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The main objective of this manual is to present the basic and standard concepts of 
sampling methods applied to fisheries science. In order to ensure sound fisheries research, 
it is essential to have reliable data from landing ports, fishery stocks and research surveys. 

A rational management of fishing resources can then be established to ensure a 
sustainable exploitation rate and responsible fisheries management, providing long-term 

benefits for all. This document provides an introduction to sampling theory and introduces 
the theory of the three worlds (population, sample and sampling), as well as a short 
revision of probability concepts. It also provides an overview of the simple random, 

random stratified, cluster and two-stage sampling methods. The expressions for estimating 
the mean and total of the populations, their sampling distributions, the expected values, 

the sampling variances and their estimates are included and justified for each of the 
sampling designs. The document also contains a case study of biological sampling from 

landing ports and exercises that should be used to further understanding of the objectives 
of sampling and its advantages for fishery resource studies.
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Preparation of this document

This document is based on a series of lectures, seminars and working groups held at 
different venues, mainly in Europe, Latin America and Africa. The contents of these 
courses were gradually developed by Professor Emygdio Landerset Cadima and a 
number of academic contributors. 

The project “Advice, technical support and establishment of cooperation networks 
to facilitate coordination to support fisheries management in the Mediterranean” 
(COPEMED GCP/REM/057/SPA) promoted two courses on sampling methods 
applied to fisheries. The contents of this manual were successfully tested in these 
COPEMED courses held in Malta and Morocco.

This manual deals primarily with the theoretical aspects of the most-used models for 
collecting data for fish stock assessment. The practical application is considered to be a 
complementary part to aid understanding of the theory. 

The initial version of this document was reworked by Cristina Morgado IPIMAR 
researcher. Acknowledgements are due to Stephen Cofield and Marie Thérèse Magnan 
for their help editing this document in English. Merete Tandstad, Pedro Barros and Ana 
Maria Caramelo reviewed the final copy.
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Abstract

The main objective of this manual is to present the basic and standard concepts of 
sampling methods applied to fisheries science. In order to ensure sound fisheries 
research, it is essential to have reliable data from landing ports, fishery stocks and 
research surveys. A rational management of fishing resources can then be established to 
ensure a sustainable exploitation rate and responsible fisheries management, providing 
long term benefits for all.

This document is divided into nine chapters. Chapter 1 provides an introduction 
to sampling theory. Chapter 2 introduces the theory of the three worlds (population, 
sample and sampling) as well as a short revision of probability concepts. 

Chapters 3 to 6 provide an overview of the simple random, random stratified, cluster 
and two-stage sampling methods. The expressions for estimating the mean and total of 
the populations, their sampling distributions, the expected values, the sampling variances 
and their estimates are included and justified for each of the sampling designs. 

Chapter 7 presents a case study of biological sampling from landing ports. Chapter 8, 
an essential part of the manual, provides exercises that should be used to further 
understand the objectives of sampling and its advantages to fishery resource studies. 
Finally, Chapter 9 provides possible solutions to those exercises.

Cadima, E.L.; Caramelo, A.M.; Afonso-Dias, M.; Conte de Barros, P.;  
Tandstad, M.O.; de Leiva-Moreno, J.I.
Sampling methods applied to fisheries science: a manual.
FAO Fisheries Technical Paper. No. 434. Rome, FAO. 2005. 88p.
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1. Introduction 

To sample is to collect part of the elements of a set. The elements will be the sampling 
units, part of the elements will form the sample and the full set is the population. Why 
is sampling important? Sampling is important because most of the time it is 
impossible, difficult or expensive to observe all the elements of a population. If the 
samples are selected with an adequate criterion, it is possible to measure the precision 
of the conclusions or inferences about that population.  

In fisheries research, the objective of sampling the fisheries is to obtain data from 
the stocks and their exploitation, to analyse the characteristics of the resources, the 
effects of exploitation on the abundance of these resources and to determine 
appropriate fishing levels to obtain the best possible catches at present and during 
future years.  

In the sampling process it is convenient to distinguish between population, sample 
and sampling. Figure 1.1 illustrates the three different “worlds” of the whole sampling 
process and the relationships among them. 

The first “world” of the sampling process is the population. The population 
“world” is entirely or partly unknown. Its elements can be of various types but they 
should be well-defined (e.g. the boats of one fleet, sardines landed in a fishing harbour 
in one day, etc.).  

The second “world” of the sampling process is the sample. The sample “world” is 
completely known (in this aspect the sample is totally different from the population). 
It is from the sample data that the characteristics of the population will be estimated 
and, for this purpose, the selection of the sample has to be made with a well-defined 
criterion. 

The third “world” is the sampling “world”. The sampling “world” is the set of all 
samples with the same size that could be selected with the same criterion from the 
population. It is from the properties of the sampling “world”, and based on the values 
of the characteristic of interest in the sample selected, that statistical inference can be 
carried out with pre-defined precision. 

Population parameters summarize or characterize the distribution of the 
population values. The corresponding values in the sample are called statistics.  
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Statistical inference is based on the distribution of a given statistic in the sampling. 
Sampling distributions are also characterized by parameters. It should be noted that 
often parameters of the population, statistics of the sample and parameters of the 
sampling distribution share the same name, e.g. the population mean, the sample mean 
and the sampling mean. However, practitioners should be aware that each of these 
represents a different quantity with different properties, and the “world” they refer to 
should always be made explicit. 

The sampling “world” of a statistic is formed by calculating the values of this 
statistic in all possible samples that could be selected from that population, with the 
same pre-defined criterion. Sampling distributions are probability distributions. The 
actual sampling distribution of its values is unknown, but often the expected 
theoretical distribution, and its main properties, can be derived from the knowledge of 
the sampling process and of the statistic being considered. Sample statistics that are 
used in the process of estimation of population parameters are called estimators. The 
sampling distribution of an estimator is the basis for all statistical inference from the 
sample to the population regarding this estimator. Namely, it is based on these 
probability distributions of the estimators in the sampling that the precision of the 
estimation can be evaluated.  

There are several different methods for selecting a sample. The most usual are 
simple random sampling, stratified random sampling and cluster sampling. In fisheries 
research, multistage sampling, a combination of several of the basic methods, is also 
commonly used. 

In simple random sampling each possible sample has the same probability of being 
selected. There are two ways of selecting a simple random sample, with or without 
replacement of the sampling units selected. Simple random sampling is not frequently 
used in fisheries research, except as part of more complex methods. 

