
A Statistical Manual For Forestry Research

May 1999

FORESTRY RESEARCH SUPPORT PROGRAMME

FOR ASIA AND THE PACIFIC

A Statistical Manual For Forestry Research

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
REGIONAL OFFICE FOR ASIA AND THE PACIFIC

BANGKOK



i

FORESTRY RESEARCH SUPPORT PROGRAMME

FOR ASIA AND THE PACIFIC

A STATISTICAL MANUAL FOR FORESTRY RESEARCH

By

K. JAYARAMAN
Kerala Forest Research Institute
Peechi,  Thrissur,  Kerala, India

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
REGIONAL OFFICE FOR ASIA AND THE PACIFIC

BANGKOK



ii

ACKNOWLEDGEMENTS

The author is deeply indebted to the FORSPA for having supported the preparation of
this manual. The author is also indebted to the Kerala Forest Research Institute for
having granted permission to undertake this work and offering the necessary
infrastructure facilities. Many examples used for illustration of the different statistical
techniques described in the manual were based on data generated by Scientists at the
Kerala Forest Research Institute. The author extends his gratitude to all his colleagues
at the Institute for having gracefully co-operated in this regard. The author also wishes
to thank deeply Smt. C. Sunanda and Mr. A.G. Varghese, Research Fellows of the
Division of Statistics, Kerala Forest Research Institute, for patiently going through the
manuscript and offering many helpful suggestions to improve the same in all respects.

This manual is dedicated to those who are determined to seek TRUTH,
cutting  down  the  veil  of  chance  by  the  sword  of  pure  reason.

  March, 1999                                                                K. Jayaraman



1

INTRODUCTION

This manual was written on a specific request from FORSPA, Bangkok to prepare a
customised training manual supposed to be useful to researchers engaged in forestry
research in Bhutan. To that effect, a visit was made to Bhutan to review the nature of
the research investigations being undertaken there and an outline for the manual was
prepared in close discussion with the researchers. Although the content of the manual
was originally requested to be organised in line with the series of research
investigations planned under the Eighth Five Year Plan for Bhutan, the format was so
designed that the manual is useful to a wider set of researchers engaged in similar
investigations. The manual is intended to be a source of reference for researchers
engaged in research on renewable natural resources especially forests, agricultural
lands and livestock, in designing research investigations, collecting and analysing
relevant data and also in interpreting the results. The examples used for illustration of
various techniques are mainly from the field of forestry.

After some introductory remarks on the nature of scientific method and the role of
statistics in scientific research, the manual deals with specific statistical techniques
starting from basic statistical estimation and testing procedures, methods of designing
and analysing experiments and also some standard sampling techniques. Further,
statistical methods involved in certain specific fields like tree breeding, wildlife
biology, forest mensuration and ecology many of which are unique to forestry research,
are described.

The description of the methods is not exhaustive because there is always a possibility of
utilizing the data further depending on the needs of the investigators and also because
refinements in methodology are happening continuously. The intention of the manual
has been more on introducing the researchers to some of the basic concepts and
techniques in statistics which have found wide application in research in forestry and
allied fields.

There was also a specification that the manual is to be written in as simple a manner as
possible with illustrations so that it serves as a convenient  and reference manual for the
actual researchers. For these reasons, description of only simple modes of design and
analysis are given with appropriate illustrations. More complicated techniques available
are referred to standard text books dealing with the topics. However, every effort has
been made to include in the manual as much of material required for a basic course in
applied statistics indicating several areas of application and directions for further
reading. Inclusion of additional topics would have made it just unwieldy.

Any body with an elementary knowledge in basic mathematics should be able to follow
successfully the description provided in the manual. To the extent possible, calculus
and matrix theory are avoided and where unavoidable, necessary explanation is offered.
For a beginner, the suggested sequence for reading is the one followed for the different
chapters in the manual. More experienced researchers can just skim through the initial
sections and start working on the applications discussed in the later sections.
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NOTATION

Throughout this book, names of variables are referred in italics. The symbol ∑ is used
to represent ‘the sum of’. For example, the expression G y ...1 2 n= + + +y y  can be

written as G =
=
∑ yi
i

n

1
 or simply G y= ∑  when the range of summation is understood

from the context.

In the case of summation involving multiple subscripts, the marginal sums are denoted
by placing a dot (.) over that subscript, like,

y = yij i.
j

∑ ,  y = yij .j
i

∑ , y = yij ..
ij
∑

When two letters are written side by side such as ab, in equations, it generally indicates
product of a and b unless otherwise specified or understood from the context.
Multiplication with numerals are indicated by brackets e.g., (4)(5) would mean 4
multiplied 5. Division is indicated either by slash (/) or a horizontal mid-line between
the numerator and the denominator.

Equations, tables and figures are numbered with reference to the chapter numbers. For
instance, Equation (3.1) refers to equation 1 in chapter 3.

Certain additional notations such as those pertaining to factorial notation,
combinatorics,  matrices  and related definitions are furnished in Appendix 7.
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1. STATISTICAL METHOD IN SCIENTIFIC RESEARCH

Like in any other branch of science, forestry research is also based  on scientific
method which is popularly known as the inductive-deductive approach. Scientific
method entails formulation of hypotheses from observed facts followed by deductions
and verification repeated in a cyclical process. Facts are observations which are taken
to be true. Hypothesis is a tentative conjecture regarding the phenomenon under
consideration. Deductions are made out of the hypotheses through logical arguments
which in turn are verified through objective methods. The process of verification may
lead to further hypotheses, deductions and verification in a long chain in the course of
which scientific theories, principles and laws emerge.

As a case of illustration, one may observe that trees in the borders of a plantation are
growing better than trees inside. A tentative hypothesis that could be formed from this
fact is that the better growth of trees in the periphery is due to increased availability of
light from the open sides. One may then deduce that by varying the spacing between
trees and thereby controlling the availability of light, the trees can be made to grow
differently. This would lead to a spacing experiment wherein trees are planted at
different espacements and the growth is observed. One may then observe that trees
under the same espacement vary in their growth and a second hypothesis formed would
be that the variation in soil fertility is the causative factor for the same. Accordingly, a
spacing cum fertilizer trial may follow. Further observation that trees under the same
espacement, receiving the same fertilizer dose differ in their growth may prompt the
researcher to conduct a spacing cum fertilizer cum varietal trial. At the end of a series
of experiments, one may realize that the law of limiting factors operate in such cases
which states that crop growth is constrained by the most limiting factor in the
environment.

The two main features of scientific method are its repeatability and objectivity.
Although this is rigorously achieved in the case of many physical processes, biological
phenomena are characterised by variation and uncertainty. Experiments when repeated
under similar conditions need not yield identical results, being subjected to fluctuations
of random nature. Also, observations on the complete set of individuals in the
population are out of question many times and inference may have to be made quite
often from a sample set of observations. The science of statistics is helpful in
objectively selecting a sample, in making valid generalisations out of the sample set of
observations and also in quantifying the degree of uncertainty in the conclusions made.

Two major practical aspects of scientific investigations are collection of data and
interpretation of the collected data. The data may be generated through a sample survey
on a naturally existing population or a designed experiment on a hypothetical
population. The collected data are condensed and useful information extracted through
techniques of statistical inference. This apart, a method of considerable importance to
forestry which has gained wider acceptance in recent times with the advent of
computers is simulation. This is particularly useful in forestry because simulation
techniques can replace large scale field experiments which are extremely costly and
time consuming. Mathematical models are developed which capture most of the
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relevant features of the system under consideration after which experiments are
conducted in computer rather than with real life systems. A few additional features of
these three approaches viz., survey, experiment and simulation are discussed here
before describing the details of the techniques involved in later chapters.

In a broad sense, all in situ studies involving non-interfering observations on nature can
be classed as surveys. These may be undertaken for a variety of reasons like estimation
of population parameters, comparison of different populations, study of the distribution
pattern of organisms or for finding out the interrelations among several variables.
Observed relationships from such studies are not many times causative but will have
predictive value. Studies in sciences like economics, ecology and wildlife biology
generally belong to this category. Statistical theory of surveys relies on random
sampling which assigns known probability of selection for each sampling unit in the
population.

Experiments serve to test hypotheses under controlled conditions. Experiments in
forestry are held in forests, nurseries and laboratories with pre-identified treatments on
well defined experimental units. The basic principles of experimentation are
randomization, replication and local control which are the prerequisites for obtaining a
valid estimate of error and for reducing its magnitude. Random allocation of the
experimental units to the different treatments ensures objectivity, replication of the
observations increases the reliability of the conclusions and the principle of local
control reduces the effect of extraneous factors on the treatment comparison.
Silvicultural trials in plantations and nurseries and laboratory trials are typical examples
of experiments in forestry.

Experimenting on the state of a system with a model over time is termed simulation. A
system can be formally defined as a set of elements also called components. A set of
trees in a forest stand, producers and consumers in an economic system are examples of
components. The elements (components) have certain characteristics or attributes and
these attributes have numerical or logical values. Among the elements, relationships
exist and the consequently, the elements are interacting. The state of a system is
determined by the numerical or logical values of the attributes of the system elements.
The interrelations among the elements of a system are expressible through
mathematical equations and thus the state of the system under alternative conditions is
predictable through mathematical models. Simulation amounts to tracing the time path
of a system under alternative conditions.

While surveys and experiments and simulations are essential elements of any scientific
research programme, they need to be embedded in some larger and more strategic
framework if the programme as a whole is to be both efficient and effective.
Increasingly, it has come to be recognized that systems analysis provides such a
framework, designed to help decision makers to choose a desirable course of action or
to predict the outcome of one or more courses of action that seems desirable. A more
formal definition of systems analysis is the orderly and logical organisation of data and
information into models followed by rigorous testing and exploration of these models
necessary for their validation and improvement (Jeffers ,1978).
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Research related to forests extends from molecular level to the whole of biosphere. The
nature of the material dealt with largely determines the methods employed for making
investigations. Many levels of organization in the natural hierarchy such as micro-
organisms or trees are amenable to experimentation but only passive observations and
modelling are possible at certain other levels. Regardless of the objects dealt with, the
logical framework of the scientific approach and the statistical inference can be seen to
remain the same. This manual essentially deals with various statistical methods used for
objectively collecting the data and making valid inferences out of the same.

2. BASIC STATISTICS
 
2.1.  Concept of probability

The concept of probability is central to the science of statistics. As a subjective notion,
probability can be interpreted as degree of belief in a continuous range between
impossibility and certainty, about the occurrence of an event. Roughly speaking, the
value p, given by a person for the probability P(E) of an event E, means the price that
person is willing to pay for winning a fixed amount of money conditional on the event
being materialized. If the price the person is willing to pay is x units for winning y units
of money, then the probability assigned is indicated by P(E)= x / (x + y). More
objective measures of probability are based on equally likely outcomes and that based
on relative frequency which are described below. A rigorous axiomatic definition of
probability is also available in statistical theory which is not dealt with here.

Classical definition of probability : Suppose an event E can happen in x ways out of a
total of n possible equally likely ways. Then the probability of occurrence of the event
(called its success) is denoted by

p
x
n

= =P(E)                                                                                    (2.1)

The probability of non-occurrence of the event (called its failure) is denoted by

q = P(not E) = 
n x

n
x
n

−
= −    1                                                              (2.2)

   = 1 1− = −p  P(E)                                                                          (2.3)

Thus  p + q = 1,  or  P(E) + P(not E) = 1. The event  ‘not E’ is sometimes denoted by
E, E or ~ E

~
.

As an example, let the colour of flowers in a particular plant species be governed by the
presence of a dominant gene A in a single gene locus, the gametic combinations AA
and Aa giving rise to red flowers and the combination aa giving white flowers. Let E be
the event of getting red flowers in the progeny obtained through selfing of a
heterozygote, Aa. Let us assume that the four gametic combinations AA, Aa, aA and aa
are equally likely. Since the event E can occur in three of these ways, we have,
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p = P(E) = 
3
4

 

The probability of getting white flowers in the progeny through selfing of the
heterozygote Aa is

q = P(E) = − =   1
3
4

1
4

Note that the probability of an event is a number between 0 and 1. If the event cannot
occur, its probability is 0. If it must occur, i.e., its occurrence is certain, its probability
is 1. If p is the probability that an event will occur, the odds in favour of  its happening
are p:q  (read ‘p to q’); the odds against its happening are q:p.  Thus the odds in favour
of red flowers in the above example are

p q    : : := =
3
4

1
4

31 ,  i.e. 3 to 1.

Frequency interpretation of probability : The above definition of probability has a
disadvantage in that the words ‘equally likely’ are vague. Since these words seem to be
synonymous with ‘equally probable’, the definition is circular because, we are
essentially defining probability in terms of itself. For this reason, a statistical definition
of probability has been advocated by some people. According to this, the estimated
probability, or empirical probability, of an event is taken as the relative frequency of
occurrence of the event when the number of observations is large. The probability itself
is the limit of the relative frequency as the number of observations increases
indefinitely. Symbolically, probability of event E is,

            P(E)  = lim   fn (E) (2.4)
                        n → ∞
where fn (E)   = (number of times E occurred)/(total number of observations)

For example, in a search for a particular endangered species, the following numbers of
plants of that species were encountered in a survey in sequence.

x  (number of plants of endangered species) :         1,             6,           62,          610
n  (number of plants examined)                     :   1000,     10000,   100000,  1000000
p  (proportion of endangered species)            :  0.001,  0.00060,  0.00062,   0.00061

As n tends to infinity, the relative frequency seems to approach a certain limit. We call
this empirical property as the stability of the relative frequency.

Conditional probability, independent and dependent events : If E1 and E2 are two
events, the probability that E2 occurs given that E1 has occurred is denoted by  P(E2/E1)
or P(E2 given E1) and is called the conditional probability of E2 given that E1 has
occurred. If the occurrence or non-occurrence of E1 does not affect the probability of
occurrence of E2  then  P(E2/E1) = P(E2) and we say that E1 and E2 are independent
events; otherwise they are dependent events.
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If we denote by E1E2 the event that ‘both E1 and E2 occur’, sometimes called a
compound event, then

P(E1E2) = P(E1)P(E2/E1)                                                                     (2.5)

In particular, P(E1E2) = P(E1)P(E2) for independent events.        (2.6)

For example, consider the joint segregation of two characters viz., flower colour and
shape of seed in a plant species, the characters being individually governed by the
presence of dominant genes A and B respectively. Individually, the combinations AA
and Aa give rise to red flowers and the combination aa give white flowers, the
combinations BB and Bb give round seeds and the combination bb produce wrinkled
seeds.

Let E1 and E2 be the events of ‘getting plants with red flowers’ and ‘getting plants with
round seeds’ in the progeny obtained through selfing of a heterozygote AaBb
respectively.  If  E1 and E2 are independent events, i.e., there is no interaction between
the two gene loci, the probability of getting plants with red flowers and round seeds in
the selfed progeny is,

P(E1E2)=P(E1)P(E2)=
3
4

3
4

9
16











 =    

In general, if E1, E2, E3, …, En  are n independent events having respective probabilities
p1, p2, p3, …, pn, then the probability of occurrence of E1 and E2 and E3 and … En is
p1p2p3…pn.

2.2. Frequency distribution

Since the frequency interpretation of probability is highly useful in practice, preparation
of frequency distribution is an often-used technique in statistical works when
summarising large masses of raw data, which leads to information on the pattern of
occurrence of predefined classes of events. The raw data consist of measurements of
some attribute on a collection of individuals. The measurement would have been made
in one of the following scales viz., nominal, ordinal, interval or ratio scale. Nominal
scale refers to measurement at its weakest level when number or other symbols are used
simply to classify an object, person or characteristic, e.g., state of health (healthy,
diseased). Ordinal scale is one wherein given a group of equivalence classes, the
relation greater than holds for all pairs of classes so that a complete rank ordering of
classes is possible, e.g., socio-economic status. When a scale has all the characteristics
of an ordinal scale, and when in addition, the distances between any two numbers on
the scale are of known size, interval scale is achieved,. e.g., temperature scales like
centigrade or Fahrenheit. An interval scale with a true zero point as its origin forms a
ratio scale. In a ratio scale, the ratio of any two scale points is independent of the unit of
measurement, e.g., height of trees. Reference may be made to Siegel (1956) for a
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detailed discussion on the different scales of measurement, their properties and
admissible operations in each scale.

Regardless of the scale of measurement, a way to summarise data is to distribute it into
classes or categories and to determine the number of individuals belonging to each
class, called the class frequency. A tabular arrangement of data by classes together with
the corresponding class frequencies is called a frequency distribution or frequency
table. Table 2.1 is a frequency distribution of diameter at breast-height (dbh) recorded
to the nearest cm, of 80 teak trees in a sample plot. The relative frequency of a class is
the frequency of the class divided by the total frequency of all classes and is generally
expressed as a percentage. For example, the relative frequency of the class  17-19 in
Table 2.1 is (30/80)100 = 37.4%. The sum of all the relative frequencies of all classes is
clearly 100 %.

      Table 2.1. Frequency distribution of dbh of teak trees in a plot

Dbh class
 (cm)

Frequency
(Number of trees)

Relative frequency
(%)

11-13 11 13.8
14-16 20 25.0
17-19 30 37.4
20-22 15 18.8
23-25  4  5.0
Total 80 100.0

A symbol defining a class interval such as 11-13 in the above table is called a class
interval.  The end numbers 11 and 13, are called class limits; the smaller number 11 is
the lower class limit and the larger number 13 is the upper class limit. The terms class
and class interval are often used interchangeably, although the class interval is actually
a symbol for the class. A class interval which, at least theoretically, has either no upper
class limit or no lower class limit indicated is called an open class interval. For
example, the class interval ‘23 cm and over’ is an open class interval.

If dbh values are recorded to the nearest cm, the class interval 11-13, theoretically
includes all measurements from 10.5 to 13.5 cm. These numbers are called class
boundaries or true class limits; the smaller number 10.5 is the lower class boundary and
the large number 13.5 is the upper class boundary. In practice, the class boundaries are
obtained by adding the upper limit of one class interval to the lower limit of the next
higher class interval and dividing by 2.

Sometimes, class boundaries are used to symbolise classes. For example, the various
classes in the first column of Table 2.1 could be indicated by 10.5-13.5, 13.5-16.5, etc.
To avoid ambiguity in using such notation, class boundaries should not coincide with
actual observations. Thus, if an observation were 13.5 it would not be possible to
decide whether it belonged to the class interval 10.5-13.5 or 13.5-16.5. The size or
width of a class interval is the difference between the lower and upper boundaries and
is also referred as the class width. The class mark is the midpoint of the class interval
and is obtained by adding the lower and upper class limits and dividing by two.
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Frequency distributions are often graphically represented by a histogram or frequency
polygon. A histogram consists of a set of rectangles having bases on a horizontal axis
(the x axis) with centres at the class marks and lengths equal to the class interval sizes
and   areas proportional to class frequencies. If the class intervals all have equal size,
the heights of the rectangles are proportional to the class frequencies and it is then
customary to take the heights numerically equal to the class frequencies. If class
intervals do not have equal size, these heights must be adjusted. A frequency polygon is
a line graph of class frequency plotted against class mark. It can be obtained by
connecting midpoints of the tops of the rectangles in the histogram.

        Figure 2.1. Histogram showing the frequency distribution of dbh

                          Figure 2.2. Frequency polygon  showing the frequency
distribution of dbh
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2.3. Properties of frequency distribution

Having prepared a frequency distribution, a number of measures can be generated out
of it, which leads to further condensation of the data. These are measures of location,
dispersion, skewness and kurtosis.

2.3.1. Measures of location

A frequency distribution can be located by its average value which is typical or
representative of the set of data. Since such typical values tend to lie centrally within a
set of data arranged according to magnitude, averages are also called measures of
central tendency. Several types of averages can be defined, the most common being the
arithmetic mean or briefly the mean, the median and the mode. Each has advantages
and disadvantages depending on the data and the intended purpose.

Arithmetic mean : The arithmetic mean or the mean of a set of N numbers x1, x2, x3, …,
xN  is denoted by x  (read as ‘x bar’) and is defined as

Mean =
+ + + +x x x x

N
N1 2 3   

  
...

                                                                  

(2.7)

                       = ==
∑ ∑x

N
x

N

j
j

N

1

The symbol x j
j

N

=
∑

1

 denote the sum of all the xj’s from  j = 1 to  j = N .

For example, the arithmetic mean of the numbers 8, 3, 5, 12, 10 is

                      
8 3 5 12 10

5
38
5

7 6
+ + + +

= =     .

If the numbers x1, x2, …, xK occur  f1, f2, …, fK times respectively  (i.e., occur with
frequencies f1,  f2, …, fK, the arithmetic mean is

            
Mean =

+ + +
+ + +

     

   

f x f x f x
f f f

K K

K

1 1 2 2

1 2

...
...                                                               (2.8)

                              = ==

=

∑

∑
∑
∑

f x

f

fx

f

j j
j

K

j
j

K
1

1

where N f  = ∑  is the total frequency.  i.e., the total number of cases.
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The computation of mean from grouped data of Table 2.1  is illustrated below.

Step 1. Find the midpoints of the classes. For this purpose add the lower and upper
limits of the first class and divide by 2. For the subsequent classes go on adding
the class interval.

Step 2. Multiply the midpoints of the classes by the corresponding frequencies, and add
them up to get fx∑ .

The results in the above steps can  be summarised as given in Table 2.2.

        Table 2.2.  Computation of mean from grouped data

Dbh class
(cm)

Midpoint
x f fx

11-13 12 11 132
14-16 15 20 300
17-19 18 30 540
20-22 21 15 315
23-25 24 4   96
Total f =∑ 80 fx =∑ 1383

Step 3. Substitute the values in the formula

Mean =   
fx

f
∑
∑   

                       =  
1383
80

17 29= .  cm

Median : The median of a set of numbers arranged in order of magnitude (i.e., in an
array) is the middle value or the arithmetic mean of the two middle values.

For example, the set of numbers 3, 4, 4, 5, 6, 8, 8, 8, 10 has median 6. The set of

numbers 5, 5, 7, 9, 11, 12, 15, 18 has median 
1
2

9 11( )+ = 10.

For grouped data the median, obtained by interpolation, is given by

Median = 
( )

L

N
f

fm
1

12
+

−
























∑
 c                                        (2.9)

where L1 = lower class boundary of the median class (i.e., the class containing the
median)

       N   = number of items in the data (i.e., total frequency)
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      ( )f∑ 1
= sum of frequencies of all classes lower than the median class

        fm    = frequency of median class
        c   = size of median class interval.

Geometrically, the median is the value of x (abscissa) corresponding to that vertical line
which divides a histogram into two parts having equal areas.

The computation of median from grouped data of Table 2.1 is illustrated below.

Step 1. Find the midpoints of the classes. For this purpose add the lower and upper
limits of the first class and divide by 2. For the subsequent classes go on adding
the class interval.

Step 2. Write down the cumulative frequency and present the results as in Table 2.3.

              Table 2.3.  Computation of median from grouped data

Dbh class
(cm)

Midpoint
x

frequency
f

Cumulative
frequency

11-13 12 11 11
14-16 15 20 31
17-19 18 30 61
20-22 21 15 76
23-25 24  4 80
Total f =∑ 80

Step 3. Find the median class by locating the (N / 2)th item in the cumulative frequency
column. In this example, N / 2 = 40. It falls in the class 17-19. Hence it is the
median class.

Step 4. Use the formula (2.9) for calculating the median.

Median = 165

80
2

31

30
3. +

−
























                        = 17.4

Mode : The mode of a set of numbers is that value which occurs with the greatest
frequency, i.e., it is the most common value. The mode may not exist, and even if it
does exist, it may not be unique.

The set of numbers 2, 2, 5, 7, 9, 9, 9, 10, 10, 11, 12, 18 has mode 9. The set 3, 5, 8, 10,
12, 15, 16 has no mode. The set 2, 3, 4, 4, 4, 5, 5, 7, 7, 7, 9 has two modes 4 and 7 and
is called bimodal. A distribution having only one mode is called unimodal.
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In the case of grouped data where a frequency curve have been constructed to fit the
data, the mode will be the value (or values) of x corresponding to the maximum point
(or points) on the curve.

From a frequency distribution or histogram, the mode can be obtained from the
formula,

            Mode = L
f

f f
c1

2

1 2

+
+









                                                                          (2.10)

where  L1 = Lower class boundary of modal class (i.e., the class containing the mode).
            f1 = Frequency of  the class previous to the modal class.
            f2 = Frequency of  the  class just after the modal class.
            c = Size of modal class interval.
The computation of mode from grouped data of Table 2.1.  is illustrated below.

Step 1. Find out the modal class. The modal class is the class against the maximum
frequency. In our example, the maximum frequency is 30 and hence the modal
class is 17-19.

Step 2.  Use the formula (2.10) for computing mode

            Mode = 16 5
15

15 20
3. +

+






                      = 17.79
The general guidelines on the use of measures of location are that mean is mostly to be
used in the case of symmetric distributions (explained in Section 2.3.3) as it is greatly
affected by extreme values in the data, median has the distinct advantage of being
computable even with open classes and mode is useful with multimodal distributions as
it works out to be the most frequent observation in a data set.

2.3.2. Measures of dispersion

The degree to which numerical data tend to spread about an average value is called the
variation or dispersion of the data. Various measures of dispersion or variation are
available, like the range, mean deviation or semi-interquartile range but the most
common is the standard deviation.

Standard deviation: The standard deviation of a set of N  numbers x1, x2, …, xN is
defined by

( )
Standard deviation =

−
=

∑ x x

N

j
j

N 2

1                                                          (2.11)

where x represents the arithmetic mean.

Thus standard deviation is the square root of the mean of the squares of the deviations
of individual values from their mean or, as it is sometimes called, the root mean square
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deviation. For computation of standard deviation, the following simpler form is used
many times.

Standard deviation = −










∑ ∑x
N

x
N

2 2

                                         (2.12)

For example, the set of data given below represents diameters at breast-height of 10
randomly selected teak trees in a plot.

            23.5, 11.3, 17.5, 16.7, 9.6, 10.6, 24.5, 21.0, 18.1, 20.7

Here N = 10, x2∑  = 3266.5 and  x∑  = 173.5. Hence,

Standard deviation = −






3266 5
10

173 5
10

2. .
 = 5.062

If x1, x2, …, xK occur with frequencies f1, f2, …, fK  respectively, the standard deviation
can be computed as

( )
Standard deviation =

−
=

∑ f x x

N

j j
j

K 2

1                                                 (2.13)

where N f fj
j

K

= = ∑∑
=1

Equation (2.13) can be written in the equivalent form which is useful in computations,
as

Standard deviation = −










∑ ∑fx
N

fx
N

2 2

                                           (2.14)

The variance of a set of data is defined as the square of the standard deviation. The
ratio of standard deviation to mean expressed in percentage is called coefficient of
variation.

For illustration, we can use the data given in Table 2.1.

Step 1. Find the midpoints of the classes. For this purpose, add the lower and upper
limits of the first class and divide by 2. For the subsequent classes, go on adding
the class interval.

Step 2. Multiply the midpoints of the classes by the corresponding frequencies, and add
them up to get fx∑ .

Step 3. Multiply the square of the midpoints of the classes by the corresponding
frequencies and add them up to get fx2∑ .
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The above results can be summarised as in Table 2.4.

       Table 2.4.  Computation  of standard deviation from grouped data

Dbh class  (cm) Midpoint
x

Frequency
f fx fx2

11-13 12 11 132 1584
14-16 15 20 300 4500
17-19 18 30 540 9720
20-22 21 15 315 6615
23-25 24  4   96 2304
Total 80 1383 24723

Step 4. Use the formula (2.14) for calculating the standard deviation and find out
variance and coefficient of variation

              Standard deviation = −






24723
80

1383
80

2

= 3.19

              Variance = (Standard deviation )2 = (3.19)2

                                                                 = 10.18

              Coefficient of variation = 
Standard deviation

Mean
(100)

                                                  = 
319

17 29
.
.

(100)  = 18.45

Both standard deviation and mean carry units of measurement where as coefficient of
variation has no such units and hence is useful for comparing the extent of variation in
characters which differ in their units of measurement. This is a useful property  in
comparison of variation in two sets of numbers which differ by their means. For
instance, suppose that the variation in height of seedlings and that of older trees of a
species are to be compared. Let the respective means and standard deviations be,

Mean height of seedlings = 50 cm,    Standard deviation of height of seedlings = 10 cm.
Mean height of trees = 500 cm,  Standard deviation of height of seedlings = 100 cm.

By the absolute value of the standard deviation, one may tend to judge that variation is
more in the case of trees but the relative variation as indicated by the coefficient of
variation (20 %) is the same in both the sets.

2.3.3. Measures of skewness

Skewness is the degree of asymmetry, or departure from symmetry, of a distribution.  If
the frequency curve (smoothed frequency polygon) of a distribution has a longer ‘tail’
to the right of the central maximum than to the left, the distribution is said to be skewed
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to the right or to have positive skewness. If the reverse is true, it is said to be skewed to
the left or to have negative skewness. An important measure of skewness expressed in
dimensionless form is given by

Moment coefficient of skewness = β
µ

µ1
3
2

2
3=                                      (2.15)

where µ2  and µ 3 are the second and third central  moments defined using the formula,

( ) ( )
µr

j

r

j

N

rx x

N
x x
N

=
−

=
−=

∑ ∑1                                                           (2.16)

For grouped data, the above moments are given by

( ) ( )
µ r

j j

r

j

K

rf x x

N
f x x

N
=

−
=

−=
∑ ∑1

                                                 (2.17)

For a symmetrical distribution, β1  = 0. Skewness is positive or negative depending
upon whether µ 3 is positive or negative.

The data given in Table 2.1 are used for illustrating the steps for computing the
measure of skewness.

Step 1. Calculate the mean.

         Mean = 
fx
f

∑
∑

 = 17.29

Step 2.  Compute fj (xj - x )2,  fj (xj  - x )3 and their sum as summarised in Table 2.5.

Table 2.5.  Steps for computing  coefficient of skewness from grouped data

Dbh class
(cm)

Midpoint
x f   xj - x fj(xj - x )2 fj(xj - x )3 fj(xj - x )4

11-13 12 11 -5.29 307.83 -1628.39 8614.21
14-16 15 20 -2.29 104.88 -240.18 550.01
17-19 18 30 0.71 15.12 10.74 7.62
20-22 21 15 3.71 206.46 765.97 2841.76
23-25 24  4 6.71 180.10 1208.45 8108.68
Total 80 3.55 814.39 116.58 20122.28

Step 3. Compute µ2  and µ 3using the formula (2.17).



A Statistical Manual For Forestry Research

17

            

( )
µ2

2

814 39
80

=
−∑ f x x

N

    =   
.

                   = 10.18

( )
µ3

3

116 58
80

=
−∑ f x x

N

    =   
.

                   = 1.46

 Step 4. Compute the measure of skewness using the formula (2.15).

             Moment coefficient of skewness = 
( )

( )β1

2

3

146
1018

=
.
.

                                                                          = 0.002.
Since, β1= .002, the distribution  is very slightly skewed or skewness is negligible. It is
positively skewed since µ 3  is positive.

2.3.4. Kurtosis

Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal
distribution. A distribution having a relatively high peak is called leptokurtic, while the
curve which is flat-topped is called platykurtic. A bell shaped curve which is not very
peaked or very flat-topped is called mesokurtic.

One measure of kurtosis, expressed in dimensionless form, is given by

Moment coefficient of kurtosis = β
µ
µ2 =  4

2
2 (2.18)

where µ4 and µ2 can be obtained from the formula (2.16) for ungrouped data and by
using the formula (2.17) for grouped data. The distribution is called normal if β2 = 3.
When β2 is more than 3, the distribution is said to be leptokurtic. If  β2  is less than 3,
the distribution is said to be platykurtic        

For example, the data in Table 2.1 is utilised for computing the moment coefficient of
kurtosis.

Step 1. Compute the mean .

Mean = 
fx

f
∑
∑

 = 17.29

Step 2.  Compute fj (xj - x )2,  fj (xj  - x )4 and their sum as summarised in Table 2.5.
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Step 3. Compute µ2  and µ4 using the formula (2.17).

( )
µ2

2

814 39
80

=
−∑ f x x

N

    =   
.

                 = 10.18

 

( )
µ4

4

80

=
−∑ f x x

N

    =  
20122.28

 

                  = 251.53

Step 4. Compute the measure of kurtosis using the formula (2.18).

Moment coefficient of kurtosis = ( ) 2β =
25153
1018 2

.
.

                                                                    = 2.43.

The value of β2  is 2.38 which is less than 3. Hence the distribution is platykurtic.

2.4. Discrete theoretical distributions

If a variable X can assume a discrete set of values x1, x2,…, xK with respective
probabilities p1, p2, …, pK where p p p1 2 1+ + + =... K , we say that a discrete probability
distribution for X  has been  defined.  The  function  p(x) which has  the respective
values p1, p2, …, pK  for x = x1, x2, …, xK, is called the probability function or frequency
function of X. Because X can assume certain values with given probabilities, it is often
called a discrete random variable.

For example, let a pair of fair dice be tossed and let X denote the sum of the points
obtained. Then the probability distribution is given by the following table.

X 2 3 4 5 6 7 8 9 10 11 12
p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

The probability of getting sum 5 is  
4

36
1
4

= .  Thus in 900 tosses of the dice, we would

expect 100 tosses to give the sum 5.
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Note that this is analogous to a relative frequency distribution with probabilities
replacing relative frequencies. Thus we can think of probability distributions as
theoretical or ideal limiting forms of relative frequency distributions when the number
of observations is made very large. For this reason, we can think of probability
distributions as being distributions for populations, whereas relative frequency
distributions are distributions of samples drawn from this population.

When the values of x can be ordered as in the case where they are real numbers, we can
define the cumulative distribution function,

F x p z
z x

( ) ( )=
<
∑  for all x                         (2.19)

F(x) is the probability that X will take on some value less than or equal to x.

Two important discrete distributions which are encountered frequently in research
investigations in forestry are mentioned here for purposes of future reference.

2.4.1. Binomial distribution

A binomial distribution arises from a set of n independent trials with outcome of a
single trial being dichotomous such as ‘success’ or ‘failure’. A binomial distribution
applies if the probability of getting x successes out of n trials is given by the function,

( )p x
n

x
p p x nx n x

( ) , , , ...,=










 − =

−
1 0 1 2                    (2.20)

where n is a positive integer and 0<p<1. The constants n and p are the parameters of the
binomial distribution.  As indicated, the value of x ranges from 0 to n.

For example, if a silviculturist is observing mortality of seedlings in plots in a
plantation  where 100 seedlings were planted in each plot and records live plants as
‘successes’ and dead plants as ‘failures’, then the variable ‘number of live plants in a
plot’ may follow a binomial distribution.

Binomial distribution has  mean np and a standard deviation np p( )1− . The value of
p is estimated from a sample by

$p
x
n

=                                                                      (2.21)

where x  is the number of successes in the sample and n is the total number of cases
examined.

As an example, suppose that an entomologist picks up at random 5  plots  each of  size
10 m x 10 m from a plantation with seedlings planted at 2 m x 2 m espacement. Let the
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observed number of plants affected by termites in the five plots containing 25 seedlings
each be (4, 7, 7, 4, 3). The pooled estimate of p from the five plots would be,

$ .p
x
n

= = =
∑
∑

25
125

02

Further, if he picks up a plot of same size at random from the plantation, the probability
of that plot containing a specified number of plants infested with termites can be
obtained by Equation (2.20) provided the infestation by termites follow binomial
distribution. For instance, the probability of getting a plot uninfested by termites is

( )p(0) =






 −

25
0

0 2 1 0 20 25. .              

                      = 0.0038

2.4.2. The Poisson distribution

A discrete random variable X is said to have a Poisson distribution if the probability of
assuming specific value x is given by

p x
e
x

x
x

( )
!

, , , , ...= = ∞
−λ λ

              0 1 2  (2.22)

where λ>0.  The variable X  ranges from 0 to ∞.

In ecological studies, certain sparsely occurring organisms are found to be distributed
randomly over space. In such instances, observations on number of organisms found in
small sampling units are found to follow Poisson distribution. Poisson distribution has
the single parameter λ which is the mean and also the variance of the distribution.
Accordingly the standard deviation is λ . From samples, the values of λ is estimated
as

 $λ = =
∑ x

n

i
i

n

1  (2.23)

where xi’s are the number of cases detected in a sampling unit  and  n is the number of
sampling units observed.

For instance, a biologist observes the numbers of leech found in 100 samples taken
from a fresh water lake. Let the total number of leeches caught be 80 so that  the mean
number per sample is calculated as,
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$ .λ = = ==
∑ x

n

i
i

n

1 80
100

08

If the variable follows Poisson distribution, the probability of getting at least one leach
in a fresh sample can be calculated as 1 - p(0) which is,

1 1
08

0

0 0 8

− = −
−

p
e

(0)
( . )

!

.

                        = 0.5507

2.5. Continuous theoretical distributions

The idea of discrete distribution can be extended to the case where the variable X may
assume  continuous set of values. The relative frequency polygon of a sample becomes,
in the theoretical or limiting case of a population, a continuous curve as shown in
Figure 2.3, whose equation is y = p(x).

p(x)

xa           b

Figure 2.3. Graph of continuous distribution

The total area under this curve bounded by the X axis is equal to one, and the area
under the curve between lines X = a  and X = b (shaded in the figure) gives the
probability that X lies between a and b, which can be denoted by  P(a<X<b). We call
p(x) a probability density function, or briefly a density function, and when such a
function is given, we say  that a continuous probability distribution for X has been
defined. The variable X is then called a continuous random variable.

Cumulative distribution function for a continuous random variable is

F x f t dt
x

( ) ( )=
−∞
∫  (2.24)

The symbol ∫ indicates integration which is in a way equivalent to summation in the
discrete case. As in the discrete case, F(x) gives the probability that the variable X will
assume a value less than or equal to x. A useful property of the cumulative distribution
function is that

P( ) ( ) ( )a X b F b F a≤ ≤ = −  (2.25)
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Two cases of  continuous theoretical distributions which frequently occur in forestry
research are discussed here mainly for future references.

2.5.1. Normal distribution

Normal distribution is defined by the probability density function,

f x e x
x

( ) ,= − ∞ < < ∞ <
−

−



1

2
0

1
2

2

σ π
µ σ

µ
σ

 
            (2.26)

where µ is a location parameter and σ is a scale parameter. The range of the variable X
is from -∞ to + ∞. The µ  parameter also varies from -∞ to +∞ but σ is always positive.
The parameters µ and σ are not related. Equation  (2.26) is a symmetrical function
around µ  as can  be seen  from  Figure 2.4 which shows a  normal curve for  µ = 0 and
σ = 1. When µ = 0 and σ = 1, the distribution  is called a standard normal curve.

68.27%
95.45%
99.73%

x

f(x)

Figure 2.4. Graph of a normal distribution for µ = 0 and σ = 1

If the total area bounded by the curve and the axis in Figure 2.4 is taken as unity, the
area under the curve between two ordinates X = a  and X = b, where a<b, represents the
probability that X lies between a and b, denoted by P(a<X<b). Appendix 1 gives the
areas under this curve which lies outside +z and -z.

Normal distribution has mean µ and standard deviation σ. The distribution satisfies the
following area properties.  Taking  the total area under the curve as unity,  µ ± σ
covers 68.27% of the area, µ ± 2σ covers 95.45% and µ ± 3σ will cover 99.73 % of the
total area. For instance, let the mean height of trees in a large plantation of a particular
age be 10 m and the standard deviation be 1 m. Consider the deviation of height of
individual trees from the population mean. If these deviations are normally distributed,
we can expect about 68% of the trees to have their deviations from the mean within 1m;
around 95% of the trees to have deviations lying with in 2 m and 99% of the trees
showing deviations within 3 m.
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Although normal distribution was originally proposed as a measurement error model, it
was found to be basis of variation in a large number of biometrical characters. Normal
distribution is supposed to arise from additive effects of a large number of independent
causative random variables.

The estimates of  µ and σ  from sample observations are

$µ = = =
∑

x
x

n

i
i

n

1  (2.27)

( )
σ =

−
−

∑ x x
n

2

1
 (2.28)

where xi, i = 1, …, n are n independent observations from the population.

2.5.2. Lognormal distribution

Let X  be a random variable. Consider the transformation from X to Y  by  Y = ln X.  If
the transformed variable Y is distributed according to a normal model, X  is said to be a
‘lognormal’ random variable. The probability density function of  lognormal
distribution is given by

f x
x

e x
x

( ) , ;
ln

= < − ∞ < < ∞
−

−



1

2
0

1
2

2

σ π
σ µ

µ
σ ,              (2.29)

In this case, eµ is a scale parameter and σ is a shape parameter. The shape of the log-
normal distribution is highly flexible as can be seen from Figure 2.5 which plots
equation (2.29) for different values of σ  when µ = 0.

Figure 2.5. Graph of lognormal distribution for µ = 0 and  different values of  σ.

The mean and standard deviation of log-normal distribution are complex functions of
the parameters µ and  σ. The mean and standard deviation are given by,

Mean =
+

e
µ

σ2

2  (2.30)
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( )( )Standard deviation = e e2 2 2

1µ σ σ+ −  (2.31)

Unlike the normal distribution, the mean and standard deviation of this distribution are
not independent. This distribution also arises from compounding effects of a large
number of independent effects with multiplicative effects rather than additive effects.
For instance, if the data are obtained by pooling height of trees from plantations of
differing age groups, it may show a log-normal distribution, the age having a
compounding effect on variability among trees. Accordingly, trees of smaller age group
may show low variation but trees of older age group are likely to exhibit large variation
because of their interaction with the environment for a larger span of time.

For log-normal distribution, the estimates of the parameters of the µ and σ are obtained
by

$µ =
=

∑1

1n i
i

n

ln x                                            (2.32)

( )$ $σ µ=
−

−
=
∑

1
1

2

1n i
i

n

ln x                       (2.33)

where xi, i = 1, …, n are n independent observations from the population.

More elaborate discussion including several solved problems and computational
exercises on topics mentioned in this chapter can be found in Spiegel and Boxer (1972).

3 STATISTICAL INFERENCE

3.1. Tests of hypotheses

Any research investigation progresses through repeated formulation and testing of
hypotheses regarding the phenomenon under consideration, in a cyclical manner. In
order to reach an objective decision as to whether a particular hypothesis is confirmed
by a set of data, we must have an objective procedure for either rejecting or accepting
that hypothesis. Objectivity is emphasized because one of the requirements of the
scientific method is that one should arrive at scientific conclusions by methods which
are public and which may be repeated by other competent investigators. This objective
procedure would be based on the information we obtain in our research and on the risk
we are willing to take that our decision with respect to the hypothesis may be incorrect.

The general steps involved in testing hypotheses are the following. (i) Stating the null
hypothesis (ii)  Choosing a statistical test (with its associated statistical model) for
testing the null hypothesis (iii)  Specifying the significance level and a sample size (iv)
Finding the sampling distribution of the test statistic under the null hypothesis (v)
Defining the region of rejection (vi) Computing the value of test statistic using the data
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obtained from the sample(s) and making a decision based on the value of the test
statistic and the predefined region of rejection. An understanding of the rationale for
each of these steps is essential to an understanding of the role of statistics in testing a
research hypothesis which is discussed here with a real life example.

(i) Null hypothesis : The first step in the decision-making procedure is to state the null
hypothesis usually denoted by H0. The null hypothesis is a hypothesis of no difference.
It is usually formulated for the express purpose of being rejected. If it is rejected, the
alternative hypothesis H1 may be accepted. The alternative hypothesis is the operational
statement of the experimenter’s research hypothesis. The research hypothesis is the
prediction derived from the theory under test. When we want to make a decision about
differences, we test H0  against H1. H1 constitutes the assertion that is accepted if H0 is
rejected.

To present an example, suppose a forest manager suspects a decline in the productivity
of forest plantations of a particular species in a management unit due to continued
cropping with that species. This suspicion would form the research hypothesis.
Confirmation of that guess would add support to the theory that continued plantation
activity with the species in an area would lead to site deterioration. To test this research
hypothesis, we state it in operational form as the alternative hypothesis, H1.  H1 would
be that the current productivity level for the species in the management unit (µ1) is less
than that of the past (µ0). Symbolically, µ1 < µ0. The H0 would be that µ1 = µ0. If the
data permit us to reject H0, then H1 can be accepted, and this would support the
research hypothesis and its underlying theory. The nature of the research hypothesis
determines how H1 should be stated. If the forest manager is not sure of the direction of
change in the productivity level due to continued cropping, then H1 is that µ1 ≠ µ0.
(ii) The choice of the statistical test : The field of statistics has developed to the extent
that we now have, for almost all research designs, alternative statistical tests which
might be used in order to come to a decision about a hypothesis. The nature of the data
collected largely determines the test criterion to be used. In the example considered
here, let us assume that data on yield of timber on a unit area basis at a specified age
can be obtained from a few recently felled plantations or parts of plantations of fairly
similar size from the management unit. Based on the relevant statistical theory, a test
statistic that can be chosen in this regard is,

z
x

n
=

− µ
σ

0

/
                                                                                             (3.1)

where x  = Mean yield at a specified age from the recently felled plantations in the
management unit.

σ = Standard deviation of the yield of the recently felled plantations in the
management unit.

 n  =  Number of recently felled plantations from which the data can be gathered.
           µ0 =  Mean yield of plantations at the specified age in the management unit a

few decades back based on a large number of past records.

The term ‘statistic’ refers to a value computed from the sample observations. The test
statistic specified in Equation (3.1) is the deviation of the sample mean from the pre-
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specified  value , µ0 , in relation to the variance of such deviations and the question is to
what extent such deviations are permissible if the null hypothesis were to be true.

(iii) The level of significance and the sample size : When the null hypothesis and
alternative hypothesis have been stated, and when the statistical test appropriate to the
problem has been selected, the next step is to specify a level of significance (α) and to
select a sample size (n). In brief, the decision making procedure is to reject H0 in favour
of H1 if the statistical test yields a value whose associated probability of occurrence
under H0 is equal to or less than some small probability symbolized as α. That small
probability is called the level of significance. Common values of α are 0.05 and 0.01.
To repeat, if the probability associated with the occurrence under H0, i.e., when the null
hypothesis is true, of the particular value yielded by a statistical test is equal to or less
than α, we reject H0 and accept H1, the operational statement of the research
hypothesis. It can be seen, then that α gives the probability of mistakenly or falsely
rejecting H0.

Since the value of α enters into the determination of whether H0  is or is not rejected,
the requirement of objectivity demands that α  be set in advance of the collection of the
data.  The level at which the researcher chooses to set α should be determined by his
estimate of the importance or possible practical significance of his findings. In the
present example, the manager may well choose to set a rather stringent level of
significance, if the dangers of rejecting the null hypothesis improperly (and therefore
unjustifiably advocating or recommending a drastic change in management practices
for the area) are great. In reporting his findings, the manager should indicate the actual
probability level associated with his findings, so that the reader may use his own
judgement in deciding whether or not the null hypothesis should be rejected.
There are two types of errors which may be made in arriving at a decision about H0.
The first, the Type I error, is to reject H0 when in fact it is true. The second, the Type II
error,  is to accept H0  when in fact it is false. The probability of committing a Type I
error is given by α.  The larger is α, the more likely it is that H0 will be rejected falsely,
i.e., the more likely it is that Type I error will be committed. The Type II error is
usually represented by β , i.e., P(Type I error) = α,  P(Type II error) = β . Ideally, the
values of both α and β  would be specified by the investigator before he began his
investigations. These values would determine the size of the sample (n) he would have
to draw for computing the statistical test he had chosen. Once α and n have been
specified, β  is determined. In as much as there is an inverse relation between the
likelihood of making the two types of errors, a decrease in α will increase β  for any
given n. If we wish to reduce the possibility of both types of errors, we must increase n.
The term 1 - β  is called the power of a test which is the probability of rejecting H0

when it is in fact false. For the present example, guided by certain theoretical reasons,
let us fix the sample size as 30 plantations or parts of plantations of similar size drawn
randomly from the possible set for gathering data on recently realized yield levels from
the management unit.

(iv) The sampling distribution : When an investigator has chosen a certain statistical
test to use with his data, he must next determine what is the sampling distribution of the
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test statistic. It is that distribution we would get if we took all possible samples of the
same size from the same population, drawing each randomly and workout a frequency
distribution of the statistic computed from each sample. Another way of expressing this
is to say that the sampling distribution is the distribution, under H0, of all possible
values that some statistic (say the sample mean) can take when that statistic is
computed from randomly drawn samples of equal size. With reference to our example,
if there were 100 plantations of some particular age available for felling, 30 plantations

can be drawn randomly in 
100
30 







 = 2.937 x 1025 ways. From each sample of 30

plantation units, we can compute a z statistic as given in Equation (3.1). A relative
frequency distribution prepared using specified class intervals for the z values would
constitute the sampling distribution of our test statistic in this case. Thus the sampling
distribution of a statistic shows the probability under H0 associated with various
possible numerical values of the statistic. The probability associated with the
occurrence of a particular value of the statistic under H0 is not the probability of just
that value rather, the probability associated with the occurrence under H0  of a
particular value plus the probabilities of all more extreme possible values. That is, the
probability associated with the occurrence under H0 of a value as extreme as or more
extreme than the particular value of the test statistic.

It is obvious that it would be essentially impossible for us to generate the actual
sampling distribution in the case of our example and ascertain the probability of
obtaining specified values from such a distribution. This being the case, we rely on the
authority of statements of proved mathematical theorems. These theorems invariably
involve assumptions and in applying the theorems we must keep the assumptions in
mind. In the present case it can be shown that the sampling distribution of z is a normal
distribution with mean zero and standard deviation unity for large sample size (n).
When  a  variable  is  normally distributed, its distribution is completely characterised
by the mean and the standard deviation. This being the case, the probability that an
observed value of   such  a variable will exceed any specified value can be determined.
It should be clear from this discussion and this example that by knowing the sampling
distribution of some statistic we are able to make probability statements about the
occurrence of certain numerical values of that statistic. The following sections will
show how we use such a probability statement in making a decision about H0.

(v) The region of rejection : The sampling distribution includes all possible values a test
statistic can take under H0. The region of rejection consists of a subset of these possible
values, and is defined so that the probability under H0 of the occurrence of a test
statistic having a value which is in that subset is α. In other words, the region of
rejection consists of a set of possible values which are so extreme that when H0 is true,
the probability is very small (i.e., the probability is α) that the sample we actually
observe will yield a value which is among them. The probability associated with any
value in the region of rejection is equal to or less than α.

The location of the region of rejection is affected by the nature of H1. If H1 indicates the
predicted direction of the difference, then a one-tailed test is called for. If H1 does not
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indicate the direction of the predicted difference, then a two-tailed test is called for.
One-tailed and two-tailed tests differ in the location (but not in the size) of the region of
rejection. That is, in one-tailed test, the region of rejection is entirely at one end (one
tail) of the sampling distribution. In a two-tailed test, the region of rejection is located
at both ends of the sampling distribution. In our example, if the manager feels that the
productivity of the plantations will either be stable or only decline over time, then the
test he would carry out will be one-tailed. If the manager is uncertain about the
direction of change, it will be the case for a two-tailed test.

