GUIDANCE NOTE

Information and analysis in protracted crises

Informing strategies to strengthen resilience
The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.

FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to copyright@fao.org.

FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications-sales@fao.org.

© FAO, 2016
Contents

Acknowledgments iii
Key messages iv
From identifying humanitarian needs to building sustainable information systems 1
Improving information systems in protracted crises 3
Informing decisions, beyond the humanitarian-development divide 9
The way forward 21
References and resources for further information 23

ACKNOWLEDGMENTS

This guidance note has been developed thanks to contributions from FAO staff across the Organization, under the leadership of the main authors:

Lavinia Antonaci
Technical Officer, FAO (lavinia.antonaci@fao.org); and

Oriane Turot
Agriculture and Food Security Assessment Specialist, FAO (oriane.turot@fao.org).

This document has been produced with the financial assistance of the European Union. The views expressed herein can in no way be taken to reflect the official opinion of the European Union.

This guidance note is part of a series on improving food security and nutrition in protracted crises. Drawing on FAO technical experience, the guidance notes series supports implementation of the Framework for Action for Food Security and Nutrition in Protracted Crises (CFS-FFA), endorsed by the Committee on World Food Security (CFS) in October 2015.
Timely, reliable and demand-driven information is essential to dealing with protracted crises.

In such contexts, information gaps and information fragmentation are the two major challenges, especially as food security is a multidimensional phenomenon.

Food Security Information Systems led by Governments can overcome these challenges, ensuring integrated and coordinated efforts to provide policy-driven data, even in protracted crisis situations.

The capacity of national governments to manage such information systems must be developed.

Sustainable and coordinated information is required for greater preparedness via early warning systems, strengthening resilience and monitoring impacts.

Mobile technologies provide particularly interesting new opportunities in crisis contexts, alongside face-to-face surveys.

Standardisation of indicators and analysis processes is essential to building a common understanding of the needs and inform coordinated action.

The way ahead, including the use of FAO-backed initiatives, is complex and must be multi-sectoral, involving the innovative use of joint strategies for resilience strengthening.
From identifying humanitarian needs to building sustainable information systems

The many challenges of information and analysis in protracted crises

Protracted crisis contexts are complex situations characterized by “recurrent natural disasters and/or conflict, longevity of food crisis, breakdown of livelihoods and insufficient institutional capacity to react to the crisis” (SOFI, 2010) – and often involve a combination of these.

Such crises require strategic, well targeted and sustained interventions, the programming of which requires reliable information. However, in contexts where information is most cruelly needed, there is also the greatest lack.

Information is needed not only to formulate interventions and decisions, but also to monitor the impact of interventions, improve programmes and provide accountability to affected populations, especially as crises protract.

Good information systems provide timely, reliable and demand-driven information, have the capacity to analyse the information, and communicate it as needed to inform decision making processes.

Protracted crisis contexts present specific challenges for the creation, maintenance and integration of such information systems: lack of access to data due to conflict, natural disasters or lack of infrastructures; logistical challenges in large areas with low population density; volatile situations making it difficult to gather timely and updated data; and lack of financial resources due to high costs and donor fatigue as crises protract.

Protracted crises also frequently affect fragile States which lack the capacity or do not see managing and coordinating information systems as a priority. National information systems might be of poor quality and not meet the needs of civil society and international actors.
In such cases international actors often collect their own information on a local scale, in order to inform their programming and source funding, and frequently focus on short-term needs. This lack of coordination of data collection and analytical activities results in redundancies and waste of resources, but also different understandings of the causes and needs, and in turn sends out mixed messages that confuse decision-makers. Information gaps and information fragmentation are two shortcomings of information systems in such contexts.

If we want to develop durable solutions to protracted crises, we need sustainable, integrated and coordinated information systems – under the leadership of national Governments wherever possible, with necessary investments in capacity-building.

If we want to support a move from response to preparedness, and from relief to strengthening resilience, we need adequate information to guide these processes, and we need to bridge the information-decision divide. Evidence from FAO experience shows this is possible in protracted crisis situations.

Information and analysis in the CFS Framework for Action for Food Security and Nutrition in Protracted Crises (CFS-FFA)

In line with FAO Strategic Objective 5 (SO5) which aims to increase the resilience of livelihoods to threats and crises, FAO and its partners have experience in particular in the areas of Food Security Information Systems (FSIS), Integrated Food Security Phase Classification (IPC), Early Warning-Early Action (EWEA), and Resilience Index Measurement Analysis (RIMA), which will be developed in this guidance note.