In stratified random sampling the whole population is divided into sub-
populations, called strata. A sample is selected using a random design within each 
stratum. Stratified sampling is usually applied to biological sampling of the landings 
and in scientific surveys. 

In cluster sampling the population is also partitioned into groups, which are 
designated clusters. Each cluster contains one or more elements, but it is the clusters 
and not the elements that are the sampling units. Cluster sampling has been used in 
fisheries to estimate landings per trip from data of artisanal fisheries with many 
landing sites (beaches) and a small number of vessels operating from each site (beach). 

Multistage sampling is a combination of the various methods previously 
mentioned. At each stage, there is a random selection of the sampling units, which can 
be elements or clusters. Two-stage sampling and a particular case of three-stage 
sampling are discussed in this manual. 

In systematic sampling all the elements of the population are grouped into classes 
of the same size. The first element to be sampled is chosen randomly from one class. 
The remaining sampling units occupy the same relative position in each class. For 
instance, if the third element of the first class were selected then all the third elements 
of the other classes would also be chosen. In this method, all classes have one element 
sampled, and therefore, the size of the sample is equal to the number of classes. This 
method is not discussed further in this manual.  

Fisheries research is most often concerned with the estimation of population mean 
and totals. The estimation of the proportion of the population that shares some 
characteristic of interest, e.g the proportion of vessels in a small-scale fishery that 
make more than two trips per day, is also a common task in fisheries research. The 
sampling distribution and properties of several estimators, mainly of the estimators of 
population means and totals, and sometimes of proportions, are discussed in the next 
chapters of this technical paper. 
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2. The three worlds of sampling 

2.1 THE POPULATION WORLD 
Let us consider a population of several elements, where iY  is the value in element i of 
a characteristic, represented by the variable Y. For example, if the total length of 
sardines is taken from a landing box, the characteristic, Y, can be the total length of a 
sardine, and the ith measure will have length Yi. In this case Y is a continuous variable. 
Another characteristic could be the age of the sardines, as it is measured in fisheries.  
In this case age is considered a discrete variable, Y, which can take the values 
0, 1, 2, ..., i,... 

The distribution of the values of a characteristic in the population can be 
represented in the form of a list, a table, a function, a graph, etc. The distribution may 
be characterized by parameters, for instance, the mean, the variance, the standard 
deviation, the quantiles, etc. The population is usually unknown and, therefore, these 
parameters cannot be calculated. 

Greek alphabet letters or Latin alphabet upper case letters will be used to denote 
the parameters of the population world. 

Total and mean values 
Populations can be finite or infinite. The total number of elements of a finite 
population is the size of the population and is denoted by N. When the number of 
elements of the population is very large, N can be considered as infinite. For example, 
the population of sardines landed in a country during one year is finite, but for some 
statistical purposes the population can be considered infinite. 

The population mean of a characteristic Y is represented by Y or μ. 
If the population is finite the total value of the characteristic Y will be: 

∑=
=

N

i
iYY

1
 

Then the mean will be: 

N

Y

N
Y

Y

N

i
i∑

== =1  

In this case the total value can be expressed as: 

YNY =  

Note that Y denotes not only the variable, but also the population total value. 

Dispersion measures 
Several measures of dispersion of the values of the characteristic in the population can 
be defined. The variance, the standard deviation, the coefficient of variation and the 
range are the most common ones. 

The population variance of the characteristic Y is represented by σ2. 
In order to define variance let us consider the deviation of a value Yi to the mean,  

that is: 

YYi −  
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For finite populations the sum of squares of the deviations is represented by: 

( )∑ −=
=

N

i
iYSS

1

2
Y  

The variance is then defined as: 

N
SS

=2σ  

A modified variance, S2, is introduced in some sampling manuals, with the purpose 
of simplifying formulas and keeping the parallelism between the formulas in the 
population and the corresponding formulas in the samples. 

S2 is defined as:  

1
2

−
=

N
SS

S  

Note that 22)1( σ=− NSN . The two variances are practically the same for large 
population sizes. 

The population standard deviation of the characteristic Y is represented by σ  (or 

S) and it is defined as 2σσ =  (or 2SS = ). The standard deviation is also a measure 
of dispersion. Compared with the variance, it has the advantage of being expressed in 
the same units as the variable, but the variance is preferred in most cases for 
theoretical reasons. 

The coefficient of variation is defined as CV = 
Y
S

 and it is a relative measure of 

dispersion, making it possible to compare the dispersions of two populations with 
very different absolute values. For example, the lengths of sardines and the lengths of 
some tuna species, have standard deviations with different absolute values, but in 
terms of CVs, that is values relative to the means, the dispersions can be comparable. 

The range, i.e., the difference between the larger and the smaller value of the 
population, is also a dispersion measure that can be useful in some cases. 

Proportions 
Some characteristics can be classified into two categories. For instance fish maturity 
can be classified into “adults” and “not adults”. In these cases the proportions of the 
total population elements that belong to one or the other category as well as the 
number of elements in each category are the parameters to be estimated. This type of 
characteristic is qualitative, that is, the characteristic of the elements is not measured 
but its quality (to belong or not to belong to a category) is observed. These 
characteristics are called attributes. 

An attribute can be represented by a variable Y, which takes the value 1 if the 
element belongs to a category and 0 otherwise. 

Let N be the number of elements in a finite population. The proportion of 
elements of the population that belongs to the category is represented by P and the 
proportion of the elements that does not belong to the category is Q=1-P. The 
product NP is the total number of elements belonging to the category and NQ is the 
total number of elements that do not belong to that category. Then the characteristic 
Y can be represented in the form: 

⎭
⎬
⎫

⎩
⎨
⎧

=
Q
P

Y
0
1

 with 1=+QP  
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The population total value of the attribute Y is: 

NPNQNPY =×+×= )0()1(  

The population mean of the characteristic Y is Y  and can be calculated by: 

P
N
Y

Y ==  

It is important to note that the proportion P of elements belonging to the category 
of interest is given by the mean of the characteristic Y. This result simplifies greatly 
the analysis of proportions, as most results can be obtained directly from those for 
mean values. 

The population variance is obtained from: 

N
NQPNPP

N

YY
N

i
i 22

1

2

2 )0()1()( −+−
=

∑ −
= =σ  

 
and hence PQ=2σ  

The modified population variance:  

22

1
σ

−
=

N
N

S  is PQ
N

N
S

1
2

−
=  therefore 

The population standard deviation will be: 2σσ =  or 2SS =  

Note that as previously mentioned the population is usually unknown and none of 
these parameters can be calculated. 

