</td>
<td>Caribbean Disaster and Emergency Management Agency</td>
</tr>
<tr>
<td>CDERA</td>
<td>Caribbean Disaster and Emergency Response Agency</td>
</tr>
<tr>
<td>CDKN</td>
<td>Climate and Development Knowledge Network</td>
</tr>
<tr>
<td>CDM</td>
<td>Comprehensive disaster management</td>
</tr>
<tr>
<td>CDPMN</td>
<td>Caribbean Drought and Precipitation Monitoring Network</td>
</tr>
<tr>
<td>CDRU</td>
<td>CARICOM Disaster Response Unit</td>
</tr>
<tr>
<td>CEHI</td>
<td>Caribbean Environmental Health Institute</td>
</tr>
<tr>
<td>CERMES</td>
<td>Centre for Resource Management and Environmental Studies</td>
</tr>
<tr>
<td>CGCED</td>
<td>Caribbean Group for Cooperation in Economic Development</td>
</tr>
<tr>
<td>CIDA</td>
<td>Canadian International Development Agency</td>
</tr>
<tr>
<td>CIF</td>
<td>Climate Investment Fund</td>
</tr>
<tr>
<td>CIMH</td>
<td>Caribbean Institute for Meteorology and Hydrology</td>
</tr>
<tr>
<td>CLME</td>
<td>Caribbean Large Marine Ecosystem (Project)</td>
</tr>
<tr>
<td>COFCOR</td>
<td>Council for Foreign and Community Relations</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties to a multilateral environmental agreement</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>COTED</td>
<td>Council for Trade and Economic Development</td>
</tr>
<tr>
<td>CPACC</td>
<td>Caribbean Planning for Adaptation to Climate Change</td>
</tr>
<tr>
<td>CREDP</td>
<td>Caribbean Renewable Energy Project</td>
</tr>
<tr>
<td>CREWS</td>
<td>Coral Reef Early Warning System</td>
</tr>
<tr>
<td>CRFM</td>
<td>Caribbean Regional Fisheries Mechanism</td>
</tr>
<tr>
<td>CRIS</td>
<td>Coastal Resource Information System</td>
</tr>
<tr>
<td>CRMI</td>
<td>Caribbean Risk Management Initiative</td>
</tr>
<tr>
<td>CRMN</td>
<td>Caribbean Reef Monitoring Network</td>
</tr>
<tr>
<td>CROSQ</td>
<td>CARICOM Regional Organization for Standards and Quality</td>
</tr>
<tr>
<td>CSCDM</td>
<td>Climate Smart Community Disaster Management</td>
</tr>
<tr>
<td>CSG</td>
<td>Climate Studies Group of the UWI</td>
</tr>
<tr>
<td>CSME</td>
<td>Caribbean Single Market and Economy</td>
</tr>
<tr>
<td>CVCA</td>
<td>Climate Vulnerability and Capacity Analysis</td>
</tr>
<tr>
<td>CWWA</td>
<td>Caribbean Water and Wastewater Association</td>
</tr>
<tr>
<td>CXC</td>
<td>Caribbean Examination Council</td>
</tr>
<tr>
<td>DRM</td>
<td>Disaster risk management</td>
</tr>
<tr>
<td>DRR</td>
<td>Disaster risk reduction</td>
</tr>
<tr>
<td>DDS</td>
<td>Dynamic downscaling</td>
</tr>
<tr>
<td>EAA</td>
<td>Ecosystem approach to aquaculture</td>
</tr>
<tr>
<td>EAF</td>
<td>Ecosystem approach to fisheries</td>
</tr>
<tr>
<td>EBM</td>
<td>Ecosystem-based management</td>
</tr>
<tr>
<td>ECACC</td>
<td>Enhancing capacity for adaptation to climate change</td>
</tr>
<tr>
<td>ECDG</td>
<td>Eastern Caribbean Donor Group for Disaster Management</td>
</tr>
<tr>
<td>ECLAC</td>
<td>Economic Commission for Latin America and the Caribbean</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>ESDU</td>
<td>Environment and Sustainable Development Unit of the OECS</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GCCA</td>
<td>Global Climate Change Alliance</td>
</tr>
<tr>
<td>GCM</td>
<td>Global Circulation Model</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GFDRR</td>
<td>Global Facility for Disaster Reduction and Recovery</td>
</tr>
<tr>
<td>GGCA</td>
<td>Global Gender and Climate Alliance</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>HAB</td>
<td>Harmful Algal Blooms</td>
</tr>
<tr>
<td>HFA</td>
<td>Hyogo Framework for Action</td>
</tr>
<tr>
<td>IBRD</td>
<td>International Bank for Reconstruction and Development</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated coastal management</td>
</tr>
<tr>
<td>IDB</td>
<td>Inter-American Development Bank</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre</td>
</tr>
<tr>
<td>IFAD</td>
<td>International Fund for Agricultural Development</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>IFIs</td>
<td>International financial institutions</td>
</tr>
<tr>
<td>IFRCS</td>
<td>International Federation of Red Cross Societies</td>
</tr>
<tr>
<td>IICA</td>
<td>Inter-American Institute for Cooperation on Agriculture</td>
</tr>
<tr>
<td>INSMET</td>
<td>Institute of Meteorology (Cuba)</td>
</tr>
<tr>
<td>IOC</td>
<td>Intergovernmental Oceanographic Commission</td>
</tr>
<tr>
<td>IOCARI BE</td>
<td>Caribbean section of the International Oceans Commission</td>
</tr>
<tr>
<td>IP</td>
<td>Implementation Plan</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISDR</td>
<td>International Strategy for Disaster Reduction</td>
</tr>
<tr>
<td>ITCZ</td>
<td>Inter-tropical Convergence Zone</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin America and the Caribbean</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>MACC</td>
<td>Mainstreaming adaptation to climate change</td>
</tr>
<tr>
<td>MARPOL</td>
<td>International Convention for the Prevention of Pollution from Ships</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>MEA</td>
<td>Multilateral environmental agreement</td>
</tr>
<tr>
<td>MPA</td>
<td>Marine Protected Area</td>
</tr>
<tr>
<td>MSD</td>
<td>Mid-summer drought</td>
</tr>
<tr>
<td>NAPA</td>
<td>National Adaptation Programme of Action</td>
</tr>
<tr>
<td>NBSAP</td>
<td>National Biodiversity Strategy and Action Plan</td>
</tr>
<tr>
<td>NCCA</td>
<td>National Climate Change Adaptation</td>
</tr>
<tr>
<td>NCCC</td>
<td>National Climate Change Committee</td>
</tr>
<tr>
<td>NCSA</td>
<td>National Capacity for Self Assessment</td>
</tr>
<tr>
<td>NDO</td>
<td>National Disaster Office</td>
</tr>
<tr>
<td>NEMO</td>
<td>National Emergency and Management Office</td>
</tr>
<tr>
<td>NEMS</td>
<td>National Environmental Management Strategy</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Agency, Jamaica</td>
</tr>
<tr>
<td>NFP</td>
<td>National Focal Points</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organization</td>
</tr>
<tr>
<td>NISP</td>
<td>National Integral Strategic Plan</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Association</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural resource management</td>
</tr>
<tr>
<td>OAS</td>
<td>Organization of American States</td>
</tr>
<tr>
<td>ODPEM</td>
<td>Office of Disaster Preparedness and Emergency Management, Jamaica</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OECS</td>
<td>Organization of Eastern Caribbean States</td>
</tr>
<tr>
<td>OTEC</td>
<td>Ocean Thermal Energy Conversion</td>
</tr>
<tr>
<td>PAHO</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>PIOJ</td>
<td>Planning Institute of Jamaica</td>
</tr>
<tr>
<td>PPCR</td>
<td>Pilot Program for Climate Resilience</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRECIS</td>
<td>Providing Regional Climates for Impacts Studies</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Circulation Model</td>
</tr>
<tr>
<td>REDD</td>
<td>Reducing Emissions from Deforestation and Forest Degradation</td>
</tr>
<tr>
<td>SES</td>
<td>social-ecological system</td>
</tr>
<tr>
<td>SGP</td>
<td>Small Grants Programme</td>
</tr>
<tr>
<td>SIDS</td>
<td>Small Island Developing States</td>
</tr>
<tr>
<td>SLM</td>
<td>Sustainable land management</td>
</tr>
<tr>
<td>SLR</td>
<td>Sea level rise</td>
</tr>
<tr>
<td>SMMA</td>
<td>Soufrière Marine Management Area</td>
</tr>
<tr>
<td>SPACC</td>
<td>Special Program on Adaptation to Climate Change</td>
</tr>
<tr>
<td>SPAW</td>
<td>Specially Protected Areas and Wildlife</td>
</tr>
<tr>
<td>SPCR</td>
<td>Strategic Program for Climate Resilience</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emission Scenarios</td>
</tr>
<tr>
<td>SST</td>
<td>Sea surface temperature</td>
</tr>
<tr>
<td>TNC</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>TOR</td>
<td>Terms of reference</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNCCD</td>
<td>United Nations Convention to Combat Desertification</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Education Fund</td>
</tr>
<tr>
<td>UNITAR</td>
<td>United Nations Institute for Training and Research</td>
</tr>
<tr>
<td>UNWTO</td>
<td>United Nations World Tourism Organization</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USD</td>
<td>United States dollar</td>
</tr>
<tr>
<td>UWI</td>
<td>University of the West Indies</td>
</tr>
<tr>
<td>VCA</td>
<td>Vulnerability and capacity assessment</td>
</tr>
<tr>
<td>WB</td>
<td>World Bank</td>
</tr>
<tr>
<td>WECAFC</td>
<td>Western Central Atlantic Fishery Commission</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resources Institute</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>
1. Introduction

The interests of the key agencies provide the immediate context, scope and purpose of this work. The topic “Climate change adaptation and disaster risk management in fisheries and aquaculture in the CARICOM and wider Caribbean region” is immense. This section explains the scope of the topic, describes the approach to implementing this work and sets out its communication and organization into a package.

1.1 CONTEXT AND PURPOSE

The Caribbean Regional Fisheries Mechanism (CRFM)1 was established by the Caribbean Community (CARICOM)2 in February 2002. Its mission is to promote and facilitate the responsible utilization of the region’s fisheries and other aquatic resources for the economic and social benefit of the current and future population of the region. The CRFM notes that fisheries and aquaculture are important to Caribbean people, contributing to livelihoods, nutrition, food security, economies, culture and many other dimensions of human well-being. Yet, these contributions are threatened by the vulnerability of the individual people and multi-component institutions of these aquatic sectors, both to disasters and climate change/variability. There are gaps between what occurs now and what is needed to best address these deficiencies. These gaps need urgently to be closed given that relatively little work has been done on fisheries and aquaculture, compared to the agriculture or tourism sectors, for example.

Closing the gaps in order to achieve sustainability of fisheries resources and aquaculture is of critical concern to the CRFM, the objectives of which are:

- the efficient management and sustainable development of marine and other aquatic resources within the jurisdiction of member states;
- the promotion and establishment of cooperative arrangements among interested states for the efficient management of shared, straddling or highly migratory marine and other aquatic resources; and
- the provision of technical advisory and consultative services to fisheries divisions of member states in the development, management and conservation of their marine and other aquatic resources.

CRFM asserts that if we are to ensure that the benefits that flow from fisheries and aquaculture to communities and nations in the CARICOM subregion are to continue, then it is essential that sound strategies and action plans are developed to build resilience to disasters and climate change. The many types of connections between hazards and climate change adaptation (CCA) – especially in these small island developing states (SIDS) – suggest the need for proactive and integrated approaches to address them simultaneously and comprehensively. For example, linkages between disaster preparedness, response and rehabilitation suggest the need for disaster risk management (DRM) and not just risk reduction (DRR). Greater emphasis on ecosystem-based and precautionary approaches to fisheries and aquaculture is likewise essential. According to the CRFM, these need to be more closely linked to wider sustainable development processes and fully mainstreamed into both sectoral and cross-sectoral policies, plans, programmes and projects. Effective DRM linked to CCA requires high degrees of coordination and cooperation between agencies at global,

1 http://www.caricom-fisheries.com/
2 http://www.caricom.org/
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

Regional, subregional, national and local levels. These tie into multi-level governance of aquatic resources.

Since its establishment in 2005, the Caribbean Community Climate Change Centre (CCCCC), has coordinated the CARICOM response to climate change. The Centre is a key node for information on climate change issues and adaptation in the Caribbean. It is a regional repository and clearing house for climate data, providing climate-related policy advice and guidelines to CARICOM member states. In this capacity, it spearheaded the formulation of the “Regional Framework for Achieving Development Resilient to Climate Change” (the Regional Framework) which articulates CARICOM’s strategy on climate change. CARICOM heads of government endorsed the Regional Framework at their July 2009 meeting in Guyana and issued the Liliendaal Declaration which sets out key climate change related interests and aims of CARICOM member states. The Implementation Plan (IP) for the Regional Framework is entitled “Delivering transformational change 2011 to 2021”. CRFM fisheries and aquaculture initiatives should be integrated into the IP, following the CCCCC approach to unifying coordination, planning, monitoring and evaluation. Thus the IP plays a central role in this study.

A high priority CRFM strategic programme area is “Development and promotion of risk reduction programmes for fishers”. The Caribbean Disaster Emergency Management Agency (CDEMA), established in 1991 as the Caribbean Disaster Emergency Response Agency (CDERA), is the leading disaster risk management organization within CARICOM, with links to a wide array of other support and response agencies. CDEMA functions under an expanded mandate of comprehensive disaster management (CDM) and is designed to embrace the principles and practices of CDM which seek to reduce the risk and loss associated with natural and technological hazards and the impacts of climate change and variability, to enhance sustainable development regionally. A guiding document for DRM is the Enhanced CDM Framework for 2007 to 2012. CDEMA is another key partner in this study.

The FAO Western Central Atlantic Fishery Commission (WECAFC) has been active since 1974. The Commission’s objective is to promote the effective conservation, management and development of the living marine resources of the area of competence of the Commission, in accordance with the FAO Code of Conduct for Responsible Fisheries (CCRF), and address common problems of fisheries management and development faced by members of the Commission. The Caribbean Community Common Fisheries Policy (CCCFP), which was endorsed by the CRFM Ministerial Council in May 2011, and the draft fisheries management plans of several member states are guided by the Code which highlights stakeholder participation and partnerships between agencies as being crucial for its implementation. Disaster risk management in fisheries, which included climate change and variability, was on the agenda of the 14th Session of WECAFC, held in Panama in February 2012, indicating the importance of

3 http://www.caribbeanclimate.bz/
6 http://www.cdemaga.org/
the subject to the wider Caribbean region. FAO and WECAFC are also partners in
this initiative; Sweden and Japan are the main financial supporters through the FMM
FAO Multi Donor Mechanism (FMM/GLO/003/MUL) and the project on “Fisheries
management and marine conservation within a changing ecosystem context” (GCP/
INT/253/JPN). The mandates of the above key agencies provide the immediate
context for this initiative, the purpose of which is: “to strengthen regional and national
cooperation and develop capacity in addressing climate change impacts and disasters
in the fisheries and aquaculture sector”. In order to achieve this an assessment study
report, strategy, action plan and results-based programme proposal on disaster risk
management, climate change adaptation in fisheries and aquaculture in the CARICOM
region were prepared by CERMES. A regional workshop on “Formulation of a
Strategy, Action Plan and Programme Proposal on Disaster Risk Management and
Climate Change Adaptation in Fisheries and Aquaculture in the CARICOM and
wider Caribbean Region” was organized, involving CERMES, CRFM, CDEMA,
CCCCCC, FAO/WECAFC and other members of the multi-agency Agriculture Sub-
Sector Committee/Technical Management Advisory Committee (ASSC/TMAC). The
workshop followed another workshop on “International Guidelines for Securing
Sustainable Small-Scale Fisheries (SSF Guidelines)11 in order to further strengthen links
between common interests.

1.2 SCOPE AND IMPLEMENTATION
The core geographic scope of this consultancy comprises the 17 members of the CRFM
which are 15 full CARICOM member states (Antigua and Barbuda, The Bahamas,
Barbados, Belize, Dominica, Grenada, Guyana, Haiti, Jamaica, Montserrat, St Lucia,
St Kitts and Nevis, St Vincent and the Grenadines, Suriname, Trinidad and Tobago)
plus two associate members, Anguilla and Turks and Caicos Islands. Outside this core,
the study occasionally also considers connections to other Caribbean countries such
as Cuba, Puerto Rico and the Dominican Republic, to other SIDS regions such as the
Pacific, and to the many international initiatives and agencies that address the global
issues of climate and disasters. Within the CRFM or CARICOM, the Organization of
Eastern Caribbean States (OECS)12 is an extremely critical subregion containing the
majority of members in a fairly compact area.

The policy instruments that address CCA and DRM range from multilateral
environmental agreements (MEAs) to national strategies. Some attention is paid to
global instruments and initiatives related to climate and disaster, but more emphasis
is placed on regional and national policies such as the Regional Framework and IP
mentioned previously. Trends, for example, towards low carbon green (and blue)
economies and the themes emerging from major global events such as Rio+20, will also
receive less attention than regional and specifically SIDS perspectives, but will not be
ignored.

The Implementation Plan for transformational change and the recent Inter-
Governmental Panel on Climate Change special report on “Managing the risks of
extreme events and disasters to advance climate change adaptation”13 make copious
use of concepts associated with complex adaptive social-ecological systems, and this
study does as well. These concepts are particularly useful for tackling ecosystem-
based management (EBM), the ecosystem approach to fisheries (EAF) and aquaculture
(EAA) and other such integrative schemes of humans-in-nature. Complex adaptive

12 http://www.oecs.org/
13 IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change
adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on
system (CAS) and social-ecological system (SES) perspectives are also consistent with the emerging regional governance framework for marine resources in the wider Caribbean region as evidenced by the Caribbean Large Marine Ecosystem (CLME) project\(^\text{14}\) to which the IP often refers.

Fisheries and aquaculture are the central economic activities to be addressed primarily from the livelihoods perspective\(^\text{15}\). Accordingly, the scope for this study is mainly small-scale and commercial fisheries, but some attention is paid to larger scales of operation (e.g. in aquaculture) and recreation (e.g. in fisheries). The focus is also more on marine than freshwater aquatic systems because the former represent the bulk of the fisheries-related economic activity in the region. We examine the full length of the value chain and take an inter- or cross-sectoral perspective consistent with an ecosystem approach. Since the latter can be broad, we focus on some critical interactions, such as with tourism and agriculture, and through integrated coastal management (ICM). The study concerns both CCA and DRM in fisheries and aquaculture. These topics overlap considerably but not completely. More attention will be paid to the specific areas of greatest overlap, as explained later in greater detail.

Ecosystem approaches often entail the involvement of a great diversity of stakeholders. We narrow our concern to the primary stakeholders (direct users and management authorities) and secondary stakeholders (indirect dependents and highly influential other parties). Much attention is paid to governmental and inter-governmental agencies, but non-governmental and community-based organizations (NGOs and CBOs) are not ignored. They play different roles in the institutions of multi-level governance.

Development of the study is in consultation with the key partner agencies identified earlier, and especially CRFM. A wider set of stakeholders is reached via internet and other methods of communication. The country visits are an important part of the implementation strategy. Their purpose is partly to help validate information in draft outputs, but predominantly to get feedback on putting strategies and proposals for action into practice. This was the focus of the workshop.

1.3 ABOUT THE OUTPUTS
Each of the objectives of the consultancy has expected outputs associated with it. These are:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Expected output</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Using available information, the case study will assess vulnerability to disasters and climate change in CARICOM countries by understanding potential impacts on the system, the sensitivity of the system to such changes and the current adaptive capacity of the system; • identify gaps in the existing knowledge to assess vulnerability in the system; • identify potential measures for reducing vulnerability to disasters and climate change; • provide policy guidance to reduce the system’s vulnerability within the wider sustainable development objectives;</td>
<td>An assessment study on the interface between DRM, CCA and fisheries and aquaculture in the CARICOM region, with a focus on small-scale fisheries and small-scale aquaculture.</td>
</tr>
<tr>
<td>• develop a strategy and action plan for integrating DRM, CCA and fisheries and aquaculture, with a focus on small-scale fisheries (SSF) and small-scale aquaculture (SSA);</td>
<td>A strategy and action plan for integrating DRM, CCA and fisheries and aquaculture, with a focus on small-scale fisheries (SSF) and small-scale aquaculture (SSA).</td>
</tr>
<tr>
<td>• develop a programme for funding;</td>
<td>A results-based programme proposal with supporting project concept notes towards implementation and resource mobilization.</td>
</tr>
<tr>
<td>• workshop report.</td>
<td>A workshop report.</td>
</tr>
</tbody>
</table>

\(^{14}\) http://www.clmeproject.org/

These outputs are intended for different audiences, including inter-governmental and governmental agencies, universities, private sector bodies, NGOs and CBOs. Readers are likely to be policy advisers, scientific or technical officers, senior administrators, academics, civil society organizers, and fishing industry leaders. Policy-makers (e.g. ministers), the general public and students are important audiences for communication around CCA and DRM but they are not targeted by this study. The study also has defined communication pathways and products. The main pathway is the face-to-face regional workshop, with internet access playing a minor role. The main products are paper and electronic reports, extracts from which can yield web page content, slides and policy briefs.

In order to meet the needs of the diverse audiences, and taking into account the limited pathways and products, the outputs must be communicated by text and graphics that are as simple and easy to understand as the topic allows. Although the topic is highly technical/scientific we try to:

- minimize scientific referencing and technical jargon where possible;
- provide a list of acronyms and a glossary of technical explanations;
- employ direct and simple language (which also facilitates translation);
- engage the reader with comments and questions to prompt reflection;
- refer to websites and other sources of easily accessible information;
- avoid reproducing large quantities of information available elsewhere;
- use bulleted lists, tables and charts sourced from existing publications.

The next section of the assessment study sets the scene with an explanation of key concepts so that readers can be clear on what is being referred to and why. Then we provide an overview of climate change, variability and disasters in the Caribbean before focusing more specifically on fisheries and aquaculture impacts and issues. The final section looks at some of the measures that may be taken to reduce vulnerability and increase resilience, thereby filling the gaps in adaptive capacity.

The strategy and action plan address identified gaps with broad ideas on what needs to be done in association with the IP for the regional climate change framework, with CDM, with the Code, with the CARICOM Common Fisheries Policy, with national fisheries and aquaculture plans, and more. The emphasis is on adding value to what already exists or is planned and to create new synergies.

This emphasis is carried through into the results-based programme proposal with suggestions for resource mobilization and implementation. It is expected that the regional workshop will focus much of its attention on this and the previous output in order to effectively and efficiently translate ideas into action.

The regional workshop report is the final output that ties all of the above together by synthesising the interventions and decisions of its participants, and particularly the directions that CRFM member states and partner agencies advocate for various stakeholders and interested parties.
2. Setting the scene

This section builds on the introduction and sets out in more detail several of the key concepts of the study, the principal actors involved, their interests and the linkages between all of these that constitute the fisheries and aquaculture systems investigated. We emphasize the complementary nature of the approaches to addressing CCA and DRM and the importance of increasing integration to create synergies. We look briefly at some of the main themes and trends that guide CCA and DRM in the CARICOM region.