The size of the region is expressed by α, the level of significance.  If  α = 0.05, then the
size of the region of rejection is 5 per cent of the entire space included under the curve
in the sampling distribution. One-tailed and two-tailed regions of rejection for α = 0.05
are illustrated in Figure 3.1. The regions differ in location but not in total size.

(vi) The decision : If the statistical test yields a value which is in the region of rejection,
we reject H0. The reasoning behind this decision process is very simple. If the
probability associated with the occurrence under the null hypothesis of a particular
value in the sampling distribution is very small, we may explain the actual occurrence
of that value in two ways: first, we may explain it by deciding that the null hypothesis
is false, or second, we may explain it by deciding that a rare and unlikely event has
occurred. In the decision process, we choose the first of these explanations.
Occasionally, of course, the second may be the correct one. In fact, the probability that
the second explanation is the correct one is given by α, for rejecting H0 when in fact it
is true is the Type I error.

Figure 3.1. Sampling distribution of z under H0 and regions of rejection for one-tailed
and two-tailed tests.

When the probability associated with an observed value of a statistical test is equal to
or less than the previously determined value of α, we conclude that H0 is false. Such an
observed value is called significant.  H0 , the hypothesis under test, is rejected whenever
a significant result occurs. A significant value is one whose associated probability of
occurrence under H0  is equal to or less than α.

Coming back to our example, suppose that the mean timber yield obtained from 30
recently felled plantations at the age of 50 years in a particular management unit is 93
m3/ha with a standard deviation of 10 m3/ha. If the past records had revealed that the
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mean yield realized from the same management unit a few decades back was 100 m3 /ha
at comparable age, the value of the test statistic in our case would be

            z
x

n
=

−
=

−
= −

µ
σ

0 93 100
10 30

3834
/ /

.

Reference to Appendix 1 would show that the probability of getting such a value if the
H0 were to be true is much less than 0.05 taken as the prefixed level of significance.
Hence the decision would be to accept the alternative hypothesis that there has been
significant decline in the productivity of the management unit with respect to the
plantations of the species considered.

The reader who wishes to gain a more comprehensive understanding of the topics
explained in this section may refer Dixon and Massey (1951) for an unusually clear
introductory discussion of the two types of errors, and to Anderson and Bancroft (1952)
or Mood (1950) for advanced discussions of the theory of testing hypotheses. In the
following sections, procedures for testing certain specific types of hypotheses are
described.

3.2 Test of difference between means

It is often desired to compare means of two groups of observations representing
different populations to find out whether the populations differ with respect to their
locations. The null hypothesis in such cases will be ‘there is no difference between the
means of the two populations’. Symbolically, H0:µ µ1 2= . The alternative hypothesis
is H1 1 2:µ µ≠  i.e.,µ µ1 2< or µ µ1 2> .

3.2.1.  Independent samples

For testing the above hypothesis, we make random samples from each population. The
mean and standard deviation for each sample are then computed. Let us denote the
mean as x1 and standard deviation as s1 for the sample of size n1  from the first
population and the mean as x2  and standard deviation as s2  for the sample of size n2

from the second population. A test statistic that can be used in this context is,

t
x x

s
n n

=
−

+








1 2

2

1 2

1 1
                                                                                 (3.2)
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s2  is the pooled variance given by
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The test statistic t follows Student’s t distribution with n n1 2 2+ −  degrees of freedom.
The degree of freedom in this particular case is a parameter associated with the t
distribution which governs the shape of the distribution. Although the concept of
degrees of freedom is quite abstruse mathematically, generally it can be taken as the
number of independent observations in a data set or the number of independent
contrasts (comparisons) one can make on a set of parameters.

This test statistic is used under certain assumptions viz., (i) The variables involved are
continuous (ii) The population from which the samples are drawn follow normal
distribution (iii) The samples are drawn independently (iv) The variances of the two
populations from which the samples are drawn are homogeneous (equal). The
homogeneity of two variances can be tested by using F-test described in Section 3.3.

As an illustration, consider an experiment set up to evaluate the effect of inoculation
with mycorrhiza on the height growth of seedlings of Pinus kesiya. In the experiment,
10  seedlings designated as Group I were inoculated with mycorrhiza while another 10
seedlings (designated as Group II) were left without inoculation with the
microorganism. Table 3.1 gives the height of seedlings obtained under the two groups
of seedlings.
                                  Table 3.1. Height of seedlings of Pinus kesiya

belonging to the two groups

Plot Group I Group II
1 23.0 8.5
2 17.4 9.6
3 17.0 7.7
4 20.5 10.1
5 22.7 9.7
6 24.0 13.2
7 22.5 10.3
8 22.7 9.1
9 19.4 10.5
10 18.8 7.4

Under the assumption of equality of variance of seedling height in the two groups, the
analysis can proceed as follows.
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Step1. Compute the means and pooled variance of the two groups of height
measurements using the corresponding formulae as shown in Equation (3.2).

x1 20 8= . ,  x2 9 61= .

( ) ( ) ( )
( )

s
.

1
2

2 2 2
2

230 17 4 188
208
10

10 1
=

+ + −
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                 =  
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9
.

 = 6.36
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( )( ) ( )( )
s2 10 1 6 36 10 1 2 7
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. .

                = 
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. .+

    = 4.5372

Step 2. Compute the value of t using Equation (3.2)

 t =
−

+






20 8 9 61

4 5372
1
10

1
10

. .

.

               = 11.75

Step 3. Compare  the  computed value of  t  with  the  tabular value of  t  at  the desired
level of probability for n n1 2 2+ −  = 18 degrees of freedom.

Since we are not sure of the direction of the effect of mycorrhiza on the growth
of seedlings, we may use a two-tailed test in this case. Referring Appendix 2,
the critical values are -2.10 and +2.10 on either side of the distribution. For our
example the computed value of  t (11.75) is greater than 2.10 and so we may
conclude that the populations of inoculated and uninoculated seedlings
represented by our samples are significantly different with respect to their mean
height.
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The above procedure is not applicable if the variances of the two populations are not
equal. In such cases, a slightly different procedure is followed and is given below:

Step 1. Compute the value of test statistic t using the following formula,
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                                                                                       (3.3)

Step 2. Compare the computed t value with a weighted tabular t value (t’) at the desired
level of probability. The weighted tabular t value is computed as shown below.
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           where w
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t1  and t2  are the tabular values of Student’s t at ( )n1 1− and ( )n2 1−  degrees of
freedom respectively, at the chosen level of probability.

For example, consider the data given in Table 3.1. The homogeneity of
variances of the two groups can be tested by using F-test given in Section 3.3.
In case the two variances are not equal, the test statistic t will be computed as,

( )
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+
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. .
 = 11.76

( ) ( )
t '=

+
+

(0.636) 2.26 (0.270) 2.26
0.636 0.270

 = 2.26

Since the computed t value (11.76) is greater than the tabular value (2.26), we
may  conclude that the two means are significantly different. Here, the value of
t’ remained the same as t1 and t2 because n1 and n2 are the same. This need not
be the case always.

3.2.2.  Paired samples

While comparing the means of two groups of observations, there could be instances
where the groups are not independent but paired such as in the comparison of the status
of a set of individuals before and after the execution of a treatment, in the comparison
of say, the properties of bottom and top portion of a set of cane stems etc. In such
situations, two sets of observations come from a single set of experimental units.
Pairing of observations could occur on other grounds as well such as the case of pairs
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of stem cuttings obtained from different mother plants and the individuals of a pair
subjected to two different treatments with the objective of comparing the effect of the
two treatments on the cuttings. The point to be noted is that the observations obtained
from such pairs could be correlated. The statistical test used for comparing means of
paired samples is generally called paired t- test.

Let (x1, y1), (x2, y2), . . ., (xn, yn),  be the n paired observations. Let the observations on x
variable arise from a population  with mean µ1 and the observations on y variable arise
from a population with  mean µ2 . The hypothesis to be tested is H0 1 2:µ µ= . If we
form di = xi - yi for i = 1, 2, …, n, which can be considered from a normal population
with mean zero and known variance, the test statistic could be,

t
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The test statistic t in Equation (3.5) follows a Student’s t distribution with n − 1degrees
of freedom. The computed value of t is then comparable with the tabular value of  t for
n − 1 degrees of freedom, at the desired level of probability.

For example, consider the data given in Table 3.2, obtained from soil core samples
drawn from two different depth levels in a natural forest. The data pertain to organic
carbon content measured at two different layers of a number of soil pits and so the
observations are paired by soil pits.  The paired t-test can be used in this case to
compare the organic carbon status of soil at the two depth levels. The statistical
comparison would proceed as follows.

Step 1. Get the difference between each pair of observations as shown in Table 3.2

Table 3.2. Organic carbon content measured from  two
layers of a set of soil pits from natural forest.

Organic carbon (%)
Soil pit Layer 1

(x)
Layer 2

(y)
Difference

(d)
1 1.59 1.21   0.38
2 1.39 0.92   0.47
3 1.64 1.31   0.33
4 1.17 1.52 -0.35
5 1.27 1.62 -0.35
6 1.58 0.91   0.67
7 1.64 1.23   0.41
8 1.53 1.21   0.32
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9 1.21 1.58 -0.37
10 1.48 1.18   0.30

Step 2. Calculate mean difference and variance of the differences as shown in Equation
(3.5).

            d = 
d

n

i
i

n

=
∑

1  = 
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10
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Step 3. Calculate the value for t by substituting the values of d  and sd
2  in Equation

(3.5).

               t .= =
0181
01486

10

1485
.
.

The value we have calculated for t (1.485) is less than the tabular value, 2.262,
for  9 degrees of freedom at the 5% level of significance. It may therefore be
concluded that there is no significant difference between the mean organic
carbon content of the two layers of soil.

3.3.  Test of difference between variances

We often need to test whether two independent random samples come from populations
with same variance. Suppose that first sample of n1  observations has a sample

variance s1
2  and that second sample of n2  observations has a sample variance s2

2  and
that both samples come from normal distributions. The null hypothesis to be tested is
that the two samples are independent random samples from normal populations with
the same variance. Symbolically,

            H0 1
2

2
2:σ σ=

where  σ σ1
2

2
2,   are populations variances of two populations from which the two

samples are taken.  The alternative hypothesis is

            H1 1
2

2
2:σ σ≠

The test statistic used to test the above null hypothesis is
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F
s
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where s1
2 is the larger mean square.

Under the null hypothesis, the test statistic may be shown to follow an F distribution
with ( )n n1 21 1− −, degrees of freedom. The decision rule is that if the calculated value
of the test statistic is smaller than the critical value of the F-distribution at the desired
probability level, we accept the null hypothesis that two samples are taken from
populations having same variance, otherwise we reject the null hypothesis.

For example, let the variance estimates from two populations be s1
2 2187= . and

s2
2 1536= .  based on n1=11and n2 = 8, observations from the two populations

respectively. For testing the equality of population variances, we compute,

           F
s

s
= = =1

2

2
2

2187
1536

1424
.
.

.

and compare with the critical value of F distribution for 10 and 7 degrees of freedom.
Referring Appendix 3, the critical value of F is 3.14 at the probability level of .05. Here
the calculated value is less than the critical value and hence we conclude that the
variances are equal.

3.4 Test of proportions

When the observations form counts belonging to particular categories such as
‘diseased’ or ‘healthy’, ‘dead’ or ‘alive’ etc. the data are usually summarized in terms
of proportions. We may then be interested in comparing the proportions of incidence of
an attribute in two populations. The null hypothesis set up in such cases is
H :0 P P1 2= and the alternative hypothesis is H :1 P P1 2≠ (or P P1 2>  or  P P1 2< ) where
P1 and P2 are proportions representing the two populations. In order to test our
hypothesis, we take two independent samples of large size, say n n1 2 and  from the two
populations and obtain two sample proportions p p1 2 and , respectively. The test
statistic used is,

z
p p

p q
n

p q
n

=
−

+

1 2

1 1

1

2 2

2

                                                                           (3.7)

where q1 = 1 - p1, q2 = 1 - p2, This statistic follows a standard normal distribution.
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As an example, consider an experiment on rooting of stem cuttings of Casuarina
equisetifolia wherein the effect of dipping the cuttings in solutions of IBA at two
different concentrations was observed. Two batches of 30 cuttings each, were subjected
dipping treatment at concentrations of 50 and 100 ppm of IBA solutions respectively.
Based on the observations on number of cuttings rooted in each batch of 30 cuttings,
the following proportions of rooted cuttings under each concentration were obtained. At
50 ppm, the proportion of rooted cuttings was 0.5 and at 100 ppm, the proportion was
0.37. The question of interest is whether the observed proportions are indicative of
significant differences in the effect of IBA at the two concentrations.

In accordance with our notation, here, p1 = 0.5 and p2 = 0.37. Then q1 = 0.5, q2 = 0.63.
The value of n1 = n2 = 30.  The value of the test statistic is,

( )( ) ( )( )
z =

−

+

=
05 037

05 05
30

0 37 0 63
30

1024
. .

. . . .
.

 

Since the calculated value of z (1.024) is less than the table value (1.96) at 5% level of
significance, we can conclude that there is no significant difference between proportion
rooted cuttings under the two concentration levels.

3.5 Test of goodness of fit

In testing of hypothesis, sometimes our objective may be to test whether a sample has
come from a population with a specified probability distribution. The expected
distribution may one based on theoretical distributions like the normal, binomial or
Poisson or a pattern expected under technical grounds. For instance, one may be
interested in testing whether a variable like the height of trees follows normal
distribution. A tree breeder may be interested to know whether the observed
segregation ratios for a character deviate significantly from the Mendelian ratios. In
such situations, we want to test the agreement between the observed and theoretical
frequencies.  Such a test is called a test of goodness of fit.

For applying the goodness of fit test, we use only the actual observed frequencies and
not the percentages or ratios. Further, the observations within the sample should be
non-overlapping and thereby independent. The expected frequency in each category
should preferably be more than 5. The total number of observations should be large,
say, more than 50.

The null hypothesis in goodness of fit tests is that there is no disagreement between the
observed and theoretical distributions, or the observed distribution fits well with the
theoretical distribution.  The test statistic used is,
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where  Oi  = Observed frequency in the ith class,
            Ei  = Expected frequency in the ith class.
            k  = Number of categories or classes.

The χ2 statistic of Equation (3.8) follows a χ2-distribution with k-1 degrees of freedom.
In case the expected frequencies are derived from parameters estimated from the
sample, the degrees of freedom is (k-p-1) (where p is the number of parameters
estimated). For example, in testing the normality of a distribution µ and σ2 would be
estimated from the sample by x  and s2and the degrees of freedom would therefore
reduce to (k-2-1).

The expected frequencies may be computed based on the probability function of the
appropriate theoretical distribution as relevant to the situation or it may be derived
based on the scientific theory being tested like Mendel’s law of inheritance. In the
absence of a well defined theory, we may assume that all the classes are equally
frequent in the population. For example, the number of insects caught in a trap in
different times of a day, frequency of sighting an animal in different habitats etc. may
be expected to be equal initially and subjected to the statistical testing. In such cases,
the expected frequency is computed as

E 
n
k

= =
Total of the observed frequencies

Number of groups
   (3.9)

For example,  consider the data given in Table 3.3. which represents the number of
insect species collected from an undisturbed area at Parambikkulam Wildlife Sanctuary
in different months. To test whether there are any significant differences between the
number of insect species found in different months, we may state the null hypothesis as
the diversity in terms of number of insect species is the same in all months in the
sanctuary and derive the expected frequencies in different months accordingly.

Table 3.3. Computation of χ2 using the data on number of species of
insects collected from Prambikkulam in different months.

Month O E ( )O E E− 2

Jan. 67 67 0.00
Feb. 115 67 34.39
Mar. 118 67 38.82
Apr. 72 67 0.37
May 67 67 0.00
Jun. 77 67 1.49
Jul. 75 67 0.96
Aug. 63 67 0.24
Sep. 42 67 9.33
Oct. 24 67 27.60
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Nov. 32 67 18.28
Dec. 52 67 3.36
Total 804 804 134.84

The calculated χ2 value  is 134.84.  Entering the χ2 table (Appendix 4) for  (12-1) = 11
degrees of freedom and  α = 0.05, we get the critical value of  χ2 as 19.7. Therefore, we
accept the null hypothesis and conclude that the occurrence of the number of insect
species in different months is the same.

3.6.  Analysis of variance

Analysis of variance (ANOVA) is basically a technique of partitioning the overall
variation in the responses observed in an investigation into different assignable sources
of variation, some of which are specifiable and others unknown. Further, it helps in
testing whether the variation due to any particular component is significant as
compared to residual variation that can occur among the observational units.

Analysis of variance proceeds with an underlying model which expresses the response
as a sum of different effects. As an example, consider Equation (3.10).

y eij i ij= + +µ α ,   i =1, 2, …, t;   j = 1, 2, …, ni                                    (3.10)

where yij  is  the response of the jth individual unit belonging to the ith category or

group, µ  is overall population mean, αi is the effect of  being in the ith group and eij  is
a random error attached to the (ij)th observation. This constitutes a one-way analysis of
variance model which can be expanded further by adding more and more effects as
applicable to a particular situation. When more than one known source of variation is
involved, the model is referred as multi-way analysis of variance model.

In order to perform the analysis, certain basic assumptions are made about the
observations and effects. These are (i) The different component effects are additive (ii)
The errors eij are independently and identically distributed with mean zero and constant
variance.

Model (3.10) can also be written as

y eij i ij= +µ (3.11)
where µ µ αi i= +

Under certain additional assumptions, analysis of variance also leads testing the
following hypotheses that

            H :0 µ µ µ1 2= = = . . . t

            H :1 µ µi j≠     for at least one i and  j (3.12)
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The additional assumption required is that the errors are distributed normally. The
interpretation of the analysis of variance is valid only when such assumptions are met
although slight deviations from these assumptions do not cause much harm.

Certain additional points to be noted are that the effects included in the model can be
either fixed or random. For example, the effects of two well defined levels of irrigation
are fixed as each irrigation level can be reasonably taken to have a fixed effect. On the
other hand, if a set of provenances are randomly chosen from a wider set possible, the
effects due to provenances is taken as random. The random effects can belong to a
finite or an infinite population. The error effects are always random and may belong
either to a finite or infinite population. A model in which all the effects are fixed except
the error effect which is always taken as random is called a fixed effects model. Models
in which both fixed and random effects occur are called mixed models. Models wherein
all the effects are random are called random effects models. In fixed effects models, the
main objectives will be to estimate the fixed effects, to quantify the variation due to
them in the response and finally find the variation among the error effects. In random
effects models, the emphasis will be on estimating the variation in each category of
random effects. The methodology for obtaining expressions of variability is mostly the
same in the different models, though the methods for testing are different.

The technique of analysis of variance is illustrated in the following with a one-way
model involving only fixed effects. More complicated cases are dealt with in the
Chapters 4 and 6 while illustrating the analyses related to different experimental
designs.

3.6.1.  Analysis of one-way classified data.

Consider a set of observations on wood density obtained on a randomly collected set of
stems belonging to a set of cane species. Let there be t species with r observations
coming from each species. The results may be tabulated as shown in the following
table.

Species
1 2 . . i . . t

y11 y21 yi1 yt1

y12 y22 yi2 yt2
. .
y1j y2j yij ytj
. .
y1r y2r yir ytr

Total y1. y2. yi. yt. y..= Grand total
Mean y1 y2 yi yt y  = Grand mean

           Note: In the above table, a period (.) in the subscript denotes sum over
that subscript.



A Statistical Manual For Forestry Research

40

The theory behind the analysis of variance would look complex for a nonmathematical
reader. Hence a heuristic derivation of the formulae is given here. Consider the r
observations which belong to any particular species, say ith species. Their values may
not be the same. This demonstrates the influences of many extraneous factors operating
on the observations on stems of that species. This influence may be measured in terms
of the deviations of the individual observations from their mean value. Squared
deviations would be better as raw deviations are likely to cancel out while summing up.
Thus the extent of random variation incident on the observations on the ith species is
given by

            ( ) ( ) ( )y y y y y yi i i i ir i1
2

2
2 2

− + − + −. . . . .  .  +   = ( )y yij i
j

r

−
=

∑ .

2

1
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The variation produced by the external sources in the case of each species is a
reflection of the influence of the uncontrolled factors and  we can obtain a pooled
estimate of their influence by their sum. Thus the total variability observed due to
extraneous factors also generally known as sum of squares due to errors (SSE) is given
by

SSE  = ( )y yij i
j
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                                                                  (3.14)

Besides random fluctuations, different species may carry different effects on the mean
response. Thus variability due to ith species reflected in the r observations is

            ( )r y yi . −
2

(3.15)
Thus the variability due to differences between the species is given by
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which can be shown algebraically equivalent to
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The second term of Equation (3.17) is called the correction factor (C.F.).
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Finally, we have to find out the total variability present in all observations. This is
given by the sum of the squares of deviations of all the responses from their general
mean. It is given by

SSTO  = ( )y yij
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(3.19)
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11 11

y y y y y y y yij i i
j

r

i

t

i ij i
j

r

i

t
− − = − − =

== ==
∑∑ ∑∑. . . .

Thus the total variability  in the responses could be expressed as a sum of variation
between species and variation within species, which is the essence of analysis of
variance.

For computational purposes, the SSTO can also be obtained as
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    (3.21)

The partitioning of total variability, as due to species differences and as due to
extraneous factors though informative, are by themselves not very useful for further
interpretation. This is because, their values depend on the number of species and the
number of observations made on each species. In order to eliminate this effect of
number of observations, the observed variability measures are reduced to variability per
observation, i.e., mean sum of squares. Since there are rt observations in all, yielding
the total sum of squares, the mean sum of squares can of course be calculated by
dividing total sum of squares by rt. Instead,  this is divided by (rt-1), which is the total
number of observations less one. This divisor is called the degrees of freedom which
indicate the number of independent deviations from the mean contributing to the
computation of total variation. Hence,

Mean sum of squares due to species = MSS =  
SSS
t − 1

                    (3.22)

Mean sum of squares due to error = MSE  = 
SSTO SSS

t r
-  

( )− 1
                (3.23)

The computation of species mean square and error mean square are crucial for testing
the significance of the differences between species means. The null hypothesis tested
here is the population means of species are all equal, that is,

         H  . . .  0 1 2:µ µ µ= = = t
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Under this hypothesis, the above two mean squares will be two independent estimates
of the same random effect, i.e., MSS estimates the same variance as that the MSE does.
The hypothesis of  equal species effects can now be tested by F test where F is the ratio
of  MSS to MSE which follows F distribution with (t-1) and t(r-1) degrees of freedom.
The significance of F can be determined in the usual way by using the table of F
(Appendix 3). If the calculated value of F is larger than the tabled value, the hypothesis
is rejected. It implies that at least one pair of species is significantly different with
respect to the observations made.

The above results can be presented in the form of a table called analysis of variance
table or simply ANOVA table. The format of ANOVA table is as follows.

Table 3.4. ANOVA table

Sources of variation Degrees of
freedom

(df)

Sum of
squares

(SS)

Mean  squares

MS
SS
df

=








Computed
F-ratio

Between species t-1 SSS MSS  MSS
MSE

Within species (error) t(r-1) SSE MSE

Total tr-1 SSTO

For the purpose of illustration, consider the data presented in Table 3.5. The data
represent   a set of observations on wood density obtained on a randomly collected set
of stems belonging to five cane species.

The analysis of variance for the sample data is conducted as follows.

Step 1. Compute the species totals, species means, grand total and grand mean (as in
Table 3.5). Here, the number of species = t = 5 and number of replication = r =
3.

Table 3.5. Wood density (g/cc) observed on a randomly collected set
of stems belonging to different cane species.

Species
1 2 3 4 5 Overall

1 0.58 0.53 0.49 0.53 0.57
2 0.54 0.63 0.55 0.61 0.64
3 0.38 0.68 0.58 0.53 0.63

Total 1.50 1.85 1.62 1.67 1.85 8.49
Mean 0.50 0.62 0.54 0.56 0.62 0.57

Step 2.  Compute the correction factor C.F using Equation (3.18).
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             C.F. ( )( )= = .
( . )8 49

5 3
481

2

Step 3.  Compute the total sum of squares using Equation (3.21).

              SSTO  = (0.58)2 + (0.53)2 + . . .+ (0.63)2 - ( )( )
( . )849

5 3

2

                        = 0.0765

Step 4. Compute the species sum of squares using Equation (3.17).

             SSS  = 
( ) ( ) ( )150 184 184

5 5 3

2 2 2 2. + . +   . . .  +
 
(8.49).
( )( )

−

                     = 0.0307
Step 5. Compute the error sum of squares as  SSE = SSTO - SSS

             SSE  = 0.0765 - 0.0307

          =  0.0458

Step 6. Compute the mean squares for species and error. These are obtained using
Equations (3.22) and (3.23).

            MSS  = 
0.0307
5 1−

                     = 0.0153

            MSE  = ( )
0.0458
5 3 1−

                      = 0.0038
Step 7. Calculate the F ratio as

            F = 
Treatment

Error
 MS

 MS

                = 
0 0153
0 0038

.
.

                = 4.0108

Step 8. Summarise the results  as shown in Table 3.6.

Table 3.6. ANOVA table for the data in Table 3.5.

Sources of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean squares

MS
SS
df

=








Computed
F-ratio

Tabular
F
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Between
species

4 0.0307 0.0153 4.01 3.48

Within
species

10 0.0458 0.0038

Total 14 0.0765

Compare the computed value of F with tabular value of F at 4 and 10 degrees of
freedom. In this example, the computed value of F (1.73) is less than the tabular
value (3.48) at 5% level of significance. It may thus be concluded that there are
no significant differences among the means of different species.

3.7. Transformation of data

As indicated in the previous section, the validity of analysis of variance depends on
certain important assumptions. The analysis is likely to lead to faulty conclusions when
some of these assumptions are violated. A very common case of violation is the
assumption regarding the constancy of variance of errors. One of the alternatives in
such cases is to go for a weighted analysis of variance wherein each observation is
weighted by the inverse of its variance. For this, an estimate of the variance of each
observation is to be obtained which may not be feasible always. Quite often, the data
are subjected to certain scale transformations such that in the transformed scale, the
constant variance assumption is realized. Some of such transformations can also correct
for departures of observations from normality because unequal variance is many times
related to the distribution of the variable also. Certain methods are available for
identifying the transformation needed for any particular data set (Montgomery and
Peck, 1982) but one may also resort to certain standard forms of transformations
depending on the nature of the data. The most common of such transformations are
logarithmic transformation, square root transformation and angular transformation.

3.7.1. Logarithmic transformation

When the data are in whole numbers representing counts with a wide range, the
variances of observations within each group are usually proportional to the squares of
the group means. For data of this nature, logarithmic transformation is recommended.
A simple plot of group means against the group standard deviation will show linearity
in such cases. A good example is data from an experiment involving various types of
insecticides. For the effective insecticide, insect counts on the treated experimental unit
may be small while for the ineffective ones, the counts may range from 100 to several
thousands. When zeros are present in the data, it is advisable to add 1 to each
observation before making the transformation. The log transformation is particularly
effective in normalising positively skewed distributions. It is also used to achieve
additivity of effects in certain cases.

3.7.2. Square root transformation
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If the original observations are brought to square root scale by taking the square root of
each observation, it is known as square root transformation. This is appropriate when
the variance is proportional to the mean as discernible from a graph of group variances
against group means. Linear relationship between mean and variance is commonly
observed when the data are in the form of small whole numbers (e.g., counts of
wildlings per quadrat, weeds per plot, earthworms per square metre of soil, insects
caught in traps, etc.). When the observed values fall within the range of 1 to 10 and
especially when zeros are present, the transformation should be, y + 05. . The

transformation of the type y + (3 /8)  is also used for certain theoretical reasons.

3.7.3. Angular transformation

In the case of proportions, derived from frequency data, the observed proportion p can
be changed to a new form θ = sin−1 p . This type of transformation is known as
angular or arcsin transformation. However, when nearly all values in the data lie
between 0.3 and 0.7, there is no need for such transformation. It may be noted that the
angular transformation is not applicable to proportion or percentage data which are not
derived from counts. For example, percentage of marks, percentage of profit,
percentage of protein in grains, oil content in seeds, etc., can not be subjected to
angular transformation. The angular transformation is not good when the data contain 0
or 1 values for p. The transformation in such cases is improved by replacing 0 with
(1/4n) and 1 with [1-(1/4n)],  before taking angular values, where n is the number of
observations based on which p is estimated for each group.

As a case of illustration of angular transformation, consider the data given in Table 3.7
which represents the percentage of rooting obtained after sixth months of applying
hormone treatment at different levels to stem cuttings of a tree species. Three batches,
each of 10 stem cuttings, were subjected to dipping treatment in hormone solution at
each level. The hormone was tried at 3 levels and the experiment had an untreated
control. The percentage of rooting for each batch of cuttings was arrived at by dividing
the number of cuttings rooted by the number of cuttings in a batch.

                 Table 3.7. Percentage of rooting obtained at the sixth month after
applying the treatments.

Treatments
Batch of
cuttings

Control IBA at 10
ppm

IBA at
 50 ppm

IBA at
100 ppm

1 0 70 60 30
2 0 80 70 20
3 0 60 70 10

The data in Table 3.7 was transformed to angular scale using the function, sin−1 p
after replacing the ‘0’ values with (1/4n) where n =10. The functional values of
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sin−1 p  for different values of p can also be obtained from Table (X) of Fisher and
Yates (1963). The transformed data of Table 3.7 is given in Table 3.8.

Table 3.8. The data of Table 3.7 transformed to angular scale.

Treatments
Batch  of
cuttings

Control IBA at
10 ppm

IBA at
 50 ppm

IBA at
100 ppm

Grand total

1 0.99 56.79 50.77 33.21
2 0.99 63.44 56.79 26.56
3 0.99 50.77 56.79 18.44

Total 2.97 171 164.35 78.21 416.53

In order to see if the treatments differ significantly in their effects, a one-way analysis
of variance can be carried out as described in Section 3.6, on the transformed data. The
results of analysis of variance are presented in Table 3.9.

Table 3.9. Analysis of variance of the transformed data in Table 3.8.

Sources of variation Degrees
of

freedom
(df)

Sum of
squares

(SS)

Mean  square

MS
SS
df

=








Computed
F-ratio

Tabular F
at 5%
level

Between treatments 3 6334.41 2111.47 78.96* 4.07

Within treatments 8 213.93 26.74

Total 11 6548.34
* significant at 5% level.

Before concluding this section, a general note is added here. Once the transformation
has been made, the analysis is carried out with the transformed data and all the
conclusions are drawn in the transformed scale. However, while presenting the results,
the means and their standard errors are transformed back into original units. While
transforming back into the original units, certain corrections have to be made for the
means. In the case of log transformed data, if the mean value is y , the mean value of
the original units will be antilog( )y y+ 115.  instead of antilog( )y . If the square root
transformation had been used, then the mean in the original scale would be

( )( )y V y+
2
instead of ( )y

2
where ( )V y represents the variance of y . No such correction

is generally made in the case of angular transformation. The inverse transformation  for
angular transformation  would be  p = (sin θ)2.

3.8. Correlation

In many natural systems, changes in one attribute are accompanied by changes in
another attribute and that a definite relation exists between the two. In other words,
there is a correlation between the two variables. For instance, several soil properties
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like nitrogen content, organic carbon content or pH are correlated and exhibit
simultaneous variation. Strong correlation is found to occur between several
morphometric features of a tree. In such instances, an investigator may be interested in
measuring the strength of the relationship. Having made a set of paired observations
(xi,yi); i = 1, ..., n, from n independent sampling units, a measure of the linear
relationship between two variables can be obtained by the following quantity called
Pearson’s product moment correlation coefficient or simply correlation coefficient.

( )( ) ( )( ) ( )( )
r = =

Covariance of  and 

Variance of Variance of 

 x y

x y

Cov(x, y)

V x V y
 (3.24)
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It is a statistical measure which indicates both the direction and degree of relationship
between two measurable characteristics, say, x and y. The range of r is from -1 to +1
and does not carry any unit. When its value is zero, it means that there is no linear
relationship between the variables concerned (although it is possible that a nonlinear
relationship exists). A strong linear relationship exists when the value of r approaches -
1 or +1. A negative value of r is an indication that an increase in the value of one
variable is associated with a decrease in the value of other. A positive value on the
other hand, indicates a direct relationship, i.e., an increase in the value of one variable
is associated with an increase in the value of the other. The correlation coefficient is not
affected by change of origin or scale or both. When a constant term is added or
subtracted from the values of a variable, we say that the origin is changed. Multiplying
or dividing the values of a variable by a constant term amounts change of scale.

As an example, consider the data on pH and organic carbon content measured from soil
samples collected from 15 pits taken in natural forests, given in Table 3.10.
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Table 3.10. Values of pH and organic carbon content observed in soil samples
collected from natural forest.

Soil
pit

pH
(x)

Organic carbon (%)
(y) (x2) (y2)  (xy)

1 5.7 2.10 32.49 4.4100 11.97
2 6.1 2.17 37.21 4.7089 13.24
3 5.2 1.97 27.04 3.8809 10.24
4 5.7 1.39 32.49 1.9321 7.92
5 5.6 2.26 31.36 5.1076 12.66
6 5.1 1.29 26.01 1.6641 6.58
7 5.8 1.17 33.64 1.3689 6.79
8 5.5 1.14 30.25 1.2996 6.27
9 5.4 2.09 29.16 4.3681 11.29
10 5.9 1.01 34.81 1.0201 5.96
11 5.3 0.89 28.09 0.7921 4.72
12 5.4 1.60 29.16 2.5600 8.64
13 5.1 0.90 26.01 0.8100 4.59
14 5.1 1.01 26.01 1.0201 5.15
15 5.2 1.21 27.04 1.4641 6.29

Total 82.1 22.2 450.77 36.4100 122.30

The steps to be followed in the computation of correlation coefficient are as follows.

Step 1. Compute covariance of x and y and variances of both x and y using Equation
(3.24).

Cov (x,y)  = 
( )1

15
122 30

15
. −









82.1 (22.2)

= 0.05

V(x)          = 
1
15

45077
15

2

. −










(82.1)
     

         = 0.0940

V(y)          = 
1
15

36 41
15

2

. −










(22.2)

                =  0.2367

Step 2. Compute the correlation coefficient using Equation (3.24).

                         r = 
( )( )

0.05

00940 0 2367. .

                           = 0.3541
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 3.8.1. Testing the significance of  correlation coefficient.

A value of correlation coefficient obtained from a sample needs to be tested for
significance to confirm if a real relationship exists between the two variables in the
population considered. It is usual to set up the null hypothesis as H0 0:  ρ =  against the
alternative hypothesis, H1 0:ρ ≠ .

For relatively small n, the null hypothesis that ρ = 0  can be tested using the test
statistic,

t
r n

r
=

−

−

2

1 2
                                                                                          (3.25)

This test statistic is distributed as Student’s t with n-2 degrees of freedom.

Consider the data given in Table 3.10 for which n = 15 and r = 0.3541. To test as
H0 0:ρ =  against H1 0:ρ ≠ , we compute the test statistic using Equation (3.25).

t =
−

−

0.3541 15 2

1 (0.3541)2
 = 1.3652

Referring Appendix 2, the critical value of t is 2.160, for 13 degrees of freedom at the
probability level, α = 0.05. Since the computed t value is less than the critical value, we
conclude that the pH and organic carbon content measured from soil samples are not
significantly correlated. For convenience one may use Appendix 5 which gives values
of correlation coefficients beyond which an observed correlation coefficient can be
declared as significant for a certain number of observations at a desired level of
significance.

In order to test the hypothesis that H0 0:ρ ρ=  where ρ0 is any specified value of ρ,
Fisher’s z-transformation is employed which is given by,

z
r
r

=
+
−







1
2

1
1

ln (3.26)

where ln indicates natural logarithm.

For testing the null hypothesis, we use the test statistic,

w
z z

n

=
−

−

0

1
3

 (3.27)
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where  z o
0

0

1
2

1
1
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+
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ln 

ρ
ρ

 

The statistic w follows a standard normal distribution.

For the purpose of illustration,  consider  the data given in Table 3.10 for which n = 15
and r = 0.3541. Suppose that we have to test H0 0:ρ ρ= = 0.6. For testing this null
hypothesis, the values of r and ρ are first subjected to z transformation.

z =
+
−







1
2

1 0 3541
1 0 3541

ln 
.
.

 = 0.3701

z0

1
2

1 0 6
1 0 6

=
+
−





ln 

.

.
  = 0.6932

The value of the test statistic would be,

w =
−

−

0 3701 06932
1

15 3

. .
 = 1.16495

Since the value of w is less than 1.96, the critical value, it is nonsignificant at 5% level
of significance. Hence we may conclude that the correlation coefficient between pH
and organic carbon content in the population is not significantly different from 0.6.

3.9. Regression

Correlation coefficient measures the extent of interrelation between two variables
which are simultaneously changing with mutually extended effects. In certain cases,
changes in one variable are brought about by changes in a related variable but there
need not be any mutual dependence. In other words, one variable is considered to be
dependent on the other variable changes, in which are governed by extraneous factors.
Relationship between variables of this kind is known as regression. When such
relationships are expressed mathematically, it  will enable us to predict the value of one
variable from the knowledge of the other. For instance, the photosynthetic and
transpiration rates of trees are found to depend on atmospheric conditions like
temperature or humidity but it is unusual to expect a reverse relationship. However, in
many cases, it so happens that the declaration of certain variables as independent is
made only in a statistical sense although when reverse effects are conceivable in such
cases. For instance, in a volume prediction equation, tree volume is taken to be
dependent on dbh although the dbh cannot be considered as independent of the effects
of tree volume in a physical sense. For this reason, independent variables in the context
of regression are sometimes referred as regressor variables and the dependent variable
is called the regressand.
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The dependent variable is usually denoted by y and the independent variable by x.
When only two variables are involved in regression, the functional relationship is
known as simple regression. If the relationship between the two variables is linear, it is
known as simple linear regression, otherwise it is known as nonlinear regression.
When one variable is dependent on two or more independent variables, the functional
relationship between the dependent and the set of independent variables is known as
multiple regression. For the sake of easiness in description, only the case of simple
linear regression is considered here. Reference is made to Montgomery and Peck
(1982) for more complex cases.

3.9.1. Simple linear regression

The simple linear regression of y on x in the population is expressible as

            y x= + +α β ε (3.28)

where α  and β are parameters also known as regression coefficients and ε is a random
deviation possible from the expected relation. But for ε with a mean value of zero,
Equation (3.28) represents a straight line with α as the intercept and β  as the slope of
the line. In other words, α is the expected value of y when x assumes the value zero and
β  gives the expected change in y for a unit change in x. The slope of a linear regression
line may be positive, negative or zero depending on the relation between y and x.

In practical applications, the values of α and β  are to be estimated from observations
made on y and x variables from a sample. For instance, to estimate the parameters of a
regression equation proposed between atmospheric temperature and transpiration rate
of trees, a number of paired observations are made on transpiration rate and
temperature at different times of the day from a number of trees. Let such pairs of
values be designated as (xi, yi); i = 1, 2, . . ., n where n is the number of independent
pairs of observations. The values of α and β  are estimated using the method of least
squares (Montgomery and Peck, 1982) such that the sum of squares of the difference
between the observed and expected value is minimum. In the estimation process, the
following assumptions are made viz., (i) The x  values are non-random or fixed (ii) For
any given x, the variance of y is the same (iii) The y values observed at different values
of x are completely independent. Appropriate changes will need to be made in the
analysis when some of these assumptions are not met by the data. For the purpose of
testing hypothesis of parameters, an additional assumption of normality of errors will
be required.

In effect, the values of α and β  are obtained from the formulae,
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$ $α β= −y x (3.30)

The equation $ $ $y x= +α β  is taken as the fitted regression line which can be used to
predict the average value of the dependent variable, y, associated with a particular value
of the independent variable, x. Generally, it is safer to restrict such predictions within
the range of x values in the data.

The standard errors of  $ $β α and  can be estimated by the following formulae.
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where 
( )

$
$

σ 2

2

1=
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∑ y y

n

i
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n

The standard error of an estimate is the standard deviation of the sampling distribution
of that estimate and is indicative of the extent of reliability of that estimate.

As an example, consider the data presented in Table 3.11 which contain paired values
of photosynthetic rate and  light interception observed on leaves of a particular tree
species. In this example, the dependent variable is photosynthetic rate and the
independent variable is the quantity of light. The computations involved in fitting a
regression line are given in the following.

Step 1. Compute the values of  numerator and denominator of Equation (3.29) using the
sums, sum of squares and sum of products of x and y generated in Table 3.5.

xy
x y
n∑ ∑ ∑

−   = 
( )( )

17559
1372 18903

15
.

. .
−   = 2.6906
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( )
x

x

n
2

2

∑ ∑
−     = 12.70 -  

( )1372
15

2.
= 0.1508

Table 3.11. Data on photosynthetic rate in µ  mol m-2s-1 (y) along with the
measurement of radiation in mol m-2s-1 (x) observed on a tree
species.

X y x2 xy
0.7619 7.58 0.58 5.78
0.7684 9.46 0.59 7.27
0.7961 10.76 0.63 8.57
0.8380 11.51 0.70 9.65
0.8381 11.68 0.70 9.79
0.8435 12.68 0.71 10.70
0.8599 12.76 0.74 10.97
0.9209 13.73 0.85 12.64
0.9993 13.89 1.00 13.88
1.0041 13.97 1.01 14.02
1.0089 14.05 1.02 14.17
1.0137 14.13 1.03 14.32
1.0184 14.20 1.04 14.47
1.0232 14.28 1.05 14.62
1.0280 14.36 1.06 14.77

x∑ = 13.72 y∑ = 189.03 x∑ 2
= 12.70 xy∑ = 175.59

Step 2. Compute the estimate of α and β  using Equations (3.29) and (3.30).

$ .
.

β =
2 6906
01508

  =  17.8422

$α =  12.60 - (17.8421)(0.9148)
    =  -3.7202

The fitted regression line is $ . .y x= − +3 7202 17 8422  which can be used to
predict the value of photosynthetic rate at any particular level of radiation
within the range of data. Thus, the expected photosynthetic rate at 1 mol m-2s-1

of light  would be,
( )$ . .y = − +37202 178422 1 = 14.122

Step 3.  Get an estimate of σ2 as defined in Equation (3.32).

( )
$

$
σ 2

2

1=
−

=
∑ y y

n

i
i

n

= 0.6966
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Step 4. Develop estimates of standard errors of $ $β α and  using Equations (3.31) and
(3.32).

( ) ( )
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x

n

$ $
β
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2

2   =
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12 70
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12 70
15

2

.
.

. −
(13.72)

 = 1.9778

3.9.2. Testing the significance of the regression coefficient

Once the regression function parameters have been estimated, the next step in
regression analysis is to test the statistical significance of the regression function. It is
usual to set the null hypothesis as H0 : β  = 0  against the alternative hypothesis, H1 : β  ≠
0  or (H1 : β  < 0  or H1 : β  > 0, depending on the anticipated nature of relation). For the
testing, we may use  the analysis of variance procedure. The concept of analysis of
variance has already been explained in Section 3.6 but its application in the context of
regression is shown below using the data given in Table 3.11.

Step1. Construct an outline of analysis of  variance table as follows.

Table 3.12. Schematic representation of analysis of variance for regression
analysis.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed F

Due to
regression 1 SSR MSR

MSR
MSE

Deviation from
regression

n-2 SSE MSE

Total n-1 SSTO

Step 2. Compute the different sums of squares as follows.

Total sum of squares = 
( )

SSTO y
y

n
= −

∑∑ 2
2

(3.33)

                                                 = (7.58)2 + (9.46)2 + . . . + (14.36)2 - 
( )189 03

15

2.

                                                             = 58.3514
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Sum of square due to regression = SSR = 
( )

xy
x y
n

x
x

n

−












−

∑∑∑

∑∑

2

2

2 (3.34)

                                                               = 
( )2 6906

01508

2.
.

                                                               = 48.0062

Sum of squares due to deviation from regression = SSE  = SSTO - SSR (3.35)

                                                                               =58.3514 - 48.0062 = 10.3452

Step 3. Enter the values of sums of squares in the analysis of variance table as in Table
3.13 and perform the rest of the calculations.

Table 3.13. Analysis of variance for the regression equation derived for data in
Table 3.11.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed F
at 5%

Due to
regression

1 48.0062 48.0062 60.3244

Deviation from
regression

13 10.3452 0.7958

Total 14 58.3514

Step 4.Compare the computed value of F with tabular value at (1,n-2) degrees of
freedom. For our example, the calculated value (60.3244) is greater than the
tabular value of F of 4.67 at (1,13) degrees of freedom at 5% level of
significance and so the F value is significant. If the computed F value is
significant, then we can state that the regression coefficient, β  is significantly
different from 0. The sum of squares due to regression when expressed as a
proportion of the total sum of squares is known as the coefficient of
determination which measures the amount of variation in y accounted by the
variation in x. In other words, coefficient of determination indicates the
proportion of the variation in the dependent variable explained by the model.
For the present example, the coefficient of determination (R2) is

R
SSR

SSTO
2 =  (3.36)

     =
48 0062
58 3514

.

.
      = 0.8255
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3.10. Analysis of covariance

In  analysis of variance, generally, the significance of any known component of
variation is assessed in comparison to the unexplained residual variation. Hence, proper
control is to be exercised to reduce the magnitude of the uncontrolled variation. Either
the model is expanded by including more known sources of variation or deliberate
control is made on many variables affecting the response. Otherwise, any genuine
group differences would go undetected in the presence of the large residual variation. In
many instances, the initial variation existing among the observational units is largely
responsible for the variation in their further responses and it becomes necessary to
eliminate the influence of inherent variation among the subjects from the comparison of
the groups under consideration. Analysis of covariance is one of the methods used for
the purpose of reducing the magnitude of unexplained error. For instance, in an
experimental context, covariance analysis can be applied when observations on one or
more correlated variables are available from each of the experimental units along with
the observations on the response variable under study. These additional related
variables are called covariates or ancillary or concomitant variables. It is necessary that
these variables are associated with the variable under study. For example, in yield trials,
variation in the initial stocking induced by extraneous factors, residual effects of the
previous crops grown in the site etc., can serve as covariates.

Analysis of covariance is a synthesis of the methods of the analysis of variance and
those of regression. The concept is elaborated here in the context of an experiment with
just one variable under study denoted by y and a single covariate denoted by x. Let
there be t experimental groups to be compared, each group consisting of r experimental
units.  The underlying model in this case could be

            y x eij y i ij x ij= + + − +µ α β µ( )                                                                   (3.37)

where  yij  is the response observed on the jth experimental unit belonging to ith group,
                (i = 1, 2, …, t;  j = 1, 2, …, r)
           µy   is the overall population mean of y,
           αi  is the effect of being in the ith group,
           β    is the within group regression coefficient of y on x
           xij  is the observation on ancillary variate on jth unit of ith group.
           µx is the overall mean of the covariate

eij ‘s are the error components which are assumed to be normally and
independently   distributed with zero mean and a constant variance σ 2 .

Covariance analysis is essentially an extension of the analysis of variance and hence, all
the assumptions for a valid analysis of variance apply here as well. In addition, the
covariance analysis requires that (i) The relationship between the primary character of
interest y and the covariate x is linear (ii) The strength of the relation between y and x
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remains the same in each experimental group (iii) The variation in the covariate should
not have been a result of the group differences.

The steps involved in the analysis of covariance are explained below.

Step 1. The first step in the analysis of covariance is to compute the sum of squares due
to the different components, for the variate y and the covariate x in the usual
manner of  analysis of variance. The computation formulae for the same are
given below.

Total SS of y = SSTO(y) = ( )y C F yij
j

r

i

t
2

11 ==
∑∑ − . .                                          (3.38)

where ( )C F y

y

tr

ij
j

r

i

t

. . =











==
∑∑

11

2

                                                                 (3.39)

Group SS of y = SSG(y) = ( )
y

r
C F y

i
i

t

.

. .

2

1=
∑

−                                               (3.40)

Error SS of y = SSE(y) = SSTO(y) -SSG(y) (3.41)

Total SS of x = SSTO(x) = ( )x C F xij
j

r

i

t
2

11 ==
∑∑ − . .                                          (3.42)

where ( )C F x

x

tr

ij
j

r

i

t

. . =











==
∑∑

11

2

                                                            (3.43)

Group SS of x = SSG(x) = ( )
x

r
C F x

i
i

t

.

. .

2

1=
∑

−                                              (3.44)

Error SS of x = SSE(x) = SSTO(x) - SSG(x)                                              (3.45)

Step 2. Compute the sum of products for x and y as follows.

Total SP = SPTO(xy) = ( )y x C F xyij ij
j

r

i

t

==
∑∑ −

11
. .                                       (3.46)

where ( )C F xy

y x

tr

ij
j

r

i

t

ij
j

r

i
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. . =




















== ==
∑∑ ∑∑

11 11
(3.47)

Group SP = SPG(xy) = ( )
y x

r
C F xy

i i
i

t

. .

. .=
∑

−1                                              (3.48)

Error SP = SPE(xy) = SSTO(xy) - SSG(xy) (3.49)
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Step 3. The next step is to verify whether the covariate is affected by the experimental
groups. If x is not affected by the groups, there should not be significant
differences between groups with respect to x. The regression co-efficient within
groups is computed as

$ ( )
( )

β =
SPE xy
SSE x

                                                                                             (3.50)

The significance of $β  is tested using F-test. The test statistic F is given by

( )

( ) ( )( )
F

SPE xy
SSE x

SSE y
SPE xy
SSE x

t r

=

−











− −

( )
( )

( )
( )
( )

2

2

1 1

(3.51)

The F statistic follows a F distribution with 1 and t(r-1)-1 degrees of freedom.
If the regression coefficient is significant, we proceed to make adjustments in
the sum of squares for y for the variation in x. If not significant, it is not
worthwhile to make the adjustments.

Step 4. Adjusted values for y are computed as follows:

Adjusted total SS of y = Adj. SSTO(y) = SSTO(y) - 
( )SPTO xy

SSTO y
( )
( )

2

          (3.52)

Adjusted error SS of y = Adj. SSE(y) = SSE(y) - 
( )SPE xy

SSE x
( )
( )

2

(3.53)

Adjusted group SS of y = Adj. SSG(y)= Adj. SSTO(y) - Adj. SSE(y) (3.54)

Conventionally, the above results are combined in a single table as in Table
3.14.

Step 5. The adjusted group means are obtained by the formula,
             ( )y y x xi i i' $= − −β (3.55)

The standard error for the difference between two adjusted means is given by :

SE(d) = 
( )

MSE
r r

x x

SSE xi j

i j1 1
2

+ +
−















( )
                                   (3.56)

where the symbols have the usual meanings.