2.2 THE SAMPLE WORLD 
A sample of size n was drawn from a population with a variable Y. The observed 
value of the characteristic Y of the element i in the sample will be designated as yi. 
Therefore, a sample of size n will be formed by the values y1, y2,…, yn. The observed 
values can be sorted by sizes, such as )()((2))1( ...... ni yyyy ≤≤≤≤≤  where the sub-indices 
indicate the orders of magnitude. 

When the sample size is large, the values can be grouped into classes. The classes 
will be denoted by j=1, 2,…, k where k is the total number of classes. The class 
interval is the difference between the upper limit 1+jy  and the lower limit jy , that is 

jj yy −+1  for class j. 

In fisheries research, the classes should have constant intervals and the total 
number of classes should not be less than 12. The central value ycentral j of the jth class is: 

2
1

 

++
= jj

jcentral

yy
y  

The number of elements inside each class is the absolute frequency of the class. The 
quotient of the number of elements in each class by the total number of elements in 
the sample is the relative frequency, which is often expressed as a percentage (%) and 
sometimes as per thousand (‰). Frequencies can be accumulated and then they are 
called cumulative frequencies. For example, if we group the data into k classes (1, 2, 3, 
…, k), the cumulative frequency of the first class will be the frequency of class 1, the 
cumulative frequency of the second class will be the sum of the frequency of class 1 
plus the frequency of class 2, and so on, up to the frequency of the last class, k, which 
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will be the result of adding the frequencies of all classes 1, 2, …, k and should be equal 
to the size of the sample considering absolute frequencies or equal to 1 considering 
relative frequencies. The absolute, relative or cumulative frequencies can be 
graphically represented by histograms.  

Values calculated from the sample data are called statistics. Latin alphabet lower 
case letters will be used to denote the statistics of the sample world. 

The statistics of location describe the central position of the values of a 
characteristic, while the statistics of dispersion give an idea of the dispersion of the 
values in the sample. Examples of statistics of location are the arithmetic mean 
(commonly called mean or average), the median and the mode. The range, variance, 
standard deviation and coefficient of variation are examples of statistics of dispersion.  

The total of the observed values is designated by y and it is calculated as: 

∑=
=

n

i
iyy

1
 

Statistics of location 
The mean 
The arithmetic mean is the most common statistic of location. It is the quotient 
between the total value, y, and the sample size, n, that is: 

n
y

y =  

When the sample is organized in the form of a frequency table, the mean can be 
calculated as: 

∑

∑
=

=

=

k

j
j

k

j
centraljj

f

yf
y

1

1

where fj is the frequency of class j. 

Note that nf
k

j
j =∑

=1
 or 1

1
=∑

=

k

j
jf  depending on whether the fj represent absolute or 

relative frequencies. 

The median 

In an ordered array, the median is defined as the value that separates the set of 
observations into two parts of equal sizes. When the sample is composed of an odd 
number of observations the median is the central value, that is, the element of order 

2
1+n . When the sample has an even number of observations the median can be 

calculated as the midpoint between the 
2
n

 and the 1
2
+

n
 observations. 

Quantiles 
The median is just one of a family of statistics called quantiles that divide the 
frequency distribution into several equal parts. The quantiles are designated as 
quartiles when the number of parts is four. The first quartile cuts the frequency 
distribution at 25% of the total, the second quartile at 50%, this being the median, as 
seen before, and the third quartile at 75% of the total. 

Other quantiles are also used, for instance, deciles (division into 10 equal parts), 
percentiles (division into 100 equal parts) and per thousand parts (division into 1000 
equal parts). The percentile of order p would be the value of the percentile that 
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separates the smallest p% values of the total number of the frequency distribution. 
For example the first quartile will be the percentile of order 25%. 

The mode 
The mode refers to the most frequently observed value of the sample. When the 
observations are grouped into classes, the class with the highest frequency is called the 
modal class. In this case, the central value of this class can be taken as the mode. 

Some distributions present different local modes, as for instance most of the length 
compositions of fish landings. 

Statistics of dispersion 
The range 
The range is the difference between the largest and the smallest observed value in the 

sample, i.e. Range = smallestlargest y-y . 

The difference %25%75 yy −  is called the inter-quartile range, which is another useful 
statistic of dispersion. 

The variance 
The sample variance, s2, is the quotient between two quantities, the sum of squares (ss) 
of the deviations of each observation yi from the arithmetic mean y  and the size of 
the sample minus one: 

2

1
)( yyss

n

i
i −∑=

=
 and 

1
2

−
=

n
ss

s  

There are other expressions to calculate the sum of squares (ss): 

)(
1

yyyss i

n

i
i −∑=

=
 

∑
∑

−=
=

=
n

i

n

i
i

i n

y
yss

1

1

2

2
)(

 

2

1

2 ynyss
n

i
i −∑=

=
 

The standard deviation 
The standard deviation is the square root of the variance: 2ss =  

The coefficient of variation 
The coefficient of variation is the quotient between the standard deviation and the 
arithmetic mean:  

y
s

cv =  

The parallelism between the sample statistics and the finite population parameters 
should be noted.  

Proportions 
As in the population, the proportion of elements of the sample belonging to the category of 
interest can be calculated for a sample taken from that population. The characteristic of 
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interest, yi is then such that 1=iy  if element i belongs to the category or 0=iy  if it  
does not. 

Under these conditions, the proportion of the sample elements belonging to the 
category is defined by the sample mean of y,  

n

y
p

n

i
i∑

= =1  

The relation 1=+ qp  is always valid and can be used to calculate q, which is the 
proportion of the sample elements that do not belong to the category.  

The total value of the variable in the sample is np.  
The sample variance can be calculated as: 

11
)0()1(

1

)( 22
1

2

2

−
=

−
−+−

=
−

∑ −
= =

n
npq

n
nqpnpp

n

yy
s

n

i
i

 

and the sample standard deviation is: 

2ss =  

Sample statistics – example 
The original measurements of total lengths (expressed in cm) of a sample of 32 
sardines landed from a trip of a purse seiner are presented in the following list, 
arranged in increasing order: 

17.3, 17.7, 17.8, 18.1, 18.1, 18.3, 18.3, 18.7, 18.7, 19.1, 19.3, 19.3, 19.3, 19.4, 
19.6, 19.7, 19.7, 19.8, 19.8, 20.1, 20.1, 20.1, 20.1, 20.1, 20.2, 20.2, 20.3, 20.6, 
20.6, 20.6, 21.3, 21.7 

These measurements were grouped into classes of 0.5 cm interval. The results are 
shown in Table 2.1. 