2.1 KEY CONCEPTS AND THEIR CONNECTIONS

This assessment study bridges and connects several conceptual frameworks and disciplines. We do not expect our diverse audience to be experts in fisheries, aquaculture, CCA or DRM. Several of the concepts and technical terms will be unfamiliar even to professionals in one or other field; to facilitate communication across disciplines and between professions we provide a glossary in an annex. The glossary includes some of the most common terms used in several fields, along with fairly straightforward explanations. For each term one can find several more definitions, each of which is often wedded to a particular discipline or field (e.g. engineering versus ecological resilience), and there are hundreds more terms in use. The main point is not to focus on technical/scientific details but to see the several broad areas of similarity and connectedness in order to build upon common ground as the basis for collaboration.

In this study, when we refer to fisheries and aquaculture, our emphasis is on small-scale enterprises. This is not to entirely exclude industrial fisheries (e.g. some shrimp trawling) and aquaculture (e.g. some large shrimp farms), but to recognize that in this region, as in most parts of the world, the majority of fisheries and aquaculture operations are small-scale in nature. The fisheries in the region are mainly marine capture fisheries for demersal (bottom-dwelling) and pelagic (open water) species that occur inshore (from the coast, wetlands or estuaries to several miles off) or offshore to the limits of maritime jurisdiction, or the high seas (Figure 2.1).
Inland freshwater (river and lake) fisheries occur in few CRFM countries. Aquaculture spans many aquatic systems, grows both plants and animals and features several production systems, some of which may be integrated with agriculture. It is currently less significant than capture fisheries in most CRFM countries, but is of importance in some countries, such as Belize and Jamaica. New aquaculture policies, plans and projects are in progress in a few countries such as St Kitts and Nevis. The FAO Technical Paper (Cochrane et al., 2009) offers a comprehensive overview in relation to climate change.

The glossary explains several technical terms used in the field of climate change and variability, but our interest is primarily in adaptation, which is also a central theme in DRM. Simply put, adaptation is the adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. The glossary also explains several technical terms related to disasters, but our main interest is in disaster risk management which is the systematic process of using administrative directives, organizations and operational skills and capacities to implement strategies, policies and improved coping capacities in order to lessen the adverse impacts of hazards and the possibility of disaster. DRM features a planned sequence of events (Figure 2.2).

CCA and DRM have several other areas of overlap, such as hazards, sectors impacted and possible responses (Figure 2.3). We focus mainly on this area of hydro-meteorological overlap, not ignoring but paying less attention to hazards that are not directly related to climate, such as the geological hazards of earthquakes and tsunamis.

FIGURE 2.2

Disaster risk management cycle

Owing to the region’s small geographic size, small economies, close links between social and economic activities and other features of SIDS, the potential impacts of different hazards are likely to be similar, as are the dimensions of adaptive capacity required to reduce vulnerability and build resilience.

There is increasing convergence of CCA and DRM (Figure 2.4) especially as indirect pathways are taken into account and risk-oriented adaptive management becomes more important than the source and type of risk or driver for adaptation.

Another connection is that, at the core of both DRM and CCA is the aim to increase capacity to adapt, and be resilient, in order to reduce vulnerability\(^\text{17}\). Some authors consider the increasing zone of convergence to be essential for making real progress in both spheres and explain the real and perceived differences in detail in order to facilitate increased understanding\(^\text{18}\). Some of the technical terms for evaluating vulnerability and their relationships are explained in Figure 2.5.

\(^{17}\) FAO. 2007. Building adaptive capacity to climate change. Policies to sustain livelihoods and fisheries. New Directions in Fisheries – A Series of Policy Briefs on Development Issues. No. 08.

It is important to appreciate that adaptive capacity is multi-dimensional and that maladaptation can also occur and increase vulnerability (Figure 2.6).

This happens when the most appropriate programmes are not put in place or valuable assets (e.g. local knowledge, social networks, etc.) are ignored or harmed by well-intentioned but poorly planned interventions. The latter may be measures that deliver short-term gains or socio-economic benefits but, like coping strategies generally, can eventually lead to exacerbated vulnerability in the medium- to long-term rather than to adaptation. These perspectives on outputs and outcomes along various timescales are pertinent to project-oriented interventions. This is especially so for ensuring that outcomes are beneficial to sustainable livelihoods.

Although some issues may not be addressed from a livelihoods perspective, the sustainable livelihoods framework (Figure 2.7) integrates many key concepts. We see how vulnerability provides the context for developing livelihood assets that (through...
policies, institutions and processes) strategically result in livelihood outcomes. Positive and negative feedback through learning helps people to adapt.

Livelihoods are of interest from individual and household through to sector and regional levels, cutting across ecological, cultural, economic, social and political areas. Combining several of the conceptual frameworks previously described, Badjeck and others (2010) examine how livelihoods relate to climate change adaptation and can incorporate disaster risk management.

Yet another connection between the preceding key concepts is that they fit well within the emerging thrust towards ecosystem-based management (EBM) in the Wider Caribbean Region (WCR) of which CARICOM is a subregion. More specifically, we are concerned with an ecosystem approach to fisheries (EAF) which FAO describes as balancing diverse societal objectives, by taking account of the knowledge and uncertainties of biotic, abiotic and human components of ecosystems and their interactions and applying an integrated approach to fisheries within ecologically meaningful boundaries. In this study, when we speak of fisheries we include aquaculture unless specially mentioned otherwise. Furthermore, to address adaptive capacity, we want to focus mostly on the human dimensions of EAF. Evident in all of the above, but particularly the latter, is the fact that the fisheries and aquaculture sectors are complex adaptive social-ecological systems. In the next section we introduce what we mean by this in the CARICOM region.

2.2 FISHERIES AND AQUACULTURE SOCIAL-ECOLOGICAL SYSTEMS IN THE CARICOM REGION

Fisheries and aquaculture social-ecological systems (SES) in the CARICOM region are quite diverse and dynamic. It would not be useful to catalogue the entire range of SES here, but in this assessment we provide examples and overviews with specific reference to CCA and DRM. In this section we lay out some of the main parameters that we take into account as we identify systems and groups of systems (e.g. as occurs in a national plan). Following on from EAF above, the systems need to be considered as complete fisheries/aquaculture value chains and cross-sectoral links must be taken into account. We consider from habitat, through harvest and postharvest to marketing, distribution and consumption to complete the value chain. We also consider linkages, for example with tourism and agriculture, along the entire length of the value chain. Indeed, the image becomes one of a network rather than a chain when all the connections are added. Some of these connections concern the governance of fisheries and aquaculture because governmental, private sector and non-governmental stakeholders need to be identified and added throughout for each SES. Considerations of CCA and DRM need to be weaved into the complexity of the fish chain (Figure 2.8).

To examine even one fishery or aquaculture SES (e.g. the Grenada tuna fishery or Jamaican tilapia culture) in this detail for CCA and DRM is a massive undertaking. There are few papers and reports that do this comprehensively for even one fishery, in one location and in one country. We need to encourage more such analyses, perhaps by graduate students as well as other investigators. For our assessment of conditions and action programme-related prospects in the 17 CRFM countries we must generalize. In keeping with other initiatives in the region (e.g. CLME Project), our marine fisheries categories will be reef (including finfish, lobster and conch), pelagic (both large and small fishes) and continental shelf (mainly shrimp and groundfish). For aquaculture we use marine (mainly intensive cage or tank culture) and freshwater (ponds or tanks of various sizes and integrated systems) as the main categories.

This situation assessment provides background and context to the main aim of this initiative which is to develop a strategy and action plan with specific programme proposals. Governance is especially important if the latter are to be implemented. Within the SES, governance over fisheries, aquaculture, CCA and DRM comprises several agencies and organizations which may or may not communicate, cooperate, coordinate or collaborate. For example, fisheries and aquaculture are often the responsibility of the fisheries authority, but CCA may be addressed by coastal management, physical development or environmental agencies. Similarly, DRM is normally led by a disaster management office with links to sectoral and community bodies. Recall the critical roles that these agencies play in livelihoods via transforming policies, institutions and processes. It would be useful, but beyond the scope of this study, to perform institutional analyses for each CRFM country, or even for each fishery or group of similar fisheries or SES. The general rule is that there will be a mix of state and non-state actors that change with geographic location and system conditions.

2.3 MAJOR ACTORS AND INTERESTS
The introduction to this study identified CCCCC, CDEMA and CRFM as key regional CARICOM agencies, with FAO/WECAFC spanning the regional to global levels. It also identified the Regional Framework and Implementation Plan as critical because of existing high level political endorsement, considerable participatory preparation, and their approach to integrating fisheries, aquaculture and DRR and/or DRM into the IP especially. The CRFM specifically requested that the programme proposals be framed within the IP for the two sectors, and this is consistent with FAO/WECAFC initiatives.
Chapter 8 of the IP sets out the “Role of stakeholders”, having identified them in the categories of:

- **Regional stakeholders:**
 - e.g. CARICOM heads of government, ministerial bodies and organizations, CDB.
- **National governments:**
 - e.g. Parliament, cabinet, ministries, departments, statutory and cross-sectoral bodies.
- **Private sector:**
 - e.g. large corporations to small businesses, chambers of commerce, financial institutions such as banks, credit unions and insurance bodies.
- **NGOs, CBOs and wider civil society:**
 - e.g. fisherfolk organizations, CANARI, Panos Caribbean, Red Cross Society, Program for Belize, Iwokrama, CARIBSAVE.
- **International development community:**
 - e.g. FAO, UNDP, UNEP, IDB, World Bank, Advisory Group on Climate Finance.
- **Other regional/international entities:**
 - e.g. ACS, AOSIS, OAS, UNFCCC Secretariat, CDEMA ASSC/TMAC, UNGA.

On the regional geographic scale of this study and the IP, it is to the CARICOM ministerial bodies and organization that many countries look to for support, and often leadership in technical matters. Even this list is long and variable by circumstance, but the IP identifies the following by interest in addition to the lead three already mentioned:

- CARICOM Secretariat (CARISEC).
- Council of Trade and Economic Development (COTED).
- Council for Human and Social Development (COHSOD).
- Council for Foreign and Community Relations (COFCOR)
- Caribbean Tourism Organisation (CTO).
- Caribbean Development Bank (CDB).
- Caribbean Environmental Health Institute (CEHI).
- Caribbean Institute for Meteorology and Hydrology (CIMH).
- Caribbean Agricultural Research and Development Institute (CARDI).
- Organisation of Eastern Caribbean States (OECS).
- University of the West Indies (UWI).

The interests of each in fisheries, aquaculture, CCA and DRM are varied and situation specific. Often they may depend in part on cross-sectoral and transboundary initiatives such as in the way fisheries and aquaculture are included in the regional agricultural agenda (often more in theory than practice). Of particular interest in this respect is the Jagdeo Initiative that may give effect to CARICOM’s 1996 Regional Transformation Programme and its successor, the 2001 Community Agricultural Policy. The Jagdeo Initiative contains a vision for agriculture in 2015 to be realized by the removal of key binding constraints to agricultural development through strategic action\(^{23}\).

International actors must, however, not be overlooked. Development and donor organizations are playing key roles in shaping approaches to CCA and DRM in the CARICOM region. For example, the FAO has implemented a series of projects to develop national plans for DRM in the agriculture sector that usually includes small-

\(^{23}\) Vincent Little offers an insightful analysis including a series of reasons for slow or low key implementation http://www.ecdpm.org/Web_ECDPM/Web/Content/Download.nsf/0/CA08E5BAD6D7CA4C1257501002F0E27/$FILE/Little_Vincent_AIDAND%20TRADE%20PRESENTATION%20%5BCompatibility%20Mode%5D.pdf, accessed 20 Jul 2012.
scale fisheries and aquaculture. There are several initiatives involving USAID, UNDP, UNEP, IDB, JICA, GEF, GIZ and many more. While few focus primarily on aquatic systems, most are relevant from ecosystem and institutional perspectives. In view of the fact that the CCCCC database lists over 300 CCA projects in the region as of 2010, there has clearly been an increase in CCA and DRM initiatives. Several of these projects involve civil society partnerships at regional, national and local levels. TNC, CANARI and GFC are examples from each of the levels. Updating and maintaining the database would be extremely useful, but a difficult task unless all relevant state and non-state actors submitted project meta-data on a regular basis to CCCCC.

Given our perspective on livelihoods, the institutional arrangements of actors and interests at national and local levels are particularly important to understand and then manage. Figure 2.9 illustrates some of the actors, but does not draw links between them because this is best accomplished through network analysis. Network maps will change over time and with situations as previously mentioned. Keeping track of multi-level linkages, and especially those that seem to favour success while reflecting good governance and best practices, is important for learning to institutionalize adaptation.

2.4 THEMES, TRENDS AND LINKAGES

A country or sector’s adaptation and management responses should be formulated as part of broader policies and plans for sustainable development, including those not directly related to climate change and disasters. There is considerable guidance available on mainstreaming climate change adaptation and disaster risk management cross-sectorally from different entry points and at different levels of intervention. Prevailing themes and trends include links to the Millennium Development Goals (MDGs), low carbon economies and green economy initiatives, among others. There are also enduring cross-cutting themes such as gender and poverty to consider. Early screening of interventions can help to ensure that optimal cross-sectoral benefits are aimed for and multiple objectives are achieved. The use of screening tools makes the

26 Olhoff, A. & Schaer, C. 2010. Screening tools and guidelines to support the mainstreaming of climate change adaptation into development assistance – a stocktaking report. New York, USA, UNDP.
trade-offs between competing, and sometimes conflicting, aims and objectives more explicit and transparent, facilitating better decision-making.

Two of the prime reasons for paying considerable attention to themes, trends and linkages concern strategically mobilizing resources and undertaking monitoring and evaluation (M&E) effectively and efficiently. Chapters 3 and 10 of the IP make this abundantly clear. In fisheries management, the global focus is clearly on conservation rather than development given the prevalence of overfishing. For SIDS in the Caribbean the opportunities for international financing of fisheries are generally shrinking unless concerns such as CCA and DRM are addressed. The financing situation is not as dire for aquaculture which is seen as having more investment and growth potential. However, from an ecosystem services perspective, Caribbean SIDS have difficult choices when allocating coastal areas to aquaculture where biodiversity conservation and environmental management are common concerns. Fitting responsible fisheries and aquaculture interventions within CCA and DRM will be beneficial for funding the programme proposal.

Regarding M&E, there are numerous indicator schemes already developed in support of international goals and initiatives such as the MDGs and marine protected areas (MPAs), for example. Linking the indicators for fisheries and aquaculture CCA and DRM to sets that are already approved and are being used is beneficial for many reasons. For instance, it facilitates integration into cross-sectoral policies and agendas and may efficiently utilize resources for measurement and reporting. There is only modest use of indicators in the programme proposal. Much more groundwork is required to develop robust indicators because programmes and projects may span several areas or countries not yet decided.

A vital link alluded to earlier is that between CCA and DRM. The IP (see Chapter 7) sets out the relationships by mapping both the conceptual and operational intersections in a series of tables that are reproduced below. Although the IP refers to DRR more often than DRM, the distinction is blurred as evidenced by the contents of Table 2.1

TABLE 2.1
Summary taken from the IP of commonalities between CCA and DRR/DRM

<table>
<thead>
<tr>
<th>COMMON AREAS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of poverty and vulnerability and its causes</td>
<td>The severity of the conditions caused by climate change and disasters is influenced by poverty and by vulnerability and its causes</td>
</tr>
<tr>
<td>Vulnerability reduction focused on enhancing capacity, including adaptive capacity, and devising responses in all sectors</td>
<td>Assessing risk vulnerability is fundamental to both subjects Reducing vulnerability requires multi-stakeholder participation</td>
</tr>
<tr>
<td>Integration in development</td>
<td>Both must be integrated into development plans and policies</td>
</tr>
<tr>
<td>Local level importance</td>
<td>Measures to relieve risk and adapt to climate change must be effective at the local level</td>
</tr>
<tr>
<td>Emphasis on present day conditions</td>
<td>Increasingly it is recognized that the starting point is in current conditions of risk and climate variability (i.e. “no regrets”)</td>
</tr>
<tr>
<td>Awareness of need to reduce future impacts</td>
<td>Despite a tradition based on historical evidence and present day circumstances, the aim of disaster risk reduction – to build resilience – means that it cannot ignore current and future climate change risks</td>
</tr>
<tr>
<td>Appropriateness of non-structural measures</td>
<td>The benefits of non-structural measures aid both current and less well understood future risk reduction needs</td>
</tr>
<tr>
<td>Full range of established and developing tools</td>
<td>For example: early warning systems; seasonal climate forecasts and outlooks; insurance and related financial risk management; building design codes and standards; land-use planning and management; water management including regional flood management, drainage facilities, flood prevention and flood-resistant agricultural practices; and environmental management, such as beach nourishment, mangrove and wetland protection and forest management</td>
</tr>
<tr>
<td>Converging political agendas</td>
<td>At the international level, the two policy agendas are increasingly being discussed together, including through the Bali Action Plan (decision 1/CP.13) and the Hyogo Framework for Action</td>
</tr>
</tbody>
</table>

Source: CCCCC, 2012.
that outlines common ground. As previously mentioned, the zone of convergence between these is increasing. Common elements include attention to forecasting, poverty, development and local level human impacts.

The IP specifically pays attention to the synergistic overlap with the Enhanced CDM Framework of CDEMA and particularly Outcome 4, which is “Enhanced community resilience in [CDERA] states/territories to mitigate and respond to the adverse effects of climate change and disasters” (Table 2.2).

CDEMA has addressed the mainstreaming of CCA into DRR/DRM (CCA2DRR) and offers the Guidance Tool (G Tool) that in seven steps (Figure 2.10) provides:

- an orientation on climate, climate change, disaster risk and adaptation;
- a method for undertaking the mainstreaming process;
- tools for stakeholder identification, impact identification and adaptation mainstreaming;
- Caribbean climate hazard case studies;
- reference information on useful documents, manuals, and guidelines;
- prepared presentations.

The G Tool seeks to establish an operational linkage at the national level between the region’s CDM initiatives coordinated by CDEMA and the region’s climate change adaptation initiatives coordinated by the CCCCC (CDEMA, 2011).

TABLE 2.2

<table>
<thead>
<tr>
<th>Linkages envisaged in the IP between the CDM and the Regional Framework</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CDM FRAMEWORK OUTCOME 4 COMPONENT OUTPUTS</th>
<th>RELATED GOALS OF THE REGIONAL FRAMEWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT 4.1. Preparedness, response and mitigation capacity (technical and managerial) is enhanced among public, private and civil sector entities for local level management and response</td>
<td>Goal 3.1. Effectively access and utilize resources to reduce vulnerability to a changing climate</td>
</tr>
<tr>
<td>OUTPUT 4.2 Improved coordination and collaboration between community disaster organizations and other research/data partners, including climate change entities, for undertaking comprehensive disaster management</td>
<td>Goal 1.2. Reduce vulnerability to a changing climate</td>
</tr>
<tr>
<td>OUTPUT 4.3. Communities more aware and knowledgeable on disaster management and related procedures, including safer building techniques</td>
<td>Goal 1.4. Build a society that is more informed about, and resilient to, a changing climate</td>
</tr>
<tr>
<td>OUTPUT 4.4. Standardized, holistic and gender sensitive community methodologies for natural and anthropogenic hazard identification and mapping, vulnerability and risk assessments, and recovery and rehabilitation procedures developed and applied in selected communities</td>
<td>Goal 1.1. Assess the vulnerability and risks associated with a changing climate</td>
</tr>
</tbody>
</table>

Goal 1.2. Reduce vulnerability to a changing climate

- Goal 1.2. Reduce vulnerability to a changing climate
- Goal 1.4. Build a society that is more informed about, and resilient to, a changing climate
- Goal 1.1. Assess the vulnerability and risks associated with a changing climate

Goal 1.4. Build a society that is more informed about, and resilient to, a changing climate

- Goal 2.2. Promote the implementation of measures to reduce climate impacts on coastal and marine infrastructure
- Goal 2.3. Promote the adoption of measures and dissemination of information that would adapt tourism activities to climate impacts

Source: CCCCC, 2012.
The main cross-cutting components that connect the IP with CDM are shown in Table 2.3, highlighting the desired results of such integration.

<table>
<thead>
<tr>
<th>PROGRAMME CROSS CUTTING COMPONENTS</th>
<th>DESIRED RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional structure and governance</td>
<td>Existing structures strengthened by integrating and mainstreaming climate change into the existing disaster management framework. Improved national climate change adaptation frameworks.</td>
</tr>
<tr>
<td>Capacity building</td>
<td>Planning and national/local emergency organizations have an increased understanding of the impact of not reducing risk on sustainability, and increased in their ability to implement and enforce development standards.</td>
</tr>
<tr>
<td>Data sets/database</td>
<td>Improved accessibility of consolidated data related to DM and CC.</td>
</tr>
<tr>
<td>Information and targeted communication</td>
<td>Revised CCCCC climate change public education and outreach strategy and CDEMA model education strategy that includes intersection of CC and DRR. The implementation of the information and communications strategy.</td>
</tr>
<tr>
<td>Research</td>
<td>Research into best practices and documentation for regional implementation of climate change adaptation and disaster risk reduction. Research in the use of remote sensing in disaster risk management (case studies and new technology). The use of existing radars for real time flood forecasting (DRM). Improvement of existing climate models.</td>
</tr>
<tr>
<td>Training and education</td>
<td>Coordination of training programmes and opportunities to achieve more efficient use of scarce resources and the minimization of duplication. Establish standardized training programmes for the region through a suite of DRM & CC courses and the develop a timetable of available courses. Create and award undergraduate degrees in DRM including climate change. Sensitize all students, regardless of discipline, to DRM & CC.</td>
</tr>
<tr>
<td>Monitoring and evaluation</td>
<td>Develop a monitoring and evaluation framework by adapting the existing M&D framework that was developed under the CDEMA/IDB Tourism project for use at national level. Improve information sharing using existing websites to allow interested national actors to have access to project documents, information and outputs from CC & DRM projects. Establish instrumentation/technology to monitor hazards, including forecasting, early warning system(s) and projections.</td>
</tr>
</tbody>
</table>

Source: CCCCC, 2012.
CDEMA has also set out schematically how it anticipates the convergence and integration of the CARICOM frameworks for climate and disasters to occur, progressing from the regional to local level through the use of the G Tool in relation to the IP (Figure 2.11).

In similar vein to the G Tool, the OECS has developed a Disaster Risk Management Benchmarking Tool (the B-Tool)\(^28\) in cooperation with CDEMA and USAID. The goal of the B Tool is to improve the ability of communities, national governments, civil society organizations and the private sector to proactively plan and implement actions to reduce vulnerability to natural disasters and create greater economic resilience when they do occur. It can be used to check that disaster risk management tasks have been completed and resources are available, to report on the status of their readiness and to prepare a list of items or tasks to be checked or consulted when investing in DRM. The OECS is also developing a harmonized protocol for integrating DRR and DRM into the national environment management strategies (NEMS) of its member states. This provides subregional to national linkages.

There have been several large regional, subregional and national projects addressing climate and disasters (recall the CCCCC database mentioned earlier). Indeed, the number of such projects and programmes appears to be increasing. Some of these are integrated or coordinated, but several are stand-alone. The reader may wish to be aware of the following, selected from among the several hundred projects:

- Adaptation Activities to Increase Resilience and Reduce Vulnerability to Climate Change Impacts in the Eastern Caribbean Fisheries Sector (ARCCIF).
- Adapting to Climate Change in the Caribbean (ACCC).
- Caribbean Hazard Mitigation Capacity Building Program (CHAMP).
- Caribbean Planning for Adaptation to Global Climate Change (CPACC).
- Caribbean Risk Management Initiative (CRMI).
- CARIBSAVE Climate Change Risk Atlas.