When the number of replications is the same for all the groups and when

averaged over all values of ( )x xi j−
2
we get,
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            SE(d) = ( )
2

1
1

MSE
r

SSG x
t SSE x

+
−











( )
( )

                                                (3.57)

Table 3.14. Analysis of covariance (ANOCOVA) table

Source of variation df Sum of squares and products
y x xy

Total tr-1 SSTO(y) SSTO(x) SPTO(xy)
Group t-1 SSG(y) SSG(x) SPG(xy)
Error t(r-1) SSE(y) SSE(x) SPE(xy)

Table 3.14.  Cond…
Adjusted values for y

Source of variation df SS MS F
Total tr-2 Adj.

SSTO(y)
- -

Group - - - -
Error t(r-1)-1 Adj. SSE(y) MSE -
Adj. Group t-1 Adj. SSG(y)   MSG MSG

MSE

Let us use the data given in Table 3.15 to demonstrate how the analysis of covariance is
carried out. The data represent plot averages based on forty observations of initial
height (x) and height attained after four months (y) of three varieties of ipil ipil,
(Leucaena  leucocephala), each grown in 10 plots in an experimental site.

Table 3.15. Initial height (x) and height after four months (y) in cm of three varieties of
ipil ipil  (Leucaena  leucocephala), in an experimental area.

Plot Variety 1 Variety 2 Variety 3
x y x y x y

1 18 145 27 161 31 180
2 22 149 28 164 27 158
3 26 156 27 172 34 183
4 19 151 25 160 32 175
5 15 143 21 166 35 195
6 25 152 30 175 36 196
7 16 144 21 156 35 187
8 28 154 30 175 23 137
9 23 150 22 158 34 184
10 24 151 25 165 32 184

Total 216 1495 256 1652 319 1789
Mean 21.6 149.5 25.6 165.2 31.2 178.9

The analysis is carried out following the format shown  in Table 3.14. The
computations are demonstrated below:

Step 1.Compute sum of squares for x and y variables using Equations (3.38) to (3.45).
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C.F.(y) = ( )( )
( )4936
3 10

2

 = 812136.5333

SSTO(y)  = (145)2 + (149)2 + . . . + (184)2 - 812136.5333
                            = 7493.4667

SSG(y)  =  
( ) ( ) ( )

.
1495 1652 1789

10
8121365333

2 2 2+ +
−

                         = 4328.4667

SSE(y) = 7493.4667 - 4328.4667
                       = 3615.0

C.F.(x) = ( )( )
( )791
3 10

2

                        = 20856.0333

SSTO(x) = (18)2 + (22)2 + . . . + (32)2 -20.856.0333
                           = 966.9697

SSG(x)   =  
( ) ( ) ( )

.
216 256 319

10
208560333

2 2 2+ +
−

                          = 539.267

SSE(x)   = 966.9697-539.267
                          = 427.7027

Step 2.Compute sum of products for x and y variables using Equations (3.46) to (3.49).

( )C F xy. . =  
( )( )

( )( )
791 4936

3 10
                            = 130145.8667

SPTO(xy)  =  18(145) + 22(149) + . . . +32(184) -130145.8667
                              = 2407.1333

SPG(xy) =  
( ) ( ) ( )216 1495 256 1652 319 1789

10
1301458667

+ +
− .

                          = 1506.44

SPE(xy)  = 2407.1333 - 1506.44 = 900.6933
Step 3. Compute the regression coefficient and test its significance using Equations

(3.50) and (3.51).
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$β  = 
900 6933
427 7027

.
.

                 = 2.1059
           The significance of $β  is tested using F-test. The test statistic F is given by the

Equation (3.51).

            F =  

( )

( )
( )( )

900.6933
427.7027

900.6933
427.7027

2

2

3615 3 10 1 1−








− −

               = 
1896 7578

66 0862
.

.
               = 28.7012

Table value of F with (1,26) degrees of freedom = 9.41 at 5% level of
significance. Here calculated value of F is grater than tabular value and hence β
is significantly different from zero.

Step 4. Compute adjusted sums of squares for the different sources in the ANOCOVA
using Equations (3.52) to (3.54). Summarise the results as in Table 3.14 and
compute mean square values for  group (MSG) and error (MSE) and also the
value of F based on these mean squares.

Adj. SSTO(y) = 74934667
24071333
966 9697

2

.
.
.

−

                                    = 1501.2513

 Adj. SSE(y)    = 3165
900 6933
427 7027

−
.
.

                                    = 1268.2422

Adj. SSG(y)  = 1501.2513 - 1268.2422
                                  = 233.0091

            MSG  = 
233 0091

2
.

 = 116.5046

            MSE  = ( )
1268.2422  
3 10 -1 − 1

                      = 48.7785

            F
MSG
MSE

=
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                 = 
116 5046
48 7785

.
.

                 = 2.39

Table 3.16. Analysis of covariance table for the data in Table 3.15.

Sources
of

variation

df Sum of squares and products Adjusted values for y

y x xy df SS MS F
Total 29 7493.467 966.970 2407.133 2

8
1501.25 - -

Group 2 4328.467 539.267 1506.440 - - - -
Error 27 3615.000 427.703 900.693 2

6
1268.24 48.8 -

Group adjusted for the covariate 2 233.009 116.5 2.4

The value of F for (2,26) degrees of freedom at 5% level of significance is 3.37.
Since the observed F value, 2.4, is less than the critical value, we conclude that
there are no significant differences among the varieties.

Step 5. Get the adjusted group means and standard error of the difference between any
two adjusted group means by using Equations (3.55) and (3.57).

( )y y x x1 1 1' $= − −β   = 149.5 - 2.1059(21.6 - 26.37) = 159.54

( )y y x x2 2 2' $= − −β  = 165.2 - 2.1059(25.6 - 26.37) = 166.82

            ( )y y x x3 3 3' $= − −β  = 178.9 - 2.1059(31.2 - 26.37) = 168.73

SE(d) = ( )
2

1
1

MSE
r

SSG x
t SSE x

+
−











( )
( )

          = 
( )

( )( )
2 488

10
1

539267
3 1 427 703

( . ) .
.

+
−









  = 3.9891

The standard error of the difference between group means will be useful in
pairwise comparison of group means as explained in Chapter 4.

3.11 Analysis of repeated measures

Repeated measurements of observational units are very frequent in forestry research.
The term repeated is used to describe measurements which are made of the same
characteristic on the same observational unit but on more than one occasion. In
longitudinal studies, individuals may be monitored over a period of time to record the
changes occurring in their states. Typical examples are periodical measurements on
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diameter or  height  of trees in a silvicultural trial, observations on disease progress on a
set of seedlings in a nursery trial, etc. Repeated  measures may be spatial rather than
temporal. For instance, consider measurements on wood characteristics of several stems
at the bottom, middle and top portion of each stem and each set of stems coming from a
different species. Another example would be that of soil properties observed from
multiple core samples at  0-15, 15-50 and 50-100 cm depth from different types of
vegetation.
The distinctive feature of repeated measurements is the possibility of correlations
between successive measurements over space or time. Autocorrelation among the
residuals arising on account of repeated measurements on the same experimental units
leads to violation of the basic assumption of independence of errors for conducting an
ordinary analysis of variance. However, several different ways of analysing repeated
measurements are available. These methods vary in their efficiency and appropriateness
depending upon the nature of data. If the variance of errors at each of the successive
measurements is the same and also the covariances between errors of different
measurement occasions are the same, one may choose to subject the data to a
‘univariate mixed model analysis’. In case the errors are unstructured, a multivariate
analysis is suggestible taking repeated measurements as different characters observed
on the same entities (Crowder and Hand, 1990). The details of univariate analysis are
illustrated below under a simplified observational set up whereas the reader is referred
to (Crowder and Hand, 1990) for multivariate analysis in this context.

The general layout here is that of n individuals x p occasions with the individuals
divided into t groups of size ni  (i = 1, 2, …, t). Let the hypothesis to be tested  involve a
comparison among the groups. The model used is

yijk  = µ + αi+ eij +  βj + γij + eijk (3.58)

where  yijk is the observation on kth individual in the ith group at jth occasion;
                 ( i =1, …, t, j =1, …, p, k =1, …, ni.)

µ  is the general mean,
αi  is the effect of ith level of the factor ‘group’,
β j   is the effect of jth level of the factor ‘occasion’,
γij  is the interaction effect for the ith level of the factor ‘group’ and jth level of
the factor ‘occasion’. This term measures the differences between the groups
with respect to their pattern of response over occasions. More elaborate
discussion on interaction is included in Chapter 4.

In model (3.58), the random component eij  are assumed to be independently and
normally distributed with mean zero and varianceσe

2  and eijk is the random error
component which is also assumed to be independently and normally distributed with
mean zero and variance σw

2 .  In the model,  αi ’s and  β j
’s are  assumed to be fixed.

Let yi..  denote the total of all observations under the ith level of factor, group;  y.j.

denote the total of all observations under the jth level of factor occasion;   yij.   denote
the total of  all observations in the (ij)th cell;  y… denote the grand total of all the
observations. These notations are expressed mathematically as



A Statistical Manual For Forestry Research

64

yi..  = yijk
k

n

j

p i

∑∑ ,  y.j. = y ijk
k

n

i

t i

∑∑ ,  yij. = yijk
k

ni

∑ ,  y… = yijk
k

n

j

p

i

t i

∑∑∑

The univariate mixed model ANOVA is shown below.

Table 3.17. Schematic representation of univariate mixed model analysis of variance.

Sources of variation Degrees of
freedom

Sum of
squares

Mean sum of squares F-ratio

Group t-1  SSG
MSG

SSG
t

=
− 1

MSG
MSEa

Individuals within
groups ( )ni

i
−∑ 1

SSEa

( )MSE
SSE

na
a

i
i

=
−∑ 1

Occasion p-1  SSO  MSO   =
SSO
p − 1

MSO
MSEb

Occasion  x Group (t-1)(p-1) SSOG MSOG = 
( )( )

SSOG

t p− −1 1
MSOG
MSEb

Occasion x
Individuals within
groups

( ) ( )p ni
i

− −∑1 1  SSEb ( ) ( )MSE
SSE

p nb
b

i
i

=
− −∑1 1

Total p ni
i

−∑ 1  SSTO

The computational formulae for the sum of squares in the above table are as follows,

SSTO  = yijk
kji

2∑∑∑ −
y

p ni
i

...
2

∑ (3.59)

SSG =
y
pn

i

ii

..
2

∑ −
y

p ni
i

...
2

∑  (3.60)

SSEa = 
y
p

y
pn

i k i

iiki

. ..
2 2

− ∑∑∑ (3.61)
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SSO =
y

n
y

p n
j

i
i

j i
i

. . ...
2 2

∑∑ ∑− (3.62)

SSOG  = 
y
n
ij

iji

2

∑∑ −
y
pn

i

ii

...
2

∑  − +∑∑ ∑
y

n
y

p n
j

i
i

j i
i

. , ...
2 2

(3.63)

SSEb =  SST - SSG - SSEa - SSO - SSOG (3.64)

For illustration of the analysis, consider the data given in Table 3.18. The data represent
the mycelial growth (mm) of five isolates of Rizoctonia solani on PDA medium after
14, 22, 30 and 38 hours of incubation, each isolate grown in three units of the medium.
Here, the isolates represent ‘groups’ and different time points represent the ‘occasions’
of Table 3.17.

Table 3.18. Data on mycelial growth (mm) of five groups of R. solani
isolates on PDA medium.

Mycelial growth (mm) observed at different
occasions

R. Solani
isolate

PDA unit 14 hr. 22 hr. 30 hr. 38 hr.

1 1 29.00 41.00 55.00 68.50
2 28.00 40.00 54.00 68.50
3 29.00 42.00 55.00 69.00

2 1 33.50 46.50 59.00 74.00
2 31.50 44.50 58.00 71.50
3 29.00 42.50 56.50 69.00

3 1 26.50 38.00 48.50 59.50
2 30.00 40.00 50.00 61.00
3 26.50 38.00 49.50 61.00

4 1 48.50 67.50 75.50 83.50
2 46.50 62.50 73.50 83.50
3 49.00 65.00 73.50 83.50

5 1 34.00 41.00 51.00 61.00
2 34.50 44.50 55.50 67.00
3 31.00 43.00 53.50 64.00

Total 506.50 696.00 868.00 1044.50

Analysis of the above data can be conducted as follows.

Step 1. Compute the total sum of squares using Equation (3.59) with values of Table
3.18.
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SSTO  = ( ) ( ) . . . ( )
( . )

( )( )
29 28 64

311500
4 15

2 2
2

2 + + + −    

                       =   14961.58

Step 2.Construct an Isolate x PDA unit two-way table of totals by summing up the
observations over different occasions and compute the marginal totals as shown
in Table 3.19. Compute SSG and SSEa using the values in this table and
Equations (3.60) and (3.61).

Table 3.19. The Isolate x PDA unit totals computed from data in Table 3.18.

Isolates
PDA unit 1 2 3 4 5 Total

1 193.50 213.00 172.50 275.00 187.00 1041.00
2 190.50 205.50 181.00 266.00 201.50 1044.50
3 195.00 197.00 175.00 271.00 191.50 1029.50

Total 579.00 615.50 528.50 812.00 580.00 3115.00

SSG  =
 (579.00) + (615.50) +  . . . + (580.00) 

(4)(3)
(3115.00)

(4)(15)

2 2 2

−

= 4041.04

SSEa =
+ + +

−

+ + +

( . ) ( . ) ... ( . )

( . ) ( . ) ... ( . )
( )( )

19350 19050 19150
4

579 00 61500 58000
4 3

2 2 2

2 2 2

               

          = 81.92

Step 3. Form the Isolate x Occasion two-way table of totals and compute the marginal
totals as shown in Table 3.20. Compute SSO, SSOG and SSEb using Equations
(3.62) to (3.64).

Table 3.20. The Isolate x Occasion table of  totals computed from data
in Table 3.18

Occasion
Isolate 14 hr. 22 hr. 30 hr. 38 hr. Total

1 86.00 123.00 164.00 206.00 579.00
2 94.00 133.50 173.50 214.50 615.50
3 83.00 116.00 148.00 181.50 528.50
4 144.00 195.00 222.50 250.50 812.00
5 99.50 128.50 160.00 192.00 580.00

Total 506.50 696.00 868.00 1044.50 3115.00
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SSO  =
(506.50) + (696.00) + (868.00) + (1044.50)

15
(3115.00)

(4)(15)

2 2 2 2 2

−

         = 10637.08

SSOG  =
( . ) ( . ) . . . ( . )86 00 94 00 192 00

3

2 2 2+ + +    

                                      − −
(579.00) + (615.50) +...+(580.00)

10637.08
2 2 2

( )( )4 3
                        = 172.46

SSEb = 14961.58 - 4041.04 - 81.92 -10637.08 -172.46
                     =  29.08

Step 4. Summarise the results as in Table 3.21 and perform the remaining calculations
to obtain the mean squares and F-ratios using the equations reported in Table
3.17.

            Table 3.21. ANOVA table for the data in Table 3.18.

Sources of variation Degrees of
freedom

Sum of
squares

Mean sum
of squares

F-ratio

Group 4 4041.04 1010.26 123.33*

Individuals within groups 10 81.92 8.19

Occasion 3 10637.08 3545.69 3657.45*

Occasion  x Group 12 172.46 14.37 14.82*

Occasion x Individuals within
groups

30 29.08 0.97

Total 59 14961.58

Compare the computed values of F with tabular values of F with corresponding
degrees of freedom at the desired probability level. All the computed F values
in the above table are greater than corresponding tabular F values. Hence, we
conclude that the variation due to groups, occasion and their interaction are
significant meaning essentially that the isolates differ in their growth pattern
across time.

4.  DESIGN AND ANALYSIS OF EXPERIMENTS

Planning an experiment to obtain appropriate data and drawing inference out of the data
with respect to any problem under investigation is known as design and analysis of
experiments. This might range anywhere from the formulations of the objectives of the
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experiment in clear terms to the final stage of the drafting reports incorporating the
important findings of the enquiry. The structuring of the dependent and independent
variables, the choice of their levels in the experiment, the type of experimental material
to be used, the method of the manipulation of the variables on the experimental
material, the method of recording and tabulation of data, the mode of analysis of the
material, the method of drawing sound and valid inference etc. are all intermediary
details that go with the design and analysis of an experiment.

4.1 Principles of experimentation

Almost all experiments involve the three basic principles, viz., randomization,
replication and local control. These three principles are, in a way, complementary to
each other in trying to increase the accuracy of the experiment and to provide a valid
test of significance, retaining at the same time the distinctive features of their roles in
any experiment. Before we actually go into the details of these three principles, it
would be useful to understand certain generic terms in the theory experimental designs
and also understand the nature of variation among observations in an experiment.

Before conducting an experiment, an experimental unit is to be defined. For example, a
leaf, a tree or a collection of adjacent trees may be an experimental unit. An
experimental unit is also sometimes referred as plot. A collection of plots is termed a
block. Observations made on experimental units vary considerably. These variations are
partly produced by the manipulation of certain variables of interest generally called
treatments, built-in and manipulated deliberately in the experiment to study their
influences. For instance, clones in clonal trials, levels and kinds of fertilizers in
fertilizer trials etc. can be called treatments. Besides the variations produced in the
observations due to these known sources, the variations are also produced by a large
number of unknown sources such as  uncontrolled variation in extraneous factors
related to the environment, genetic variations in the experimental material other than
that due to treatments, etc. They are there, unavoidable and inherent in the very process
of experimentation. These variations because of their undesirable influences are called
experimental error thereby meaning not an arithmetical error but variations produced
by a set of unknown factors beyond the control of the experimenter.

It is further interesting to note that these errors introduced into the experimental
observations by extraneous factors may be either systematic or random in their mode of
incidence. The errors arising due to an equipment like a spring balance which goes out
of calibration due to continued use or the error due to observer’s fatigue are examples
of systematic error. On the other hand, the unpredictable variation in the amount of
leaves collected in litter traps under a particular treatment in a related experiment is
random in nature. It is clear that any number of repeated measurements would not
overcome systematic error where as it is very likely that the random errors would
cancel out with repeated measurements. The three basic principle viz., randomization,
replication and local control are devices to avoid the systematic error and to control the
random error.
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4.1.1. Randomization

Assigning the treatments or factors to be tested to the experimental units according to
definite laws or probability is technically known as randomization. It is the
randomization in its strict technical sense, that guarantees the elimination of systematic
error. It further ensures that whatever error component that still persists in the
observations is purely random in nature. This provides a basis for making a valid
estimate of random fluctuations which is so essential in testing of significance of
genuine differences.

Through randomization, every experimental unit  will have the same chance of
receiving  any treatment. If, for instance, there are five  clones of eucalyptus to be tried
in  say  25  plots,  randomization  ensures  that certain clones  will  not  be  favoured
or handicapped by extraneous sources of variation over  which the  experimenter  has
no control or over which he chooses not to exercise his control. The  process of random
allocation may be done in several ways, either by  drawing  lots  or  by drawing
numbers from a page of random numbers, the page itself being selected at random. The
method is illustrated in later sections dealing with individual forms of experimental
designs.

4.1.2.  Replication

Replication is the repetition of experiment under identical conditions but in the context
of experimental designs, it refers to the number of distinct experimental units under the
same treatment. Replication, with randomization, will provide a basis for estimating the
error variance. In the absence of randomization, any amount of replication may not lead
to a true estimate of error. The greater the number of replications, greater is the
precision in the experiment.

The number of replications to be included in any experiment depends upon many
factors like the homogeneity of experimental material, the number of treatments, the
degree of precision required etc.  As a rough rule, it may be stated that the number of
replications in a design should provide at least 10 to 15 degrees of freedom for
computing the experimental error variance.

4.1.3. Local control

Local control means the control of all factors except the ones about which we are
investigating.  Local control, like replication is yet another device to reduce or control
the variation due to extraneous factors and increase the precision of the experiment. If,
for instance, an experimental field is heterogeneous with respect of soil fertility, then
the field can be divided into smaller blocks such that plots within each block tend to be
more homogeneous. This kind of homogeneity of plots (experiment units) ensures an
unbiased comparison of treatment means, as otherwise it would be difficult to attribute
the mean difference between two treatments solely to differences between treatments
when the plot differences also persist. This type of local control to achieve
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homogeneity of experimental units, will not only increase the accuracy of the
experiment, but also help in arriving at valid conclusions.

In short, it may be mentioned that while randomization is a method of eliminating a
systematic error  (i.e., bias) in allocation thereby leaving only random error component
of variation, the other two viz., replication and local control try to keep this random
error as low as possible. All the three however are essential for making a valid estimate
of error variance and to provide a valid test of significance.

4.2. Completely randomized design

A completely randomized design (CRD) is one where the treatments are assigned
completely at random so that each experimental unit has the same chance of receiving
any one treatment. For the CRD, any difference among experimental units receiving the
same treatment is considered as experimental error. Hence, CRD is appropriate only for
experiments with homogeneous experimental units, such as laboratory experiments,
where environmental effects are relatively easy to control. For field experiments, where
there is generally large variation among experimental plots in such environmental
factors as soil, the CRD is rarely used.

4.2.1. Layout

The step-by-step procedure for randomization and layout of a CRD are given here for a
pot culture experiment with four treatments A, B, C and D, each replicated five times.

Step 1. Determine the total number of experimental plots (n) as the product of the
number of treatments (t) and the number of replications (r); that is, n = rt. For
our  example, n = 5 x 4 = 20. Here, one pot with a single plant in it may be
called a plot. In case the number of replications is not the same for all the
treatments, the total number of experimental pots is to be obtained as the sum of
the replications for each treatment. i.e.,

n ri
i

t

=
=
∑

1
 where ri  is the number of times the ith treatment replicated

Step 2. Assign a plot number to each  experimental plot in  any  convenient manner;
for example, consecutively from 1 to n.

Step 3. Assign the treatments to the experimental plots randomly using a table of
random numbers as follows. Locate a starting point in a table of random
numbers (Appendix 6) by closing your eyes and pointing a finger to any
position in a page. For our example, the starting point is taken at the intersection
of the sixth row and the twelfth (single) column of two-digit numbers. Using the
starting point obtained, read downward vertically to obtain n = 20 distinct two-
digit random numbers.  For our example, starting at the intersection of the sixth
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row and the twelfth column, the 20 distinct two-digit random numbers are as
shown here together with their corresponding sequence of appearance.

Random number :      37,    80,     76,   02,    65,     27,   54,   77,     48,    73,
Sequence         :        1,      2,      3,     4,      5,      6,     7,      8,      9,     10,

Random number :     86,    30,    67,    05,    50,   31,     04,   18,    41,    89
Sequence          :     11,    12,    13,    14,    15,   16,     17,   18,    19,    20

Rank the n random numbers obtained in ascending or descending order. For our
example, the 20 random numbers are ranked from the smallest to the largest, as
shown in the following:

Random
Number

Sequence Rank Random
Number

Sequence Rank

 37 1 8 86 11 19
80 2 18 30 12 6
76 3 16 67 13 14
02 4 1 05 14 3
65 5 13 50 15 11
27 6 5 31 16 7
54 7 12 04 17 2
77 8 17 18 18 4
48 9 10 41 19 9
73 10 15 89 20 20

Divide the n ranks derived into t groups, each consisting of r numbers,
according to the sequence in which the random numbers appeared.  For our
example, the 20 ranks are divided into four groups, each consisting of five
numbers, as follows:

Group
Number

Ranks in the Group

1 8 13 10 14 2
2 18 5 15 3 4
3 16 12 19 11 9
4 1 17 6 7 20

Assign the t treatments to the n experimental plots, by using the group number
as the treatment number and the corresponding ranks in each group as the plot
number in which the corresponding treatment is to be assigned.  For our
example, the first group is assigned to treatment A and plots numbered 8, 13,
10, 14 and 2 are assigned to receive this treatment; the second group is assigned
to treatment B with plots numbered 18, 5, 15, 3 and 4; the third group is
assigned to treatment C with  plots numbered 16, 12, 19, 11 and 9; and the
fourth group to treatment D with plots numbered 1, 17, 6, 7 and 20.  The final
layout of the experiment is shown Figure 4.1.
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Plot no
Treatment

1
          D

2
          A

3
          B

4
           B

5
B

6
          D

7
          D

8
           A

9
           C

10
          A

11
          C

12
           C

13
          A

14
          A

15
          B

16
           C

17
          D

18
          B

19
          C

20
           D

Figure 4.1. A sample layout of a  completely  randomised
design with four treatments (A, B, C and D)
each replicated five times

4.2.2. Analysis of variance

There  are  two sources of variation among the n observations obtained from a CRD
trial.  One is the variation due to treatments, the other is experimental error. The
relative size of the two is used to indicate whether the observed difference among
treatments is real or is due to chance. The treatment difference is said to be real if
treatment variation is sufficiently larger than experimental error.

A major  advantage  of  the  CRD  is  the  simplicity in the computation of its analysis
of variance, especially when the number of replications is not uniform for all
treatments.  For most other designs, the analysis of variance becomes complicated
when the loss of data in some plots results in unequal replications among the treatments
tested.

The steps  involved  in the  analysis  of  variance  for  data from a CRD experiment
with  unequal  number of replications are given below. The formulae are easily
adaptable to the  case of equal replications and hence not shown separately. For
illustration, data from a laboratory experiment are used, in which observations were
made on mycelial growth  of   different  Rizoctonia solani  isolates on PDA medium
(Table 4.1).

Step 1. Group the data by treatments and calculate the treatment totals (Ti) and grand
total (G).  For our example, the results are shown in Table 4.1 itself.

Step 2. Construct an outline of ANOVA table as in Table 4.2.

Table 4.1. Mycelial growth in terms of diameter of the colony (mm) of R. solani
isolates on PDA medium after 14 hours of incubation.

R. solani Mycelial growth Treatment Treatment
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isolates total mean
Repl. 1 Repl. 2 Repl. 3  (Ti)

RS 1 29.0 28.0 29.0   86.0 28.67
RS 2 33.5 31.5 29.0   94.0 31.33
RS 3 26.5 30.0   56.5 28.25
RS 4 48.5 46.5 49.0 144.0 48.00
RS 5 34.5 31.0  65.5 32.72

Grand total 446.0
Grand mean 34.31

Table 4.2. Schematic representation of ANOVA of CRD with unequal
replications.

Source of
variation

Degree of
freedom

(df)

Sum of squares
(SS)

Mean square

MS
SS
df

=








Computed
F

Treatment t - 1 SST  MST MST
MSE

Error n - t SSE  MSE

Total n - 1 SSTO

Step 3.With the treatment totals (Ti) and the grand total (G) of Table 4.1, compute the
correction factor and the various sums of squares, as follows. Let yij represent
the observation on the jth  PDA  medium  belonging  to  the  ith  isolate; i = 1,
2, …, t ;  j = 1, 2, …, ri..

C. F.
G
n

2
=                                                                                         (4.1)

         
( )

=
446

13

2

                    = 15301.23

SSTO y C. F.ij
2

j

ri

= −
==

∑∑
1i

t

1
                                                                  (4.2)

          = ( ) ( ) ( )[ ]29.0 28.0 ... 31.0 153012 2 2+ + + − .23

          = 789.27

SST  = 
T
r

C. F.i
2

ii 1

t

−
=
∑                                                           (4.3)
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        = 
( ) ( ) ( )86

3
94

3
...

65.5
2

15301
2 2 2

+ + +












− .23

        = 762.69

SSE  = SSTO - SST                                                  (4.4)

        = 789.27 - 762.69 = 26.58

Step 4. Enter all the values of sums of squares in the ANOVA table and compute the
mean squares and F  value as shown in the Table 4.2.

Step 5. Obtain the tabular F values from Appendix 3, with f1 and f2 degrees of freedom
where f1 = treatment df  = (t - 1) and f2 = error df = (n - t), respectively. For our
example, the tabular F value with f1 = 4 and f2 = 8 degrees of freedom is 3.84 at
5% level of significance. The above results are shown in Table 4.3.

Table 4.3. ANOVA  of mycelial growth data of Table 4.1.

Source of
variation

Degree of
freedom

Sum of
squares

Mean
square

Computed
F

Tabular  F
5%

Treatment 4 762.69 190.67 57.38* 3.84
Error 8 26.58 3.32
Total 12 789.27

           * Significant at 5% level

Step 7. Compare the computed F value of Step 4 with the tabular F value of Step 5, and
decide on the significance of the difference among treatments using the
following rules:

(i) If the computed F value is larger than the tabular F value at 5% level of
significance, the variation due to treatments is said to be significant. Such a
result is generally indicated by placing an asterisk on the computed F value in
the analysis of variance.

(ii) If the computed F value is smaller than or equal to the tabular F value at 5%
level of significance, the variation due to treatments is said to be nonsignificant.
Such a result is indicated by placing ns on the computed F value in the analysis
of variance or by leaving the F value without any such marking.

Note that a nonsignificant F in the analysis of variance indicates the failure of
the experiment to detect any differences among treatments. It does not, in any
way, prove that all treatments are the same, because the failure to detect
treatment differences based on the nonsignificant F test, could be the result of
either a very small or no difference among the treatments or due to large
experimental error, or both. Thus, whenever the F test is nonsignificant, the
researcher should examine the size of the experimental error and the numerical
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differences among the treatment means. If both values are large, the trial may be
repeated and efforts  made to reduce the experimental error so that the
differences among treatments, if any, can be detected. On the other hand, if both
values are small, the differences among treatments are probably too small to be
of any economic value and, thus, no additional trials are needed.

For our example, the computed F value of 57.38 is larger than the tabular F
value of 3.84 at the 5% level of significance. Hence, the treatment differences
are said to be significant. In other words, chances are less than 5 in 100 that all
the observed differences among the five treatment means could be due to
chance. It should be noted that such a significant F test verifies the existence of
some differences among the treatments tested but does not specify the particular
pair (or pairs) of treatments that differ significantly. To obtain this information,
procedures for comparing treatment means, discussed in Section 4.2.3. are
needed.

Step 8. Compute the grand mean and the coefficient of variation (cv) as follows:

Grand mean = 
G
n

                                                                      (4.5)

cv  = 
MSE

Grand mean
(100)                                                   (4.6)

            For our example,

Grand mean = 
446
13

34= .31

cv   = 
3.32

34.31
(100) 5= .31%

The cv affects the degree of precision with which the treatments are compared
and is a good index of the reliability of the experiment. It is an expression of the
overall experimental error as percentage of the overall mean; thus, the higher
the cv value, the lower is the reliability of the experiment. The cv varies greatly
with the type of experiment, the crop grown, and the characters measured. An
experienced researcher, however, can make a reasonably good judgement on the
acceptability of a particular cv value for a given type of experiment.
Experimental results having a cv value of more than 30 % are to be viewed with
caution.

4.2.3. Comparison of treatments

One of the most commonly used test procedures for pair comparisons in forestry
research is the least significant difference (LSD) test. Other test procedures, such as
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Duncan’s multiple range test (DMRT), the honestly significant difference (HSD) test
and the Student-Newman-Keuls range test, can be found in Gomez and Gomez (1980),
Steel and Torrie (1980) and Snedecor and Cochran (1980). The LSD test is described in
the following.

The LSD test is the simplest of the procedures for making pair comparisons. The
procedure provides for a single LSD value, at a prescribed level of significance, which
serves as the boundary between significant and nonsignificant difference between any
pair of treatment means. That is, two treatments are declared significantly different at a
prescribed level of significance if their difference exceeds the computed LSD value,
otherwise they are not considered significantly different.

The LSD test is most appropriate for making planned pair comparisons but, strictly
speaking, is not valid for comparing all possible pairs of means, especially when the
number of treatments is large. This is so because the number of possible pairs of
treatment means increases rapidly as the number of treatments increases. The
probability that, due to chance alone, at least one pair will have a difference that
exceeds the LSD value  increases  with  the  number  of  treatments  being  tested.  For
example, in experiments where no real difference exists among all treatments, it can be
shown that the numerical difference between the largest and the smallest treatment
means is expected to exceed the LSD value at the 5% level of significance 29% of the
time when 5 treatments are involved, 63% of the time when 10 treatments are involved
and 83% of the time when 15 treatments are involved. Thus one must avoid use of the
LSD test for comparisons of all possible pairs of means. If the LSD test must be used,
apply it only when the F test for treatment effect is significant and the number of
treatments is not too large, say, less than six.

The procedure for applying the LSD test to compare any two treatments, say the ith and
the jth treatments, involves the following steps:

Step 1. Compute the mean difference between the ith and the jth treatment as:

dij = −y yi j                                                                  (4.7)
            where yi and jy  are the means of the ith and the jth treatments.

Step 2. Compute the LSD value at α level of  significance as:

( )( )LSDα α= t sv; d
                                                                        (4.8)

where sd  is the standard error of the mean difference and tv; α is the Student’s t
value, from Appendix 2, at α  level of significance and with v = Degrees of
freedom for error.

Step 3. Compare the mean difference computed in Step 1 with the LSD value computed
in Step 2 and declare the ith and jth treatments to be significantly different at the
α  level of significance, if the absolute value of dij  is greater than the LSD
value.
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In applying the foregoing procedure, it is important that the appropriate standard error
of the mean difference (sd )for the treatment pair being compared is identified. This
task is affected by the experimental design used, the number of replications of the two
treatments being compared, and the specific type of means to be compared. In the case
of CRD, when the two treatments do not have the same number of replications, sd is
computed as:

s s
r rd

2

i j

= +(
1 1

)                                                                            (4.9)

where ri and rj are the number of replications of the ith and the jth treatments and s2 is
the error mean square in the analysis of variance.

As an example, use the data from Table 4.1. The researcher wants to compare the five
isolates of R. solani, with respect to the mycelial growth on PDA medium. The steps
involved in applying the LSD test would be the following.

Step 1. Compute the mean difference between each pair of treatments (isolates) as
shown in  Table 4.4.

Step 2. Compute the LSD value at α level of significance. Because some treatments
have three replications and others have two, three sets of LSD values must be
computed.

For comparing  two treatments each having three replications, compute the LSD
value as follows.

( )
LSD 2.31

2 3.32
3

3  mm.05 = = .44

where the value of s2 = 3.32  is  obtained   from  Table  4.3  and  the Student’s t
value  of  2.31   for  8 degrees of freedom at 5%  level is obtained from
Appendix 2.

For comparing  two treatments each having three replications, compute the LSD
value as follows.

( )
LSD 2.31

2 3.32
2

 mm.05 = = 4 21.

For comparing two treatments one having two replications and the other having
three replications, the LSD value is,

( )LSD 2.31 3 1 / 3 1 / 2.05 = +.32
            = 3.84 mm

Step 3. Compare difference between each pair of treatments computed in Step 1 to the
corresponding LSD values computed in Step 2 and place the appropriate
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asterisk notation. For example, the mean difference between the first treatment
(with three replications) and the second treatment (with three  replications) is
2.66 mm. Since the mean difference is less than the corresponding LSD value of
3.44 mm it is declared to be nonsignificant at 5% level of significance. On the
other hand, the mean difference between the first treatment (with three
replications) and the second treatment (with two replications) is, 4.05 mm.
Since the mean difference is higher than the corresponding LSD value of 3.84,
it is declared to be significant at the 5% level and is indicated with asterisks.
The test results for all pairs of treatments are given in Table 4.4.

Table 4.4. Comparison  between mean diameter (mm) of each pair of
treatments  using the LSD test with unequal replications, for data in
Table 4.1.

  Treatment RS 1 RS 2 RS 3 RS 4 RS 5

RS 1 0.00 2.66
(3.44)

0.42
(3.84)

19.33*
(3.44)

4.05*
(3.84)

RS 2 0.00 3.08
(3.84)

16.67*
(3.44)

1.39
(3.84)

RS 3 0.00 19.75*
(3.84)

4.47*
 (4.21)

RS 4 0.00 15.28*
(3.84)

RS 5 0.00

           * Significant at 5% level
           Note: The values in the parenthesis are LSD values

Before leaving this section, one point useful in deciding the number of replications
required in an experiment for achieving reasonable level of reliability is mentioned
here. As indicated earlier, one thumb rule is to take that many replications which will
make the error degrees of freedom around 12. The idea behind this rule is that critical
values derived from some of the distributions like Student’s t  or F almost stabilize
after 12 degrees of freedom thereby providing some extent of stability to the
conclusions drawn from such experiments. For instance, if one were to plan a CRD
with equal replications for t treatments, one would equate the error df of t(r-1) to 12 and
solve for r for known values of t. Similar strategies can be followed for many other
designs also that are explained in later sections.

4.3. Randomized complete block design

The randomized complete block design (RCBD) is one of the most widely used
experimental designs in forestry research. The design is especially suited for field
experiments where the number of treatments is not large and there exists a conspicuous
factor based on which homogenous sets of experimental units can be identified. The
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primary distinguishing feature of the RCBD is the presence of blocks of equal size,
each of which contains all the treatments.

4.3.1 Blocking technique

The purpose of blocking is to reduce the experimental error by eliminating the
contribution of known sources of variation among the experimental units. This is done
by grouping the experimental units into blocks such that variability within each block is
minimized and variability among blocks is maximized. Since only the variation within
a block becomes part of the experimental error, blocking is most effective when the
experimental area has a predictable pattern of variability.

An ideal source of variation to use as the basis for blocking is one that is large and
highly predictable. An example is soil heterogeneity, in a fertilizer or provenance trial
where yield data is the primary character of interest. In the case of such experiments,
after identifying the specific source of variability to be used as the basis for blocking,
the size and the shape of blocks must be selected to maximize variability among blocks.
The guidelines for this decision are (i) When the gradient is unidirectional (i.e., there is
only one gradient), use long and narrow blocks. Furthermore, orient these blocks so that
their length is perpendicular to the direction of the gradient. (ii) When the fertility
gradient occurs in two directions with one gradient much stronger than the other, ignore
the weaker gradient and follow the preceding guideline for the case of the
unidirectional gradient. (iii) When the fertility gradient occurs in two directions with
both gradients equally strong and perpendicular to each other, use blocks that are as
square as possible or choose other designs like latin square design (Gomez and Gomez,
1980).

Whenever blocking is used, the identity of the blocks and the purpose for their use must
be consistent throughout the experiment. That is, whenever a source of variation exists
that is beyond the control of the researcher, it should be ensured that such variation
occurs among blocks rather than within blocks.  For example, if certain operations such
as application of insecticides or data collection cannot be completed for the whole
experiment in one day, the task should be completed for all plots of the same block on
the same day. In this way, variation among days (which may be enhanced by weather
factors) becomes a part of block variation and is, thus, excluded from the experimental
error. If more than one observer is to make measurements in the trial, the same observer
should be assigned to make measurements for all plots of the same block. This way, the
variation among observers if any, would constitute a part of block variation instead of
the experimental error.

4.3.2. Layout

The randomization process for a RCBD is applied separately and independently to each
of the blocks. The procedure is illustrated for the case of a field experiment with six
treatments A, B, C, D, E, F and three replications.
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Step1. Divide the experimental area into r equal blocks, where r is the number of
replications, following the blocking technique described in Section 4.3.1. For
our example, the experimental area is divided into three blocks as shown in
Figure 4.2. Assuming that there is a unidirectional fertility gradient along the
length of the experimental field, block shape is made rectangular and
perpendicular to the direction of the gradient.

Gradient

         Block I  Block II   Block III
Figure 4.2. Division of an experimental area into three blocks, each

consisting of six plots, for a randomized complete block design
with six treatments and three replications. Blocking is done such
that blocks are rectangular and perpendicular to the direction of
the unidirectional gradient (indicated by the arrow).

Step2. Subdivide the first block into t experimental plots, where t is the number of
treatments.  Number the t plots consecutively from 1 to t, and assign t
treatments at random to the t plots following any of the randomization schemes
for the CRD described in Section 4.2.1. For our example, block I is subdivided
into six equisized plots, which are numbered consecutively from top to bottom.
(Figure 4.3) and the six treatments are assigned at random to the six plots using
the table of random numbers as follows:

1
             C

2
             D

3
             F

4
             E

5
             B

6
            A

Block I

Figure 4.3. Plot numbering and random assignment of six
treatments (A, B, C, D, E, and F) to the six
plots of Block I.
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Step 3. Repeat Step 2 completely for each of the remaining blocks. For our example,
the final layout is shown in Figure 4.4.

1 7 13
C A F

2 8 14
D E D

3 9 15
F F C

4 10 16
E C A

5 11 17
B D B

6 12 18
A B E

Block I Block II Block III

 Figure 4.4. A sample layout of a randomized complete block design with six
treatments (A, B, C, D, E and F) and three replications.

4.3.3. Analysis of variance

There  are  three  sources of variability in a RCBD : treatment, replication (or block)
and  experimental  error.  Note  that  this  is  one more than that for a CRD, because of
the addition of replication, which corresponds to the variability among blocks.

To illustrate the steps involved in the analysis of variance for data from a RCBD, data
from an experiment is made use of, wherein eight provenances of Gmelina arborea
were compared with respect to the girth at breast-height (gbh) of the trees attained since
6 years of planting (Table 4.5).

Table 4.5. Mean gbh (cm) of trees in plots of provenances of Gmelina arborea,
6 years  after planting, in a field experiment laid out under RCBD.

Treatment
(Provenance) Replication

Treatment
total

Treatment
mean

I II III (Ti)
1 30.85 38.01 35.10 103.96 34.65
2 30.24 28.43 35.93 94.60 31.53
3 30.94 31.64 34.95 97.53 32.51
4 29.89 29.12 36.75 95.76 31.92
5 21.52 24.07 20.76 66.35 22.12
6 25.38 32.14 32.19 89.71 29.90
7 22.89 19.66 26.92 69.47 23.16
8 29.44 24.95 37.99 92.38 30.79

Rep. total  (Rj) 221.15 228.02 260.59
Grand total (G)
Grand mean

709.76
29.57
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Step 1. Group the data  by  treatments  and  replications  and  calculate   treatment
totals (Ti), replication totals (Rj) and grand total (G), as shown in Table 4.5.

Step 2. Construct the outline of the analysis of variance as follows:

Table 4.6. Schematic representation of ANOVA of RCBD

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed
F

Replication r - 1 SSR  MSR

Treatment t - 1 SST  MST MST
MSE

Error (r - 1)(t - 1) SSE  MSE
Total rt - 1 SSTO

Step 3. Compute the correction factor and the various sums of squares (SS) given in the
above table as follows. Let yij represent the observation made from jth block on
the ith treatment;  i = 1,…,t ;   j = 1,…,r.

 C F  = 
G
rt

2

        (4.10)

        = 
( )

( )( )
709.76

20989.97
2

3 8
=

SSTO  = y C. F.ij
2

j 1

r

i 1

t

−
==

∑∑  (4.11)

      = ( ) ( ) ( )[ ]30.85 38.01  37.992 2 2...  20989.97+ + + −

           =  678.42

SSR  = 

R

t
C.F.

j
2

j 1

r

=
∑

− (4.12)

        = 
( ) ( ) ( )221.15 228.02 260.592 2 2

8
+ +

−  20989.97

          = 110.98

SST  = 
T

r
C. F.

i
2

i 1

t

=
∑

− (4.13)

        = 
( ) ( ) ( )103.96 94.60 92.382 2 2+  ... 

3
20989.97

+ +
−

                   = 426.45
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SSE  = SSTO - SSR - SST (4.14)
        = 678.42 - 110.98 - 426.45 = 140.98

Step 4. Using the  values of sums of squares obtained, compute the mean square and the
F value for testing the treatment differences as shown in the Table 4.6. The
results are shown in Table 4.7.

Table 4.7  ANOVA of gbh data in Table 4.5.

Source of Degree of Sum of Mean Computed Tabular F
variation freedom Squares Square F 5%
Replication    2 110.98 55.49
Treatment    7 426.45 60.92  6.05* 2.76
Error 14 140.98 10.07
Total 23 678.42

            *Significant at 5% level

Step 5. Obtain the tabular F values from Appendix 3, for f1 = treatment df and f2 = error
df. For our example, the tabular F value for f1 = 7 and  f2  = 14 degrees of
freedom is 2.76 at the 5% level of significance.

Step 6. Compare the computed F value of step 4 with the tabular F values of step 5, and
decide on the significance of the differences among treatments. Because the
computed F value of 6.05 is greater than the tabular F value at the 5% level of
significance, we conclude that the experiment shows evidence the existence of
significant differences among the provenances with respect to their growth in
terms gbh.

Step 7. Compute the coefficient of variation as:

c
Error 

GrandMean
(100)v

MS
=

(4.15)

     = 
10.37

29.57
(100) 10= .89%

The relatively low value of cv indicates the reasonable level of precision
attained in the field experiment.

4.3.4. Comparison of treatments

The treatment means are compared as illustrated for the case of CRD in Section 4.2.3.
using the formulae,

  ( )( )LSDα α= t sv; d
(4.16)
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where sd is the standard error of the difference between treatment means and tv; a  is the
tabular t value, from Appendix 2, at α  level of significance and with v = Degrees of
freedom for error.  The quantity sd is computed as:

s
2s

d

2

=
r

(4.17)

where s2 is the mean square due to error and r is the number of replications.

For illustration, the analysis carried out on data given in Table 4.5 is continued to
compare all the possible pairs of treatments through LSD test.

Step 1. Compute the difference between treatment means as shown in  Table 4.8.

Table 4.8. Difference between mean gbh (cm) for each pair of treatments of
data in Table 4.4.

Treatment 1 2 3 4 5 6 7 8

1 0.00 3.12 2.14   2.73 12.53* 4.75 11.49
*

3.86

2 0.00 0.98   0.39 9.41* 1.63 8.37* 0.74

3 0.00   0.59 10.39* 2.61 9.35* 1.72

4   0.00 9.8* 2.02 8.76* 1.13

5 0.00 7.78* 1.04 8.67*

6 0.00 6.74* 0.89

7 0.00 7.63*

8 0.00
* Significant at 5% level

Step 2.Compute the LSD value at α level of significance. Since all the treatments are
equally replicated, we need to compute only one LSD value. The LSD value is
computed using Equations (4.16) and (4.17).

( )
LSD 2.14

2 10.07
3

 cm.05 = = 554.

Step 3.Compare difference among the treatment means against the computed value of
LSD and place the asterisk against significant differences. The results are shown
in Table 4.8.

4.3.5.  Estimation of missing values

A missing data situation occurs whenever a valid observation is not available for any
one of the experimental units. Missing data could occur due to accidental improper
application of treatments, erroneous observations, destruction of experimental units due
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to natural calamities like fire, damage due to wildlife etc. It is extremely important,
however, to carefully examine the reasons for missing data. The destruction of the
experimental material must not be the result of the treatment effect. If a plot has no
surviving plants because it has been grazed by stray cattle or vandalized by thieves,
each of which is clearly not treatment related, missing data should be appropriately
declared. On the other hand, for example, if a control plot (i.e., untreated plot) in an
insecticide trial is totally damaged by the insects, the destruction is a logical
consequence of that plot being the control plot. Thus, the corresponding plot data
should be accepted as valid (i.e., zero yield if all plants in the plot are destroyed, or the
actual low yield value if some plants survive) instead of treating it as missing data.

Occurrence of missing data results in two major difficulties; loss of information and
non- applicability of the standard analysis of variance. When an experiment has one or
more observations missing, the standard computational procedures of the analysis of
variance no longer apply except for CRD. One alternative in such cases is the use of the
missing data formula technique. In the missing data formula technique, an estimate of a
single missing observation is provided through an appropriate formula according to the
experimental design used. This estimate is used to replace the missing data and the
augmented data set is then subjected, with some slight modifications, to the standard
analysis of  variance.

It is to be noted that an estimate of the missing data obtained through the missing data
formula technique does not supply any additional information, the data once lost is not
retrievable through any amount of statistical manipulation. What the procedure
attempts to do is to allow the researcher to compute the analysis of variance in the usual
manner (i.e., as if the data were complete) without resorting to the more complex
procedures needed for incomplete data sets.

A single missing value in a randomized complete block design is estimated as:

y
rB tT G
r t

=
+ −

− −
0 0 0

1 1( )( )
(4.18)

where  y  = Estimate of missing data
t  = Number of treatments
r  = Number of replications
B0 = Total of observed values of the replication that contains the missing data
T0 = Total of observed values of the treatment that contains the missing data
G0 = Grand total of all observed values

The missing data is replaced by the computed value of y and the usual computational
procedure of the analysis of variance is applied to the augmented dataset with some
modifications.

The procedure is illustrated with data of Table 4.5, with the value of the sixth treatment
(sixth provenance) in replication II assumed to be missing, as shown in Table 4.9. The
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steps in the computation of the analysis of variance and pair comparisons of treatment
means are as follows.

Step 1. Firstly, estimate the missing value, using Equation (4.18) and the values of
totals in Table 4.9.

            y =
+ −
− −

3(195.88) 8(57.57) 677.62
(3 1)(8 1)

 = 26.47

            Table 4.9.  Data of Table 4.5 with one missing observation

Treatment
(Provenance) Replication

Treatment
total

Rep. I Rep II Rep. III (T)
1 30.85 38.01 35.1 103.96
2 30.24 28.43 35.93 94.6
3 30.94 31.64 34.95 97.53
4 29.89 29.12 36.75 95.76
5 21.52 24.07 20.76 66.35
6 25.38 M 32.19 (57.57=T0)
7 22.89 19.66 26.92 69.47
8 29.44 24.95 37.99 92.38

Rep. total  (R) 221.15 (195.88=B0) 260.59
Grand total (G) (677.62=G0)

M = Missing data

Step 2. Replace the missing data of Table 4.9. by its estimated value computed in step
1, as shown in Table 4.10 and carry out the analysis of variance of the
augmented data set based on the standard procedure of Section 4.3.3.

Table 4.10. Data in Table 4.7 with the missing data replaced by the value
estimated from the missing data formula technique.

Treatment
(Provenance) Replication

Treatment
total

Rep. I Rep II Rep. III (T)
1 30.85 38.01 35.1 103.96
2 30.24 28.43 35.93 94.6
3 30.94 31.64 34.95 97.53
4 29.89 29.12 36.75 95.76
5 21.52 24.07 20.76 66.35
6 25.38 26.47a 32.19 84.04
7 22.89 19.66 26.92 69.47
8 29.44 24.95 37.99 92.38

Rep. total  (R) 221.15 222.35 260.59
Grand total (G) 704.09

a Estimate of the missing data obtained from missing data formula technique
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Step 3. Make the following modifications to the analysis of variance obtained in Step 2;
Subtract 1 from both the total and error df.  For our example, the total df of 23
becomes 22 and the error df  of 14 becomes 13.  Compute the correction factor
for bias (B) as,

B = 
[ ]B t y

t t
0

2
1

1
− −

−
( )

( )
(4.19)

               = 
[ ]195 88 8 1 26 47

8 8 1

2
. ( )( . )

( )
− −

−
               =  2.00

and subtract the computed B value of 2.00 from the treatment sum of squares
and the total sum of squares. For our example, the SSTO and the SST, computed
in Step 2 from the augmented data of Table 4.10, are 680.12 and 432.09,
respectively.  Subtracting the B value of 2.00 from these SS values, we obtain
the adjusted SST and the adjusted  SSTO as:

Adjusted SST  = 432.09 - 2.00
                                    =  430.09

           Adjusted SSTO =  680.12 - 2.00
                                     = 678.12

          The resulting ANOVA is shown in Table 4.11.