Its aim is to illustrate – including through case studies – how FAO work in information and analysis activities can contribute to the CFS Framework for Action for Food Security and Nutrition in Protracted Crises, in particular to the following principles:

<table>
<thead>
<tr>
<th>Information and analysis in the CFS-FFA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a core objective of CFS-FFA principles</td>
<td>Principle 6: Ensure and support comprehensive evidence-bases analyses</td>
</tr>
<tr>
<td>Also contributes to CFS-FFA principles</td>
<td>Principle 1: Meet immediate humanitarian needs and build resilient livelihoods</td>
</tr>
<tr>
<td></td>
<td>Principle 7: Strengthen country ownership, participation, coordination and stakeholder buy-in, and accountability</td>
</tr>
</tbody>
</table>

KEY FACTS

Between 2003 and 2013, FAO estimated that 22 percent of damages and losses caused by natural hazards and disasters in developing countries affected agriculture, with USD 30 billion out of the total USD 140 billion in damage and losses suffered by the agricultural sector. This increased to 25 percent for climate-related disasters.
Improving information systems in protracted crises

Better information systems do not necessarily mean more information. It is far more important to build on existing systems, make better use of resources and efforts invested in data collection activities, be strategic about the indicators needed, and invest in capacities to collect and analyse information.

The multidimensional nature of food security means that interventions in this field require information from a diversity of sectors, including agricultural production with its different subsectors, households’ livelihoods and assets, markets and trade, employment, natural resources, nutrition and health, infrastructure and others, collected at different levels and at different scales.

These needs cannot be addressed by a single assessment: they require an integrated and coordinated information system in place, from data collection and analysis to the dissemination of results for decision-makers.

Assessing the existing capacities of food and nutrition information systems

The first step in this process involves assessing the capacities of existing food and nutrition information systems. Such an assessment was conducted in 2013 in South Sudan by WFP and FAO. The results highlighted that most information systems were being managed by the numerous international actors for their own purposes, and therefore highly delinked from the Government. This resulted in a lack of government ownership, and the failure of data collected to inform national policies and interventions. Methodologies for data collection and analysis were not necessarily standardized, resulting in duplication of information and efforts, with several actors collecting, analysing and producing information on market prices.

Based on these findings, the agencies came together under the FSIN framework to operationalize a coordinated strategy on information systems and related capacity development activities. The two main objectives are (i) to standardize data collection methodologies, and (ii) to align data collection timing to feed into existing analytical processes in each country.
INFO BOX 1. Assessing the capacity of existing information systems

Under the FSIN joint initiative, WFP and FAO have developed a joint methodology for assessing and mapping the capacity of information systems. This methodology was piloted in South Sudan in 2013, and then used in Sudan, Yemen, and three States heavily affected by the Syrian crisis: Iraq, Lebanon, and Jordan. These in-depth assessments form the basis for detailed and coordinated Capacity Development Action Plans.

INFO BOX 2. Global efforts under the umbrella of the Food Security Information Network (FSIN)

The FSIN is a global initiative co-sponsored by FAO, WFP and IFPRI to strengthen food and nutrition security information systems so that they produce reliable and accurate data to guide analysis and decision-making. FSIN serves as a technical platform for sharing expertise, knowledge and best practices, developing harmonized methods and tools, and facilitating capacity development around food and nutrition security measurement and analysis.

Developing the capacity of national governments to manage information systems

Developing the capacity of national governments to manage information systems ensures the ownership and adequacy of information for national policy making, and the sustainability of the response.

For example, from 2006 to 2012, FAO implemented the SIFSIA Programme (Sudan Institutional Capacity Programme: Food Security Information for Action) – a partnership between the European Commission and the Government of Sudan – divided into two sub-programmes, with the Government of National Unity in Khartoum, and the new Government of Southern Sudan in Juba, based on the Comprehensive Peace Agreement. The programme built the foundations for an integrated and coordinated food and nutrition security information system and for policy action.

Through SIFSIA and the Food Security Policy and Strategy Capacity Building Programme, FAO has devoted significant efforts to strengthening government capacity at national and sub-national level in food security information systems. The capacity development support set out to strengthen the various elements of the FSIS, including the market information system, crop production monitoring, livestock production monitoring, and nutrition monitoring, and integrated food security analysis using IPC.
FAO in action - BOX 1. The Food Security Information System (FSIS) in Yemen

In 2013, FAO in collaboration with the government launched a similar initiative in Yemen, known as FSIS. In a conflict-ridden country prone to shocks and disasters, the Government’s capacity to plan and implement food security strategies was inadequate. The EU-funded programme was designed to build institutional capacity for food security decision-making, supported by a reliable and sustainable information system.