TABLE 2.1 
Distribution of total length measurements (in cm) 

Class Interval 
(cm) 

Class Central Value 
(cm) 

Absolute 
Frequencies 

Relative 
Frequencies 

(%) 

Cumulative 
Absolute 

Frequencies 

17.0- 17.25 1 3 1 

17.5- 17.75 2 6 3 

18.0- 18.25 4 13 7 

18.5- 18.75 2 6 9 

19.0- 19.25 5 16 14 

19.5- 19.75 5 16 19 

20.0- 20.25 8 25 27 

20.5- 20.75 3 9 30 

21.0- 21.25 1 3 31 

21.5- 21.75 1 3 32 

    

Total 32 100 – 

 
The following figures represent the histograms of relative frequencies (%) 

(Figure 2.1) and of the cumulative absolute frequencies (Figure 2.2). 
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smallestlargest y-y

 

The most common statistics of location and dispersion were calculated from the 
original values: 

Total value: ∑=
=

n

i
iyy

1
 = 624.0 cm 

Arithmetic mean: 
n

y
y

n

i
i∑

= =1  = 
32

0.624
 = 19.5 cm 

Median: 19.7 cm 
 
Modal class: 20.0 cm 
 
Range: smallestlargest y-y   = 4.4 cm 
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Sum of squares: 2

1
)( yyss

n

i
i −∑=

=
 = 34.74 cm2 

 

Variance: 
1

2

−
=

n
ss

s   =  
31

74.34   = 1.12 cm2 

 

Standard deviation: 2ss =  = 1.05 cm 
 

Coefficient of variation: ==== 054.0
50.19
05.1

y
s

cv 5.4% 

 

Proportion of fish above 20 cm %6.15156.0
32
5

===p  

2.3 THE SAMPLING WORLD 
Revision of probabilities and some useful distributions 
Before starting the discussion of the world of sampling it would be advantageous to 
review some concepts of probabilities and some probability distributions, as the 
sampling world is mainly a world of probabilities. 

Even if not rigorous, the concept of probability will be presented in a simple and 
practical way. 

In a sample, the relative frequencies are calculated after taking the sample and 
observing or measuring the characteristics, i.e., the relative frequencies are calculated a 
posteriori. 
Before the extraction of the sample a priori, the concept of relative frequency should 
be replaced by a new concept, that of probability. For example, if one randomly 
selects a vessel of a fleet, there will be a certain probability that this vessel is a purse 
seiner. If we assume that 19% of the total vessels in a fishing harbour are purse 
seiners, the probability of randomly selecting a purse seiner will be 19% or 0.19. In 
that case, the properties of relative frequencies can be transformed into properties of 
probabilities. In summary: 

• the probabilities, P, are numbers between 0 and 1 ( 10 ≤≤ P ); 
• the probabilities can be added (under certain conditions, like percentages); 
• the probabilities can be multiplied (under certain conditions, like percentages). 
In the theory of probabilities it is convenient to define random variables, that is, 

variables that have probabilities associated with their values. Mathematically, discrete 
and continuous variables are studied differently. Thus, the probability that a variable 
X takes a particular value, x, can be defined when X is a discrete variable. When X is a 
continuous variable, however, this probability is always equal to 0. For continuous 
variables, what is defined is not the probability that X will take the value x, but rather 
the probability that X will take a value within an interval of two values x1 and x2. 

An example of a discrete variable is the age of the fishes in an age composition. The 
values of this variable (age) are 0, 1, 2, 3, etc. years, and are attributed to each fish 
otolith observed.  

The probability of selecting a fish of a certain age from a box is associated with the 
number of fishes of that age in the box. However, age can also be an example of a 
continuous variable when it is taken as the time elapsed since birth up to the moment 
of capture. In this case, only the probability of a fish having an age within an interval 
of time is considered. 
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Probability and distribution functions of discrete variables 
The probability function, also called probability mass function, P(x), defines the 
probability that a discrete variable, X, takes a value x: 

{ }xXxP == Pr)(  
 
The distribution function, also called probability distribution function, F(x), gives 

the probability that the variable X will take a value less than or equal to a certain 
value, x: 

 
{ }xXxF ≤= Pr)(  

 
i.e. ( ) ( )∑= ixPxF , where the summation extends to all values less than or equal  

to x.  
Two important parameters of the probability distribution are the mean, E, and the 

variance, V. The mean, which in probability theory is also called the expected value of 
X, is the sum of the products of the values, xi, times their probability, P(xi): 

 
[ ] ( )[ ]∑= ii xPxXE  

 
The variance is defined as the expected value of the square of the deviations of the 

values of variable X relative to its mean, that is: 
 
[ ] [ ][ ] [ ]( ) ( )[ ]∑ −=−= ii xPXExXEXEXV 22  

 
Another expression of the variance is: 
 
[ ] [ ] [ ]XEXEXV 22 −=  

 
The standard deviation is the square root of the variance. 
If the variable X is continuous, the definition of the parameters E and V needs 

differential and integral calculus, as is shown below. 

Density and distribution functions of continuous variables 
In the case of a continuous variable X, a function, f(x), called a density function, or 
probability density function, is defined to obtain the probabilities and the distribution 
function. Among the properties of this function it is useful to mention: 

 

∫ =∞+
∞− 1)( dxxf  

 
The distribution function, F(x), i.e. the probability that the variable X takes a value 

smaller than x is therefore defined by: 
 

{ } ∫=≤= ∞−
x dxxfxXxF )(Pr)(  

 
Note that x is used as the reference value and also as the generic value. 
The probability that X takes a value within the interval limited by the extremes 

x=x1 and x=x2 is given by: 
 

{ } ( ) ( )1221Pr xFxFxXx −=≤≤  
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The expected value (or mean) of X is defined as:  

[ ] ∫=
∞+
∞− dxxxfXE )(  

The variance is defined as: 

[ ] [ ][ ] [ ]( ) dxxfXExXV )( XE-XE 
22

∫ −== ∞+
∞−  

As for discrete variables, another expression of the variance is: 

[ ] [ ] [ ]XE-XE 22=XV  

The standard deviation is the square root of the variance.  

Some probability distributions useful for sampling theory 
The normal distribution 
One of the most important distributions of the theory of probabilities is the normal 
distribution, also designated as De Moivre distribution (1733), Gauss distribution 
(1809) or Laplace distribution (1813). 