\(^{28}\) Spatial Systems Caribbean Ltd. 2006. Disaster risk management benchmarking tool (B-Tool). Prepared for USAID and OECS.
• Disaster Mitigation Facility for the Caribbean (DMFC).
• Disaster Vulnerability and Climate Risk Reduction Project (DVRP).
• FAO review of the status of development and implementation of Disaster Risk Management plans for the agriculture sector.
• Mainstreaming Adaptation to Climate Change (MACC).
• Mainstreaming Climate Change into Disaster Risk Management (CCDM).
• Managing Adaptation to Environmental Change in Coastal Communities: Canada and the Caribbean (C-CHANGE).
• Pilot Program for Climate Change Resilience (PPCR).
• Reduce the Risks to Human and Natural Assets Resulting from Climate Change (RRACC).
• Special Programme for Adaptation to Climate Change (SPACC).
• Tsunami and Coastal Hazards Warning System.

Several of the above projects and relationships will be returned to in the strategy and action plan and in the programme proposal. The main point here is that readers should be aware of the close linkages and the substantial groundwork that exists. Much has already done and is suitable for including fisheries and aquaculture. Before returning to this, we take a brief look at what we know about climate change and disasters in the Caribbean.
3. Overview of climate change and disasters in the Caribbean

3.1 KEY CONDITIONS AND EVIDENCE

The Caribbean region is characterized by a cool-dry winter/hot-wet summer climate regime. The temperature pattern generally follows the motion of the sun, with some spatial variation across larger islands, as coastal areas exhibit warmer temperatures compared to the cooler (oftentimes mountainous) interiors of the islands. Sea breezes and the warm ocean temperatures of the Gulf and Caribbean Sea also help to modulate temperatures year round.

Peak rainfall occurs in the latter half of the year for most Caribbean islands, coinciding with peak hurricane activity. In some islands there is bimodality to the rainfall pattern, with an early rainfall period (May/June), followed by a brief dry period and then the primary rainfall period. By virtue of its location, the region is prone to the influence of hurricanes, which pass through the north tropical Atlantic.

On the seasonal time scale, the Caribbean rainfall regime is conditioned by the large-scale features of the tropical north Atlantic. Rainfall received during the dry early months reflects the influence of North American frontal systems, which trek through the northern Caribbean. The onset of the wet season is marked in early spring by the northward migration of the north Atlantic high pressure system which yields lower surface pressures and weaker trade winds across the Caribbean. The appearance of warm ocean surface temperatures and lower vertical shears in the wind field (especially in September/October) also enhances convective potential and therefore helps determine the onset, duration and peak of the wet season. The presence of surface, mid and upper level troughs and the passage of easterly waves, tropical depressions, storms and hurricanes then give rise to most of the rainfall.

Global phenomena such as the El Niño Southern Oscillation (ENSO) also contribute to variability by altering the conditions suitable for rain. An El Niño generally creates unfavorable conditions for rainfall and hurricane development in the main Caribbean basin during the late season of the year of its occurrence, owing to the stronger vertical shears it creates in the wind field. Consequently, drought occurrences in the region have been associated with El Niño episodes. An El Niño, however, enhances rainfall potential and Caribbean surface temperatures during the early wet season of the year of its decline owing to the warm ocean temperatures it induces in the north tropical Atlantic. Other global climatic phenomena which similarly influence inter-annual and decadal variability of Caribbean rainfall include the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO).

3.1.1 Temperature

An increasing trend in surface temperatures has been observed in the Caribbean historical record. Ten global climate indices were used to examine changes in extremes

in Caribbean climate from 1950 to 2000\(^31\). The difference between the highest and lowest temperature for the year (i.e. the diurnal range) is observed to be decreasing but is not significant at the 10 percent significance level. Temperatures falling at or above the 90th percentile (i.e. really hot days) are also increasing, while those at or below the 10th percentile (really cool days and nights) are decreasing (both significant at the 1 percent significance level) (Figure 3.1). These results indicate that the region has experienced some warming over the past fifty years.

![Figure 3.1](image)

Temperature trends in the Caribbean. (a) The percent of days maximum (solid line) and minimum (dashed line) temperatures are at or above the 90th percentile. (b) Percent of days when maximum temperature (solid line) or minimum temperature (dashed line) are less than or equal to the 10th percentile. Percentiles determined by data from 1977 through 1997. (From Peterson *et al.*, 2002)

3.1.2 Precipitation

Precipitation over the islands in the Caribbean shows two distinct seasons in general: a dry season from November to April and a wet season from May to October\(^32\). Magnitudes vary considerably from the Bahamas to the southernmost islands of the Lesser Antilles and mountainous topography and its orientation with respect to the direction of trade winds further yield large spatial variations in precipitation on many islands\(^33\). A prominent feature of the seasonal cycle of precipitation is the mid-summer drought (MSD)\(^34\). The MSD is not a real drought but a period during the wet season months when precipitation is relatively lower, resulting in a bimodal cycle of precipitation. The timing and duration of the MSD vary across the Caribbean, e.g. the MSD appears in early June in the eastern Caribbean and in late July around Cuba and the Bahamas and is non-existent in some of the eastern islands.

The seasonal cycle of precipitation in the western Caribbean is predominantly bimodal in nature with first maximum in precipitation in May or June and the second maximum between September and November. Jamaica, Haiti and Dominican Republic

show precipitation peaks in May and October with a relative decrease in precipitation during the intermediate months. The double peak in precipitation can be seen at all latitudes in the western Caribbean with the second peak generally greater than the first. The seasonal cycle of precipitation over the islands in the eastern Caribbean similarly shows a bimodal cycle for most latitudes north of about 15°N, with the late season peak being greater than the first maximum. At latitudes south of 15°N, however, there is only one peak which occurs late during the wet season and which is in part related to the inter-tropical convergence zone (ITCZ) reaching its northernmost position in those months.35

Notwithstanding, the islands of the Greater Antilles and the larger islands in the Lesser Antilles, such as Dominica and Martinique, show regional maxima in precipitation during the wet season months. Satellite data also suggest that many islands in the Lesser Antilles, from Guadeloupe to St Lucia, receive considerably more precipitation than the surrounding waters. In addition to precipitation that results from mid-latitude air intrusions in the dry season,36 mountainous topography gives rise to orographic precipitation during the dry season months along the windward slopes of the islands. As a result, higher precipitation totals along the windward slopes and large spatial variations in precipitation from windward to leeward slopes are observed on these islands37. Dominica, in particular, shows over 2 to 3 mm/day precipitation throughout the year with a maximum of 10 to 12 mm/day in November. Precipitation over the Caribbean islands is more frequent than over the adjacent ocean during the wet season months owing to land-sea thermal contrast. There is also a significant increase in average island precipitation (relative to the ocean surrounding it) for large islands with mountainous topography38.

3.1.3 Observed SST

Water temperatures within the Caribbean basin and neighboring Atlantic Ocean are possibly one of the most direct determinants of fisheries activities within the Caribbean region. However, historical data collected within that region is extremely sparse. The best record available for observed sea surface temperatures is provided by the Pathfinder’s Advanced Very High Resolution Responder (AVHRR) which dates back only to 198539. Figure 3.2 below, provides a monthly summary of sea surface temperatures averaged over the period 1985 to 2000. Data up to the present date are available, but have been separated from the 16 years average to serve as a control group for comparison by climate change models, to be discussed later.

SST exhibits a cooler warm pool over the Western Caribbean during the early part of the year (January to March) of approximately 26.5 °C (about 0.5 °C warmer than the waters of the Eastern Caribbean). From April, the warm pool becomes progressively warmer to reach a maximum temperature of approximately 29.5 °C in September/October in the area of Jamaica, Cuba and Hispaniola. During that time the warm pool progressively extends eastward, bringing temperatures of 28.5 °C to the waters of the Eastern Caribbean by September. In the last three months of the year, the warm pool then progressively retracts back to the Western Caribbean, with sea surface temperatures then progressively cooling towards the lowest levels in March.

35 Karmalkar, et al., 2012.
38 Karmalkar, et al., 2012.
39 ftp://jerry.rsmas.miami.edu/pub/SST18km/
3.1.4 Hurricanes
Analysis of observed tropical cyclones in the Caribbean and wider North Atlantic Basin showed a dramatic increase since 1995. However, this increase has been attributed to the region being in the positive (warm) phase of a multi-decadal signal and not necessarily to global warming. Results per year show that during the negative (cold) phase of the oscillation, the average number of hurricanes in the Caribbean Sea is 0.5 per year with a dramatic increase to 1.7 per year during the positive phase. Attempts to link warmer sea surface temperatures (SSTs) with the increased number of hurricanes have proved to be inconclusive. While SSTs in tropical oceans have increased by approximately 0.5 °C between 1970 and 2004, only the North Atlantic Ocean shows a statistically significant increase in the total number of hurricanes since 1995.

In an analysis of the frequency and duration of the hurricanes for the same time period, significant trends were again only apparent in the North Atlantic.

Both frequency and duration display increasing trends significant at the 99 percent confidence level. There was almost a doubling of the category four and five hurricanes in the same time period for all ocean basins.43

3.2 ENHANCING OUR UNDERSTANDING

A major control of seasonal precipitation in the Caribbean is the pressure gradient determined by the North Atlantic subtropical high (NASH) and the equatorial low-pressure band. Whereas SSTs control organized convection, the sea level pressure (SLP) variability controls the magnitude and direction of the trade winds in the Caribbean.44

Studies have demonstrated that the seasonal movement and changes in the intensity of the NASH are intimately linked to changes in precipitation through its relation to SSTs and influence on winds.45 Lowest SLPs generally help to define the wet season months except for July and August when SLPs increase, particularly in the western Caribbean, owing to a brief intrusion of the NASH. Precipitation peaks again when the SSTs reach their maximum values and SLP its minimum value of the year for given latitudes. The seasonal cycle of SSTs in the Caribbean Sea has only one peak during late summer (see Figure 3.2) unlike the precipitation seasonal cycle, but the seasonal cycle of local SLP has two peaks. SLP peaks in boreal winter (the dry season) and again during mid-summer and is associated with peak intensities in easterly trade winds in the Caribbean Sea. This latter feature is commonly known as the Caribbean low-level jet (CLLJ), which is essentially the intensified easterly trade winds along the southern flank of the NASH resulting from a large meridional pressure gradient in the region.43

The CLLJ also has a bimodal seasonal cycle with maxima in July and February associated with the movement of the NASH and heating over tropical South America. A number of studies note a strong negative correlation between Caribbean precipitation and the strength of the CLLJ.46 An increase in the CLLJ intensity in July is associated with a decrease in precipitation, whereas a minimum in CLLJ strength in October/November coincides with peak precipitation in the region.

3.3 FORECASTING THE FUTURE

Many of these studies use coarse-resolution global climate models included in the fourth assessment report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) to describe large-scale climatic changes in the region.47 More recently, a handful of studies have used high-resolution regional climate models (RCM) for studying climate change and its impact at spatial scales relevant for the islands.48 49 50

For this report, a subset of available model data (GCM and RCM) was used to generate the future climate of the Caribbean region. Because Caribbean station data are sparse, a heavy reliance is placed on gridded datasets to examine the nuances of present-day Caribbean climate e.g. key features and spatial variability.

43 Webster, et al., 2005.
44 Karmalkar, et al., 2012.
Historical temperature trends for the Caribbean have been shown to match global change. The intra-annual extreme range has been decreasing slightly although the trend is not significant. In part, the decrease is attributed to increased cloud cover at night which leads to back radiation and the heating of the land. Maximum temperature is increasing with the trend significant at the 1 percent level. This warming is related to warmer sea surface temperatures (SSTs), though local SSTs only account for 25 percent of variance. The upward trend in minimum temperatures is significant at the 1 percent level and, as with maximum temperatures, linked to changes in SSTs, though the correlations are weaker and negative.

Precipitation in the Caribbean is dominated by variability on annual and decadal scales and matches the global average changes. It is most closely related to SSTs in the South Caribbean Sea and somewhat to the tropical North Atlantic SSTs. The Caribbean is dryer by 1 to 12 mm per month or 5 to 30 percent of rainfall per 100 years with a trend that is significant at 5 percent level. Other studies show a decrease in precipitation across the Caribbean, with the exceptions being Bahamas, Venezuela and one of Trinidad’s stations. The simple daily intensity index shows a slight decrease, and although the trend is not significant, it correlates well with intense hurricanes at 0.41. Maximum precipitation (95th percentile and above) is increasing, but it is not significant at the 10 percent level, probably as a result of the inter-annual and decadal variability. The correlation with SSTs is good at 0.5. The greatest five-day rain total is increasing with a significant trend at the 10 percent level and also displays significant inter-annual variability. The SST correlation is, however, not as large at 0.3. The number of consecutive dry days has decreased and the trend is significant at the 1 percent level. Additionally, satellite precipitation data show a drying trend between June and August in the Caribbean in the last few decades.

Other variables are not easily available across the Caribbean for long time periods and as such their trends have yet to be seriously studied.

3.3.1 Temperature

In the initial climate change projections for the Caribbean, a regional model showed a Caribbean which is 1 to 5 °C warmer in the annual mean by the 2080s (a 30-year period from 2071 to 2100) and conclude that: (a) a greater warming will occur in the northwest Caribbean territories (Jamaica, Cuba, Hispaniola and Belize) than in the eastern Caribbean island chain; and (b) a greater warming is observed in the summer months than in the cooler and traditionally drier early months of the year.

Incorporating the ECHAM forced runs, i.e. considering different GCM influences in addition to the changes related to greenhouse gas emission scenarios, has provided an improvement to this analysis. Over the land areas, the annual warming is projected to be generally of the order of 4.5 °C for the A2 scenario and 2.8 °C for the B2 scenario. On the other hand, over the Caribbean Sea, the annual warming is nearer 2.9 °C (2 °C) for the A2 (B2) scenario.

52 Peterson, et al., 2002.

54 Peterson, et al., 2002.

56 Centella, et al., 2008.
3.3.2 Precipitation

IPCC scenarios of percentage precipitation change for the Caribbean are also based on the multi-model data set (MMD) (Figure 3.3) and are summarized in Table 3.1 for the A1B scenario. The large value of T for precipitation (column 14) implies a small signal-to-noise ratio. In general then, the signal-to-noise ratio is greater for temperature change than for precipitation change, implying that the temperature results are more significant. In other words, it takes a long time for the change in precipitation to become significant.

From Table 3.1, most models project decreases in annual precipitation, with a few suggesting increases. Generally, the change varies from -39 to +11 percent, with a median of -12 percent. Figure 3.3 shows that the annual mean decrease is spread across the entire region (left panels). In December, January and February (DJF), some areas of increases are evident (middle panels), but by June, July and August (JJA) the decrease is region-wide and of larger magnitude (right panels), especially in the region of the Greater Antilles, where the model consensus is strong (right bottom panels). The annual mean drying and that seen in summer are supported by regional modeling studies undertaken at UWI.

58 Christensen, et al., 2007.

61 Taylor, et al., 2007.
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

Table notes. The mean temperature and precipitation responses are first averaged for each model over all available realizations of the 1980 to 1999 period from the Twentieth Century Climate in Coupled Models (20C3M) simulations and the 2080 to 2099 period of A1B. Computing the difference between these two periods, the table shows the minimum, maximum, median (50%), and 25 and 75% quartile values among the 21 models, for temperature (°C) and precipitation (% change). Regions in which the middle half (25–75%) of this distribution is all of the same sign in the precipitation response are coloured light brown for decreasing precipitation. T years (yrs) are measures of the signal-to-noise ratios for these 20-year mean responses.

The Hadley and ECHAM driven PRECIS simulations, which project large decreases in precipitation in the early wet season, smooth out to some degree the bimodality in the western Caribbean’s mean projections. However, the shape of the seasonal cycle remains mostly unchanged in the eastern Caribbean. The dry season experiences very little proportional decrease in precipitation in the Caribbean under the SRES A2 scenario, while there is a small increase in precipitation in November in the northwest Caribbean in the Bahamas.

Both RCM simulations project a decrease in precipitation in the early and late dry season, but the magnitude of change is very different, with the Hadley driven RCM projecting a much higher decrease than the ECHAM driven RCM. Projected changes in precipitation throughout the year are also very different in the two RCM simulations. The Hadley driven RCM projects a year round decrease in precipitation in Jamaica and Hispaniola whereas the ECHAM driven RCM indicates small increases between November and January in this region. The Bahamas islands, in both RCM simulations, are projected to experience wetter conditions in the dry season. In the eastern Caribbean the agreement between the two RCM projections is less apparent.

3.3.3 SST projections

Local SSTs in both the western and eastern Caribbean are projected by the ECHAM driven RCM to increase by about 2.4 °C in the eastern Caribbean to about 2.9 °C in the western Caribbean by the 2080s relative to 1985–2000 mean from the pathfinder AVHRR, after the model’s adjustment. Although the magnitudes are different, this spatial pattern of warming is consistent throughout the year. SSTs in the tropical North Atlantic and the Caribbean Sea are projected to increase less compared to other tropical regions owing to the influence of northeast trades. The A2 scenario of the ECHAM4 driven model is suggesting that the waters surrounding the Lesser Antilles are projected to warm at a higher rate compared to much of the Greater Antilles and

the waters surrounding the Bahamas. Figure 3.3 provides an analysis of the mean monthly differences of the SRES A2 scenario SST in the Caribbean for the period 1985–2000 and the decade of the 2050s.

3.3.4 Hurricanes

While the number of intense hurricanes has been rising, the maximum intensity of hurricanes has remained fairly constant over the 35-year period examined. Results from high resolution global atmospheric models using time slice experiments for a present day, 10-year period and a 10-year period at the end of the 21st century under the A1B scenario, are generating tropical cyclones that now more closely, approximate real storms\(^{65}\). Tropical cyclone frequency decreased 30 percent globally, but increased by about 34 percent in the North Atlantic. The strongest tropical cyclones with extreme surface winds increased in number, while weaker storms decreased. The tracks were not appreciably altered and maximum peak wind speeds in future simulated tropical cyclones increased by about 14 percent in that model.

3.3.5 Sea level rise
Global sea level is projected to rise between the present (1980–1999) and the end of this century (2090–2099) by 0.35 m (0.23 to 0.47 m) for the A1B scenario. Owing to ocean density and circulation changes, the distribution will not be uniform. However, large deviations between models make estimates of distribution across the Caribbean uncertain. The range of uncertainty cannot be reliably quantified owing to the limited set of models addressing the problem. The changes in the Caribbean are, however, expected to be near the global mean. This is in agreement with observed trends in sea level rise from 1950 to 2000, which were similarly near the global mean.

3.3.6 Evapotranspiration
The IPCC report does not address evapotranspiration specifically within the Caribbean. However, mean annual changes in evaporation for the SRES A1B scenario are given on a global scale in the report. It appears that by the end of the century (2080–2099) evaporation in the Caribbean will increase by about 0.3 mm/day-1 relative to current (1980–1999) values. It is to be noted that the evaporation value is given over the ocean because the models are too coarse to discern the small islands of the region and as such evaporation over land may be less.

3.3.7 ENSO
IPCC models show continued ENSO inter-annual variability in the future. This suggests that extreme events (e.g. floods and droughts) associated with ENSO occurrences in the region are likely to continue in the future, even as their intensity and duration may be affected as a result of climate change. The idea is that even in the midst of an overall drying trend, short duration intense rainfall events may be just as, or more likely, in the future. There is, however, no consistent indication of discernible changes in projected ENSO amplitude and frequency in the twenty-first century.

3.3.8 Ocean acidification
According to the IPCC, the world’s oceans have become approximately 30 percent more acidic (i.e. a reduction in pH from 8.2 to 8.1 units) since 1750 – the start of the Industrial Revolution. Projections show the oceans becoming more acidic as carbon dioxide emissions continue to be absorbed. Likely bio-physical impacts are not well understood, but could be significant for coral reefs, coralline algae and the skeletons or exoskeletons of some species, as well as the feeding and reproductive capacity of fish species. This is one of the hazards with a high degree of uncertainty.

3.4 SUMMARY

By mid-century, the picture of Caribbean climate, as deduced from models used, is one characterized by a decrease in wet season rainfall. The decrease is generally higher for the early wet season than for the late season and for the western Caribbean than for the eastern Caribbean. The intense early season drying tends to smooth out the bimodality of the western Caribbean, but the seasonal cycle of the eastern Caribbean remains unchanged. The dry season is largely unaltered except for a small increase in precipitation in November in the western Caribbean. The simulations similarly project a drying (though more intense) for the wet season. The future picture is completed by higher warming of surface air temperatures over the northwestern Caribbean and relatively lower warming in the south-eastern Caribbean.

Another element that bears noting is the decrease in rain days, which corresponds with the frequency of high intensity rainfall events. This feature points to increased local storminess, surface runoff and erosion, especially in the small mountainous islands of the eastern Caribbean.

Finally, it should also be noted that the year to year variations in the seasonal cycle of the Caribbean climate parameters described above are largely dependent on climate variability in the eastern Pacific and the North Atlantic. El Nino Southern Oscillation (ENSO) and the North Atlantic Oscillation have seasonally dependent influence on temperature and precipitation. Therefore, changes in ENSO and NAO variability in the future will affect climate variability in the Caribbean. However, the nature of ENSO and NAO variations in response to elevated levels of GHGs remains highly uncertain and this is a limitation to examining future changes in inter-annual variability of Caribbean climate.

Based on the above, the following conclusions can be drawn about future climate conditions within the Caribbean.

1. Sea levels are likely to continue to rise on average during the century around the small islands of the Caribbean Sea. Models indicate that the rise will not be geographically uniform and large deviations between models make regional estimates across the Caribbean uncertain. The increase will probably follow the global average.

2. All Caribbean islands are very likely to warm during this century. The warming is likely to be somewhat less than the global annual mean warming in all seasons.

3. Summer rainfall in the Caribbean is very likely to decrease in the vicinity of the Greater Antilles, but changes elsewhere and in winter are uncertain.

4. It is likely that intense tropical cyclone activity will increase (but tracks and the global distribution are uncertain).

5. Short-term variability in rainfall patterns (e.g. as caused by ENSO events) will likely continue. The prevailing warmer conditions may make the convection associated with the short-lived events more intense. In general, climate change will produce a warmer, dryer (in the mean) region with more intense hurricanes and possibly more variability.

71 Karmalkar, et al., 2012.
4. Fisheries and aquaculture sector

Consideration of CCA and DRM in fisheries and aquaculture in the Caribbean is new. We can learn from and perhaps adapt similar initiatives that have taken place elsewhere that seem reasonably similar. We can look, for example, at how such an investigation has been approached in the Pacific (Bell et al., 2011). They point out that we need to appreciate, even if not fully understand, social-ecological linkages in order to make the most appropriate decisions on adaptation and management, often with limited data and high levels of uncertainty. Direct (usually ecological) and indirect (both social and ecological) pathways exist between climate change or variability and the potential impacts that may result in disasters. The pathways can be quite complex with multiple drivers and impacts. Since fisheries and aquaculture are social-ecological systems, ecological and socio-economic pathways and impacts can be expected (Figure 4.1).