The government established the Higher Council for Food Security under the Prime Minister Office and the Food Security Technical Secretariat (FSTS) under the auspices of the Ministry of Planning and International Cooperation (MoPIC). The project, rolled out in six governorates, led to the creation of governorate-level Focal Units (GFU) and coordination structures, working with the FSTS to improve data and information collection, compilation, and analysis activities.

The project encountered a series of challenges due to the protracted crisis and the escalation of the conflict since September 2014:

- The political instability and armed conflict created a difficult operating environment.
- The absence of unified national/central government contributed to weak institutional set-up at national and Governorate levels and the presence of two parallel structures – de facto authorities and an internationally recognised legitimate government.
- The movements of national and international staff providing technical support to Governorate Focal Units were restricted.
- Partial suspension of activities including the policy dialogue fora for nine months, lifted in May 2016.
- The Ministry of Finance was unable to meet the planned financial contribution.

The project chalked up some remarkable achievements despite these challenges. Different alternative institutional arrangements were made to facilitate the establishment of the FSIS. Creating the GFUs as local units in implementing FSIS activities at governorate level was essential in maintaining the activities during the conflict. It had a multiple impact in fostering responsibility on the part of government staff, creating a sense of ownership of programme activities and results, building capacities, and increasing the chances of Government funding during or after the programme.

The regular collection of food security and market price data and the production of bulletins and reports by the (FSTS) with support from the FAO Programme Support Unit (PSU) was a major success for the programme. Data for decision making were also provided to UN agencies, non-governmental organizations and civil society organizations for their project designs and planning processes.

This project shows that governments in protracted crisis contexts can play a leadership role in improving their institutional environment and capacities for better food security decisions. The FSIS programme was a response to an urgent need in the area of food security. The programme is now even more relevant and important than at the outset due to the increasing needs for timely and reliable evidence for decision-making at various levels.

All this demonstrates that support for national governments in establishing food and nutrition security institutions, combined with investments in developing the capacity of these institutions, can help build sustainable integrated food and nutrition security information systems, from data collection and analysis to decision-making processes. Integration is not an end in itself but a means to serve decision-making.
It should therefore be action-oriented and policy-driven, otherwise it could be counter-productive.

Using mobile technologies for food and nutrition security data collection

Cost, timeliness and access are three major challenges to data collection – especially in protracted crisis contexts where the situation is highly volatile and requires close monitoring, which is resource-heavy in both human and financial terms. Above all, in some conflict situations as well as in some natural disasters, it is often impossible to access certain areas, or to conduct significant assessments.

Geospatial technology, with satellite remote sensing, geographic information systems and global positioning systems, is a precious resource for FAO to monitor and forecast crop and pasture conditions, or to assess the geographical extent of a natural disaster such as floods, droughts or landslides. These are indirect indicators of the food security situation, in the sense that they identify the factors contributing to food security, but do not provide direct information on the impact of such factors on the populations affected.

Recent developments in the use of mobile technologies for food security data collection offer promising perspectives, as with the pioneering mVAM (mobile Vulnerability Analysis and Mapping), developed by WFP since 2012. The mVAM system collects food security data remotely via mobile phones using short surveys and interviews, SMS interaction, and an Interactive Voice Response system. It has provided precious information in contexts such as Yemen, Central African Republic, Iraq or Ebola-affected countries where little other information was available.
However, these technologies cannot replace face-to-face surveys: mobile surveys are short and have therefore been limited so far to collecting information on a few key WFP indicators, mainly food consumption scores and coping strategies index. Its applications are limited to mobile phone owners, which can bias the results depending on the context.

Despite the limitations of such an approach – for example its inability to capture the causes of food insecurity – mobile data collection offers promising perspectives, irreplaceable in areas of difficult or impossible access such as conflict areas, and very valuable for frequent monitoring of a few key indicators. It is therefore ideally used in combination with face-to-face surveys, contributing to a “mixed-mode data collection system” that builds on the respective strengths of various modalities.

FAO in action - BOX 2. FAO Agriculture Stress Index System (ASIS)

ASIS is a system for detecting agricultural areas with a high likelihood of water stress – drought at global, regional and country level, using satellite-based remote sensing data.