Table 4.11. Analysis of variance of data in Table 4.7 with one missing value
estimated by the missing data formula technique.

Source of Degree of Sum of Mean Computed Tabular F
variation freedom squares square F 5 %

Replication 2 125.80 62.90 6.69
Treatment 7 430.09 61.44 6.53* 2.83
Error 13 122.23 9.40
Total 22 678.12

                * Significant at 5% level of significance

Step 4. For pairwise comparisons of treatment means where one of the treatments has
missing data, compute the standard error of the mean  difference sd  as:

s s
rd

=










2 2
 +

t
r(r - 1)(t -1)

 (4.20)

where s2 is the error mean square from the analysis of variance of Step 3, r is
the number of replications, and t is the number of treatments.
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For example, to compare the mean of the sixth treatment (the treatment with
missing data) with any one of the other treatments, sd  is computed as:

s
d

= +








9.40

2
3

8
(3)(2)(7)

  = 2.84

This computed sd  is appropriate for use in the computation of the LSD values.
For illustration, the computation of the LSD values is shown below. Using tv as
the tabular t value for 13 df at 5% level of significance, obtained from Appendix
3, the LSD values for comparing the sixth treatment mean with any other
treatment mean is computed as:

LSDα  = tv; a s
d

(4.21)
LSD.05  = (2.16)(2.84) = 6.13

4.4. Factorial experiments

Response variable(s) in any experiment can be found to be affected by a number of
factors in the overall system some of which are controlled or maintained at desired
levels in the experiment. An experiment in which the treatments consist of all possible
combinations of the selected levels in two or more factors is referred as a factorial
experiment. For example, an experiment on rooting of cuttings involving two factors,
each at two levels, such as two hormones at two doses, is referred to as a 2 x 2 or a 22

factorial experiment. Its treatments consist of the following four possible combinations
of the two levels in each of the two factors.

Treatment combination
Treatment number Hormone Dose (ppm)

1 NAA 10
2 NAA 20
3 IBA 10
4 IBA 20

The term complete factorial experiment is sometimes used when the treatments include
all combinations of the selected levels of the factors. In contrast, the term fractional
factorial experiment is used when only a fraction of all the combinations is tested.
Throughout this manual, however, complete factorial experiments are referred simply
as factorial experiments. Note that the term factorial describes a specific way in which
the treatments are formed and does not, in any way, refer to the design used for laying
out the experiment. For example, if the foregoing 22 factorial experiment is in a
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randomized complete block design, then the correct description of the experiment
would be 22 factorial experiment in  randomized complete block design.

The total number of treatments in a factorial experiment is the product of the number of
levels of each factor;  in the 22 factorial example, the number of treatments is 2 x 2 = 4,
in the 23 factorial, the number of treatments is 2 x 2 x 2 = 8. The number of treatments
increases rapidly with an increase in the number of factors or an increase in the levels
in each factor. For a factorial experiment involving 5 clones, 4 espacements, and 3
weed-control methods, the total number of treatments would be 5 x 4 x 3 = 60. Thus,
indiscriminate use of factorial experiments has to be avoided because of their large size,
complexity, and cost. Furthermore, it is not wise to commit oneself to a large
experiment at the beginning of the investigation when several small preliminary
experiments may offer promising results. For example, a tree breeder has collected 30
new clones from a neighbouring country and wants to assess their reaction to the local
environment. Because the environment is expected to vary in terms of soil fertility,
moisture levels, and so on, the ideal experiment would be one that tests the 30 clones in
a factorial experiment involving such other variable factors as fertilizer, moisture level,
and population density. Such an experiment, however, becomes extremely large as
factors other than clones are added.  Even if only one factor, say nitrogen or fertilizer
with three levels were included, the number of treatments would increase from 30 to
90. Such a large experiment would mean difficulties in financing, in obtaining an
adequate experimental area, in controlling soil heterogeneity, and so on. Thus, the more
practical approach would be to test the 30 clones first in a single-factor experiment, and
then use the results to select a few clones for further studies in more detail.  For
example, the initial single-factor experiment may show that only five clones are
outstanding enough to warrant further testing. These five clones could then be put into
a factorial experiment with three levels of nitrogen, resulting in an experiment with 15
treatments rather than the 90 treatments needed with a factorial experiment with 30
clones.

The effect of a factor is defined to be the average change in response produced by a
change in the level of that factor. This is frequently called the main effect. For example,
consider the data in Table 4.12.

Table 4.12. Data from a 2x2 factorial experiment

Factor B
Level b1 b2

a1 20 30
Factor A

a2 40 52

The main effect of factor A could be thought of as the difference between the average
response at the first level of A and the average response at the second level of A.
Numerically, this is
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A =
+

−
+

=
40 52

2
20 30

2
21 

That is, increasing factor A from level 1 to level to 2 causes an average increase in the
response by 21 units.  Similarly, the main effect of B is

            B =
+

−
+

=
30 52

2
20 40

2
11 

If the factors appear at more than two levels, the above procedure must be modified
since there are many ways to express the differences between the average responses.

The major advantage of conducting a factorial experiment is the gain in information on
interaction between factors. In some experiments, we may find that the difference in
response between the levels of one factor is not the same at all levels of the other
factors. When this occurs, there is an interaction between the factors. For example,
consider the data in Table 4.13.

Table 4.13. Data from a 2x2 factorial experiment

Factor B
Levels b1 b2

a1 20 40
Factor A

a2 50 12

 At the first level of factor B, the factor A effect is

A = 50-20 = 30

and at the second level of factor B, the factor A effect is

A = 12-40 = -28

Since the effect of A depends on the level chosen for factor B, we see that there is
interaction between A and B.

These ideas may be illustrated graphically.  Figure 4.5 plots the response data in Table
4.12. against factor A for both levels of factor B.
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b1

b1

b2

b2

0
10
20
30
40
50
60

a1 a2

Factor

Response

Figure 4.5. Graphical representation of  lack of  interaction between factors.

Note that the b1 and b2 lines are approximately parallel, indicating a lack of interaction
between factors A and B.

Similarly, Figure 4.6 plots the response data in Table 4.13. Here we see that the b1 and
b2 lines are not parallel. This indicates an interaction between factors A and B. Graphs
such as these are frequently very useful in interpreting significant interactions and in
reporting the results to nonstatistically trained management. However, they should not
be utilized as the sole technique of data analysis because their interpretation is
subjective and their appearance is often misleading.

b1

b1
b2

b2

0

10

20

30

40

50

a1 a2

Factor

Response

Figure 4.6. Graphical representation of interaction between factors.

Note that when an interaction is large, the corresponding main effects have little
practical meaning. For the data of Table 4.13, we would estimate the main effect of A
to be

A =
+

−
+50 12

2
20 40

2
 = 1

which is very small, and we are tempted to conclude that there is no effect due to A.
However, when we examine the effects of A at different levels of factor B, we see that
this is not the case. Factor A has an effect, but it depends on the level of factor B i.e., a
significant interaction will often mask the significance of main effects. In the presence
of significant interaction, the experimenter must usually examine the levels of one
factor, say A, with level of the other factors fixed to draw conclusions about the main
effect of A.
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For most factorial experiments, the number of treatments is usually too large for an
efficient use of a complete block design. There are, however, special types of designs
developed specifically for large factorial experiments such as confounded designs.
Descriptions on the use of such designs can be found in Das and Giri (1980).

4.4.1. Analysis of variance

Any of the complete block designs discussed in sections 4.2 and 4.3 for single-factor
experiments is applicable to a factorial experiment. The procedures for randomization
and layout of the individual designs are directly applicable by simply ignoring the
factor composition of the factorial treatments and considering all the treatments as if
they were unrelated. For the analysis of variance, the computations discussed for
individual designs are also directly applicable. However, additional computational steps
are required to partition the treatment sum of squares into factorial components
corresponding to the main effects of individual factors and to their interactions. The
procedure for such partitioning is the same for all complete block designs and is,
therefore, illustrated for only one case, namely, that of RCBD.

The step-by-step procedure for the analysis of variance of a two-factor experiment on
bamboo involving two levels of spacing (Factor A) and three levels of age at planting
(Factor A) laid out in RCBD with three replications is illustrated here. The list of the
six factorial treatment combinations is shown in Table 4.14, the experimental layout in
Figure 4.7, and the data in Table 4.15.

Table 4.14. The 2 x 3 factorial treatment combinations of two
levels of spacing and three levels of age.

Age at planting Spacing (m)
 (month) 10 m x 10 m 12 m x 12m

(a1) (a2)
     6 (b1) a1b1 a2b1
  12  (b2) a1b2 a2b2

  24  (b3) a1b3 a2b3

                       Replication I                   Replication II                     Replication III
a2b3 a2b3 a1b2

a1b3 a1b2 a1b1

a1b2 a1b3 a2b2

a2b1 a2b1 a1b3

a1b1 a2b2 a2b1

a2b2 a1b1 a2b3

Figure 4.7. A sample layout of 2 × 3 factorial experiment
involving two levels of spacing and three levels of
age in a RCBD with 3 replications.

Table  4.15.  Mean maximum culm height of Bambusa arundinacea tested with
three age levels and two levels of spacing in a RCBD.
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Treatment Maximum culm height of a clump (cm) Treatment
 combination Rep. I Rep. II Rep. III total (Tij)

a1b1 46.50 55.90 78.70 181.10
a1b2 49.50 59.50 78.70 187.70
a1b3 127.70 134.10 137.10 398.90
a2b1 49.30 53.20 65.30 167.80
a2b2 65.50 65.00 74.00 204.50
a2b3 67.90 112.70 129.00 309.60

Replication total (Rk) 406.40 480.40 562.80 G=1449.60

Step 1. Denote the number of replication by r, the number of levels of factor A  (i.e.,
spacing) by a, and that of factor B (i.e., age) by b. Construct the outline of the
analysis of variance as  follows:

Table 4.16. Schematic representation of ANOVA of a factorial experiment
with two levels of factor A, three levels of factor B and with
three replications in RCBD.

Source of
variation

Degrees of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed
F

Replication  r-1 SSR  MSR
Treatment  ab- 1 SST  MST MST

MSE
A  a- 1 SSA  MSA MSA

MSE
B  b- 1 SSB  MSB MSB

MSE
AB (a-1)(b-1) SSAB  MSAB MSAB

MSE
Error (r-1)(ab-1) SSE  MSE
Total  rab -1 SSTO

Step 2.Compute treatment totals (Tij), replication totals (Rk), and the grand total (G), as
shown in Table 4.15 and compute the SSTO, SSR, SST and SSE following the
procedure described in Section 4.3.3. Let yijk refer to the observation
corresponding to the ith level of factor A and jth level factor B in the kth
replication.
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( ) ( )

=
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−
181.10  .  . . 309.60

116741.12
2 2

3
                   = 14251.87

SSE  = SSTO - SSR - SST (4.26)
                   = 17479.10 - 2040.37 - 14251.87
                   = 1186.86

The preliminary analysis of variance is shown in Table 4.17.

Table 4.17. Preliminary analysis of variance for data in Table 4.15.

Source of
variation

Degree of
freedom

Sum of
squares

Mean
square

Computed
F

Tabular
F 5%

Replication   2 2040.37 1020.187 8.59567* 4.10
Treatment   5 14251.87 2850.373 24.01609* 3.33
Error 10 1186.86 118.686
Total 17 17479.10

*Significant at 5% level.

Step 3. Construct the factor A x factor B two-way table of totals, with factor A totals
and factor B totals computed. For our example, the Spacing x Age table of totals
(AB) with Spacing totals (A) and  Age totals (B) computed are shown in Table
4.18.

            Table 4.18. The Spacing x Age table of totals for the  data in Table 4.15.

 Age   Spacing  Total
a1 a2 (Bj)

b1 181.10 167.80 348.90
b2 187.70 204.50 392.20
b3 398.90 309.60 708.50

 Total (Ai) 767.70 681.90 G = 1449.60
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Step 4. Compute the three factorial components of the treatment sum of squares as:

SSA  =
A

rb
C F

i
i

b
2

1=
∑

− . .   (4.27)
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−
767.70 681.90
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                   =  408.98
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( ) ( ) ( )

=
+ +

−
348.90 392.20 708.50

116741.12
2 2

3 2( )( )
                   =   12846.26

SSAB  = SST - SSA - SSB (4.29)
                      = 14251.87 - 408.98 - 12846.26
                      =  996.62

Step 5. Compute the mean square for each source of variation by dividing each sum of
squares by its corresponding degrees of freedom and obtain the F ratios for each
of the three factorial components as per the scheme given in the Table 4.16

Step 6. Enter all values obtained in Steps 3 to 5 in the preliminary analysis of variance
of Step 2, as shown in Table 4.19.

Table  4.19. ANOVA of data in Table 4.15 from a 2 x 3 factorial  experiment in
RCBD.

Source of
variation

Degree of
freedom

Sum of
squares

Mean
square

Compute
d F

Tabular
F 5%

Replication   2 2040.37 1020.187 8.60* 4.10
Treatment   5 14251.87 2850.373 24.07* 3.33
   A   1 12846.26 6423.132     3.45 4.96
   B   2 408.98 408.980    54.12* 4.10
   AB   2 996.62 498.312      4.20* 4.10
Error 10 1186.86 118.686
Total 17 17479.10

                 *Significant at 5% level

Step 7. Compare each of the computed F  value with the tabular F value obtained from
Appendix 3, with f1 = df of the numerator MS and f2 = df of the denominator
MS, at the desired level of significance. For example, the computed F value for
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main effect of factor A is compared with the tabular F values (with  f1=1 and
f2=10 degrees of freedom) of 4.96 at the 5% level of significance. The result
indicates that the main effect of factor A (spacing) is not significant at the 5%
level of significance.

Step 8. Compute the coefficient of variation as:

cv =
Error MS

Grand mean
× 100 (4.30)

                 = × =
118 686
80 53

100 1353%
.
.

.

4.4.2.  Comparison of means

In a factorial experiment, comparison of effects are of different types. For example, a
2x3 factorial experiment has four types of means that can be compared.

Type-(1)  The two A means, averaged over all three levels of factor B
Type-(2)  The three B means, averaged over both levels of factor A
Type (3)  The six A means, two means at each of the three levels of factor B
Type (4) The  six B means, three means at each of the two levels of factor A

The Type-(1) mean is an average of 3r observations, the Type-(2) is an average of 2r
observations and the Type-(3) or Type-(4) is an average of r observations. Thus, the

formula ( )s / rd
2= 2s

1/2
 is appropriate only for the mean difference involving either

Type-(3) or Type-(4) means. For Type-(1) and Type-(2) means, the divisor r in the
formula should be replaced by 3r and 2r respectively. That is, to compare two A means

averaged over all levels of factor B, the sd  value is computed as ( )s s / rd
2= 2 3

1/2
and

to compare any pair of B means averaged over all levels of factor A, the sd  value is

computed as ( )2 2
1/2

s / r2  or simply ( )s / r2 1/ 2
.

As an example, consider the 2x 3 factorial experiment whose data are shown in Table
4.15. The analysis of variance shows a significant interaction between spacing and age,
indicating that the effect of age vary with the change in spacing. Hence, comparison
between age means averaged over all levels of spacing or between spacing means
averaged over all age levels is not useful. The more appropriate mean comparisons are
those between age means under the same level of spacing  or between spacing means of
the same level of age. The comparison between spacing means at the same age level is
illustrated in the following. The steps involved in the computation of LSD for
comparing two spacing means at same age level are,

Step 1.Compute the standard error of the mean difference following the formula for
comparison Type-(3) as
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s
MS

rd =
2Error 

(4.31)

                 = 
( )2 118686

3
889

.
.=  cm 

where the Error MS value of 118.686 is obtained from the analysis of variance
of Table 4.19.

Step 2. From Appendix 2, obtain the tabular t value for error df  (10 df), which is 2.23
at  5% level of significance and compute the LSD as,

( )( )LSDα α= t sv d;  = ( )( )2 23 8 89 19 82. . .=  cm

Step 3.Construct the Spacing x Age two-way table of means as shown in Table 4.20.
For each pair of spacing levels to be compared at the same age level, compute
the mean difference and compare it with the LSD value obtained at Step 2. For
example, the mean difference in culm height between the two spacing levels at
age level of 12 months at planting is 5.6 cm. Because this mean difference is
smaller than the LSD value at the 5% level of significance, it is not significant.

Table 4.20. The Spacing x Age table of means of culm height
based on data in Table 4.15.

Age at planting Spacing  (m)
(month) 10 m x 10 m 12 m x 12m

Mean culm height (cm)
   6 60.37 55.93
 12 62.57 68.17
 24 132.97 103.20

4.5. Fractional factorial design

In a factorial experiment, as the number of factors to be tested increases, the complete
set of factorial treatments may become too large to be tested simultaneously in a single
experiment. A logical alternative is an experimental design that allows testing of only a
fraction of the total number of treatments. A design uniquely suited for experiments
involving large number of factors is the fractional factorial design (FFD). It provides a
systematic way of selecting and testing only a fraction of the complete set of factorial
treatment combinations. In exchange, however, there is loss of information on some
pre-selected effects. Although this information loss may be serious in experiments with
one or two factors, such a loss becomes more tolerable with large number of factors.
The number of interaction effects increases rapidly with the number of factors
involved, which allows flexibility in the choice of the particular effects to be sacrificed.
In fact, in cases where some specific effects are known beforehand to be small or
unimportant, use of the FFD results in minimal loss of information.
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In practice, the effects that are most commonly sacrificed by use of the FFD are high
order interactions - the four-factor or five-factor interactions and at times, even the
three-factor interaction. In almost all cases, unless the researcher has prior information
to indicate otherwise he should select a set of treatments to be tested so that all main
effects and two-factor interactions can be estimated. In forestry research, the FFD is to
be used in exploratory trials where the main objective is to examine the interactions
between factors. For such trials, the most appropriate FFD’s are those that sacrifice
only those interactions that involve more than two factors.
With  the  FFD,  the  number  of  effects that can be measured decreases rapidly with
the reduction in the number of  treatments to be tested. Thus, when the number of
effects to be measured is large, the  number  of treatments to be tested, even with the
use of FFD, may still be too large. In such  cases,  further  reduction  in  the  size  of
the experiment can be achieved by reducing the number of replications. Although the
use of FFD without replication is uncommon in forestry experiments, when FFD is
applied to exploratory trials, the number of replications required can be reduced to the
minimum.

Another desirable feature of FFD is that it allows reduced block size by not requiring a
block to contain all treatments to be tested. In this way, the homogeneity of
experimental units within the same block can be improved. A reduction in block size is,
however, accompanied by loss of information in addition to that already lost through
the reduction in number of treatments. Although the FFD can thus be tailor-made to fit
most factorial experiments, the procedure for doing so is complex and so only a
particular class of FFD that is suited for exploratory trials in forestry research is
described here. The major features of these selected designs are that they (i) apply only
to 2n factorial experiments where n, the number of factors is at least 5,  (ii) involve only
one half of the complete set of factorial treatment combinations, denoted by 2n-1(iii)
allow all main effects and two-factor interactions to be estimated. For more complex
plans, reference may made to Das and Giri (1980).

The procedure for layout, and analysis of variance of a 25-1 FFD with a field experiment
involving five factors A, B, C, D and E is illustrated in the following. In the designation
of the various treatment combinations, the letters a, b, c,…, are used to denote the
presence (or high level) of factors A, B, C,… Thus the treatment combination ab in a 25

factorial experiment refers to the treatment combination that contains the high level (or
presence) of factors A and B and low level (or absence ) of factors C, D and E, but this
same notation (ab) in a 26 factorial experiment would refer to the treatment
combination that contains the high level of factors A and B and low level of factors C,
D, E, and F. In all cases, the treatment combination that consists of the low level of all
factors is denoted by the symbol (1).

4.5.1. Construction of the design and layout

One simple way to arrive at the desired fraction of factorial combinations in a 25-1 FFD
is to utilize the finding that in a 25 factorial trial, the effect ABCDE can be estimated
from the expression arising from the expansion of the term (a-1)(b-1)(c-1)(d-1)(e-1)
which is
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(a-1)(b-1)(c-1)(d-1)(e-1) =  abcde - acde - bcde + cde - abde + ade + bde - de

                                          - abce  + ace  +  bce   - ce   +  abe  -  ae   -  be  + e

                                          - abcd  + acd  + bcd   -  cd  + abd   - ad    -  bd  + d

                                          + abc    -  ac   -   bc    +  c    -  ab    +  a   +  b    -  1

Based on the signs (positive or negative) attached to the treatments in this expression,
two groups of treatments can be formed out of the complete factorial set. Retaining
only one set with either negative or positive signs, we get a half fraction of the 25

factorial experiment. The two sets of treatments are shown below.

Treatments with negative signs Treatments with positive signs

acde, bcde, abde, de, abce, ce, ae, be, abcde, bcde, abde, de, abce, ce, ae, be,

abcd, cd, ad, bd, ac, bc, ab, 1 abcd, cd, ad, bd, ac, bc, ab, 1

As a consequence of the reduction in number of treatments included in  the experiment,
we shall not be able to estimate the effect ABCDE using the fractional set. All main
effects and two factor interactions can be estimated under the assumption that all three
factor and higher order interactions are negligible. The procedure is generalizable  in
the sense that in a 26 experiment, a half fraction can be taken  by  retaining  the
treatments with either negative or positive signs in the expansion for (a-1)(b-1)(c-1)(d-
1)(e-1)(f-1).

The FFD refers to only a way of selecting treatments with a factorial structure and the
resulting factorial combinations can be taken as a set of treatments for the physical
experiment to be laid out in any standard design like CRD or RCBD. A sample
randomized layout  for a  25-1 FFD under RCBD with two replications is shown in
Figure 4.8.
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bd cd bc be
                          Replication I                                                Replication II

Figure 4.8. A sample layout of a 25-1  FFD with two replications under
RCBD.

4.5.2. Analysis of variance.

The analysis of variance procedure of a 25-1 FFD with 2 replications is illustrated using
Yate’s method for the computation of sums of squares. This is a method suitable for
manual computation of large factorial experiments. Alternatively, the standard rules for
the computation of sums of squares in the analysis of variance, by constructing one-
way tables of totals for computing main effects, two-way tables of totals for two-factor
interactions and so on as illustrated in Section 4.4.1 can also be adopted in this case.

The analysis of 25-1 FFD is illustrated using hypothetical data from a trial whose layout
is shown in Figure 4.8 which conforms to that of a RCBD. The response obtained in
terms of fodder yield (t/ha) under the different treatment combinations is given in Table
4.21. The five factors were related to different components of a soil management
scheme involving application of organic matter, fertilizers, herbicides, water, and lime.

                       Table 4.21.Fodder yield data from a 25-1 factorial
experiment 

Treatment
combination

Fodder yield (t/ha) Treatment
total (Ti)

Replication I Replication II
acde 1.01 1.04 2.06
bcde 1.01 0.96 1.98
abde 0.97 0.94 1.92
de 0.82 0.75 1.58
abce 0.92 0.95 1.88
ce 0.77 0.75 1.53
ae 0.77 0.77 1.55
be 0.76 0.80 1.57
abcd 0.97 0.99 1.97
cd 0.92 0.88 1.80
ad 0.80 0.87 1.68
bd 0.82 0.80 1.63
ac 0.91 0.87 1.79
bc 0.79 0.76 1.55
ab 0.86 0.87 1.74
1 0.73 0.69 1.42
Replication
total (Rj) 13.83 13.69
Grand total (G) 27.52
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The computational steps in the analysis of variance are :

Step1. Construct the outline of the analysis of variance as presented in Table 4.22.

Step 2. Determine the number of real factors (k) each at two levels, whose complete set
of factorial treatments is equal to the number of treatments (t) included in the
experiment (i.e., 2k = t). Then select the specific set of k real factors from the
original set of n factors and designate all (n - k) factors not included in the set of
k as dummy factors. For our example, the t = 16  treatment combinations
correspond to a complete set of 2k factorial combinations, with k = 4. For
simplicity, the first four factors A, B, C and D are designated as the real factors
and E as the dummy factor.

Table 4.22. Schematic representation of ANOVA of a 25-1 FFD in
RCBD into 2 replications.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

 MS
SS
df

=








Computed

F

Block r-1=1 SSR MSR MSR MSE

A 1 SSA MSA MSA MSE

B 1 SSB MSB MSB MSE

C 1 SSC MSC MSC MSE

D 1 SSD MSD MSD MSE

E 1 SSE@ MSE@
MSE MSE@

AB 1 SSAB MSAB MSAB MSE

AC 1 SSAC MSAC MSAC MSE

AD 1 SSAD MSAD MSAD MSE

AE 1 SSAE MSAE MSAE MSE

BC 1 SSBC MSBC MSBC MSE

BD 1 SSBD MSBD MSBD MSE

BE 1 SSBE MSBE MSBE MSE

CD 1 SSCD MSCD MSCD MSE

CE 1 SSCE MSCE MSCE MSE

DE 1 SSDE MSDE MSDE MSE
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Error 15 SSE MSE

Total (r 25-1)-1 SSTO
@ This SS is sum of squares due to factor E and is not to be confused with

sum of squares due to error (SSE) given in the same table later. The error
degree of freedom can  be obtained by subtracting the degree of freedom
for block and the factorial effects from the total degree of freedom.

Step 3.Arrange the t treatments in a systematic order based on the k real factors;
Treatments with fewer number of letters are listed first. For example, ab comes
before abc, and abc comes before abcd, and so on. Note that if treatment (1) is
present in the set of t treatments, it always appears as the first treatment in the
sequence. Among treatments with the same number of letters, those involving
letters corresponding to factors assigned to the lower-order letters come first.
For example, ab comes before ac,  ad before bc, and so on. All treatment-
identification letters corresponding to the dummy factors are ignored in the
arrangement process. For our example, factor E is the dummy factor and, thus,
ae is considered simply as a and comes before ab. In this example, the
systematic arrangement of the 16 treatments is shown in the first column of
Table 4.23. Note that the treatments are listed systematically regardless of their
block allocation and the dummy factor E is placed in parenthesis.

Step 4. Compute the t factorial effect totals: Designate the t treatment totals as the
initial set or the T0 values. For our example, the systematically arranged set of
16 T0 values is listed in the second column of Table 4.23. Next, group the T0
values into t/2  successive pairs. For our example, there are 8 successive pairs :
the first pair is 1.42 and 1.54, the second pair is 1.56 and 1.73, and the last pair
is  1.97  and  1.96. Add the values of the two treatments in each of the t/2 pairs
constituted and enter in the second set or the T1 values. For our example, the
first half of the T1 values are computed as :

2.96  = 1.42 + 1.54
3.29 = 1.56 + 1.73

….
….

3.93 = 1.97 + 1.96

            Subtract the first value from the second in each of the t/2 pairs constituted under
T0 to constitute the bottom half of the T1 values.  For our example, the second
half of the T1 values are computed as :

-0.12 = 1.42 - 1.54
-0.17 = 1.56 - 1.73

 ….
 ….

 0.01 = 1.97 - 1.96
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            The results of these tasks are shown in the third column  of Table 4.23.

            Reapply tasks done to generate the column T1, now using the values of T1
instead of T0 to derive the third set or the T2 values. For our example, results of
the tasks reapplied to T1 values to arrive at theT2 values are shown in the fourth
column of Table 4.23. Repeat task (n - 1) times where n is the total number of
factors in the experiment. Each time, use the newly derived values of T. For our
example, the task is repeated two more times to derive T3 values and T4 values
as shown in the fifth and sixth columns of Table 4.23.

            Table 4.23. Application of Yates’ method for the computation of sums of
squares of a 25-1 FFD with data in Table 4.21

Treat-
ment T0 T1 T2 T3 T4

Factorial Effect
Identification

( )4
2T

r n2 1−

Initial Final
(1)  1.42   2.96 6.25 12.97 27.52 (G) (G) 23.667
a(e)  1.54   3.29 6.72 14.55 -1.5 A AE 0.070
b(e)  1.56   3.30 6.77 -0.87 -0.82 B BE 0.021
ab  1.73   3.42 7.78 -0.63 0.04 AB AB 0.000
c(e)  1.52   3.24 -0.29 -0.45 -1.48 C CE 0.068
ac  1.78   3.53 -0.58 -0.37 0.14 AC AC 0.001
bc  1.55  3.85 -0.39 0.11 -0.42 BC BC 0.006
abc(e)  1.87   3.93 -0.24 -0.07 0.44 ABC D 0.006
d(e)  1.57 -0.12 -0.33 -0.47 -1.58 D DE 0.078
ad  1.67 -0.17 -0.12 -1.01 -0.24 AD AD 0.002
bd  1.62 -0.26 -0.29 0.29 -0.08 BD BD 0.000
abd(e)  1.91 -0.32 -0.08 -0.15 0.18 ABD C 0.001
cd  1.80 -0.10 0.05 -0.21 0.54 CD CD 0.009
acd(e)  2.05 -0.29 0.06 -0.21 0.44 ACD B 0.006
bcd(e)  1.97 -0.25 0.19 -0.01 0.00 BCD A 0.000
abcd  1.96 0.01 -0.26 0.45 -0.46 ABCD E 0.007

Step 5. Identify the specific factorial effect that is represented by each of the values of
the last set (commonly referred to as the factorial effect totals) derived in Step
4. Use the following guidelines: The first value represents the grand total (G).
For the remaining (t - 1) values, assign the preliminary factorial effects
according to the letters of the corresponding treatments, with the dummy factors
ignored.

For example, the second T4 value corresponds to treatment combinations a(e)
and, hence, it is assigned to the A main effect. The fourth T4 value corresponds
to treatment ab and is assigned to the AB  interaction effect, and so on.  The
results for all 16 treatments are shown in the seventh column of Table 4.23. For
treatments involving the dummy factor, adjust the preliminary factorial effects
derived as follows. Identify all effects involving the dummy factor that are
estimable through the design.  For our example, the estimable effects involving
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the dummy factor E consist of the main effect of E and all its two-factor
interactions AE, BE, CE and DE. Identify the aliases of all effects listed as
‘preliminary’.  The alias of any effect is defined as its generalized interaction
with the defining contrast. The generalized interaction between any two
factorial effects is obtained by combining all the letters that appear in the two
effects and cancelling all letters that enter twice.  For example, the generalized
interaction between ABC and AB is AABBC or C. For our example, the
defining contrast is ABCDE, the aliases of five effects involving the dummy
factor E are: E=ABCD, AE=BCD, BE=ACD, CE=ABD and DE=ABC.

            The two factorial effects involved in each pair of aliases (one to the left and
another to the right of the equal sign) are not separable (i.e., cannot be estimated
separately). For example, for the first pair, E and ABCD, the main effect of
factor E cannot be separated from the A BCD interaction effect and, hence,
unless one of the pair is known to be absent there is no way to know which of
the pairs is the contributor to the estimate obtained.

            Replace all preliminary factorial effects that are aliases of the estimable effects
involving the dummy factors by the latter. For example, because ABCD
(corresponding to the last treatment in Table 4.23)  is the alias of E, it is
replaced by E. In the same manner, BCDE is replaced by A, ACDE by B and so
on. The final results of the factorial effect identification are shown in the eighth
column of Table 4.23.

Step 6. Compute an additional column in Table 4.23 as 
( )4

2T
r n2 1−  where r is the number of

replications and n is the number of factors in the experiment. The value in this
column corresponding to G  in the previous column will be the correction
factor. The rest of the values in this column will be the sum of squares
corresponding to the effects identified in the previous column.

Step 7. Compute the SS due to other effects to complete the ANOVA. Let yij represent
the response obtained with the ith treatment in the jth replcation.

C F
G
rt

. .=
2

          (4.32)

        = ( )( )
12 37
2 16

2.
 = 23.6672

SSTO = −
==

∑∑ y C Fij
j

r

i

t
2

11
. . (4.33)
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                    =  0.2866
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1 . . (4.35)

                   
( )

=
+ +

−
(1.42) + (1.54)2 2 ......... .

.
1 96

4
23 6672

2

                   = 0.2748

SSE  = SSTO - SSR  - SST (4.36)
   = 0.2866 - 0.2748 - 0.0006
   = 0.01

Step 8. Compute the mean square for each source of variation by dividing each SS by
its df. The MS corresponding to each factorial effect will be the same as its SS in
this  case because the df of such effects is one in each case.

Step 9. Compute the F value corresponding to each term in the analysis of variance
table by dividing the MS values by the error MS values. The final analysis of
variance is shown in Table 4.24.

           Table 4.24. ANOVA of data of Table 4.21 corresponding to a 25-1 factorial
experiment.

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square

Computed
F

Tabular
F 5%

Replication 1 0.0006 0.0006 0.86ns 4.54
A 1 0.000 0.000 0.00 ns 4.54
B 1 0.006 0.006 8.57* 4.54
C 1 0.001 0.001 1.43 ns 4.54
D 1 0.006 0.006 8.57* 4.54
E 1 0.007 0.007 10.00* 4.54
AB 1 0.000 0.000 0.00 ns 4.54
AC 1 0.001 0.001 1.43 ns 4.54
AD 1 0.002 0.002 2.86 ns 4.54
AE 1  0.070  0.070 100.00* 4.54
BC 1  0.006  0.006 8.57* 4.54
BD 1 0.000 0.000 0.00 ns 4.54
BE 1 0.021 0.021 30.00* 4.54
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CD 1 0.009 0.009 12.86* 4.54
CE 1 0.068 0.068 97.14* 4.54
DE 1 0.078 0.078 111.43* 4.54
Error 15 0.010 0.0007
Total 31 0.2866

* Significant at 5% level, ns = nonsignificant at 5% level
Step 11.Compare each computed F value with the corresponding tabular F values, from

Appendix 3, with f1 = df of the numerator MS and f2 = error df. The results show
that main effects B, D and E  and the two factor interactions AE, BC, BE, CD,
CE and AE are highly significant and main effects A and C and the two factor
interactions AB, AC, AD and BD are non significant.

4.5.3.  Comparison of means

The procedure described in section 4.4.2 for comparison of means in the case of
complete factorial experiments is applicable to the case of FFD as well but
remembering the fact that means of only up to two-way tables can only be compared
using the multiple comparison procedure in the case of  25-1 factorial experiment.

4.6. Split plot design

The split plot design is specifically suited for a two-factor experiment wherein levels of
one of the factors require large plot size for execution and also show large differences
in their effects. In such a situation, the experiment will consist of a set of large plots
called main plots in which levels for the main plot factor are assigned. Each main plot
is divided into subplots to which the second factor, called the subplot factor, is
assigned. Thus, each main plot becomes a block for the subplot treatments (i.e., the
levels of the subplot factor). The assignment of the main plot factor can, in fact, follow
any of the patterns like the completely randomized design, randomized complete block,
or latin square design but here, only the randomized complete block is considered for
the main plot factor because it is perhaps the most appropriate and the most commonly
used design for forestry experiments.

With a split plot design, the precision for the measurement of the effects of the main
plot factor is sacrificed to improve that of the subplot factor. Measurement of the main
effect of the subplot factor and its interaction with the main plot factor is more precise
than that obtainable with a randomized complete block design. On the other hand, the
measurement of the effects of the main plot treatments (i.e., the levels of the main plot
factor) is less precise than that obtainable with a randomized complete block design.

4.6.1. Layout

There are two separate randomization processes in a split plot design-one for the main
plots and another for the subplots. In each replication, main plot treatments are first



A Statistical Manual For Forestry Research

107

randomly assigned to the main plots followed by a random assignment of the subplot
treatments within each main plot.

For illustration, a two-factor experiment involving four levels of nitrogen (main plot
treatments) and three eucalyptus clones (subplot treatments) in three replications is
used. Here, fertilzer levels were chosen for the main plots mainly for the convenience
in its application, easiness in controlling the leaching effect and to detect the presence
of possible interaction between fertilizers and the clones. The steps in the
randomization and layout of a split plot design are shown, using a as the number of
main plot treatments, b as the number of subplot treatments, and r as the number of
replications.

Step 1. Divide the experimental area into r = 3 blocks, each of which is further divided
into a = 4 main plots, as shown in Figure 4.9.

Step 2. Following the RCBD randomization procedure with a = 4 treatments and r = 3
replications randomly assign the 4 nitrogen treatments to the 4 main plots in
each of the 3 blocks. The result may be as shown in Figure 4.10.

Step 3. Divide each of the ra = 12 main plots into b = 3 subplots and following the
RCBD randomization procedure for b = 3 treatments and ra = 12 replications,
randomly assign the 3 clones to the 3 subplots in each of the 12 main plots. The
result may be as shown in Figure 4.11.

Main plots Main plots Main plots
1 2 3 4 1 2 3 4 1 2 3 4

Replication I Replication II Replication III

Figure 4.9. Division of the experimental area into three blocks
(replications) each consisting of four main plots, as the first
step in laying out of a split plot experiment involving three
replications and four main plot treatments.

n3 n1 n0 n2 n1 n0 n3 n2 n0 n1 n2 n3

Replication I Replication II Replication III

Figure 4.10. Random assignment of four nitrogen levels (n0, n1, n2  and
n3)  to the  four main plots in each of the three replications
of Figure 4.9.

n3 n1 n0 n2 n1 n0 n5 n2 n0 n1 n2 n3

v2 v1 v1 v2 v1 v3 v3 v1 v4 v3 v3 v1
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v1 v3 v2 v3 v3 v1 v2 v2 v2 v4 v2 v3

v3 v2 v3 v1 v2 v2 v1 v3 v1 v1 v4 v2

Replication I Replication II Replication III

             Figure 4.11. A sample layout of a split plot design involving three
eucalyptus clones(v1,  v2 and v3) as subplot treatments and
four nitrogen levels (n0, n1, n2 and n3) as main plot treatments,
in three replications.

Note that the field layout of a split plot design as illustrated by Figure 4.11 has the
following important features: (i) The size of the main plot is b times the size of the
subplot. In our example with 3 varieties (b = 3) the size of the main plot is 3 times the
subplot size (ii) Each main plot treatment is tested r times whereas each subplot
treatment is tested ar times. Thus, the number of times a subplot treatment is tested will
always be larger than that for the main plot and is the primary reason for more precision
for the subplot treatments relative to the main plot treatments. In our example, each of
the 4 levels of nitrogen is tested 3 times but each of the 3 clones is tested 12 times.

4.6.2. Analysis of variance

The analysis of variance of a split plot design is divided into the main plot analysis and
the subplot analysis. The computations are shown with the data from a two-factor
experiment in eucalyptus involving two silvicultural treatments (pit size) and four
fertiliser treatments. The data on height of plants after one year of planting are shown in
Table 4.25.

            Table 4.25. Data on height (cm) of Eucalyptus tereticornis plants from
a field trial under split plot design.

  Height (cm)
 Fertiliser Replication I Replication  II Replication  III

Pit size (30 cm x 30 cm x 30 cm) - p0

f0 25.38 61.35 37.00
f1 46.56 66.73 28.00
f2 66.22 35.70 35.70
f3 30.68 58.96 21.58

Pit size (40 cm x 40 cm x 40 cm) - p1

f0 19.26 55.80 57.60
f1 19.96 33.96 31.70
f2 22.22 58.40 51.98
f3 16.82 45.60 26.55
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Let A denote the main-plot factor (pit size) and B, the subplot factor (fertiliser
treatments). Carry out the analysis of variance as follows:

Step 1. Construct an outline of the analysis of variance for a split plot design as follows.

Table 4.26. Schematic representation of  ANOVA of a split plot experiment.

Source of Degree of Sum of Mean square
variation freedom

(df)
squares

(SS) MS
SS
df

=








Computed F

Replication r - 1 SSR MSR MSR MSEa

A a - 1 SSA MSA MSR MSEa

Error (a) (r - 1)(a - 1) SSEa MSEa

B b - 1 SSB MSB MSR MSEb

AB (a - 1)(b - 1) SSAB MSAB MSR MSEb

Error (b) a(r - 1)(b - 1) SSEb MSEb

Total rab - 1 SSTO

Step 2. Construct two tables of totals as:

(i) The replication x factor A two-way table of totals, with the replication totals,
Factor A totals and grand total : For our example, the replication x pit size
table of totals ((RA)ki), with the replication totals (Rk), pit size totals (Ai) and
the grand total (G) computed, is shown in Table 4.27.

Table 4.27. The replication x pit size table of height totals computed from data
in Table 4.25.

Pit size Rep. I Rep. II Rep. III (Ai)

p0 168.84 222.74 122.28 513.86
p1 78.26 193.76 167.83 439.85

Rep. total (Rk) 247.10 416.50 290.10

Grand total (G) 953.70

(ii) The factor A x factor B two-way table of totals, with factor B totals : For our
example, the pit size x fertilizer treatment table of totals (AB), with the
fertilizer treatment totals (Bj) computed, is shown in Table 4.28.

            Table 4.28. The pit size x fertilizer treatment table of height totals computed
from data in Table 4.25
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Fertilizer treatment

 Pit size f0 f1 f2 f3
p0 123.73 141.29 137.62 111.22
p1 132.66 85.62 132.60 88.97

Total (Bj) 256.39 226.91 270.22 200.19

Step 3. Compute the correction factor and sums of squares for the main plot analysis as
follows. Let yijk refer to the response observed ith main plot, jth subplot in the
rth replication.

C.F.
G
rab

2

= (4.37)

        = 
( )
( ) ( )
953.70

37897.92
2

3 4
 

( )2
=

SSTO  = yijk
k

r

j

b

i

a
2

111 ===
∑∑∑ − C.F.

(4.38)
           = [(25.38)2 + (46.56)2 + … + (26.55)2] -  37897.92
           =  6133.10

SSR   = 
Rk

k

r
2

1=
∑

−
ab

C. F.  (4.39)

         = ( )( )
(247.10) + (416.50) + (290.10)

37897.92
2 2 2

2 4
 −

         =  1938.51

SSA = 
Ai

i

a
2

1=
∑

−
rb

C.F. (4.40)

       =
( ) ( )

( )( )
513.86 439.85

37897.92
2 2+
3 4

 −

       = 228.25

SSEa  =
( )( )RA

C F SSR
ki

i

a

k

r
2

1==
∑∑

− − −
b

SSA. (4.41)

          = 
( ) ( )

( )
168.84  

40064.68
2 2. . .  167.83

4
+ +

−
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          = 1161.70

Step 4. Compute the sums of squares for the subplot analysis as:

SSB  = 

B j
j

b
2

1=
∑

−
ra

C.F. (4.42)

        = 
( ) ( )

( )( )
256.39  200.19

37897.92
2 2. . .  

3 2
 

+ +
−

        =  488.03

SSAB  = 
( )( )AB ij

j

b

i

a 2

11 ==
∑∑

− − −
r

C.F. SSB  SSA (4.43)

                      = 
( ) ( )123.73 2 2... 88.97

3
+ +

 - 37897.92 - 488.03 - 1161.70

                       =  388.31

SSEb  =  SSTO - SSR - SSA - SSB - SSAB-SSEa (4.44)
                     = 6133.10 - 1938.51 - 228.25 - 488.03 - 388.31
                     = 3090.00

 Step 5. For each source of variation, compute the mean square by dividing the SS by its
corresponding df. The F value for each effect that needs to be tested is to be
computed by dividing each mean square by the corresponding error term as
shown in Table 4.26.

Step 6. Enter all values obtained from Steps 3 to 5 in the ANOVA table as shown in
Table 4.29; and compare each of the computed F values with its corresponding
tabular F values and indicate its significance or otherwise by the appropriate
asterisk notation. For each effect whose computed F value is not less than 1,
obtain the corresponding tabular F value, from Appendix 3, with f1 = df of the
numerator MS and f2 = df of the denominator MS, at the prescribed level of
significance. For example, the tabular F value for testing the AB effect is 3.49
at 5% level of significance for 3 and 12 degrees of freedom.

           Table 4.29. ANOVA of data in Table 4.20 from  a split plot design

Source of Degree of Sum of Mean Computed Tabular F
variation freedom squares square F 5%

Replication 2 1938.51 969.26
A 1 228.25 228.25 0.3930ns 4.75
Error (a) 2 1161.70 580.85
B 3 488.03 162.68 0.6318ns 3.49
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AB 3 388.31 129.44 0.5027ns 3.49
Error (b) 12 3090.00 257.50

Total 23 37897.92
            ns  Nonsignificant at 5% level

Step 7. Compute the two coefficients of variation, one corresponding to the main plot
analysis and another corresponding to the subplot analysis.

( )
( )

cv a
Error a  
Grand mean

 x 100=
MS

(4.45)

         = =
228.25
39.54

 x 100 60.95%

( )
( )

cv
MS

b
Error b  
Grand mean

 x 100= (4.46)

          = 
257.50

40.58%
39.54

 x 100 =

The value of cv(a) indicates the degree of  precision  attached  to  the  main
plot factor. The value of cv(b) indicates the precision  of  the  subplot  factor
and its interaction with the main-plot factor. The value  of cv(b) is expected to
be smaller than that of cv(a) because, as indicated earlier,  the  factor  assigned
to   the  main  plot  is  expected  to  be  measured  with  less  precision  than
that  assigned  to   the  subplot. In our example, the value of cv(b) is smaller
than that of cv(a) but both of them were high enough to mask any possible
treatment differences turning the all the factor effects in the ANOVA
nosignificant.

4.6.3. Comparison of treatments

In a split plot design, there are four different types of pair comparisons.  Each requires
its own set of LSD values. These comparisons are:

Type-(1). Comparisons between two main plot treatment means averaged over
all subplot treatments.

Type-(2). Comparison between two subplot treatment means averaged over all
main plot treatments.

Type-(3). Comparison between two subplot treatment means at the same main
plot treatment.

Type-(4). Comparison between two main plot treatment means at the same or
different  subplot treatments (i.e., means of any two treatment
combinations).
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Table 4.30 gives the formula for computing the appropriate standard error of the mean
difference ( sd  ) for each of these types of pair comparison.

Table 4.30. Standard error of the mean difference for each of the four types of pair
comparison in a split plot design.

Type of pair comparison sd

Type-(1) : Between two main plot means (averaged over all
subplot treatments)

2Ea

rb

Type-(2) : Between two subplot  means (averaged over all
main plot treatments)

2Eb

ra

Type-(3) : Between two subplot means at the same main plot
treatment

2Eb

r

Type-(4) : Between two main plot means at the same or
different subplot treatments [ ]2 1( )b E Eb a− +

rb

Note :  Ea = MSEa, Eb = MSEb, r = number of replications, a = number of main plot
treatments, and b = number of subplot treatments.

When the computation of sd  involves more than one error term, such as in
comparisons of Type-(4), the tabular t values from Appendix 2 cannot be used directly
and weighted tabular t values are to be computed. The formula for weighted tabular t
values in such a case is given below.

Weighted tabular t value = 
(b - 1) E t E t

(b - 1) E E
b b a a

b a

+  
+

(4.47)

where ta is the t value for Error (a) df and tb is the t value for Error (b) df.
As an example, consider the 2 x 4 factorial experiment whose data are shown in Table
4.25. Although the analysis of variance (Table 4.29) shows all the three effects (the two
main effects and the interaction effect) as nonsignificant, for the purpose of illustration,
consider the case where there is a significant interaction between pit size and fertiliser
indicating the variation in fertilizer effect with the changing pit size. In such a case,
comparison between the means of pit size levels pooled over all fertilizer levels or that
between fertilizer levels averaged over all levels of pit size will not be valid. The more
appropriate comparisons will be those between fertilizer means under the same pit size
levels or between pit size means at same fertilizer level. Thus the steps involved in the
computation of the LSD for comparing two subplot means at the same main plot
treatment are:

Step 1.Compute the standard error of the difference between means following the
formula for Type-(3) comparison of Table 4.30.
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             s
E
rd

b=
2

                   = 
( )2 2575

3
327

.
.=

Step 2. Following the formula ( )( )LSDα α= t sv d;   compute the LSD value at 5% level
of significance using the tabular t value with 12 degrees of freedom of Error(b).

            ( )( )LSD. . . .05 218 327 7129= =

Step 3.Construct the pit size x fertilizer two-way table of mean differences in height as
shown in Table 4.31. Compare the observed differences in the mean height
among the fertilzer levels at each pit size with the LSD value computed at Step
2 and identify significant differences if any.

Table 4.31. Difference between mean height of eucalyptus plants with four
fertilizer levels at the pit size of 30 cm x 30 cm x 30 cm based on
the data in Table 4.25.

Difference in mean height (cm) at p0

f0 f1 f2 f3
f0 0.00 -5.86 -4.63  4.17
f1  0.00  1.23 10.03
f2  0.00  8.80
f3  0.00

Difference in mean height (cm) at p1

f0 f1 f2 f3
f0 0.00 15.68    0.02 14.56
f1  0.00 -15.66 -1.12
f2    0.00 14.54
f3    0.00

4.7. Lattice designs

Theoretically, the complete block designs, such as RCBD are applicable to experiments
with any number of treatments. However, these complete block designs become
inefficient as the number of treatments increases, because the blocks loose their
homogeneity due to the large size. An alternative class of designs for single-factor
experiments having a large number of treatments is the incomplete block designs. As
the name implies, each block in an incomplete block design does not contain all
treatments and so a reasonably small block size can be maintained even if the number
of treatments is large. One consequence of having incomplete blocks in the design is
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that the comparison of treatments appearing together in a block will be made with
greater precision than those not doing so. This difficulty can be circumvented by seeing
that in the overall design, every pair of treatments appear together in some block or
other equal number of times. Such designs are called balanced designs. Since it calls for
large number of replications to achieve complete balance, one may go for partially
balanced designs wherein different levels of precision for comparison are admitted for
different groups of treatments. One commonly used class of incomplete block designs
in forestry experiments is the class of lattice designs wherein the number of treatments
is a perfect square and the blocks can be grouped into complete sets of replications. A
special case of lattice designs is the simple lattice designs which is discussed in the
following.

4.7.1. Simple lattice design

Simple lattice design is also called double lattice or square lattice design. As the
number of treatments is to be a perfect square, the design may be constructed for
number of treatments such as 9, 16, 25, 36, 49, 64, 81, 121 etc. This design needs two
replications and is only a partially balanced design in the sense that the treatments form
two groups and the degree of precision of treatment comparison differs between these
two groups. The construction and  layout of the design are exemplified for the case of
25 treatments.

Step 1. Assign numbers 1 to 25 to the treatments at random. This is necessary to avoid
any kind of bias of unknown origin affecting treatment effects.

Step 2. Arrange the treatment numbers from 1 to 25 in the form of a square as given in
Figure 4.12.