These pathways also have to be considered at different levels on different scales because interactions do not occur at the same time and in the same space. There may be lags in time and interactions that take effect in places that are distant from their origin. This produces very complex models and their uncertainty increases as one extrapolates from global climate scenarios to impacts on social-ecological systems locally, where adaptation and management are crucial for livelihoods (Figure 4.2).
These connected arguments suggest that, while global, regional, subregional and national contexts cannot be ignored, it is not unreasonable to attempt effective action at the local level where aquatic resource systems may be best understood, especially in the light of past experience with climate variability and hazards. Adaptation and management at community, livelihood, household and enterprise levels should be pursued even if there are deficiencies at higher levels. In order for this to occur, enabling policy that encourages self-organization to reduce vulnerability and improve resilience is normally required. This is consistent with the livelihoods approach outlined earlier. A general framework that links climate to policies such as sustainable fisheries and food security was proposed and discussed at a regional workshop in 2002, but it has not been utilized (Figure 4.3).

This introduction sets the stage for a summary examination of climate and disasters in relation to Caribbean fisheries and aquaculture, before the more critical matters of adaptation and management measures are addressed. Anticipated but uncertain changes in aquatic ecology; changes in the life cycles, distribution and abundance of species; changes in fisheries and aquaculture practices along the entire value chain; and so on, reduce the benefits of past and current knowledge unless the latter span the entire

range of variability and new patterns do not vary much from the old. This limitation affects science and other formal knowledge systems, as well as local and traditional knowledge. The aim of adaptation and risk management is not so much to rely on past experience as it is to prepare for new experiences proactively or – by rapid response – reactively.

In the next subsections we examine specific changes and hazards that do or may impact fisheries and aquaculture. There are several ways in which to do this. For readers involved in climate and hazards these would be the main headings, with the types of fisheries and aquaculture as secondary. However, for fisheries and aquaculture stakeholders (from managers to resource users) the tendency should be to address climate and hazards within (sub)regional or national policy and management plans. These policies and plans may be for entire ecosystems, for species or species groups that are targeted or cultured, for defined areas such as MPAs, or for specific practices such as gear or production types.

Over the past three decades the attempts to institutionalize fisheries management planning in CRFAMP/CRFM members has met with limited success. The recent trend for climate and hazard plans to incorporate economic and social sectors is stronger in some countries than the reverse. If this continues, the incentives for fisheries and aquaculture authorities to develop and implement their own policies and plans will be further reduced. This may constrain EAF/EAA. For this reason we organize the following information around the subcomponents of fisheries and aquaculture, thus encouraging consideration of how changes and hazards interact with each other and within aquatic systems.

In the consultations held in Grenada, Guyana, Jamaica and Belize (see 7.2) the matrix shown below was used to encourage and organize discussion (Figure 4.4). Marine capture fisheries were subdivided into reef (mainly inshore\(^{73}\), pelagic (mainly offshore) and continental shelf ecosystems (as in the CLME Project) where feasible. Postharvest and supporting services and socio-economic matters were overarching and less dependent on ecosystem, or whether fisheries or aquaculture was discussed.

\(^{73}\) Inshore, nearshore and coastal are all used to refer to the area from the coast to a point offshore which will differ from one country to another depending, for example, on the extent and depth of reef or shelf.
The changes and hazards (in the left column) were those most prominent in the literature, especially where countries had assessed vulnerability. They are not in any particular order. “High temperature” was taken as applicable to both air and sea. It was noted that some types of pollution, alien invasive species, diseases and numerous other threats – indirectly linked to or exacerbated by or not necessarily connected to climate and natural hazards – also threaten these productive sectors. Technological hazards such as oil and agrochemicals were beyond the scope of the assessment, but participants in the consultations (particularly from disaster organizations in Belize) provided strong evidence from experience as to why these need to be included, especially in association with flooding and threats to public health.

4.1 EXPOSURE, SENSITIVITY AND IMPACTS
Documentation on climate and hazard exposure, sensitivity and impacts on fisheries and aquaculture in the region is scattered and scarce. Typically, data on hydro-meteorological and other disasters are presented as statistics in vulnerability and damage assessments, many of which are available online\(^\text{74}\). This abundant information, not specific to fisheries and aquaculture, includes analyses of risks by country,\(^\text{76}\) economic analyses,\(^\text{76}\) the cost of taking no action,\(^\text{77}\) biodiversity perspectives\(^\text{78}\) and others.

No analyses were found that used the frameworks described earlier. Some reports either omit fisheries and aquaculture or include them within aggregate information on the agriculture sector. Data at community, household or enterprise levels that could be useful for livelihood analyses may exist in grey literature, or in raw form in various offices. Approximating these, however, are the historical hazard impact and coping summaries found in some community disaster management plans. An example is the Rocky Point Community Disaster Risk Management Plan that details community re-building cooperation in the aftermath of hurricanes Ivan (2004) and Dean (2007) (ODPEM, 2011).

Most assessments related to fisheries and aquaculture concern hurricanes and storms. Examples of impact information, in which one can see how marine fisheries and inland aquaculture are affected both in monetary terms and in loss of capital assets, are provided below. The assessments are not based on livelihood analyses and so do not include many of the factors that could be of interest in promoting community-based adaptation to “build back better”. Jamaica was selected because losses in capture fisheries and aquaculture can be seen for the same event, such as Hurricane Dean and then Tropical Storm Gustav.Table 4.1).

\(^{74}\) E.g. \url{http://www.preventionweb.net}; \url{http://www.mona.uwi.edu/cardin/}

\(^{75}\) CARIBSAVE Risk Atlas, PreventionWeb, etc.

\(^{76}\) ECLAC. 2011. The economics of climate change in the Caribbean. Port-of-Spain, Trinidad and Tobago, the Economic Commission for Latin America and the Caribbean.

TABLE 4.1
Summary of damage to the fisheries and aquaculture sectors in Jamaica caused by Hurricane Dean and tropical Storm Gustav, with values in Jamaican dollars

<table>
<thead>
<tr>
<th></th>
<th>Hurricane Dean</th>
<th>Tropical Storm Gustav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture fisheries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishers directly impacted</td>
<td>3 500</td>
<td>2 185</td>
</tr>
<tr>
<td>Value of gear damaged (boats, engines, gear, etc.)</td>
<td>J$250 mil</td>
<td>J$9.5 mil</td>
</tr>
<tr>
<td>Infrastructure damaged (access roads, beach, etc.)</td>
<td>Much, not quantified</td>
<td>No data</td>
</tr>
<tr>
<td>Fish habitat damaged (mangroves, reef shoals)</td>
<td>Much, not quantified</td>
<td>No data</td>
</tr>
<tr>
<td>Aquaculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growers directly impacted</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Value of damage to farms (ornamentals, shrimp, etc.)</td>
<td>J$60 mil</td>
<td>J$68 mil</td>
</tr>
<tr>
<td>Infrastructure damaged (ponds, buildings, roads)</td>
<td>Much, not quantified</td>
<td>Total value of infrastructure and fish farm damages</td>
</tr>
<tr>
<td>Fish traps lost (5 parishes)</td>
<td>Fish traps lost (5 parishes)</td>
<td></td>
</tr>
<tr>
<td>Gear sheds, traps destroyed</td>
<td>Gear sheds, traps destroyed</td>
<td></td>
</tr>
<tr>
<td>Shore erosion</td>
<td>Shore erosion</td>
<td></td>
</tr>
<tr>
<td>Larceny</td>
<td>Larceny</td>
<td></td>
</tr>
</tbody>
</table>

The severity of the impacts described above relate to exposure and sensitivity as set out earlier in the vulnerability evaluation model. Following some general observations, we address the relationships between changes and hazards and their actual or potential impacts on fisheries and aquaculture in the CARICOM region. It is not useful to generalize across the 17 states in this assessment owing to the considerable differences in their exposure and sensitivity, and we point out some of the reasons.

4.1.1 General observations

Major physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture, incorporating hydro-meteorological disasters, at a global level are set out in Annex 7.3. The box below provides some important key messages for capture fisheries.

Key climate change messages on potential impacts, adaptation, mitigation in capture fisheries

1. Food security in fishing communities will be affected by climate change through multiple channels, including movement of people to coasts, impacts on coastal infrastructure and living space and through more readily observed biophysical pathways of altered fisheries productivity and availability. Indirect changes and trends may interact with, amplify or even overwhelm biophysical impacts on fish ecology.

2. Non-climate issues and trends – for example changes in markets, demographics, overexploitation and governance regimes – continue to have a greater effect on fisheries in the short-term than climate change.

3. The capacity to adapt to climate change is unevenly distributed across and within fishing communities. It is determined partly by material resources but also by social/household structures, networks, technologies and appropriate governance structures. Patterns of vulnerability of fisherfolk to climate change are determined both by this capacity to adapt to change and by the observed and future changes to ecosystems and fisheries productivity.

4. Building adaptive capacity can reduce vulnerability to a wide variety of impacts, many of them unpredictable or unforeseen. The key role for government intervention is to facilitate adaptive capacity within vulnerable communities.

5. There is a wide range of potential adaptation options for fisheries, but considerable constraints on their implementation for the actors involved, even where the benefits are significant. For government interventions there may be trade-offs between efficiency, targeting the most vulnerable and building resilience of the system.

Source: adapted from Daw et al., 2009.
Some details are provided below for easy reference, taking note of both direct and indirect pathways (Table 4.2).

<table>
<thead>
<tr>
<th>Type of Changes</th>
<th>Physical changes</th>
<th>Processes</th>
<th>Potential impacts on fisheries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical environment (indirect ecological)</td>
<td>Increased CO2 and ocean acidification</td>
<td>Effects on calciferous animals e.g. molluscs, crustaceans, corals, echinoderm and some phytoplankton</td>
<td>Potentially reduced production for calciferous marine resources and ecologically related species and declines in yields</td>
</tr>
<tr>
<td>Warming upper layers of the ocean</td>
<td>Warm-water species replacing cold-water species</td>
<td>Plankton species moving to higher latitudes</td>
<td>Shifts in distribution of plankton, invertebrates, fishes and birds towards the North or South poles, reduced species diversity in tropical waters</td>
</tr>
<tr>
<td></td>
<td>Timing of phytoplankton blooms changing</td>
<td>Changing zooplankton composition</td>
<td>Potential mismatch between prey (plankton) and predator (fish populations) and reduced production and biodiversity and increased variability in yield</td>
</tr>
<tr>
<td>Sea level rise</td>
<td>Loss of coastal fish breeding and nursery habitats e.g. mangroves, coral reefs</td>
<td></td>
<td>Reduced production and yield of coastal and related fisheries</td>
</tr>
<tr>
<td>Higher water temperatures</td>
<td>Changes in sex ratio</td>
<td>Altered timing and reduced productivity across marine and fresh water systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altered time of spawning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altered time of migrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish stocks (indirect ecological)</td>
<td>Changes in ocean currents</td>
<td>Increased invasive species, diseases and algal blooms</td>
<td>Reduced productivity of target species in marine and fresh water systems</td>
</tr>
<tr>
<td></td>
<td>Changes in fish recruitment success</td>
<td>Changes in timing and latitudes of upwelling</td>
<td>Abundance of juvenile fish affected leading to reduced productivity in marine and fresh water</td>
</tr>
<tr>
<td>Ecosystems (indirect ecological)</td>
<td>Reduced water flows and increased droughts</td>
<td>Changes in lake water levels</td>
<td>Reduced productivity of lake fisheries</td>
</tr>
<tr>
<td></td>
<td>Changes in dry water flows in rivers</td>
<td>Changes in distribution of pelagic fisheries</td>
<td>Reduced productivity of river fisheries</td>
</tr>
<tr>
<td>Increased frequency of ENSO events</td>
<td>Changes in timing and latitude of upwelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coral bleaching and die-off</td>
<td>Reduced productivity in marine and fresh water</td>
<td></td>
</tr>
<tr>
<td>Disturbance of coastal infrastructure and fishery operations (direct)</td>
<td>Sea level rise</td>
<td>Coastal profile changes, loss of harbours, homes.</td>
<td>Increased vulnerability of coastal communities and infrastructure to storm surges and sea level</td>
</tr>
<tr>
<td></td>
<td>Increased exposure of coastal areas to storm damage</td>
<td>Costs of adaptation lead to reduced profitability, risk of storm damage increases costs of insurance and/or rebuilding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased frequency of storms</td>
<td>More days at sea lost to bad weather, risks of accidents increased</td>
<td>Increased risks associated with fishing, making it a less viable livelihood option for the poor</td>
</tr>
<tr>
<td></td>
<td>Aquaculture installations (coastal ponds, sea cages) more likely to be damaged or destroyed</td>
<td>Reduced profitability of larger-scale enterprises, insurance premiums rise</td>
<td></td>
</tr>
<tr>
<td>Inland fishing operations and livelihoods (indirect socio-economic)</td>
<td>Changing levels of precipitation</td>
<td>Where rainfall decreases, reduced opportunities for farming, fishing and aquaculture as part of rural livelihood systems</td>
<td>Reduced diversity of rural livelihoods; greater risks in agriculture; greater reliance on non-farm income Displacement of populations into coastal areas leading to influx of new fishers</td>
</tr>
<tr>
<td></td>
<td>More droughts or floods</td>
<td>Damage to productive assets (fish ponds, weirs, rice fields, etc.) and homes</td>
<td>Increasing vulnerability of riparian and floodplain households and communities</td>
</tr>
<tr>
<td></td>
<td>Less predictable rain/dry seasons</td>
<td>Decreased ability to plan livelihood activities – e.g. farming and fishing seasonality</td>
<td></td>
</tr>
</tbody>
</table>

Source: Daw et al., 2009.
Several publications set out what can be expected and what is uncertain for the Caribbean region. We briefly highlight some of the main concerns for various systems. Specifics will vary considerably across the 17 CRFM members and situations change constantly. See further reading for more detail.

4.1.2 Marine fisheries

In the case of Caribbean marine fisheries the differences in exposure, sensitivity and potential impact by type of ecosystem and location can be quite significant. However, these differences depend in part on the extent to which one takes into account the indirect pathways and longer-term variables and cycles described earlier. For example, rainfall or flooding that immediately impacts the coast may also have impacts offshore on pelagic and shelf systems in a matter of days to weeks. Within that time and space the impacts would be mediated by food webs and bio-physical oceanographic processes. Some examples are provided below (Table 4.3).

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Exposure and sensitivity</th>
<th>Examples of potential impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temp, drought</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>reef impacts such as coral bleaching, fish kills increased storm and hurricane formation, intensity alteration of mangrove and estuarine fish life cycles</td>
</tr>
<tr>
<td>Intense rainfall</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>reef impacts such as sedimentation, seabed scouring physical damage due to flow, debris transportation infrastructure damage due to poor drainage planning</td>
</tr>
<tr>
<td>Flooding</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>reef impacts such as salinity changes, turbidity freshwater lenses may increase offshore productivity freshwater lenses may transport pathogens (fish kill)</td>
</tr>
<tr>
<td>Landslide</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>reef impacts such as smothering, increased turbidity physical damage to wetlands, altered circulation damage to fishing community infrastructure, roads</td>
</tr>
<tr>
<td>Storms and hurricanes</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>physical damage due to wave action, debris transport coastal residences and other infrastructure damage loss of life and property at sea, particularly offshore</td>
</tr>
<tr>
<td>Sea level rise</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>changes in nature and distribution of nursery habitat inundation of coastal infrastructure e.g. fish markets reduced space for vessel haul-out for maintenance</td>
</tr>
<tr>
<td>Ocean acidification</td>
<td>Highest direct impact on coastal fisheries. Coral reefs are very sensitive.</td>
<td>reef impacts such as weakened coral structure unpredictable changes in plankton composition calcification impaired in several marine species</td>
</tr>
<tr>
<td>Volcano</td>
<td>Can impact offshore and inshore fisheries</td>
<td>damage to fisheries communities and infrastructure changed landscapes and seascapes as in Montserrat reduced density imperils vessels (Kick ‘em Jenny)</td>
</tr>
<tr>
<td>Earthquake</td>
<td>More likely to impact coastal fisheries</td>
<td>changed landscapes and seascapes as in Port Royal disruption of entire fishing communities as in Haiti</td>
</tr>
<tr>
<td>Tsunami</td>
<td>More likely to impact coastal fisheries</td>
<td>loss of life and property at sea, offshore and inshore physical alteration to coasts and inland areas affected</td>
</tr>
</tbody>
</table>

According to Nurse, “while there is a need for considerably more research especially at the species level, there already exists a good generic understanding of the potential impacts of climate change and climate variability on key factors and processes that influence recruitment, abundance, migration and the spatial and temporal distribution of many fish stocks”. This involves applying information on other geographic regions to the Caribbean, to the extent possible. See the general information on physical and ecological impacts in Annex 7.3 for example. Below are some additional points and lessons from the literature on climate and disaster impacts in the Caribbean. Adaptive capacity and resilience are addressed later.

80 (Nurse, 2009: 131), but also see Mahon (2002), Cambers et al., (2008), ECLAC (2011), etc. for similar points.
Minimal attention to the Code of Conduct for Responsible Fisheries (CCRF) and other relevant international and regional policy guidance in most countries hinders adaptation.

Since EAF, ICM and EEZ management are not widely practised, the interactions between sectors and habitats are problematic in mainstreaming CCA and DRM.

Benefits of applying good governance and co-management principles have been widely discussed but there are few success stories, owing to inconsistent application and engagement.

Since CCA and DRM are not mainstreamed, the notion that the key contributor to building adaptive capacity and resilience is good fisheries management has not been institutionalized.

El Niño Southern Oscillation (ENSO) events (climate variability) are strong environmental drivers for fisheries-related patterns in the Caribbean, but relationships are poorly understood.

Links between ENSO events, changes in fish abundance and availability, fish landings and prices, harvest and postharvest livelihoods and food security can be constructed.

There are no mechanisms for including climate data in fisheries assessments or fisheries-relevant data in climate models, although the institutional potential for doing so exists.

Higher intensity rough sea events and more rapid onset, reduce the windows of opportunity for early warning systems that allow enterprises and communities to prepare or evacuate.

Links between high SST and harmful algal blooms were reported in the Belize consultations.

Ocean acidification is a new hazard, the potential impacts of which are extremely uncertain.

Most small-scale fishing enterprises (e.g. boats, gear, lockers) are not insured and often no insurance is available or affordable, resulting in high risk and individual or public expenses.

There are few guidelines or incentives to “build back better” such as increasing the minimum mesh size in fish traps when recovery efforts supply wire mesh to affected fishers.

Very long time lags between acknowledgement that legislative amendment is required and making the necessary changes severely constrain legal-institutional and policy adaptive capacity.

MPAs are aimed more at general biodiversity conservation or earning tourism revenues than treated as fisheries management tools, thus limiting their full adaptation potential.

Limited regional capacity for physical, chemical and biological oceanography constrains the use of oceanographic data for use in fisheries and climate models, despite some monitoring.

Market acceptance of new species of marine fish is likely to vary culturally and with location.

Potential impacts of climate and disasters on recreational fisheries are less well documented than for commercial fisheries but are likely to share many of the same attributes.

Sea defences have altered commercial fishing, for example in Grenada where in some places seining is no longer possible from the beach, so fishers have adapted to nearshore seining.

Coastal defence structures such as groynes and revetments seem to be providing new habitat for juvenile finfish and shellfish but impacts on fisheries are not documented.
• Impacts on reefs and associated ecosystems (mangroves and seagrass) may depend mainly on the interactions between natural and technological hazards rather than any one driver.
• Impacts on fish stock distribution, spawning, recruitment, total biomass, etc. are not likely to be much better researched in the future if research costs and data sharing are problematic.
• Disturbances to habitat as a result of rough sea events and storm surge may allow some species to be more catchable, whereas other species will become less available and fishing more dangerous.
• Countries that depend mainly on inshore and reef resources may be the most vulnerable.
• Impacts vary with vessel size. For example, small vessels may fish fewer days because of rough seas, but large vessels are more at risk of damage because they are more difficult to secure in safe harbour.
• Postharvest revenue will vary in different directions and to different extents owing to changes in the type and amount and timing of landings, as well as the vulnerability of the infrastructure.
• Both fixed and operational costs in the harvest sector are likely to increase from direct and indirect pathways involving insurance, vessel, gear and equipment, fuel, ice, etc.
• Declining national revenue (e.g. GDP contribution from fisheries) as a result of changes and disasters may prompt less rather than more allocation of funds from the national budget for fisheries.
• Impacts upon fishing communities may make fishing less viable as a livelihood in terms of household decisions on risk spreading, but also in terms of practicality (e.g. if relocated).
• Even if resources are abundant and available, fishing from cays and low-lying islands far from safe harbour will become increasingly dangerous and an issue of social vulnerability.

4.1.3 Inland fisheries
Inland fisheries are of much less commercial importance in CRFM countries, featuring mainly in the largest and wettest (e.g. Guyana and Suriname) apart from low-level subsistence fishing found almost everywhere. The climate and disaster features of these fisheries are shown below (Table 4.4).

In addition to the general information on impacts provided above and in Annex 7.3, we offer some additional points and lessons from the literature on climate and disaster impacts in the Caribbean. Adaptive capacity and resilience are addressed later.
• Statistics on the impacts of disasters experienced by inland fisheries are scare and may need to be addressed, primarily by local knowledge through oral histories rather than scientific studies.
• Few countries have fisheries policies and plans that address inland fisheries (e.g. Guyana is currently in the process of formulating these), so new opportunities exist for mainstreaming CCA and DRM.
• Inland fisheries management that incorporates CCA and DRM may need to consider land tenure, rights and traditions of indigenous people and concerns not applicable to marine fisheries.
• In relatively large countries (e.g. Guyana, Suriname) inland fishing may be far removed from the fisheries management authority, making community-based management essential.
• Threats to inland fishing from watershed activities such as forestry, agriculture and mining interact considerably with natural disasters and feature in sustainable land use management.
• Depending upon the interactions between hazards and changes some opportunities may be presented compared to a much more negative outlook in the marine fisheries sector.

