Reglamentos a nivel mundial para las micotoxinas en los alimentos y en las raciones en el año 2003
Los puntos de vista expresados en esta publicación son los del autor (res) y no reflejan necesariamente los de la Organización de las Naciones Unidas para la Agricultura y la Alimentación ni los de la Organización Mundial de la Salud. Las denominaciones empleadas en esta publicación y la forma en que aparecen presentados los datos que contiene no implican, de parte de la Organización de las Naciones Unidas para la Agricultura y la Alimentación o de la Organización Mundial de la Salud, juicio alguno sobre la condición jurídica o nivel de desarrollo de países, territorios, ciudades o zonas, o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites. La palabra “países” en el texto debe entenderse como refiriéndose sin distinción alguna a países, territorios y áreas.

Todos los derechos reservados. Se autoriza la reproducción y difusión del material contenido en este producto informativo para fines educativos u otros fines no comerciales sin previa autorización escrita de los titulares de los derechos de autor, siempre que se especifique claramente la fuente. Se prohíbe la reproducción del material contenido en este producto informativo para reventa u otros fines comerciales sin previa autorización escrita de los titulares de los derechos de autor. Las peticiones para obtener tal autorización deberán dirigirse al Jefe del Servicio de Gestión de las Publicaciones de la Dirección de Información de la FAO, Viale delle Terme di Caracalla, 00100 Roma, Italia, o por correo electrónico a copyright@fao.org

© FAO 2004
Para otras informaciones, favor ponerse en contacto con:

Servicio de Calidad de los Alimentos y Normas Alimentarias (ESNS)
Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO)
Viale delle Terme di Caracalla
00100 Roma, Italia
Fax: (39) 06 570 54593
Correo electrónico: food-quality@fao.org
Índice

Figuras..vi
Cuadros..vii
Abreviaturas .. ix
Agradecimientos.. xi
Prefacio.. xiii
Nota aclaratoria .. xiv
1. Introducción.. 1

2. Factores que influyen en la formulación de reglamentos para las micotoxinas en los alimentos y en las raciones... 2
 2.1 Determinación del peligro y caracterización del peligro ... 2
 2.2 Evaluación de la exposición... 3
 2.3 Procedimientos de muestreo ... 4
 2.4 Métodos de análisis... 5
 2.5 Contactos comerciales .. 7
 2.6 Abastecimiento de alimentos ... 7
 2.7 Resumen.. 7

3. Reglamentos para las micotoxinas en el año 2003 y desarrollos actuales.................................... 9
 3.1 La encuesta internacional de 2002 a 2003 .. 9
 3.2 Observaciones generales... 9
 3.3 Observaciones específicas por región ... 10
 3.3.1 África.. 10
 3.3.2 Asia/Oceanía ... 13
 3.3.3 Europa .. 14
 3.3.4 América Latina.. 15
 3.3.5 América del Norte .. 16
 3.4 Observaciones específicas para micotoxinas individuales o para grupos de micotoxinas... 18
 3.4.1 Límites a nivel mundial para las aflatoxinas .. 18
 3.4.2 Límites a nivel mundial para otras micotoxinas... 24
 3.5 Reglamentos armonizados .. 28
 3.5.1 Australia/Nueva Zelanda.. 28
 3.5.2 Unión Europea ... 28
 3.5.3 MERCOSUR... 28
 3.5.4 ANSEA .. 29
 3.5.5 Codex Alimentarius... 29

4. Consideraciones finales.. 30

Referencias.. 32

Anexos.. 37

Anexo 1: Contribuciones ... 38
Anexo 2: Cuadros... 44
Figuras

Figura 1: Países con y sin reglamentos para las micotoxinas
Figura 2: Porcentaje de la población mundial con reglamentos para las micotoxinas
Figura 3: Micotoxinas en los alimentos reglamentados en el África
Figura 4: Micotoxinas en las raciones reglamentadas en el África
Figura 5: Micotoxinas en los alimentos reglamentados en Asia/Oceanía
Figura 6: Micotoxinas en las raciones reglamentadas en Asia/Oceanía
Figura 7: Micotoxinas en los alimentos reglamentados en Europa
Figura 8: Micotoxinas en las raciones reglamentadas en Europa
Figura 9: Micotoxinas en los alimentos reglamentados en América Latina
Figura 10: Micotoxinas en las raciones reglamentadas en América Latina
Figura 11: Micotoxinas en los alimentos reglamentados en América del Norte
Figura 12: Micotoxinas en las raciones reglamentadas en América del Norte
Figura 13: Límites a nivel mundial para la aflatoxina B\(_1\) en los alimentos
Figura 14: Límites a nivel mundial para las aflatoxinas totales en los alimentos
Figura 15: Rangos y medianas por regiones de los límites para las aflatoxinas totales en los alimentos
Figura 16: Límites a nivel mundial para la aflatoxina M\(_1\) en la leche
Figura 17: Límites a nivel mundial para la aflatoxina B\(_1\) en las raciones para ganado lechero
Figura 18: Límites a nivel mundial para las aflatoxinas totales en las raciones para ganado lechero
Figura 19: Límites a nivel mundial para la patulina en las frutas y en los jugos de frutas
Figura 20: Límites a nivel mundial para la ocratoxina A en los cereales y en productos a base de cereales
Figura 21: Límites a nivel mundial para el deoxinivalenol en el trigo (harina) y en otros cereales
Figura 22: Límites a nivel mundial para la zearalenona en el maíz y en otros cereales
Figura 23: Límites a nivel mundial para las fumonisinas en el maíz
Cuadros

Cuadro 1: Listado de los materiales de referencia para las micotoxinas actualmente disponibles 45

Cuadro 2: Resumen de los países participantes en la encuesta sobre micotoxinas (2002 a 2003) 47

Cuadro 3: Niveles máximos tolerados para las micotoxinas en los alimentos, en los productos lácteos y en las raciones animales (encuesta 2002-2003) 50

Cuadro 4: Medianas e intervalos para los niveles máximos permitidos (en \(\mu \)g/kg) para algunos grupos de aflatoxinas en 1995 y en 2003 y países que cuentan con reglamentos 172
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Aseguramiento analítico de la calidad</td>
</tr>
<tr>
<td>AELC</td>
<td>Asociación Europea de Libre Comercio</td>
</tr>
<tr>
<td>AESA</td>
<td>Autoridad Europea de Seguridad Alimentaria</td>
</tr>
<tr>
<td>AFB₁</td>
<td>Aflatoxina B₁</td>
</tr>
<tr>
<td>AFB₁/G₁</td>
<td>Aflatoxinas B₁+G₁</td>
</tr>
<tr>
<td>AFG₁</td>
<td>Aflatoxina G₁</td>
</tr>
<tr>
<td>AFM₁</td>
<td>Aflatoxina M₁</td>
</tr>
<tr>
<td>AFT</td>
<td>Aflatoxinas totales</td>
</tr>
<tr>
<td>AGA</td>
<td>Ácido agárico</td>
</tr>
<tr>
<td>ALARA</td>
<td>Tan bajo como sea razonablemente posible</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>AOCS</td>
<td>American Oil Chemists’ Society</td>
</tr>
<tr>
<td>ANSEA</td>
<td>Asociación de Naciones del Sudeste Asiático</td>
</tr>
<tr>
<td>CCA</td>
<td>Comisión de Codex Alimentarius</td>
</tr>
<tr>
<td>CCFAC</td>
<td>Comité del Codex para Aditivos Alimentarios y Contaminantes de los Alimentos</td>
</tr>
<tr>
<td>CE</td>
<td>Comisión Europea</td>
</tr>
<tr>
<td>CEN</td>
<td>Comité Europeo de Normalización</td>
</tr>
<tr>
<td>DAS</td>
<td>Diacetoxiscirpenol</td>
</tr>
<tr>
<td>DON</td>
<td>Deoxinivalenol</td>
</tr>
<tr>
<td>ERG</td>
<td>Alcaloides del ergot</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration (Estados Unidos de América)</td>
</tr>
<tr>
<td>FUMB₁</td>
<td>Fumonisina B₁</td>
</tr>
<tr>
<td>FUMB₁/₂</td>
<td>Fumonisinas B₁+B₂</td>
</tr>
<tr>
<td>FUMB₁/₂/₃</td>
<td>Fumonisinas B₁+B₂+B₃</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Definición</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>HT-2</td>
<td>Toxina HT-2</td>
</tr>
<tr>
<td>JECFA</td>
<td>Comité Mixto FAO/OMS de Expertos en Aditivos Alimentarios</td>
</tr>
<tr>
<td>MERCOSUR</td>
<td>Mercado Común del Sur</td>
</tr>
<tr>
<td>OMS</td>
<td>Organización Mundial de la Salud</td>
</tr>
<tr>
<td>PHO</td>
<td>Fomopsinas</td>
</tr>
<tr>
<td>STE</td>
<td>Esterigmatocistina</td>
</tr>
<tr>
<td>T-2</td>
<td>Toxina T-2</td>
</tr>
<tr>
<td>UE</td>
<td>Unión Europea</td>
</tr>
<tr>
<td>USDA</td>
<td>Ministerio de Agricultura de los Estados Unidos</td>
</tr>
<tr>
<td>ZEN</td>
<td>Zearalenona</td>
</tr>
</tbody>
</table>
Agradecimientos

Este estudio, contratado por la FAO, fue realizado por el Laboratorio para Análisis de Alimentos y Residuos (ARO) del Instituto Nacional para la Salud Pública y el Medio Ambiente de los Países Bajos. El trabajo es también parte de las responsabilidades del ARO como Laboratorio Comunitario de Referencia para Residuos de la Unión Europea.

La FAO agradece a los autores, H. P. van Egmond y M. A. Jonker del ARO este valioso trabajo, y a los países que contribuyeron con este documento recopilando y proporcionando importantes informaciones. Un listado detallado de las personas e instituciones que colaboraron en el estudio se encuentra en el Anexo 1.
Prefacio

Desde el descubrimiento de las aflatoxinas en los años 1960, son muchos países que han adoptado reglamentos para proteger a los consumidores de los efectos nocivos de las micotoxinas que puedan contaminar los alimentos y para asegurar, además, prácticas equitativas en su comercio. Son diversos los elementos que juegan en los procesos de toma de decisión para fijar niveles límite para las micotoxinas. Incluyen factores científicos para evaluar el riesgo, como la disponibilidad de datos toxicológicos, datos de consumo de alimentos, información sobre el nivel y la distribución de las micotoxinas en los productos básicos y metodologías analíticas. También tienen su impacto, factores económicos como los intereses comerciales y aspectos vinculados con la inocuidad de los alimentos. Es, en consecuencia, de crucial importancia ponderar los diversos factores que juegan en el proceso de toma de decisiones al fijar tolerancias para las micotoxinas.

A pesar de las dificultades, en las últimas décadas son muchos los países que han adoptado reglamentos para las micotoxinas y aún se continúan promulgando nuevas disposiciones. Se han fijado reglamentos nacionales para varias micotoxinas que se presentan naturalmente como las aflatoxinas y la aflatoxina M₁, los tricotecenos, el deoxinivalenol, el diacetoxiscirpenol, la toxina T-2 y la toxina HT-2, las fumonisinas B₁, B₂ y B₃, el ácido agárico, los alcaloides del ergot, la ocratoxina A, la patulina, las fomopsinas, la esterigmatocistina y la zearalenona.