1 2 3 4 5

6 7 8 9 10
11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

            Figure 4.12. Initial arrangement of treatments in simple lattice design

Step 3. Group the treatments by rows. This results in the groupings  (1, 2, 3, 4, 5),  (6,
7, 8, 9, 10),  (11, 12, 13, 14, 15),  (16, 17, 18, 19, 20)  and  (21, 22, 23, 24, 25).
Each block will now constitute a group of treatments for one block and five
such blocks constitute one complete replication. This special way of row-wise
grouping is generally known as X-grouping or A-grouping.

Step 4. Again group the treatments by columns. This  results  in  the  groupings (1, 6,
11, 16, 21),  (2, 7, 12, 17, 22),  (3, 8, 13, 18, 23),  (4, 9, 14, 19, 24) and (5, 10,
15, 20, 25). Each group will now constitute  a  group  of treatments for one
block and five such blocks will constitute  one complete replication. This
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special way of column-wise grouping is generally known as Y-grouping or B-
grouping.

The X-grouping and Y-grouping ensure that treatments that have occurred
together in the same block once do not appear together in the same block again.
The above two sets of groupings will appear as in Figure 4.13 before
randomization is done.

                                     Replication I  ( X- grouping )
Block No. 1 1 2 3 4 5

Block No. 2 6 7 8 9 10

Block No. 3 11 12 13 14 15

Block No. 4 16 17 18 19 20

Block No. 5 21 22 23 24 25

                              Replication II  ( Y-grouping)
Block No.6 1 6 11 16 21

Block No.7 2 7 12 17 22

Block No.8 3 8 13 18 23

Block No.9 4 9 14 19 24

Block No.10 5 10 15 20 25

           Figure 4.13. Two replications of a simple lattice design
before randomizaion

Step 5.Within each  replication,  the treatment  groups  are  allocated  at  random  to
the different  blocks. This  randomization  is  to  be  done  separately for  each
replication. The allocation of treatments to plots within  each  block  should
also  be randomized.  The  randomization  should  be  done  separately for each
group  independently for each replication. Finally while laying down the
replications in  the  field,  the X  and  Y  replications  should  themselves
be randomized  over  the  field  locations.  This  procedure  of  treatment
and replication allocations ensures elimination of any kind of unknown
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systematic variations affecting  the  treatment  effects.  As  a  result  of
complete randomization the actual layout plan might appear as shown in Figure
4.14.

Block No. 5 25 24 21 23 22

Block No. 4 20 19 18 17 16

Block No. 1 5 4 1 3 2

Block No. 3 13 14 15 12 11

Block No. 2 6 9 7 10 8

Block No. 6 16 6 1 21 11

Block No. 9 19 4 9 14 24

Block No. 7 7 2 17 22 12

Block No. 10 5 20 25 10 15

Block No. 8 23 3 8 18 13

     Figure 4.14. Randomized layout plan  of simple lattice design.

If the blocks within each replication are contiguous, under certain conditions,
this will allow the analysis of the whole experiment as a RCBD. It was
mentioned already that simple lattice design requires a minimum of two
replications, one with X-grouping and other with Y-grouping of the treatments.
If more than two replications are desired for this design, then it should be in
multiples of two only, as both groups (X and Y) will have to be repeated equal
number of times. The procedures of treatment allocations remain the same as
above.

4.7.2. Analysis of variance for a simple lattice design
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The steps involved in the analysis of variance when the basic design of simple lattice is
repeated only once, are indicated below along with the checks on the computations
where they are found important. The material drawn for this illustration is from an
experiment conducted at Vallakkadavu, in Kerala involving 25 clones of Eucalyptus
grandis.

Table 4.32 below shows the actual field layout showing positions of the blocks and
allocation of treatments within each block under randomized condition. The value in
the top left corner of each cell is the clone number and the value in bottom right corner
shows the mean height of trees in the plot, one  year after planting. Unlike in the case of
complete block designs, the analysis of variance for incomplete complete block designs
involves adjustments on sums of squares for treatments and blocks because of the
incomplete structure of the blocks.

Table 4.32. Layout plan for 5 x 5 double lattice showing the height
growth (cm) of Eucalyptus grandis clones.

Replication - I
Block No. 5 25 24 21 23 22

96.40 107.90 119.30 134.30 129.20

Block No. 4 20 19 18 17 16

148.00 99.20 101.40 98.00 106.70

Block No. 1 5 4 1 3 2

158.00 122.50 136.70 123.60 113.50

Block No. 3 13 14 15 12 11

126.80 101.60 111.70 117.30 108.20

Block No. 2 6 9 7 10 8

126.80 127.00 119.10 90.90 130.40

Replication - II
Block No. 6 16 6 1 21 11

169.60 157.90 124.10 134.50 112.10

Block No. 9 19 4 9 14 24

110.30 153.40 87.10 95.30 120.50

Block No. 7 7 2 17 22 12

125.60 151.10 115.90 168.40 93.30

Block No. 10 5 20 25 10 15

126.00 106.80 137.60 132.90 117.30
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Block No. 8 23 3 8 18 13

133.10 142.70 115.80 128.90 115.80

Step 1. Arrange the blocks within each group (X and Y groups) and treatments within
each block systematically along with the observations as in Table 4.33.

Table 4.33. Systematic arrangement of blocks and the treatments
within the blocks of Table 4.32.

Replication - I (X-group)
Block No. 1 1 2 3 4 5

136.70 113.50 123.60 122.50 158.00
Block No. 2 6 7 8 9 10

126.80 119.10 130.40 127.00 90.90
Block No. 3 11 12 13 14 15

108.20 117.30 126.80 101.60 111.70
Block No. 4 16 17 18 19 20

106.70 98.00 101.40 99.20 148.00
Block No. 5 21 22 23 24 25

119.30 129.20 134.30 107.90 96.40
Replication - II (Y-group)

Block No. 6 1 6 11 16 21
124.10 157.90 112.10 169.60 134.50

Block No. 7 2 7 12 17 22
151.10 125.60 93.30 115.90 168.40

Block No. 8 3 8 13 18 23
142.70 115.80 115.80 128.90 133.10

Block No. 9 4 9 14 19 24
153.40 87.10 95.30 110.30 120.50

Block No. 10 5 10 15 20 25
126.00 132.90 117.30 106.80 137.60

Step 2. Set up a table of treatment totals by  summing up the yields for each clone from
both replications. This is shown in Table 4.34. These totals are not adjusted for
any block effects.

Table 4.34. Treatment (clone) totals

1 2 3 4 5
260.80 264.60 266.30 275.90 284.00

6 7 8 9 10
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284.70 244.70 246.20 214.10 223.80
11 12 13 14 15

220.30 210.60 242.60 196.90 229.00
16 17 18 19 20

276.30 213.90 230.30 209.50 254.80
21 22 23 24 25

253.80 297.60 267.40 228.40 234.00

Step 3.Compute the block totals B1, B2, …, B10 for all the blocks by summing the
observations occurring in each block. For example, the block total B1 for the
first block is given by

            B1 =  136.70+113.50+123.60+122.50+158.00  =  654.30

Compute the total for each replication by summing the block totals within each
replication. For Replication I,

R1 = B1 + B2 + B3+ B4+ B5 (4.48)
     =  654.30 + 594.20 + 565.60 + 553.30 + 587.10
     =  2954.50

Compute the grand total as G = R1 + R2 (4.49)
                                             =  2954.50 + 3176.00
                                             = 6130.50

Step 4.  Construct an outline for the ANOVA table of simple lattice design.

Table 4.35. Schematic representation of  ANOVA table of simple lattice design

Source of
variation

Degrees of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed F

Replication r - 1 SSR MSR MSR
MSE

Treatment
(unadj.)

k2 - 1 SST
(unadj.)

MST
(unadj.)

MST
MSE
 (unadj.)

Blocks within
replication
(adj.)

r(k-1) SSB
(adj.)

MSB
(adj.)

MSB
MSE

 (adj.)

Intra-block
error

(k-1)(rk-k-1) SSE MSE

Total rk2 - 1 SSTO

Step 5.Obtain the total sum of squares, replication sum of squares and unadjusted
treatment sum of squares. For this, first compute the correction factor (C.F.).
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C. F. = 
G
n

2
(4.50)

            where  n = rk2

                                    r  =  Number of replications
           k2  =  Number of treatments
           k     =  Number of plots in a block

C. F. = 
( )6130.50 2

2 25×
 = 751660.61

For total sum of squares, find the sum of squares of all the observations in the
experiment and subtract the correction factor.
SSTO = y C F2 −∑ . .  (4.51)
          = { (136.70)2 + (113.50)2 +……..+ (137.60)2 }  -  C. F.

      = 770626.43 - 751660.61 = 18965.83

Compute the replication sum of squares as

SSR  = 
R R

k
C F1

2
2
2

2
+

 - . . (4.52)

    = 
( ) ( )2 954.50  3176.00

 
2 2

25
+

− 751660.61

    =  752641.85 -  751660.61 =  981.245

Compute unadjusted treatment sum of squares as

SST (unadj.) = 
T
r

C. F.i
2

i 1

t

−
=
∑ (4.53)

        = 
( )260.80 (264.60) .... (234.00)

2
  -  751660.61

2 2 2+ + +
 

                                = 760747.90 -  751660.61   =  9087.29

Step 6.Compute for each block, in Replication 1 (X-group) an adjusted block total Cb
subtracting each block total in Replication I, from the corresponding column
total in Replication II (Y-group) containing the same set of varieties as in blocks
of Replication I as shown in Table 4.36. Similarly, compute for each block total
in Replication II, an adjusted block total by subtracting each block total in
Replication II, from corresponding column total in Replication I (X-group)
containing the same set of varieties as in blocks of Replication II as shown in
Table 4.37. Obtain the total of Cb values for each replication and check if they
add up to zero.

Total of Cb values for Replication I  = U1 =  221.50
Total of Cb values for Replication II = U2 = -221.50
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This check ensures the arithmetical accuracy of the calculation in the previous
steps.

Table 4.36. Computation of Cb values for blocks in Replication I

Block Replication  II
Column total

Replication I
Block total

Cb - value

1 697.30 654.30 43.00 (C1)
2 619.30 594.20 25.10 (C2)
3 533.80 565.60 -31.80 (C3)
4 631.50 553.30 78.20 (C4)
5 694.10 587.10 107.00 (C5)

Total      3176.00     2954.50 221.50  ( RC1 )

Table 4.37. Computation of Cb  values for blocks in Replication II

Block Replication I
Column total

Replication II
Block total

Cb- value

6 597.70 698.20 -100.50 (C6)
7 577.10 654.30 -77.20 (C7)
8 616.50 636.30 -19.80 (C8)
9 558.20 566.60 -8.40 (C9)
10 605.00 620.60 -15.60 (C10)

Total        2954.50        3176.00 -221.50 ( RC2 )

         The adjusted block sum of squares is then given by :

       SSB (adj.) = 
C

kr r

R

k r r

b
b

Cj
j

2

1

10
2

1

2

21 1
= =
∑ ∑

−
−

−( ) ( )
(4.54)

            where r = Number of replications,
                      k = Number of treatments per block.

SSB (adj.) = 
( )

( )( )( ) ( )( )( )
( . ) ....... . ( . ) ( . )− + + −

−
+ −4300 1560

2 5 1
22150 22150

5 2 1

2 2 2

2

2

  

                = 3782.05 - 1962.49 = 1819.56

Finally, the error sum of squares  is obtained by subtraction.

SSE  = SSTO - SSR - SST (unadj.) - SSB (adj.) (4.55)
        = 18965.83 - 981.24 - 9087.29 - 1819.56

                   = 7077.73

Note that the sum of squares due to error (SSE) computed here indicates that
part of the variation (in the response variable) between plots within each block
caused by uncontrolled extraneous factors and is generally known as the intra-
block error. The adjusted block sum of squares is called inter block error.
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Step 7.After obtaining the different sums of squares, enter all the values in the ANOVA
table as shown as Table 4.38. The mean squares are obtained by dividing the
sum of squares by degrees of freedom as usual.

Table 4.38. ANOVA table of simple lattice design using data in Table 4.32.

Source of variation Degrees of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed
F

Replication 1 981.24 981.24 2.218
Treatment (unadj.) 24 9087.29 378.64 0.856
Block within
replication (adj.)

8 1819.56 227.44 0.514

Intra-block error 16 7077.73 442.36
Total 49 18965.83

The treatment mean square, as presented in the ANOVA table (Table 4.38), is
not adjusted for block effects. As pointed out earlier,  the treatment means are
not free from block effects. As a result, the ANOVA does not provide a  valid
F-test  for testing the treatment differences. Before applying F-test, the
treatment means are to be adjusted for block effects and adjusted sum of squares
for treatments will have to be computed. The  procedure for this is given in Step
9. Though this procedure may be adopted when necessary, it is not always
necessary to go through further computation unless it is indicated. For instance,
in field trial with a large number of treatments, a significant difference among
treatment means may generally be expected. As a less sensitive test for
treatment difference, a preliminary RCBD analysis may be carried out from the
results of Table 4.38.

Step 8. Preliminary RCBD  analysis : The error sum of squares for RCBD analysis is
obtained by first pooling the inter block error with intra-block error and
completing the ANOVA table as follows.

Pooled error = Inter block error + Intra-block error (4.56)
                                 = 1819.56 + 7077.73
                                 = 8897.29

Table 4.39. ANOVA table for  preliminary RCBD analysis.

Source of
variation

Degrees of
freedom

(df)

Sum of squares
(SS)

Mean square

MS
SS
df

=








Computed
F

Replication 1 981.24 981.24
Treatment 24 9087.29 378.64 1.02
Pooled error 24 8897.29 370.72
Total 49 18965.83
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The observed  F-value  of 1.02 obtained as the ratio of treatment mean square
and pooled error mean square is less than the table value of F at which was 1.98
at 5% level of significance for (24, 24) degrees of freedom, and is suggestive of
the fact that the treatments do not differ significantly at 5% level of
significance. Since this preliminary RCBD analysis has ended up with a
nonsignificant value for F, there is a need to employ a more appropriate F-test
by adjusting the treatment sum of squares for block effects, since such a
procedure would only increase the sensitivity by which the testing is made but
not decrease it. The procedure for effecting such an adjustment to the treatment
sum of squares for obtaining a more appropriate F-test for testing treatment
differences is given in Step 9.

Step 9. Computation of treatment sum of squares adjusted for block effects : First,
obtain the unadjusted block sum of squares within replications. Since we have
already calculated the block sums B1, B2, …, B10  in Step 3, this is easily
computed as follows :

 Unadjusted block SS for Replication I = SSB1(unadj.)

                                                       = 
B B B

k
R

k
1
2

2
2

5
2

1
2

2
+ + +

−
   . . .

(4.57)

                    = 
( )( . ) . . . ( . ) .654 30 58710

5
2954 50

25

2 2 2+ +
−

   

                       = 1219.75

Unadjusted block SS for Replication II = SSB2 (unadj.)

                                                       =
B B B

k
R

k
6
2

7
2

10
2

2
2

2
+ + +

−
   . . .

(4.58)

               = 
( . ) . . . ( . ) ( . )698 20 620 60

5
3176 00

25

2 2 2+ +
−

   

                                                        = 1850.83

Finally obtain the pooled unadjusted block sum of squares, SSB (unadj.), as

SSB (unadj.) = SSB1(unadj.) + SSB2 (unadj.) (4.59)
                              = 1219.75 + 1850.83 = 3070.58

Compute the following correction quantity Q to be subtracted from the
unadjusted treatment sum of squares :

Q  = k r
r

r k
SSB SSB( )

( )( )
−

− +








−








1

1 1
µ

µ
( ) (unadj.)  (adj.) (4.60)
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where µ  = 
E E

k r E
b e

b

−
−( )1

  (4.61)

where Eb = Adjusted inter block mean square
Ee = Intra-block mean square

For our example, µ  = 
227 44 442 36
5 2 1 227 44

. .
( ) .

−
−

  

                               = - 0.189

Q  = ( ) ( ){ }( )( )( . )
( )( { }{ . })

. .5 2 1 0189
2

2 1 1 5 0189
307058 1819 56− −

− + −








−










     = -42989.60
Finally, subtract this quantity Q from the unadjusted treatment sum of squares
to obtain the adjusted sum of squares for treatment.

SST (adj.)  =  SST (unadj.) - Q (4.62)

                 = 9087.29 - (-42989.60) = 52076.89

Set up the following ANOVA table for testing the significance of the treatment
effects.

Table 4.40. ANOVA table for testing the significance of adjusted treatment
means.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Computed
F

Tabular
F

Treatment (adj.) 25 52076.89 2083.08 4.709 2.24
Intra-block
error

16 7077.73 442.358

The F-value computed for the present example has turned out to be significant
at 5% level indicating that significant differences among the treatments. The
sensitivity of F-test increased after eliminating the block effects. Generally, the
block effect, as judged from Eb value is supposed to be greater than the intra-
block error Ee. although this did not happen with the present example.

Adjustments are necessary to treatment means as well, since the ordinary
treatment means are not unbiased estimates of true values of treatment means.
The procedure for effecting such adjustments to eliminate block effects is as
follows:
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Step 10.Compute a correction term for each block by multiplying each Cb value by the
quantity  µ ( -0.189), given by (4.61).

For Replication I,  these values are :

µC1 = -8.13,  µC2= -4.74,  µC3 = 6.01, µC4 = -14.78, µC5 = -20.22

For Replication II, these values are :

µC6 =18.99,  µC7 = 14.59,  µC8 = 3.74, µC9 =1.59, µC10 = 2.95

Enter these values in the last row and last column of Table 4.34 as shown in
Table 4.31. Check that the total of all µCb values  add up to zero except for
rounding of error. i.e.,

µC1 + µC2 + …+ µC10= -8.13+-4.74 +…+ 2.95= 0.00
Make entries of the µCb values for Replication I along the last column of Table
4.41 and µCb values for Replication II along the last row of the same Table
4.41. This way of writing the correction values to be effected to the unadjusted
totals for treatments will save a lot of confusion in carrying out arithmetical
calculations. Each treatment total in Table 4.41 is now to be adjusted for block
effects by applying the block corrections appropriate to the blocks in which that
treatment appears.

Table 4. 41. Treatment totals and correction factors.

1 2 3 4 5 µC1 =
260.80 264.60 266.30 275.90 284.00 -8.13

6 7 8 9 10 µC2=
284.70 244.70 246.20 214.10 223.80 -4.74

11 12 13 14 15 µC3 =
220.30 210.60 242.60 196.90 229.00 6.01

16 17 18 19 20 µC4=
276.30 213.90 230.30 209.50 254.80 -14.78

21 22 23 24 25 µC5 =
253.80 297.60 267.40 228.40 234.00 -20.22

µC6 =18.99 µC7 = 14.59 µC8 = 3.74 µC9 =1.59 µC10 = 2.95

For example, clone 1 appears in Block 1 of Replication I and Block 6 of
Replication 2.  Add the values µC1  and µC6 to the total for clone 1.

i.e., The adjusted treatment total for clone 1  = 260.80 -(-8.13) - 18.99 = 2.55

Since the block corrections are already entered along the row and column in
Table 4.41, the adjusted treatment totals are merely obtained by the respective
column and row values for µCb  in which that treatment appears. Finally,
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construct a table showing the treatment total adjusted for block effects. The
adjusted values are shown in table 4.42 below.

Table 4.42. Adjusted treatment totals:

1 2 3 4 5
249.94 258.14 270.69 282.44 289.18

6 7 8 9 10
270.45 234.85 247.2 217.25 225.59

11 12 13 14 15
195.30 190.00 232.85 189.30 220.04

16 17 18 19 20
272.09 214.09 241.34 222.69 266.63

21 22 23 24 25
255.03 303.23 283.88 247.03 251.27

Obtain the adjusted treatment means by dividing each value by 2 since each
total contains two observations from 2 replications (Table 4.43)

Table 4.43. Adjusted treatment means

1 2 3 4 5
124.97 129.07 135.35 141.22 144.59

6 7 8 9 10
135.23 117.43 123.60 108.63 112.80

11 12 13 14 15
97.65 95.00 116.43 94.65 110.02

16 17 18 19 20
136.05 107.05 120.67 111.35 133.32

21 22 23 24 25
127.52 151.62 141.94 123.52 125.64

4.7.3. Comparison of means

It was already mentioned that in a partially balanced lattice design, treatments that
occur in the same block are compared with greater precision. (i.e., smaller standard
error) than the treatments that occur in different blocks.

The formula for standard error for comparing any two treatment means that occur
together in the same block is given by,

[ ]SE d
E
r

re( ) ( )1

2
1 1= + − µ  (4.63)
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where µ = 
E E

k r E
b e

b

−
−( )1

  

           Eb = Inter block mean square
           Ee = Intra-block mean square
           r   = Number of replications

For our example,

[ ]SE d( )
.

1
2 442 3579

2
=

×
+ −1 (2 1)(-0.189)   =  18.9408

Standard error for comparing treatment means that occur in different blocks is,

( )SE d
E
r

re( )2
2

1= + µ (4.64)

For our example,

[ ]SE d( )
.

( .2
2 442 3579

2
1 2 0189=

×
+ × − = 16.5875

Note that SE d SE d( ) ( )2 1< in this example, because of the peculiarities of the data.
This is not the usual case

These standard errors when multiplied by the tabular t value for the intra-block error
degrees of freedom at the specified level of significance, will provide LSD value with
which the adjusted treatment means can be compared for significant differences.

4.8.  Response surface designs

In experiments where one or more quantitative factors are tested at multiple levels, it is
often convenient to summarise the data by fitting a suitable model depicting the factor-
response relationship. The quantitative factors may be fertiliser, irrigation, stand
density etc., and the experiment may be to find out how the levels of these factors affect
the response, γ.  The response γ may be represented as a suitable function of the levels
x1u, x2u,.. ., xku of the k factors and β , the set of parameters. A typical model may be

 γu = f (x1u, x2u, …, x ku ; β) + eu (4.65)

where u = 1, …, t  represents the N  observations with xiu representing the level of the
ith factor (i = 1, 2, …, k) in the in the uth observation. The residual eu

 measures the
experimental error of the uth observation. The function  f  is called the response
surface. A knowledge of f gives a complete summary of the results of the experiment
and helps in obtaining the optimum dose combination. It also enables prediction of the
response for values of the xiu that were not tested in the experiment. The designs
specifically suited for fitting of response surfaces are known as response surface
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designs. The response surfaces are usually approximated by polynomials of suitable
degree, most common of which are second degree polynomials. Hence, designs suitable
for fitting a second degree polynomial are described here.

4.8.1. Second order rotatable design

Let there be k factors such that ith factor has si levels. In all, there will be six s2x…….x
sk  treatment combinations out of which t combinations are taken to fit a second degree
function of the form.

y x x x x eu i iu
i

k

ii iu
i

k

i j iu ju
i j

k

u= + + + +∑ ∑ ∑
<

β β β β0
2   (4.66)

where yu  is the response obtained from the uth combination of factors (u = 1, 2, …, t)
           xiu  is the level of the ith factor in the uth observation
           β0  is a constant
           β i  is the ith linear regression coefficient
           β ii  is the ith quadratic regression coefficient
           β ij  is the (i,j)th interaction coefficient
           eu  is the random error component associated with the uth observation with zero

mean and constant variance.

For example, a specific case of model (4.66) involving only two factors would be,

y x x x x x x eu u u u u u u u= + + + + + +β β β β β β0 1 1 2 2 11 1
2

22 2
2

12 1 2

A second order response surface design enables the fitting of a second order
polynomial for the factor-response relationship effectively. While choosing the design
points, certain constraints are imposed on the levels of factors such that the parameter
estimation gets simplified and also the resulting design and the model fitted through the
design have certain desirable properties. One such property is the rotatability of the
design. Rotatable designs make the variance of the estimated response from any
treatment combination, as a function of the sum of squares of the levels of the factors in
that treatment combination. Expressed alternatively, an experimental design is said to
be rotatable if the variance of the predicted response at some specific set of x values is a
function only of the distance of the point defined by the x values from the design centre
and is not a function of the direction. It has been shown that the following conditions
are necessary for the n design points to constitute a second order rotatable design
(SORD).

(i) x x x x x xiu iu ju
uu

iu ju
u

iu
u

= = = =∑∑ ∑ ∑2 3 0 ,

     x x x x x x x x x x x xiu ju
u

iu ju
u

ku iu ju
u

ku iu ju
u

ku lu
3 2 0∑ ∑ ∑ ∑= = = = . (4.67)

(ii) xiu
u

2 =∑   tλ2  (4.68)
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(iii) xiu
u

4 =∑  3tλ4 (4.69)

(iv) x xiu ju
u

2 2 =∑  tλ4 for i ≠ j or x x xiu
u

iu ju
u

4 2 23=∑ ∑ for i ≠ j (4.70)

(v) 
λ
λ

4

2
2 2

>
+
k

k( )
(4.71)

4.8.2. Construction of SORD

One of the commonly used methods for construction of SORD is given below which
results in a class of designs by name central composite designs. Let there be k factors.
A central composite design consists of a 2k factorial or fractional factorial (coded to the
usual ± 1 notation) augmented by 2k axial points, (± α, 0, 0,…, 0),  (0, ± α, 0,…, 0),
(0,0,± α, 0,…,0), …,  (0,0,0,…,± α) and nc centre points (0,0,…, 0). In case a fractional
factorial is chosen for the first set of 2k points, with k > 4, it must be seen that the
defining contrasts do not involve any interaction with less than five factors. Central
composite design for k = 3 is shown below. The design consists of  23 = 8 factorial
points, (2)(3) = 6 axial points and 1 centre point constituting a total of 15 points.

 x1  x2     x3

-1 -1    -1
-1     -1   +1
-1    +1   -1
-1    +1     +1
+1    -1    -1
+1    -1     +1
+1   +1    -1
+1   +1   +1
+α     0       0
-α      0     0
  0    +α  0
  0     -α   0
  0      0    +α
  0      0    -α
  0      0 0

A central composite design is made rotatable by the choice of α. The value of α
depends on the number points in the factorial portion of the design. In fact, α = (nf)1/4

yields a rotatable central composite design where nf is the number points used in the
factorial portion of the design. In our example, the factorial portion contains nf = 23 = 8
points. Thus the value of α for rotatability is = (8)1/4 = 1.682. Additional details and
examples of SORD can be found in Das and Giri (1979) and Montgomery (1991).

The treatment combinations specified by SORD may be tried with sufficient number of
replications under any standard design in an experiment following the regular
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randomization procedure. Response surface design thus pertains only to a particular
way of selecting the treatment combination in a factorial experiment and not to any
physical design used for experimental layout.

4.8.3. Fitting of a second degree response surface from a SORD

The analysis of data from a SORD laid out under completely randomized design is
illustrated in the following. Let there be t distinct design points in the experiment with
ng replications for the gth design point. Let ygu be the response obtained from the uth
replication of the gth design point. Let xigu be the level of the ith factor in the uth
replication of the gth design point (i = 1,…, k ; g = 1,…, t ; u = 1,…ng). Let the total
number of observations be n and (p+1) be the number of parameters in the second
order model to be fitted.

For the illustration of the analysis, data from a pot culture experiment is utilized. In
order to simplify the discussion, certain modifications were made both in the data and
design structure and to that extent, the data set is hypothetical. Nevertheless, the
purpose of illustration is well-served by the example. The experiment included three
factors viz., the quantity of nitrogen (N), phosphorus (P) and potassium (P) applied in
the form urea, super phosphate and muriate of potash respectively. The experimental
units were pots planted with two-year old seedlings of cane (Calamus hookerianus),
each pot carrying a single seedling. The range of each element N, P and K included in
the experiment was 5 g to 20 g/pot. The treatment structure corresponded to the central
composite design discussed in Section 4.8.1, the physical design used being CRD with
two replications. Since α=1.682  was the largest coded level in the design, the other
dose levels were derived by equating α to 20g. Thus the other dose levels are (-α) = 5g,
(-1) = 8.041g , (0) =12.5g, , (+1) =16.959g, (α) = 20g. The data obtained on oven-dry
weight of shoot at the end of 2 years of the experiment are reported in Table 4.44.

Table 4.44. The data on oven-dry weight of shoot at the end
of 2 years of the experiment.

N
(x1)

P
(x2)

K
(x3)

Shoot weight (g)
(y)

Seedling 1 Seedling 2
-1 -1 -1 8.60 7.50
-1 -1 1 9.00 8.00
-1 1 -1 9.20 8.10
-1 1 1 11.50 9.10
1 -1 -1 10.00 9.20
1 -1 1 11.20 10.20
1 1 -1 11.00 9.90
1 1 1 12.60 11.50

1.682 0 0 11.00 10.10
-1.682 0 0 8.00 6.80

0 1.682 0 11.20 10.10
0 -1.682 0 9.50 8.50
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0 0 1.682 11.50 10.50
0 0 -1.682 10.00 8.80
0 0 0 11.00 10.00

The steps involved in the analysis are the following.

Step 1. Calculate the values of λ 2  and λ 4   using Equations (4.68) and (4.69).

15 λ 2 = 13.65825

           λ 2      = 0.9106

3tλ 4   = 24.00789

           λ 4      = 0.5335

As per the notation in Equations (4.68) and (4.69), t  was taken as the number of
distinct points in the design.

Step 2. Construct an outline of analysis of variance table as follows.

Table 4.45. Schematic representation of ANOVA table for fitting SORD.

Source of
variation

Degree of freedom Sum of
squares

Mean
square

Computed
F

Regression p SSR MSR MSR
MSE

Lack of fit
n - 1- ( )ng

g

t

−
=

∑ 1
1

-p
SSL MSL MSL

MSE
Pure error

      ( )ng
g

t

−
=

∑ 1
1

SSE MSE

Total n - 1 SSTO

Step 3. Compute the correction factor (C.F.)

C. F.=
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∑∑ y

n

gu
u

n

g

t g

11

2

(4.72)

                    =
+ + +( . . ... . )860 7 50 1000

30

2

                     = 2873.37

Step 4. Compute the total sum of squares as
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SSTO y C Fgu
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          = 55.43

Step 5. Compute the estimates of regression coefficients
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Step 6. Compute the  SSR  as

SSR = $ $ $ $ .β β β β0
2y y x y x y x x C Fgu i gu

u
igu

i
ii gu

u
igu

i
ij gu

u
igu jgu

i j
∑∑ ∑∑ ∑∑ ∑∑+ + + −

<

(4.78)

    

         

        

= + + + + − +

− + − + − − + + −

( . )( . ) ( . )( . ) ( . )( . ) ( . )( . ) ( . )( . )

( . )( . ) ( . )( . ) ( . )( . ) ( . )( . ) ( . )( . )

( . )

10 47 293 60 0 92 25 20 0 54 14 75 0 55 14 98 0 50 258 17

0 20 267 78 0 06 272 03 0 02 0 40 0 07 1 20 0 21 3 40

293 60
30

2

     = 44.42

Step 7. Calculate the sum of squares due to pure error
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(4.79)

                    =  9.9650
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Step 8. Calculate the lack of fit sum of squares as

SSL  = SSTO  - SSR  -  SSE (4.80)

                      =  55.4347 - 44.4232 - 9.650
                      = 1.0465

Step 9. Enter the different sums of squares in the ANOVA table and compute the
different mean squares by dividing the sums of squares by the respective
degrees of freedom.

Table 4.46. ANOVA table for fitting SORD using data in Table 4.44

Source of
variation

Degree of
freedom

Sum of
squares

Mean
square

Computed
F

Tabular F
5%

Regression 9 44.4232 4.9359 7.4299 2.56
Lack of fit 5 1.0465 0.2093 0.3150 2.90
Pure error 15 9.9650 0.6643
Total 29 55.4347

Step 10.Calculate the F value for testing significance of lack of fit which tests for the
presence of any mis-specification in the model.

F
MS
MS

=
Lack of fit 
Pure error 

 (4.81)

If the lack of fit is found significant, then the regression mean square is tested
against the lack of fit mean square. Otherwise the regression mean square can
be tested against the pure error mean square.

For our example F = 
0 2093
0 6643
.
.

 = 0.3150

Here, the lack of fit is found to be nonsignificant. Hence, the regression mean
square can be tested against the pure error mean square. The F value for testing
significance of regression is

F
MS
MS

=
Regression 
Pure error 

  (4.82)

                 = 
4 9359
0 6643
.
.

                 = 7.4299

The F value for regression is significant when compared with tabular F value of
2.56 for 9 and 15 degrees of freedom at 5 % level of significance. The model
was found to explain nearly 80 % of the variation in the response variable as
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could be seen from the ratio of the regression sum of squares to the total sum of
squares.

Step 11. The variances and covariances  of the estimated coefficients are obtained by
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where E = Pure error mean square in the ANOVA table.
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All other covariances will be zero.

The fitted response function, therefore is

            $ $ $ $ $y x x x xi i
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One of the uses of the surface is to obtain the optimum dose combination at which the
response is either maximum or economically optimum. Also with the help of the fitted
equation, it is possible to investigate the nature of the surface in specific ranges of the
input variables. Since the treatment of these aspects requires knowledge of advanced
mathematical techniques, further discussion is avoided here but the details can be found
in Montgomery (1991).

5.  SAMPLING TECHNIQUES

5.1.  Basic concepts of sampling

Essentially, sampling consists of obtaining information from only a part of a large
group or population so as to infer about the whole population. The object of sampling is
thus to secure a sample which will represent the population and reproduce the
important characteristics of the population under study as closely as possible.

The principal advantages of sampling as compared to complete enumeration of the
population are reduced cost, greater speed, greater scope and improved accuracy. Many
who insist that the only accurate way to survey a population is to make a complete
enumeration, overlook the fact that there are many sources of errors in a complete
enumeration and that a hundred per cent enumeration can be highly erroneous as well
as nearly impossible to achieve. In fact, a sample can yield more accurate results
because the sources of errors connected with reliability and training of field workers,
clarity of instruction, mistakes in measurement and recording, badly kept measuring
instruments, misidentification of sampling units, biases of the enumerators and
mistakes in the processing and analysis of the data can be controlled more effectively.
The smaller size of the sample makes the supervision more effective. Moreover, it is
important to note that the precision of the estimates obtained from certain types of
samples can be estimated from the sample itself. The net effect of a sample survey as
compared to a complete enumeration is often a more accurate answer achieved with
fewer personnel and less work at a low cost in a short time.

The most ‘convenient’ method of sampling is that in which the investigator selects a
number of sampling units which he considers ‘representative’ of the whole population.
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For example, in estimating the whole volume of a forest stand, he may select a few
trees which may appear to be of average dimensions and typical of the area and
measure their volume. A walk over the forest area with an occasional stop and flinging
a stone with the eyes closed or some other simple way that apparently avoids any
deliberate choice of the sampling units is very tempting in its simplicity. However, it is
clear that such methods of selection are likely to be biased by the investigator’s
judgement and the results will thus be biased and unreliable. Even if the investigator
can be trusted to be completely objective, considerable conscious or unconscious errors
of judgement, not frequently recognized, may occur and such errors due to bias may far
outweigh any supposed increase in accuracy resulting from deliberate or purposive
selection of the units. Apart from the above points, subjective sampling does not permit
the evaluation of the precision of the estimates calculated from samples. Subjective
sampling is statistically unsound and should be discouraged.

When sampling is performed so that every unit in the  population has some chance of
being selected in the sample and the probability of selection of every unit is known, the
method of sampling is called probability sampling.  An example of probability
sampling is random selection, which should be clearly distinguished from haphazard
selection, which implies a strict process of selection equivalent to that of drawing lots.
In this manual, any reference to sampling, unless otherwise stated, will relate to some
form of probability sampling. The probability that any sampling unit will be selected in
the sample depends on the sampling procedure used. The important point to note is that
the precision and reliability of the estimates obtained from a sample can be evaluated
only for a probability sample. Thus the errors of sampling can be controlled
satisfactorily in this case.

The object of designing a sample survey is to minimise the error in the final estimates.
Any forest survey involving data collection and analysis of the data is subject to a
variety of errors. The errors may be classified into two groups viz., (i) non-sampling
errors (ii)  sampling errors. The non-sampling errors like the errors in location of the
units, measurement of the characteristics, recording mistakes, biases of enumerators
and faulty methods of analysis may contribute substantially to the total error of the final
results to both complete enumeration and sample surveys. The magnitude is likely to be
larger in complete enumeration since the smaller size of the sample project makes it
possible to be more selective in assignment of personnel for the survey operations, to
be more thorough in their training and to be able to concentrate to a much greater
degree on reduction of non-sampling errors. Sampling errors arise from the fact that
only a fraction of the forest area is enumerated. Even if the sample is a probability
sample, the sample being based on observations on a part of the population cannot, in
general, exactly represent the population. The average magnitude of the sampling errors
of most of the probability samples can be estimated from the data collected. The
magnitude of the sampling errors, depends on the size of the sample, the variability
within the population and the sampling method adopted. Thus if a probability sample is
used, it is possible to predetermine the size of the sample needed to obtain desired and
specified degree of precision.
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A sampling scheme is determined by the size of sampling units,  number of sampling
units to be used, the distribution of the sampling units over the entire area to be
sampled, the type and method of measurement in the selected units and the statistical
procedures for analysing the survey data. A variety of sampling methods and estimating
techniques developed to meet the varying demands of the survey statistician accord the
user a wide selection for specific situations. One can choose the method or combination
of methods that will yield a desired degree of precision at minimum cost. Additional
references are Chacko (1965) and Sukhatme et al, (1984)

5.1.1. The principal steps in a sample survey

In any sample survey, we must first decide on the type of data to be collected and
determine how adequate the results should be. Secondly, we must formulate the
sampling plan for each of the characters for which data are to be collected. We must
also know how to combine the sampling procedures for the various characters so that
no duplication of field work occurs. Thirdly, the field work must be efficiently
organised with adequate provision for supervising the work of the field staff. Lastly, the
analysis of the data collected should be carried out using appropriate statistical
techniques and the report should be drafted giving full details of the basic assumptions
made, the sampling plan and the results of the statistical analysis. The report should
contain estimate of the margin of the sampling errors of the results and may also
include the possible effects of the non-sampling errors. Some of these steps are
elaborated further in the following.

(i) Specification of the objectives of the survey: Careful consideration must be given at
the outset to the purposes for which the survey is to be undertaken. For example, in a
forest survey, the area to be covered should be decided. The characteristics on which
information is to be collected and the degree of detail to be attempted should be fixed.
If it is a survey of trees, it must be decided as to what species of trees are to be
enumerated, whether only estimation of the number of trees under specified diameter
classes or, in addition, whether the volume of trees is also proposed to be estimated. It
must also be decided at the outset what accuracy is desired for the estimates.

(ii) Construction of a frame of units : The first requirement of probability sample of any
nature is the establishment of a frame. The structure of a sample  survey is determined
to a large extent by the frame. A frame is a list of sampling units which may be
unambiguously defined and identified in the population. The sampling units may be
compartments, topographical sections, strips of a fixed width or plots of a definite
shape and size.

The construction of a frame suitable for the purposes of a survey requires experience
and may very well constitute a major part of the work of planning the survey. This is
particularly true in forest surveys since an artificial frame composed of sampling units
of topographical sections, strips or plots may have to be constructed. For instance, the
basic component of a sampling frame in a forest survey may be a proper map of the
forest area. The choice of sampling units must be one that permits the identification in
the field of a particular sampling unit which has to be selected in the sample. In forest
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surveys, there is considerable choice in the type and size of sampling units. The proper
choice of the sampling units depends on a number of factors; the purpose of the survey,
the characteristics to be observed in the selected units, the variability among sampling
units of a given size, the sampling design, the field work plan and the total cost of the
survey. The choice is also determined by practical  convenience. For example, in hilly
areas it may not be practicable to take strips as sampling units. Compartments or
topographical sections may be more convenient. In general, at a given intensity of
sampling (proportion of area enumerated) the smaller the sampling units employed the
more representative will be the sample and the results are likely to be more accurate.

(iii) Choice of a sampling design: If it is agreed that the sampling design should be such
that it should provide a statistically meaningful measure of the precision of the final
estimates, then the sample should be a probability sample, in that every unit in the
population should have a known probability of being selected in the sample. The choice
of units to be enumerated from the frame of units should be based on some objective
rule which leaves nothing to the opinion of the field worker. The determination of the
number of units to be included in the sample and the method of selection is also
governed by the allowable cost of the survey and the accuracy in the final estimates.

(iv) Organisation of the field work : The entire success of a sampling survey depends
on the reliability of the field work. In forest surveys, the organization of the field work
should receive the utmost attention, because even with the best sampling design,
without proper organization the sample results may be incomplete and misleading.
Proper selection of the personnel, intensive training, clear instructions and proper
supervision of the fieldwork are essential to obtain satisfactory results. The field parties
should correctly locate the selected units and record the necessary measurements
according to the specific instruction given. The supervising staff should check a part of
their work in the field and satisfy that the survey carried out in its entirety as planned.

(v) Analysis of the data : Depending on the sampling design used and the information
collected, proper formulae should be used in obtaining the estimates and the precision
of the estimates should be computed. Double check of the computations is desired to
safeguard accuracy in the analysis.

(vi) Preliminary survey (pilot trials) : The design of a sampling scheme for a forest
survey requires both knowledge of the statistical theory and experience with data
regarding the nature of the forest area, the pattern of variability and operational cost.  If
prior knowledge in these matters is not available, a statistically planned small scale
‘pilot survey’ may have to be conducted before undertaking any large scale survey in
the forest area. Such exploratory or pilot surveys will provide adequate knowledge
regarding the variability of the material and will afford opportunities to test and
improve field procedures, train field workers and study the operational efficiency of a
design. A pilot survey will also provide data for estimating the various components of
cost of operations in a survey like time of travel, time of location and enumeration of
sampling units, etc. The above information will be of great help in deciding the proper
type of design and intensity of sampling that will be appropriate for achieving the
objects of the survey.
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5.1.2. Sampling terminology

Although the basic concepts and steps involved in sampling are explained above, some
of the general terms involved are further clarified in this section so as to facilitate the
discussion on individual sampling schemes dealt with in later sections.

Population : The word population is defined as the aggregate of units from which a
sample is chosen. If a forest area is divided into a number of compartments and the
compartments are the units of sampling, these compartments will form the population
of sampling units. On the other hand, if the forest area is divided into, say, a thousand
strips each 20 m wide, then the thousand strips will form the population. Likewise if the
forest area is divided into plots of, say, one-half hectare each, the totality of such plots
is called the population of plots.

Sampling units : Sampling units may be administrative units or natural units like
topographical sections and subcompartments or it may be artificial units like strips of a
certain width, or plots of a definite shape and size. The unit must be a well defined
element or group of elements identifiable in the forest area on which observations on
the characteristics under study could be made. The population is thus sub-divided into
suitable units for the purpose of sampling and these are called sampling units.
Sampling frame :  A list of sampling units will be called a ‘frame’.  A population of
units is said to be finite if the number units in it is finite.

Sample : One or more sampling units selected from a population according to some
specified procedure will constitute a sample.

Sampling intensity : Intensity of sampling is defined as the ratio of the number of units
in the sample to the number of units in the population.

Population total : Suppose a finite population consists of units U1, U2, …, UN. Let the
value of the characteristic for the ith unit be denoted by yi. For example the units may
be strips and the characteristic may be the number of trees of a certain species in a strip.
The total of the values yi ( i = 1, 2, …, N), namely,

Y yi
i

N

=
=
∑

1
(5.1)

is called the population total which in the above example is the total number of trees of
the particular species in the population.

Population mean :  The arithmetic mean

Y
N

yi
i

N

=
=
∑1

1
(5.2)

is called the population mean which, in the example considered, is the average number
of trees of the species per strip.
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Population variance : A measure of the variation  between units of the population is
provided by the population variance
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which in the example considered measures the variation in number of trees of the
particular species among the strips. Large values of the population variance indicate
large variation between units in the population and small values indicate that the values
of the characteristic for the units are close to the population mean. The square root of
the variance is known as standard deviation.

Coefficient of variation :  The ratio of the standard deviation to the value of the mean is
called the coefficient of variation, which is usually expressed in percentage.
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The coefficient of variation, being dimensionless, is a valuable tool to compare the
variation between two or more populations or sets of observations.
Parameter : A function of the values of the units in the population will be called a
parameter. The population mean, variance, coefficient of variation, etc., are examples
of population parameters. The problem in sampling theory is to estimate the parameters
from a sample by  a procedure that makes it possible to measure the precision of the
estimates.

Estimator, estimate : Let us denote the sample observations of size n by  y1, y2, …, yn.
Any function of the sample observations will be called a statistic. When a statistic is
used to estimate a population parameter, the statistic will be called an estimator. For
example, the sample mean is an estimator of the population mean. Any particular value
of an estimator computed from an observed sample will be called an estimate.

Bias in estimation : A statistic t is said to be an unbiased estimator of a population
parameter θ  if its expected value, denoted by E(t), is equal to θ. A sampling procedure
based on a probability scheme gives rise to a number of possible samples by repetition
of the sampling procedure. If the values of the statistic t are computed for each of the
possible samples and if the average of the values is equal to the population value θ ,
then t is said to be an unbiased estimator of θ  based on sampling procedure. Notice that
the repetition of the procedure and computing the values of t for each sample is only
conceptual, not actual, but the idea of generating  all possible estimates by repetition of
the sampling process is fundamental to the study of bias and of the assessment of
sampling error. In case E(t) is not equal to θ , the statistic t is said to be a biased
estimator of θ  and the bias is given by,  bias = E(t) - θ . The introduction of a
genuinely random process in selecting a sample is an important step in avoiding bias.
Samples selected subjectively will usually be very seriously biased.  In forest surveys,
the tendency of forest officers to select typical forest areas for enumerations, however
honest the intention may be, is bound to result in biased estimates.
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Sampling variance : The difference between a sample estimate and the population
value is called the sampling error of the estimate, but this is naturally unknown since
the population value is unknown. Since the sampling scheme gives rise to different
possible samples, the estimates will differ from sample to sample. Based on these
possible estimates, a measure of the average magnitude over all possible samples of the
squares of the sampling error can be obtained and is known as the mean square error
(MSE) of the estimate which is essentially a measure of the divergence of an estimator
from the true population value. Symbolically,  MSE = E[t - θ ]2. The sampling variance
(V(t))is a measure of the divergence of the estimate from its expected value. It is
defined as the average magnitude over all possible samples of the squares of deviations
of the estimator from its expected value and  is given  by  V(t) = E[t - E(t)]2.

Notice that the sampling variance coincides with the mean square error when t is an
unbiased estimator. Generally, the magnitude of the estimate of the sampling variance
computed from a sample is taken as indicating whether a sample estimate is useful for
the purpose. The larger the sample and the smaller the variability between units in the
population, the smaller will be the sampling error and the greater will be the confidence
in the results.

Standard error of an estimator : The square root of the sampling variance of an
estimator is known as the standard error of the estimator. The standard error of an
estimate divided by the value of the estimate is called relative standard error which is
usually expressed in percentage.

Accuracy and precision : The standard error of an estimate, as obtained from a sample,
does not include the contribution of the bias. Thus we may speak of the standard error
or the sampling variance of the estimate as measuring on the inverse scale, the
precision of the estimate, rather than its accuracy.  Accuracy usually refers to the size
of the deviations of the sample estimate from the mean m = E (t) obtained by repeated
application of the sampling procedure, the bias being thus measured by m - θ .

It is the accuracy of the sample estimate in which we are chiefly interested; it is the
precision with which we are able to measure in most instances.  We strive to design the
survey and attempt to analyse the data using appropriate statistical methods in such a
way that the precision is increased to the maximum and bias is reduced to the
minimum.

Confidence limits : If the estimator t is normally distributed (which assumption is
generally valid for large samples), a confidence interval defined by a lower and upper
limit can expected to include the population parameter θ  with a specified probability
level. The limits are given by

Lower limit = t - z $( )V t (5.5)

Upper limit = t + z $( )V t (5.6)
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where $( )V t  is the estimate of the variance of t and z is the value of the normal deviate
corresponding to a desired P % confidence probability. For example, when z is taken as
1.96, we say that the chance of the true value of θ  being contained in the random
interval defined by the lower and upper confidence limits is 95 per cent. The
confidence limits specify the range of variation expected in the population mean and
also stipulate the degree of confidence we should place in our sample results. If the
sample size is less than 30, the value of k in the formula for the lower and upper
confidence limits should be taken from the percentage points of  Student’s t distribution
(See Appendix 2) with degrees of freedom of the sum of squares in the estimate of the
variance of t. Moderate departures of the distribution from normality does not affect
appreciably the formula for the confidence limits. On the other hand, when the
distribution is very much different from normal, special methods are needed.  For
example, if we use small area sampling units to estimate the average number of trees in
higher diameter classes, the distribution may have a large skewness. In such cases, the
above formula for calculating the lower and upper confidence limits may not be
directly applicable.

Some general remarks : In the sections to follow, capital letters will usually be used to
denote population values and small letters to denote sample values. The symbol ‘cap’
(^) above a symbol for a population value denotes its estimate based on sample
observations. Other special notations used will be explained as and when they are
introduced.

While describing the different sampling methods below, the formulae for estimating
only population mean and its sampling variance are given. Two related parameters are
population total and ratio of the character under study (y) to some auxiliary variable (x).
These related statistics can always be obtained from the mean by using the following
general relations.

$ $Y NY= (5.7)

V Y N V Y( $ ) ( $ )= 2 (5.8)
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( $ )

( $ )
= 2 (5.10)

where $Y = Estimate of the population total
           N = Total number of units in the population
          $R  = Estimate of the population ratio
           X  = Population total of the auxiliary variable

5.2.  Simple random sampling

A sampling procedure such that each possible combination of sampling units out of the
population has the same chance of being selected is referred to as simple random
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sampling. From theoretical considerations, simple  random sampling is the simplest
form of sampling and is the basis for many other sampling methods. Simple random
sampling is most applicable for the initial survey in an investigation and for studies
which involve sampling from a small area where the sample size is relatively small.
When the investigator has some knowledge regarding the population sampled, other
methods which are likely to be more efficient and convenient for organising the survey
in the field, may be adopted. The irregular distribution of the sampling units in the
forest area in simple random sampling may be of great disadvantage in forest areas
where accessibility is poor and the costs of travel and locating the plots are
considerably higher than the cost of enumerating the plot.

5.2.1. Selection of sampling units

In practice, a random sample is selected unit by unit. Two methods of random selection
for simple random sampling without replacement  are explained in this section.

(i) Lottery method : The units in the population are numbered 1 to N. If N identical
counters with numberings 1 to N are obtained and one counter is chosen at  random
after shuffling the counters, then the probability of selecting any counter is the same for
all the counters. The process is repeated n times without replacing the counters
selected. The units which correspond to the numbers on the chosen counters form a
simple random sample  of size n from the population of N units.