TABLE 4.4

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Exposure and sensitivity</th>
<th>Examples of potential impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temp, drought</td>
<td>Highest direct impact on shallowest water areas, seasonal water bodies.</td>
<td>reduced productivity as tolerances are exceeded likely shrinkage of fishable area, increased conflicts alteration of livelihoods if combined with agriculture</td>
</tr>
<tr>
<td>Intense rainfall</td>
<td>Sensitive in poorly managed areas and eroding watersheds.</td>
<td>impacts such as sedimentation, riverbed scouring physical damage due to flow, debris transportation infrastructure damage due to poor drainage planning</td>
</tr>
<tr>
<td>Flooding</td>
<td>Highest direct impact on shallowest water areas, seasonal water bodies.</td>
<td>possible higher productivity in newly flooded areas habitat flooding may increase some spawning areas possible public health hazard due to agrochemicals</td>
</tr>
<tr>
<td>Landslide</td>
<td>Sensitive in poorly managed areas and eroding watersheds.</td>
<td>physical watercourse blockage and altered drainage damage to fishing community infrastructure, roads destruction of critical habitat reduces productivity</td>
</tr>
<tr>
<td>Storms and hurricanes</td>
<td>Little exposure unless an extensive landfill or via indirect pathways.</td>
<td>physical damage due to waves, wind if near the coast may be accompanied by intense rainfall, flooding</td>
</tr>
<tr>
<td>Sea level rise</td>
<td>Little exposure except in coastal floodplain prone to marine inundation</td>
<td>exacerbation of coastal infrastructure impact by flood saline intrusion may completely alter habitats inland</td>
</tr>
<tr>
<td>Ocean acidification</td>
<td>No to low and uncertain.</td>
<td>unlikely to have impact</td>
</tr>
<tr>
<td>Volcano</td>
<td>Impact may be highest on steep slopes but ash can impact large areas.</td>
<td>physical damage to fisheries and public infrastructure changed landscapes, water flows and habitats altered chemical composition of water bodies</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Rare occurrence but perhaps high sensitivity.</td>
<td>changed landscapes, water flows and habitats damage to communities and public infrastructure</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Unlikely to impact much except coastal plains.</td>
<td>physical alteration to inland areas adjacent to coasts</td>
</tr>
</tbody>
</table>

4.1.4 Aquaculture in general

Experts attending an FAO workshop to prepare the Regional Aquaculture Review for Latin America and the Caribbean recently addressed this topic.\(^{81}\) Some common issues identified by the experts were:

- a lack of estimation of economic and social impacts of aquaculture and a scarcity of information about the impact on local protein consumption;
- weak coordination and management of environmental issues particularly regarding institutional coordination (usually among fisheries and environmental institutions);
- need for strengthening of government and institutional frameworks;
- need for enhanced subregional and regional cooperation;
- need to control the spread of diseases, particularly regarding movements of exotic species.

Aquaculture does not usually extend as far seaward as marine fisheries but it may cover the same areas as inland fisheries. In many places it is concentrated along coasts, in marine, brackish or freshwaters\(^ {82}\). Although aquaculture can be quite vulnerable to

hazards, changes in climate may prove to be beneficial to some types of well-managed production. Potential impacts are shown below (Table 4.5).

Table 4.5

Potential impacts of climate change on aquaculture

<table>
<thead>
<tr>
<th>Drivers of change</th>
<th>Impacts on culture systems</th>
<th>Operational impacts</th>
</tr>
</thead>
</table>
| Sea surface temperature changes | Increase in harmful algal blooms
Decreased dissolved oxygen
Increased disease and parasites
Longer growing seasons
Changes in locations and ranges of suitable species
Reduced winter natural mortality
Enhanced growth and food conversion rates
Competition, parasitism and predation from altered local ecosystems, competitors and exotic species | Changes in infrastructure and operation costs
Increased fouling, pests, nuisance species and predators
Expanded geographic ranges for species
Changes in production levels |
| Changes in other oceanographic variables | Decreased flushing rates and food availability to shellfish
Changes in abundance of species used for food and fishmeal | Accumulation of wastes under nets
Increased operating costs |
| Sea level rise | Loss of areas for aquaculture
Loss of areas providing physical protection
Greater flooding risks
Salt intrusions into groundwater | Infrastructure damage
Change in aquaculture zoning
Increased insurance costs
Reduced freshwater availability |
| Increased storm activity | Larger waves
Higher storm surges
Flooding from precipitation
Salinity changes
Structure damage | Loss of stock
Facility damage
Higher costs for designing new facilities
Increased insurance costs |
| Drought and water stress | Salinity changes
Reduced water quality
Increased diseases
Uncertain water supplies | Loss of stock
Facility damage
Conflicts with outer water users
Reduced production capacity
Change in cultured species |

Source: Barange and Perry, 2009

4.1.5 Marine aquaculture

Marine aquaculture is not yet well developed in Caribbean countries. Some considerations are shown below (Table 4.6).

Table 4.6

Examples of hazards, exposure, sensitivity and potential impacts for marine aquaculture

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Exposure and sensitivity</th>
<th>Examples of potential impacts</th>
</tr>
</thead>
</table>
| High temp, drought | Highest direct impact on inshore aquaculture | reduced oxygenation and increased salinity
increased growth of cultured and nuisance species |
| Intense rainfall | Highest direct impact on inshore aquaculture | runoff impacts such as sedimentation, nutrients
infrastructure damage due to poor drainage planning |
| Flooding | Highest direct impact on inshore aquaculture | lower salinity, possible agrochemical hazards
freshwater may introduce new pathogens to bivalves |
| Landslide | Minimal unless indirect | damage to coastal community infrastructure, roads |
| Storms and hurricanes | Highest direct impact on inshore aquaculture | physical damage due to wave action, debris transport
coastal community and other infrastructure damage
additional cost of early warning and safety measures |
| Sea level rise | Highest direct impact on inshore aquaculture | changes in areas available, either positive or negative
inundation of supporting coastal infrastructure |
| Ocean acidification | Highest direct impact on inshore aquaculture | unpredictable changes in plankton composition
calcification impaired in several marine species |
| Volcano | Minimal unless indirect | damage to coastal community infrastructure, roads |
| Earthquake | Minimal unless indirect | damage to coastal community infrastructure, roads |
| Tsunami | Highest direct impact on inshore aquaculture | loss of life and property at sea, offshore and inshore
physical alteration to coasts and inland areas affected |
In addition to the general information on impacts provided above and in the table, we offer some additional points and lessons from literature on climate and disaster impacts in the Caribbean. Adaptive capacity and resilience are addressed later.

There is little existing small-scale marine aquaculture in the CARICOM region apart from seamoss cultivation, so the impacts on existing enterprises are going to be small overall.

The scenarios for marine fisheries that predict increasing hazards, especially from storms and hurricanes, are likely to constrain mariculture development.

Mariculture in nearshore areas will be increasingly threatened from both the land and the sea.

While changes such as higher sea surface temperatures may increase growth rates of cultured organisms, they may also accelerate growth of fouling and disease organisms.

Shifts in ocean regimes may make it possible to culture new species, but are more likely to make no difference or to reduce the number of cultured species as a result of ocean warming.

Since many women are involved in coastal seamoss culture and processing of value-added goods they may be more vulnerable to the impacts of climate and disasters than men.

4.1.6 Freshwater and brackish water aquaculture

Freshwater and brackish water aquaculture are becoming better developed in some of the larger countries and very small-scale, often integrated, operations can be found in most of the countries. The considerations vary especially with the size (spatially) and type (intensity) of the operation (Table 4.7).

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Exposure and sensitivity</th>
<th>Examples of potential impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>High temp, drought</td>
<td>Highest direct impact on shallowest water areas</td>
<td>Reduced productivity if tolerances are exceeded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible higher growth rates of some species</td>
</tr>
<tr>
<td>Intense rainfall</td>
<td>Highest direct impact on poorly drained areas</td>
<td>Erosion of natural earth ponds and dykes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical damage due to redirected flow and debris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infrastructure damage due to inadequate drainage</td>
</tr>
<tr>
<td>Flooding</td>
<td>Highest direct impact on low lying areas</td>
<td>Impacts such as pond overtopping, escape of species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible public health hazard due to agrochemicals</td>
</tr>
<tr>
<td>Landslide</td>
<td>Poorly managed areas, rivers and watersheds</td>
<td>Physical watercourse blockage and altered drainage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Damage to rural community infrastructure, roads</td>
</tr>
<tr>
<td>Storms and hurricanes</td>
<td>Little exposure unless an extensive landfall</td>
<td>May be accompanied by intense rainfall, flooding</td>
</tr>
<tr>
<td>Sea level rise</td>
<td>Little exposure except in coastal floodplain</td>
<td>Exacerbation of impact on infrastructure due to flood</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saline intrusion may completely alter feasibility</td>
</tr>
<tr>
<td>Ocean acidification</td>
<td>No to low and uncertain</td>
<td>Unlikely to have impact</td>
</tr>
<tr>
<td>Volcano</td>
<td>Impact may be highest on steep slopes, sources</td>
<td>Changed landscapes, water flows and habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altered chemical composition of water bodies</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Rare occurrence but perhaps high sensitivity</td>
<td>Changed landscapes, water flows and habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Damage to communities and public infrastructure</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Unlikely to impact much except coastal plains</td>
<td>Physical alteration to inland areas adjacent to coasts</td>
</tr>
</tbody>
</table>

In addition to the general information on impacts provided above and in the table, we offer some additional points and lessons from the literature on climate and disaster impacts in the Caribbean. Adaptive capacity and resilience are addressed later.
• Few countries have fisheries policies and plans that address freshwater aquaculture (e.g. Guyana is currently in the process of formulating these), so opportunities exist for mainstreaming CCA and DRM.
• Freshwater and brackish water aquaculture incorporating CCA and DRM needs to consider land tenure, indigenous people and other aspects of sustainable land use management.
• In relatively large countries (e.g. Guyana, Suriname) inland aquaculture is generally small-scale and, being widespread, it is difficult for any central aquaculture authority to manage, making community-based area management essential.
• Threats to inland aquaculture from other watershed activities such as forestry, agriculture and mining may interact with natural disasters.
• Depending upon the interactions between hazards and changes some opportunities may be presented, compared to a much more negative outlook in marine areas.
• Sea level rise and coastal inundation are likely to favour the development of brackish water aquaculture in areas that have had to be abandoned by agriculture, presenting opportunities.
• Highly tolerant species such as tilapia have been introduced in countries such as Haiti as a major contributor to post-disaster recovery and improving food security at community level.

4.2 ADAPTIVE CAPACITY AND REDUCING VULNERABILITY

The assessment of exposure, sensitivity and potential impacts prompts us to ask what interested parties and stakeholders in CRFM countries have done to develop adaptive capacity, reduce vulnerability and build resilience at regional, national and local levels. Earlier we mentioned several large projects and there are hundreds more in the CCCCC database. However, few are aimed primarily at fisheries and aquaculture. This section does not attempt to catalogue these initiatives, but selects examples of issues and actions that will help to inform the strategic action plan and programme. We draw heavily upon the comments and recommendations received during the consultations in Grenada, Guyana, Jamaica and Belize. These are often not tied to specific resource systems or hazards. Limited human and other resources prompt SIDS to tackle aquatic system hazards with similar measures where feasible. Participants in the consultations made it clear that partitioning and compartmentalizing the analysis by hazard or type of production system was of limited practical value since institutions and organizations typically had to deal with multiple economic sectors and multiple hazards together.

Social-ecological systems such as fisheries and aquaculture may demonstrate the ability to adapt to changes caused by a variety of drivers. However, the rate at which climatic change occurs, the amplitude of climate variability and the frequency and severity of hazard impacts may combine to exceed the rate at which SES can adapt. Natural environments that are already stressed by human activities have reduced ability to cope with (short-term) and adapt to (longer-term) climate change. When social systems are focused on coping strategies rather than adaptation (as is the case with poverty) the options to adapt may be compromised by such strategies, thereby creating an intractable problem.

Before providing some Caribbean perspectives, general information on adaptation in fisheries and aquaculture is presented in Table 4.8 and Table 4.9, respectively.
TABLE 4.8
Adaptation to climate impacts in fisheries, global overview

<table>
<thead>
<tr>
<th>Impact on fisheries</th>
<th>Potential adaptation measures</th>
<th>Responsibility</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced fisheries productivity and yields (indirect ecological)</td>
<td>Access higher value markets</td>
<td>Public/private</td>
<td>Either</td>
</tr>
<tr>
<td></td>
<td>Increase effort or fishing power*</td>
<td>Private</td>
<td>Either</td>
</tr>
<tr>
<td>Increased variability of yield (indirect ecological)</td>
<td>Diversify livelihood portfolio</td>
<td>Private</td>
<td>Either</td>
</tr>
<tr>
<td></td>
<td>Insurance schemes</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Precautionary management for resilient ecosystems</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Implementation of integrated and adaptive management</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td>Change in distribution of fisheries (indirect ecological)</td>
<td>Private research and development and investments in technologies to predict migration routes and availability of commercial fish stocks*</td>
<td>Private</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Migration*</td>
<td>Private</td>
<td>Either</td>
</tr>
<tr>
<td>Reduced profitability (indirect ecological and socio-economic)</td>
<td>Reduce costs to increase efficiency</td>
<td>Private</td>
<td>Either</td>
</tr>
<tr>
<td></td>
<td>Diversify livelihoods</td>
<td>Private</td>
<td>Either</td>
</tr>
<tr>
<td></td>
<td>Exit the fishery for other livelihoods/investments</td>
<td>Private</td>
<td>Reactive</td>
</tr>
<tr>
<td>Increased vulnerability of coastal, riparian and floodplain communities and infrastructure to flooding, sea level and surges (direct)</td>
<td>Hard defences*</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Managed retreat/accommodation</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Rehabilitation and disaster response</td>
<td>Public</td>
<td>Reactive</td>
</tr>
<tr>
<td></td>
<td>Integrated coastal management</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Infrastructure provision (e.g. protecting harbours and landing sites)</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Early warning systems and education</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Post-disaster recovery</td>
<td>Public</td>
<td>Reactive</td>
</tr>
<tr>
<td></td>
<td>Assisted migration</td>
<td>Public</td>
<td>Reactive</td>
</tr>
<tr>
<td>Increased risks associated with fishing (direct)</td>
<td>Private insurance of capital equipment</td>
<td>Private</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Adjustments in insurance markets</td>
<td>Private</td>
<td>Reactive</td>
</tr>
<tr>
<td></td>
<td>Insurance underwriting</td>
<td>Public</td>
<td>Reactive</td>
</tr>
<tr>
<td></td>
<td>Weather warning system</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Investment in improved vessel stability/safety</td>
<td>Private</td>
<td>Anticipatory</td>
</tr>
<tr>
<td></td>
<td>Compensation for impacts</td>
<td>Public</td>
<td>Reactive</td>
</tr>
<tr>
<td>Trade and market shocks (indirect socio-economic)</td>
<td>Diversification of markets and products</td>
<td>Private/public</td>
<td>Either</td>
</tr>
<tr>
<td></td>
<td>Information services for anticipation of price and market shocks</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
<tr>
<td>Displacement of population leading to influx of new fishers (indirect socio-economic)</td>
<td>Support for existing local management institutions</td>
<td>Public</td>
<td>Either</td>
</tr>
<tr>
<td>Various</td>
<td>Publicly available research and development</td>
<td>Public</td>
<td>Anticipatory</td>
</tr>
</tbody>
</table>

Source: Daw *et al.*, 2009.

4.2.1 Driven by fisheries/aquaculture or CCA/DRM

The Mainstreaming Climate Change in Disaster Management (CCDM) project aims to enhance the resilience in CDEMA participating states to respond to the effects of climate change and natural disasters through practical planning and adaptation interventions at the national and community levels. It provides an example of how
the fisheries sector could be integrating CCA and DRM (Table 4.10). The three pillars address multi-level governance and safety at sea (aspect of livelihoods).

TABLE 4.10
Example of fisheries integration of CCA and DRM

<table>
<thead>
<tr>
<th>Fisheries sector</th>
<th>Desired results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced fisheries policy development and execution which incorporates CC and DRR. (Note: the CLME Project provides an opportunity for reaching all levels – CLME model uses a multi-layered policy cycle with focus on governance). Enhanced Fisheries Management Plans (FMPs) which incorporate DRR and CC are implemented. (Note: use opportunity of the ACP Fish II Project – policy and fisheries management component). Fishers using safer vessels.</td>
<td></td>
</tr>
</tbody>
</table>
In the country consultations, however, the climate and disaster authorities, NGOs and community participants were largely unaware of the CLME Project and its potential to fulfil this function. A few countries are indeed using the ACP Fish II Project to address deficiencies in fisheries policy and planning documentation, including incorporating CCA and DRM. However, it appears from draft documents not yet in the public domain that the depth of treatment differs considerably; in two out of three cases examined their inclusion is only in general principles. Some countries such as Barbados have draft legislation on vessel safety and training in safety at sea is conducted, but the links to CCA and DRM are tenuous. There was considerable debate in the Jamaica consultations about what would be safe and affordable vessels for even more adaptive and responsible approaches to fishing further offshore.

If CCA and DRM initiatives continue to set the tone and pace for fisheries and aquaculture it is likely that the decision-making locus and power on climate and disaster issues related to these sectors will shift from the fisheries and aquaculture authorities to the climate and disaster offices. It may not be that the latter offices seek this responsibility and authority, but the institutional arrangements may so dictate, unless there is a turnaround in current trends. The most significant evidence of such a move would be the formulation and implementation of fisheries management plans that incorporate CCA and DRM throughout, and especially down to the detailed fishery or region level as experts advocate.

The slow but increasing trend across the region towards EBM/EAF and ICM, as reflected in the key documents in this assessment and especially the CCCFP, is encouraging for adaptation and resilience but may be too little too late unless the pace accelerates. The CLME Project is but one vehicle for this.

4.2.2 Geological hazards

Geologic events include earthquakes, tsunamis and volcanoes which in turn produce several types of hazards such as ground shaking and landslides, land and seabed faulting, coastal inundation and subsidence, lava flows, hot gases and ash, and more. The UWI Seismic Research Centre monitors seismic activity through a network of seismographs for early warnings that generate information for disaster decision-making. These are not hydro-meteorological events associated with climate change but they may also result in disasters and the latter may have increased impact as a result of sea level rise or other climate effects on coasts especially.

The volcanism of Montserrat is well known, as is the lower level of volcanic activity in several of the islands in the eastern Caribbean, including Dominica with its “champagne reef”. On 12 January 2010, Haiti suffered a 7.0 magnitude earthquake resulting in a tsunami that affected nearby shores soon afterwards. In the four country consultations most participants, especially from the fishing and aquaculture industries, said that realistically there was little they could do to adapt to geologic risks although some types of insurance and early warning may assist in reducing the risks. Their main concern was insufficient warning. CDEMA and partners have developed a Model Tsunami Warning Information Dissemination Protocol, Standard Operating Procedures and much public information material. The Pacific Tsunami Warning Centre (PTWC) provides interim services to the Caribbean which is expected to have its own early warning system in place by 2014.
4.2.3 Increasing interagency collaboration

Several agencies in the country consultations and otherwise have concluded that there is an urgent need to rationalize the many CCA and DRM initiatives across the region, and even nationally in some cases, in order to reduce inefficient planning, duplication of effort, wastage of limited resources and fatigue of intended beneficiaries. In some locations, intended beneficiaries at the community level are becoming overwhelmed by frequent workshops and research accompanied by an implementation gap in which little that is tangible is seen to be accomplished. The example of Old Harbour Bay in Jamaica was offered. This is an overarching issue in CCA and DRM, not confined to fisheries and aquaculture. An increased thrust is required from agencies at all levels to communicate, coordinate and collaborate.

Stakeholders, particularly at the community level and from DRM agencies, observed that although CCA and DRM are almost congruent, initiatives concerned with climate change tended to treat DRM as a separate issue, thereby exacerbating unnecessary duplication. This was, in part, tied to their funding. They recommended that collaboration be strong and differences minimized at the local level where it was adding to confusion and eroding initiatives to increase public awareness of CCA and DRM.

The CARICOM Task Force on Climate Change and Development could be a forum for the high-level coordination and collaboration required to better integrate CCA and DRM and bring in fisheries and aquaculture productive sectors through the Caribbean Community Common Fisheries Policy. It appears that this forum is activated primarily for multilateral climate negotiations. The CCCCC IP needs to drill down to the community level and ensure that all stakeholders are vertically and laterally linked where necessary in a nested and modular network design featuring key hubs for de-centralized and devolved management responsibility.

4.2.4 Climate smart communities

The CSCDM Programme was initiated by the CDEMA Mainstreaming Climate Change into Disaster Risk Management for the Caribbean Region (CCDM) Project (2009–2011). Apparently still valid are the main challenges and solutions to implementation listed by CDEMA’s Civil Society Subcommittee in January 2011. To these have been added observations from stakeholder consultations held in the four countries visited (Table 4.11).

The previously described DRM benchmarking tool (the B-tool) developed for the OECS is also relevant at the community level, especially in providing guidelines and checklists for ensuring preparedness that are useful at the local level.

4.2.5 Community disaster risk management plans

Notwithstanding the challenges with creating climate smart communities, there has been progress in producing community disaster risk management plans and other related products in the Caribbean via a large number of projects at both regional and national level. Several of these plans are for fishing communities (e.g. Old Harbour Bay and Rocky Point in Jamaica). Communities have put much effort into these products, demonstrating a willingness to participate and fully engage. The plans include community hazard maps, institutional arrangements and adaptation recommendations.

4.2.6 Knowledge mobilization

In the country consultations, fisheries and aquaculture authorities actively involved in CCA and DRM initiatives were largely unaware of the several sets of information and tools available via the Internet (e.g. the CARIBSAVE Risk Atlases\(^5\) and CDEMA

\(^5\) http://www.caribsave.org/; see Simpson, et al., in References and further reading.
tools for CCA2DRR86). Regarding the CCA2DRR products, those who were aware of them noted that most tools needed to be further “translated” or adapted for use in community-level activities to ensure socio-cultural fit. They thought this was inevitable, but it used up scarce resources in governmental and civil society agencies. Efficient ways to do this are required.

A broader issue in knowledge mobilization is that of communication generally. When fishers from across the region gathered a few years ago to discuss their perspectives on climate change with marine scientist and managers, there were far more questions than answers87. Basic practical information on climate change and adaptation was not reaching fishing communities. From the four country consultations it seems that this situation has improved only slightly. There are, however, many useful resources for communicating about climate change available from all the intergovernmental partner agencies in this study, as well as from NGOs. There have been innovative trials to communicate using dance, song and theatre that may appeal to young people and better prepare the next generation88.

The country consultations reinforced the importance of building skills and experience through learning-by-doing. A good example is the way in which GCFI89

86 www.cdema.org/; see CDEMA references.
88 CANARI. 2009. Communicating climate change: a toolbox for local organisations in the Caribbean. Port-of-Spain, Trinidad and Tobago, Caribbean Natural Resources Institute.
89 http://www.gcfi.org
partnered with the SPAW Programme of the UNEP CEP to make available a Small Grant Fund to promote sustainable fishing practices and alternative livelihoods for fishers; much of this being used for fisher exchanges.

4.2.7 Universities and other collaborators
The roles of universities and researchers were addressed especially in the UWI Mona consultation. The International Community-University Research Alliance (I-CURA) project on “Managing Adaptation to Environmental Change in Coastal Communities: Canada and the Caribbean”, links communities and university researchers from Canada with those in the Caribbean in support of research on coastal adaptation to environmental change. This includes the impacts of storm surge and sea-level rise on susceptible coastal communities in locations such as the Belize Barrier Reef; Georgetown, Guyana; Grande Riviere, Trinidad and Tobago; and Bequia, St Vincent and the Grenadines. Fishing and aquaculture is not the primary focus, but the results will be relevant and this illustrates partnerships that are possible. Regional and national research agendas should be integrated.

Some persons in the consultations were in favour of pursuing more South-South links as a priority. The consultant briefly tested this possibility with a colleague in the South Pacific region and confirmed a high degree of interest, especially in integrated community-based initiatives. The possible resurgence of Technical Cooperation between Developing Countries (TCDC) perhaps spearheaded by FAO, was mentioned as a means of developing appropriate partnerships and capacity.

The International Federation of Red Cross Societies (IFRCS) is implementing climate change projects to assess vulnerability and risk and build community-level resilience to disasters in countries such as Grenada, Antigua and Barbuda and St Kitts and Nevis. In the Grenada consultation the Red Cross representative stressed the importance of paying more attention to communities and raising awareness as is being done with HIV/AIDS. It does not appear that full use is being made of organizations such as the Red Cross and PAHO, and service clubs such as Lions, Rotary, Kiwanis and Optimists in DRM and CCA. Youth, religious, sport and other community-based organizations also need to be brought into partnerships.