En varias ocasiones se han ya realizado encuestas internacionales sobre las legislaciones existentes para las micotoxinas en los alimentos y en las raciones animales y publicado detalles sobre los niveles de tolerancia, los fundamentos jurídicos, las autoridades responsables y los protocolos oficiales de muestreo y análisis. La Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) ha desempeñado un papel de la mayor importancia al proporcionar información sobre reglamentos a nivel mundial sobre las micotoxinas en los alimentos y en las raciones.

La última revisión completa de los reglamentos vigentes a nivel mundial fue publicada en 1997 en el Estudio FAO: Alimentación y nutrición 64. Por ese entonces, 77 países tenían reglamentos específicos para las micotoxinas en diferentes alimentos y raciones, 13 países contaban con disposiciones generales y unos 50 países carecían de información disponible. El número de países con reglamentaciones específicas para las micotoxinas ha aumentado con los años. Esto refleja la preocupación general de los gobiernos sobre los efectos potenciales de las micotoxinas sobre la salud humana y animal y sus consecuencias comerciales.

Esta publicación actualiza la información del Estudio FAO: Alimentación y nutrición 64 y presenta la situación de los reglamentos para las micotoxinas a nivel mundial al mes de diciembre de 2003, en base a una encuesta internacional llevada a cabo en los años 2002 y 2003.
Nota aclaratoria

Se ha tenido el mayor cuidado en la preparación de los datos que figuran en esta publicación. Sin embargo, la FAO reconoce que este compendio puede, en algunos casos, resultar incompleto o no ser totalmente correcto como consecuencia de dificultades de lenguaje, de terminología y de interpretación de las respuestas a la encuesta. La FAO no se hace responsable por el uso de los límites, reglamentos e informaciones relacionadas y por los perjuicios de cualquier tipo resultantes de o vinculados con su empleo.
1. Introducción

En el cambiante mundo actual la seguridad y la inocuidad han en general permanecido como necesidades humanas básicas. El aseguramiento de la inocuidad de los alimentos se ha constituido en los últimos años en una meta importante de acción internacional y nacional. Resultan preocupantes tanto los peligros microbiológicos como los químicos. Entre los peligros químicos la Organización Mundial de la Salud ha caracterizado recientemente la contaminación de los alimentos y de las raciones con micotoxinas (metabolitos tóxicos de los hongos), de los productos de la pesca con ficotoxinas (toxinas producidas por las algas) y de las especies de plantas comestibles por sus toxinas vegetales como fuentes importantes de las enfermedades trasmitidas por los alimentos (OMS, 2002). De estas tres categorías de toxinas naturales, las micotoxinas son las que más atención han merecido hasta ahora. En varias partes del mundo, las micotoxinas actualmente representan un tema de la mayor importancia relacionado con la inocuidad de los alimentos.

Comprender los serios efectos que las micotoxinas pueden tener sobre los seres humanos y los animales ha llevado a muchos países en las últimas décadas a fijar reglamentos para las micotoxinas en los alimentos y en las raciones como forma de proteger la salud humana y los intereses económicos de los productores y del comercio. Fijar reglamentos para las micotoxinas es una actividad compleja que involucra muchos factores y partes interesadas. Los primeros límites para las micotoxinas son de fines de la década de 1960, para las aflatoxinas. A fines del año 2003, aproximadamente 100 países contaban con límites específicos para las micotoxinas en los alimentos y las raciones y este número continua incrementándose.

Factores que influyen en la formulación de reglamentos para las micotoxinas en los alimentos y en las raciones

Varios factores, tanto de naturaleza científica como socioeconómica, influyen cuando se requiere fijar límites y reglamentar las micotoxinas. Se cuentan entre estos:

- disponibilidad de datos toxicológicos;
- disponibilidad de datos relativos a la presencia de las micotoxinas en diversos productos básicos;
- conocimiento de la distribución de las concentraciones de las micotoxinas en un lote;
- disponibilidad de métodos analíticos;
- legislación de los países con los que existen contactos comerciales; y
- necesidad de un abastecimiento suficiente de alimentos.

Los dos primeros factores proporcionan, respectivamente, la información necesaria para la evaluación de riesgos y para la evaluación de la exposición, ingredientes principales para una evaluación de riesgos. La evaluación de riesgos es la evaluación científica de la probabilidad de que tengan lugar efectos conocidos o potenciales adversos a la salud resultantes de la exposición de los seres humanos a peligros transmitidos por los alimentos y es la base científica primaria para los reglamentos.

Determinación del peligro y caracterización del peligro

Los reglamentos se formulan básicamente basados en los efectos tóxicos conocidos. Para las micotoxinas habitualmente consideradas como más significativas – aflatoxinas, ocratoxina A, patulina, fumonisinas, zearalenona y algunos tricotoxenos incluyendo el deoxinivalenol – el Comité Mixto FAO/OMS de Expertos en Aditivos Alimentarios (JECFA), un organismo científico consultivo de la OMS y de la FAO, ha evaluado recientemente estos peligros. JECFA ofrece un mecanismo que permite evaluar la toxicidad de los aditivos, de las drogas veterinarias y de los contaminantes en los alimentos. La evaluación de la inocuidad de los contaminantes incorpora varios pasos en un enfoque formal de evaluación de riesgos a la salud.

La indicación cualitativa de que un contaminante puede causar efectos adversos a la salud (determinación del peligro) se incluye habitualmente en la información que se presenta a JECFA para su evaluación. Análogamente, se incluye con los conjuntos de datos presentados una evaluación cualitativa y cuantitativa de los efectos adversos (caracterización del peligro). La evaluación de los datos toxicológicos llevada a cabo por JECFA resulta normalmente en la estimación de una Ingesta provisional tolerable semanal o de una Ingesta provisional tolerable diaria.

El uso de la expresión “provisional” indica el carácter tentativo de la evaluación, en razón de la escasez de datos confiables sobre las consecuencias de la exposición humana a niveles que se aproximan a aquellos de los que se occupa JECFA.

En principio, la evaluación está basada en la determinación de un Nivel sin efecto adverso observable en los estudios toxicológicos y en la aplicación de un factor de incertidumbre. El factor de incertidumbre significa que el Nivel sin efecto adverso observable más bajo en estudios con animales se divide por 100, 10 para extrapolar de los animales a los seres humanos y 10 por las variaciones entre individuos, hasta alcanzar un nivel de ingesta
tolerable. En los casos en que los datos sean inadecuados, JECFA utiliza un factor de seguridad mayor.

Este enfoque de evaluación de peligros no se aplica a las toxinas con carcinogenicidad preocupante, como las aflatoxinas. Suponiendo que no pueda fijarse para los compuestos genotóxicos un límite para las concentraciones a las que no hay efecto, cualquier dosis pequeña tendrá una probabilidad proporcionalmente menor de inducir un efecto. De no ser porque estas toxinas son contaminantes naturales que nunca podrán ser eliminadas totalmente sin prohibir los alimentos o las raciones contaminadas, resultaría apropiado fijar para las micotoxinas genotóxicas su ausencia total.

En estos casos, JECFA no asigna una Ingesta provisional tolerable semanal (conocida también por la sigla PTWI) o una Ingesta provisional tolerable diaria (conocida también por la sigla PTDI). Recomienda, en cambio, que el nivel del contaminante en los alimentos debiera reducirse de manera que resulte “tan bajo como sea razonablemente posible” (ALARA). El nivel de ALARA, que puede entenderse como el nivel del cual un contaminante no puede reducirse más, se define como la concentración de una sustancia que ya no puede eliminarse de un alimento sin que ello signifique descartar el alimento o sin comprometer severamente el abastecimiento de alimentos importantes. Esto incluye las evaluaciones de las micotoxinas realizadas por JECFA en 1987 y en 1997. En ocasiones, en los años 1990, JECFA evaluó también el riesgo para otras micotoxinas, la ocratoxina A, la patulina y la zearalenona.

En febrero de 2001, una sesión especial de JECFA se dedicó totalmente a las micotoxinas (FAO, 2001; OMS, 2002b). Las micotoxinas evaluadas o reevaluadas en la 56ª Reunión de JECFA fueron las fumonisinas B1, B2 y B3, la ocratoxina A, el deoxinivalenol, las toxinas T-2 y HT-2 y la aflatoxina M1. El informe trató diversos puntos para cada micotoxina, incluyendo una aclaración sobre la micotoxina, la absorción a través de la excreción, estudios toxicológicos y una evaluación final. Junto con las evaluaciones de las micotoxinas, el comité fijó consideraciones de carácter general sobre métodos analíticos, el muestreo y temas relacionados con la ingesta y el control.

La evaluación de la aflatoxina M1 es la más interesante porque JECFA en su 32ª Reunión (CCA, 2000) respondió a un pedido del Comité del Codex sobre Aditivos Alimentarios y Contaminantes (CCFAC, ver también sección 3.5.5.) para “examinar la exposición a la aflatoxina M1 y para llevar a cabo una evaluación cuantitativa de riesgos” para comparar las dos normas para la contaminación de la leche (0,05 µg/kg y 0,5 µg/kg), límites actualmente aplicados respectivamente en la Unión Europea y en los Estados Unidos de América. Los cálculos demostraron que, con escenarios de peor caso, los riesgos proyectados para el cáncer de hígado atribuibles al uso de niveles máximos propuestos para la aflatoxina M1 de 0,05 µg/kg de leche y de 0,5 µg/kg de leche son muy pequeños y que no existe un beneficio significativo para la salud cuando el límite de 0,5 µg/kg se reduce a 0,05 µg/kg.

Para el desarrollo posterior de niveles de ingesta tolerable diaria (conocida por la sigla TDI) en las micotoxinas en los alimentos con fines nacionales o internacionales (Codex Alimentarius), deben tenerse en cuenta que otros factores intervienen además de la evaluación del peligro, los que se analizaran más adelante.

2.2 Evaluación de la exposición

Además de la información relativa a la toxicidad, la evaluación de la exposición es otro de los componentes principales de la evaluación de riesgos. Para preparar la evaluación de la
Exposición se requieren datos confiables sobre la presencia de micotoxinas en diferentes productos básicos y en la ingesta alimentaria. La evaluación cuantitativa de la ingestión probable de micotoxinas es muy difícil. En su 56ª Reunión, JECFA señaló la importancia de emplear métodos analíticos validados y de aplicar el aseguramiento de la calidad analítica (ver también la Sección 2.4 sobre métodos de análisis) para lograr que los resultados de las encuestas suministren una evaluación confiable de la ingesta (OMS, 2002b).

En la mayor parte de las revisiones de JECFA sobre las micotoxinas, los datos analíticos relativos a los niveles de contaminación eran frecuentemente inadecuados para los países desarrollados e inexistentes para los países en desarrollo. Al ser la mayor parte de la contaminación con las micotoxinas heterogénea, el muestreo constituye otra consideración importante en el desarrollo de la información sobre los niveles de contaminación. (Page, 2003) (ver también la Sección 2.3 sobre procedimientos de muestreo).