(ii) Selection based on random number tables : The  procedure of  selection using the
lottery method, obviously becomes rather inconvenient  when N is large. To overcome
this  difficulty, we  may use a table of random numbers such as those published by
Fisher and Yates (1963) a sample of which is given in Appendix 6. The tables of
random numbers have been developed in such a way that the digits 0 to 9 appear
independent of each other and approximately equal number of times in the table. The
simplest way of selecting a random sample of required size consists in selecting a set of
n random numbers one by one, from 1 to N in the random number table and, then,
taking the units bearing those numbers. This procedure may involve a number of
rejections since all the numbers more than N appearing in the table are not considered
for selection. In such cases, the procedure is modified as follows. If N is a d digited
number, we first determine the highest d digited multiple of N, say N’. Then a random
number r is chosen from 1 to N’ and the unit having the serial number equal to the
remainder obtained on dividing r by N, is considered as selected. If remainder is zero,
the last unit is selected. A numerical example is given below.

Suppose that we are to select a simple random sample of 5 units from a serially
numbered list of 40 units. Consulting Appendix 6 : Table of random numbers, and
taking column (5)  containing two-digited numbers, the following numbers are
obtained:

39, 27, 00, 74, 07
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In order to give equal chances of selection to all the 100 units, we are to reject all
numbers above 79 and consider (00) equivalent to 80. We now divide the above
numbers in turn by 40 and take the remainders as the selected strip numbers for our
sample, rejecting the remainders that are repeated. We thus get the following 16 strip
numbers as our sample :

39, 27, 40, 34, 7.

5.2.2. Parameter estimation

Let y1, y2,… ,yn be the measurements on a particular characteristic on n selected units in
a sample from a population of N sampling units. It can be shown in the case of simple
random sampling without replacement that  the sample mean,

$Y y

y

n

i
i

n

= = =
∑

1 (5.11)

is an unbiased estimator of the population mean, Y . An unbiased estimate of the
sampling variance of y  is given by
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Assuming that the estimate y  is normally distributed, a confidence interval on the
population mean Y can be set with  the lower and upper confidence limits defined by,
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(5.15)

where z is the table value which depends on how many observations  there are in the
sample. If there are 30 or more observations we can read the values from the table of
the normal distribution (Appendix 1). If there are less than 30 observations, the table
value should be read from the table of t distribution (Appendix 2), using n - 1 degree of
freedom.

The computations are illustrated with the following example. Suppose that a forest has
been divided up into 1000 plots of 0.1 hectare each and a simple random sample of 25
plots has been selected. For each of these sample plots the wood volumes in m3 were
recorded. The wood volumes were,

7 10  7 4 7
8   8  8 7 5
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2   6  9 7 8
6   7 11 8 8
7   3  8 7 7

If the wood volume on the ith sampling unit is designated as yi , an unbiased estimator
of the population mean, Y  is obtained using  Equation (5.11)  as,

$Y y= =
+ + + +

=
7 8 2 7

25
175
25

 . . . 

                       = 7  m3

which is the mean wood volume per plot of 0.1 ha in the forest area.

An estimate ( sy
2 ) of the variance of individual values of y is obtained using Equation

(5.13).
( ) ( ) ( )

sy
2

2 2 27 7 8 7 7 7
25 1

=
− + − + + −

−
 . . .

                  = 
82
24

 = 3.833

Then unbiased estimate of sampling variance of y  is

( )( )
$( $ ) .V Y =

−





1000 25
1000 25

3833

                      = 0.1495 (m3)2

SE Y( $ ) .= =01495  0.3867 m3

 The relative standard error which is 
SE Y

Y

( $ )
$ (100) is a more common expression. Thus,

RSE Y( $ )
.

=
0 1495

7
(100) = 5.52 %

The confidence limits on the population mean Y  are obtained using Equations (5.14)
and (5.15).

Lower limit ( )$ . .YL = −7 2 064 01495
                                      = 6.20 cords

Upper limit $ ( . ) .YU = +7 2 064 01495
                                      = 7.80 cords

The 95% confidence interval for the population mean is (6.20, 7.80) m3. Thus, we are
95% confident that the confidence interval (6.20, 7.80) m3 would include the
population mean.
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An estimate of the total wood volume in the forest area sampled can easily be obtained
by multiplying the estimate of the mean by the total number of plots in the population.
Thus,

$Y = =7(1000) m7000 3 

with a confidence interval of (6200, 7800) obtained by multiplying the confidence
limits on the mean by N = 1000. The RSE of $Y , however, will not be changed by this
operation.

5.3. Systematic sampling

Systematic sampling employs a simple rule of selecting every kth unit starting with a
number chosen at random from 1 to k as the random start. Let us assume that N
sampling units in the population are numbered 1 to N. To select a systematic sample of
n units, we take a unit at random from the first k units and then every kth sampling unit
is selected to form the sample. The constant k is known as the sampling interval and is
taken as the integer nearest to N / n, the inverse of the sampling fraction. Measurement
of every kth tree along a certain compass bearing is an example of systematic sampling.
A common sampling unit in forest surveys is a narrow strip at right angles to a base line
and running completely across the forest. If the sampling units are strips, then the
scheme is known as systematic sampling by strips. Another possibility is known as
systematic line plot sampling where plots of a fixed size and shape are taken at equal
intervals along equally spaced parallel lines. In the latter case, the sample could as well
be systematic in two directions.

Systematic sampling certainly has an intuitive appeal, apart from being easier to select
and carry out in the field, through spreading the sample evenly over the forest area and
ensuring a certain amount of representation of different parts of the area. This type of
sampling is often convenient in exercising control over field work. Apart from these
operational considerations, the procedure of systematic sampling is observed to provide
estimators more efficient than simple random sampling under normal forest conditions.
The property of the systematic sample in spreading the sampling units evenly over the
population can be taken advantage of by listing the units so that homogeneous units are
put together or such that the values of the characteristic for the units are in ascending or
descending order of magnitude. For example, knowing the fertility trend of the forest
area the units (for example strips ) may be listed along the fertility trend.

If the population exhibits a regular pattern of variation and if the sampling interval of
the systematic sample coincides with this regularity, a systematic sample will not give
precise estimates. It must, however, be mentioned that no clear case of periodicity has
been reported in a forest area. But the fact that systematic sampling may give poor
precision when unsuspected periodicity is present should not be lost sight of when
planning a survey.

5.3.1. Selection of a systematic sample
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To illustrate the selection of a systematic sample, consider a population of N = 48 units.
A sample of n = 4 units is needed. Here, k = 12. If the random number selected from
the set of numbers from 1 to 12 is 11, then the units associated with serial numbers 11,
23, 35 and 47 will be selected. In situations where N is not fully divisible by n, k is
calculated as the integer nearest to N / n. In this situation, the sample size is not
necessarily n and in some cases it may be n -1.

5.3.2. Parameter estimation

The estimate for the population mean per unit is given by the sample mean

$Y y

y

n

i
i

n

= = =
∑

1 (5.16)

where n is the number of units in the sample.

In the case of systematic strip surveys or, in general, any one dimensional systematic
sampling, an approximation to the standard error may be obtained from the differences
between pairs of successive units. If there are n units enumerated in the systematic
sample, there will be (n-1) differences. The variance per unit is therefore, given by the
sum of squares of the differences divided by twice the number of differences. Thus if
y1,  y2,…,yn are the observed values (say volume ) for the n units in the systematic
sample and defining the first difference d(yi) as given below,

( ) ( )d y y yi i i( ) = −+1 ;   (i = 1, 2, …, n -1), (5.17)

 the approximate  variance per unit is estimated as

( )[ ]$ ( $ )
( )

V Y
n n

d yi
i

n
=

− =

−

∑1
2 1

2

1

1
 (5.18)

As an example, Table 5.1 gives the observed diameters of 10 trees selected by
systematic selection of 1 in 20 trees from a stand containing 195 trees in rows of 15
trees. The first tree was selected as the 8th tree from one of the outside edges of the
stand starting from one corner and the remaining trees were selected systematically by
taking every 20th tree switching to the nearest tree of the next row after the last tree in
any row is encountered.

Table 5.1. Tree diameter recorded on a systematic sample of
                                       10 trees from a plot.

Selected tree
number

Diameter at breast-
height(cm)

yi

First difference

d(yi)
    8 14.8
  28 12.0 -2.8
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  48 13.6 +1.6
  68 14.2 +0.6
  88 11.8 -2.4
108 14.1 +2.3
128 11.6 -2.5
148  9.0 -2.6
168 10.1 +1.1
188  9.5 -0.6

Average diameter is equal to

( )$ . . ....... . .Y = + + + =
1

10
14 8 12 0 9 5 12 07

The nine first differences can be obtained as shown in column (3) of the Table 5.1. The
error variance of the mean per unit is thus

$ ( $ )
... .

V Y
x x

=
+ + +

=
(-2.8) (1.6) (-0.6)2 2 2

2 9 10
36 9
180

                      = 0.202167

A difficulty with systematic sampling is that one systematic sample by itself will not
furnish valid assessment of the precision of the estimates. With a view to have valid
estimates of the precision, one may resort to partially systematic samples. A
theoretically valid method of using the idea of systematic samples and at the same time
leading to unbiased estimates of the sampling error is to draw a minimum of two
systematic samples with independent random starts. If  y1, y2 , …, ym   are m estimates
of the population mean based on m  independent systematic samples, the combined
estimate is

y
m

yi
i

m

=
=
∑1

1
(5.19)

The estimate of the variance of  y  is given by

( )$( )
( )

V y
m m

y yi
i

m
=

−
−

=
∑1

1
2

1
(5.20)

Notice that the precision increases with the number of independent systematic samples.

As an example, consider the data given in Table 5.1 along with another systematic
sample  selected with independent random starts. In the second sample, the first tree
was selected as the 10th tree. Data for the two independent samples are given in Table
5.2.

Table 5.2. Tree diameter recorded on two independent systematic
samples of 10 trees from a plot.

Sample 1 Sample 2
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Selected
tree

number

Diameter at
breast-

height(cm)
yi

Selected
tree number

Diameter at
breast-

height(cm)
yi

    8 14.8  10 13.6
  28 12.0 30 10.0
  48 13.6 50 14.8
  68 14.2 70 14.2
  88 11.8 90 13.8
108 14.1 110 14.5
128 11.6 130 12.0
148  9.0 150 10.0
168 10.1 170 10.5
188  9.5 190  8.5

The average diameter for the first sample is y1 12 07= . . The average diameter for the
first sample is y2 12 19= . .  Combined estimate of population mean (y ) is obtained by
using Equation (5.19) as,

( )y = +
1
2

12 07 1219. .

    = 12.13

The estimate of the variance of  y  is obtained by using Equation (5.20).

( ) ( )$ ( )
( )

. . . .V y =
−

− −
1

2 2 1
12 07 1213 1219 12132 2 = 0.0036

SE y( ) .= 0 0036  = 0.06

One additional variant of systematic sampling is that sampling may as well be
systematic in two directions. For example, in plantations, a systematic sample of rows
and measurements on every tenth tree in each selected row may be adopted with a view
to estimate the volume of the stand.  In a forest survey, one may take a series of
equidistant parallel strips extending over the whole width of the forest and the
enumeration in each strip may be done by taking a systematic sample of plots or trees
in each strip. Forming rectangular grids of (p x q) metres and selecting a systematic
sample of rows and columns with a fixed size plot of prescribed shape at each
intersection is another example.

In the case of two dimensional systematic sample, a method of obtaining the estimates
and approximation to the sampling error is based on stratification and the method is
similar to the stratified sampling given in section 5.4. For example, the sample may be
arbitrarily divided into sets of four in  2 x 2  units and each set may be taken to form a
stratum with the further assumption that the observations within each stratum are
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independently and randomly chosen. With a view to make border adjustments,
overlapping strata may be taken at the boundaries of the forest area.

5.4. Stratified sampling

The basic idea in stratified random sampling is to divide a heterogeneous population
into sub-populations, usually known as strata, each of which is internally homogeneous
in which case a precise estimate of any stratum mean can be obtained based on a small
sample from that stratum and by combining such estimates, a precise estimate for the
whole population can be obtained. Stratified sampling provides a better cross section of
the population than the procedure of simple random sampling. It may also simplify the
organisation of the field work. Geographical proximity is sometimes taken as the basis
of stratification. The assumption here is that geographically contiguous areas are often
more alike than areas that are far apart. Administrative convenience may also dictate
the basis on  which the stratification is made. For example, the staff already available in
each range of a forest division may have to supervise the survey in the area under their
jurisdiction. Thus, compact geographical regions may form the strata. A fairly effective
method of stratification is to conduct a quick reconnaissance survey of the area or pool
the information already at hand and stratify the forest area according to forest types,
stand density, site quality etc. If the characteristic under study is known to be correlated
with a supplementary variable for which actual data or at least good estimates are
available for the units in the population, the stratification may be done using the
information on the supplementary variable. For instance, the volume estimates obtained
at a previous inventory of the forest area may be used for stratification of the
population.

In stratified sampling, the variance of the estimator consists of only the ‘within strata’
variation. Thus the larger the number of strata into which a population is divided, the
higher, in general, the precision, since it is likely that, in this case, the units within a
stratum will be more homogeneous. For estimating the variance within strata, there
should be a minimum of 2 units in each stratum. The larger the number of strata the
higher will, in general, be the cost of enumeration. So, depending on administrative
convenience, cost of the survey and variability of the characteristic under study in the
area, a decision on the number of strata will have to be arrived at.

5.4.1. Allocation and selection of the sample within strata

Assume that the population is divided into k strata of N1, N2 ,…, Nk  units respectively,
and that a sample of n units is to be drawn from the population. The problem of
allocation concerns the choice of the sample sizes in the respective strata, i.e., how
many units should be taken from each stratum such that the total sample is n.

Other things being equal, a larger sample may be taken from a stratum with a larger
variance so that the variance of the estimates of strata means gets reduced. The
application of the above principle requires advance estimates of the variation within
each stratum. These may be available from a previous survey or may be based on pilot
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surveys of a restricted nature. Thus if this information is available, the sampling
fraction in each stratum may be taken proportional to the standard deviation of each
stratum.

In case the  cost per unit of conducting the survey in each stratum is known and is
varying from stratum to stratum an efficient method of allocation for minimum cost
will be to take large samples from the stratum where sampling is cheaper and
variability is higher. To apply this procedure one needs information on variability  and
cost of observation per unit in the different strata.

Where information regarding the relative variances within strata and cost of operations
are not available, the allocation in the different strata may be made in proportion to the
number of units in them or the total area of each stratum. This method is usually known
as ‘proportional allocation’.

For the selection of units within strata, In general, any method which is based on a
probability selection of units can be adopted. But the selection should be independent in
each stratum. If independent random samples are taken from each stratum, the sampling
procedure will be known as ‘stratified random sampling’. Other modes of selection of
sampling such as systematic sampling can also be adopted within the different strata.

5.4.2.  Estimation of mean and variance

We shall assume that the population  of N units is first divided into k strata of N1,
N2,…,Nk units respectively. These strata are non-overlapping and together they
comprise the whole population, so that

N1 + N2 + ….. + Nk = N. (5.21)

When the strata have been determined, a sample is drawn from each stratum, the
selection being made independently in each stratum.  The sample sizes within the strata
are denoted by n1, n2, …, nk respectively, so that

n1 + n2 +…..+ n3 = n (5.22)

Let ytj (j = 1, 2,…., Nt  ;  t = 1, 2,..…k) be the value of the characteristic under study for
the j the unit in the tth stratum.  In this case, the population mean in the tth stratum is
given by

Y
N

y t kt
t

tj
j

N t

= =
=
∑1

1 2
1

,( , , ..., )   (5.23)

The overall population mean is given by

Y N YN t t
t

k

=
=
∑1

1
(5.24)

The estimate of the population mean Y , in this case will be obtained by
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$Y
N y

N

t t
t

k

= =
∑

1 (5.25)

where y
y

nt
tj

tj

nt

=
=
∑

1
(5.26)

Estimate of the variance of $Y is given by

$( $ ) ( )
( )

V Y
N

N N n
s

nt t t
t

k
t y

t
= −

=
∑1

2
1

2

(5.27)

where s
y y

nt y
tj t

tj

nt

( )
( )2

2

1 1
=

−
−

=
∑ (5.28)

Stratification, if properly done as explained in the previous sections, will usually give
lower variance for the estimated population total or mean than a simple random sample
of the same size. However, a stratified sample taken without due care and planning may
not be better than a simple random sample.
Numerical illustration of calculating the estimate of mean volume per hectare of a
particular species and its standard error from a stratified random sample of
compartments selected independently with equal probability in each stratum is given
below.

A forest area consisting of 69 compartments was divided into three strata containing
compartments 1-29, compartments 30-45, and compartments 46 to 69 and 10, 5 and 8
compartments respectively were chosen at random from the three strata. The serial
numbers of the selected compartments in each stratum are given in column (4) of Table
5.3. The corresponding observed volume of the particular species in each selected
compartment in m3/ha is shown in column (5).

Table 5.3.  Illustration of estimation of parameters under stratified sampling

Stratum
number

Total number
of units in
the stratum

(Nt)

Number of
units sampled

(nt)

Selected
sampling unit

number

Volume
(m3/ha)
( yt j

)
( yt j

2 )

(1) (2) (3) (4) (5) (6)

      I

1
18
28
12
20
19
9
6
17
7

5.40
4.87
4.61
3.26
4.96
4.73
4.39
2.34
4.74
2.85

29.16
23.72
21.25
10.63
24.60
22.37
19.27
5.48
22.47
8.12
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Total 29 10 .. 42.15 187.07

      II

43
42
36
45
39

4.79
4.57
4.89
4.42
3.44

22.94
20.88
23.91
19.54
11.83

Total 16 5 .. 22.11 99.10

    III

59
50
49
58
54
69
52
47

7.41
3.70
5.45
7.01
3.83
5.25
4.50
6.51

54.91
13.69
29.70
49.14
14.67
27.56
20.25
42.38

Total 24 8 .. 43.66 252.30

Step 1. Compute the following quantities.

N = (29 + 16 + 24) = 69

n = (10 + 5 + 8) = 23

yt = 4.215,   yt  = 4.422,   yt  = 5.458

Step 2. Estimate of the population mean Y  using Equation (3) is

            $ ( . ) ( . ) ( . ) .
.Y

N y

N

t t
t= =

× + × + ×
= ==

∑
1

3

29 4 215 16 4 422 24 5458
69

323979
69

4 70

Step 3. Estimate of the variance of $Y  using Equation (5) as

            ( )$( $ )
( )

V Y
N

N N n
s

nt
t

t t
t y

t
= −

=
∑1

2
1

3 2

In this example,

            s y1
2

2

187 07
4215

10
9

9 41
9

1046( )

.
( . )

.
.=

−
= =
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            s y2
2

2

9910
2211

5
4

133
4

0 333( )

.
( . )

.
.=

−
= =

            s y3
2

2

252 30
4366

8
7

14 03
7

2 004( )

.
( . )

.
.=

−
= =

            $( $ ) . . .V Y =






×
×





 +

×
×





 +

×
×

















1
69

29 19
10

1046
16 11

5
0333

24 16
8

2 004
2

                      = =
1655482

4761
0 03477

.
.

SE Y( $ ) . .= =0 03477 01865

RSE Y
SE Y

Y
( $ )

( $ )
$=
× 100

(5.29)

             =
×

=
0 1865 100

4 70
3 97%

.
.

.

Now, if we ignore the strata and assume that the same sample of size n = 23, formed a
simple random sample from the population of N = 69, the estimate of the population
mean  would reduce to

y yn i
i

n

= =
+ +

= =
=
∑1

1

4215 2211 4366
23

107 92
23

4 69
. . . .

.

Estimate of the variance of the mean y  is

$( )V y
N n

Nn
s=

− 2

where

s2

2

53847
107 92

23
22

=
−.

( . )

                 = =
32 09

22
14586

.
.

so that

$( )
( )

.V y =
−
×

×
69 23
69 23

1 4586
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                      = =
2 9172

69
0 04230

.
.

SE y( ) . .= =0 04230 0 2057

RSE y( )
.

.
. %=

×
=

0 2057 100
4 69

4 39

The gain in precision due to stratification is computed by

         
$( $ )
$( $ )

.

.
V Y

V Y
srs

st
× = ×100

0 04230
0 03477

100

                                 = 121.8

Thus the gain in precision is 21.8%.

5.5. Multistage sampling

With a view to reduce cost and/or to concentrate the field operations around selected
points and at the same time obtain precise estimates, sampling is sometimes carried out
in stages. The procedure of first selecting large sized units and then choosing a
specified number of sub-units from the selected large units is known as sub-sampling.
The large units are called ‘first stage units’ and the sub-units the ‘second stage units’.
The  procedure can be easily  generalised to three stage or multistage samples.  For
example, the sampling of a forest area may be done in three stages, firstly by selecting a
sample of compartments as first stage units, secondly, by choosing a sample of
topographical sections in each selected compartment and lastly, by taking a number of
sample plots of a specified size and shape in each selected topographical section.

The multistage sampling scheme has the advantage of concentrating the sample around
several ‘sample points’ rather than spreading it over the entire area to be surveyed. This
reduces considerably the cost of operations of the survey and helps to reduce the non-
sampling errors by efficient supervision. Moreover, in forest surveys it often happens
that detailed information may be easily available only for groups of sampling units but
not for individual units. Thus, for example, a list of compartments with details of area
may be available but the details of the topographical sections in each compartment may
not be available. Hence if compartments are selected as first stage units, it may be
practicable to collect details regarding the topographical sections for selected
compartments only and thus use a two-stage sampling scheme without attempting to
make a frame of the topographical sections in all compartments. The multistage
sampling scheme, thus, enables one to use an incomplete sampling frame of all the
sampling units and to properly utilise the information already available at every stage in
an efficient  manner.
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The selection at each stage, in general may be either simple random or any other
probability sampling method and the method may be different at the different stages.
For example one may select a simple random sample of compartments and take a
systematic line plot survey or strip survey with a random start in the selected
compartments.

5.5.1.  Two-stage simple random sampling

When at both stages the selection is by simple random sampling, method is known as
two stage simple random sampling. For example, in estimating the weight of grass in a
forest area, consisting of 40 compartments, the compartments may be considered as
primary sampling units. Out of these 40 compartments, n = 8 compartments may be
selected randomly using simple random sampling procedure as illustrated in Section
5.2.1. A random sample of plots either equal or unequal in number may be selected
from each selected compartment for the measurement of the quantity of grass through
the procedure of selecting a simple random sample. It is then possible to develop
estimates of either mean or total quantity of grass available in the forest area through
appropriate formulae.

5.5.2. Parameter estimation under two-stage simple random sampling

Let the population consists of N first stage units and let Mi be the number of second
stage units in the ith first stage unit. Let n first stage units be selected and from the ith
selected first stage unit let mi second stage units be chosen to form a sample of

m mi
i

n

=
=

∑
1

 units. Let  yij be the value of the character for the  jth second stage unit in the

ith first stage unit.

An unbiased estimator of the population mean Y

y
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M
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i
i
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=

∑∑

∑
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is obtained by Equation

(5.30).
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where M
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i
i
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1 . (5.31)

The estimate of  the variance of $Y is given by
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where  s
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The variance of $Y here can be noticed to be composed of two components. The first is
a measure of variation between first stage units and the second, a measure of variation
within first stage units.  If mi = Mi, the variance is given by the first component only.
The second term, thus represents the contribution due to sub-sampling.

An example of the analysis of a two stage sample is given below. Table 5.4 gives data
on weight of grass (mixed species) in kg from plots of size 0.025 ha selected from 8
compartments which were selected randomly out of 40 compartments from a forest
area. The total forest area was 1800ha.

Table  5.4. Weight of grass in kg in plots selected through a two stage sampling
procedure.

Plot                       Compartment number Total
 I II III  IV  V VI VII VIII

1 96 98 135 142 118 80 76 110
2 100 142 88 130 95 73 62 125
3 113 143 87 106 109 96 105 77
4 112 84 108 96 147 113 125 62
5 88 89 145 91 91 125 99 70
6 139 90 129 88 125 68 64 98
7 140 89 84 99 115 130 135 65
8 143 94 96 140 132 76 78 97
9 131 125 .. 98 148 84 .. 106
10 .. 116 .. .. .. 105 .. ..

Total 1062 1070 872 990 1080 950 744 810 7578
mi 9 10 8 9 9 10 8 9 72

Mean
( )yi

118 107 109 110 120 95 93 90 842

Mi 1760 1975 1615 1785 1775 2050 1680 1865 14505
 swi

2 436.00 515.78 584.57 455.75 412.25 496.67 754.86 496.50 4152

s

m
w

i

i

2 48.44 51.578 73.07 50.63 45.80 49.667 94.35 55.167
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Step1. Estimate the mean weight of grass in kg per plot using the formula in Equation
(5.30).

            $Y
nM

y
M
m ij

j

m

i

n
i

i

i

=
==
∑∑1

11

           M
N

Mi
i

N

= =
=

∑1 1
40

1800
0 0251

(
.

)

                  = 1800
Since Mi∑  indicates the total number of second stage units, it can be obtained
by dividing the total area (1800 ha) by the size of a second stage unit (0.025 ha).

Estimate of the population mean  calculated using Equation (5.30) is
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     =140.36

Estimate of variance of $Y  obtained by Equation (5.32) is

( )( ) ( )$ ( $ )V Y = −






1
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5.6. Multiphase sampling

Multiphase sampling plays a vital role in forest surveys with its application extending
over continuous forest inventory to estimation of growing stock through remote
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sensing. The essential idea in multiphase sampling is that of conducting separate
sampling investigations in a sequence of phases starting with a large number of
sampling units in the first phase and taking only a subset of the sampling units in each
successive phase for measurement so as to estimate the parameter of interest with
added precision at relatively lower cost utilizing the relation between characters
measured at different phases. In order to keep things simple, further discussion in this
section is restricted to only two phase sampling.

A sampling technique which involves sampling in just two phases (occasions) is known
as two phase sampling. This technique is also referred to as double sampling. Double
sampling is particularly useful in situations in which the enumeration of the character
under study (main character) involves much cost or labour whereas an auxiliary
character correlated with the main character can be easily observed. Thus it can be
convenient and economical to take a large sample for the auxiliary variable in the first
phase leading to precise estimates of the population total or mean of the auxiliary
variable. In the second phase, a small sample, usually a sub-sample, is taken wherein
both the main character and the auxiliary character may be observed and using the first
phase sampling as supplementary information and utilising the ratio or regression
estimates, precise estimates for the main character can be obtained. It may be also
possible to increase the precision of the final estimates by including instead of one, a
number of correlated auxiliary variables. For example, in estimating the volume of a
stand, we may use diameter or girth of trees and height as auxiliary variables. In
estimating the yield of tannin materials from bark of trees certain physical
measurements like the girth, height, number of shoots, etc., can be taken as auxiliary
variables.

Like many other kinds of sampling, double sampling is a technique useful in reducing
the cost of enumerations and increasing the accuracy of the estimates. This technique
can be used very advantageously in resurveys of forest areas. After an initial survey of
an area, the estimate of growing stock at a subsequent, period, say 10 or 15 years later,
and estimate of the change in growing stock can be obtained based on a relatively small
sample using double sampling technique.

Another use of double sampling is in stratification of a population. A first stage sample
for an auxiliary character may be used to sub-divide the population into strata in which
the second (main) character varies little so that if the two characters are correlated,
precise estimates of the main character can be obtained from a rather small second
sample for the main character.

It may be mentioned that it is possible to couple with double sampling other methods of
sampling like multistage sampling (sub-sampling)known for economy and enhancing
the accuracy of the estimates. For example, in estimating the availability of grasses,
canes, reeds, etc., a two-stage sample of compartments (or ranges) and topographical
sections (or blocks) may be taken for the estimation of the effective area under the
species and a sub-sample of topographical sections, blocks or plots may be taken for
estimating the yield.
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5.6.1. Selection of sampling units

In the simplest case of two phase sampling, simple random sampling can be employed
in both the phases. In the first step, the population is divided into well identified
sampling units and a sample is drawn as in the case of simple random sampling. The
character x is measured on all the sampling units thus selected. Next, a sub-sample is
taken from the already selected units using the method of simple random sampling and
the main character of interest (y) is measured on the units selected. The whole
procedure can also be executed in combination with other modes of sampling such as
stratification or multistage sampling schemes.

5.6.2. Parameter estimation

(i)  Regression estimate in double sampling :

Let us assume that a random sample of n units has been taken from the population of N
units at the initial phase to observe the auxiliary variable x and that a random sub-
sample of size m is taken where both x and the main character y are observed.

Let x n( )   =  mean of x in the first large sample = x
x
nn
i

i

n

( ) =
=
∑

1
(5.35)

      ( )x m   =  mean of x in the second sample    = x
x
mm
i

i

m

( ) =
=
∑

1
(5.36)

       y      =  mean of y in the second sample   = y
y
m

i

i

m

=
=
∑

1
(5.37)

We may take y  as an estimate of the population mean Y . However utilising the
previous information on the units sampled, a more precise estimate of Y  can be
obtained by calculating the regression of y on x and using the first sample as providing
supplementary information. The regression estimate of Y is given by

y y b x xdrg n m( ) ( ) ( )( )= + −  (5.38)

where the suffix (drg) denotes the regression estimate using double sampling and b is
the regression coefficient of y on x computed from the units included in the second
sample of size m. Thus

( )( )

( )
b

x x y y

x x

i m i
i

m

i m
i

m=

− −

−

=

=

∑

∑

( )

( )

1

2

1

  (5.39)

The variance of the estimate is approximately given by,
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(ii) Ratio estimate in double sampling

Ratio estimate is used mainly when the intercept in the regression line between y and x
is understood to be zero. The ratio estimate of the population mean Y is given by

y
y

x
xdra

m
n( )

( )
( )=     (5.43)

where ydra  denotes the ratio estimate using double sampling. The variance of the
estimate is approximately given by
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An example of analysis of data from double sampling using regression and ratio
estimate is given below. Table 5.5 gives data on the number of clumps and the
corresponding weight of grass in plots of size 0.025 ha, obtained from a random sub-
sample of 40 plots taken from a preliminary sample of 200 plots where only the number
of clumps was counted.

Table 5.5. Data on the number of clumps and weight of grass in plots
selected through a  two phase sampling procedure.

Serial
number

Number of
clumps

Weight
in kg

Serial
number

Number of
clumps

Weight
in kg



A Statistical Manual For Forestry Research

164

(x) (y)  (x) (y)
1 459 68 21 245 25
2 388 65 22 185 50
3 314 44 23 59 16
4 35 15 24 114 22
5 120 34 25 354 59
6 136 30 26 476 63
7 367 54 27 818 92
8 568 69 28 709 64
9 764 72 29 526 72
10 607 65 30 329 46
11 886 95 31 169 33
12 507 60 32 648 74
13 417 72 33 446 61
14 389 60 34 86 32
15 258 50 35 191 35
16 214 30 36 342 40
17 674 70 37 227 40
18 395 57 38 462 66
19 260 45 39 592 68
20 281 36 40 402 55

Here,  n = 200, m = 40.  The mean number of clumps per plot as observed from the
preliminary sample of 200 plots was x n( )   = 374.4.
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Mean number of clumps per plot from the sub-sample of 40 plots is
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            x m( ) .= =
15419

40
3855

Mean weight of clumps per plot from the sub-sample of 40 plots

            y = =
2104

40
52 6.

The  regression estimate of the mean  weight of grass in kg per plot is obtained by using
Equation (5.38) where the regression coefficient  b obtained using Equation (5.39) is

b = =
149280 6
1800842

0 08
.

.

Hence, y drg( ) . . ( . . )= + −52 6 0 08 374 4 3855
                      = 52.6 - 0.89
                      = 51.7 kg /plot

( ) ( )[ ]sy x. . .2 21
40 2

14675 6 0 08 1800842=
−

−

       = 82.9

sy
2 14675 6

39
=

.

     =376.297

The variance of the estimate is approximately given by Equation (5.40)

V y drg( )
. . .

( ) = +
−82 9

40
82 9 376 297

200
(5.40)

                          = 3.5395

The  ratio estimate of the mean  weight of grass in kg per plot is given by Equation
(5.43)

( )y dra( )

.
.

.=
52 6
385 5

374 4

         = 51.085

 syx =
−

149280 6
40 1

.

       = 3827.708
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 sx
2 1800842
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=

−
      = 46175.436

 $ .
.

R =
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    = 0.1364 

The variance of the estimate is approximately given by Equation (5.44) is
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                        = 5.67

5.7. Probability Proportional to Size (PPS) sampling

In many instances, the sampling units vary considerably in size and simple random
sampling may not be effective in such cases as it does not take into account the possible
importance of the larger units in the population. In such cases, it has been found that
ancillary information about the size of the units can be gainfully utilised in selecting the
sample so as to get a more  efficient estimator of the population parameters. One such
method is to assign unequal probabilities for selection to different units of the
population.  For example, villages with larger geographical area are likely to have
larger area under food crops and in estimating the production, it would be desirable to
adopt a sampling scheme in which villages are selected with probability proportional to
geographical area. When units vary in their size and the variable under study is directly
related with the size of the unit, the probabilities may be assigned proportional to the
size of the unit. This type of sampling where the probability of selection is proportion
to the size of the unit is known as ‘PPS Sampling’. While sampling successive units
from the population, the units already selected can be replaced back in the population
or not. In the following, PPS sampling with replacement of sampling units is discussed
as this scheme is simpler compared to the latter.

5.7.1. Methods of selecting a pps sample with replacement

The procedure of selecting the sample consists in associating with each unit a number
or numbers equal to its size and selecting the unit corresponding to a number chosen at
random from the totality of numbers associated. There are two methods of selection
which are discussed below:

(i) Cumulative total method: Let the size of the ith unit be xi, (i = 1, 2, …, N).  We
associate the numbers 1 to xi with the first unit, the numbers (x1+1) to (x1+x2) with the
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second unit and so on such that the total of the numbers so associated is  X = x1 + x2 +
… + xN. Then a random number r is chosen at random from 1 to X and the unit with
which this number is associated is selected.

For example, a village has 8 orchards containing 50, 30, 25, 40, 26, 44, 20 and 35 trees
respectively. A sample of 3 orchards has to be selected with replacement and with
probability proportional to number of trees in the orchards. We prepare the following
cumulative total table:

Serial number of the
orchard

Size
(xi)

Cumulative size Numbers
associated

1 50 50    1 - 50
2 30 80  51 - 80
3 25 105   81 -105
4 40 145 106 -145
5 26 171 146 - 171
6 44 215 172 - 215
7 20 235 216 - 235
8 35 270 236 - 270

Now, we select three random numbers between 1 and 270.  The random numbers
selected are 200, 116 and 47. The units associated with these three numbers are 6th, 4th,
and 1st  respectively.  And hence, the sample so selected contains units with serial
numbers, 1, 4 and 6.

(ii) Lahiri’s Method: We have noticed that the cumulative total method involves
writing down the successive cumulative totals which is time consuming and tedious,
especially with large populations. Lahiri in 1951 suggested an alternative procedure
which avoids the necessity of writing down the cumulative totals. Lahiri’s method
consists in selecting a pair of random numbers, say (i,j) such that 1 ≤ i ≤ N  and 1≤ j ≤
M; where M is the maximum of the sizes of  the N units of the population.  If  j ≤ Xi,
the ith unit is selected: otherwise, the pair of random number is rejected and another
pair is chosen. For selecting a sample of n units, the procedure is to be repeated till n
units are selected. This procedure leads to the required probabilities of selection.

For instance, to select a sample of 3 orchards from the population in the previous
example in this section, by Lahiri’s method by PPS with replacement, as N = 8, M = 50
and n = 3,  we have to select three pairs of random numbers such that the first random
number is less than or equal to 8 and the second random number is less than or equal to
50. Referring to the random number table, three pairs selected are (2, 23) (7,8) and (3,
30). As in the third pair j >Xi, a fresh pair has to be selected. The next pair of random
numbers from the same table is (2, 18) and hence, the sample so selected consists of the
units with serial numbers 2, 7 and 2. Since the sampling unit 2 gets repeated in the
sample, the effective sample size is two in this case. In order to get an effective sample
size of three, one may repeat the sampling procedure to get another distinct unit.

5.7.2. Estimation procedure
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Let a sample of n units be drawn from a population consisting of N units by PPS with
replacement. Further, let (yi, pi) be the value and the probability of selection of the ith
unit of the sample, i = 1, 2, 3, …., n.

An unbiased estimator of population mean is given by

$Y
nN

y
p

i

ii

n

=
=
∑1

1
(5.49)

An estimator of the variance of above estimator is given by
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where  p
x
Xi
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For illustration, consider the following example. A random sample 23 units out of 69
units were selected with probability proportional to size of the unit (compartment) from
a forest area in U.P. The total area of 69 units was 14079 ha. The volume of timber
determined for each selected compartment are given in Table 5.6 along with the area of
the compartment.

Table 5. 6. Volume of timber and size of the sampling unit for a PPS sample of forest
compartments.

Serial
no.

Size in
ha
(xi)

Relative
size

(xi/X)

Volume in
m3

(yi)

 
y
p

vi

i
i= (vi)2

1 135 0.0096 608 63407.644 4020529373.993
2 368 0.0261 3263 124836.351 15584114417.014
3 374 0.0266 877 33014.126 1089932493.652
4 303 0.0215 1824 84752.792 7183035765.221
5 198 0.0141 819 58235.864 3391415813.473
6 152 0.0108 495 45849.375 2102165187.891
7 264 0.0188 1249 66608.602 4436705896.726
8 235 0.0167 1093 65482.328 4287935235.716
9 467 0.0332 1432 43171.580 1863785345.581
10 458 0.0325 3045 93603.832 8761677342.194
11 144 0.0102 410 40086.042 1606890736.502
12 210 0.0149 1460 97882.571 9580997789.469
13 467 0.0332 1432 43171.580 1863785345.581
14 458 0.0325 3045 93603.832 8761677342.194
15 184 0.0131 1003 76745.853 5889925992.739
16 174 0.0124 834 67482.103 4553834285.804
17 184 0.0131 1003 76745.853 5889925992.739
18 285 0.0202 2852 140888.800 19849653965.440
19 621 0.0441 4528 102656.541 10538365422.979
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20 111 0.0079 632 80161.514 6425868248.777
21 374 0.0266 877 33014.126 1089932493.652
22 64 0.0045 589 129570.797 16788591402.823
23 516 0.0367 1553 42373.424 1795507096.959

1703345.530 147356252987.120

Total area  X = 14079 ha.

An unbiased estimator of population mean is obtained by using Equation (5.49).

( )( ) ( )$Y =
1

23 69
1703345.530

               = 1073.312
An estimate of the variance of $Y is obtained through Equation (5.50).

( ) ( )
( )( )( )$ $

( )
V Y =

−
1

23 23 1 69 2 147356252987.120 - 23 67618.632

                     = 17514.6

And the standard error of Y  is 17514.6    = 132.343.

6. SPECIAL TOPICS

A number of instances in forestry research can be found wherein substantial statistical
applications have been made other than the regular design, sampling or analytical
techniques. These special methods are integrally related to the concepts in the particular
subject fields and will require an understanding of both statistics and the concerned
disciplines to fully appreciate their implications. Some of these topics are briefly
covered in what follows. It may be noted that quite many developments have taken
place in each of the topics mentioned below and what is reported here forms only a
basic set in this respect. The reader is prompted to make further reading wherever
required so as to get a better understanding of the variations possible with respect to
data structure or in the form of analysis in such cases.

6.1 Genetics and plant breeding

6.1.1. Estimation of heritability and genetic gain

The observed variation in a group of individuals is partly composed of genetic or
heritable variation and partly of non-heritable variation. The fraction of total variation
which is heritable is termed the coefficient of heritability in the broad sense. The
genotypic variation itself can be sub-divided into additive and nonadditive genetic
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variance. The ratio of additive genetic variance to the total phenotypic variance is
called the coefficient of heritability in the narrow sense and is designated by h2. Thus,

h2 =
+ +

additive genetic variance
additive genetic variance nonadditive genetic variance environmental variance

  
     

Conceptually, genetic gain or genetic improvement per generation is the increase in
productivity following a change in the gene frequency induced mostly by selection.

Heritability and genetic gain can be estimated in either of two ways. The most direct
estimates are derived from the relation between parents and offspring, obtained by
measuring the parents, growing the offspring, and measuring the offspring. The other
way is to establish a half-sib or full-sib progeny test, conduct an analysis of variance
and compute heritability as a function of the variances. Understanding the theoretical
part in this context requires a thorough knowledge of statistics. Formulae given below
in this section are intended only as handy references. Also, there is no attempt made to
cover the numerous possible variations that might result from irregularities in design.
Half-sib progeny test is used for illustration as it is easier to establish and so more
common in forestry.

Both heritability and gain estimates apply strictly only to the experiments from which
they are obtained. They may be and frequently are very different when obtained from
slightly different experiments. Therefore when quoting them, it is desirable to include
pertinent details of experimental design and calculation procedures. Also, it is good
practice to state the statistical reliability of each heritability estimate and therefore
formulae for calculating  the reliability of heritability estimates are also included in this
section. Additional references are Falconer (1960), Jain (1982) and Namkoong et al.
(1966).

For illustration of the techniques involved, consider the data given in Table 6.1. The
data were obtained from a replicated progeny trial in bamboo conducted at
Vellanikkara and Nilambur in Kerala consisting of  6 families, replicated 3 times at
each of the 2 sites, using plots of 6 trees each. The data shown in Table 6.1 formed part
of a larger set.

Table 6.1. Data on height obtained from a replicated progeny trial in bamboo conducted
at 2 sites in Kerala.

Height (cm) after two years of planting

Site I - Vellanikkara Site II - Nilambur
Family Family

Block Tree 1 2 3 4 5 6 1 2 3 4 5 6

1 1 142 104 152 111 23 153 24 18 18 31 95 57
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2 95 77 98 29 48 51 58 50 24 26 42 94
3 138 129 85 64 88 181 32 82 38 30 43 77
4 53 126 118 52 27 212 27 23 65 86 76 39
5 95 68 25 19 26 161 60 56 46 20 41 82
6 128 48 51 25 26 210 75 61 104 28 49 29

2 1 185 129 78 28 35 140 87 26 78 25 29 54
2 117 131 161 26 21 79 102 103 57 37 72 56
3 135 135 121 25 14 158 74 55 60 52 83 29
4 155 88 124 76 34 93 102 43 26 139 40 67
5 152 75 118 43 49 151 20 100 59 49 24 42
6 111 41 61 86 31 171 80 98 70 97 54 47

3 1 134 53 145 53 72 109 54 58 87 17 25 38
2 35 82 86 32 113 50 92 47 93 23 30 38
3 128 71 141 24 37 64 89 33 70 29 26 36
4 89 43 156 182 19 82 144 108 47 30 36 72
5 99 71 121 22 24 77 100 70 26 87 24 106
6 29 26 55 52 20 123 92 46 40 31 37 61

The stepwise procedure for estimating heritability and genetic gain from a half-sib
progeny trial is given below.

Step 1.Establish a replicated progeny test consisting of open-pollinated offspring of f
families, replicated b (for block) times at each of s sites, using n-tree plots.
Measure a trait, such as height, and calculate the analysis of variance, as shown
in Table 6.2. Progeny arising from any particular female constitute a family.

Table 6.2. Schematic representation of analysis of variance for a multi-
plantation half-sib progeny trial.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Site s - 1 SSS MSS
Block-within-site        s (b - 1) SSB MSB
Family f - 1 SSF MSF
Family x Site   (f - 1)(s - 1) SSFS MSFS
Family x Block-
within-site

s(f - 1) (b - 1) SSFB MSFB

Tree-within-plot     bsf  (n - 1) SSR MSR

The formulae for computing the different sums of squares in the ANOVA Table
are given below, including the formula for computing the correction factor
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(C.F.). Let yijkl represent the observation corresponding to the lth tree belonging
to the kth family of the jth block in the ith site. Let G represent the grand total,
Si indicate the ith site total, Fk represent the kth family total, (SB)ij represent the
jth block total in the ith site, (SF)ik represent the kth family total in the ith site,
(SBF)ijk represent the kth family total in the jth block of the ith site.

C F  = 
G
sbfn

2

(6.1)

        =
15418.00
(2)(3)(6)(6)

2

        =1100531.13
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                    = 9258.13
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ijk
2

k

f

111 (6.7)

= 
(651.00) +(552.00) 351.00)2 22

(6)
+ +.... (

- 1100531.13 - 48900.46 -

                                                    9258.13 - 80533.37 - 35349.37
          = 45183.87

SSR SSTO SSS= − - SSB - SSF - SSFS - SSFB (6.8)

        =  408024.87 - 48900.46 - 9258.13 - 80533.37 -35349.37 - 45183.87
        = 188799.67

The mean squares are computed as usual by dividing the sums of squares by the
respective degrees of freedom. The above results may be summarised as shown
in Table 6.3.

Table 6.3. Analysis of variance table for a  multi-plantation half-sib
progeny trial using data given in Table 6.1.

Source of
variation

Degree of
freedom

(df)

Sum of
squares

(SS)

Mean square

MS
SS
df

=








Site 1 48900.46 48900.46
Block-within-site 4 9258.13 2314.53
Family 5 80533.37 16106.67
Family x Site 5 35349.37 7069.87
Family x Block-
within-site

20 45183.87 2259.19

Tree-within-plot 180 188799.67 1048.89

In ordinary statistical work, the mean squares are divided by each other in
various manners to obtain F  values, which are then used to test the significance.
The mean squares themselves, however, are complex, most of them containing
variability due to several factors. To eliminate this difficulty, mean squares are
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apportioned into variance components according to the equivalents shown in
Table 6.4.

Table 6.4. Variance components of mean squares for a multi-plantation half-sib
progeny test.

Sources of
variation

Variance components of mean squares

Site Ve + n Vfb + n b Vfs + nf Vb + nfb Vs    
Block-within-site Ve + n Vfb + nf Vb

Family Ve + n Vfb + n b Vfs +  nbs Vf

Family x Site Ve + n Vfb +  nb Vfs

Family x Block-within-site Ve + n Vfb

Tree-within-plot Ve

In Table 6.4, Ve , Vfb , Vfs , Vf , Vb , and Vs  are the variances due to tree-within-
plot, family x block-within-site, family x site, family, block-within-site and site,
respectively.

Step 2. Having calculated the mean squares, set each equal to its variance component as
shown in Table 6.4. Start at the bottom of the table and obtain each successive
variance of interest by a process of subtraction and division. That is, subtract
within-plot mean square (Ve) from family x block mean square (Ve + nsVfb) to
obtain nsVfb ; then divide by  ns to obtain Vfb . Proceed in a similar manner up
the table.

Step 3.Having calculated the variances, calculate heritability of the half-sib family
averages as follows.

Family heritability =
+ + +

V
V
nbs

V
bs

V
s

V

f

e fb fs
f

(6.9)

                                                   

=
+ + +

=

25102
104889
6 3 2

20172
3 2

26726
2

25102

01600

.
.

( )( )( )
.

( )( )
.

( )
.

.

Since the family averages are more reliable than the averages for any single plot
or tree, the selection is usually based upon family averages.

Step 4. In case the selection is based on the performance of single trees, then single tree
heritability is to be calculated. In a half-sib progeny test, differences among
families account for only one-fourth of the additive genetic variance; the
remainder is accounted for by variation within the families. For that reason, Vf is
multiplied by 4 when calculating single tree heritability. Also, since selection is
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based upon single trees, all variances are inserted in toto in the denominator.
Therefore the formula for single-tree heritability is

Single tree heritability =
+ + +

4V

V V V V
f

e fb fs f
(6.10)

                                                           
=

+ + +

=

( )( . )
. . . .

.

4 251 02
1048 89 201 72 267 26 251 02

0 5676

Suppose that the families are tested in only one test plantation. Testing and
calculating procedure are much simplified. Total degrees of freedom are nfb -1;
site and family x site mean squares and variances are eliminated from Table 6.2.
In this situation, families are measured at one site only. They might grow very
differently at other  sites. The calculated Vf is in reality a combination of Vf and
Vfs. Therefore, heritability calculated on the basis of data from one plantation
only, is overestimated.

Recording and analysis of single tree data are the most laborious parts of
measurement and calculation procedures, often accounting for 75% of the total
effort. Estimates of Vfb, Vfs, and Vf are not changed if data are analysed in terms
of plot means rather than individual tree means, but Ve cannot be determined.
The term (Ve/nbs) is often so small  that it is inconsequential in the estimation of
family heritability. However, single tree heritability is slightly overestimated if
Ve is omitted. Even more time can be saved by dealing solely with the means of
families at different sites, i.e., calculating Vfs and Vf  only. Elimination of the
Vfb/bs term ordinarily causes a slight overestimate of family heritability.
Elimination of the Vfb  term may cause a greater overestimate of the single tree
heritability.

Step 5. Calculate the standard error of  single tree heritability estimate as

( )[ ]
( )( )( )[ ]

SE h
h nbs h

nbs nbs f

( )
( )

2

2 2

1
2

1 4 1 1 4

2 1 1

=
− + −

− −

(6.11)

                              
( )[ ]

( )( )

=
− + −





 − −





1 0 5676
4 1 6 3 2 1 0 5676

4

6 3 2
2 6 3 2 11 6 1

1
2

. (( )( )( ) ) .

( )( )( ) ( )( )( )

 

                               = 0.0036

The standard error of  family heritability is approximately given by
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SE h( )2
 

( )( )

( ) ( )[ ]
≅

− +

−

1 1

1 2
1
2

t nbst

nbs f
(6.12)

                       
( ) ( )( )

( ) ( )[ ]
≅

− +

−

1 01419 1 6 3 2 01419

6 3 2 6 1 2
1
2

. ( )( ) ( . )

( )( )( )

                       ≅ 05525.

where t  is the intraclass correlation, which equals one-fourth of the single tree
heritability.

The above formulae are correct if Ve = Vfb = Vfs. However, if one of these is
much larger than the others, the term nbs should be reduced accordingly. If, for
example, Vfs  is much larger than Vfb or Ve , s might be substituted for nbs.

The above-calculated family heritability estimate is strictly applicable only if
those families with the best overall performance in all plantations are selected.
A breeder may select those families which are superior in one plantation only.
In that case, family heritability is calculated as above except that Vfs is
substituted for Vfs/s in the denominator.

If a breeder wishes to select on the basis of plot means, only family heritability
is calculated as shown above, except that Vfs  and Vfb are substituted for Vfs /s
and Vfb /bs, respectively, in the denominator.

Step 6. To calculate genetic gain from a half-sib progeny test, use the formula for
genetic gain from  family selection.

Genetic gain   = Selection differential x Family heritability (6.13)
where Selection differential = (Mean of selected families - Mean of all families)

To calculate  expected gain from mass selection in such a progeny test, use the
formula,

Expected mass selection gain  = Selection differential x Single tree heritability
 (6.14)

where Selection differential = (Mean of selected trees - Mean of all trees)

6.1.2. Genotype-environment interaction

The phenotype of an individual is the resultant effect of its genotype and the
environment in which it develops. Furthermore, the effects of genotype and
environment may not be independent. A specific difference in environment may have a
greater effect on some genotypes than on others, or there may be a change in the
ranking of genotypes when measured in diverse environments. This interplay of genetic
and non-genetic effects on the phenotype expression is called genotype-environment
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interaction. The failure of a genotype to give the same response in different
environments is a definite indication of genotype-environment interaction.