By monitoring vegetation indices across global crop areas during the growth season – ASIS can detect “hotspots” around the globe where crops may be affected by drought. The Global Information and Early Warning System (GIEWS) Earth Observation website (www.fao.org/giews/earthobservation), of which ASIS is a key component, is updated every 10 days with products at the global level and for 196 countries. A standalone ASIS is being developed to support regional and national early warning systems, adapting analysis parameters to each region or country’s specific agricultural conditions will allow for more accurate results. The final index could be used as a trigger for activating drought mitigation activities in countries, or for the implementation of index-based crop insurance.

FAO received a ‘Geospatial World Excellence Award 2016’ for ASIS.
Agriculture is the sector most affected by drought, absorbing about 84 percent of the economic impact. According to FAO estimates, drought affected 150 million people in 27 countries in sub-Saharan Africa between 2003 and 2013, causing USD 23.5 billion in damages and losses.
Informing decisions, beyond the humanitarian-development divide

Assessing resilience over time and monitoring the impact of interventions and policies

In protracted crisis situations and particularly in environments exposed to recurrent shocks, some households cope and recover from shocks and stressors better than others – they are more resilient. The term ‘resilience’ refers to the adaptive and transformative process to resist, adapt and recover from shocks and crises in a timely and efficient manner. Understanding which households are more resilient, and what makes them more resilient, is key to informing both humanitarian and long-term development efforts.

Since 2008, FAO has been at the forefront of efforts to measure resilience to food insecurity and the effectiveness of resilience strengthening interventions. RIMA-II, the renovated tool based on the previous RIMA-I and released in 2016, estimates household resilience to food insecurity with a comprehensive pack which includes both descriptive and causal measures.

The descriptive measure gives information on household resilience capacity. It is a valuable policy analysis tool to inform funding and policymakers, enabling them to target and rank households from most to least resilient. The model spells out the relevance of each pillar – and the relevance of each variable by pillar – in explaining household resilience through the Resilience Capacity Index (RCI) and the Resilience Structure Matrix (RSM). The four pillars of resilience that constitute the RIMA-II model are:

- **Adaptive capacity (AC):** the ability of a household to adapt to a new situation and develop new livelihood strategies.
- **Social safety nets (SSN):** the ability of households to access help from relatives and friends, and assistance from Government and agencies.
- **Assets (AST):** both productive and non-productive. The key elements of a livelihood, such as land, livestock and durables.
- **Access to basic services (ABS):** the ability of a household to meet basic needs, and access and effectively use basic services, such as schools, health facilities, infrastructures and markets.
The causal measure describes the key determinants of resilience and food security, including shocks, perception and other indicators. It can be adopted as a tool for interventions that strengthen resilience to food insecurity. Through the causal measure, RIMA-II provides clear policy indications.

RIMA-II enables the comparison of RCI and RSM between different groups with a given area, or between different areas in the country. The analysis conducted in the Triangle of Hope (Mauritania) in 2015 shows significant differences in the resilience structure between the four regions covered, with the social safety nets pillar making a major contribution to the resilience of the people in Tagant, while it has almost zero impact on the people in Guidimagha (see figure 1). On the other hand, the analysis measured a higher resilience capacity of urban households versus rural households (see figure 2). The infographic on the next page explains some of the causal measures for these differences, and related recommendations for interventions and policies.

Figure 1: RSM - Correlation pillars - RCI over regions

![Figure 1: RSM - Correlation pillars - RCI over regions](source: Authors’ own calculation.)

Figure 2: RCI over urban status in the Triangle of Hope (2015)

![Figure 2: RCI over urban status in the Triangle of Hope (2015)](source: Authors’ own calculation.)
FAO applies a mixed-method approach (quantitative and qualitative) in order to deepen the understanding of resilience dynamics and contexts and how external interventions contribute to strengthening resilience, by capturing the perspectives of the populations.
The use of resilience analysis should be institutionalized within National and Regional Policy Frameworks as an impact evaluation tool. FAO is working closely with Intergovernmental Authority on Development (IGAD) to mainstream RIMA in resilience programmes to develop baselines, mid-term, and final evaluations to measure the contribution of investments to the resilience of households. In Sudan for instance, FAO is collaborating closely with the IGAD Resilience Analysis Unit (RAU) on the Drought Resilience and Sustainable Livelihood Programme funded by the African Development Bank and implemented by the Ministry of Livestock and IGAD.