En la UE, los proyectos sobre Cooperación Científica en Temas relativos a los Alimentos (SCOOP) tratan de determinar la evaluación de la exposición con financiamiento de la Comisión Europea. Los proyectos SCOOP apuntan a determinar las mejores estimaciones posibles sobre la ingesta de diversas micotoxinas por parte de la población de la UE. En los años 1990, estas actividades resultaron en un informe sobre la evaluación de la exposición a las aflatoxinas (Comisión Europea, 1997). Otros informes SCOOP fueron publicados posteriormente para varias micotoxinas: la ochratoxina A (Miraglia y Brera, 2002), la patulina (Majerus y Kapp, 2002) y para varias toxinas del Fusarium, los tricotoxenos, las fumonisinas y la zearalenona (Gareis et al., 2003). La Autoridad Europea de Seguridad Alimentaria, ha utilizado los datos de los proyectos SCOOP en sus evaluaciones y trabajos de consultoría sobre los riesgos para la salud pública resultantes de una dieta expuesta a ciertas micotoxinas.

2.3 Procedimientos de muestreo

La distribución de la concentración de las micotoxinas es un factor importante a considerar cuando se adoptan criterios reglamentarios de muestreo para los productos. La distribución puede ser muy heterogénea, como para las aflatoxinas del maní. La cantidad de granos de maní contaminados en un lote es habitualmente muy baja, pero el nivel de contaminación dentro del grano puede ser muy alto. De no tenerse los debidos cuidados para obtener una muestra representativa, la concentración de las micotoxinas en los lotes inspeccionados puede con facilidad estimarse erróneamente. Además, el consumo de maníes podría llevar a una única dosis accidental alta de aflatoxinas más que a una ingesta crónica a un nivel relativamente bajo.

Con los pistachos y los higos pueden darse casos similares. Debe tenerse en cuenta el riesgo tanto para los productores como para los consumidores al fijarse los criterios de muestreo para aquellos productos en los que las micotoxinas tengan una distribución heterogénea. El diseño de los procedimientos de muestreo ha sido tema de preocupación internacional por varios años (FAO, 1993; CCA, 2000). Para intentar alcanzar un enfoque internacional armonizado la FAO y la Comisión del Codex Alimentarius organizan grupos de trabajo y de discusión.

Pueden mencionarse como ejemplos de planes oficiales de muestreo para las micotoxinas los de las aflatoxinas en maníes y maíz practicados en los Estados Unidos (FDA, 2002) y en maníes de la UE (Comisión Europea, 2002b). Para ser aceptadas, en los Estados Unidos, la USDA requiere tres muestras de laboratorio de 22 kg con un promedio inferior a 15 µg aflatoxinas totales por kg. En la UE, se requiere una muestra de laboratorio de 30 kg con
menos de 15 µg de aflatoxinas totales por kg para los maníes sin procesar y que serán posteriormente procesados y tres muestras de laboratorio de 10 kg, cada una conteniendo menos de 4 µg aflatoxinas totales por kg (y 2 µg de aflatoxina B₁ por kg), en los maníes terminados para su venta para consumo directo por los seres humanos.

Aunque los enfoques sean diferentes, la industria de los maníes de los Estados Unidos en cooperación con el USDA, ha desarrollado recientemente un Programa de Certificación de Origen (PCO) conjuntamente con varios importantes países europeos importadores de maní de los Estados Unidos. Mediante un memorando de entendimiento, estos mercados clave, han acordado reconocer el muestreo y los análisis realizados para las aflatoxinas en los maníes de los Estados Unidos antes de ser exportados a Europa (Trucksess et al., 2003). Puede emplearse así la documentación que demuestre una identificación positiva del lote y los resultados de los ensayos para las aflatoxinas para certificar que los maníes cumplen con las reglamentaciones para las aflatoxinas de la UE.

En el PCO, el exportador de los Estados Unidos emplea el resultado de una primera muestra de 22 kg para seleccionar los lotes. Una segunda muestra de 22 kg, retirada por el USDA, se ensaya de conformidad con el protocolo de la UE para certificación de lotes. El programa PCO reducirá el número de lotes rechazados en el puerto de entrada, reducirá las desorganizaciones en el abastecimiento que afectan al importador, reducirá las pérdidas económicas para exportadores e importadores y mantendrá las normas de la UE para la seguridad del consumidor. El programa PCO es un ejemplo de un acuerdo que resulta mutuamente beneficioso, a la vez que preserva altos niveles de seguridad e inocuidad para los consumidores (Adams y Whitaker, 2004).

2.4 Métodos de análisis

Los reglamentos para los alimentos requieren métodos de control. Debe disponerse de métodos analíticos confiables para poder cumplir con las reglamentaciones. Los niveles de tolerancia sin una expectativa razonable de ser cumplidos sólo sirven para desaprovechar los recursos empleados y pueden muy bien condenar a productos perfectamente aptos para el consumo (Smith et al., 1994). Además de la confiabilidad es deseable la sencillez, la que influirá sobre el volumen de datos generados y sobre la practicidad de las medidas finales que se adopten. La confiabilidad de los datos analíticos puede mejorarse mediante métodos que cumplan con ciertos criterios relativos a la forma de realización de los ensayos (como puede demostrarse en estudios interlaboratorio).

La Association of Official Analytical Chemicals (AOAC International) y el Comité Europeo de Normalización (CEN), un equivalente europeo a la ISO, cuentan con varios métodos normalizados de análisis para las micotoxinas validados por estudios interlaboratorios formales de validación de métodos, que se realizan en número gradualmente creciente. La última edición de los Métodos Oficiales de Análisis de la AOAC International (Horwitz, 2000) contiene aproximadamente 40 métodos validados para determinaciones en las micotoxinas y se ha publicado recientemente una revisión sobre la validación de métodos de análisis para las micotoxinas (Gilbert y Anklam, 2002).

El CEN produjo un documento con criterios específicos para varios métodos de análisis de las micotoxinas que pueden emplearse con propósitos oficiales (CEN, 1999). Este documento contiene información relativa al funcionamiento de los métodos que pueden esperarse de los laboratorios analíticos con experiencia en el tema. Los criterios del CEN se reflejan en la actualidad como requisitos de desempeño de los métodos en la legislación oficial de la UE.
sobre las aflatoxinas, la ocratoxina A y la patulina (Comisión Europea, 1998; 2002a; 2003a). Se espera que aparezcan también futuras legislaciones de la UE para otras micotoxinas en los alimentos y en las raciones.

Además del uso de métodos analíticos de probada confiabilidad, se recomienda la aplicación de procedimientos de aseguramiento analítico de la calidad (AAC), incluidos los materiales de referencia certificados, en especial cuando se requiere un alto grado de precisión y comparabilidad. Es posible que en el futuro surjan desarrollos posteriores en el AAC y en los materiales de referencia para el control de las micotoxinas en los alimentos. Mediante proyectos financiados por el Programa de la Comisión Europea para Normas, Medidas y Ensayos, antes conocida como la Oficina Comunitaria de Referencia, se han elaborado varios materiales de referencia certificados para las micotoxinas o se están produciendo en la actualidad nuevamente (Josephs et al., 2004). El Cuadro 1 del Anexo ofrece un listado de los materiales de referencia certificados de la Oficina Comunitaria de Referencia, para las micotoxinas producidos desde los años 1980. El Centro de Investigaciones Conjuntas/Instituto de Materiales y Medidas de Referencia1 de la Comisión Europea tiene a disposición los materiales de referencia para las micotoxinas a nivel mundial.

Los materiales de referencia certificados son relativamente costosos en razón de la enorme cantidad de tiempo y dinero invertidos para su desarrollo y las cantidades disponibles actualmente son limitadas. En consecuencia, se aconseja a los laboratorios que desarrollen sus propios materiales de referencia para usos rutinarios y con un contenido de toxinas que debiera fijarse sobre la base de materiales certificados.

Paralelamente con la aplicación de materiales de referencia certificados, se hace cada vez más importante participar de manera regular en comparaciones interlaboratorios del tipo de los planes para la evaluación de la competencia de los ensayos, como parte de las medidas de AAC que un laboratorio debe cumplir para demostrar un desempeño aceptable. Existen varios planes para la evaluación de la competencia de los ensayos para las micotoxinas a nivel internacional como i) los organizados por el Food Analysis Performance Assessment Scheme (FAPAS®) y operado por el Central Science Laboratory en el Reino Unido de Gran Bretaña e Irlanda del Norte (Richard et al., 2003) y ii) los organizados por la American Oil Chemists’ Society (AOCS) en los Estados Unidos (AOCS, 2003).

Una buena metodología analítica y el AAC son requisitos previos para un cumplimiento adecuado de las disposiciones legales. Es también importante, especialmente en las áreas de libre comercio, la forma como los organismos encargados de hacer cumplir las disposiciones manejan un tema como la incertidumbre de las medidas. Los enfoques en la UE y en el Área Europea de Libre Comercio no están aún armonizados entre países, lo que puede conducir a niveles de acción diferentes, por ejemplo para las aflatoxinas. En consecuencia el Grupo de Trabajo de profesionales responsables del cumplimiento de las leyes sobre los alimentos, “Micotoxinas” ha recomendado un enfoque uniforme (Jeuring, 2004). Interesa señalar que la nueva directiva de la Comisión Europea relativa a la patulina en los alimentos en vigor desde noviembre de 2003, proporciona algunas guías sobre como encarar la incertidumbre en las medidas (Comisión Europea, 2003a). Esto es bastante raro hasta ahora, pero se espera que el tema de la incertidumbre en las medidas se incorpore próximamente a más reglamentos.

1 Ver http://www.irmm.jrc.be
2.5 Contactos comerciales

Los reglamentos deben armonizarse preferentemente con aquellos vigentes en otros países con los que existen contactos comerciales. De hecho, este enfoque se ha empleado en Australia y Nueva Zelanda, en la UE y en el MERCOSUR, donde existen reglamentos armonizados para algunas micotoxinas. Las acciones reglamentarias estrictas pueden hacer que los países importadores prohíban o limiten la importación de ciertos productos básicos, como los granos destinados a la alimentación humana, lo que puede resultar en que los países exportadores encuentren dificultades para encontrar o mantener mercados para sus productos. Por ejemplo, las reglamentaciones muy estrictas vigentes en la UE para la aflatoxina B1 en las raciones animales (Comisión de las Comunidades Europeas, 1991) hizo que los fabricantes europeos de raciones animales sustituyesen las tortas de maní por otras fuentes de proteína; lo que influyó sobre las exportaciones de este producto de algunos países en desarrollo (Bhat, 1999).

La distorsión que los reglamentos de los países importadores causan en el mercado puede resultar en exportaciones de alimentos y de raciones menos contaminadas, pero dejando sólo disponibles para el mercado local los alimentos y las raciones inferiores. Los límites para las aflatoxinas en algunos productos son diferentes en algunos países según su destino.

El Banco Mundial ha publicado un estudio del impacto resultante de la adopción de normas internacionales de inocuidad de los alimentos y de la armonización de las normas sobre las tendencias del comercio de alimentos a nivel mundial (Wilson y Otsuki, 2001). Se estimaron, con varios escenarios, los efectos de las normas que reglamentan las aflatoxinas en 15 países importadores (incluyendo cuatro países en desarrollo) sobre las exportaciones de 31 países (que incluyen 21 países en desarrollo). En uno de estos escenarios, los autores examinaron los flujos comerciales de adoptar todos los países un valor internacional para la aflatoxina B1 en los alimentos de 9 µg/kg (equivalente a las guías del Codex de of 15 µg/kg para las aflatoxinas totales) comparando con que todos los países importadores mantengan los límites, generalmente inferiores, de 1998. Esto resultaría en un incremento del comercio de cereales y nueces entre estos países de USD 6,1 billones (o del 51 por ciento).