4.2.8 Legal-institutional arrangements
Legal-institutional arrangements exist or are planned in most places, especially for DRM. CDEMA has provided model disaster legislation that countries are using to revise their laws. Even without this, the practice of “hurricane preparedness” is well institutionalized and fully involves marine fisheries in most countries. A constraint to adaptation may be that most fisheries authorities are still stuck in the “preparedness” mode activated primarily for late response and early recovery. The countries visited – despite all having had recent disaster experiences (mainly storms and floods) – admitted that CCA and DRM were not priority concerns in fisheries and aquaculture. Without active fisheries management plans it is difficult to determine exactly where CCA and DRM will fall in the scheme of things, apart from being included primarily in external ad hoc initiatives.

Where there are specific DRM policies and legislation, such as in Belize, those directly underpinning DRM illustrate the shift from reactive disaster management systems to more proactive disaster risk management systems which assign importance to adaptation and mitigation rather than primarily to response. In Belize a 10-year National Hazard Mitigation Plan, emphasizing multi-sector, integrated, coordinated.

90 Hugh Govan, independent researcher and Foundation of the Peoples of the South Pacific International.

91 http://www.fao.org/focus/e/tcdc/intro-e.htm
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

approaches was adopted in 2007. Agricultural aspects include increasing the resilience of people’s livelihoods in the rural areas where fishing and aquaculture are important. Exposure to capacity building in Comprehensive Disaster Management (CDM) was deemed to be beneficial.

Belize has a draft National Aquaculture Policy and Plan along with legislation and a zoning schedule. Guyana also has a plan and Jamaica is preparing a Land and Water Use Development Plan and Blue Print for an Aquaculture Action Plan. CCA and DRM do not feature prominently in the available plans. It is unclear the extent to which they will be included in the Jamaica plan but given the significant damages that the sector has suffered from the impacts of several hurricanes, it is likely.

4.2.9 Resource valuation

Participants in the country consultations noted that more resource valuation studies are being done to improve evidence-influenced policy decision-making that takes into account ecosystem services and long-term benefits. They indicated that having such information available for decision-making could be useful in persuading policymakers to spend more on good environmental management, a core component of mainstreamed CCA and DRM. Of particular note was the value of properly managing coral reefs.

A recent review examined the influence of coastal economic valuations in the Caribbean. Conclusions were mixed. It appears that several contextual and external factors influence the extent to which the findings and recommendations of valuations receive attention at the policy level and achieve desired outcomes. Clearly this is an area that requires more attention, including examining constraints at the science-policy interface.

4.2.10 Fisheries data

The Caribbean Fisheries Information System (CARIFIS) is a fisheries database used by many of the 17 CRFM members to store information, mainly on fisheries catch and effort. Training workshops are occasionally held to build capacity, but the region is still relatively data poor and capacity limited. Data sharing was said to be an issue even at the national level within agencies with responsibility for aquatic resources, CCA and DRM. National data sets are annually put to the test in the CRFM fish stock assessments that form part of the scientific meeting. If better fisheries models are to contribute to adaptive capacity and include climate considerations, then data quantity and quality will need to improve. Different data may need to be collected or existing data processed differently if fisheries and climate scientists are to engage in data exchanges. For example, UNDESA points out that Grenada’s exports of parrotfish to Martinique undermine reef resilience but the actual amounts of fish are only roughly...

estimated97. Monitoring of harvest and trade down to species or species group may be required. Fortunately, trends in seafood traceability favour this degree of detail.

4.2.11 Insurance

Recent FAO reviews suggest that insurance remains a concern in effecting risk reduction in capture fisheries98 and aquaculture99 globally. There are, however, practices and experiences in other parts of the world that can be drawn upon for lessons and adaptation100.

In the country consultations, fishers noted the difficulty in obtaining and affording insurance. Agriculture agencies and freshwater aquaculturists noted the advances that CCRIF is making in offering new products to governments, but also commented on the difficulty in measuring some of the parameters (such as rainfall intensity and flooding) sufficiently accurately to provide the necessary evidence. The CCRIF does not have any direct products specifically targeted at the fisheries sector but recognizes the demand and is currently aiming to develop micro-insurance products across the region for low-income groups and to specifically link these products with DRR measures101. This would be a significant advance. The challenge of insurance for small-scale fisheries has been discussed at the Agriculture Subsector Committee/Technical Management Advisory Committee and will remain an item for consideration.

Inadequate time series data on fishing fleets, small aquaculture operations and damage to these sectors by hurricanes and other disasters hinder insurers and re-insurers that could provide cover in the Caribbean. Fisheries and aquaculture insurance schemes operating in other parts of the world were established by providing the financial sector with information for risk assessments.

Unemployment benefits from state-run national insurance may be paid to persons who lose their jobs as a result of a disaster. However, this is paid only to registered employees such as may be expected in larger fish processing plants and aquaculture farms. The majority of people in fishing and aquaculture are self-employed and most do not contribute to national insurance.

4.2.12 Interests of aquaculturists

Aquaculturists who produce food fish and ornamental fish in Jamaica expect to benefit from measures intended for agriculture DRM, but they also have conflicts with agriculture and water resource management over vulnerability to flooding caused by poor drainage, and pollution hazards from agrochemical abuse. They maintain that aquaculture has characteristics that prevent it from being fully aligned with other land and water uses. Earthquakes and tsunamis are the hazards for which they are least prepared. The indirect pathways of climate change impacts, such as higher energy and feed costs, are of particular concern because some see few means of mitigation or adaptation available at present.

In Belize, aquaculture farms around the Placencia Lagoon are collaborating with the World Wildlife Fund to develop green adaptive technologies for aquaculture facility construction and operation. It is anticipated that best practices will be developed

97 UNDESA. 2012. Climate change adaptation in Grenada: water resources, coastal ecosystems and renewable energy. United Nations Department of Economic and Social Affairs.

100 Hotta, M. 1999. Fisheries insurance programmes in Asia: experiences, practices and principles. FAO Fisheries Circular No. 948. Rome, FAO. 54 pp.

101 Ekhosuehi Iyahen, Supervisor, Caribbean Catastrophe Risk Insurance Facility, personal communication.
and adopted by the entire aquaculture industry. Some measures include vegetation buffers, reduced chemical use, better effluent treatment and the like. This will reduce the impacts of climate and disasters on the farms and the impacts of the farms on the surrounding areas of wetland.

4.2.13 Safety at sea
Grenada has implemented a vessel monitoring system (VMS) for larger fishing boats. This plays a role in both MCS and safety at sea because accurate position information improves response options and times in life threatening situations. That country and others have been upgrading marine radio communications and safety at sea training which facilitate early warning systems (EWS) and rescue. More countries are enforcing the registration and licensing of fishing vessels which aids in maintaining an accurate database from which damages and losses can be estimated if necessary.

Safety at sea training events are appropriate platforms for increasing the awareness of fishers about climate and disasters. Issues of vessel design, loading and stability can be drawn into the discussion on personal safety. The Caribbean Network of Fisherfolk Organizations is interested in taking part in an investigation to determine how best to adapt vessels and gear to changing climate and disasters.\(^\text{102}\)

4.2.14 Jurisdictions and partnerships
Overlapping, competing and conflicting government agency jurisdictions, such as those prevalent in the coastal zone, were seen as major constraints to developing adaptation at the community or any other level. Better coordination and collaboration through national committees for disasters, climate change, environment, biodiversity and similar were urged. Most countries have legislation that requires or permits multi-stakeholder fisheries and/or aquaculture bodies. Few of these exist or are functioning.

Participants in consultations highlighted the Ministry of Finance as a key actor and gatekeeper for CCA and DRM. Finance ministries need to be better informed about the financial obligations that accompany being party to MEAs and having to meet reporting or implementation commitments. In Jamaica, for example, there were issues surrounding resources not reaching line departments even if total budgetary allocations were made and sufficient. Disbursement was the main challenge. An international donor noted issues with channelling disbursements as foreign policies, governments and political priorities changed. This is not peculiar to fisheries and aquaculture but these sectors are often on the margins of attention, afforded low priority and are frequently the first to be cut from budgets.

Mechanisms for fisheries and aquaculture to be visible at a high policy level may favour allocation of resources and development of adaptive capacity in the sectors. In Belize the Fisheries Department is expected to report on its risk management and climate change activities to the National Climate Change Committee and the Chief Meteorologist for inclusion in national communications to the UNFCCC. It is unclear whether such visibility is encouraged in all CRFM member states, but it should be.

Financing new approaches to climate resilient development, such as in emerging low carbon and green economy initiatives, increasingly involves the private sector, especially corporations that are well-financed and able to invest in new technologies. Green income-generating activities and job-creation opportunities are becoming more important, such as in the Grenada Strategic Program for Climate Resilience (SPCR). The role of fishing and aquaculture enterprises is unclear and requires attention.

\(^{102}\) Based upon email exchanges on the fisherfolk network e-group.
4.2.15 Donor relationships

Donor relationships were openly discussed in the country consultations. Here “donors” included big international NGOs, aid agencies and UN agencies. The donors indicated the need for more regional or subregional CCA and DRM proposals based on evidence and sound implementation strategies for delivering achievable outcomes. They had received few or no fisheries and aquaculture proposals, but agreed that these sectors were important in the national efforts which were often aimed at agriculture. A number of implementing government and civil society agencies pointed out that short-term donor deliverables were constraining capacity development and that more, long-term framework programme funding was needed in order to work with communities at the appropriate pace for sustainability. The CARIBSAVE representative in one meeting described their strategy of working with only a limited number of communities until success was achieved, despite pressure from many quarters to broaden the activities to additional locations. There can be strong political pressure to do this in marine fisheries.

Dominica, Grenada, Haiti, Jamaica, Saint Lucia and St Vincent and the Grenadines are involved in the Pilot Program for Climate Resilience (PPCR), the adaptation funding window of the Climate Investment Fund (CIF) established by the multilateral development banks (MDBs) to finance climate change support for developing member countries (DMCs). PPCR seeks to mainstream climate change adaptation into national development planning processes through a long-term programmatic approach which, ideally, frames all donor climate change adaptation interventions. Funds are allocated for the preparation of a Strategic Programme for Climate Resilience (SPCR) and for implementation of the Caribbean pilot programme in the identified key vulnerable sectors. In Grenada the PPCR activities include implementation of capacity building activities for the health, agriculture, tourism, environment, water, forestry and fisheries sectors. All PPCR-related activities will be advised by the National Climate Change Committee.

4.2.16 FAO assistance

FAO has been a partner in several initiatives related to CCA and DRM in fisheries and aquaculture. See some examples in Table 4.12. Most, however, are labelled as agriculture activities, such as the DRM plans completed (e.g. Jamaica) and in preparation (e.g. Guyana). For the latter country, the FAO NMTPF 2012-2015 states that there will be a focus upon “Reducing vulnerability to natural disasters through the establishment and strengthening of Early Warning Systems and improving mitigation measures in the agricultural sector; and reducing recovery time from natural disasters through the development of DRM plans” (FAO, 2010). At the Guyana consultation, the FAO country representative indicated that the fisheries and inland aquaculture content would be substantial.

Realising that good conventional fisheries management and adaptive co-management addresses many of the issues encountered in climate variability and change leads to the conclusion that more attention needs to be paid to promoting responsible fisheries and deepening awareness of the CCRF. Several initiatives potentially support this direction, including the promotion of fisheries planning by CRFM.

103 PPCR Aide-Memoire, 2010.
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region

4.2.17 Vulnerability assessments
More countries are conducting vulnerability assessments themselves, or are having them performed by external agencies. Coastal and rural communities are often included, bringing in fisheries and aquaculture. In the country consultations, some organizations pointed out that the mix and differences in methodologies being used – often linked to a future funding stream – can cause problems or result in what seems to be unnecessary duplication. The level of detail required, and hence the cost in time and money, was of less concern. However, some organizations remarked that funds for assessment and other studies could be better used for pilot projects or other examples of learning-by-doing. Some agencies acknowledged that aid agencies repatriate funds through studies that employ their own staff or consultants from their geo-political constituency. This may be countered by national agencies collectively endorsing one excellent assessment and insisting on it being used by all where possible. A number of assessment methodologies, some developed or adapted for the Caribbean, are available104.

4.2.18 Poverty and livelihoods
Poverty was raised as a challenge to be overcome in building adaptive capacity. Insight specific to CARICOM fisheries and aquaculture is available in the recently concluded CRFM poverty study105. It addresses hazards and coping strategies. Hurricanes and floods were identified as the prevalent hazards. Responses as to whether or not sampled households had been impacted by environmental hazards reflect the geographic pattern of hurricane risk (Figure 4.5).

Regarding coping strategies for getting their houses in order after an impact, respondents reportedly:
• resorted to household savings (40%);
• increased the number of working hours (18%);
• borrowed money from family or friends (9%);
• received assistance from state, church or NGOs (9%).

The full range of responses is shown in Figure 4.6. These may apply after moderate events in which there is no massive recovery effort. Increasing the number of working hours may imply additional fishing effort and possible worsening of overfishing, but the survey responses are not interpreted.

The poverty study lists the top concerns of respondents in the fishing industries of ten countries. The issues of climate and disasters do not make the list, although indirect pathways could be links to these issues. In addition to the CRFM study there are several hundred publications in the international literature that link fisheries to climate change and poverty106.

106 Allison et al., 2005.
Livelihoods were discussed extensively in the country consultations. Several agencies were working at the community level to find viable alternative or supplementary livelihoods for inshore fishers especially. Participants identified some constraints to this way of developing adaptive capacity:

- reluctance to entirely leave fishing as a way of life;
- limited formal education reduces feasible options;
- limited education also restricts training for options;
- alternatives (e.g. tourism) are also fairly vulnerable;
- period required to work on alternatives is long-term.

Some participants pointed out that there is little evidence of alternative livelihoods being sustainable. This led, in one meeting, to a broader discussion on the need to document successes in the Caribbean and to celebrate and highlight them for global attention. Lack of success stories and a tendency not to share successes was said to have worked against efforts to develop adaptive capacity and reinforced an image of the Caribbean requiring external assistance. The CRFM poverty study offers few insights into alternative livelihoods for the poor, but it outlines a method of livelihood analysis of which there are several. The project on the Future of Reefs in a Changing Environment\(^\text{107}\) is one that includes livelihoods analysis in connection with coral reef fisheries and climate change adaptation.

4.2.19 Gender

The Regional Framework and IP acknowledge that gender needs to be mainstreamed, or at least taken more into account. The consultations indicated that this was happening, but not always in a systematic manner. Participants described how the division of labour and ownership of assets were often determined by gender. For example, in Jamaica, women were playing major roles in fisheries (boat ownership and postharvest activities) but largely remained in the background. They were generally not vocal but were very influential, both in the industry and in workshops and planning events to organize and mobilize the communities. Participants suggested that gender analysis would assist their understanding of how best to design interventions. Much guidance is easily available for this\(^\text{108}\).

ECLAC provides a gender perspective on the impact of Hurricane Ivan on Grenada\(^\text{109}\). Food security and child care are two major concerns. There were clear differences in the income-earning abilities of men and women in the reconstruction period. Inequalities are significant, taking into consideration the proportion of poor female-headed households in some fishing and rural communities. One must beware, however, of applying global gender stereotypes and gendered dimensions of CCA and DRM to the Caribbean. Caribbean women have proven themselves quite capable, adaptive and resilient under stressful conditions. In many cases it is men, particularly unemployed youth, who require attention, as the term “gender” suggests.

4.2.20 Regional Response Mechanism

The Regional Response Mechanism (RRM) is an arrangement for coordinating disaster responses between CDEMA participating states and regional and international agencies. The RRM and CDEMA’s Regional Coordination Plan could be instrumental in strengthening the livelihoods analytical focus of damage assessments and recovery in fisheries and aquaculture. There are several ways in which the interface between the

\(^{107}\) http://www.force-project.eu/

RRM and the fisheries and aquaculture sector can be improved. These include, but are not limited to:

- incorporation of DRM into fisheries and aquaculture plans with attention to RRM procedures;
- maintaining a comprehensive database of fisheries and aquaculture enterprises to facilitate assessments;
- Operating fisheries telecommunications systems for early warning, response and recovery;
- Establishing community-based focal points for rapid needs assessments following impacts;
- Compiling lists of fisheries and aquaculture experts available to assist the CDEMA teams;
- Including "build back better" sections in all fisheries and aquaculture management plans.

4.2.21 Coastal and fishery habitats

As noted previously, mainstreaming CCA and DRM into good environmental management will address many of the potential impacts. Both soft and hard coastal protection methods are in use throughout the Caribbean. Given the uncertainty of future climate and disasters these should be precautionary. The notion of managing entire coasts or large areas, such as through seascapes rather than just MPAs, is an adaptive measure being considered in Grenada. The Belize barrier reef system network of protected areas also assists by scaling up management. The eastern Caribbean does not have a true network of protected areas by ecological design, but there is a social networking system in place, such as the Caribbean Marine Protected Area Network and Forum (CaMPAM)\(^\text{110}\) which serves to increase human adaptive capacity.

The project known as At the Water’s Edge (AWE), led by The Nature Conservancy (TNC) focuses on coastal resilience in Grenada and St Vincent and the Grenadines, using what it terms ecosystem-based adaptation (EBA) in a five-year project\(^\text{111}\). It seems to address deficiencies identified by participants in the country consultations and includes community-level implementation over a reasonably long period, developing leadership, strong networking, use of indicators and participatory monitoring and evaluation. This and similar projects may be worth post-evaluation and outcome mapping in order to enhance shared learning.

4.2.22 Technological innovation

Technological innovation is a key aspect of adaptation in fisheries and aquaculture. Participants in the country consultations were concerned that insufficient attention was being paid to encouraging and financing practical innovation. Such innovation should also be part of the transition to greener and low carbon economies. Examples of adaptation in Dominica are monitoring and re-design of fish traps to investigate and reduce ghost fishing\(^\text{112}\). The latter is the problem of fish traps that keep on fishing when lost or abandoned at sea. This problem is expected to increase with rough sea events. Another example is the award-winning “mFisheries” project that uses mobile phone communication technology in Trinidad and Tobago fisheries\(^\text{113}\). Innovations used in other regions, but which are only slightly or not used in the Caribbean include submergible aquaculture cages, new mooring and netting systems for aquaculture.

\(^{110}\) http://campam.gci.org/campam.php
\(^{111}\) http://conserveonline.org/workspaces/climateadaptation/documents/grenadine-islands/
\(^{113}\) http://cirp.org.tt/mfisheries/
that prevent fish escapes, vessel construction, safety-at-sea technologies, and more. In order to involve more private sector entities and NGOs in technology development, and to create green jobs, there should be more venture capital and high-risk micro-enterprise funding made available under favourable terms, in addition to supporting services that increase the success rate of new start-up businesses focusing on fisheries and aquaculture.

4.2.23 Physical facilities
The need to climate-proof infrastructure such as public landing site facilities, fish processing plants, aquaculture facilities and other installations has been mentioned at a number of points. Land use planning or physical development planning can (and already has in some cases) allocate areas to vessel safe harbour and boatyards for repair. Such areas are often adjacent to fishing communities. It will be necessary to pay more attention to these aspects of adaptation in planning as inundation and hazard maps are generated. There is, however, a limit to which setbacks, engineering and other means can protect structures and operations from hazards and this needs to be taken into account.

Small-scale fishing vessels are not allowed to enter some private or exclusive marinas that could provide shelter from storms and hurricanes. Political support and amended disaster legislation are required to make optimal use of available natural shelter, safe harbour and haul-out facilities. Hauling and lifting equipment, such as, tractors and cranes, could be installed at, or mobilized by, the private sector for ports and landing sites to ensure that small vessels are moved to safer areas upon early warning, as is done in Barbados.

4.2.24 Science-policy interface
A recent report on the science-policy interface in the wider Caribbean region states that policy-makers are likely to demand more marine scientific information on climate change, disasters, fish stock status and the like in the coming years114. It also reports that there are significant barriers at the science-policy interface from both the science and policy sides. This is relevant to fisheries and aquaculture because, on the one hand it presents an opportunity to get the attention of policy-makers through the increasing demand, but on the other it means that the challenges in doing so must be addressed. Arrangements such as the CRFM, CDEMA, CCCCC and WECAFC working groups on various topics provide a means for addressing these issues, but only if designed to do so. CCA and DRM can be used to move towards more evidence-influenced (even if not evidence-based) policy in fisheries and aquaculture. This provides another incentive for mainstreaming CCA and DRM into fisheries and aquaculture policy and management plans, while the demand for science remains high.

4.3 CONCLUSION
The above analysis provides CCA/DRM perspectives on vulnerability and resilience in fisheries and aquaculture. A striking feature is that participants in consultations considered it unproductive to use an analysis by hazard or by productive sector to offer inputs. Their practical treatment of these topics is more integrated and comprehensive. While acknowledging the differences between the hazards and productive sectors, they suggest that limited resources necessitate a combined approach. They also say that there is insufficient pooling or sharing of resources and expertise by themselves and external

agencies and inadequate efforts on the ground to create critical masses of adaptive capacity and to reduce inefficiency and ineffectiveness. Their concerns lie more with institutional arrangements and governance than with technical matters at this time. The former constrains progress in the latter arena. Fishing industry participants in the country consultations stressed the need to improve institutional arrangements as priority, but they also indicated interest in technical matters such as fishing vessel and gear design, safety at sea and the relocation of vulnerable fisher households.
5. Measures for Caribbean fisheries and aquaculture

Having considered the conceptual or analytical frameworks, the impacts of climate and disasters, the literature, and what stakeholders in CRFM countries are doing and want to do to increase adaptive capacity and reduce vulnerability, our attention can now turn to the recommended measures for Caribbean fisheries and aquaculture. These form the basis for the strategic action plan and programme proposals. In the consultations it became clear that many are not specific to any one hazard or type of hazards. Some are more suitable than others for initial design and implementation at either regional (including subregional), national or local levels. In most cases measures can be slightly adapted and then replicated to achieve economies of scale and opportunities for networked capacity and learning.

Below we provide a summary list of recommended measures indicating their anticipated scope of application (Table 5.1). Ideally, readers should determine the priorities for their country, situation, level of application and ability to engage based on their existing and proposed goals, plans and ongoing activities before considering the strategic actions and proposals. Not everything can be done, and certainly not all at once. In some cases there will be a clear logical sequence to capacity building, but in others several complementary activities may be undertaken simultaneously if there are the resources and the ability to sustain the benefits from such interventions. Incremental approaches may yield the highest degrees of success and good partnerships or networks are particularly important. The measures are not only for consideration and implementation by national governments and inter-governmental organizations. Local government (where it exists), civil society and the private sector should see roles to play in most of the measures. Utilize existing resources, particularly by networking capacity, because dependence upon external funding does not foster self-organization and sustainability.