FAO in action - BOX 3. Developing national capacities in resilience analysis for policy decisions with the INFORMED programme

FAO is working with Regional Governmental Institutions such as Permanent Interstates Committee for Drought Control in the Sahel (CILSS) and IGAD, and national authorities such as national statistics offices and line ministries, to increase the rigour of policy development and related monitoring systems. This is the purpose of the Information for Nutrition Food Security and Resilience for Decision-Making (INFORMED) Programme, a partnership between FAO and the European Commission-DEVCO launched in 2015 and collaborating with twenty countries to develop national capacities and institutional ownership in conducting and using resilience analysis for policy decisions.

“Anticipate, do not wait for, crises”

This is one of the recommendations of the SG’s report to the WHS under Core Responsibility 4 “Change people’s lives – from delivering aid to ending need“.

The evidence shows that the frequency and intensity of climate-driven natural hazards and conflicts will continue to increase – testing the capacity of both humanitarian and development actors and donors to deliver help where it is most needed. With increasing needs and resources becoming more scarce globally, the ability to forecast the impact of disasters and to mitigate their impact is becoming critical. Understanding and monitoring risks and forecasting based on sound analysis can make a great difference in the timeliness and effectiveness of interventions. This is especially true in protracted crises where destitution, displacements and food insecurity are usually fueled by a complex set of rapidly evolving causes.

Recent food crises such as the 2011 Somalia famine however, have revealed the weakness of responses to early warnings. However, slow-onset disasters with high levels of accurate predictability and relatively long lead times provide an excellent opportunity to take early action to strengthen the resilience of at-risk populations, thus preventing the situation from escalating into an emergency.

FAO already uses a raft of internal early warning systems such as GLEWS and EMPRES (see FAO in action - Box 1) and actively participates in the Integrated Food Security Phase Classification (IPC).
FAO in action - BOX 4. FAO Early Warning Systems

GIEWS - the Global Information and Early Warning System monitors food supply and demand in all countries of the world on a continuous basis, and compiles and analyses information on global production, stocks, trade, export prices and food aid. It also provides early warnings of impending food crises in individual countries, and for countries facing a serious food emergency, FAO/GIEWS and WFP also carry out joint Crop and Food Security Assessment Missions (CFSAMs).

EMPRES – the Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases provides information, training and emergency assistance to countries to prevent, contain and control the world’s most serious livestock diseases, while also surveying for newly emerging pathogens. EMPRES aims to prevent and control diseases at their source, through Early Warning, Early Detection, Early Reaction, Enabling Research, Coordination, and Communication. In particular, the Locust and Other Migratory Pests Group monitors Desert Locust activity in 30 countries, combining field reports on locust numbers and movements from affected countries with satellite and historic data to forecast locust activity and warn countries. During emergencies, the group expands to become the Emergency Centre for Locust Operations (ECLO), which coordinates locust control campaigns by informing the international community of the locust situation, launching appeals for international assistance and procuring and organizing delivery of pesticides, equipment and technical assistance.

Ethiopia. Since 1994, the FAO EMPRES system has monitored and forecast desert locust activity in 30 countries to prevent outbreaks. ©FAO/G. Tortoli.
FAO launched the Early Warning-Early Action (EWEA) project in 2015 to create a system which translates early warnings into anticipatory actions. Early actions – if well designed and implemented in a timely way – can significantly lessen the impact of disasters on livelihoods, protect assets and investments, thus strengthening resilience to threats and crises. They can also significantly reduce humanitarian response times and costs. As such, the EWEA helps bridge the humanitarian and development approaches to crises.

The EWEA system consolidates available FAO and external expertise on agriculture, food security and climate into a focused forecasting system. When the forecasts indicate a high likelihood of a disaster, this triggers early action plans and activates a funding mechanism to ensure FAO ability to act early.

At global level, from 2016 FAO publishes a quarterly EWEA report, highlighting the main impending risks to agriculture and food security, their likelihood and impact, and providing recommendations for early actions to be taken. At country level, FAO sets up EWEA systems, consisting of a monitoring framework and producing alerts once a risk has reached pre-defined thresholds, thus triggering the activation of pre-approved, country-specific Early Action Plans. FAO works closely with government counterparts in jointly identifying the risks to be monitored and strengthening their capacity as needed.