It is a distribution of a continuous variable, X, characterized by the following 
density function: 

 
( )

2

2

2
1

22

1
)( σ

μ

πσ

−
−

=
x

exf  

 
Where -∞<x<+∞ and the parameters  μ and σ2 are the mean and the variance. 
The density function is symmetrical relative to the vertical ordinate passing 

through the mean μ. 
The distribution function, F(x), the expected value, E[X], and the variance, V[X] 

could be calculated (by numerical methods) from the integral of the expression 
indicated above, but there is no need to present those methods in this manual. 

The following notation is usually used to indicate that X follows a normal 
distribution: 

 
X∩ N(μ,σ2) 
 
The median and the mode of this distribution are equal to the mean, μ. 
A useful theorem for sampling theory is: 
 
If  A and B are constants and X∩ N(μ , σ 2)  
 
Then (BX+A) ∩ N(Bμ+A , B2σ 2) 

The standard normal distribution 

Applying the previous theorem with  
σ
1

=B   and  
σ
μ

−=A  gives: 

(X-μ)/σ ∩ N(0,1) 
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The new variable (X-μ)/σ is said to be a variable in standard measures and is, in this 
case, called the standard normal variable Z. Any normal distribution can be reduced to 
its standard form using the relation: 

 

σ
μ−

=
x

z    

 
Note that this expression is equivalent to: x= μ + zσ  
 
Some particular probability values of the normal distribution should be mentioned: 
 
In terms of Z: In terms of X: 
Pr{-1 < Z <+1} = 0.68 Pr{ μ - 1σ < X < μ + 1σ} = 0.68 
Pr{-1.96 < Z <+1.96} = 0.95 Pr{ μ - 1.96σ < X < μ + 1.96σ} = 0.95 
Pr{-2.58 < Z <+2.58} = 0.99 Pr{ μ - 2.58σ < X < μ + 2.58σ} = 0.99 
  

Note that if one is using a normal variable X then the probability that X takes 
values between x1 and x2 is equal to the probability that the standard normal variable 
Z takes values between the corresponding z1 = ( x 1 -μ ) /σ  and z 2  = ( x 2 -μ ) /σ .  

Figure 2.3 represents the density function of the standard normal distribution 
between Z=-3 and Z=+3. 

In this graphical form, areas represent the probabilities. For instance, the 
probability that the standard normal variable Z takes values between z1 and z2 is the 
area limited by the curve, by the horizontal axis and by the two vertical ordinates 
passing through the values z=z1 and z=z2.  

Remember that the total area under the density curve is equal to 1.  
Figure 2.4 represents the distribution function of the standard normal variable Z. 
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In this graphical form the probability that the variable Z is smaller than a value z is the 
ordinate passing through this z point. 

Note that the probabilities are given by areas when using the density function and 
by ordinates when using the distribution function. 

The t-student distribution 
The t-student distribution was introduced by Gosset in 1908. 

It is a distribution of a continuous variable with one parameter denoted by ν  
(degrees of freedom) and it is generally designated by t(ν ) or νt . 

The mathematical expressions of the density and distribution functions of the t-
student variable are not discussed in this manual.  

The graphical representation of the probability density function is similar to that of 
the standard normal variable, but more dispersed, with heavier tails. The dispersion 
depends on the number of degrees of freedom – the fewer degrees, the larger the 
dispersion. The mean, the median and the mode of this distribution are all equal to 
zero. 

The t-student distribution is important in statistical methods and in particular for 
calculating confidence intervals for parameters of the population. 

Associated with the normal and t-student distributions are the chi-square (χ2) 
distribution and the F-distribution, which are useful in many statistical methods, but 
are not dealt with in this manual. 

Bernoulli distribution 
This distribution is attributed to Bernoulli (1713). 

Consider a discrete variable X which takes the value 1 with probability P and the 
value 0 with probability Q=1-P.  In symbolic terms this is: 

⎩
⎨
⎧

=
Q
P

X
0
1

 P+Q =1  

 
The most important parameters of this distribution are: 

Expected value E[X] = Mean  μ = P  

Variance  V[X] =  σ2 = PQ  
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Standard deviation  σ = PQ  

The binomial distribution, the multinomial distribution, and other probability 
distributions are associated with the Bernoulli distribution. They are, in certain cases, 
important to the sampling world. They are combinations of Bernoulli distributions, 
with the same parameter P in the case of the binomial distribution and with different 
parameters P in the case of the multinomial distribution. 

Introduction to the world of sampling 
As previously mentioned an estimator is a statistic used to estimate a parameter. 

Let us consider an estimator θ̂  of the population parameterθ . From a sample of 
size n, taken with a certain criterion, one can calculate a value for this estimator, that is 
called an estimate of θ . 

Sampling distribution of an estimator 
The set of estimates that could be calculated from all possible samples (selected with 
the same criteria) is, by definition, the sampling distribution of the estimator. 

This sampling distribution is the basis for measuring the precision and the error of 
the estimation of the population parameter of interest. 

The sampling distribution of an estimator (or in the general case of a statistic) is a 
probability distribution, because it is the expected distribution of all the possible 
samples, which could have been selected under the same conditions. Therefore, 
probability theory can be applied to obtain the properties of the sampling 
distributions. 

The sampling distribution of an estimator is denoted as:  

),(ˆ VEF∩θ  

where ( )VEF ,  indicates a probability or density distribution with expected mean, 
E, and expected variance, V. 

In the case of an approximate distribution, the symbol 
•

∩  will be used, as for 
instance: 

),(ˆ VEF
•

∩θ  

Expected value of the estimator 

Let us consider an estimator θ̂ . The expected value or sampling mean of this 

estimator will be denoted by E[θ̂ ]. This expected value does not always coincide with 

the population parameter θ . The difference θθ −]ˆ[E  is called bias. When θθ =]ˆ[E  the 

estimator, θ̂ , is an unbiased estimator of the population parameter,θ . 

Sampling variance and error of the estimator 
The sampling variance, ]ˆ[θV  or 2

θ̂
σ , of the estimator θ̂  is the expected value 

( )[ ]2ˆˆ θθ EE − . This means that the sampling variance measures the spread of the 
estimator around its expected value. 

Another measure of dispersion is the mean square error, defined as 

[ ] [ ]2ˆˆ θθθ −= EMSE . The MSE is a measure of the dispersion of the sampling 

distribution of the estimator θ̂  around the population parameter θ , while ]ˆ[θV is a 
measure of dispersion around the expected value of the estimator. 