2.6 Abastecimiento de alimentos

La filosofía reglamentaria adoptada no debiera amenazar la disponibilidad de algunos productos básicos a precios razonables. Especialmente en los países en desarrollo, en los que el abastecimiento de alimentos es ya limitado, las medidas legales drásticas pueden conducir a una carencia de alimentos y a precios excesivos. Actualmente, por ejemplo, la dramática situación alimentaria en zonas del África propicia medidas que priorizan más el abastecimiento de alimentos que su inocuidad. Las micotoxinas constituyen un problema importante como lo señalan los brotes ocasionales de micotoxicosis, el papel de la aflatoxinas en el cáncer de hígado en el África Occidental y el de las fumonisinas con el cáncer de esófago en Sud África (Shephard, 2004).

2.7 Resumen

La ponderación de los diversos factores en la interfase entre ciencia, inocuidad de los alimentos y reglamentos no es una tarea trivial, en la que al momento de decidir el sentido común desempeña un papel de importancia. Los responsables de la salud pública se enfrentan a un problema complejo: las micotoxinas, y en particular aquellas carcinogénicas deben eliminarse de los alimentos tanto como resulte posible. Sin embargo, como estas sustancias se encuentran presentes en los alimentos como contaminantes naturales, la exposición humana
no puede evitarse completamente y debe tolerarse la exposición de la población a algún nivel de micotoxinas. A pesar de los dilemas, durante las últimas décadas se han fijado reglamentos en muchos países para las micotoxinas y se prosiguen elaborando nuevas reglamentaciones.
3. Reglamentos para las micotoxinas en el año 2003 y desarrollos actuales

3.1 La encuesta internacional de 2002 a 2003

En el año 2002, el Instituto Nacional para la Salud Pública y el Medio Ambiente comenzó una encuesta internacional sobre las micotoxinas. Como parte de ésta, se solicitó a los servicios agrícolas de las embajadas holandesas en el mundo que recopilasen de las autoridades locales información actualizada sobre la situación reglamentaria de las micotoxinas en tantos países como fuese posible. Cuando este procedimiento no produjo la información requerida se recurrió a contactos personales.

En particular la encuesta se ocupó de:

- la existencia de reglamentos sobre las micotoxinas;
- los tipos de micotoxinas y de productos para los que hay reglamentos vigentes o propuestas de reglamentos y los máximos niveles permitidos;
- las autoridades responsables del control de las micotoxinas; y
- el uso de métodos de muestreo y análisis oficiales y publicados.

Hacia fines del año 2003 se recibió información de 89 países. Conjuntamente con la información recogida en encuestas anteriores, se dispusó de datos detallados sobre la existencia o no de límites y de reglamentos específicos para las micotoxinas en los alimentos y en las raciones en 119 países. Toda la información recibida fue examinada e interpretada cuidadosamente. Cuando resultó necesario y posible se formularon preguntas aclaratorias a las fuentes que proporcionaron la información. Para este documento se tomaron en cuenta las correcciones recibidas hasta el 31 de diciembre de 2003. El Cuadro 2 (en el Anexo 2) ofrece un resumen por país con el grado de actualización de la información, con los códigos de cada país y sus poblaciones. La información recibida fue clasificada por país y por comunidad económica (Australia/Nueva Zelanda, UE, MERCOSUR). Se incluyó, además, información sobre normas del Codex Alimentarius. Los datos se clasificaron en las categorías de alimentos, productos lácteos y raciones y se ordenaron alfabéticamente para los diversos países incluidos (ver Tabla 3 en el Anexo 2).

3.2 Observaciones generales

Mundialmente, al menos 99 países tenían reglamentos para las micotoxinas en los alimentos y/o en las raciones en el año 2003 (ver la Figura 1), un aumento de aproximadamente 30 por ciento comparado con 1995. La población total en estos países representa aproximadamente 87 por ciento de los habitantes del globo. La Figura 2 muestra la proporción de la población mundial que vive en regiones con reglamentos vigentes para las micotoxinas en 1995 y en el año 2003. En 1995, el 23 por ciento de la población mundial vivía en una región en la que no estaba vigente ningún reglamento conocido para las micotoxinas. Este porcentaje había disminuido al 13 por ciento en el año 2003, en razón de un ligero aumento en América Latina y Europa e incrementos más significativos en África y Asia/Oceania.

De hecho, todos los países con reglamentaciones para las micotoxinas tenían en el año 2003 al menos límites reglamentados para la aflatoxina B1 o para el total de las aflatoxinas B1, B2, G1 y G2 en los alimentos y/o las raciones, una situación similar a la de 1995. Para varias

2 La palabra “reglamentos” usada en el texto y en las tablas incluyen también otras disposiciones como “guías”
otras micotoxinas, también existen reglamentos específicos (por ej. la aflatoxina M1; los tricotecenos deoxinivalenol y diacetoxiscirpenol, las toxinas T-2 y HT-2; las fumonisinas B1, B2, y B3; el ácido agárico; los alcaloides del ergot; la ocratoxina A; la patulina; las fomopsinas; la esterigmatocistina y la zearalenona). Con los años el número de países que reglamentan las micotoxinas ha aumentado. Comparando la situación en 1995 con la del año 2003, resulta que en este último año hay más micotoxinas reglamentadas en más productos básicos y en otros productos en tanto que los límites tolerables permanecen generalmente en los mismos valores o tienden a disminuir. Los reglamentos son más variados y detallados, con nuevos requisitos relativos a los procedimientos oficiales de muestreo y a las metodologías analíticas. Al mismo tiempo, se han armonizado o se encuentran en alguna etapa de armonización (ver Sección 3.5) varios reglamentos entre países integrantes de comunidades económicas (Australia/Nueva Zelandia, UE, MERCOSUR).

Figura 1: Países con y sin reglamentos para las micotoxinas

3.3 Observaciones específicas por región

3.3.1 África

Las Figuras 3 y 4 ilustran los límites reglamentarios respectivos en alimentos y raciones para diversas micotoxinas en el África. Se sabe que quince países cuentan con reglamentos específicos para las micotoxinas. Estos países cubren aproximadamente el 59 por ciento de la población del continente. En la mayoría de los países africanos, probablemente no existen reglamentos específicos para las micotoxinas. El hecho de que los países carezcan de límites reglamentarios específicos para las micotoxinas no significa que se desconozca el problema. Según lo indicaron en sus respuestas a la encuesta, varios de estos países reconocen que tienen problemas debidos a las micotoxinas y que deben implementarse reglamentos.
El tema de las micotoxinas en el África debe verse, sin embargo, dentro del contexto general de la inocuidad de los alimentos, de la salud y de los temas agrícolas locales (Shephard, 2004). Fijar reglamentos para las micotoxinas tendrá efectos limitados en términos de protección de la salud en aquellos lugares en los que muchos productores cultivan productos agrícolas para su propio consumo (agricultura de subsistencia), como sucede en muchos países africanos. La mayor parte de los reglamentos en el África se ocupan de las aflatoxinas. Marruecos cuenta con los reglamentos más detallados para las micotoxinas.

Figura 2: Porcentaje de la población mundial con reglamentos para las micotoxinas

<table>
<thead>
<tr>
<th>Año 1995</th>
<th>Año 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa</td>
<td>Europa</td>
</tr>
<tr>
<td>10,5%</td>
<td>11,0%</td>
</tr>
<tr>
<td>América Latina</td>
<td>América Latina</td>
</tr>
<tr>
<td>7,8%</td>
<td>7,9%</td>
</tr>
<tr>
<td>África</td>
<td>África</td>
</tr>
<tr>
<td>5,3%</td>
<td>8,2%</td>
</tr>
<tr>
<td>América del Norte</td>
<td>América del Norte</td>
</tr>
<tr>
<td>5,1%</td>
<td>5,1%</td>
</tr>
<tr>
<td>Sin información disponible</td>
<td>Sin información disponible</td>
</tr>
<tr>
<td>23,1%</td>
<td>13,3%</td>
</tr>
<tr>
<td>Asia/Oceánia</td>
<td>Asia/Oceánia</td>
</tr>
<tr>
<td>48,2%</td>
<td>54,5%</td>
</tr>
</tbody>
</table>
Figura 3: Micotoxinas en los alimentos reglamentados en el África

Figura 4: Micotoxinas en las raciones reglamentadas en el África
3.3.2 Asia/Oceania

Asia y Oceanía cubren una importante parte del globo, con la mayoría de países en las regiones tropical o subtropical, por lo que es de esperar que una parte de los importantes problemas resultantes de las micotoxinas sean causados por hongos que crecen a temperaturas superiores (Pitt y Hocking, 2003). Una excepción es Nueva Zelanda, con un clima templado a fresco, que hace que sus problemas con las micotoxinas sean diferentes a los del Asia y el norte de Australia. Las Figuras 5 y 6 muestran los límites reglamentarios respectivamente en los alimentos y en las raciones en Asia/Oceania. Veintiséis países en Asia/Oceania cuentan con reglamentos específicos para las micotoxinas (88 por ciento de la población de la región). Los reglamentos para las aflatoxinas totales son los dominantes en los alimentos, en tanto que prevalecen en las raciones los reglamentos para la aflatoxina B1. Australia y Nueva Zelanda han armonizado sus reglamentos para las micotoxinas incluyendo límites para las micotoxinas “exóticas”, el ácido agárico y las fomopsinas (ver también la Sección 3.5.1.) De lejos, los reglamentos más extensos y detallados se encuentran en China y en la República Islámica del Irán.

Figura 5: Micotoxinas en los alimentos reglamentados en Asia/Oceania
3.3.3 Europa

En Europa, 39 países, representando aproximadamente el 99 por ciento de la población del continente, cantaban con reglamentos específicos para micotoxinas en el año 2003. Las Figuras 7 y 8 ilustran, respectivamente, la presencia de límites reglamentarios para diversas micotoxinas en Europa en los alimentos y en las raciones.

Figura 7: Micotoxinas en los alimentos reglamentados en Europa
Comparativamente con otras regiones, Europa cuenta con los reglamentos para las micotoxinas en los alimentos más extensos y detallados. En la UE, existen reglamentos armonizados para las aflatoxinas en diversos alimentos, para la aflatoxina M1 en la leche, para la ocratoxina A en los cereales y en los frutos secos de la vid, para la patulina en el jugo de manzana y en productos de la manzana y para la aflatoxina B1 en diversas raciones. Se han fijado límites guía para el deoxinivalenol en los cereales y en los productos de cereales. Interesa señalar que muchos de los miembros recientes de la UE cuentan, a menudo, con reglamentos para las micotoxinas más detallados que los vigentes actualmente en la UE.