The innovative character of the programme lies in the integration of the early warning system with the financial capacity to act. While resource mobilization is often a challenge for early action, especially in a system which all too often encourages a reactive approach to aid, the EWEA allows FAO to rely on the funds from a newly created internal Early Action Fund for the implementation of the plans.
A recent example of the positive impact of converting early warnings into quick and targeted early actions is FAO Somalia Early Warning and Preparedness initiative. The flood mitigation activities such as river breakage repairs carried out along the Shabelle river in late 2015 enabled FAO to significantly protect livelihoods and lessen the impact of floods on productive land. Satellite imagery comparisons with previous flooding events allowed FAO to estimate that 9,100 ha of farmland was saved from flooding despite higher rainfall – which translates to approximately USD 6.5 million saved in maize production. The significant effect of this on local food security and livelihoods are also confirmed by the latest assessment findings.

The same language for the same message: standards and technical consensus in food security analysis

The Integrated Food Security Phase Classification (IPC) provides a set of standardized tools and procedures as a common language for the analysis and classification of the severity and magnitude of food insecurity and malnutrition. It is also a multi-stakeholder process for sharing information and building technical consensus, bringing together food security analysts from different fields of expertise, and different institutions and organizations, working together within an IPC technical working group usually chaired by and embedded within government structures.

Developed by FAO in 2004 to guide responses to the food security crisis in Somalia, it has become a global initiative involving eleven partners from the UN (FAO, WFP and the Global Food Security Cluster), NGOs (ACF, CARE, Oxfam and Save), technical agencies (FEWSNET and EC-JRC) and regional institutions (CILSS and SICA-PRESANCA).

Originally developed to analyze acute food insecurity, new tools have recently been devised for chronic food insecurity and acute malnutrition analysis. Comparing different analyses provides useful information for decision-making by highlighting the different dimensions and drivers of food insecurity and malnutrition, as per the illustrations in the box below.
INFO BOX 3. IPC Analysis of acute food insecurity

The IPC analysis of acute food insecurity provides a snapshot of the food insecurity situation, classifying the severity according to a scale from phase 1 “Minimal” to phase 5 “Famine”, and indicating the magnitude of population affected. Because the acute food insecurity situation can change rapidly, the analysis can be conducted seasonally as a monitoring tool, and ad hoc in case of crisis. The classification communicated on a map enables prioritization and geographical targeting within the country, and comparability between different countries and over time, as in the maps below, showing the evolution of the food security situation in South Sudan between April 2015 and April 2016.

IPC analysis and classification of chronic food insecurity

The IPC chronic food insecurity analysis completes the acute analysis by capturing persistent food insecurity due to structural causes. The severity of chronic food insecurity is classified according to from Level 1 “Minimal” to Level 4 “Severe”. Acute and chronic food insecurity can and usually do co-exist in some form. Comparing acute and chronic food insecurity situations helps identify the linkages and inform interventions.

IPC analysis and classification of acute malnutrition

As per the UNICEF conceptual framework, malnutrition is not an exclusive outcome of food insecurity, but can be caused by other factors such as health and care issues. The IPC acute food security classification only integrates nutrition to the extent to which it contributes to or results from food insecurity. But situations can occur where malnutrition is high while food insecurity is low, since malnutrition is caused by factors external to food security, or the contrary, where food insecurity is high but malnutrition is low, either because food insecurity has not yet resulted in malnutrition outcomes, or because of mitigating factors such as health services or household coping strategies. In order to conduct a full analysis and classification of the nutrition situation, capturing both the food and non-food drivers of malnutrition, a specific tool is being piloted to classify the severity of malnutrition. It identifies the causes of malnutrition in order to guide adequate interventions.
Map 1: IPC classification of food insecurity in South Sudan as of April 2015

Note: State and County boundaries on this map do not imply acceptance or recognition by the Government of South Sudan. They are shown on the map for humanitarian work purposes only.

Source: OCHA.

Map 2: IPC classification of food insecurity in South Sudan as of April 2016

Note: State and County boundaries on this map do not imply acceptance or recognition by the Government of South Sudan. They are shown on the map for humanitarian work purposes only.

Source: NBS.
The IPC has particular value in protracted crisis contexts. It provides decision makers with a single consolidated product, indicating the severity of the situation and areas with populations in need, avoiding the confusion caused by mixed messages. It is also a valuable process for food security analysts in contexts of data scarcity, by making the best use of all information from different sources. It is a forum for dialogue and confrontation of analyses between different institutions and fields of expertise, finally resulting in a joint analysis and technical consensus of the situation. This is a fundamental step for the later analysis of response and elaboration of coordinated and coherent interventions.