The environment of an individual is made up of all the things other than the genotype
of the individual that affect its development. That is to say, environment is the sum
total of all non-genetic factors external to the organism. Comstock and Moll (1963)
distinguish two kinds of environments, micro and macro. Micro-environment is the
environment of a single organism, as opposed to that of another, growing at the same
time and in almost the same place. Specifically, micro-environmental differences are
environmental fluctuations which occur even when individuals are apparently treated
alike. On the other hand, environments that are potential or realized within a given area
and period of time are referred to collectively as a macro-environment. A macro-
environment can thus be conceived of as a collection of micro-environments  that are
potential therein. Different locations, climates and even different management practices
are examples of macro-environmental differences. It is to be noted that the effect of
micro-environment on an organism as well as its interactions with different genotypes
is usually very small. Moreover, owing to the unpredictable and uncontrollable nature
of micro-environment, its interactions with genotypes cannot be properly discerned. In
other words, it is the macro-environmental deviation and its interaction with genotype
that can be isolated and tested for significance.

One method of detecting genotype-environment interaction is by analysing data from a
multi-location trial as done in Table 6.2 and testing the significance of the Family x Site
interaction term. The computed F value is compared against table value of F for(f-1)(s-
1) and s(f-1)(b-1) degrees of freedom (See Table 6.5).

If the interaction is nonsignificant or does not involve appreciable differences in rank
among the best families or clones, they may be ignored, in which case selections should
be based upon a genotype’s average performance at all test sites. If  the interactions are
large and can be interpreted sufficiently to permit forecasts of where particular
genotypes will excel or grow poorly, they cannot be ignored. To determine this, group
the data from several plantations according to the plantations’ site characteristics (i.e.,
northern versus southern, dry versus moist, infertile versus fertile). Determine the
amount of interaction within and between such groups. If a large portion of the
interaction can be explained by the grouping, make separate selections for the sites
typical of each plantation group. Then the correct statistical procedure is to make a
separate analysis of variance and develop heritability estimate for each plantation group
within which the interactions are too small  or too uninterpretable to be of practical
importance.

Table 6.5. Analysis of variance for a  multi-plantation half-sib progeny test.

Sources of
variation

Degrees
of

freedom

Sum of
squares

Mean
square

Computed
F

Tabular F
5 %

Site 1 48900.46 48900.46
Block-within-
site

4 9258.13 2314.53
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Family 5 80533.37 16106.67
Family x Site 5 35349.37 7069.87 MSFS

MSFB
=3.97*

2.71

Family x Block-
within-site

20 45183.87 2259.19

Tree-within-
plot

180 188799.67 1048.89

* Significant at 5% level.

An alternative approach in this regard uses the regression technique in partitioning the
genotype-environmental interaction component of variability into its linear and non-
linear portions for assessing the stability of genotypes over a range of environments
(Freeman and Perkins, 1971). Further discussion of this method is however not
attempted here for want of space.

6.1.3. Seed orchard designs

A seed orchard is a plantation of genetically superior trees, isolated to reduce
pollination from genetically inferior outside sources, and intensively managed to
produce frequent, abundant, easily harvested seed crops. It is established by setting out
clones (as grafts or cuttings) or seedling progeny of trees selected for desired
characteristics. This section is concerned with certain specific planting designs used for
raising seed orchards with emphasis on statistical aspects. Several other aspects of seed
orchard planning related to type of planting material-clones or seedlings, number of
clones or families, initial planting distances and related information can be found in
books on tree breeding such as Wright, (1976) and Faulkner (1975).

In the case of clonal seed orchards, plants belonging to the same clone are called
ramets. However, in this section, the term ‘clone’ or ‘ramet’, as applied in clonal seed
orchards, are used for descriptive purposes. Similar designs can be used for seedling
seed orchards, in which case the word ‘progeny’ should be substituted for ‘clone’ and
‘family-plot’ for ramet. Family plots can consist of a single tree or groups composed of
several trees.

Completely randomized design (CRD) in which complete randomisation of all the
available ramets of all clones between all the available planting positions on the site is
the simplest of all designs to plan on paper. It can, however, pose practical management
difficulties associated with planting, or, on-site grafting, and the relocation of
individual ramets at a later stage and particularly when the orchard is large and contains
many clones. If systematic thinning is to be practised by removing every second tree or
every second row, the design can be further refined by making separate randomizations
for the ramets which are to remain and for those to be removed in thinning. Quite
frequently, certain restrictions are imposed on randomization, for example, that no two
ramets of the same clone may be planted in adjacent positions within rows or columns,
or where they will occur in adjacent diagonal positions; or, that at least two different
ramets must separate ramets of the same clone. These restrictions are usually arranged
by manipulating the positions of the ramets on the plan, thus making the design no
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longer truly random, however, such deviations from randomness are seldom great. This
strategy is adopted  mainly to avoid the chances of inbreeding.

As an illustration, graphical layout of a completely randomized design for 10 clones
with around 10 replications, planted with one-ring isolation is shown below.

4 7 4 8 5 10 7 6 4 7
8 3 9 1 2 1 3 5 3 5
6 1 5 3 10 5 10 9 7 10
8 4 2 1 9 7 6 3 5 8
5 7 3 6 2 3 5 2 10 2
1 10 4 7 10 6 8 4 1 5
9 7 6 3 5 2 7 3 6 2
1 5 2 10 1 3 10 5 4 9
8 10 4 7 5 7 8 2 1 6
7 2 8 6 1 4 6 7 10 4

Figure 6.1. Layout of a CRD for 10 clones with around 10 replications, with one-ring
isolation around ramets of each clone.

As an extension of the above concepts, randomised complete block design (RCBD) or
incomplete block designs like lattice designs discussed in Chapter 4 of this manual can
be utilized in this connection for the benefits they offer in controlling the error
component. However, the randomization within blocks is usually modified in order to
satisfy restrictions on the proximity of ramets of the same clone. These designs are
better suited for comparative clonal studies. Their main disadvantages are that RCBD
shall not work well with large number of clones; lattice designs and other incomplete
block designs are  available only for certain fixed combinations of clone numbers and
number of ramets per clone and  they are unsuitable for systematic thinnings which
would spoil the design.

La Bastide (1967) developed a computer programme which provides a design if
feasible, for a set numbers of clones, ramets per clone, and ratio of rows to columns.
There are two constraints; first, that there is a double ring of different clones to isolate
each ramet of same clone (which are planted in staggered rows); second, that any
combination of two adjacent clones should occur in any specific direction once only
(See Figure 6.2). The design is called permutated neighbourhood design.
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16       22       18       24       10       23

21        5       29        3       19        5        1

15       23       14       22       30       24

6        4        26       7        25       8        3

25       23        2       29        8        2

 5       8        6        9       10          7       15

21       22       12       20       27       26

7

7

Figure 6.2. A fragment of a permutated neighbourhood design for 30 clones, with the
restrictions on randomness employed by La Bastide (1967) in his computer
design, viz., (i) 2 rings of different clones isolate each ramet, and, (ii) any
combination of two adjacent clones must not occur more than once in any
specific direction.

Ideally, the design should be constructed for  number of replications equal to one less
than the number of clones, which would ensure that every clone has every other clone
as neighbour once in each of the six possible directions. Thirty clones would therefore,
require 29 ramets per clone or a total of 870 grafts although it may not be feasible to
construct such large designs always. Even so, the small blocks which have been
developed are, at the moment, the best designs available for ensuring, at least in theory,
the maximum permutation of neighbourhood combinations and the minimum
production of full-sibs in the orchard progeny. Chakravarty and Bagchi (1994) and
Vanclay (1991) describe efficient computer programmes for construction of permutated
neighbourhood seed orchard designs.

Seed orchards are usually established on the assumption that each clone and ramet, or,
family-plot or seedling tree, in the orchard will: flower during the same period; will
have the same cycle of periodic heavy flower production; be completely inter-fertile
with all its neighbours and yield identical number of viable seed per plant; have the
same degree of resistance to self-incompatibility; and will have a similar rate of growth
and crown shape as all other plants.  It is common experience that this is never the case
and it is not likely to ever be so. The successful breeder will be the one who diligently
observes and assiduously collects all essential information on clonal behaviour,
compatibilities and combining-abilities, and translates this information into practical
terms by employing it in the next and subsequent generations of seed orchards. Such
designs will make maximum use of the available data.

6.2. Forest mensuration
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6.2.1. Volume and biomass equations

In several areas of forestry research such as in silviculture, ecology or wood science, it
becomes necessary to determine the volume or biomass of trees. Many times, it is the
volume or biomass of a specified part of the tree that is required. Since the
measurement of volume or biomass is destructive, one may resort to pre-established
volume or biomass prediction equations to obtain an estimate of these characteristics.
These equations are found to vary from species to species and for a given species, from
stand to stand. Although the predictions may not be accurate in the case of individual
trees, such equations are found to work well when applied repeatedly on several trees
and the results aggregated, such as in the computation of stand volume. Whenever, an
appropriate equation is not available, a prediction equation will have to be established
newly. This will involve determination of actual volume or biomass of a sample set of
trees and relating them to nondestructive measures like diameter at breast-height and
height of trees through regression analysis.

(i) Measurement of tree volume and biomass

Determination of volume of any specified part of the tree such as stem or branch is
usually achieved by cutting the tree part into logs and making measurements on the
logs. For research purposes, it is usual to make the logs 3m in length except the top end
log which may be up to 4.5m.  But if the end section is more than 1.5m in length, it is
left as a separate log. The diameter or girth of the logs is measured at the middle
portion of the log, at either ends of the log or at the bottom, middle and tip potions of
the logs depending on the resources available. The length of individual logs is also
measured. The measurements may be made over bark or under bark after peeling the
bark as required. The volume of individual logs may be calculated by using one of the
formulae given in the following table depending on the measurements available.

Volume of  the log Remarks
( )b t l2 2

8
+
π

   Smalian’s formula

 
m

l
2

4π










Huber’s formula

( )b m t l2 2 24
24

+ +
π     Newton’s formula

where  b is the girth of the log at the basal portion
m is the girth at the middle of the log
t   is the girth at the thin end of the log

            l  is the length of the log or height of the log

For illustrating the computation of volume of a tree using the above formulae, consider
the data on  bottom, middle, tip girth and length of different logs from a tree (Table
6.6).

Table 6.6. Bottom girth, middle girth, tip girth and length of logs of a teak tree.
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Girth (cm) Volume of log (cm)3

Log
number

Bottom
(b)

Middle
(m)

Tip
(t)

Length
(l)

Smalian’s
formula

Huber’s
formula

Newton’s
formula

1 129.00 99.00 89.00 570.00 556831.70 444386.25 481868.07
2 89.00 90.10 91.00 630.00 405970.57 406823.00 406538.86
3 64.00 60.00 54.90 68.00 19229.35 19472.73 19391.60
4 76.00 85.00 84.60 102.00 52467.48 58621.02 56569.84
5 84.90 80.10 76.20 111.00 57455.84 56650.45 56918.91

Total 1091954.94 985953.45 1021287.28

The volumes of  individual logs are added to get a value for the volume of the tree or its
part considered. In order to get the volume in m3, the volume in (cm)3 is to be divided
by 1000,000.

Though volume is generally used in timber trade, weight is also used in the case of
products like firewood or pulpwood. Weight is the standard measure in the case of
many minor forest produce as well. For research purposes, biomass is getting
increasingly more in use. Though use of weight as a measure appears to be easier than
the use of volume, the measurement of weight is beset with problems like varying
moisture content and bark, which render its use inconsistent. Hence biomass is usually
expressed in terms of dry weight of component parts of trees such as stem, branches
and leaves. Biomass of individual trees are determined destructively by felling the trees
and separating the component parts like main stem, branches, twigs and leaves. The
component parts are to be well defined as for instance, material below 10 cm girth over
bark coming from main stem is included in the branch wood. The separated portions
should be weighed immediately after felling. If oven-dry weights are needed, samples
should be taken at this stage. At least three samples of about 1 kg should be taken from
stem, branches and twigs from each tree. They should be weighed and then taken to the
laboratory for oven-drying. The total dry weight of each component of the tree is then
estimated by applying the ratio of fresh weight to dry weight observed in the sample to
the corresponding total fresh weight of the component parts. For example,

( )Total DW of bole
 DW  of samples from bole
FW of samples from bole

Total FW of bole  =  (6.15)

where FW = Fresh weight
          DW = Dry weight

For illustration, consider the data in Table 6.7.

Table 6.7. Fresh weight and dry weight of sample discs from the bole of a tree

Disc Fresh weight
(kg)

Dry weight
(kg)

1 2.0 0.90
2 1.5 0.64
3 2.5 1.37

Total 6.0 2.91
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( )Total DW of bole
 DW  of samples from bole
FW of samples from bole

Total FW of bole  =

Total DW of bole of the tree =
 .

.
2 9 1
6 0 0

9 5 0





                                                        = 460.8 kg

(ii) Estimation of allometric equations

The data collected from sample trees on their  volume or biomass along with the dbh
and height of sample trees are utilized to develop prediction equations through
regression techniques. For biomass equations, sometimes diameter measured at a point
lower than breast-height is used as regressor variable. Volume or biomass is taken as
dependent variable and functions of dbh and height form the independent variables in
the regression. Some of the standard forms of volume or biomass prediction equations
in use are given below.

y = a + b D + c D2             (6.16)
ln y = a + b D                         (6.17)
ln y = a + b ln D                     (6.18)

            y0.5 = a + b D                          (6.19)
y = a + b D2H                    (6.20)
ln y = a + b D2H                    (6.21)
y0.5 = a + b D2H                    (6.22)
ln y = a + b ln D + c ln H        (6.23)
y0.5 = a + b D + c H               (6.24)
y0.5 = a + b D2 + c H + d D2H (6.25)

In all the above equations, y represents tree volume or biomass, D is the tree diameter
measured at breast-height or at a lower point but measured uniformly on all the sample
trees, H is the tree height, and a, b, c are regression coefficients, ln indicates natural
logarithm.

Usually, several forms of equations are fitted to the data and the best fitting equation is
selected based on measures like adjusted coefficient of determination or Furnival index.
When the models to be compared do not have the same form of the dependent variable,
Furnival index is invariably used.

Adjusted R  2 = −1
1

1 2n-
n-p

-R( ) (6.26)

where R2 is the coefficient of determination obtained as the ratio of regression sum of
squares to the total sum of squares (see Section 3.7)
n is the number of observations on the dependent variable
p is the number of parameters in the model

Furnival index is computed as follows. The value of the square root of error mean
square is obtained for each model under consideration through analysis of variance.
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The geometric mean of the derivative of the dependent variable with respect to y is
obtained for each model from the observations. Geometric mean of a set of n
observations is defined by the nth root of the product of the observations. The Furnival
index for each model is then obtained by multiplying the corresponding values of the
square root of mean square error with the inverse of the geometric mean. For instance,
the derivative of ln y is (1/y) and the Furnival index in that case would be

Furnival index  = ( )MSE
y

1
1Geometric mean −









  (6.27)

The derivative of y0.5 is (1/2)(y - 0.5) and corresponding changes will have to be made in
Equation (6.27) when the dependent variable is y0.5.

For example, consider the data on dry weight and diameter at breast-height of 15 acacia
trees, given in Table 6.8.

Table 6.8. Dry weight and dbh of 15 acacia trees.

Tree no Dry weight in tonne
(y)

Dbh in metre
 (D)

1 0.48 0.38
2 0.79 0.47
3 0.71 0.44
4 1.86 0.62
5 1.19 0.54
6 0.51 0.38
7 1.04 0.50
8 0.62 0.43
9 0.83 0.48
10 1.19 0.48
11 1.03 0.52
12 0.61 0.40
13 0.68 0.44
14 0.20 0.26
15 0.66 0.44

Using the above data, two regression models, y = a + b D + c D2  and  ln y = a + b D
were fitted using multiple regression analysis described in Montgomery and Peck
(1982). Adjusted R2 and Furnival index were calculated for both the models. The
results are given in Tables 6.9 to Tables 6.12.

Table 6.9. Estimates of regression coefficients along with the standard
error for the regression model,  y = a + b D + c D2.

Regression
coefficient

 Estimated regression
coefficient

Standard error of
estimated coefficient

a  0.5952 0.4810
b -3.9307 2.0724



A Statistical Manual For Forestry Research

185

c  9.5316 2.4356

Table 6.10. ANOVA table  for the regression analysis using the
model,  y = a + b D + c D2.

Source df SS MS Computed
F

Regression 2 2.0683 1.0341 105.6610
Residual 12 0.1174 0.0098

R2 = 
SSR

SSTO
  =

2 0683
2 1857

.

.
= 0.9463

Adjusted R
-1

(1 - 0.9463) 2 = −1
15
15 - 3

                             =   0.9373

Here the derivative of y is 1. Hence,
Furnival index  = MSE  = 00098.  = = 0.0989.

Table 6.11.Estimates of regression coefficients along with the
standard error for the regression model ln y = a + b D.

Regression
coefficient

 Estimated regression
coefficient

Standard error of
estimated
coefficient

a -3.0383 0.1670
b  6.0555 0.3639

Table 6.12. ANOVA table  for the regression analysis using the
model,  ln y = a + b D

Source df SS MS Computed
F

Regression 1 3.5071 3.5071 276.9150
Residual 13 0.1646 0.0127

R2 = 
SSR

SSTO
  =

3 5071
35198
.
.

= 0.9552

Adjusted R
-1

(1- 0.9552) 2 = −1
2

15
15 -

                      = 0.9517
            Here derivative of y is 1/y. Hence, Furnival index calculated by Equation (6.27)

is

Furnival index  =  0 0127
1

13514
.

.




    = 0.0834

Here, the geometric mean of (1/y) will be the geometric mean of the reciprocals
of the fifteen  y values in Table 6.8.



A Statistical Manual For Forestry Research

186

In the example considered, the model ln y = a + b D has a lower Furnival index
and so is to be preferred over the other model y = a + b D + c D2. Incidentally,
the former model also has a larger adjusted R2.

6.2.2. Growth and yield models for forest stands

Growth and yield prediction is an important aspect in forestry. ‘Growth’ refers to
irreversible changes in the system during short phases of time. ‘Yield’ is growth
integrated over a specified time interval and this gives the status of the system at
specified time points.  Prediction of growth or yield is important because many
management decisions depend on it. For instance, consider the question, is it more
profitable to grow acacia or teak in a place? The answer to this question depends, apart
from the price, on the expected yield of the species concerned in that site. How
frequently should a teak plantation be thinned ? The answer naturally depends on the
growth rate expected of the plantation concerned. What would be the fate of teak if
grown mixed with certain other species ?  Such questions can be answered through the
use of appropriate growth models.

For most of the modelling purposes, stand is considered as a unit of management.
‘Stand’ is taken as a group of trees associated with a site. Models try to capture the
stand behaviour through algebraic equations. Some of the common measures of stand
attributes are described here first before discussing the different stand models.

(i) Measurement of stand features

The most common measurements made on trees apart from a simple count are diameter
at breast height or girth at breast-height and total height. Reference is made to standard
text books on mensuration for the definition of these terms (Chaturvedi and Khanna,
1982). Here, a few stand attributes that are derivable from these basic measurements
and some additional stand features are briefly mentioned.

Mean diameter : It is the diameter corresponding to the mean basal area of a group of
trees or a stand, basal area of a tree being taken as the cross sectional area at the breast-
height of the tree.

Stand basal area : The sum of the cross sectional area at breast-height of trees in the
stand usually expressed m2 on a unit area basis.

Mean height : It is the height corresponding to the mean diameter of a group of trees as
read from a height-diameter curve applicable to the stand.

Top height : Top height is defined as the height corresponding to the mean diameter of
250 biggest diameters per hectare as read from height diameter curve.

Site index : Projected top height of a stand to a base age which is usually taken as the
age at which culmination of height growth occurs.
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Stand volume : The aggregated volume of trees in the stand usually expressed in m3 on
a unit area basis.

According to the degree of resolution of the input variables, stand models can be
classified as (i ) whole stand models (ii)  diameter class models and  (iii)  individual
tree models. Though a distinction is made as models for even-aged and uneven-aged
stands, most of the models are applicable for both the cases. Generally, trees in a
plantation are mostly of the same age and same species whereas trees in natural forests
are of different age levels and of different species. The term even-aged is applied to
crops consisting of trees of approximately the same age but differences up to 25% of
the rotation age may be allowed in case where a crop is not harvested for 100 years or
more. On the other hand, the term uneven-aged is applied to crops in which the
individual stems vary widely in age, the range of difference being usually more than 20
years and in the case of long rotation crops, more than 25% of the rotation.

Whole stand models predict the different stand parameters directly from the concerned
regressor variables. The usual parameters of interest are commercial volume/ha, crop
diameter and crop height. The regressor variables are mostly age, stand density and site
index. Since age and site index determine the top height, sometimes only the top height
is considered in lieu of age and site index. The whole stand models can be further
grouped according to whether or not stand density is used as an independent variable in
these models. Traditional normal yield tables do not use density since the word
‘normal’ implies Nature’s maximum density. Empirical yield tables assume Nature’s
average density. Variable-density models split by whether current or future volume is
directly estimated by the growth functions or whether stand volume is aggregated from
mathematically generated diameter classes. A second distinction is whether the model
predicts growth directly or uses a two-stage process which first predicts future stand
density and then uses this information to estimate future stand volume and subsequently
growth by subtraction.

Diameter class models trace the changes in volume or other characteristics in each
diameter class by calculating growth of the average tree in each class, and multiply this
average by the inventoried number of stems in each class. The volumes are the
aggregated over all classes to obtain stand characteristics.
Individual tree models are the most complex and individually model each tree on a
sample tree list. Most individual tree models calculate a crown competition index for
each tree and use it in determining whether the tree lives or dies and, if it lives, its
growth in terms of diameter, height and crown size. A distinction between model types
is based on how the crown competition index is calculated. If the calculation is based
on the measured or mapped distance from each subject tree to all trees with in its
competition zone, then it is called distance-dependent. If the crown competition index
is based only on the subject tree characteristics and the aggregate stand  characteristics,
then it is a distance-independent model.

A few models found suitable for even-aged and uneven-aged stands are described
separately in the following.
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(ii)   Models for even-aged stands

Sullivan and Clutter (1972)  gave three basic equations which form a compatible set in
the sense that the yield model can be obtained by summation of the predicted growth
through  appropriate growth periods.  More precisely, the algebraic form of the yield
model can be derived by mathematical integration of the growth model. The general
form of the equations is

Current yield   = V1 = f (S, A1, B1)                                                          (6.28)
Future yield  = V2 = f (S, A2, B2)                                                            (6.29)
Projected basal area = B2 = f (A1, A2, S, B1)                                            (6.30)

where S = Site index
          V1 = Current stand volume
          V2 = Projected stand volume
          B1 = Current stand basal area
          B2 = Projected stand basal area
          A1 = Current stand age
          A2 = Projected stand age

Substituting Equation (6.30) for B2 in Equation (6.29),  we get an equation for  future
yield in terms of current stand variables and projected age,

V2=f(A1,A2, S, B1)                                                                                (6.31)

A specific example is

( ) ( )log log V S A A A B A A2 0 1 2 2
1

3 1 2
1

4 1 1 2
11= + + + − +− − −β β β β β                  (6.32)

The parameters of Equation (6.32) can be estimated directly through multiple linear
regression analysis (Montgomery and Peck,1982) with remeasured data from
permanent sample plots, keeping  V2 as the dependent variable and A1, A2, S and B1 as
independent variables.
Letting  A2 = A1, in Equation (6.32),

log log V S A B= + + +−β β β β0 1 2
1

3                                              (6.33)

which is useful for predicting current volume.

To illustrate an application of the modelling approach,  consider the equations reported
by Brender and Clutter (1970) which was fitted to 119 remeasured piedmont loblolly
pine stands near Macon, Georgia. The volume (cubic foot/acre) projection equation is

( ) ( )log log V S A A A B A A2 2
1

1 2
1

1 1 2
1152918 0002875 61585 2 291143 1 0 93112= + + + − +− − −. . . . .

(6.34)
Letting A2 = A1, this same equation predicts the current volume as,
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( )log log V S A B= + − +−152918 0002875 615851 0931121. . . .  (6.35)

To illustrate an application of the Brender-Clutter model, assume a stand growing on a
site of site index of 80 feet, currently 25 years old with a basal area of 70 ft2/acre. The
owner wants an estimate of current volume and the volume expected after 10 more
years of growth. Current volume is estimated using Equation (6.35),

( )log (80) (1 / 25) log 70V = + − +152918 0002875 615851 0 93112. . . .
          = 1.52918 + 0.23 - 0.24634 + 1.71801

                     = 3.23085

V  = 10 3.23085 =1,701 ft3.

Volume after 10 years would be, as per Equation (6.34),

( )log (80) (1 / 25)V2 152918 0002875 61585 2 291143 1 25 35= + + + −. . . . /

                                                                            ( )+ 093112. log 70 (25 / 35)
                      = 1.52918 +0.23 - 0.24634 + 0.65461 -1.22714
                      = 3.39459

            V2  = 2,480 ft3

(iii) Models for uneven-aged stands

Boungiorno and Michie (1980) present a matrix model in which the parameters
represent (i) stochastic transition of trees between diameter classes and (ii) ingrowth of
new trees which depends upon the condition of the stand. The model has the form

( ) ( )y g y h g y h g y ht t t t t n nt nt1 0 1 1 1 2 2 2+ = + − + − + + −ϑ β .... ( )                  (6.36)
y b y h a y ht t t t t2 2 1 1 2 2 2+ = − + −θ ( ) ( )
     .  .  .
     .  .  .
     .  .  .

{ } { }( ) ( )y b y h a y hnt n n t n t n nt nt+ − −= − + −θ 1 1

where yit +ϑ  gives the expected number of living trees in the ith size class at time t.
          hit   gives the number of trees harvested from ith size classes during a time

interval.
           gi, ai, bi are coefficients to be estimated.
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Here the number of trees in the smallest size class is expressed as a function of the
number of trees in all size classes and of the harvest within a particular time interval.
With the same time reference, the numbers of trees in higher size classes are taken as
functions of the numbers of trees in adjacent size classes. It is possible to estimate the
parameters through regression analysis using data from permanent sample plots
wherein status of the number of trees in different diameter classes in each time period
with a specified interval is recorded along with the number of trees harvested between
successive measurements.

For an over-simplified illustration, consider the following data collected at two
successive instances with an interval of θ = 5 years from a few permanent sample plots
in natural forests. The data given in Table 6.13 show the number of trees in three
diameter classes at the two measurement periods. Assume that no harvesting has taken
place during the interval, implying hit; i = 1, 2, …, n to be zero. In actual applications,
more than three diameter classes may be identified and data from multiple
measurements from a large number of plots will be required with records of number of
trees removed from each diameter class between successive measurements.

Table 6.13. Data on number of trees/ha in three diameter classes at two successive
measurements  in natural forests.

Sample
plot

Number of trees /ha
 at  Measurement - I

Number of trees/ha
 at Measurement - II

number dbh class
<10cm

(y1t)

dbh class
 10-60 cm

(y2t)

dbh class
>60 cm

(y3t)

dbh class
<10cm
(y1t+θ)

dbh class
 10-60 cm

(y2t+θ)

dbh
class

>60 cm
(y2t+θ)

 1 102 54 23 87 87 45
 2 84 40 22 89 71 35
 3 56 35 20 91 50 30
 4 202 84 42 77 167 71
 5 34 23 43 90 31 29
 6 87 23 12 92 68 20
 7 78 56 13 90 71 43
 8 202 34 32 82 152 33
 9 45 45 23 91 45 38
10 150 75 21 83 128 59

 The equations to be estimated are,

y g y g y g yt t t t1 0 1 1 2 2 3 3+ = + + +ϑ β  (6.37)
y b y a yt t t2 2 1 2 2+ = +θ

y b y a yt t t3 3 2 3 3+ = +θ

Assembling the respective data from Table 6.13 and running the multiple linear
regression routine (Montgomery and Peck,1982), the following estimates may be
obtained.
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y y y yt t t t1 1 2 3998293 00526 00738 01476+ = − − −ϑ . . . .  (6.38)
y y yt t t2 1 207032 02954+ = +θ . .
y y yt t t3 2 30 7016 0 2938+ = +θ . .

Equations such as in model (6.38) have great importance in projecting the future stand
conditions and devising optimum harvesting policies on the management unit as
demonstrated by Boungiorno and Michie (1980). Growth models in general are put to
use in forest management for comparing alternative management prescriptions. Using
growth simulation models, it is possible to compare the simulated out-turn under the
different prescriptions with respect to measures like internal rate of return (IRR) and
arrive at optimum harvesting schedules. As growth and yield projections can be made
under a variety of models, a choice will have to be made with respect to the best model
to be used for such a purpose. Models differ with respect to data requirement or
computational complexities. Apart from these, the biological validity and accuracy of
prediction are of utmost importance in the choice of a model.

6.3. Forest ecology

6.3.1. Measurement of biodiversity

Biodiversity is the property of living systems of being distinct, that is different, unlike.
Biological diversity or biodiversity is defined here as the property of groups or classes
of living entities to be varied. Biodiversity manifests itself in two dimensions viz.,
variety and relative abundance of species (Magurran, 1988). The former is often
measured in terms of species richness index which is,

 Species richness index =  
S
N

                                                               (6.39)

           where S   =  Number of species in a collection
                     N  =  Number of individuals collected

As an illustration, suppose we encounter 400 species in a collection of 10000
individuals, the species richness index would be.

Species richness index =  
400
10000

4=

The increase in the number of species in relation to the number of individuals or the
area covered is represented by a species accumulation curve. The relation between
number of species (S) and the area (A) covered is often represented mathematically by
the equation,  S = αAβ, a graph  of  which  is  shown  below  for  specific  values  of  α
and β  (α = 100, β  = 0.2). Here, α and β  are parameters to be estimated empirically
using linear regression techniques with data on area covered and the corresponding
number of species recorded.
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                                    Figure 6.3. An example of species-area curve

Using  the  equation  S   =  100A0.2,  we shall be able to predict  the  number  of
possible species that we will get by covering a larger area within the region of
sampling. In the above example, we are likely to get  ‘458’ species when the area of
search is  ‘2000 ha’.

In instances like the collection of insects through light traps, a species-individual curve
will be more useful. In order to get an asymptotic curve we may have to use nonlinear
equations of the form

          S
N

N
=

+
α

β
                                                                                              (6.40)

wherein S  tends  to α  as N tends to ∞. This means that α will be the limiting number
of  species  in  an  infinitely  large  collection  of individuals. The parameters  α and β
in this case will have to be estimated using  nonlinear regression techniques (Draper
and Smith, 1966). A graph of  Equation (6.40)  is shown below for α = 500 and β  =
100.
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                                Figure 6.4. An example of species-individual curve

The relative abundance is usually measured in terms of diversity indices, a best known
example of which is Shannon-Wiener index (H).

          H p pi
i

S

i= −
=

∑
1

ln                                                                                     (6.41)

where pi  = Proportion of individuals found in the ith species  
          ln indicates natural logarithm

The values of Shannon-Wiener index obtained for different communities can be tested
using Student’s t test where t is defined as

          t =
−

+

H H

Var H Var H
1 2

1 2( ) ( )
                                                                     (6.42)

which follows Student’s t distribution with ν degrees of freedom where

         ν =
+

+

( ( ) ( ))

( ( )) ( ( ))

Var H Var H

Var H N Var H N
1 2

2

1
2

1 2
2

2
                                                (6.43)

         Var H
p p p p

N
S

N
i i i i( )
(ln ) ( ln )

=
−

+
−∑ ∑2 2

2

1
2

                                       (6.44)

The calculation of Shannon-Wiener index and testing the difference between the
indices of two locations are illustrated below.

Table 6.14 shows the number of individuals belonging to different insect species
obtained in  collections using light traps at two locations in Kerala (Mathew et al.,
1998).
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Table 6.14. Number of individuals belonging to different insect
species obtained in  collections using light traps at
two locations

Species code Number of individuals
collected from
Nelliampathy

Number of individuals
collected from
Parambikulum

1 91 84
2 67 60
3 33 40
4 22 26
5 27 24
6 23 20
7 12 16
8 14 13
9 11 12
10 10   7
11   9   5
12   9   5
13   5   9
14   1   4
15  4   6
16   2   2
17   2   4
18   1   4
19   2   5
20   4   1

Step 1. The first step when calculating the Shannon-Wiener index by hand is to draw up
a table (Table 6.15)  giving values of pi  and pi ln pi . In cases where t test is also
used, it is convenient to add a further column to the table giving values of pi (ln
pi)2.

Step 2. The  insect  diversity  in Nelliyampathy is H1 = 2.3716 while the diversity  in
Parambikulam is  H2 = 2.4484.  These values represent the sum of the pi ln pi
column. The formula for the Shannon-Wiener index commences with a minus
sign to cancel out the negative signs created by taking logarithms of
proportions.

Step 3. The variance in diversity of the two locations may be estimated using Equation
(6.44).

           Var H
p p p p

N
S

N
i i i i( )
(ln ) ( ln )

=
−

+
−∑ ∑2 2

2

1
2
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Thus, Var( H1 ) -Nelliyampathy = 
( )

6 6000 5 6244
349

19
2 349 2

. .−
+  = 0.0029

                      Var ( H2 ) -Parambikulam = 
( )

6 9120 5 9947
347

19
2 347 2

. .−
+  = 0.0027

Table 6.15. Calculation of Shannon-Wiener index for two locations.

 Species Nelliyampathy Parambikulam
code pi pi ln pi pi (ln pi )2 pi pi ln pi pi (ln pi )2

1 0.2607 -0.3505 0.4712 0.2421 -0.3434 0.4871
2 0.1920 -0.3168 0.5228 0.1729 -0.3034 0.5325
3 0.0946 -0.2231 0.5262 0.1153 -0.2491 0.5381
4 0.0630 -0.1742 0.4815 0.0749 -0.1941 0.5030
5 0.0774 -0.1980 0.5067 0.0692 -0.1848 0.4936
6 0.0659 -0.1792 0.4873 0.0576 -0.1644 0.4692
7 0.0344 -0.1159 0.3906 0.0461 -0.1418 0.4363
8 0.0401 -0.1290 0.4149 0.0375 -0.1231 0.4042
9 0.0315 -0.1090 0.3768 0.0346 -0.1164 0.3916
10 0.0286 -0.1016 0.3609 0.0202 -0.0788 0.3075
11 0.0258 -0.0944 0.3453 0.0144 -0.0611 0.2591
12 0.0258 -0.0944 0.3453 0.0144 -0.0611 0.2591
13 0.0143 -0.0607 0.2577 0.0259 -0.0946 0.3456
14 0.0029 -0.0169 0.0990 0.0115 -0.0514 0.2295
15 0.0115 -0.0514 0.2297 0.0173 -0.0702 0.2848
16 0.0057 -0.0294 0.1518 0.0058 -0.0299 0.154
17 0.0057 -0.0294 0.1518 0.0115 -0.0514 0.2295
18 0.0029 -0.0169 0.099 0.0115 -0.0514 0.2295
19 0.0057 -0.0294 0.1518 0.0144 -0.0611 0.2591
20 0.0115 -0.0514 0.2297 0.0029 -0.0169 0.0987

Total 1 -2.3716 6.6000 1 -2.4484 6.9120

Step 4. The t test allows the diversity of the two locations to be compared. The
appropriate formulae are given in Equations (6.42) and (6.43).

            t =
−

+

H H

Var H Var H
1 2

1 2( ) ( )
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           ν =
+

+

( ( ) ( ))

( ( )) ( ( )

Var H Var H

Var H N Var H N
1 2

2

1
2

1 2
2

2

           In this example,  t =
−
+

2 3716 2 4484
00029 00027
. .
. .

 = 1.0263

           The corresponding  degrees of freedom are calculated as

           ν =
+
+

( . . )
( . ) ( . )

0 0029 0 0027
0 0029 349 0 0027 347

2

2 2  = 695.25

The table value of t corresponding to  695 degrees of freedom (Appendix 2)
shows that the difference between diversity indices of two locations is
nonsignificant.

Conventionally, random sampling patterns are employed in studies on biodiversity. One
related question is, what is the sample size required to estimate any particular diversity
index. Simulation exercises based on realistic structure of species abundances revealed
that observing 1000 randomly selected individuals is adequate to estimate Shannon-
Wiener index. Estimation of species richness may need an effort level of about 6000
(Parangpe and Gore, 1997).

6.3.2. Species abundance relation

A complete description of the relative abundance of  different species in a community
can be obtained through a species abundance model. The empirical distribution of
species abundance is obtained by plotting the number of species against the number of
individuals. Later, the observed distribution is approximated by a theoretical
distribution. One of the theoretical models used in this connection especially with
partially disturbed populations is the log series. The log series takes the form

αx,
αx2

2
,
αx3

3
, . . . ,

αx
n

n

                                                                       (6.45)

 
αx being the number of species with one individual, αx2/2 the number of species with
two individuals, etc. The total number of species (S) in the population is obtained by
adding up all the terms in the series which will work out to S = α [- ln (1-x)].

To fit the series, it is necessary to calculate how many species are expected to have one
individual, two individuals and so on. These expected abundances are then put into the
same abundance classes used for the observed distribution and a goodness of fit test is
used to compare the two distributions.  The total number of species in the observed and
expected distributions is of course identical.

The calculations involved are illustrated with the following example. Mathew et al.
(1998) studied the impact of forest disturbance on insect species diversity at four
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locations in the Kerala part of Western Ghats. As part of their study, they assembled a
list giving the abundance of 372 species at Nelliyampathy. This list is not reproduced
here for want of space. However, this data set used here to illustrate the calculations
involved in fitting a log series model.

Step 1. Put the observed abundances into abundance classes. In this case, classes in log2
(that is octaves or doublings of species abundances) are chosen. Adding 0.5 to
the upper boundary of each class makes it straightforward to unambiguously
assign observed species abundances to each class. Thus, in the table below
(Table 6.16), there are 158 species with an abundance of one or two individuals,
55 species with an abundance of three or four individuals, and so on.

               Table 6.16. Number of species obtained in different abundance classes.

 Class Upper boundary Number of species
observed

1             2.5 158
2             4.5   55
3             8.5   76
4           16.5   49
5           32.5   20
6           64.5     9
7         128.5    4
8             ∞     1

Total number of
species (S)

             - 372

Step 2. The two parameters needed to fit the series are x and α. The value of x is
estimated   by iterating the  following term.

           
S
N

= − − −[(1 ) / ][ ln (1 )]x x x (6.46)

            where S = Total number of species (372)
                      N = Total number of individuals (2804).

           The value of x is usually greater than 0.9 and always <1.0. A few calculations on
a hand calculator will quickly produce the correct value of x by trying different
values of x in the expression [(1 ) / ][ ln (1 )]− − −x x x and examining if it attains
the value of  S/N = 0.13267.

x [(1 ) / ][ ln (1 )]− − −x x x

0.97000 0.10845
0.96000 0.13412
0.96100 0.13166
0.96050 0.13289
0.96059 0.13267
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            The correct value of x is therefore 0.96059.  Once x has been obtained, it is
simple   to calculate  α using the equation,

            α =
−N x

x
(1 )

=
2804 1 0 96059

0 96059
( . )
.

−
 = 115.0393 (6.47)

Step 3. When α and x have been obtained, the number of species expected to have 1, 2,
3, . . ., n individuals can be calculated. This is illustrated below for the first four
abundance classes corresponding to the cumulative sums.

Table 6.17. Calculation involved in finding out the expected number of
species in a log series model.

Number of
Individuals

Series term Number of expected
species

Cumulative sum

1 α x 110.5
2 α x2/2   53.1 163.6
3 α x3/3   33.9
4 α x4/4  24.5 58.5
5 α x5/5  18.8
6 α x6/6  15.1
7 α x7/7 12.4
8 α x8/8 10.4 56.7
9 α x9/9   8.9
10 α x10/10  7.7
11 α x11/11  6.7
12 α x12/12  6.0
13 α x13/13  5.2
14 α x14/14  4.7
15 α x15/15  4.2
16 α x16/16  3.8 47.1

Step 4. The next stage is to compile a table giving the number of expected and observed
species in each abundance class and compare the two distributions using a
goodness of fit test. Chi-square test is one commonly used test.  For each class,
calculate χ 2  as shown.

            χ 2 = (Observed frequency - Expected frequency)2/ Expected frequency (6.48)
            For example, in class 1, χ2 = (158-163.5809)2 /163.5809 =0.1904. Finally sum

this column to obtain the overall goodness of fit, χ∑ 2
.Check the obtained value

in chi-square tables (Appendix 4) using (Number of classes-1) degrees of

freedom. In this case, χ∑ =
2

12 0624. , with 6 degrees of freedom. The value of
χ2  for P=0.05 is 12.592. We can therefore conclude that there is no significant
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difference between the observed and expected distributions, i.e., the log series
model fits well for the data.

      If χ2 is calculated when the number of expected species is small (<1.0) the
resultant value of χ2 can be extremely large. In such cases, it is best to combine
the observed number of species in two or more adjacent classes and compare
this with the combined number of expected species in the same two classes. The
degrees of freedom should be reduced accordingly. In the above example, since
the expected frequency of class 8 was less than 1, the observed and expected
frequencies of class 8 were combined with those of class 7 while testing for
goodness of fit.

      Table 6.18. Test of goodness of fit of log series model.

Class Upper
boundary

Observed Expected (Observed - Expected)2
Expected

1     2.5 158 163.5809 0.1904
2     4.5   55  58.4762 0.2066
3     8.5  76  56.7084 6.5628
4   16.5  49  47.1353 0.0738
5   32.5  20  30.6883 3.7226
6   64.5    9  11.8825 0.6992
7 128.5    5    3.5351 0.6070

                 Total 372    372.0067             12.0624

6.3.3. Study of spatial patterns

Spatial distribution of plants and animals is an important characteristic of ecological
communities. This is usually one of the first observations that is made while studying
any community and is one of the most fundamental properties of any group of living
organisms. Once a pattern has been identified, the ecologist may propose and test
hypotheses that explain the underlying causal factors. Hence, the ultimate objective of
detecting spatial patterns is to generate hypothesis concerning the structure of
ecological communities. In this section, the use of statistical distributions and a few
indices of dispersion for detecting and measuring spatial pattern of species in
communities are described.

Three basic types of patterns are recognised in communities viz., random, clumped and
uniform (See Figure 6.5).The following causal mechanisms are often used to explain
observed patterns in ecological communities. Random patterns in a population of
organisms imply environmental homogeneity and/or non-selective behavioural patterns.
On the other hand, non-random patterns (clumped and uniform) imply that some
constraints on the population exist.  Clumping suggests that individuals are aggregated
in more favourable parts of the habitat; this may be due to gregarious behaviour,
environmental heterogeneity, reproductive mode, and so on. Uniform dispersions result
from negative interactions between individuals, such as competition for food or space.
One has to note that detecting a pattern and explaining its possible causes are separate
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problems. Furthermore, it should be kept in mind that nature is multifactorial; many
interacting processes (biotic and abiotic)  may contribute to the existence of patterns.

(a) Random                        (b) Clumped                      (c) Uniform

Figure 6.5.  Three basic patterns of spatial distribution.

Hutchinson was one of the first ecologists to consider the importance of spatial patterns
in communities and identify various causal factors that may lead to patterning of
organisms like (i) vectorial factors resulting from the action of external environmental
forces (e.g.,wind, water currents, and light intensity ) (ii) reproductive factors
attributable to the reproductive mode of the organism (e.g., cloning and progeny
regeneration) (iii)  social factors due to innate behaviours (e.g., territorial behaviour);
(iv) coactive factors resulting from intra-specific interactions (e.g. competition); and (v)
stochastic factors resulting from random variation in any of the preceding factors. Thus,
processes contributing to spatial patterns may be considered as either intrinsic to the
species (e.g., reproductive, social and coactive ) or extrinsic (e.g., vectorial). Further
discussions of the causes of pattern are given in Ludwig and Reynolds (1988).

If individuals of a species are spatially dispersed over discrete sampling units e.g., scale
insects on plant leaves, and if at some point in time a sample is taken of the number of
individuals per sampling unit, then it is possible to summarize these data in terms of a
frequency distribution. This frequency distribution consists of the number of sampling
units with 0 individual, 1 individual, 2 individuals, and so on. This constitutes the basic
data set we use in the pattern detection methods described subsequently. Note that the
species are assumed to occur in discrete sites or natural sampling units such as leaves,
fruits, trees. Generally, it is observed that the relationships between the mean and
variance of the number of individuals per sampling unit is influenced by the underlying
pattern of dispersal of the population. For instance, mean and variance are nearly equal
for random patterns, variance is larger than mean for clumped patterns and variance is
less than mean for uniform patterns. There are certain statistical frequency distributions
that, because of their variance-to-mean properties, have been used as models of these
types of ecological patterns. These are (i) Poisson distribution for random patterns (ii)
Negative binomial distribution for clumped patterns and (iii) Positive binomial for
uniform patterns. While these three statistical models have commonly been used in
studies of spatial pattern, it should be recognized that other statistical distributions
might also be equally appropriate.

The initial step in pattern detection in community ecology often involves testing the
hypothesis that the distribution of the number of individuals per sampling unit is
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random. Poisson distribution has already been described in Section 2.4.2. If the
hypothesis of random pattern is rejected, then the distribution may be in the direction of
clumped (usually) or uniform (rarely).  If the direction is toward a clumped dispersion,
agreement with the negative binomial may be tested and certain indices of dispersion,
which are based on the ratio of the variance to mean, may be used to measure the
degree of clumping. Because of the relative rarity of uniform patterns in ecological
communities, and also because the binomial distribution has been described earlier in
Section 2.4.1, this case is not considered here.

Before proceeding, we wish to make some cautionary points.  First of all, failure to
reject a hypothesis of randomness means only that we have failed to detect non-
randomness using the specified data set at hand. Second, we should propose only
reasonable hypothesis in the sense that a hypothesis should be tenable and based on a
mixture of common sense and biological knowledge. This second point has important
ramifications with regard to the first. It is not uncommon for a theoretical statistical
distribution (e.g., the Poisson series) to resemble an observed frequency distribution
(i.e., there is a statistical agreement between the two) even though  the assumptions
underlying this theoretical model are not satisfied by the data set. Consequently, we
may accept a null hypothesis that has, in fact, no biological justification. Third, we
should not base our conclusions on significance tests alone. All available sources of
information (ecological and statistical)  should be used in concert. For example, failure
to reject a null hypothesis that is based on a small sample size should be considered
only as a weak confirmation of the null hypothesis. Lastly, it has to be remembered that
the detection of spatial pattern and explaining its possible casual factors are separate
problems.

The use of negative binomial distribution in testing for clumped patterns is described
here. Negative binomial model is probably the most commonly used probability
distribution for clumped, or what often are referred to as contagious or aggregated
populations. When two of the conditions associated with the use of Poisson model are
not satisfied, that is, condition 1 (each natural sampling unit has an equal probability of
hosting an individual) and condition 2 (the occurrence of an individual in a sampling
unit does not influence its occupancy by another), it usually leads to a high variance-to-
mean ratio of the number of individuals per sampling unit. As previously shown, this
suggests that a clumped pattern may exist.

The negative binomial has two parameters, µ, the mean number of individuals per
sampling unit and  k, a parameter related to the degree of clumping. The steps in testing
the agreement of an observed frequency distribution with the negative binomial are
outlined below.

Step 1.State the hypothesis ; The hypothesis to be tested is that the number of
individuals per sampling unit follows a negative binomial distribution, and,
hence, a nonrandom or clumped pattern exists. Failing to reject this hypothesis,
the ecologist may have a good empirical model to describe a set of observed
frequency data although this does not explain what underlying causal factors
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might be responsible for the pattern. In other words, we should not attempt to
infer causality solely based on our pattern detection approaches.

Step 2.The number of individuals per sampling unit is summarized as a frequency
distribution, that is, the number of sampling units with 0, 1, 2, …, r individuals.

Step 3.Compute the negative binomial probabilities, P(x). The probability of finding x
individuals in a sampling unit,  that is, P(x), where x is 0, 1, 2, …, r individuals,
is given by

            P x
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k x
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The parameter µ is estimated from the sample mean (x ).  Parameter k is a
measure of the degree of clumping and tends toward zero at maximum
clumping.  An estimate for k is obtained using the following iterative equation :
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where N is total number of sampling units in the sample and N0 is the number of
sampling units with 0 individuals. First, an initial estimate of $k  is substituted
into the right-hand side (RHS). If the RHS is lower than the LHS, a higher value
of $k  is then tried, and, again, the two sides are compared. This process is
continued in an iterative fashion (appropriately  selecting higher or lower values
of $k ) until a value of $k  is found such that the RHS converges to the same value
as the LHS. A good initial estimate of $k  for the first iteration is obtained from,

            $k  = 
x

s x2 −
           (6.51)

where s2 is the sample estimate of variance.

When the mean is small (less than 4), Equation (6.50) is an efficient way to
estimate $k . On the other hand, if the mean is large (greater than 4),  this
iterative method is efficient only if there is extensive clumping in the
population. Thus, if both the population mean (x ) and the value of $k  ( the
clumping parameter, as computed from equation (6.51), are greater than 4,
equation (6.51) is actually preferred over equation (6.50) for estimating $k .

Once the two statistics, x  and $k , are obtained, the probabilities of finding x
individuals in a sampling unit, that is, P(x), where x = 0, 1, 2, …, r individuals,
are computed from equation (6.49) as
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Step 4. Obtain the expected negative binomial frequencies. The expected number of
sampling units containing x individuals is obtained by multiplying each of the
negative binomial probabilities by N, the total number of sampling units in the
sample. The number of frequency classes, q, is also determined as described for
the Poisson model.

Step 5.Perform a goodness of fit test. The chi-square test for goodness of fit is to be
performed as described in Section 3.5.
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An example of fitting negative binomial distribution is given in the following.
Carpenter bee larvae are common in the inflorescence stalks of soap-tree yucca plants
in southern New Mexico. An insect ecologist interested in the spatial patterns of these
bees collected a random sample of bee larvae in 180 yucca stalks. These data,
summarized in a frequency table, are

x 0 1 2 3 4 5 6 7 8 9 10
fx 114 25 15 10 6 5 2 1 1 0 1

where  x is the number of bee larvae per stalk and fx is the frequency of yucca stalks
having x = 0, 1, 2, …., r  larvae.  In this example, r = 10.  The total number of sampling
units is

            N  = ( )f x
x =
∑

0

10

              = 114 + 25 + …..+ 0 + 1 = 180

and the total number of individuals is

            n xf x
x

=
=

∑( )
0

10

 =  (0)(114) + (1)(25) + (9)(0) + (10)(1) = 171

The arithmetic mean of the sample is

            x
n
N

= =
171
180

                 = 0.95
and the variance is

            s2 = 
( )xf xnx
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=
−681 095 171

179
.