3.3.4 América Latina

Los principales cultivos agrícolas de América Latina (maíz, trigo, cafetera, algodón, soja, cebada, girasol, maníes y nueces de árbol, cocoa y lácteos) son muy susceptibles a la contaminación con hongos y proclives a producir micotoxinas (Piñeiro, 2004). Las Figuras 9 y 10 muestran los límites reglamentarios respectivos para diversas micotoxinas en América Latina en los alimentos y en las raciones. Se sabe que 19 países, que representan el 91 por ciento de la población de la región, cuentan con reglamentaciones específicas sobre micotoxinas. En el MERCOSUR, un bloque comercial integrado por Argentina, Brasil, Paraguay y Uruguay existen reglamentos armonizados para las aflatoxinas (ver también la Sección 3.5.3). Otros países indican que siguen también los reglamentos del MERCOSUR. Los reglamentos para aflatoxinas en los alimentos son a menudo fijados para el total de las aflatoxinas B1, B2, G1 y G2. El Uruguay cuenta con las reglamentaciones más detalladas, incluyendo límites para los alcaloides del ergot en las raciones, algo muy raro en el mundo de los reglamentos para las micotoxinas.
3.3.5 América del Norte

En los Estados Unidos y el en Canadá desde hace muchos años están vigentes reglamentos para las micotoxinas y se implementan técnicas avanzadas de muestreo y análisis. En ambos países, los límites para las aflatoxinas se han fijado para la suma de las aflatoxinas B₁, B₂, G₁ y G₂. Las Figuras 11 y 12 muestran, para varias micotoxinas, los límites reglamentarios o los límites guía en América del Norte, respectivamente, en los alimentos y en las raciones.
Además de los límites para las toxinas del *Fusarium*, el Canadá ha fijado también tolerancias para los porcentajes de granos dañados por el *Fusarium* en el trigo (para trigos duros y blandos) y otros granos. La Comisión Canadiense de Granos ha publicado una Guía Oficial para la Clasificación de Granos con procedimientos normalizados para la inspección de granos. En Canadá, existen también límites para el porcentaje de ergot en diversas cosechas. En los Estados Unidos hay límites de tolerancia detallados para la suma de las fumonisinás B₁, B₂ y B₃ para una amplia variedad de productos del maíz. Este es el único país que se conoce que dispone de límites para la suma de estas tres fumonisinas.

3 Ver http://www.grainscanada.gc.ca/Pubs/fusarium/backgrounder/don-e.htm
3.4 Observaciones específicas para micotoxinas individuales o para grupos de micotoxinas

3.4.1 Límites a nivel mundial para las aflatoxinas

El número de países que han reglamentado las aflatoxinas ha aumentado con los años significativamente. Los reglamentos para las aflatoxinas son con frecuencia detallados y específicos para los alimentos, para los productos lácteos y para las raciones animales. El Cuadro 4 (del Anexo 2) intenta comparar medianas, rangos y número de países con los límites legalmente fijados para las aflatoxinas en los alimentos y las raciones para animales (para ganado lechero) en 1995 y en 2003 para de esta forma poder identificar tendencias. Una comparación de este tipo no resulta fácil y debe estar sujeta a ajustes futuros puesto que no todos los datos pueden ser completamente correctos. Otra limitación, es que algunos países cuentan con muchos reglamentos que especifican niveles de tolerancia diferentes para los alimentos y las raciones individuales, en tanto que otros han fijado un solo nivel tolerable; por ejemplo para “todos los alimentos” o para “todas las raciones”. En consecuencia debieron hacerse simplificaciones.

Para los alimentos, se seleccionaron respectivamente los límites fijados para la aflatoxina B₁ y para las aflatoxinas totales para la categoría “todos los alimentos” o, de no estar esta categoría mencionada en los reglamentos, para los alimentos considerados como más próximos a esta categoría. Análogamente, para la comparación de los límites para la aflatoxina M₁, se seleccionaron los niveles reglamentarios establecidos para la leche (muchos países también tienen límites específicos para productos lácteos como leche en polvo, queso y alimentos para niños pequeños y lactantes). Finalmente, de igual manera que para las aflatoxinas en las raciones animales, algunos países cuentan con muchos límites a menudo dictados por el destino de la ración. Para comparar respectivamente los límites entre países para la aflatoxina B₁ y las aflatoxinas totales en las raciones animales, se seleccionaron aquellas que se sabe o que se supone que son importantes como raciones para el ganado bovino. Estas a menudo son las más exigentes desde el punto de vista de la salud humana debido al traslado de la aflatoxina B₁ a la aflatoxina M₁ en la leche y a los productos lácteos.

Para las cinco categorías, algunas de cuyas características resume el Cuadro 4, se prepararon distribuciones de frecuencias reflejando la situación en el año 2003 como lo ilustran las Figuras 13, 14, 16, 17 y 18. Un análisis del Cuadro 4 y de estas figuras permite hacer los comentarios siguientes:

3.4.1.1 Aflatoxina B₁ en los alimentos

Comparativamente con la situación en 1995, los niveles máximo tolerados para la aflatoxina B₁ en los alimentos no han cambiado dramáticamente en el año 2003, aunque se ha reducido algo el rango de los límites (1-20 µg/kg), con 2 µg/kg como el límite vigente actualmente en por lo menos 29 países (ver Figura 13). La mayoría de estos países pertenecen a la UE, (donde desde 1998 están vigentes para diversos productos los límites armonizados para la aflatoxina B₁ y para la suma de las aflatoxinas B₁, B₂, G₁ y G₂), a la Asociación Europea de Libre Comercio y a los países candidatos a incorporarse a la UE. En 2003, muchos de los países candidatos a la UE ya habían armonizado sus reglamentaciones nacionales con las de la UE anticipando su acceso el 1 de mayo de 2004. Otro valor límite importante es el de 5 µg/kg, seguido por 21 países de África, de Asia/Oceania, de América Latina y de Europa. Los Estados Unidos y el Canadá no tienen un valor límite único para la aflatoxina B₁.
3.4.1.2 Aflatoxinas totales en los alimentos

Igual que en 1995, en el año 2003 muchos países reglamentaron las aflatoxinas con límites para la suma de las aflatoxinas B₁, B₂, G₁, y G₂, a veces de manera combinada con un límite específico para la aflatoxina B₁. El intervalo de los límites (0-35 µg/kg) se ha reducido ligeramente comparado con el del año 1995, en tanto que el límite mediano (10 µg/kg) es ligeramente superior. El límite que aparece con mayor frecuencia (ver Figura 14) es de 4 µg/kg (aplicado por 29 países), un límite encontrado nuevamente en los reglamentos armonizados en la UE, la AELC y en los países candidatos a incorporarse a la UE donde están vigentes límites dobles tanto para la aflatoxina B₁ como para las aflatoxinas totales. Otro pico importante aparece en los 20 µg/kg, aplicado por 17 países, la mitad de ellos en América Latina (donde existe también un límite armonizado en el MERCOSUR) y en varios países del África. También los Estados Unidos, uno de los primeros en fijar un límite de acción para las aflatoxinas, se rigen por el valor de 20 µg/kg. Durante los años ha persistido la “popularidad” del límite para las aflatoxinas totales en los alimentos, con el resultado de que 76 países en el año 2003 aplican este nivel (compañado con 61 países con un límite específico para la aflatoxina B₁).

Es discutible si un límite reglamentario para la suma de las aflatoxinas, que requiere mucho más trabajo analítico que sólo para la aflatoxina B₁, contribuye significativamente a una mejor protección de la salud pública. La aflatoxina B₁ es la aflatoxina más importante, tanto desde el punto de vista toxicológico como por su frecuencia. Es muy poco probable que los productos básicos contengan las aflatoxinas B₂, G₁ y G₂ y no la aflatoxina B₁ (Yabe y Nakajima, 2004), en tanto que la concentración de la suma de las aflatoxinas B₂, G₁ y G₂ es generalmente menor que la concentración de la aflatoxina B₁ sola.
Figura 14: Límites a nivel mundial para las aflatoxinas totales en los alimentos

Una relación típica de presencia para las aflatoxinas B₁ y B₂ (producidas principalmente por el *Aspergillus flavus*) promedia aproximadamente 4:1. Para la aflatoxina B₁ y la suma de las aflatoxinas B₂, G₁ y G₂ (las toxinas G son producidas principalmente por el *Aspergillus parasiticus*) la relación es de aproximadamente 1:0,8 aunque ambas relaciones tienen variaciones (Van Egmond *et al.*, 1978). Las autoridades reglamentadoras en los países que aplican límites para la suma de las aflatoxinas debieran revisar críticamente los datos analíticos de las agencias que se ocupan del monitoreo para determinar la frecuencia con que la disponibilidad de datos para la suma de las aflatoxinas (superiores al de la aflatoxina B₁) ha resultado indispensable para proteger al consumidor. El análisis de un blanco (la aflatoxina B₁) parece ser eficiente, suficiente y más práctico.

La Figura 15 muestra los rangos y medianas de los límites para las aflatoxinas totales para diversas zonas del mundo en los alimentos para los años 1995 y 2003. No parecen haberse registrado cambios observables en el África, América Latina y América del Norte; en cambio en Asia/Oceania y en Europa se aprecia una tendencia a valores más bajos para los límites de las aflatoxinas totales.
3.4.1.3 La aflatoxina M₁ en los productos lácteos

A fines del año 2003 existían reglamentaciones para la aflatoxina M₁ en 60 países, un incremento superior a las tres veces comparado con el año 1995. Nuevamente son la UE, la AELC y los países candidatos a incorporarse a la UE los que contribuyen mayoritariamente al pico más significativo indicado en la Figura 16 de 0,05 µg/kg, aunque otros países en el África, Asia y América Latina aplican también este límite. Otro límite significativo aparece con 0,5 µg/kg. Este límite superior se aplica en los Estados Unidos, varios países asiáticos y europeos, aunque con más frecuencia aparece en América Latina donde ha sido fijado también como un límite armonizado en el MERCOSUR.

La diferencia de diez veces entre los dos límites prevalentes para la aflatoxina M₁, en vigor desde hace muchos años, ha dado lugar a discusiones en el Codex Alimentarius que resultaron en una solicitud de reevaluación a JECFA de los riesgos para la salud de la aflatoxina M₁ (ver sección sobre evaluación de peligros). Además de estos límites reglamentarios inferiores a µg/kg unos pocos países indicaron en la encuesta 2002 a 2003 que reglamentaban la aflatoxina M₁ en la leche a niveles de 5 y 15 µg/kg. Estos niveles no parecen, sin embargo, realistas y resultó imposible determinar que errores tuvieron lugar al completarse los formularios de la encuesta.

3.4.1.4 La aflatoxina B₁ en las raciones

Existen muchos reglamentos para las aflatoxinas en las raciones. La Figura 17 resume los que se aplican a las raciones para ganado lechero. Aunque sean muchos más los países que reglamentan la aflatoxina B₁ en las raciones para ganado lechero en 2003 que en 1995 (39 en 2003 versus 25 en 1995), el aumento es detectable ligeramente sólo para los países que reglamentan la suma de las toxinas que aparecen naturalmente (21 en 2003 versus 17 en 1995). Esto resulta comprensible y lógico si se recuerda que es la aflatoxina M₁, el metabolito de la aflatoxina B₁, la que crea problemas a la salud. En consecuencia, limitar la aflatoxina B₁ en las raciones para animales es la manera más efectiva de controlar la aflatoxina M₁ en la leche. La Figura 17 ilustra que el límite de 5 µg/kg domina la manera como la aflatoxina B₁ se distribuye en los reglamentos. Este límite es aplicado por países en la UE y en la AELC y es también seguido por muchos países candidatos a incorporarse a la UE; fuera de Europa aparece esporádicamente. Una aplicación estricta será necesaria para que los niveles de aflatoxina M₁ en la leche permanezcan por debajo de 0,05 µg/kg para las raciones de ganado lechero (cuando estos países hayan fijado su límite correspondiente para la aflatoxina M₁ en la leche).
3.4.1.5 Aflatoxinas totales en las raciones

El número de reglamentos para la suma de las aflatoxinas en las raciones es considerablemente menor que el disponible sólo para la aflatoxina B₁. Estos límites pueden variar según el destino de la ración. La Figura 18 muestra la distribución de los límites para las aflatoxinas totales en las raciones para animales usadas también para el ganado lechero.