It can be proven that [ ] [ ] 2ˆˆ biasVMSE += θθ . 
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For an unbiased estimator the sampling variance is equal to the MSE. 
The accuracy of an estimator refers to the difference between the estimator and the 

parameter θ , while the precision refers to the difference from the expected value. 
The sampling standard deviation is called the error of the estimator, which is 

denoted by 
θ

σ ˆ . Estimates of the sampling variance and of the error, denoted by 2

θ̂
s  

and 
θ̂

s  respectively, can be obtained from the size and the variance of the sample.  

Confidence intervals 
The sampling distribution of an unbiased estimator gives the opportunity to establish 
the probability that an interval, (l1, l2) calculated from the sample values, will contain 
the population parameter,θ . 

The relation Cll =≤≤ }{Prob 21 θ  allows one to calculate the confidence interval  
(l1, l2 ) but the solution of this equation is not unique. One should take the smallest of 
all intervals to which the probability adopted corresponds. This probability is the 
confidence level, C. The interval is the confidence interval, CI, and its extremes are 
the confidence limits. 

In some cases, it is preferable to take an interval (not necessarily the smallest) 
corresponding to the probability C but with equal probabilities in both tails of the 
sampling distribution, which implies: 

 

2
1

}{Prob 1

C
l

−
=≤θ  and 

 

2
1

}{Prob 2

C
l

−
=≥θ  or, alternatively, in the equivalent form 

2
1

}{Prob 2

C
l

+
=≤θ  

In practical terms, to calculate the limits l1 and l2 of a confidence interval one 
should adopt the desired level of confidence, C and a sample size, n. Then, based on 
the sampling distribution of the estimator, the expressions of l1 and l2, can be derived. 
Finally, one selects a sample and estimates l1 and l2. 

Let us consider the particular case that θ̂  has a normal sampling distribution, that 

is, [ ]VEN ,ˆ ∩θ , the population variance, 2σ , is known and the sampling fraction is 
negligible. Then, according to sampling theory, the confidence limits are:  

⎪⎩

⎪
⎨
⎧

+=

−=

θ

θ

σθ
σθ

ˆ2

ˆ1

ˆ

ˆ

zl

zl
 

where z is the value of the standard normal distribution corresponding to the 

confidence level C and 
θ

σ ˆ  is the square root of 
n

2σ  . 

The range of the confidence interval, l 2 - l 1   is in this case equal to 2 z
θ

σ ˆ . 

If the population variance, 2σ , is unknown, the expression above will be: 

⎪⎩

⎪
⎨
⎧

+=

−=

−

−

θ

θ

θ
θ

ˆ12

ˆ11

ˆ

ˆ

stl

stl

n

n  

where 1−nt  is the value of t corresponding to the confidence C, of the t-student 

distribution, with n-1 degrees of freedom and 
θ

σ ˆ  is the square root of 
n
s 2

 designated 

by 
θ̂

s  and calculated from the sample. 

The confidence interval range, l 2 - l 1 , is equal to 2 t ( n - 1 ) θ̂
s . 



The three worlds of sampling 
 

 
17

Note that for a large sample size, let us say n larger than 100, there is practically no 
difference between the t-distribution and the Z-distribution. 

Let us take an example in which the estimator θ̂  follows a normal sampling 

distribution. A sample of 100 elements gave an estimate of θ̂  equal to 13.40 and a 

variance s2 = 30.25. The error is the square root of, 
n
s2

 i.e., 0.55. 

A 95% confidence interval (symmetrical) for the parameter θ  can be expressed as: 

⎩
⎨
⎧

×+=
×−=

55.096.140.13
55.096.140.13

2

1

l
l

 or 13.40 ± 1.96 × error 

The factor 1.96 corresponds to the 95% confidence level and is obtained from the 
normal distribution. 

The confidence limits can be presented in different ways. Some authors present the 
limits in absolute values; others prefer to give the limits in relative terms. In the above 
example the 95% confidence limits in absolute terms would be: 

⎩
⎨
⎧

=
=

50.14
30.12

2

1

l
l

  or  
⎩
⎨
⎧

+=
−=

08.140.13
08.140.13

2

1

l
l

 

Note that the interval should never be presented as the mean plus or minus the 
error, i.e. 13.40 ± 0.55 because, according to the sampling distribution of the 
estimator, the confidence limits are defined as the mean plus or minus (approximately) 
twice the error. 

The limits in relative terms would be: 

⎩
⎨
⎧

+=
−=

%06.840.13
%06.840.13

2

1

l
l

  where  
40.13
08.1

%06.8 =  

or 13.40 ± 8.06% 

or only ± 8.06% of the estimated mean. 

Sample size 
As mentioned above, to calculate the confidence interval, one needs to establish the 
confidence level, C, and the sample size, n. Based on these assumptions one calculates 
the error and the confidence limits. 

The same expressions can be used to estimate the sample size, but in this case it is 
necessary to start by adopting a confidence interval, CI, and the error. From the 
sampling distribution of the estimator one can then derive the expression that gives 
the sample size. 

In the above example it is easy to see that:  

errorzllCI ××=−= 212   

Then considering that the error is 
n
s , it will be: 

z
CI

n

s
2

=   

and the sample size is:  
2

2
⎟
⎠
⎞

⎜
⎝
⎛=

CI
zs

n  

If the confidence interval were calculated with the t-student distribution, the 
calculation would be more tedious as the sample size n appears also in the degrees of 
freedom of t. 
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An iterative method can be used to solve the equation, which in this case is:  
 

2

12
⎟
⎠
⎞

⎜
⎝
⎛= −

CI
st

n n  

The first trial can be done with the Z distribution instead of the t-student 
distribution. The value of n obtained will then be the next value to use to obtain the  
tn-1 value corresponding to the confidence level C. The process is repeated until 
arriving at a convergence of the n values, with a given approximation. 

The following expressions summarize the links between the confidence level, 
precision, error and confidence limits: 

“The greater the error, the larger will be the confidence interval and the smaller 
the precision. The smaller the error, the shorter will be the confidence interval 
and the greater the precision”. 
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3. Simple random sampling 

3.1 INTRODUCTION 
Simple random sampling is the simplest way to sample a population. Its simplicity 
arises from the way that the sample is selected. In this design, all possible samples have 
the same probability to be chosen. 

Other sampling methods have procedures that include this method for selection of 
parts of a total sample. For this reason, when describing sampling methods it is 
convenient to start with the simple random sampling. 

3.2 THE POPULATION WORLD 
In simple random sampling, the population to be sampled is considered as a simple 
collection of elements, where no subgroups are considered.  

