Fertilizer use by crop in Poland
Fertilizer use by crop in Poland
Abstract

The agricultural area of Poland amounts to 18.4 million ha of which 14.1 million ha are arable and 4.1 million ha grassland. The arable area includes 8.8 million ha of cereals, 1.2 of potato and 0.3 of sugar beet. The cereal area includes 2.6 million ha of wheat, 2.1 of rye and 1.1 of barley.

In Poland there are over three million agricultural holdings. During the centrally planned period most farms remained in private hands but their average size, excluding plots of below one ha, is seven hectares. Today there are only 2000 farms in the public sector but with an average size of 600 ha.

Most of the arable land is cropped with cereals. Yields tend to be lower than in western Europe. This is due partly to the natural conditions since unfertile and acid soils account for between 50 percent and 65 percent of the arable land in Poland. Also the climatic conditions are not optimum for agricultural production. The conditions in the eastern region are particularly difficult, with its large number of very small farms.

Poland has a long established fertilizer industry. When the domestic demand for fertilizers fell during the early 1990s some producers had to turn to exports to sell their products. The former distribution system of the centrally planned era collapsed and manufacturers had to become involved in organizing the distribution of their products.

The study provides information on the natural resource base for agriculture and the characteristics of each region, particularly as regards its agricultural suitability. The cropping in the different regions is examined. The production of mineral fertilizers and their consumption by region and by crop are described. The supply of nutrients through organic manures is considered. The prices of fertilizers and crops are given and the profitability of mineral fertilizer use is calculated. The results indicate that the profitability of fertilizer use is fairly good under present circumstances.

Calculations of the nutrient balances, i.e. inputs versus removal, are provided for each nutrient and by province. Despite the relatively low rates of use of fertilizers, the nutrient balances show surpluses or comparatively low deficiencies. This is explained by the generally low crop yields. The main deficiencies are in potash.

To ensure food self-sufficiency for the country, fertilizer nutrient application should be increased from the present level of 85 kg NPK per hectare to at least 130 kg/ha.
Acknowledgements

This study is based on the work of Professor Mariusz Fotyma, Institute of Soil Science and Plant Cultivation, Pulawy, Poland.

The study benefited from the contributions of C. Aholou-Pütz (IFA), K. Isherwood, J. Poulisse and T. van den Bergen (FAO).

The cover photographs were made by Arnoldo Mondadori Editore S.p.A. (potatoes), Arne Anderberg (rye) and C. Borgemeister (wheat). The source of these photographs is EcoPort (Portal to Ecology Management).
This study was commissioned by the Food and Agriculture Organization of the United Nations (FAO) and was prepared with the assistance of the International Fertilizer Industry Association (IFA). It is one of a series of publications on fertilizer use on crops in different countries.

FAO, IFA and the International Fertilizer Development Center (IFDC) issue country-wise statistics on "fertilizer use by crop". The aim of the present series is to examine the agro-ecological conditions, the structure of farming, cropping patterns, the availability and use of mineral and organic plant nutrients, the economics of fertilizers, research and advisory requirements and other factors that have led to present fertilizer usage.

The "fertilizer use by crop" statistics have been related to FAO’s forecasts of worldwide crop yield and areas. The results were published in the year 2000 FAO publication "Fertilizer requirements in 2015 and 2030". The reports in the present series examine, country by country, the factors that will or should determine the future development of plant nutrition.

During the past two decades, increasing attention has been paid to the adverse environmental impact of both the underuse and the overuse of plant nutrients. The efficient use of plant nutrients, whether from mineral fertilizers or from other sources, involves the shared responsibility of many segments of society, including international organizations, governments, the fertilizer industry, agricultural research and advisory bodies, traders and farmers. The publications in the series are addressed to all these parties.

Fertilizer use is not an end in itself. Rather it is a means of achieving increased food and fibre production. Increased agricultural production and food availability can, in turn, be seen as an objective for the agricultural sector in the context of contributing to the broader macroeconomic objectives of society. A review of the options available to policy makers is given in the FAO/IFA 1999 publication entitled "Fertilizer strategies".