“Leave no one behind”

Leave no one behind is the Core Responsibility 3 outlined by the Secretary General in his report for the World Humanitarian Summit (WHS) *One humanity, shared responsibility*. In order to develop inclusive policies addressing the specific needs of vulnerable and marginalized groups, and support appropriate social protection programmes, we need information to guide precise targeting. Efforts to disaggregate data by gender and age groups are supported by the Humanitarian Clusters and being mainstreamed among humanitarian actors, but representative quantitative information on minority groups such as ethnic, cast, livelihood or age groups, requires statistical surveys to build baselines.

Baselines should be available in countries at risk of disaster, so that if and when disaster strikes, it is possible to assess the impact, immediate needs and investments required for recovery – which is the object of multi-sectoral needs assessments such as PDNA-RPBA (see box below).

INFO BOX 4. Multi-sectoral assessments for recovery of disasters and conflicts: PDNA and RPBA

In the aftermath of a disaster, the priority is to assess the immediate impact and most urgent needs, in order to save lives and preserve livelihoods. The ground for recovery should however be prepared from the outset to ensure the sustainability of the response. The **PDNA, Post Disaster Needs Assessment**, is a multi-sectoral approach to identifying recovery needs, developed in 2008 by the World Bank, the European Union and the UN system and agencies, and is a process triggered, led and owned by national governments. It usually covers the social, finance, macro-economy, human development, infrastructure, productive and cross-cutting sectors. FAO contributes to the analysis of the productive sector, which includes agriculture and its sub-sectors, crop, livestock, fishery, aquaculture and forestry. The methodology compares baseline with post-disaster information, calculating the damages and losses caused by a disaster. This multi-sectoral process results in a consolidated assessment report and recovery strategy, which provides the basis for resource mobilization in support of a country’s recovery. Such assessments were conducted in Nepal, Vanuatu, Cape Verde and Myanmar in 2015 for example.

The **RPBA, Recovery and Peace Building Assessment** (former PCNA, Post-Conflict Needs Assessment) is the counterpart of the PDNA in conflict situations. RPBAs are generally used as an entry point for conceptualizing, negotiating and financing a common shared strategy for recovery and development in fragile, post-conflict settings. Such assessments have recently been conducted in Ukraine, Northern Mali, North-East Nigeria, and are ongoing in Central African Republic. In 2015, the RPBA process went through an in-depth review designed to enable earlier, more flexible and more effective joint assessments and responses. The revised methodology will be released in 2016.
Such statistical surveys are challenging in protracted crisis situations, both in terms of sheer data collection, and because the volatility of the situation and population displacements discourage large surveys. However, waiting for the situation to stabilize or get back to “normal” is not an option in protracted crisis situations. Furthermore, having such a baseline and comprehensive analysis available enables the identification of critical data and strategic choices as to which indicators to monitor in a specific context.

Wherever possible, energy should be invested in baselines and comprehensive analyses, in order to monitor the evolution of the situation and impact of interventions.

INFO BOX 5. The Impact of disasters on agriculture and food security, 2015

Using several sources of information, in particular 78 Post-Disaster Needs Assessment (PDNAs) conducted between 2003 and 2013, in 2015 FAO published a study of the impact of natural hazards and disasters on the agriculture sector. This study evidenced the particularly high burden carried by the agriculture sector:

- Between 2003 and 2013, FAO estimated that 22 percent of damages and losses caused by natural hazards and disasters in developing countries affected agriculture, with USD 30 billion out of the total USD 140 billion in damage and losses suffered by the agricultural sector. This increased to 25 percent for climate-related disasters.
- In 2014, 87 percent of natural disasters were climate-related, and 70 percent of natural disasters are now consequences of climate change – a doubling in 10 years.
- Agriculture is the sector most affected by drought, absorbing about 84 percent of the economic impact. Drought affected 150 million people in 27 countries in sub-Saharan Africa between 2003 and 2013, causing USD 23.5 billion in damages and losses.
- Trade flows were affected by an increase in the value of agricultural imports by USD 18.9 billion and a decrease in the value of agricultural exports by USD 14.9 billion after major hazards in the countries analysed between 2003 and 2013.

Pakistan - Thul. Fields in Sindh Province completely inundated by flood waters that affected almost 20 million people and destroyed 2 million acres of standing crops across the country in 2010. ©FAO/Truls Brekke.