Resulta evidente una distribución relativamente plana con los límites más frecuentes fijados en 20 µg/kg. Un análisis posterior revela que hay límites reglamentarios para la suma de las
aflatoxinas B₁, B₂, G₁ y G₂ para las raciones en todo el mundo y particularmente en los países americanos.

3.4.2 **Límites a nivel mundial para otras micotoxinas**

Existen actualmente límites para otras micotoxinas, además de las aflatoxinas, principalmente en los alimentos e incidentalmente en las raciones animales. Es de esperar que se incremente significativamente el número de reglamentos para las otras micotoxinas además de las aflatoxinas en el futuro próximo, tanto para los alimentos como para las raciones. Los comentarios de las Secciones 3.4.2.1 a 3.4.2.5 se centran básicamente en los alimentos.

3.4.2.1 **Patulina**

Son muchos los países que desde 1995 han reglamentado la patulina principalmente en productos de frutas, como el jugo de manzana. La gran mayoría de los países con reglamentos o valores guía para la patulina en los alimentos han adoptado el mismo nivel de 50 µg/kg ilustrado en la Figura 19. Recientemente, en la UE, entraron en vigencia límites armonizados para la patulina en diferentes productos (Comisión Europea, 2003a), que la convierten en una de las micotoxinas más reglamentadas del mundo.

Para analizar la patulina en jugos de fruta al nivel de 50 µg/kg se dispone de metodologías analíticas validadas (AOAC, CEN). Sin embargo, el nuevo límite de la UE de 10 µg/kg en alimentos para bebés y para lactantes se fijó a proviso hasta tanto se cuente con un método analítico adecuado. El Centro de Investigaciones Conjuntas/Instituto para Materiales de Referencia y Medidas de Geel, Bélgica cuenta con programas de investigación para estos fines y ha completado recientemente con éxito un estudio colaborativo para demostrar que la nueva metodología desarrollada resulta adecuada.

Figura 19: Límites a nivel mundial para la patulina en las frutas y en los jugos de frutas

<table>
<thead>
<tr>
<th>Niveles de patulina (µg/kg)</th>
<th>Número de países</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

- Número de países
3.4.2.2 Ocratoxina A

A primera vista los desarrollos en el campo de los reglamentos para la ocratoxina A muestran fuertes semejanzas con los de la patulina. Se aprecia un incremento significativo en el número de países que imponen límites a los alimentos y un buen acuerdo en los límites para los cereales y los productos a base de cereales (ver la Figura 20). Los cereales son considerados como la fuente de exposición principal para los seres humanos a la ocratoxina A. Existen, sin embargo, restricciones a la información presentada. Muchos países han fijado límites para la ocratoxina A en los cereales, muchos otros para productos de los cereales en tanto que otros han establecido límites diferentes y separados para ambos. Esta última situación aparece en la UE, con el límite de 5 µg/kg (el pico dominante en la figura) vigente para los cereales sin procesar y el límite de 3 µg/kg (que no aparece en la Figura 20) para los cereales procesados. Resultó difícil presentar todo en una sola figura y se prefirió incluir preferentemente el límite de un país para los cereales crudos en la Figura 20 y, cuando este no existía, incluir el límite (de existir) para los productos a base de cereales. Es posible que, en el futuro próximo, resulte necesario revisar los límites actuales y los propuestos para la ocratoxina A según los resultados que alcance el proyecto en curso financiado por la CE sobre “Mecanismos de carcinogenicidad inducidos por la ocratoxina A como base para una evaluación de riesgos mejorada”⁴. Este proyecto apunta a establecer si debe considerarse bajo una aproximación de umbral o de no umbral la carcinogenicidad de la ocratoxina A.

Figura 20: Límites a nivel mundial para la ocratoxina A en los cereales y en productos a base de cereales

<table>
<thead>
<tr>
<th>Límite (µg/kg)</th>
<th>Número de países</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

3.4.2.3 Deoxinivalenol

Como para la patulina y la ocratoxina A unas pocas docenas de países han fijado límites reglamentarios o guía para el deoxinivalenol (DON) en los alimentos (ver Figura 21). Mientras que en 1995 este tricoteceno estaba sólo esporádicamente reglamentado en los

⁴ See http://www.uni-wuerzburg.de/toxikologie/EU-OTA/OchratoxinA.html
alimentos, se ha convertido ahora en una micotoxina de alta prioridad en los programas de monitoreo y desde fines de los años 1990, para las autoridades reglamentarias, cuando se informó de concentraciones con valores de mg/kg en los cereales y los productos a base de cereales particularmente en Europa. Análogamente al caso de la ochratoxina A, resultó difícil resumir los límites más frecuentes para el DON en el trigo y en otros cereales en un único número y los interesados en los detalles completos de los muchos reglamentos actualmente vigentes para el DON debieran consultar el Tabla 3. El pico de 750 µg/kg resulta de los países de la UE que emplean este valor límite desde hace varios años como guía (no oficial) para el DON en la harina usada como materia prima.

Figura 21: Límites a nivel mundial para el deoxinivalenol en el trigo (harina) y en otros cereales

Informaciones recientes sugieren que los hongos que producen el nivalenol, un tricoteceno relacionado con el DON, frecuentemente aparecen en algunos países asiáticos más a menudo que las especies productoras de DON, por ejemplo en el Japón (Tanaka et al., 2004) y Corea (Lee et al., 2004). Los hongos productores de nivalenol han sido recientemente identificados con frecuencia en el sur y en el oeste de Inglaterra (Jennings et al., 2004). No se han aún establecido reglamentos para el nivalenol pero considerando su mayor toxicidad comparada con la del DON (Comisión Europea, 2002c) puede ser que deba prestarsele regularmente más atención.

3.4.2.4 Zearalenona

La zearalenona, una micotoxina estrogénica, está actualmente reglamentada para los alimentos en 16 países (ver la Figura 22) frente a los seis países del año 1995. La zearalenona está relacionada estructuralmente con el α-zearalanol (zeranol), un promotor del crecimiento anabólico prohibido en la UE en 1988. El ganado metaboliza la zearalenona a varios compuestos, incluido el zeranol. Reglamentando el contenido de zearalenona en las raciones animales podría controlarse el problema resultante de la presencia de zeranol natural en los
tejidos comestibles. Los límites para la zearalenona en el maíz y en otros cereales varían actualmente entre 50 y 1000 µg/kg. La Figura 22 señala la tendencia a fijar los límites en valores superiores que en inferiores.

Figura 22: Límites a nivel mundial para la zearalenona en el maíz y en otros cereales

3.4.2.5 Fumonisinas

Las fumonisinas fueron descubiertas a fines de los años 1980. Mientras que en 1995 las fumonisinas estaban reglamentadas solo en un país, son actualmente seis los que reglamentan el maíz en un intervalo entre 1000 a 3000 µg/kg (ver Figura 23). Aunque como aumento sea muy importante, el número de países que reglamentan las fumonisinas es muy pequeño como para sacar conclusiones sobre los límites aceptados generalmente. Las autoridades reglamentadoras que estudian actualmente los límites legales a fijar para las fumonisinas debieran considerar cuidadosamente si desean limitarse a la fumonisina B1 o a la suma de las fumonisinas que aparecen naturalmente. Ocurre una situación similar a la de las aflatoxinas para las que existen también límites para la aflatoxina B1 y para las aflatoxinas totales (ver Sección 3.4.1).

Figura 23: Límites a nivel mundial para las fumonisinas en el maíz
Además de las micotoxinas mencionadas en las secciones anteriores existen otras micotoxinas reglamentadas: el diacetoxiscirpenol, las toxinas T-2 y HT-2, el ácido agárico, los alcaloides del ergot, las fomopsinas y la esterigmatocistina. Estas micotoxinas no se tratan con más detalle al ser pocos los países que las han reglamentado.

3.5 Reglamentos armonizados

3.5.1 Australia/Nueva Zelandia

Australia y Nueva Zelandia han armonizado recientemente sus reglamentos para las micotoxinas. Actualmente se aplican límites comunes para las aflatoxinas totales en los maníes y en las nueces de árbol y para el ergot (el escleroto del *Claviceps purpurea*, que no es en realidad una micotoxina sino una forma durmiente invernal del hongo que contiene las micotoxinas: los alcaloides del ergot). Los reglamentos armonizados incluyen, además, límites particulares para las fomopsinas en la semillas de lupin y en sus productos derivados y para el ácido agárico en los alimentos que contengan hongos y bebidas alcohólicas. Hasta el momento solo se conocen límites para estas toxinas en Australia y Nueva Zelandia.

3.5.2 Unión Europea

Como se mencionara, la UE ha armonizado los reglamentos, que incluyen los protocolos oficiales de muestreo y análisis, para la aflatoxina B1 en diferentes raciones desde 1976. En 1998, entró en vigencia el primer reglamento armonizado en la UE para las micotoxinas en los alimentos (incluyendo protocolos de muestreo y criterios para los métodos de análisis) los que se han extendido gradualmente a varias micotoxinas en diferentes alimentos.

Es de esperar para el año 2004 y en los años siguientes, una expansión significativa adicional de los reglamentos armonizados para las micotoxinas en la UE para los alimentos y las raciones. Para los alimentos están cubiertas la patulina, la aflatoxina B1, la aflatoxina M1, la ocratoxina A y el DON en formulaciones para niños de corta edad y en formulaciones de seguimiento; la ocratoxina A en el café, en el vino, en la cerveza, en las especias, en el jugo de uva, en la cocoa y en los productos de la cocoa; varias micotoxinas producidas por el *Fusarium*, i.e. los tricotecenos (toxinas T-2 y HT-2 además del DON), las fumonisinas y la zearalenona en los alimentos a base de cereales. Probablemente se fijarán, además, nuevos límites para varias micotoxinas en las raciones en próximos años, incluyendo los alcaloides del ergot, el DON, la zearalenona y la ocratoxina A (Comisión Europea, 2003b). En la AELC se estudian actualmente contaminantes en la cadena alimentaria lo que aportará importantes opiniones científicas.

3.5.3 MERCOSUR

El MERCOSUR está integrado por Argentina, Brasil, Paraguay y Uruguay. Estos países aplican límites comunes para las aflatoxinas totales en los maníes, el maíz y sus derivados y para la aflatoxina M1 en la leche fluida y en polvo. Los reglamentos MERCOSUR para las micotoxinas incluyen también métodos oficiales de muestreo y de análisis. Brasil y Uruguay aplican límites adicionales para algunas combinaciones de micotoxinas/tipo de alimento.
3.5.4 **ANSEA**

En la actualidad los integrantes de la Asociación de Naciones del Sudeste de Asia (ANSEA) son Brunei Darussalam, Cambodia, Indonesia, la República Popular Democrática de Laos, Malasia, Myanmar, las Filipinas, Singapur, Tailandia y Viet Nam. La mayor parte de estos países cuentan con reglamentos específicos para las micotoxinas (ver el Cuadro 3). Si bien aún no se han establecido en la ANSEA reglamentos armonizados, un Grupo de Trabajo de la ANSEA sobre el Codex Alimentarius ha adoptado una posición común en apoyo del nivel de 0,5 µg/kg para la aflatoxina M₁ en la leche.