Let Y denote a characteristic of a population. Then Yi  will be the value of the 
characteristic of the ith element. The main parameters of the population that are more 
relevant to fisheries research are discussed in Chapter 2. A short summary is presented 
in Table 3.1. 

TABLE 3.1 
Main population parameters of interest to fisheries research 

N Population size 

Yi Value of the characteristic of the i th element (i =1, 2, ..., N) 

∑=
=

N

i
iYY

1
 Total value 

N

Y

N
Y

Y

N

i
i∑

== =1  
Mean value Y or μ (The relation YNY =  is valid) 

N
SS

=2σ   and
1

2

−
=

N
SS

S  Variance, 
2σ  and modified variance, 

2S  

2σσ =  and 
2SS =  Standard deviation σ, and modified standard deviation S 

Y
CV

σ
=  and 

Y
S

CV =  Coefficient of variation, CV 

3.3 THE SAMPLE WORLD 
The main statistics of the sample that are more relevant to fisheries research are 
discussed in Chapter 2. A short summary of the more common ones is presented in 
Table 3.2. 
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TABLE 3.2 
Some sample statistics more frequently used in fisheries research 

n Sample size 

yi Value of the characteristic of the ith element (i =1, 2, ..., n) 

∑=
=

n

i
iyy

1
 Total value of the characteristic in the sample 

n
y

y =  Sample mean 

2

1
)( yyss

n

i
i −∑=

=
 Sum of squares of the deviations from the sample mean 

1
2

−
=

n
ss

s  Sample variance 

2ss =  Sample standard deviation 

y
s

cv =  Sample coefficient of variation 

3.4 THE SAMPLING WORLD  
3.4.1 Selection of the sample 
Simple random sampling is defined as any sampling system that ensures that all 
possible samples with a given sample size have the same probability of being selected. 
Alternatively one could say that every element of the population has the same 
probability of being selected for inclusion in the sample, in one extraction. 

In this sampling method, the probability, Pi, of selecting an element, i, from a finite 
population of size N, is:  

N
Pi

1
=  

There are two ways to take a simple random sample: either the elements are 
selected with replacement of the element into the population after each extraction, or 
without replacement. 

When using sampling without replacement from a finite population, it is usual to 

define the sampling fraction, f, as 
N
n

f = . In that case, ( 1 - f )  is called the finite 

correction factor. When the number of elements of the population is infinite or 
sampling is with replacement, the sampling fraction is zero, the correction factor is 
equal to 1 and, therefore, it is not considered. 
 
3.4.2 Estimator of the population mean y  
Several statistics (e.g. the median) can be used to estimate the mean of the population. 
However, the most frequently used estimator of the population mean is the sample 
mean: 

n
y

y =  

 
In simple random sampling, the sampling distribution of the sample mean has some 

important properties: 
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1. The expected value of the sampling distribution is equal to the population mean: 

 [ ] μ=yE  

 Note: the sample mean is an unbiased estimator of the population mean. 
 
2. When the sample size n is large (for example, n>100), the sampling distribution 

of the sample mean tends to be a normal distribution. Using the notation 
presented in chapter 2, we may write: 

 ),( VENy
•

∩  

 where 

 [ ] μ=== YyEE  

 [ ]
n
S

fyVV y

2
2 )1( −=== σ  

 When n is very small compared to N the correction factor, ( 1 - f ) , can be ignored 
and, in this case: 

 [ ]
n
S

yVV y

2
2 === σ   

An estimate of the sampling variance of the estimator can be calculated by 
replacing the population parameter S, in the variance expressions, with the sample 
statistic s, that is: 

n
s

fsyv y

2
2 )1()( −==   

or 

[ ]
n
s

yv
2

=  when N is large or sampling is with replacement. 

The error is given by: ][yVy =σ  

and the estimate of the error is: ][yvsy =  

The C confidence interval (l1, l2)for the estimator of the population mean, can be  
with: 

⎩
⎨
⎧

+=
−=

y

y

zyl
zyl
σ
σ

2

1  

if 2σ  is known (or n is large), z can be calculated from the probability relation: 

{ }
2

1
Prob

C
zZ

+
=≤  

When 2σ  is unknown, but n is large, the standard error of the mean, yσ , can be 

replaced with the estimated standard error of the mean, ys . 

If 2σ  is unknown, and n is small, the standard error of the mean, yσ , can still be 

replaced with the estimated standard error of the mean, ys . In these situations,  
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⎪⎩

⎪
⎨
⎧
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−=

−

−

yn

yn

styl

styl

12

11

however, the Z-distribution should be replaced with the t-student distribution. The 
confidence interval will then be: 

 

 

where tn-1 follows the t- distribution with n-1 degrees of freedom. 
The value of tn-1 is given by the probability relation: 
 
Prob {t outside the interval (-tn-1, tn-1)} = (1- C), where C is the desired confidence 

level. 
This value tn-1 can be obtained from t-student tables. 
Note that the limits (l1, l2) of the confidence interval are derived from the following 

relation: 
 

y

y
z

σ
μ−

=   with  )1,0(NZ
•

∩  

 
or, when the population variance is unknown and the sample size is small, are 

derived using the t-student distribution as follows:  
 

ys
y

t
μ−

=   with  )1( −∩
•

ntt  

3.4.3 Estimator of the total value of the population 
An unbiased estimator of the total value of the population is: 
 

yNY =ˆ  
 
The sampling distribution of this estimator is approximately normal: 
 

),(ˆ VENY
•

∩  
 
where 
 

[ ] YYEE == ˆ  and  [ ]
n
SN

fYVV
Y

22
2
ˆ )1(ˆ −=== σ  

 
The error of the estimator is the square root of the sampling variance: 
 

]ˆ[YVy =σ  
 
Approximations to the sampling variance and to the error of the estimator can be 

obtained by replacing the population variance, S2, with the sample variance, s2, in the 
respective formulas, that is: 

 

[ ]
n

sN
fsYvv

Y

22
2
ˆ )1(ˆ −===   and  )ˆ(ˆ Yvs

Y
=  

It should be noted that the estimator yNY =ˆ  can be written as: ∑=
=

n

i
iy

n
N

Y
1

ˆ  
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This last expression shows that the estimator of the total value of the population 
was obtained by raising, extrapolating or amplifying the total value of the sample by 
the raising factor N/n. This is the most common way of obtaining the estimator total 
values of the population in fishery research. It is also common in fisheries research to 
apply, instead of the quotient between the size of the population, N, and the size of 
the sample, n, the quotient of the corresponding total weights, W and w (this implies 
that the same mean weight in the sample and in the population is assumed). 