TABLE 5.1

Measures for Caribbean fisheries and aquaculture

<table>
<thead>
<tr>
<th>Recommended measure</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGIONAL LEVEL INITIATIVES</td>
<td></td>
</tr>
<tr>
<td>Develop a protocol that specifically addresses integrating CCA and DRM into the CCCFP and national initiatives</td>
<td>CRFM leads, based on CCCFP approval by fisheries ministers</td>
</tr>
<tr>
<td>Engage the WECAFC SAG and Commission, and CLME Project to encourage WCR partnerships beyond CARICOM</td>
<td>CRFM and WECAFC can co-lead as appropriate</td>
</tr>
<tr>
<td>Ensure that the CLME IMS-REMP or similar draws upon climate and disaster databases to construct regional data</td>
<td>CRFM works with CLME and other databases on construction</td>
</tr>
<tr>
<td>Include institutional arrangements for CCA and DRM in fisheries and aquaculture in the CLME strategic action programme</td>
<td>CRFM can lead from position on SAP formulation team</td>
</tr>
<tr>
<td>Ensure that the policies and plans formulated under ACP Fish II contain meaningful provisions on CCA and DRM</td>
<td>CRFM in close collaboration with ACP Fish II and members</td>
</tr>
<tr>
<td>Based on EAF, engage the regional bodies for agriculture, tourism, transportation, etc. to connect with the initiative</td>
<td>CLME Project, CEP and CSC cover these somewhat in WCR</td>
</tr>
<tr>
<td>Disseminate the IP, as modified by inclusion of fisheries and aquaculture, widely to all likely stakeholders</td>
<td>CRFM, CDEMA and CCCCC using a communication plan</td>
</tr>
<tr>
<td>Disseminate the CDEMA CCA2DRR tools (e.g. see G tool in refs.) and supporting material to all likely stakeholders</td>
<td>CRFM and CDEMA share the lead, involving NGOs, CBOs</td>
</tr>
<tr>
<td>Develop peer group training networks for the application of the CCA2DRR tools to create communities of practice</td>
<td>CRFM and CDEMA share the lead, involving NGOs, CBOs</td>
</tr>
<tr>
<td>Support the development of fisheries management plans and aquaculture plans that fully incorporate EAF, CCA and DRM</td>
<td>CRFM renewed effort with collaboration from WECAFC</td>
</tr>
<tr>
<td>Recommended measure</td>
<td>Remarks</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Develop new partnerships to mobilize resources for CCA/DRM programmes and projects within the aquatic sectors</td>
<td>CRFM leads countries but then downscale for implementation</td>
</tr>
<tr>
<td>Create user-friendly, web-based interfaces for networking, communication and collaboration to be cost-effective</td>
<td>Regional design downscaled to accommodate national, local</td>
</tr>
<tr>
<td>Develop CCRIF products further, particularly for flooding and storm surge (for which data are modelling are improving)</td>
<td>CCRIF, aquaculture, fisheries and private insurance bodies</td>
</tr>
<tr>
<td>Institutionalize climate and disaster reporting in various WECAFC and CRFM fishery resource working groups</td>
<td>WECAFC and CRFM lead and fisheries authorities cooperate</td>
</tr>
<tr>
<td>Expand the CCCCC project database to include DRM and ensure it covers all levels of project, including by CBOs</td>
<td>CCCCC leads but needs local and national data uploaded to it</td>
</tr>
<tr>
<td>Develop linkages with high level regional and national multi-stakeholder policy bodies to elevate sector status</td>
<td>CRFM facilitates but countries need to lead with political will</td>
</tr>
<tr>
<td>Create CRFM research agendas with UWI and many other universities to drive demand-based interdisciplinary work</td>
<td>CRFM leads with UWI but the countries must play active role</td>
</tr>
<tr>
<td>Promote TCDC as a means of cost-effective south-south exchanges and capacity development, especially via FAO</td>
<td>CRFM and FAO facilitate the country requirements for this</td>
</tr>
<tr>
<td>Prepare and bring into force DRM legislation using the CDEMA model and learn from locations with such laws</td>
<td>CDEMA and national disaster offices share lessons region equally</td>
</tr>
<tr>
<td>Implement the CCRF, especially integration of fisheries into coastal area management and participatory planning</td>
<td>CRFM and WECAFC assist national authorities, CNFO</td>
</tr>
<tr>
<td>Increase the content related to climate and disasters in fisheries and aquaculture related university courses</td>
<td>CRFM and UWI collaborate using material from CDEMA</td>
</tr>
<tr>
<td>Establish institutional arrangements in governance to link vertically and bi-directionally from local to regional levels</td>
<td>CRFM Fisheries Forum and its members and observers assist</td>
</tr>
<tr>
<td>Determine data sharing required between fisheries stock assessment and climate models; initiate data exchanges</td>
<td>CRFM, CCCCC, UWI and national fisheries authorities with FAO</td>
</tr>
<tr>
<td>Conduct a multi-stakeholder review of CCA/DRM tools available to suggest a toolkit suitable for CRFM members</td>
<td>CRFM, CCCCC, CDEMA with national fisheries authorities and NGOs</td>
</tr>
<tr>
<td>Encourage fishing access agreements under the CSME and CCCFP to allow fleets to legally follow fish</td>
<td>CRFM, fisheries authorities, OECS, CARICOM, CNFO</td>
</tr>
<tr>
<td>Encourage movement of capital under CSME and CCCFP to allow processing and marketing to go to where fish are</td>
<td>CRFM, fisheries authorities, OECS, CARICOM, CNFO</td>
</tr>
<tr>
<td>Develop post harvest processing and marketing capacity to use unfamiliar, altered season or more abundant species</td>
<td>CRFM, FAO, CNFO, private sector, fisheries authorities</td>
</tr>
<tr>
<td>Integrate and mainstream EAF, CCA and DRM into a combined strategy as part of fisheries and aquaculture development</td>
<td>Countries lead on reforming policy and planning content</td>
</tr>
<tr>
<td>Strengthen national mechanisms for coordinating multi-agency efforts at CCA and DRM in the aquatic sectors</td>
<td>Countries lead via national disaster offices, NGOs, CBOs</td>
</tr>
<tr>
<td>Enhance knowledge of the Hyogo Framework of Action within the fisheries and aquaculture sectors</td>
<td>Countries lead via national disaster offices, NGOs, CBOs</td>
</tr>
<tr>
<td>Improve planning for rebuilding and rehabilitation in the aftermath of disasters so as to adapt and “build back better”</td>
<td>Country level benefitting from regional experience networking</td>
</tr>
<tr>
<td>Pursue longer term framework funding to extend project implementation periods for community interventions</td>
<td>National and NGOs benefitting from donors of different types</td>
</tr>
<tr>
<td>Insert or increase CCA and DRM content in schools located in coastal communities and in all fisher training</td>
<td>National fisheries working with donors of different types</td>
</tr>
<tr>
<td>Invest in learning-by-doing approaches rather than mainly workshops so results can be included in social learning</td>
<td>National and local lead sharing lessons learnt region equally</td>
</tr>
<tr>
<td>Commit to well informed and participatory planning, implementation, monitoring and evaluation at all levels</td>
<td>National mainly for policy and planning framework reforms</td>
</tr>
<tr>
<td>Include the aquatic sectors in low carbon, green economy and renewable energy initiatives wherever possible</td>
<td>Fisheries ministries lead green economy sector integration</td>
</tr>
<tr>
<td>Ensure that fisheries and aquaculture are well covered in SPCR/PPCR programming in the participating countries</td>
<td>Fisheries ministries and PCCR focal points with CRFM help</td>
</tr>
<tr>
<td>Exchange information between countries and communities on vulnerability assessment methods and models in use</td>
<td>Climate and disaster offices with international agencies</td>
</tr>
<tr>
<td>Prepare inventories and maps of safe harbour and haul-out sites annotated to communicate risk and response times</td>
<td>National disaster and fisheries authorities with local help</td>
</tr>
<tr>
<td>Engage service clubs and other bodies in civil society to assist in two-way communication on fisheries, aquaculture</td>
<td>National fisheries offices with NGO close collaboration</td>
</tr>
<tr>
<td>Enact or strengthen fisheries and aquaculture legislation to include provisions for adaptation and disaster emergencies</td>
<td>National authorities guided by disaster offices and CRFM</td>
</tr>
<tr>
<td>Re-train fisheries authorities to think beyond annual hurricane preparedness as their only DRM responsibility</td>
<td>National disaster offices along with fisheries offices, CRFM</td>
</tr>
<tr>
<td>Guide planning authorities and coastal developers to ensure that fisheries are not at risk from poorly constructed infrastructure</td>
<td>National physical planning and fisheries offices collaborate</td>
</tr>
<tr>
<td>Recommended measure</td>
<td>Remarks</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Reserve some coastal safe havens for emergency boat haul out and repair beyond likely storm surge and inundation</td>
<td>National physical planning and fisheries offices collaborate</td>
</tr>
<tr>
<td>Climate proof fisheries and aquaculture infrastructure to the extent possible using both hard structures and soft measures</td>
<td>Physical planners, fisheries authorities, local private sector</td>
</tr>
<tr>
<td>Undertake gender analyses in fisheries and aquaculture to demonstrate usefulness in policy, planning, management</td>
<td>National gender and fisheries offices with UWI assistance</td>
</tr>
<tr>
<td>Require that climate and disaster risk analysis/management be a precondition for fisheries infrastructure construction</td>
<td>National physical planning and fisheries offices collaborate</td>
</tr>
<tr>
<td>Conduct resource valuation studies to include ecosystem services in decisions on the alteration of coastal habitats</td>
<td>National agencies perhaps with university and donor assistance</td>
</tr>
<tr>
<td>Pursue the provision of insurance products to fisheries and aquaculture enterprises by improving risk assessment, etc.</td>
<td>National authorities, CCRiF and private sector companies</td>
</tr>
<tr>
<td>Manage watershed drainage to take advantage of increased rainfall, such as by creating reservoirs stocked with fish</td>
<td>National water resources and fisheries management agencies</td>
</tr>
<tr>
<td>Include inland aquaculture in sustainable land use, watershed and water resource management plans</td>
<td>Fisheries authorities with land and water agencies nationally</td>
</tr>
<tr>
<td>Improve energy efficiency on all fishing vessels, in fish processing plants and on fish farms within green economy</td>
<td>Fisheries authority, energy and environmental agencies, users</td>
</tr>
<tr>
<td>Intensify boat registration and licensing, vessel monitoring, safety at sea training and such preparatory measures</td>
<td>Fisheries authorities and fisher organizations collaborate</td>
</tr>
<tr>
<td>Monitor recruitment variability linked to the environment in order to forecast likely fishery year class variability</td>
<td>Fisheries authorities, CRFM, universities, CNFO and fishers</td>
</tr>
<tr>
<td>Focus more on indicators, decisions and adaptation than on quantitative models with parameters sensitive to uncertainty</td>
<td>Fishery authorities with CRFM and FAO/WECAFC guidance</td>
</tr>
<tr>
<td>Mainstream CCA and DRM by including relevant agencies in Fisheries Advisory Committees and aquaculture bodies</td>
<td>Fisheries authorities backed by fisherfolk organizations, NGOs</td>
</tr>
<tr>
<td>LOCAL LEVEL INITIATIVES</td>
<td></td>
</tr>
<tr>
<td>Strengthen CCA and DRM linkages especially at local level in order to encourage synergistic interventions, messages</td>
<td>Local level with NGOs, CBOs but share regionally to learn</td>
</tr>
<tr>
<td>Create action learning groups, learning networks or other means of mutual support and sharing for the initiatives</td>
<td>Local level with laterally and vertically integrated networks</td>
</tr>
<tr>
<td>Document what coping strategies are or have been used for climate variability and disasters to inform interventions</td>
<td>Local level with NGOs, CBOs and then regional comparison</td>
</tr>
<tr>
<td>Conduct vulnerability and capacity assessments to identify priorities for action and opportunities for joint action</td>
<td>Local and national level with regional sharing of results</td>
</tr>
<tr>
<td>Conduct a technical analysis of vessel types and responsible fishing methods so as to optimise viable adaptation options</td>
<td>Local to regional level; CNFO interested in collaborating</td>
</tr>
<tr>
<td>Develop and implement education/awareness specifically for fisherfolk and fish farmers on climate and disasters</td>
<td>Local level implementation of national education programme</td>
</tr>
<tr>
<td>Follow on from the CRFM study to integrate poverty into fisheries and aquaculture policy and plans in pilot testing</td>
<td>Local communities, national poverty and fisheries agencies</td>
</tr>
<tr>
<td>Ensure that the policies and plans developed under projects are “pro-poor” and do not exacerbate poverty or inequality</td>
<td>Civil society local level groups and national poverty offices</td>
</tr>
<tr>
<td>Establish/strengthen fisherfolk organizations’ involvement in DRM/CCA integrating social and gender considerations</td>
<td>Local coalitions of fisheries authority, NGOs, CBOs, UWI</td>
</tr>
<tr>
<td>Establish systems for fishers to report unusual observations at sea and patterns in catches promptly via organizations</td>
<td>Local fisher groups, CNFO and national fisheries authorities</td>
</tr>
<tr>
<td>Identify, share and use local and indigenous knowledge and good practices that remain relevant in the face of change</td>
<td>Local level NGOs, CBOs work with national agencies in field</td>
</tr>
<tr>
<td>Manage and restore vegetation in watersheds to reduce sedimentation and restore or sustain ecosystem services</td>
<td>Forestry office, land use body, communities, NGOs, CBOs</td>
</tr>
<tr>
<td>Promote fishing priority areas and local area management authorities to facilitate subsidiarity and self organization</td>
<td>Local fishery groups, MPA bodies, fisheries authorities</td>
</tr>
<tr>
<td>Allow for aquaculture expansion in freshwater and brackish habitats such as by integrated rice and fish or other culture</td>
<td>Fisheries, aquaculture and agriculture locally, nationally</td>
</tr>
<tr>
<td>Strengthen or examine tenure systems for rights over use of expanded water bodies in order to promote aquaculture</td>
<td>Land use agencies, indigenous groups, fisheries authorities</td>
</tr>
<tr>
<td>Monitor and regulate agrochemical use in flood zones to limit effects on aquaculture and downstream biodiversity</td>
<td>Agriculture, aquaculture and environment national agencies</td>
</tr>
<tr>
<td>Promote integrated household aquaculture in high rainfall rural areas using rainfall harvesting to obtain good supply</td>
<td>FAO, agriculture and fisheries authorities, local NGOs, CBOs</td>
</tr>
</tbody>
</table>

Mobilizing selected, prioritized measures requires several iterative steps, with information exchange and negotiations between interested parties at each step. These include, but are not limited to, the following:
• Agree on the strategy and action plan (Volume 2) into which measures fit.
• This is to be based on the IP and other associated documentation.
• Negotiate criteria for selecting measures for development into proposals.
• Criteria for selection can include
 • fit with national and regional policies and initiatives;
 • expected levels of political will and hence support;
 • scope of the desirable outcomes from the proposals;
 • preferences for level or levels of implementation;
 • anticipated time required to achieve the outcomes;
 • likelihood of successful resource mobilization;
 • marketability and hence likelihood of engagement;
 • suitability for collaboration and scaling up impacts.
• Convert selected measures into specific programme proposals (Volume 3).
• Determine ownership and leadership needed to carry forward initiatives.
• Establish the buy-in of all key stakeholders and strategic communication.
Volumes 2 and 3 recommend a strategy and action plan, and programme proposals, respectively.
6. References and further reading

BirdLife International. 2010. Ecosystem profile: the Caribbean islands biodiversity hotspot. CEPF.

Carby, B. 2012. Synchronising climate change and regional disaster risk reduction. Presentation at CSGM Data Rescue and Climate Change Workshop, UWI Mona Campus.

CDEMA. 2010. Mapping the enhanced comprehensive disaster management programme framework to the climate change and the Caribbean: a regional framework for achieving development resilient to climate change. Bridgetown, Barbados, CDEMA. 3 pp.

ECLAC. 2011. The economics of climate change in the Caribbean. Port-of-Spain, The Economic Commission for Latin America and the Caribbean.

OECS Secretariat. 2006. St. George’s declaration of principles for environmental sustainability in the OECS (Revised 2006). Castries, St Lucia, OECS Secretariat.

Olhoff, A. & Schaer, C. 2010. Screening tools and guidelines to support the mainstreaming of climate change adaptation into development assistance – a stocktaking report. New York, USA, UNDP.

Spatial Systems Caribbean Ltd. 2006 Disaster risk management benchmarking tool (B-tool). Prepared for USAID and OECS.

Turks and Caicos Islands Climate Change Committee. 2011. Draft climate change policy of the Turks and Caicos Islands. Belmopan, Belize, Caribbean Community Climate Change Centre.

Turks and Caicos Islands Climate Change Committee. 2011. Turks and Caicos Islands climate change green paper. Belmopan, Belize, Caribbean Community Climate Change Centre.

UNDESA. 2012. Climate change adaptation in Grenada: water resources, coastal ecosystems and renewable energy. United Nations Department of Economic and Social Affairs.

UNEP. 2008. Climate change in the Caribbean and the challenge of adaptation. , Panama City, Panama, United Nations Environment Programme, Regional Office for Latin America and the Caribbean.

UNISDR. 2009. Adaptation to climate change by reducing disaster risks: country practices and lessons. Briefing Note 2. , Geneva, Switzerland, UNISDR.

WECAFC. 2012. Disaster risk management in fisheries in the WECAFC region. Background paper for fourteenth session of the Western Central Atlantic Fishery Commission (WECAFC), Panama City, Panama, 6–9 February 2012.

7. Annexes

7.1 GLOSSARY

Adaptation – the adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities (UNISDR, 2009).

Capacity – the combination of all the strengths, attributes and resources available within a community, society or organization that can be used to achieve agreed goals (UNISDR, 2009 and IPCC, 2012).

Capacity development and capacity building – the process by which people, organizations and society systematically stimulate and develop their capacities over time to achieve social and economic goals, including through improvement of knowledge, skills, systems, and institutions. Capacity development extends the concept of capacity building to encompass all aspects of creating and sustaining capacity growth over time (UNISDR, 2009). The distinction between capacity building and capacity development is not always made.

Climate change –

(a) The IPCC defines climate change as: “a change in the state of the climate that can be identified (e.g. by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use”.

(b) The UNFCCC defines climate change as “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods”.

Climate scenario – a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change, often serving as input to impact models. Climate projections often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information, such as about the observed current climate (IPCC, 2012).

Climate variability – variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate at all spatial and temporal scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic external forcing (external variability) (IPCC, 2012).

Coping capacity and adaptive capacity – the ability of people, organizations and systems, using available skills, resources, and opportunities, to address, manage, and overcome adverse conditions, emergencies or disasters in the short- to medium-term (UNISDR, 2009 and IPCC, 2012, slightly modified). Adaptive capacity is exhibited over a longer term and builds resilience.

Disaster – a serious disruption of the functioning of a community or a society involving widespread human, material, economic or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using its own resources (UNISDR, 2009).
Disaster risk management – the systematic process of using administrative directives, organizations and operational skills and capacities to implement strategies, policies and improved coping capacities in order to lessen the adverse impacts of hazards and the possibility of disaster. This comprises all forms of activities, including structural and non-structural measures to avoid (prevention) or to limit (mitigation and preparedness) adverse effects of hazards (UNISDR, 2009) with the explicit purpose of increasing human security, well-being, quality of life, and sustainable development (IPCC, 2012).

Disaster risk reduction – the concept and practice of reducing disaster risks through systematic efforts to analyse and manage the causal factors of disasters, including through reduced exposure to hazards, lessened vulnerability of people and property, wise management of land and the environment, and improved preparedness for adverse events (UNISDR, 2009).

Downscaling – a method that derives local- to regional-scale (up to 100 km) information from larger-scale models or data analyses (IPCC, 2012).

Ecosystem approach to fisheries (EAF) – strives to balance diverse societal objectives, by taking account of the knowledge and uncertainties of biotic, abiotic and human components of ecosystems and their interactions and applying an integrated approach to fisheries within ecologically meaningful boundaries (FAO, 2003).

Ecosystem services – the benefits that people and communities obtain from ecosystems (UNISDR, 2009).

El Niño-Southern Oscillation (ENSO) – a complex interaction of the tropical Pacific Ocean and the global atmosphere that results in irregularly occurring episodes of changed ocean and weather patterns in many parts of the world, often with significant impacts over many months, such as altered marine habitats, rainfall changes, floods, droughts and changes in storm patterns (UNISDR, 2009).

Emissions scenario – it is a plausible representation of the future development of emissions of substances (e.g. greenhouse gases, aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as technological change, demographic and socio-economic development) and their key relationships. Concentration scenarios, derived from emissions scenarios, are used as input to a climate model to compute climate projections. The IPCC Special Report on Emissions Scenarios, the SRES scenarios (e.g. A1B, A1FI, A2, B1, B2) are used for some climate projections (IPCC, 2012, summarised).

Exposure – people; livelihoods; environmental services and resources; infrastructure; or economic, social, or cultural assets in places that could be adversely affected (IPCC, 2012).

Governance – governance is public and private interactions initiated to solve societal problems and create societal opportunities. It includes the principles guiding these interactions and the institutions that enable them (Kooiman et al., 2005).

Greenhouse gases – gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation of thermal infrared radiation emitted by the Earth’s surface, the atmosphere itself, and by clouds (UNISDR, 2009).

Hazard – a dangerous phenomenon, substance, human activity or condition that may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage (UNISDR, 2009).

Likelihood – a probabilistic estimate of the occurrence of a single event or of an outcome, for example, a climate parameter, observed trend, or projected change lying in a given range. Likelihood may be based on statistical or modelling analyses, elicitation of expert views, or other quantitative analyses (IPCC, 2012).

Livelihood – the capacity, assets (including both material and social resources) and activities required to earn an income or acquire resources that can be used or exchanged to satisfy the needs of an individual, family or social group (Bell et al., 2011).
Mainstreaming – making a concept or practice an integral dimension of the policies, plans and programmes in all political, economic and societal spheres down to operational level (CDERA, 2007, modified).

Mitigation (of disaster risk and disaster) – the lessening of the potential adverse impacts of natural hazards, environmental degradation and technological hazards through structural and non-structural measures that reduce hazard, exposure, and vulnerability (UNISDR, 2009, modified and IPCC, 2012).

Mitigation (of climate change) – a human intervention to reduce the sources or enhance the sinks of greenhouse gases (IPCC, 2012).

Ocean acidification – a decrease in the pH of sea water due to the uptake of anthropogenic carbon dioxide (IPCC, 2007).

Preparedness – the knowledge and capacities developed by governments, professional response and recovery organizations, communities and individuals to effectively anticipate, respond to, and recover from, the impacts of likely, imminent or current hazard events or conditions (UNISDR, 2009).

Prevention – activities to provide outright avoidance of the adverse impact of hazards and disasters. Depending on social and technical feasibility and cost/benefit considerations, investing in preventive measures is justified in areas frequently affected by disasters. In the context of public awareness and education related to disaster risk reduction, changing attitudes and behaviour contribute to promoting a “culture of prevention” (CDERA, 2007, modified).

Recovery – restoration, and improvement where appropriate, of facilities, livelihoods and living conditions of disaster-affected communities, including efforts to reduce disaster risk factors (UNISDR, 2009).

Response – the provision of emergency services and public assistance during or immediately after a disaster in order to save lives, reduce health impacts, ensure public safety and meet the basic subsistence needs of the people affected (UNISDR, 2009).

Resilience – the ability of a system and its component parts to anticipate, absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient manner, including through ensuring the preservation, restoration, or improvement of its essential basic structures and functions (IPCC, 2012).