3.5.5 **Codex Alimentarius**

La Comisión del Codex Alimentarius (CCA), apoyada por la FAO y la OMS, apunta a facilitar el comercio mundial y a proteger la salud de los consumidores mediante el desarrollo de normas internacionales para los alimentos y las raciones. En la actualidad los países miembros del Codex Alimentarius son 168. Dentro de la CCA, el Comité del Codex para Aditivos Alimentarios y Contaminantes de los Alimentos (CCFAC) establece límites máximos (normas) para los aditivos y los contaminantes en los alimentos los que resultan decisivos en caso de conflictos comerciales. El CCFAC desarrolla normas basadas en un procedimiento que sigue, en lo posible, los principios del análisis de riesgos según las reglas y los métodos establecidos en el Manual de Procedimientos del Codex y en la Norma General del Codex para Contaminantes y Toxinas en los Alimentos.

El procedimiento requiere, cuando haya motivos para esperar problemas sanitarios o comerciales, la presentación de documentos de discusión relacionados con todos los aspectos relevantes de un contaminante de los alimentos, seguido por propuestas de valores para los niveles máximos cuando se haya cumplido con todos los requisitos necesarios para fijar la norma. Estos requisitos son los de poder sustanciar los problemas de salud, de preferencia basados en una evaluación de la exposición y toxicológica por parte de JECFA (ver la Sección 2.1) y el disponer de suficientes datos confiables acerca de los niveles en los alimentos (preferentemente con su distribución mundial) para desarrollar un nivel máximo sobre la base del principio ALARA (Kloet, 2002).

En el área de las micotoxinas el CCFAC ha establecido en el año 2003 normas para las aflatoxinas totales en los maníes sin procesar, para la aflatoxina M₁ en la leche y para la patulina en el jugo de manzana. Se ha elaborado una propuesta de norma para la ocratoxina A en el trigo, en la cebada, en el arroz y en sus productos derivados y actualmente están en discusión las normas propuestas para el DON.

El CCFAC tiene, además de su objetivo de desarrollar normas (límites máximos) cuando resulte necesario, también decidido dedicar preferente atención al desarrollo de los Códigos de Práctica que recojan principios y consejos sobre medidas practicas para el control de las micotoxinas durante el cultivo, el almacenamiento y el procesamiento. Ejemplos son los códigos de practica desarrollados para: i) reducir la aflatoxina B₁ en materias primas y raciones suplementarias para ganado lechero (Codex Alimentarius, 1997); ii) la prevención y la reducción de la contaminación con patulina del jugo de manzana y de los ingredientes del jugo de manzana en otras bebidas (Codex Alimentarius, 2003a) y iii) la prevención y la reducción de la contaminación de los cereales con micotoxinas incluyendo anexos sobre la ocratoxina A, la zearalenona, las fumonisinas y los tricotecenos (Codex Alimentarius, 2003b).
4. Consideraciones finales

Comparando las situaciones en 1995 y en 2003, en este último año son más los países que cuentan con reglamentos para más micotoxinas en más productos básicos y en productos en general. Esta tendencia, en realidad, se evidenció durante un periodo mucho más largo. Fue posiblemente alrededor del año 1970 que se fijó el primer valor límite para las micotoxinas y ha ido creciendo progresivamente el número de países con límites para las micotoxinas de al menos 31 en 1981, 56 en 1987, 77 en 1995 a 99 en 2003. Si se extrapola esta tendencia, aparentemente lineal, sería de esperar que unos 120 países contasen con reglamentos para las micotoxinas en el año 2010 aunque probablemente luego se nivele.

En 2003 el número de países con reglamentos específicos para las micotoxinas en los alimentos era significativamente superior al de los países que cuentan con reglamentos específicos para las raciones. Sin embargo, se espera un crecimiento significativo en los años próximos del número de países que preparan reglamentos para las micotoxinas en las raciones, además de los aplicables a las aflatoxinas. Este hecho es de esperarlo particularmente en la UE que ha adoptado importantes iniciativas con este fin.

Los reglamentos se han hecho más diversificados y detallados con nuevos requisitos relativos a los procedimientos oficiales de muestreo y a la metodología analítica, surgiendo en las discusiones el tema de las incertidumbres en las medidas. Estos desarrollos reflejan las preocupaciones generales de los gobiernos relativas a los efectos potenciales de las micotoxinas sobre la salud humana y animal. Al mismo tiempo que se están armonizando las tolerancias de los niveles en algunas zonas de libre comercio (UE, AELC, MERCOSUR, Australia/Nueva Zelandia) se trabaja con los bienes que se comercializan internacionalmente (Codex Alimentarius). La armonización es un proceso lento en razón de los puntos de vista e intereses diferentes de las partes involucradas en el proceso.

Si bien los límites armonizados serían beneficiosos desde el punto de vista comercial, puede argumentarse que no resulta así necesariamente desde la óptica de la igualdad de la protección de la salud humana de manera homogénea alrededor del mundo. Los riesgos asociados con las micotoxinas dependen tanto del peligro como de la exposición. El peligro que entrañan las micotoxinas para los seres humanos es probablemente similar en todo el mundo (aunque otros factores como la infección con el virus de la hepatitis B jueguen a veces un papel en relación con el peligro de las aflatoxinas).

La exposición no es, sin embargo, la misma en razón de diferencias en los niveles de contaminación y hábitos de dieta en diferentes partes del mundo. Shephard (2004) ejemplificó esta situación con la ayuda de algunos cálculos para las fumonisinas. JECFA estableció una máxima ingesta provisional tolerable diaria para el grupo de fumonisinas B1, B2 y B3 de 2 µg/kg peso corporal por día. Esta máxima ingesta provisional tolerable diaria es fácilmente superada por las personas con dietas a base de maíz, cuando los consumos de este cereal son del orden de 400 g/persona/día. Shephard calculó que para un nivel de contaminación de las fumonisinas en el maíz de 2000 µg/kg (un nivel dentro de los intervalos corrientes, ver la Figura 9) la exposición para un adulto de 60 kg sería de 13 µg/kg peso corporal/día o un 650 por ciento de la Máxima ingesta provisional tolerable diaria (conocida también por la sigla PMTDI). Como en el mundo desarrollado, la ingestión de maíz es inferior a los 10 g/persona/día (Shephard et al., 2002) y pueden consumirse niveles de contaminación de hasta 12000 µg/kg antes que la exposición supere la Máxima ingesta provisional tolerable diaria fijada por JECFA.
Los gobiernos nacionales o las comunidades regionales debieran fomentar y financiar actividades que contribuyan a realizar evaluaciones de la exposición confiables para las micotoxinas en sus regiones. Ejemplo son las actividades SCOOP que la UE lleva a cabo en apoyo de las evaluaciones de la inocuidad de algunas micotoxinas (ver Sección 2.2: Evaluación de la exposición). La disponibilidad de metodologías analíticas económicas, validadas y fácilmente realizables junto con el aseguramiento analítico de la calidad son ingredientes básicos para obtener datos significativos de presencia por lo que su desarrollo debe ser consecuentemente estimulado.

Los esfuerzos futuros para mejorar la evaluación de peligros debieran ser de preferencia coordinados y financiados internacionalmente. Los estudios de toxicidad crónica realizados en laboratorios con condiciones de buenas prácticas llevan tiempo, son muy costosos y no resultan necesariamente adecuados para algunas regiones. Estos estudios debieran realizarse en centros de excelencia internacionales y reconocidos y sus resultados evaluados por grupos de especialistas internacionales como los de JECFA. Ejemplo de un esfuerzo concertado internacionalmente es el proyecto en curso sobre “Mecanismos de carcinogenicidad inducida por la ocratoxina A como base para una evaluación de riesgos mejorada” del programa de la Comisión Europea para la Calidad de la Vida y la Gestión de los Recursos Vivientes5.

Los reglamentos vigentes para las micotoxinas en los alimentos y las raciones, así como otros en desarrollo, debieran resultar de una intensa cooperación entre las partes interesadas basada en la ciencia, que congregue a los consumidores, a la industria y a los responsables de las políticas. Sólo de esta forma puede alcanzarse una protección realista.

5 See http://www.uni-wuerzburg.de/toxikologie/EU-OTA/OchratoxinA.html
Referencias

Informe EUR 17526 EN, Dirección-General Industria, Oficina de Publicaciones Oficiales de las Comunidades Europeas, Luxemburgo.

Comisión Europea. 2003a. Directiva 2003/78/EC de la Comisión del 11 de agosto de 2003, que establece los métodos de muestreo y los métodos de análisis para el control oficial de los niveles de patulina en los alimentos. Diario Oficial de las Comunidades Europeas L203: 40-44.

Anexos
Anexo 1: Contribuciones

Los autores agradecen a las muchas personas y autoridades que proporcionaron información detallada y actualizada sobre límites nacionales y regionales para las micotoxinas en los alimentos y en las raciones, que sirven de base para este Documento de Alimentación y Nutrición.

Se extienden agradecimientos especiales a:

- J. Nieuwenhuize, Ministerio de Agricultura, Naturaleza y Calidad de los Alimentos, Países Bajos) por su apoyo en la colaboración prestada por las oficinas agrícolas de las embajadas holandesas en el desarrollo de la encuesta internacional.
- Las oficinas agrícolas de las embajadas holandesas en diferentes lugares del mundo.
- M. Lauwaars (Centro de Investigación Conjunta de la UE, Instituto para Materiales de Referencia y Medidas, Geel, Bélgica), W.J. de Koe (Wageningen, Países Bajos), J.L. Jouve y M. Pineiro (ambos de la FAO, Roma, Italia) por su cooperación suministrando nombres de personas con quienes ponerse en contacto para la encuesta.
- D.G. Kloet (RIKILT-Instituto para la Inocuidad de los Alimentos, Wageningen, Países Bajos) por sus opiniones sobre el procedimiento del Codex Alimentarius para fijar límites máximos para las micotoxinas.
- I.L.M. Aitton y M.A. Kartasasmita (Laboratorio para los Alimentos y Análisis de Residuos, RIVM, Países Bajos) por su continuado apoyo de secretaría durante el período de la encuesta.