The contents of the studies differ considerably from country to country, in view of their different structures, histories and food situation. But in each case the aim of the study is to arrive at a better understanding of the nutrition of crops in the country concerned.
Contents

1. INTRODUCTION
 - Soils 2
 - Agricultural structure 5
 - Regions in Poland 6
 - Crops 10

2. THE FERTILIZER SECTOR 15
 - Mineral fertilizer production 15
 - Mineral fertilizer consumption 16

3. ORGANIC MANURES 23

4. FERTILIZER CONSUMPTION BY CROP 25
 - Nitrogen 25
 - Phosphorus 26
 - Potassium 27

5. NUTRIENT BALANCES 29

6. PRICES AND PROFITABILITY OF FERTILIZERS 35
 - Prices of mineral fertilizers 35
 - Profitability of fertilizer use 37

7. FERTILIZER DISTRIBUTION 39

8. CONCLUDING REMARKS 41

BIBLIOGRAPHY 43
List of tables

1. Land utilization in Poland, averages for 1999-2001 1
2. Comparison of natural conditions of agriculture in Poland and western Europe 2
3. Parent rocks of the Polish soils 3
4. Fertility status of Polish soils 5
5. Codes used for the different provinces or regions 6
6. General characteristics of the regions/provinces in Poland 8
7. Land utilization in regions of Poland 10
8. Set-aside areas and yields of certain crops in regions of Poland 12
9. Large Polish fertilizer plants 16
10. Production, consumption and trade of mineral fertilizers 17
11. Consumption of mineral fertilizers 18
12. Structure of fertilizer consumption in Poland 20
13. Consumption of nutrients in manure and as proportion of total nutrients in mineral fertilizers and manure 23
14. Actual rates of nitrogen applied to crops in the regions of Poland 26
15. Actual rates of phosphorus applied to crops in the regions of Poland 27
16. Present rates of potash applied to crops in the regions of Poland 28
17. Nitrogen balance, kg N/ha of agricultural land 30
18. Phosphorus balance, kg P₂O₅/ha of agricultural land 31
19. Potash balance, kg K₂O/ha of agricultural land 32
20. Crop yields and nutrients uptake per yield unit in regions of Poland 33
21. Equivalents of crop yields in cereal units 33
22. Prices of basic fertilizers in the years 1998-2001 35
23. Price of 1 kg nutrient expressed in kg of winter wheat grain 36
24. Subsidization of calcium and magnesium amendments 37
25. Prices of plant products in the years 1998-2001 37
26. Profitability of mineral fertilization for selected crops 38
List of figures

1. Dominant soil map of Poland 4
2. Structure of individual farms according to number 7
3. Structure of individual farms according to area 7
4. Regions and clusters of regions in Poland 9
5. The yield of cereals in Poland in 1999-2000 13
6. Location of fertilizer plants in Poland 17
7. Consumption of mineral fertilizers by region, 1999-2001 19
8. Structure of nitrogen fertilizer consumption 21
9. Structure of phosphorus fertilizer consumption 21
Abbreviations and symbols

EFMA European Fertilizer Manufacturers Association
FAO Food and Agriculture Organization of the United Nations
IFA International Fertilizer Industry Association
IFDC International Fertilizer Development Center
OECD Organisation for Economic Co-operation and Development
PLN Polish Currency

Fertilizers

N Nitrogen
Amm. Ammonium
AS Ammonium sulphate
AN Ammonium nitrate
CAN Calcium ammonium nitrate
UAN Urea ammonium nitrate
P₂O₅ or P Phosphate*
SSP Single superphosphate
TSP Triple superphosphate
K₂O or K Potash*
NPK, NP or PK fertilizers compound fertilizers containing the nutrient indicated
NPK per ha (for example) N+P₂O₅+K₂O per ha

* Phosphate and potash may be expressed as their elemental forms P and K or as their oxide forms P₂O₅ and K₂O. Nitrogen is expressed as N. In this study phosphate and potash are expressed in their oxide forms.