Risk – the probability of harmful consequences, or expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or environment damaged) resulting from interactions between natural or human-induced hazards and vulnerable conditions. Conventionally, risk is expressed by the notation Risk = Hazards x Vulnerability. Some disciplines also include the concept of exposure to refer particularly to the physical aspects of vulnerability. Beyond expressing a possibility of physical harm, it is crucial to recognize that risks are inherent or can be created or exist within social systems. It is important to consider the social contexts in which risks occur and that people therefore do not necessarily share the same perceptions of risk and their underlying causes (CDERA, 2007).

Risk assessment – a methodology to determine the nature and extent of risk by analysing potential hazards and evaluating existing conditions of vulnerability that together could potentially harm exposed people, property, services, livelihoods and the environment on which they depend (UNISDR, 2009).

Risk management – the systematic approach and practice of managing uncertainty to minimize potential harm and loss (UNISDR, 2009).

Sea level change – changes in sea level, globally or locally, due to (i) changes in the shape of the ocean basins; (ii) changes in the total mass and distribution of water and land ice; (iii) changes in water density; and (iv) changes in ocean circulation (IPCC, 2012).
Social-ecological system – reflects the perspective that social systems and ecological systems are inevitably linked and integrated, and that any delineation between the two systems is artificial and arbitrary (Berkes and Folke, 1998).

Transformation – the altering of fundamental attributes of a system, including value systems, regulatory, legislative, or bureaucratic regimes, financial institutions and technological or biological systems (IPCC, 2012).

Uncertainty – an expression of the degree to which a value or relationship is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. Uncertainty may originate from many sources, such as quantifiable errors in the data, ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures, e.g. a range of values calculated by various models, or by qualitative statements, e.g. reflecting the judgment of a team of experts (IPCC, 2012).

Vulnerability – the characteristics and circumstances of a community, system or asset that make it susceptible to the damaging effects of a hazard (UNISDR, 2009).

7.2 PARTICIPANTS IN THE FOUR COUNTRY CONSULTATIONS

Grenada

- Coddinton Jeffrey MBMPA, Fisheries Division
- Dianne John Southern Fishermen Association
- James Ince Spice Isle Fishhouse
- Paul Phillip Environmental Unit
- Roland Baldeo Fisheries Division
- Samantha Wellington Southern Fishermen Association
- Sandra Ferguson Agency for Rural Transformation Ltd.
- Terrence Walters National Disaster Management Agency (NaDMA)
- Terry Charles Grenada Red Cross Society
- Timothy Scott National Telecommunications Regulatory Commission

Guyana

- Arnold DeMendoza IICA
- B Samwaree Sam’s Local Seafood
- Bissessar Chintamanie Guyana School of Agriculture (GSA)
- De Vaughn Lewis Guyana Red Cross
- Denzil Roberts Fisheries Department
- Gary Baird Fisheries Department
- Geeta Devi Singh Environmental Protection Agency
- George Jervis PS, Ministry of Agriculture
- Hon Dr. Leslie Ramsammy Minister of Agriculture
- Kandila Ramotar Office of Climate Change
- Kester Craig Civil Defense Commission
- Lili Ilivea Conservation International
- Lystra Fletcher-Paul FAO
- Monique Williams Environmental Protection Agency
- Nasheta Dewnath Guyana Forestry Commission
- Omadoff Chandan NDIA
Jamaica

Abigail McIntosh, Environmental Solutions Ltd.
Ainsworth Riley, Inter-American Institute for Cooperation on Agriculture (IICA)
Andre Kong, Fisheries Division
Anthony Drysdale, Jamaica Fishermen’s Cooperative Union
Arpita Mandal, UWI Dept. of Geography and Geology
Avery Smikle, Fisheries Division
Barbara Carby, DRR Centre, UWI Mona
Camilo Trench, Discovery Bay Marine Laboratory
Christopher Brown, Half Moon Bay Fishermen’s Cooperative
Clifford Mahlung, Meteorological Services of Jamaica
Clive Williams, Fisheries Division
Dale Rankine, Dept of Physics, UWI Mona
Donna Blake, The Nature Conservancy
Farrah Hansel, Fisheries Division
Gabrielle Watson, NEPA Climate Change Adaptation Project
Georgia Marks-Doman, Ministry of Agriculture and Fisheries
Hyacinth Douglas, Global Environment Facility Small Grants Programme (GEF SGP)
Ian Jones, Fisheries Division
Ingrid Parchment, Caribbean Coastal Area Management Foundation
Jayaka Campbell, Dept of Physics, UWI Mona
Junior McDonald, Fisherman
Karema Aikens Mitchell, Office of Disaster Preparedness and Emergency Management (ODPEM)
Karen McDonald Gayle, Environmental Foundation of Jamaica
Karl Aiken, Dept of Life Sciences, UWI Mona
Malden Miller, OSD/USAID Jamaica
Marc Panton, Ministry of Agriculture and Fisheries
Margaret Jones-Williams, United Nations Development Programme
Maureen Milbourn, NEPA
Michael R A Wilson, Water Resources Authority
Michelle McNaught, CARIBSAVE Partnership
Susan Otuokon, Independent Consultant
Nakhle Hado, Food for the Poor
NaSumma Davis, Ministry of Agriculture and Fisheries
Nicholette Williams, Ministry of Foreign Affairs and Foreign Trade
Orville Grey, The Nature Conservancy
Paul Armstrong, Greenwich Town Fisheries
Paula Sterling, Aquaculturist
Phillip Chung, Rural Agricultural Development Authority
Ricardo Morris, Fisheries Division
Richard Kelly, Planning Institute of Jamaica
Robin Hall, Ornamental fish farmer
Selena Legister-Kellier Food for the Poor
Sydney Francis Ton-Rick Enterprise Ltd
Ta’Chala Beecher Fisheries Division
Vincent Wright Aquaculturist

Belize

Beverly Wade Fisheries Department
Rigoberto Quintana Fisheries Department
Vivian Belisle Fisheries Department
Ramon Carcamo Fisheries Department
Fred Hunter Belize Red Cross
Llewellyn Smith Belize Fishermen Federation
Pedro Alvarez Belize Fishermen Cooperative Association
Vincent Gillett CZMAI
Colin Gillett CZMAI
Amanda Burgos-Acosta Belize Audubon Society
Shane Young Belize Audubon Society
Ramon Pachero Programme for Belize
Janet Gibson Wildlife Conservation Society
Roberto Pott Healthy Reefs
Losita Lee Association of Protected Areas Management Organizations (APAMO)
Nadia Bood World Wildlife Fund
Wendell Parham Ministry of Forestry, Fisheries and Sustainable Development
Keith Nichols CCCCC
Keith Emmanuel National Emergency Management Organization (NEMO)
Celso Cawich Environmental Research Institute – University of Belize

7.3 EXTRACT FROM SUMMARY OF PHYSICAL AND ECOLOGICAL IMPACTS OF CLIMATE CHANGE RELEVANT TO MARINE AND INLAND CAPTURE FISHERIES AND AQUACULTURE

- PHYSICAL IMPACTS ON MARINE AND FRESHWATER SYSTEMS
 - Heat content and temperature
 - Ocean warming shows geographic differences and decadal variability.
 - Warming is not only of surface waters; the Atlantic shows clear signs of deep warming.
 - Freshwater resources are vulnerable; many lakes have experienced warming.
 - Lake water levels (which affect temperature impacts) have been decreasing in many areas, mostly as a result of human use, but precipitation patterns are also important.
 - River run-off may increase at higher latitudes and decrease in southern Latin America.
 - Salinity and stratification
 - In general, salinity is increasing in surface ocean waters of the more evaporative regions, while there is a decreasing trend in high latitudes.
The combined effect of temperature and salinity changes would reduce the density of the surface ocean, increase vertical stratification and change surface mixing, but with some geographical differences.

Ocean circulation and coastal upwelling
- Low-resolution ecosystem simulations indicate that there is no clearly discernible pattern of upwelling response to warming at the global scale, except within a couple of degrees of the equator, where a small reduction is expected.
- There are indications that upwelling seasonality may be affected by climate change, with important food web consequences.
- Responses to global warming of coastal wind systems that drive upwelling ecosystem are contradictory.
- If alongshore wind stress increases coastal upwelling, this would offset in these regions the global trend of increasing water temperatures and increasing vertical stratification, but some models predict decrease in winds favourable to upwelling.
- There is considerable local variability among systems which makes generalizations difficult.

Sea level rise
- Global average sea level has been rising at an average rate of 1.8 mm per year since 1961. The rate has accelerated since 1993 to about 3.1 mm per year. Higher rates in coming decades are likely. Sea level change is not geographically uniform, however, because it is controlled by regional ocean circulation processes.
- The largest losses expected from sea level rise are likely to include the Atlantic and Gulf of Mexico coasts of the Americas, the Mediterranean and small-island regions.
- Intertidal and coastal wetland habitats may be substantially reduced as a result of sea level rise.

Acidification and other chemical properties
- Surface seawater pH has decreased by 0.1 units in the last 200 years. Model estimates predict further reduction of 0.3 to 0.5 pH units over the next 100 years.
- Biological impacts of ocean acidification are uncertain because sensitivities at individual and population level are unknown. However, they are expected to be severe for shell-borne organisms, tropical coral reefs and cold water corals.
- The oxygen concentration of the ventilated 100 to 1 000 m of the world’s ocean has been decreasing since 1970, driven by a reduced rate of renewal of intermediate waters.
- Global warming is likely to decrease nutrient supply to surface waters due to increased stratification.

Atmosphere-ocean and land-oceans exchanges
- Land-use change has significant hydrological impacts with consequences for ecosystem production, including changes in sediment loads, water flows (through damming) and physico-chemical consequences (hypoxia, stratification and salinity changes). The consequences of these processes
cannot be generalized. However, they are known to impact community composition, production and seasonality processes in plankton and fish populations.

- The above will put additional pressure on inland fish and land-based, water intensive, food production systems (e.g. rice), particularly in developing countries.

- **Low frequency climate variability patterns**
 - Some studies indicate an increase in the intensity and frequency of particular atmospheric patterns (e.g. ENSO), but in general climate models predict a rather spatially uniform warming trend throughout the ocean basins combined with the continued presence of decadal variability similar to that of the twentieth century.
 - Atmospheric patterns can have strong tele-connections within individual ocean basins, but between-basin tele-connections and potential climate-driven biological synchrony over several decades, are usually much weaker.

- **OBSERVED EFFECTS OF CLIMATE VARIABILITY AND CHANGE ON ECO-SYSTEM AND FISH PRODUCTION PROCESSES**
 - **Primary production**
 - Satellite observations suggest a 6 percent reduction in global oceanic primary production between the early 1980s and the late 1990s, but with substantial regional differences. Chlorophyll in higher latitudes has increased in the last 20 years, followed by a change in the relative dominance of diatoms over small phytoplankton.
 - Increased vertical stratification and water column stability in oceans and lakes is likely to reduce nutrient availability to the euphotic zone and thus primary and secondary production in a warmed world. However, in high latitudes the residence time of particles in the euphotic zone will increase, extending the growing season and thus may increase primary production. Overall, a small global increase in primary production will be expected, with very large regional differences.
 - The onset of the diatom spring bloom could be delayed and its peak biomass reduced. Changes in the dominant phytoplankton group appear possible.
 - The intensification of hydrological cycles is expected to influence substantially limnological processes. In general, increased run-off, discharge rates, flooding area and dry season water level may boost productivity at all levels (plankton to fish). Changes in the timing of floods may trigger production at the wrong time and flush biological production out of its habitat.

 - **Secondary production**
 - There are no global assessments of the potential impacts of climate change on oceanic secondary production. Results tend to be dominated by local or regional conditions.
 - Regional results suggest that climate change effects may be more evident in the structure of zooplankton communities than in its total biomass.

 - **Distributional changes**
 - Climate change is expected to drive most terrestrial and marine species ranges toward the poles, expanding the range of warmer-water species and contracting that of colder-water species.
- Observations of distributional changes consistent with the above have been recorded for copepods, demersal invertebrates, intertidal organisms and fish species. The most rapid changes in fish communities occur with pelagic species, and include vertical movements to counteract surface warming.
- Timing of many animal migrations follows decadal trends in ocean temperature, being later in cool decades and up to one to two months earlier in warm years.

- **Abundance changes**
 - Populations at the poleward extents of their ranges tend to increase in abundance with warmer temperatures, whereas populations in more equatorward parts of their range tend to decline in abundance as temperatures warm.
 - Increased growth rates in response to increased temperatures are only achieved when food supply is adequate to these increased demands.

- **Life cycle changes**
 - More than half of all terrestrial, freshwater or marine species studied have exhibited measurable changes in their phenologies over the past 20 to 140 years. These were systematically and predominantly in the direction expected from regional changes in the climate.
 - Observations in the North Sea indicate that plankton community structure is changing: dinoflagellates have advanced their seasonal peak in response to warming, while diatoms have shown no consistent pattern of change because their reproduction is triggered principally by increases in light intensity.
 - Observations in many European and North American lakes suggest that the spring phytoplankton bloom has advanced due to warming but that zooplankton has not responded similarly, and their populations are declining because their emergence no longer corresponds with high algal abundance. There is concern that marine and freshwater trophodynamics may have already been radically altered by ocean warming through predator-prey mismatch.

- **Species invasions and diseases**
 - There is little evidence in support of an increase in outbreaks of disease linked to global warming, although a spread of pathogens to higher latitudes has been observed.
 - Harmful algal blooms seem to be more common, but whether this is caused by climate change is unclear. The expected change in the ratio of diatoms to dinoflagellates in a warming ocean may also play a role.
 - Extinction risks due to climate change are possible, but there are no known examples yet. Evolutionary adaptations will occur, although on time scales and with characteristics that may be species-dependent.

- **Food web impacts from zooplankton to fish**
 - Climate change is likely to affect ecosystems and their species both directly and indirectly through food web processes. Whether direct or indirect processes predominate is likely to depend on whether they are structured from the top down, from the bottom up or from the middle. It is suggested that ecosystem control is correlated with species richness and temperature.
Regime shifts and other extreme ecosystem events

- One of the mechanisms through which climate variability and change interact in affecting ecosystem dynamics is through non-linear “regime shifts”. The sensitivity of ecosystems to amplify climatic signals suggests that gradual (or even stochastic) changes in climate can provoke sudden and perhaps unpredictable biological responses as ecosystems shift from one state to another.

- Regime shifts have been observed in the North Atlantic and North Pacific oceans, among others, affecting productivity and species dominance in the pelagic and demersal domains.

SCENARIOS OF CLIMATE CHANGE IMPACTS ON FISH PRODUCTION AND ECOSYSTEMS

General impacts

- Impacts on marine and aquatic systems as a result of large-scale changes related to temperature, winds and acidification can be predicted, in some cases with a high degree of confidence.

- At “rapid” time scales (a few years) there is high confidence that increasing temperatures will have negative impacts on the physiology of fish because of limited oxygen transport to tissues at higher temperatures. This physiological constraint is likely to cause significant limitations for aquaculture. These constraints on physiology will result in changes in distributions of both freshwater and marine species, and likely cause changes in abundance as recruitment processes are impacted. Changes in the timing of life history events are expected with climate change (high confidence). Short life span, rapid turnover species, for example plankton, squid and small pelagic fishes, are those most likely to experience such changes.

- At intermediate time scales (a few years to a decade), temperature-mediated physiological stresses and phenology changes will impact the recruitment success and therefore the abundances of many marine and aquatic populations (high confidence). These impacts are also likely to be most acute at the extremes of species’ ranges and for shorter-lived species. Changes in abundance will alter the composition of marine and aquatic communities, with possible consequences for the structure and productivity of these marine ecosystems. Predicting net community impacts (e.g. total biomass or productivity) has intermediate confidence because of compensatory dynamics within functional groups. Increasing vertical stratification is predicted for many areas, and is expected to reduce vertical mixing and decrease productivity (intermediate confidence). It will drive changes in species composition.

- At long time scales (multidecadal), predicted impacts depend upon changes in net primary production in the oceans and its transfer to higher trophic levels. Models show high variability in their outcomes so any predictions have low confidence. Regional predictions may have improved confidence because of better knowledge of the specific processes involved. Most models show decreasing primary production with changes of phytoplankton composition to smaller forms, although with high regional variability.

- Considerable uncertainties and research gaps remain, in particular the effects of synergistic interactions among stressors, extrapolating beyond historical conditions, reduced ecosystem resilience to climate variability
as a result of changes caused by fishing, the locations and roles of critical thresholds and the abilities of marine and aquatic organisms to adapt and evolve to the changes.

- Regarding freshwater systems, there are specific concerns over changes in timing, intensity and duration of floods, to which many fish species are adapted in terms of migration, spawning and transport of spawning products as a result of climate change. It is important to develop management systems capable of addressing the needs for fresh water by fish and land-based food production systems (e.g. rice) in the context of climate change, particularly in developing countries.

- Aspects of responses in tropical and subtropical seas include:
 - highly diverse habitats and biology; poorly studied;
 - not fully resolved whether tropical Pacific will become more “El Niño-like” (east-west gradient in SST is reduced), or more “La Niña-like” character (increased east-west SST gradient);
 - primary production in the tropical Pacific expected to decline because of increased stratification and decreased nutrient supply;
 - combined effects of changes in circulation, temperature, nutrients, primary production cascade up the food web to influence prey availability and habitat conditions for tuna;
 - tuna habitat conditions east of the date line could improve, similar to El Niño- events;
 - warming and increasing stratification will alter plankton community composition, alter their distributions polewards and change the timing of their bloom dynamics so that transfers to higher trophic levels may be impaired;
 - benthic and demersal fishes will shift their distributions southward and may decline in abundance. Pelagic species will also shift their distributions southwards and some species may benefit from increased local wind-driven upwelling (e.g. anchovies).

- Aspects of responses in coral reef systems include:
 - at risk from climate change impacts related to increasing temperatures, acidity, storm intensity and sea levels and non-climate factors such as overexploitation, non-native species introductions and increasing nutrient and sediment loads;
 - risks to coral reefs not distributed equally: increasing temperatures significant issue for warm-water systems; increasing acidity and decalcification a significant issue for both warm- and cold-water systems; direct human impacts a significant issue in more populous regions;
 - three different time scales can be identified for climate change-related impacts to coral reef systems:
 - years: increased temperature effects on coral bleaching;
 - decades: increasing acidification and dissolution of carbonate structures of reefs;
 - multidecades: weakening of structural integrity of reefs and increasing susceptibility to storms and erosion events.
 - increasing acidity (decreasing pH) is a significant and pervasive longer-term threat to coral reefs. Potential for coral reef systems to adapt to these environmental stresses is uncertain: symbiotic zooxanthellae may adapt to be more tolerant of high temperature. Migrations of corals to higher latitudes is unlikely;
declines in corals had negative impacts on reef fish biodiversity in at least one study, however, to date there is little evidence for a link between climate warming and bleaching events with impacts on coastal fisheries.

Aspects of responses in freshwater systems include:
- freshwater lakes and their ecosystems are highly vulnerable to climate change;
- paleo records show the shapes and distributions of lakes can change and they can disappear entirely with shifting dynamics among precipitation, evaporation and runoff;
- anticipated response is for cold-water species to be negatively affected, warm-water species to be positively affected and cool-water species to be positively affected in the northern, but negatively affected in the southern parts of their range;
- general shift of cool- and warm-water species northward is expected in North America and likely the rest of the Northern Hemisphere;
- responses of particular lake ecosystems to climate change depend on size, depth and trophic status of the lake;
- modelling studies concluded cold-water fish would be most affected because of losses of optimal habitats in shallow, eutrophic lakes;
- growth conditions for cool- and warm-water fishes should improve in well-mixed lakes, small lakes and those with oligotrophic nutrient conditions;
- rates of change of freshwater systems to climate will depend on ability of freshwater species to “move across the landscape”, i.e. use of dispersal corridors;
- most affected are likely to be fish in lowland areas that lack northward dispersal corridors, and cold-water species generally;
- river ecosystems are particularly sensitive to changes in the quantity and timing of water flows, which are likely to change with climate change;
- changes in river flows may be exacerbated by human efforts to retain water in reservoirs and irrigation channels;
- abundance and species diversity of riverine fishes are particularly sensitive to these disturbances, since lower dry season water levels reduce the number of individuals able to spawn successfully and many fish species are adapted to spawn in synchrony with the flood pulse to enable their eggs and larvae to be transported to nursery areas on floodplains.

Aspects of responses in aquaculture systems include:
- direct impacts include changes in the availability of freshwater, changes in temperature, changes in sea level, and increased frequencies of extreme events (such as flooding and storm surges);
- indirect effects include economic impacts, e.g. costs and availability of feed;
- negative impacts include:
 - stress due to increased temperature and oxygen demands;
 - uncertain supplies of freshwater;
 - extreme weather events;
 - sea level rise;
 - increased frequency of diseases and toxic events;
 - uncertain supplies of fishmeal from capture fisheries.
- positive impacts of climate change on aquaculture include increased food conversion efficiencies and growth rates in warmer waters, increased length of the growing season, and range expansions polewards due to decreases in ice;
increased primary production would provide more food for filter-feeding invertebrates;
may be problems with non-native species invasions, declining oxygen concentrations, and possibly increased blooms of harmful algae;
local conditions in traditional rearing areas may become unsuitable for many traditional species;
temperature stress will affect physiological processes such as oxygen demands and food requirements;
increased food supplies are needed for aquaculture activities to realize benefits from increased temperatures;
freshwater aquaculture activities will compete with changes in availability of freshwater due to agricultural, industrial, domestic and riverine requirements, as well as changes in precipitation regimes;
increases in precipitation could also cause problems such as flooding;
sea level rise also has the potential to flood coastal land areas, mangrove and sea grass regions which may supply seed stock for aquaculture species.

Source:
Disaster risk management and climate change adaptation in the CARICOM and wider Caribbean region
Formulating a strategy, action plan and programme for fisheries and aquaculture

Regional Workshop Report
10–12 December 2012
Kingston, Jamaica

Fisheries and aquaculture are important to the lives and livelihoods of people in the Caribbean region for quality animal protein, essential fatty acids, vitamins and minerals, food security and income (personal and national). People involved in the sector are, however, vulnerable to climate change and disasters including hurricanes, floods, earthquakes and disease outbreaks. The regional workshop on the Formulation of a strategy, action plan and programme proposal on disaster risk management and climate change adaptation in fisheries and aquaculture in the CARICOM and Wider Caribbean Region was held in Kingston, Jamaica, from 10 to 12 December 2012. The workshop brought together 65 local, national and regional stakeholders involved in fisheries, aquaculture, disaster risk management (DRM) and climate change adaptation (CCA), including the Caribbean Regional Fisheries Mechanism (CRFM), the Western Central Atlantic Fishery Commission (WECAFC), the Caribbean Disaster Emergency Management Agency (CDEMA) and the Caribbean Community Climate Change Centre (CCCCC). Workshop discussions largely focused on reviewing and refining three documents prepared for the workshop: an assessment study on the impact of climate change and disasters on the fisheries and aquaculture sector in the CARICOM region; a strategy and action plan for integrating DRM and CCA into fisheries and aquaculture (as well as the reverse); and a results-based programme proposal. These proceedings include the report of the regional workshop and an assessment study on the impact of climate change and disasters on the fisheries and aquaculture sector in the CARICOM region. The strategy, action plan and programme proposals are published as separate documents. The workshop recommended that the strategy, action plan and programme proposal be finalized and implemented to strengthen regional and national cooperation and develop capacity in addressing climate change impacts and disasters in fisheries and aquaculture.