Además, a las siguientes personas e instituciones por la información proporcionada sobre límites y reglamentos para las micotoxinas en diversos países:

- K. Benchaalal, Embajada Real de los Países Bajos, Argelia
- J.F. Rummenie y P. Kalkman, Real Embajada de los Países Bajos, Argentina
- J. Harutyounian Laboratorio experimental licenciado de físico-química y micro investigación, Armenia
- Somsak, Secretariado para Agricultura, Alimentos, Forestación y Minerales de la ANSEA, Indonesia
- A. Prakash, Normas Alimentarias Australia-Nueva Zelanda, Australia
- F. Vojir, Bundesministerium für Soziale Sicherheit and Generationen, H. Lew, Bundesministerium für Land- und Forstwirtschaft, y R. Kriska, IFA-Tulln, Austria
- P.E. Bethel, Ministerio de Comercio, Agricultura e Industria – Departamento de Pesca, Bahamas
- V.I. Murokh, Centro Republicano para la Calidad de los Alimentos, Belarus
- P.M.B. de Vries ,Consulado General de los Países Bajos, Brasil
- M. Sabino, Instituto Adolfo Lutz, Brasil
- E. Tsankova, Inspección Sanitaria Municipal de Sofia, Bulgaria
- T. Kuiper y L. Underhill, Agencia Canadiense de Inspección de Alimentos, Canadá
- M. Vega y R. Saelzer, Departamento de Bromatología, Nutrición y Dietética, Chile
• X. Liu, Instituto de Nutrición e Higiene de los Alimentos, China
• G. J. Díaz, Laboratorio de Toxicología y N. S. Perilla, Micotox Ltda. (Asesores en micotoxinas) Colombia
• D. Budimir, Real Embajada de los Países Bajos, Croacia
• N. Milanovic, Instituto Nacional de Salud Pública de Croacia, Croacia
• M.V. Luna Martínez, Instituto de Nutrición e Higiene de los Alimentos, Cuba
• T. Antoniou, Departamento de Agricultura y E. Ioannou-Kakouri, Laboratorio General del Estado, Ministerio de Salud, Chipre
• D. Capounova, Inspección Checa de Agricultura y Sanidad, República Checa
• R. Nijland, Real Embajada de los Países Bajos, Dinamarca
• D. Licht, Administración Danesa Veterinaria y de los Alimentos, Dinamarca
• K. Naguib, Laboratorio Central de Micotoxinas, Egipto
• L. Dasko, Administración Estatal Veterinaria y de Alimentos, Laboratorio de Ensayos Priemyselna, Eslovaquia
• A. Vengust, Facultad de Veterinaria, Eslovenia
• Dunja Sever, Inspección Sanitaria de la República de Eslovenia, Eslovenia
• M. Toome Laboratorio para Residuos y Contaminantes, Taimse Materjali Kontrolli Keskus, Estonia
• A. Poirier y A. Kashay, Autoridad de Calidad y Normas de Etiopía, Etiopía
• F. Verstraete, Comisión Europea; Directorio General de Sanidad y Protección al Consumidor, Bruselas, Bélgica
• M. Aalto del Ministerio de Agricultura y Forestación, Finlandia
• K. Nuotio del Laboratorio Aduanero Finlandés, Finlandia
• M. Eskola del EELA Instituto Nacional Veterinario y de Investigación de Alimentos, Finlandia
• S. Marmo, KTTK (Centro de Inspección de Producción de Plantas), Departamento de Química, Finlandia
• L. Braakenburg y A. Feekes, Real Embajada de los Países Bajos, Francia
• N. Zylbermann, Ministerio de Economía, Finanzas e Industria, Francia
• J.J. Pape y H. Rosner, Bundesinstitut für gesundheitlichen Verbraucherschutz, Alemania
• W. Töpner y W. Quasigroch, Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft, Alemania
• R.T. Awuah, Universidad Kwame Nkruma de Ciencia y Tecnología, Ghana
• M. Plessas-Schallenberg, Real Embajada de los Países Bajos, Grecia
• I. Stafanaki, Laboratorio Químico General del Estado del Ministerio de Economía y Finanzas, Grecia
• E. Kamarinou, Ministerio de Agricultura, Dirección General de Producción Animal, Dirección de Insumos de Producción Animal, Sección de Raciones, Grecia
• B.M. Derks, Real Embajada de los Países Bajos, Guatemala
• O.R. Torres de Matute y H.L. Delgado, Instituto de Nutrición de Centro América y Panamá, Guatemala
• M. Ng Piu Chu, Consulado General de los Países Bajos, Departamento de Gestión Natural y de Pesca, Región Administrativa Especial de Hong Kong, China.
• Y.C. Fung, Unidad de Importación y Exportación, Región Administrativa Especial de Hong Kong, China,
• J.A. Smak, Oficina del Consejero Agrícola, Real Embajada de los Países Bajos, Hungría
• B. Sas, Instituto Nacional de Investigación de los Alimentos, Hungría
• A. Parzer, Real Embajada de los Países Bajos, India
• M.M. Chitale, Asociación para el Desarrollo de Alimentos Proteicos y Nutrición, India
• I. Gandjar, Universidad de Indonesia, Microbiología, Indonesia
• S. Subagyo, Agencia Nacional de Control de Drogas y Alimentos, Indonesia
• M.H.S.H. Hassanpour, Departamento de Alimentos y Agricultura del ISIRI, República Islámica del Irán
• H. Yazdanpanah, Departamento de Farmacología y Toxicología, Escuela de Farmacia, Universidad Shaheed Beheshti de Ciencias Médicas, República Islámica del Irán
• I. Pratt, Autoridad Sanitaria de Irlanda, Irlanda
• R. Varsano, Servicio de Control de Alimentos, Israel
• R. Ashkenazy, Servicios de Protección de las Plantas y de Inspección, Israel
• H. Beltman, Real Embajada de los Países Bajos, Italia
• M. Marseglia, Ministerio de la Salud, Dirección General para la Salud Pública Veterinaria, Alimentos y Nutrición, Italia
• Rieks Toxopeus S. Saito, Real Embajada de los Países Bajos, Japón
• T. Goto, Ministerio de Agricultura, Forestación y Pesca, Instituto Nacional de Investigación en Alimentos, Japón
• J. Yamano, División de Raciones del Departamento de Industria Ganadera, Ministerio de Agricultura, Forestación y Pesca, Japón
• E. Yokota, Ministerio de Salud, Trabajo y Bienestar, Japón
• W. Steemers y Mr Il-Yong Ha, Real Embajada de los Países Bajos, República de Corea
• V. Bartkevics, Centro de Diagnóstico Médico para los Alimentos y Servicio Veterinario del Estado, Ministerio de Agricultura, Letonia
• J. Petraitis, Centro Nacional de Nutrición, Laboratorio Centraol, Lituania
• D. van der Veer, Real Embajada de los Países Bajos, México
• Doralinda Guzmán de Pena, México
• N. Opopol, Centro Nacional para Medicina Preventiva Científica y Preventiva, República de Moldova
• M. Madji, Protección de los Vegetales, de los Controles Técnicos y de la Represión de los Fraudes), Ministerio de Agricultura, de Desarrollo y de las Aguas y Bosques, Marruecos
• M. Dos Anjos Hauengue, L. Da Silva Carrilho y Carlos D. Sono, Mozambique
• T. Aye, División de Protección de las Plantas, Ministerio de Agricultura e Irrigación, Myanmar
• T. Zhengping, Representación de la FAO en Myanmar, Myanmar
• R.M. Joshi, Laboratorio Central de Investigación Alimentaria, Nepal
• H.J. Jeuring, Autoridad para la Inocuidad de los Productos y de los Alimentos, Países Bajos
• A. Veldman, CLO-Instituto para la Nutrición Animal, Países Bajos
• Mr M.S. Momodu, Agencia Nacional para la Administración y el Control de los Alimentos y las Drogas, Nigeria
• A. Vidnes, Autoridad Noruega de Control de los Alimentos, Noruega
• M. Zargham Khan, Departamento de Patología Veterinaria, Universidad de Agricultura, Pakistán
• Ministerio de Salud, Directorio DISEGA y C.F. Pastor Talledo, Control de la Higiene de los Alimentos y de Zoonosis, Perú
• Pit Laquian, Real Embajada de los Países Bajos, las Filipinas
• E.T. Begino, Laboratorio de Micotoxinas y Toxicología, Oficina de Industria Animal, las Filipinas
• J. Zmudzki y H. Wisniewska-Dmytrow, Instituto nacional de Investigaciones Veterinarias, Ministerio de Agricultura y Economía de los Alimentos, Polonia
• L. Martins, Facultad de Medicina Veterinaria, Portugal
• C.R. Olteanu, Instituto de Higiene de Sanidad Veterinaria, Rumania
• A. Alexeeva, Oficina Agrícola de la Real Embajada de los Países Bajos, Federación Rusa
• S. Huay Leng, Administración de Alimentos y Veterinaria, Autoridad Agroalimentaria y Veterinaria, Singapur
• Servicio Agrícola de la Real Embajada de los Países Bajos Pretoria, Sud África
• G.S. Shephard, Unidad PROMEC, Consejo de Investigación Médica y M.E. Herbst
• C.W. Zwitser, Real Embajada de los Países Bajos, España
• J. Ignacio Arranz Recio, Dirección General de Salud Pública y Consumo, Ministerio de Sanidad y Consumo, España
• S. Nagiah, Unidad de Administración del Control de Alimentos, Ministerio de Salud, Sri Lanka
• H. Tjon Kon Fat, Laboratorio Central, Oficina de Salud Pública, Suriname
• M. Olsen, Administración Nacional de Salud, Suecia
• Bundesamt für Gesundheit, Suiza
• Muhamad Rateb Salam, Ministerio de Abastecimiento y Comercio Interior, República Arabe de Siria
• Fwu-Chyn Hsueh, Departamento de Salud, Taiwán Provincia de China, China
• Chuan-Cheng Lin y H.N. Chou, Universidad Nacional de Taiwán, Taiwán Provincia de China, China
• E. Urió, Centro de Alimentos y Nutrición, República Unida de Tanzania
• J. Bröker, Real Embajada de los Países Bajos Bangkok, Tailandia
• Pornpimol Kattinanon, Administración de Alimentos y Drogas, Ministerio de Salud Pública, Tailandia
• A. Chibani, Instituto Nacional de Normalización y de la Propiedad Industrial, Túnez
• G.J.M. Terberg, Real Embajada de los Países Bajos, Ankara, Turquía
• Sennur Ozkaya, Turquía
• A. Kaaya, Departamento de Ciencia y Tecnología de los Alimentos, Universidad Makerere, Uganda
• E. van de Vrugt, Real Embajada de los Países Bajos, Ucrania
• Real Embajada de los Países Bajos, Reino Unido de Gran Bretaña e Irlanda del Norte
• B.D. Jones, Agencia de Normas Alimentarias, Reino Unido de Gran Bretaña e Irlanda del Norte
• I. Hamid-Hardenberg, Real Embajada de los Países Bajos, Estados Unidos de América
• L. Posnick, Centro del FDA para Inocuidad de los Alimentos y Nutrición Aplicada, Estados Unidos de América
• Real Embajada de los Países Bajos, Uruguay
• J.M. Cea, Laboratorio Tecnológico del Uruguay, Uruguay
• Mr M. van Genne, Real Embajada de los Países Bajos, Venezuela
• B. Bastardo, Instituto Nacional de Higiene, Ciudad Universitaria, Venezuela
• Phan Thi Kim, Administración de Alimentos de Viet Nam, Viet Nam
• Sultanado de Omán, Ministerio de los Municipios Regionales, del Medio Ambiente y de los recursos Hídricos, Dirección General de Control de Salud, Yemen
• Mrs D. Sukovic, Centro de Investigación Ecotoxicológicas, Serbia y Montenegro
• Dr K. Choongo, Departamento de Ciencia Biomédica, Escuela Samora de Medicina Veterinaria, Zambia
Anexo 2: Cuadros
Cuadro 1: Listado de los materiales de referencia para las micotoxinas actualmente disponibles

<table>
<thead>
<tr>
<th>material de referencia</th>
<th>disponible</th>
<th>(re-)desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>aflatoxina M₁ en leche en polvo</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>aflatoxina M₁ para calibrar</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>aflatoxinas totales en manteca de maní</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>aflatoxina B₁ en harina de maní</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>aflatoxina B₁ en ración</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ocratoxina A en trigo</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DON en maíz y trigo</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zearalenona en maíz</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zearalenona para calibrar</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tricoteceno para calibrar</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Materiales elaborados por la Oficina Comunitaria de Referencia en diciembre de 2003