KEY FACTS
In Somalia, the RIMA analysis conducted in 2015 showed that the combined effect of FAO, WFP and UNICEF interventions under the Joint Strategy for enhancing resilience in Somalia led to an increase of resilience capacity by 23 percent compared to the 2013 baseline.
The way forward

Complex crises calling for comprehensive analyses

Until the industrial era, food security was mainly a factor of food availability, and crop performances could trigger famines and bring down governments. Since the Second World War, the dynamics have become even more complex, and the trend looks likely to accelerate. Emerging trends reveal increasing challenges for food security, such as climate change and variability, demographic pressure, conflicts and displacements, urbanisation and changes in lifestyles, consequent evolutions of livelihoods, and new interactions between people.

Complex situations require an understanding beyond the traditional field of food and nutrition security, plus an assessment of the risks and contributions of political and sociological dynamics and conflicts to the food and nutrition security analysis. The importance of the connections between food security, nutrition, peace and development is being increasingly recognized. Since 2016, FAO has been providing the UN Security Council with regular analysis on food security status in countries in conflict, especially on the countries that are at the permanent agenda of the top UN body such as Syria, South Sudan and Central African Republic, among others.

Initiatives such as IPC show that stakeholders can come together to a joint analysis and technical consensus of the severity of a food crisis, while PDNA and RPBA processes show that different sectors can come together to assess the impact and recovery needs following a disaster or conflict. Agencies need to leave behind the “silo” attitude and come to a joint analysis of risks and severity and understanding of causes, not only between stakeholders in the food and nutrition security field, but between sectors.
INFO BOX 6. Open data and crowdsourcing

An increasing flow of data is being produced by public and private actors as well as by crowdsourcing. Complex and multi-sectoral analyses will need to connect data from these different sources. Initiatives such as GODAN for example, Global Open Data for Agriculture and Nutrition, in which FAO, WFP and many other stakeholders are participating, call for greater sharing of open data sets. FAO has long provided access to a wealth of agricultural statistics through its FAOStat online database. The effort needs to be scaled up, and in doing so, a common database could be a solution to bring together data from different sources and make it accessible. This requires the harmonization of methodologies, in line with the efforts being conducted under the umbrella of the FSIN. It can also take the form of a platform to which partners upload information on a specific set of indicators via mobile technologies, providing greater and more regular coverage than any single agency could achieve, and building on the field presence of many local actors. Such an approach was piloted for example for the collection of water data (wells and water points) in the Horn of Africa under the FSNWG, highlighting that such an initiative can be successful when it benefits all partners.

Joint analysis for joint strategies

In 2012, FAO, WFP and UNICEF developed a Joint Strategy for enhancing resilience in Somalia, bringing the expertise of the three agencies into a multi-year and comprehensive approach relying on three building blocks: strengthening the productive sectors, improving basic social services, and establishing predictable safety nets.

It is no coincidence that such strategy was developed in Somalia, where the IPC began and where RIMA was also piloted. Food security classification and technical consensus as provided by the IPC, and resilience analysis and monitoring as provided by RIMA, are two essential tools to inform food security decisions. They also bring together different stakeholders and sectors, setting the foundations for coordinated interventions: IPC by providing a common picture of the situation integrating different dimensions and drivers of food security, RIMA by providing a common framework to understand the determinants of resilience and monitor the impact of interventions.

Related initiatives are being launched in early 2016. Joint strategies for information systems are being set up, as in South Sudan with the operational strategy to build the capacities of the food and nutrition security information system, bringing together FAO, FEWSNET, UNICEF and WFP, in collaboration with the Government. The Joint Resilience Strategy for the Karamoja region in Uganda also brings together FAO, WFP and UNICEF.

In Somalia, the RIMA analysis conducted in 2015 showed that the combined effect of the three agencies’ interventions led to an increase of resilience capacity by 23 percent compared to the 2013 baseline. This increase was obtained through a positive and significant impact on agricultural production, income deriving from livestock (+74 percent), transfers (which almost doubled), an increase in the number of income sources (+36 percent) and minor positive effects on access to infrastructures.

Such approaches are still recent and not necessarily easy – joint processes require additional initial investments - but have proven their long-term value and return on time and resources, with a view to sustainably improving food security and nutrition.
References and resources for further information

Internet resources

http://faostat3.fao.org
www.fao.org/gIEWS
www.fsincop.net
www.ipcinfo.org
www.vam.wfp.org/sites/mvam_monitoring
This publication has received funding from the European Union through the “Improved Global Governance for Hunger Reduction Programme”

For more information, visit FAO portal on resilience

www.fao.org/resilience