                = 2.897

Step 1.Hypothesis: The null hypothesis is that the carpenter bee larvae exhibit a
clumped pattern in yucca inflorescence stalks and, hence, agreement (of the
number of individuals per sampling unit) with a negative binomial is tested.
Since the variance is greater than the mean, a clumped pattern is reasonably
suspected.

Step 2.Frequency distribution, fx : The observed frequency distribution, along with its
mean and variance, are given previously.

Step 3.Negative binomial probabilities, P(x) : An estimate of $k  obtained using
Equation.(6.51) with  x = 0.95  and s2= 2.897 is
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2
 = 0.4635

Since both $k  and x  are less than 1, Equation (6.50) should be used to estimate
$k . Substituting the values N =180 and N0 =114 into the left-hand side (LHS) of

Equation (6.50) gives the value of 0.1984.  Now, substitution of  $k = 0.4635
into the right-hand side (RHS) of Equation (6.50) gives the following :

Iteration 1 : $ log $ . log
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                                             = 0.2245

Since the RHS is larger than 0.1984, a  lower value than 0.4635 for $k  is now
substituted into Equation  (6.50).  Selecting $k = 0.30 gives,

Iteration 2 : $ log $ . log
.
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k
x
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+
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                                             = 0.1859

This is close to the value 0.1984 (but now lower), so for the next iteration, a
slightly higher value of $k  is chosen.  Using $k =0.34 gives

Iteration 3 : $ log $ . log
.
.

k
x
k10 101 0 34 1

0 95
0 34

+




 = +





   = 0.1969

Again, for the next iteration, we try another value of  $k  that is slightly higher.
For $k =0.3457,

Iteration 4 : $ log $ . log
.

k
x
k10 101 0 3457 1

95
0 3457

+




 = +





  = 0.1984

This is numerically identical to the LHS of Equation (6.50) and, for this
example, the best estimate of $k  is 0.3457. Next, using equation (6.49), the
individual and cumulative probabilities for finding 0, 1, 2, and 3 larvae per stalk

[for x =0.95 and $k =0.3457, where ( )
x

x k+
=$ .0 7332 ] are given in Table 6.18.

The cumulative probabilities after finding the probability of 4 individuals in a
sampling unit is 94.6%. Therefore, the remaining probabilities, P(5) through
P(10) will contribute 5.4%,  that is,

            P(5+) = 1.0 - 0.946 = 0.054.
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Table 6.18. Calculation for P(x), the negative binomial probabilities, for x
individuals (bees) per sampling unit (yucca stalks)

Probability Cumulative
probability

P( )
.

.

.
0 1

095
0 3457

0 3457
= +

















−
=0.6333 0.6333

[ ]P P( ) .
.

( )1 0 7332
0 3457

1
0=





 = (0.2535)(0.6333) =0.1605 0.7938

[ ]P P( ) .
.

( ) ( . )( . )2 0 7332
1 3457

2
1 0 4933 01605=





 = =0.0792 0.8730

[ ]P P( ) .
.

( ) ( . )( . )3 0 7332
2 3457

3
2 0 5733 0 0792=





 = =0.0454 0.9184

[ ]P P( ) .
.

( ) ( . )( . )4 0 7332
33457

4
3 0 6133 0 0454=





 = =0.0278 0.9462

P( ) . .5 100 0 9462+ = − =0.0538 1.0000

Step 4. Expected frequencies, Ex : The probabilities are multiplied by the total number
of sampling units to obtain the expected frequencies (Table 6.19)

Table 6.19. Calculations for expected frequencies of sampling
units containing different number of bees

Expected frequency Cumulative
frequency

E0 =(N)P(0) =(180)(0.633) =114.00 114.00
E1 =(N)P(1) =(180)(0.161) =  28.90 142.90
E2 =(N)P(2) =(180)(0.079) =  14.25 157.20
E3 =(N)P(3) =(180)(0.045) =    8.17 165.30
E4 =(N)P(4) =(180)(0.028) =    5.00 170.30
E5+ =(N)P(5+) =(180)(0.054) =    9.68 180.00

Step 5.Goodness of fit :  The chi-square test statistic (χ2) is computed as,

                    χ2 = 
( ) ( )114 114 0
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10 9 67

9 67
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                        = 0.00 + …+ 0.01= 1.18
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This value of the test statistic is compared to a table of critical values of the chi-square
distribution with (Number of classes - 3) = 3 degrees of freedom. The critical value at
the 5% probability level is 7.82 (Appendix 4), and since the probability of obtaining a
value of  χ2  equal to 1.18 is well below this, we do not reject the null hypothesis.  The
negative binomial model appears to be a good fit to the observed data, but we would
want further confirmation (e.g., an independent set of data) before making definitive
statements that the pattern of the carpenter been larvae is in fact, clumped. Note that
when the minimal expected values are allowed to be as low as 1.0 and 3.0 in this
example, the χ2 values are 2.6 and 2.5, respectively - still well below the critical value.

Table 6.20.  Calculations for χ2 test statistic

Number of bee
larvae per stalk

(x)

Observed
frequency

fx

Expected
frequency

Ex

( )f E
E

x x

x

−
2

0 114 114.0 0.00
1 25 28.9 0.53
2 15 14.3 0.04
3 10 8.2 0.41
4 6 5.0 0.19
5 10 9.7 0.01

Total 180 180.0      χ2 = 1.18

Other than using statistical distributions for detecting spatial patterns, certain easily
computed indices can also be used for the purpose, like the index of dispersion or
Green’s index, when the sampling units are discrete.

(i) Index of dispersion : The variance-to-mean ratio or index of dispersion (ID) is

ID = 
s
x

2
        (6.52)

where x  and  s2 are the sample mean and variance respectively. The variance-to-mean
ratio (ID) is useful for assessing the agreement of a set of data to the Poisson series.
However, in terms of measuring the degree of clumping,  ID is not very useful. When
the population is clumped, ID is strongly influenced by the number of individuals in the
sample and, therefore, ID is useful as a comparative index of clumping only if n is the
same in each sample. A modified version of ID that is independent of n is Green’s
index (GI) which is computed as,

GI = 

s
x

n

2
1 1

1

−








 −

−
(6.53)
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GI varies between 0 (for random) and 1 (for maximum clumping). Thus, Green’s index
can be used to compare samples that vary in the total number of individuals, their
sample means, and the number of sampling in the sample. Consequently, of the
numerous variants of ID that have been proposed to measure the degree of clumping,
GI seems most recommendable. The values of GI for the scale insect population may
be obtained as

( )
( )GI =

−
−

=
3 05 1
171 1

0 012
.

.

Since the maximum value of GI is 1.0 (if all 171 individuals had occurred in a single
yucca stalk), this value represents a relatively low degree of clumping.

6.3.4. Dynamics of ecosystems

It is well known that forests, considered as ecosystems exhibit significant changes over
time. An understanding of these dynamic processes is important both from scientific
and management perspectives. One component of these, the prediction of growth and
yield of forests has received the greatest attention in the past. However, there are
several other equally important aspects concerned with dynamics of forests like long
term effects of environmental pollution, successional changes in forests, dynamics,
stability and resilience of both natural and artificial ecosystems etc. These different
application purposes require widely different modelling approaches. Complexity of
these models does not even permit an overview of these models here and what has been
attempted is just a simplified description of some of the potential models in this
context.

Any dynamic process is shaped by the characteristic time-scale of its components. In
forests, these range from minutes (stomatal processes) to hours (diurnal cycle, soil
water dynamics), to days (nutrient dynamics, phenology), to months (seasonal cycle,
increment), to years (tree growth and senescence), to decades (forest succession) and to
centuries (forest response to climatic change). The model purpose determines which of
these time-scales will be emphasized. This usually requires an aggregated description
of processes having different time-scales, but the level of aggregation will depend on
the degree of behavioural validity required.

The traditional method of gathering data to study forest dynamics at a macro level is to
lay out permanent sample plots and make periodical observations. More recently,
remote sensing through satellites and other means has offered greater scope for
gathering accurate historical data on forests efficiently. Without going to complexities
of these alternative approaches, this section describes the use of permanent sample
plots for long term investigations in forestry and illustrates a forest succession model in
a much simplified form.
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(i) Use of permanent sample plots

The dynamics of natural forests is best studied through permanent sample plots.
Although the size and shape of plots and the nature and periodicity of observations vary
with the purpose of investigation, some guidelines are given here for general ecological
or forest management studies.

Representative  sites  in  each  category of forests are to be selected and sample plots
are to be laid out for detailed observations  on  regeneration  and growth.  The plots
have to be fairly large, at least one hectare in  size  (100 m x 100 m), located in
different sites having stands of varying stocking  levels.  It  is  ideal  to  have  at  least
30 plots in particular category of forest for studying the dynamics as well as the stand-
site relations. The plots can be demarcated by digging small trenches at the four
corners. A map of the location indicating the exact site of the plot is also to be
prepared. A complete inventory of the trees in the plots have to be taken marking
individual trees with numbered  aluminium  tags.  The inventory shall cover the basic
measurements like  the species name and girth at breast-height on mature trees (>30 cm
gbh over  bark)  and  saplings (between 10 cm 30 cm gbh over bark).  The  seedlings
(<10 cm  gbh  over bark) can be counted in randomly or systematically selected sub-
plots of size 1m x 1m .

Plotwise information on soil properties has to be gathered using multiple sampling pits
but composited at the plot level. The basic parameters shall include soil pH, organic
carbon, soil texture (gravel, sand, silt and clay content), soil temperature and moisture
levels. Observations on topographical features like slope, aspect, nearness to water
source etc. are also to be recorded at the plot level.

(ii) A model for forest transition

The model  that  is  considered  here  is  the one known as Markov model which
requires the use of certain mathematical constructs called matrices. Some basic
description of matrix theory is furnished  in  Appendix 7  for  those  unfamiliar with
that topic. A first-order Markov model is one in which the future development of a
system is determined by the present state of the system and is independent  of the way
in which that state has developed. The sequence of results generated by such  a  model
is often termed a Markov chain.  Application of the model to practical problems has
three major limitations viz., the system must be classified into a finite  number  of
states, the transitions must take place at discrete instants  although  these  instants  can
be so close as to be regarded as continuous in time for the system  being  modelled and
the probabilities of transitions must not  change  with  time. Some  modification of
these constraints is possible, but at the  cost  of increasing  the  mathematical
complexity of the model. Time dependent probabilities can be used, as can variable
intervals between transitions, and, in higher order Markov models, transition
probabilities are dependent not only on the present state, but also on one or more
preceding ones.
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The potential value of Markovian models is particularly great, but has not so far been
widely applied in ecology. However, preliminary studies suggest that, where ecological
systems under study exhibit Markovian properties, and specifically those of a
stationary, first-order Markov chain, several interesting and important analyses of the
model can be made. For example, algebraic analysis of transition matrix will determine
the existence of transient sets of states, closed sets of states or an absorbing state.
Further analysis enables the basic transition matrix to be partitioned and several
components investigated separately, thus simplifying the ecological system studied.
Analysis of transition matrix can also lead to the calculation of the mean times to move
from one state to another and the mean length of stay in a particular state once it is
entered. Where closed or absorbing states exist, the probability of absorption and the
mean time to absorption can be calculated. A transient set of states is one in which each
state may eventually be reached from every other state in the set, but which is left when
the state enters a closed set of states or an absorbing state. A closed set differs from a
transient set in that, once the system has entered any one of the states of the closed set,
the set cannot be left. An absorbing state is one which, once entered, is not left i.e.,
there is complete self-replacement. Mean passage time therefore represents the mean
time required to pass through a specified successional state, and mean time to
absorption is the meantime to reach a stable composition.

To construct Markov-type models, the following main items of information are needed;
some classification that, to a reasonable degree, separates successional states into
definable categories, data to determine the transfer probabilities or rates at which states
change from one category of this classification to another through time and data
describing the initial conditions at some particular time, usually following a well-
documented perturbation.

As an example, consider the forest (woodland)-grassland interactions over long periods
of time in natural landscapes. It is well known that continued human disturbance and
repeated occurrence of fire may turn natural forests to grass lands. The reverse shall
also occur where grasslands may get transformed to forests under conducive
environments. Here, forests and grasslands are identified as two states the system can
assume with suitably accepted definitions although in actual situations, more than just
two categories are possible.

Table 6.21 gives the data collected from 20 permanent sample plots, on the condition of
the vegetation in the plots classified as forest (F) or grassland (G) at 4 repeated
instances with an interval of 5 years.

The estimated probabilities for the transitions between the two possible states over a
period of 5 years are given in Table 6.22. The probabilities were estimated by counting
the number of occurrences of a particular type of transition, say F-G, over a five-year
period and dividing by the total number of transitions possible in the 20 plots over 20
years.



A Statistical Manual For Forestry Research

211

      Table 6.21. Condition of vegetation in the sample plots at 4 occasions

Plot number Occasions
1 2 3 4

1 F F F F
2 F F F F
3 F F G G
4 F F F G
5 G G G G
6 G G G G
7 F F G G
8 F G G G
9 F F F G
10 G G F F
11 F F F F
12 G G F F
13 G G F F
14 F F G G
15 F F G G
16 F F F F
17 F F G G
18 F F F F
19 F F G G
20 F F F F

Table 6.22.Transitiona probabilities for successional changes in a
landscape (time step=5 years).

Starting Probability of transition to end-state
state Forest Grassland

Forest 0.7 0.3
Grassland 0.2 0.8

Thus plots which start as forest have a probability of 0.7 of remaining as forest at the
end of five years, and probability of 0.3 to get converted as grassland. Areas which start
as grassland have probability of 0.8 for remaining in the same state and a probability of
0..2 for returning to forest vegetation. None of the states, therefore, are absorbing or
closed, but represent a transition from the forest to grassland and vice versa. Where
there are no absorbing states, the Markov process is known as ergodic chain and we can
explore the full implications of the matrix of transition probabilities by exploiting the
basic properties of the Markovian model.

The values of Table 6.22 show the probability of transitions from any one state to any
other state after one time step (5 years). The transition probabilities after two time steps
can be derived directly by multiplying the one-step transition matrix by itself, so that, in
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the simplest, two-state case the corresponding probabilities would be given by the
matrix:

p11
2( ) p12

2( ) p11 p12 p11 p12

= ×
p21

2( ) p22
2( ) p21 p22 p21 p22

In condensed form, we may write:

P(2) = PP

Similarly, the three-step transition may be written as:

p11
3( ) p12

3( ) p11
2( ) p12

2( ) p11 p12

= ×
p21

3( ) p22
3( ) p21

2( ) p22
2( ) p21 p22

or P(2) = P(2)P

In general, for the nth step, we may write:

P(n) = P(n-1)P (6.54)

For the matrix of Table 6.22, the transition probabilities after two time-steps are:

0.5500 0.4500
0.3000 0.7000

and after four time-steps are :

0.4188 0.5813
0.3875 0.6125

If a matrix of transition probabilities is successively powered until a state is reached at
which each row of the matrix is the same as every other row, forming a fixed
probability vector, the matrix is termed a regular transition matrix. The matrix gives the
limit at which the probabilities of passing from one state to another are independent of
the starting state, and the fixed probability vector t expresses the equilibrium
proportions of the various states. For our example, the vector of equilibrium
probabilities is :

0.40 0.60

If therefore, the transition probabilities have been correctly estimated and remain
stationary, implying that no major changes occur in the environmental conditions or in
the management pattern for the particular region, the landscape will eventually reach a
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state of equilibrium in which approximately 40 percent of the area is forest, and
approximately 60 per cent grassland.

Where as in this example, there are no absorbing states, through certain complex
calculations, we shall also be able to estimate the average lengths of time for an area of
grassland to turn to forest or vice versa under the conditions prevailing in the area i.e.,
the mean first passage times. Alternatively, if we choose an area at random, what is the
average lengths of time we would need to wait for this area to become forest or
grassland i.e., the mean first passage times in equilibrium.

6.4.  Wildlife biology

6.4.1. Estimation of animal abundance

Line  transect  sampling is a common  method  used  for obtaining estimates of wildlife
abundance. Line  transect  method has the  following  general  setting. Assume  that one
has an area of known boundaries and size  A  and the  aim  is  to  estimate  the
abundance  of  some   biological population  in  the  area.  The use  of  line  transect
sampling requires  that at least one line of travel be established in the area. The number
of detected objects (si) is noted  along  with  the perpendicular  distances (xi) from the
line to the  detected  objects. Otherwise,  the  sighting  distance ri  and  sighting  angle θi

are recorded from which xi can be arrived at using the formula x = r sin(θ). Let n be the
sample size. The corresponding sample  of potential data is indexed  by  (si, ri, θi , i =
1,..., n). A graphical representation of line transect sampling is given in Figure  6.6.

                                                              r
                                                                       x          
                                                         θ                                  L

Figure 6.6. Pictorial representation of line transect sampling

Four assumptions are critical to the achievement of reliable estimates of  population
abundance from line transect surveys viz., (i) Points directly on the  line will never be
missed (ii) Points are fixed at the  initial sighting position and they do  not  move
before being  detected and none are counted twice (iii)  Distances  and angles  are
measured  exactly (iv)  Sightings  are  independent events.

An estimate of density is provided by the following equation.
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D
nf

L
=

(0)
2

                                          (6.55)

where n = Number of objects sighted
          f(0) = Estimate of the probability density function of distance values at zero

distance
          L= Transect length

The quantity f(0) is estimated by assuming that a theoretical distribution like halfnormal
distribution or negative exponential distribution fits well with the observed frequency
distribution of distance values. Such distributions in the context of line transect
sampling are called detection function models. The fit of these distributions can also be
tested by generating the expected frequencies and performing a chi-square test of
goodness of fit. Alternatively, the observed frequency distribution can be approximated
by nonparametric functions like Fourier series and f(0) can be estimated. It is ideal that
at least 40 independent sightings are made for obtaining a precise estimate of the
density. Details of various detection function models useful in line transect sampling
can be found in Buckland et al. (1993).

As an example, consider the following sample of 40 observations on  perpendicular
distance (x) in metres to herds of elephants from 10 transects each of 2 km in length
laid at randomly selected locations in a sanctuary.

32,56,85,12,56,58,59,45,75,58,56,89,54,85,75,25,15,45,78,15
32,56,85,12,56,58,59,45,75,58,56,89,54,85,75,25,15,45,78,15

Here n = 40, L = 20 km. Assuming a halfnormal detection function, an estimate of the
density of elephant herds in the sanctuary is obtained as,

$

.

D
nf

L
L

x
n

i= =
=













∑
−

(0)
2

2
2 2

3

0 5

π
i 1

n

$
.

D
nf

L
= =

+ + +









−

(0)
(20)

(0.032) (0.056) ... (0.015)
(40)

2
2 2 2

32
2

0 5

π

     = 13.63 herds/ km2

In the case of halfnormal detection function, the relative standard error or alternatively,
the coefficient of variation (CV) of the estimate of D is obtained by,

CV D
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6.4.2.  Estimation of home range

Home range is the term given to the area in which an animal normally lives, regardless
of whether or not the area is defended as a territory and without reference to the home
ranges of other animals. Home range does not usually include areas through which
migration or dispersion occurs. Locational data of one or several animals are the basis
of home range calculations, and all home range statistics are derived from the
manipulation of locational data over some unit of time. Although several methods for
estimating home range are reported, generally they fall under three categories viz.,
those based on (i) polygon (ii) activity centre and (iii) nonparametric functions
(Worton,1987) each with advantages and disadvantages. A method based on activity
centre is described here for illustrative purposes.

 If x and y are the independent co-ordinates of each location and n equals the sample
size, then the point ( x y, ) is taken as the activity centre.
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1 1, (6.57)

Calculation of an activity centre simplifies locational data by reducing them to a single
point. This measure may be useful in separating the ranges of individuals whose
locational data points overlap considerably.

One of the important measures of home range proposed is based on bivariate elliptical
model. In order to estimate the home range through this approach, certain basic
measures of dispersion about the activity centre such as variance and covariance may
be computed first,

( )

( )
s

x x

nx

i
i

n

2

2

1

1
=

−

−
=

∑
,  

( )

( )
s

y y

ny

i
i

n

2

2

1

1
=

−

−
=

∑
,

( )( )

( )
s

x x y y

nxy

i
i

n

i

=
− −

−
=

∑
1

1
            (6.58)

and also the standard deviation, ( )s sx x= 2
1
2   and   ( )s sy y= 2

1
2 . These basic statistics may

be used to derive other statistics such as eigen values, also known as characteristic or
latent roots, of the 2 x 2 variance-covariance matrix.  Equations of the eigen values are
as follows:

( ) ( )λ x y x y x y x xys s s s s s s= + + + − −
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(6.59)

( ) ( )λ y y x y x y x xys s s s s s s= + − + − −
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(6.60)

These values provide a measure of the intrinsic variability of the scatter of locations
along two orthogonal (perpendicular and independent) axes passing through the activity
centre.
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Although orientation of the new axes cannot be inferred directly from the eigen values,
slopes of these axes may be determined, by

b1 (the slope of the principal [longer] axis) = ( )
s

s

xy

x yλ − 2
   (6.61)

b2 (the slope of the minor [shorter] axis) = 
− 1

1b
   (6.62)

The y intercepts ( )a y b x y b x1 1 1 2 2 2= − = −   and   a together with the slopes of the
axes complete the calculations necessary to draw the axes of variability. The equations
given by

y a b x   a b x1 1 1 2 2= + = +and   y2  (6.63)

describe respectively the principal and minor axes of variability.

Consider a set of  locational data in which the scatter of points is oriented parallel to
one axis of the grid. Then the standard deviations of the x and y co-ordinates (sx and sy)
are proportional to the lengths of the principal and minor (or semi-principal and semi-
minor) axes of an ellipse drawn to encompass these points. By employing the formula
of the area of an ellipse, Ae= πsxsy, we can obtain an estimate of home range size. For
the rest of the discussion here, the ellipse with axes of length 2sx and 2sy will be called
the standard ellipse. If the principal and minor axes of the ellipse are equal, the figure
they represent is a circle and the formula becomes Ac= πr2,  where r = sx = sy.

One problem immediately apparent with this measure is that the calculated axes of
natural locational data are seldom perfectly aligned with the arbitrarily determined axes
of a grid. Hence the values sx and sy upon which the area of the ellipse depends, may be
affected by the orientation and shape of the ellipse, a problem not encountered with
circular home range models. Two methods are available to calculate values of sx and sy
corrected for the orientation (covariance). In the first method, each set of co-ordinates
is transformed as follows before computing the area of the ellipse.

x x x y yt = − − −( )cos ( ) sinθ θ (6.64)
and      y x x y yt = − + −( ) sin ( )cosθ θ (6.65)

where θ = arctan(-b) and b is the slope of the major axis of the ellipse.

A second, far simpler method of determining sx and sy corrected for the orientation of
the ellipse uses the eigen values of the variance-covariance matrix derived from co-
ordinates of observations. Because eigen values are analogous to variances, their square
root also yields values equivalent to the standard deviations of the transformed

locational data (i.e., ( )λ x xs
t

1
2 = and ( )λ y ys

t

1
2 = .Although this second procedure is

simpler, the trigonometric transformations of individual data points are also useful in
ways which will be discussed later.
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Another problem concerning the standard ellipse as a measure of home range is that the
variances and covariance used in its calculation are estimates of parametric values. As
such, they are affected by sample size. If we assume that the data conform to a bivariate
normal distribution, incorporation of the F statistic in our calculation of the ellipse
allows some compensation for sample size. The formula,

                 A
s n

n
F np

x yt t=
−

−
−

π
α

  s 2 1

2
2 2

( )
( ),  (6.66)

can be used to adjust for the sample size used to determine what has now become a [(1-
α)100] percentage confidence ellipse. This measure is supposed to provide a reliable
estimate of home range size when locational data follow a bivariate normal distribution.
Prior to the incorporation of the F statistic, the calculations presented could be applied
to any symmetrical, unimodal scatter of locational data. White and Garrott (1990) has
indicated additional calculations required to draw the [(1-α)100] confidence ellipse on
paper.

The application of a general home range model permits inferences concerning an
animal’s relative familiarity with any point within its home range. This same
information can be more accurately determined by simple observation. However, such
data are extremely expensive, in terms of time, and it is difficult to make quantitative
comparisons between individuals or between studies. Regarding the concept of an
activity centre, Hayne (1949) states, “There is a certain temptation to identify the centre
of activity with the home range site of an animal. This cannot be done, since this point
has not necessarily any biological significance apart from being an average of points of
capture”. In addition to the activity centre problem just mentioned, there may be
difficulties due to inherent departures from normality of locational data. Skewness
(asymmetry of the home range) results in the activity centre actually being closer to one
arc of the confidence ellipse than predicted from the model, there by overestimating the
home range size (the [1-α]100 confidence ellipse). Kurtosis (peakedness) may increase
or decrease estimates of home range size. When the data are platykurtic the home range
size will be under estimated. The converse is true of leptokurtic data. The trigonometric
transformation of bivariate data helps solve this problem by yielding uncorreleated
distributions of x and y co-ordinates. However, in order to check if the assumption of
bivariate normality is satisfied by the data, one may use methods described by White
and Garrott (1990) a description of which is avoided here to avoid complexity in the
discussion.
Sample size may have an important effect on the reliability of statistics that have been
presented here.  It is rather obvious that small sample sizes (i.e., n <20) could seriously
bias the measures discussed. A multiple of factors not considered here may also
influence the results in ways not yet determined. Such factors as species and individual
differences, social behaviour, food sources, and heterogeneity of habitat are some of
these.
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The steps involved in the computation of home range are described below with
simulated data from a bivariate normal distribution with µx = µy = 10,  σx = σy = 3, and
cov (x,y) = 0 taken from White and Garrott (1990). The data are given in Table 6.23.

Table 6.23. Simulated data from a bivariate normal distribution with µx =
µy = 10,  σx = σy = 3, and cov(x,y) = 0.

Observation
no

x
(m)

y
(m)

Observation
no

x
(m)

y
(m)

1 10.6284 8.7061 26 16.9375 11.0807
2 11.5821 10.2494 27 9.8753 10.9715
3 15.9756 10.0359 28 13.2040 11.0077
4 10.0038 10.8169 29 6.1340 7.6522
5 11.3874 10.1993 30 7.1120 12.0681
6 11.2546 12.7176 31 8.8229 13.2519
7 16.2976 9.1149 32 4.7925 12.6987
8 18.3951 9.3318 33 15.0032 10.2604
9 12.3938 8.8212 34 11.9726 10.5340
10 8.6500 8.4404 35 9.8157 10.1214
11 12.0992 6.1831 36 6.7730 10.8152
12 5.7292 10.9079 37 11.0163 11.3384
13 5.4973 15.1300 38 9.2915 8.6962
14 7.8972 10.4456 39 4.4533 10.1955
15 12.4883 11.8111 40 14.1811 8.4525
16 10.0896 11.4690 41 8.5240 9.9342
17 8.4350 10.4925 42 9.3765 6.7882
18 13.2552 8.7246 43 10.8769 9.0810
19 13.8514 9.9629 44 12.4894 11.4518
20 10.8396 10.6994 45 8.6165 10.2106
21 7.8637 9.4293 46 7.1520 9.8179
22 6.8118 12.4956 47 5.5695 11.5134
23 11.6917 11.5600 48 12.8300 9.6083
24 3.5964 9.0637 49 4.4900 10.5646
25 10.7846 10.5355 50 10.0929 11.8786

Step 1. Compute the means, variances and covariance

x =
+ + +10 63 1158 10 09

50
. . ... .

     = 10.14

y =
+ +8 71 10 25 1188

50
. . ... .

    =10.35
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( )sx
2

2 2 21063 1014 1158 1014 1009 1014
50 1

=
− + − + −

−
( . . ) ( . ) ...( . . )

     =11.78

( )sy
2

2 2 28 71 10 35 10 25 10 35 1188 10 35
50 1

=
− + − + −

−
( . . ) ( . . ) ...( . . )

     = 2.57

( )sxy =
−

− − + − − + +

− −













1
50 1

10 63 1014 8 71 10 35 1158 1014 10 25 10 35

10 09 1014 1188 10 35

( . . )( . . ) ( . . )( . . ) ...

( . . )( . . )                                                     
= -1.22

( )sx = 1178
1
2.

      =  3.43

( )sy = 257
1
2.

     = 1.60

Step 2. Calculate eigen values and slopes of axes.

( ) ( )[ ]λ x = + + + − − −








1
2

257 1178 257 1178 4 2 57 1178 1222
1
2. . . . ( . )( . ) ( . )

= 11.6434

( ) ( )[ ]λ y = + − + − − −








1
2

257 1178 2 57 1178 4 257 1178 1222
1
2. . . . ( . )( . ) ( . )

= 2.7076

Step 3. Compute the sxt
and sy t

values.

( )sx xt
= λ

1
2 = ( )116434

1
2.  = 3.4122

( )sy yt
= λ

1
2 = ( )2 7076

1
2.  = 1.6455

Step4. Calculate the home range based on F statistic at (1-α) = 0.95.

A
s n

n
F np

x yt t=
−

−
−

π
α

  s 2 1

2
2 2

( )
( ), .

                 = 
( )( )( )( )

( )3 3 16455 2 50 1
50 2

3188
.1416 .4122 .

.
( )−

−

                      = 114.8118 m2  = 0.0115 ha
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7. Concluding remarks

This manual covers some of the basic concepts involved in the theory and practice of
statistics in forestry research. Any serious researcher has to have an understanding of
these concepts in successfully applying the scientific method in his/her investigations.
However, many real life situations are much more complex than can be handled
through the basic techniques and models referred in the manual. For instance, the use of
multivariate analysis may be required in several contexts where observations on
multiple characters are made on the experimental units. Many times distributional
assumptions are violated calling for the use of nonparametric statistics. Many
optimization problems may require the use of operations research techniques or a
decision theoretic approach. Long time frame involved in many research investigations
in forestry would demand simulation studies rather than experimental approach. Many
ecological processes are too complex to be handled through the simple models referred
in this manual. In spite of these limitations, this manual has its own purpose to serve,
i.e., equip the researchers with an understanding of the most basic statistical principles
involved in research and enable them to effectively communicate and collaborate with
an expert in tackling more complex problems.



221

8. bibliography

Anderson, R. L. and Bancroft, T. A. 1952. Statistical Theory in Research. Mc. Graw
Hill Book Co., New York.

Borders, B. E.  and Bailey, R. L. 1986.  A compatible system of growth and yield
equations for  slash  pine  fitted  with  restricted  three-stage  least squares.
Forest Science, 32: 185-201.

Brender, E.V. and Clutter, J. L. 1970. Yield of even-aged natural stands of loblolly
pine. Report 23, Georgia Forest Research Council.

Boungiorno, J. and Michie, B. R. 1980. A matrix model of uneven-aged forest
management.  Forest Science,  26(4):  609-625.

Buckland, S. T., Anderson, D. R., Burnham, K. P. and Laake, J. L. 1993.  Distance
Sampling : Estimating Abundance of Biological Populations. Chapman and
Hall, London. 446 p.

Chacko, V. J. 1965. A Manual on Sampling Techniques for Forest Surveys. The
Manager of Publications, Delhi.172 p.

Chakravarty, G. N. and Bagchi, S. K. 1994. Short note: enhancement of the computer
program of the permutated neighbourhood seed orchard design. Silvae-
Genetica., 43: 2-3, 177-179.

Chaturvedi, A. N. and Khanna, E. S. 1982. Forest Mensuration. International Book
Distributors, India. 406 p.

Clutter, J. L. Fortson, J. C. Pienaar, L.V. Brister, G. H. and Bailey, R. L. 1983. Timber
Manangement : A Quantitative Approach. John Wiley and Sons, New York.
333 p.

Comstock, R. E. and Moll, R. H. 1963. Genotype-environment interactions. In : W. D.
Hanson and H. F. Robinson (Eds). Statistical Genetics and Plant Breeding, 164-
194.

Crowder M. J. and Hand, D. J. 1990. Analysis of Repeated Measures. Chapman and
Hall, New York. 257 p.

Das, M. N. and Giri, N. C. 1979. Design and Analysis of Experiments. Wiley Eastern
Ltd. New Delhi. 295 p.

Dixon, W. J. and Massey, F. J. 1951. Introduction to Statistical Analysis. Mc. Graw
Hill Book Co., New York.

Draper, N. R. and Smith, H. 1966. Applied Regression Analysis. John Wiley and Sons,
New York. 407 p.



Bibliography

222

Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research.
John Wiley and Sons. New York. 680 p.

Faulkner, R. 1975. Seed Orchards. Forestry Commission Bulletin No.54. Her Majesty’s
Stationary Office, London. 149 p.

Falconer, D. S. 1960. Introduction to Quantitative Genetics. Longman Group Ltd.,365
p.

Fisher, R. A. and Yates, F. 1963. Statistical Tables for Biological, Agricultural and
Medical Research. Longman Group Limited, London. 146 p.

Freeman, G. H. and Perkins, J. M. 1971. Environmental and genotype-environmental
components of variability. VIII. Relations between genotypes grown in different
environments and measure of these environments. Heredity, 26: 15-23.

Hayne, D. W. 1949. Calculation of size of home range. Journal of Mammology, 30: 1-
18.

Jain, J. P. 1982. Statistical Techniques in Quantitative Genetics. Tata McGraw-Hill
Publishing Company Ltd. New Delhi. 328 p.

Jeffers, J. N. R. 1978. An Introduction to Systems Analysis : with Ecological
Applications. Edward Arnold, London. 198 p.

La Bastide, J. G. A. 1967. A computer programme for the layouts of seed orchards.
Euphytica, 16, 321-323.

Lahiri, D. B. 1951. A method of sample selection providing unbiased ratio estimates.
Bull. Inst. Stat. Inst., 33, (2) 133-140.

Ludwig, J. A. and Reynolds, J. F. 1988. Statistical Ecology : A Primer on Methods and
Computing. John Wiley and Sons, New York. 337 p.

Magurran, A. E. 1988.  Ecological Diversity and its  Measurement. Croom Helm
Limited, London. 179 p.

Mathew, G, Rugmini, P. and Sudheendrakumar, V. V. 1998. Insect biodiversity in
disturbed and undisturbed  forests in the Kerala part of Western Ghats. KFRI
Research Report No. 135, 113 p.

Mood, A. 1950. Introduction to the Theory of  Statistics. Mc. Graw Hill Book Co., New
York.

Montogomery, D.C. 1991. Design and analysis of Experiments. John Wiley and Sons.
New York. 649 p.

Montogomery, D. C. and Peck, E. A. 1982. Introduction to Linear Regression Analysis.
John Wiley and Sons, New York. 504 p.



Bibliography

223

Namkoong, G., Snyder, E. B. and Stonecypher, R. W. 1966. Heretability and gain
concepts for evaluating  breeding  systems  such  as seedling orchards. Silvae
Genetica, 15, 76-84.

Parangpe, S. A. and Gore, A. P. 1997. Effort needed to measure biodiversity.
International Journal of Ecology and Environmental Sciences, 23: 173-183.

Searle, S. R. 1966. Matrix Algebra for the Biological Sciences (Including Applications
in Statistics). John Wiley and Sons, Inc., New York. 296 p.

Seigel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill
International Book Company. Tokyo. 312 p.

Snedecor G. W. and Cochran. W. G. Statistical Methods. USA: The Iowa State
University Press, 1980. pp. 232-237.

Sokal, R. R. and Rolhf, F. J. 1969. Biometry. W. H. Freeman and Co., San Francisco.
776p.

Spiegel, M. R. and Boxer, R. W. 1972. Schaum’s Outline of Theory and Problems of
Statistics in SI units. McGraw-Hill International Book Company, New York.
359 p.

Steel, R. G. D. and Torrie, J. A. 1980. Principles and Procedures of Statistics, 2nd ed.,
USA: McGraw-Hill, pp. 183-193.

Sukhatme, P. V., Sukhatme, B. V., Sukhatme, S. and Asok, C. 1984. Sampling theory
of Surveys and Applications. Iowa State University Press, U.S.A. and ISAS,
New Delhi. 526 p.

Sullivan, A. D. and Clutter, J. L. 1972. A simultaneous growth and yield model for
loblolly pine.  Forest Science, 18: 76-86.

Vanclay, J. K. 1991. Seed orchard designs by computer. Silvae-Genetica, 40: 3-4, 89-
91.

White, G. C. and Garrott, R. A. 1990. Analysis of Wildlife Radio-Tracking Data.
Academic Press, Inc. San Diego. 383 p.

Worton, B. J. 1987. A review of models of home range for animal movement.
Ecological modelling, 38, 277-298.

Wright, J. W. 1976. Introduction to Forest Genetics. Academic Press, Inc. 463 p.



3

Appendix 1. Percentage points of the normal distribution

This table gives percentage points of the standard normal distribution. These are the
values of z for which a given  percentage, P, of the standard normal distribution lies
outside the range from -z to +z.

P (%) z
90 0.1257
80 0.2533
70 0.3853
60 0.5244

50 0.6745
40 0.8416
30 1.0364
20 1.2816

15 1.4395
10 1.6449
5 1.9600
2 2.3263

1 2.5758
0.50 2.8070
0.25 3.0233
0.10 3.2905
0.01 3.8906
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Appendix 2. Student’s t distribution

This table gives percentage points of the t distribution of ν degrees of freedom.  These
are the values of t for which a given percentage, P, of the t distribution lies outside the
range -t to +t.  As the number of degrees of freedom increases, the distribution becomes
closer to the standard normal distribution.

One-tailed Two-tailed
Percentage (P)

Degree of
freedom (v) 5% 1% 5% 1%

1 6.31 31.8 12.7 63.7
2 2.92 6.96 4.30 9.92
3 2.35 4.54 3.18 5.84
4 2.13 3.75 2.78 4.60
5 2.02 3.36 2.57 4.03
6 1.94 3.14 2.45 3.71
7 1.89 3.00 2.36 3.50
8 1.86 2.90 2.31 3.36
9 1.83 2.82 2.26 3.25
10 1.81 2.76 2.23 3.17
11 1.80 2.72 2.20 3.11
12 1.78 2.68 2.18 3.05
13 1.77 2.65 2.16 3.01
14 1.76 2.62 2.14 2.98
15 1.75 2.60 2.13 2.95
16 1.75 2.58 2.12 2.92
17 1.74 2.57 2.11 2.90
18 1.73 2.55 2.10 2.88
19 1.73 2.44 2.09 2.86
20 1.72 2.53 2.09 2.85
22 1.72 2.51 2.07 2.82
24 1.72 2.49 2.06 2.80
26 1.71 2.48 2.06 2.78
28 1.70 2.47 2.05 2.76
30 1.70 2.46 2.04 2.75
35 1.69 2.44 2.03 2.72
40 1.68 2.42 2.02 2.70
45 1.68 2.41 2.01 2.69
50 1.68 2.40 2.01 2.68
55 1.67 2.40 2.00 2.67
60 1.67 2.39 2.00 2.66
∞ 1.64 2.33 1.96 2.58
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Appendix 3. F distribution  (5%)

This table gives values for which the percentage of the F distribution in the title is
above the tabulated value of F for v1 (numerator degrees of freedom) and v2
(denominator degrees of freedom) attached to the F-ratio.

Degree of freedom (v1)
Degree

of
freedom

(v2)

1 2 3 4 5 6 7 8 10 12 24

2 18.5 19.0 19.2 19.2 9.3 19.3 19.4 19.4 19.4 19.4 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.64
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.77
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.53

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.84
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.57 3.41
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.12
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.07 2.90
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.74

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.61
12 4.75 3.88 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.51
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.42
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.35
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.29

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.24
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.19
18 4.41 3.55 3.16 2.93 2.77 3.66 2.58 2.51 2.41 2.34 2.15
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.11
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.08

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.03
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 1.98
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.22 2.15 1.95
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.19 2.12 1.91
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.89

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.11 2.04 1.83
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.79
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.05 1.97 1.76
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.03 1.95 1.74
55 4.02 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.01 1.93 1.72
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.70
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Appendix 4. Distribution of χ2

This table gives percentage points of the chi-square distribution with ν degrees of
freedom.  These are the values of χ2 for which a given percentage, P, of the chi-square
distribution is greater than χ2.

Percentage (P)
Degree of
freedom

(ν)
97.5  95 50 10 5 2.5 1 0.1

1 .000982 .00393 0.45 2.71 3.841 5.02 6.64 10.8
2 0.0506 0.103 1.39 4.61 5.99 7.38 9.21 13.8
3 0.216 0.352 2.37 6.25 7.81 9.35 11.3 16.3
4 0.484 0.711 3.36 7.78 9.49 11.1 13.3 18.5
5 0.831 1.15 4.35 9.24 11.1 12.8 15.1 20.5

6 1.24 1.64 5.35 10.6 12.6 14.5 16.8 22.5
7 1.69 2.17 6.35 12.0 14.1 16.0 18.5 24.3
8 2.18 2.73 7.34 13.4 15.5 17.5 20.1 26.1
9 2.70 3.33 8.34 14.7 16.9 19.0 21.7 27.9
10 3.25 3.94 9.34 16.0 18.3 20.5 23.2 29.6

11 3.82 4.57 10.3 17.3 19.7 21.9 24.7 31.3
12 4.40 5.23 11.3 18.5 21.0 23.3 26.2 32.9
13 5.01 5.89 12.3 19.8 22.4 24.7 27.7 34.5
14 5.63 6.57 13.3 21.1 23.7 26.1 29.1 36.1
15 6.26 7.26 14.3 22.3 25.0 27.5 30.6 37.7

16 6.91 7.96 15.3 23.5 26.3 28.8 32.0 39.3
17 7.56 8.67 16.3 24.8 27.6 30.2 33.4 40.8
18 8.23 9.39 17.3 25.0 28.9 31.5 34.8 42.3
19 8.91 10.1 18.3 27.2 30.1 32.9 36.2 43.8
20 9.59 10.9 19.3 28.4 31.4 34.2 37.6 45.3

22 11.0 12.3 21.3 30.8 33.9 36.8 40.3 48.3
24 12.4 13. 9 23.3 33.2 36.4 39.4 43.0 51.2
26 13.8 15. 4 25.3 35.6 38.9 41.9 45.6 54.1
28 15.3 16. 9 27.3 37.9 41.3 44.5 48.3 56.9
30 16.8 18.5 29.3 40.3 43.8 47.0 50.9 59.7

35 20.6 22.5 34.3 46.1 49.8 53.2 57.3 66.6
40 24.4 26. 5 39.3 51.8 55.8 59.3 63.7 73.4
45 28.4 30.6 44.3 57.5 61.7 65.4 70.0 80.1
50 32.4 34. 8 49.3 63.2 67.5 71.4 76.2 86.7
55 36.4 39.0 54.3 68.8 73.3 77.4 82.3 93.2
60 40.5 43. 2 59.3 74.4 79.1 83.3 88.4 99.7
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Appendix 5. Significant values of correlation coefficient

This table gives values of the correlation coefficient beyond which the
correlation coefficient is declared significant for any particular level of
significance and number of pairs of observations of x and y

n .1 .05 .02 .01 .001
1 .9877 .9969 .9995 .9999 .9999
2 .9000 .9500 .9800 .9900 .9990
3 .8054 .8783 .9343 .9587 .9912
4 .7293 .8114 .8822 .9172 .9741
5 .6694 .7545 .8329 .8745 .9507
6 .6215 .7067 .7887 .8343 .9249
7 .5822 .6664 .7498 .7977 .8982
8 .5494 .6319 .7155 .7646 .8721
9 .5214 .6021 .6851 .7348 .8471
10 .4973 .5760 .6581 .7079 .8233
11 .4762 .5529 .6339 .6835 .8010
12 .4575 .5324 .6120 .6614 .7800
13 .4409 .5139 .5923 .6411 .7603
14 .4259 .4973 .5742 .6226 .7420
15 .4124 .4821 .5577 .6055 .7246
16 .4000 .4683 .5425 .5897 .7084
17 .3887 .4555 .5285 .5751 .6932
18 .3783 .4438 .5155 .5614 .6787
19 .3687 .4329 .5034 .5487 .6652
20 .3598 .4227 .4921 .5368 .6524
25 .3233 .3809 .4451 .4869 .5974
30 .2960 .3494 .4093 .4487 .5541
35 .2746 .3246 .3810 .4182 .5189
40 .2573 .3044 .3578 .3932 .4896
45 .2428 .2875 .3384 .3721 .4648
50 .2306 .2732 .3218 .3541 .4433
60 .2108 .2500 .2948 .3248 .4078
70 .1954 .2319 .2737 .3017 .3799
80 .1829 .2172 .2565 .2830 .3568
90 .1726 .2050 .2422 .2673 .3375
100 .1638 .1946 .2301 .2540 .3211
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 Appendix 6. Random numbers

Each digit in the following table is independent and has a probability of 
1

10
. The table

was computed from a population in which the digits 0 to 9 were equally likely.

77 21 24 33 39 07 83 00 02 77 28 11 37 33
78 02 65 38 92 90 07 13 11 95 58 88 64 55
77 10 41 31 90 76 35 00 25 78 80 18 77 32
85 21 57 89 27 08 70 32 14 58 81 83 41 55
75 05 14 19 00 64 53 01 50 80 01 88 74 21
57 19 77 98 74 82 07 22 42 89 12 37 16 56
59 59 47 98 07 41 38 12 06 09 19 80 44 13
76 96 73 88 44 25 72 27 21 90 22 76 69 67
96 90 76 82 74 19 81 28 61 91 95 02 47 31
63 61 36 80 48 50 26 71 16 08 25 65 91 75
65 02 65 25 45 97 17 84 12 19 59 27 79 18
37 16 64 00 80 06 62 11 62 88 59 54 12 53
58 29 55 59 57 73 78 43 28 99 91 77 93 89
79 68 43 00 06 63 26 10 26 83 94 48 25 31
87 92 56 91 74 30 83 39 85 99 11 73 34 98
96 86 39 03 67 35 64 09 62 36 46 86 54 13
72 20 60 14 48 08 36 92 58 99 15 30 47 87
67 61 97 37 73 55 47 97 25 65 67 67 41 35
25 09 03 43 83 82 60 26 81 96 51 05 77 72
72 14 78 75 39 54 75 77 55 59 71 73 15 56
59 93 34 37 34 27 07 66 15 63 14 50 74 29
21 48 85 56 91 43 50 71 58 96 14 31 55 61
96 32 49 79 42 71 79 69 52 39 45 04 49 91
16 85 53 65 11 36 08 14 86 60 40 18 51 15
64 28 96 90 23 12 98 92 28 94 57 41 99 11
60 54 36 51 15 63 83 42 63 08 01 89 18 53
42 86 68 06 36 25 82 26 85 49 76 15 90 13
00 49 62 15 53 32 31 28 38 88 14 97 80 33
26 64 87 61 67 53 23 68 51 98 60 59 02 33
02 95 21 53 34 23 10 82 82 82 48 71 02 39
65 47 77 14 75 30 32 81 10 83 03 97 24 37
28 55 15 36 46 33 06 22 29 23 81 14 20 91
59 75 78 49 51 02 20 17 02 30 32 78 44 79
87 54 57 69 63 31 61 25 92 31 16 44 02 10
94 53 87 97 15 23 08 71 26 06 25 87 48 97
79 43 75 93 39 10 18 51 28 17 65 43 22 06
48 38 71 77 53 37 80 13 60 63 59 75 89 73
98 30 59 32 90 05 86 12 83 70 50 30 25 65
85 80 16 77 35 74 09 32 06 30 91 55 92 33
87 03 96 27 05 59 64 25 33 07 03 08 55 58
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Appendix 7. Elementary mathematical and statistical concepts

Logarithm : Logarithm of a number N  to the base a is the number x to which the base
must be raised to equate with the original number N. i.e., if  loga N  = x, then ax = N.
The number N is called antilogarithm of x. Logarithm to the base 10 is called the
common logarithm (indicated by log) and to the base e, a mathematical constant, is
called natural logarithm (indicated ln).

Factorial  n : Factorial n, denoted by  n!, is defined as  n! = n(n-1)(n-2)…1. Thus  5! =
5.4.3.2.1 = 120. It is convenient to define 0! = 1.

Combinations : A combination of n different objects taken r at a time is a selection of r
out of the n objects with no attention given to the order of arrangement. The number of

combinations of n objects taken r at a time is denoted by 
n
r







  and is given by                             

            
n
r







 = 

n n n n r
r

n
r n r

( )( ) . . .( )
!

!
!( )!

− − − +
=

−
1 2 1   

For example, the number of combinations of the letters a, b, c taken two at a time is
3
2

3 2
2

3






 = =

.
!

. These are ab, ac, bc. Note that ab is the same combination as ba, but not

the same permutation.

Mathematical expectation : If X denotes a discrete random variable which can assume
the values X1, X2, …, Xk  with respective probabilities p1, p2, …, pk where  p1+ p2+ …+
pk = 1,  the mathematical expectation of X or simply the expectation of X, denoted by
E(X), is defined as

            E(X) = p1X1 +  p2X2 + …+  pkXk  =
=
∑ p Xj j
j

k

1
   = ∑ pX .

In the case of continuous variables, the definition of expectation is as follows. Let g(X)
be a function of a continuous random variable X, and let f(x) be the probability density
function of X. The mathematical expectation of g(x) is then represented as

E{ ( )} ( ) ( )g X g x f x dx
R

= ∫

where R represents the range (sample space) of X, provided the integral converges
absolutely.

Matrix : A matrix is a rectangular array of numbers arranged in rows and columns. The
rows are of equal length as are the columns. If aij denote the element in the ith row and
jth column of a matrix A with r rows and c columns, then A can be represented as,
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Ar x c = A = {aij} =



























a a a a

a a a a

a a a a

a a a a

j c

j c

i i ij ic

r r rj rc

11 12 1  1

21 22 2  2

1 2  

1 2  

   ... ... 

   ... ...

.      .         .        .
   ... ...     

.      .         .        .  
   ... ... 

A simple example of a 2 x 3 matrix is  A 2 x 3= 
  4  0 - 3
- 7  2    1











A matrix containing a single column is called a column vector. Similarly a matrix that

is just a row is a row vector.  For example,  x =
  4 
- 7 









  is a column vector. y’ =[ ]  4   2 

is a row vector. A single number such as 2, 4, -6 is called  a scalar.

The sum of two matrices A = {aij} and B = {bij} is defined as C ={cij} = {aij+ bij}. For
example,  if,

A = 
  4  0 - 3
- 7  2    1









  and B = 

  2  1 - 3
  1  1    2









 , then C = 

  6  1 - 6
- 6  3    3











The product of two matrices is defined as  Cr x s = Ar x c Bc x s where the ijth element of

C is given by cij = a bik kj
k

c

=
∑

1
. For example, if,

A =  
  4  0 - 3
- 7  2    1









  and B = 

  2  1 
  1  1 
  2  1

















, then C = 
   2      1 
-10  - 4 











For further details and examples from biology, the reader if referred to Searle (1966).
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