In these circumstances, the expression given above for the estimated variance can 
be written in terms of the quotient N/n or W/w, e.g.: 
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3.4.4 Estimators of proportions 
In the case of proportions, the quantities to be estimated are the proportion P of the 
elements belonging to a category or the population mean and the total number, NP, of 
the elements belonging to the category or the population total of the variable Yi (in the 
case of finite populations). 

Estimator of the population proportion 
In the general situation of simple random sampling, the sample mean, that in this case 
is the proportion of the sample elements belonging to the category of interest, p, is an 
estimator of the population mean, P. 

The sampling distribution of this estimator has the following properties:  
 
Expected value: E[p]=P 

Sampling Variance: V[p]= ( )
n
S

f
2

1−  

As previously mentioned, the sampling variance of a mean is ( )
n
S

f
2

1− , where S2 is 

the population variance.  In this case S2 is equal to 
1−N

NPQ
 and the sampling variance of 

p will be: 
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An unbiased estimate of V[p] can be obtained by replacing the population variance 

S2 with the sample variance s2 in the general expression of the sampling variance of a 

mean: 
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)1(
−

−=
n
pq

fpv  

The error Sp is the square root of the sampling variance of p: ][ pVS p =  

An estimate, sp, of the sampling error, is given by: )( pvs p =  

Estimator Ŷ  of the total number of elements in the population, NP 
In the cases of finite populations we are often interested in estimating the total 
number of individuals belonging to the category. An estimator of the total value can 
be obtained from the mean, yN  and so: pNY =ˆ  
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The expected value of Np is the total value of the population NP. 

[ ] PNNpE =  

The sampling variance of Np is: 
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An estimate of the sampling variance [ ]Npv  is:  
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The error of Np will be:  

[Np]ˆ VS
Y
=  

and an estimate of the sampling error of Np is  

 [Np]ˆ vs
Y
=  

Comments 
The expected value, the variance and the error of the sampling distributions of p or Np 
have been presented, but sometimes it is helpful to know other aspects of the sampling 
distributions. 

The sampling distributions of p and of Np are derived from the binomial 
distribution. 

The variable, Yi is a Bernoulli variable with probability P of being equal to 1 and 
probability Q=1-P otherwise. Therefore the binomial distribution is a combination of 
n independent Bernoulli variables with a common constant parameter P. 

This distribution is usually denoted as ( )PnbY ,I . The parameters are n, the sample 
size, and P, the proportion of elements belonging to the category. 

When P is close to 0.5 and n is large, the binomial distribution approximates the 
normal distribution. Thus the mean will follow approximately the normal 
distribution: 

[ ]VENp ,
•

∩   with E and V as previously indicated. 

The total value Np is also approximately normally distributed: 

[ ]VENNp ,
•

∩   with E and V as previously indicated. 

3.4.5 Estimator of several proportions of the population 
Some characteristics can be classified into more than two categories. For instance, 
maturity can be classified into stage I, stage II, stage III, etc. 

Consider a population divided into K categories or classes and let h designate one 
of these classes. To estimate the proportion of elements belonging to the class h, the 
population can be thought of as divided into only two classes, that is, the class h and 
another class covering all the remaining categories. In this way we can apply the 
previous conclusions about populations divided into two classes, being ph= nh/n the 
estimator of the proportion of elements belonging to class h, where n is the size of a 
simple random sample. The expected value and the sampling variance could be derived 
for the class h as mentioned for the binomial case.  

As an example, the expected value and an estimate of the sampling variance of ph is: 

[ ] hh PpE =   and  [ ]
1
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The sampling distribution of the sample proportions, when the population is 
divided into k classes, with different proportions of elements in each class, can be 
considered as an extension of the binomial distribution, that is, as a combination of  
n independent Bernoulli distributions with different parameters (nh, Ph) with h=1, 
2,…, k. This probability distribution is called the multinomial distribution. 
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4. Stratified random sampling 

4.1 INTRODUCTION 
When the population is heterogeneous, dividing the whole population into sub-
populations, called strata, can increase the precision of the estimates. The strata 
should not overlap and each stratum should be sampled following some design. All 
strata must be sampled. The strata are sampled separately and the estimates from each 
stratum combined into one estimate for the whole population. 

The theory of stratified sampling deals with the properties of the sampling 
distribution of the estimators and with different types of allocation of the sample sizes 
to obtain the maximum precision. 

The principle of stratification is the partition of the population in such a way that 
the elements within a stratum are as similar as possible and the means of the strata are 
as different as possible. 

The design is called stratified random sampling if simple random sampling is 
applied to each stratum. 

4.2 THE POPULATION  
In stratified sampling the population of N elements is divided into k strata of sizes: 
 

N1, N2, ..., Nh, …, Nk  elements, where ∑=
=

k

h
hNN

1
 

Every element in the population belongs to at least one stratum, and no element of 
the population belongs to more than one stratum. Figure 4.1 shows a stratified 
sampling scheme for a shrimp fishing ground.  
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The population was divided into 19 strata. As an illustration stratum 17 shows the 
18 trawling unit areas into which the stratum was divided. A similar subdivision was 
used for each of the other strata. 

4.2.1 Stratum h 
Let Nh represent the size and Yhi the value of the characteristic Y in the ith element of 
stratum h. The total value of the characteristic Y in stratum h is: 

∑=
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and the mean value is: 
h

h
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Y
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The modified population variance of stratum h is:  
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Note that the sum of squares of residuals, SSh, is divided by (Nh- 1), to obtain 2
hS , 

and not 2
hσ . The standard deviation is the square root of the variance, 2

hh SS = . 

4.2.2 All strata 
The total value of the characteristic Y in the population is the sum of the total values 
of all strata: 
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and the mean value is a weighted average of the means of all strata, 
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where N is the size of the population with k strata: 
 

kh NNNNNN +++++= ......21  and 
N
N

W h
h =  is the size of stratum h, relative to 

the total population size, and is used as the weighting factor. 

4.3 THE SAMPLE 
In stratified sampling, a sample is selected from each stratum by simple random 
sampling. Independent selections are used in each strata. 

4.3.1 Stratum h 
Consider a sample of size nh selected from stratum h by simple random sampling 
without replacement. The value of characteristic Y in the ith element of the sample 

from the stratum is denoted by hiy . Then ∑=
=

hn

i
hih yy

1
 is the sample total value and 

h

h
h n

y
y =  is the sample mean value of characteristic Y in the stratum. 
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The sample variance of characteristic Y in stratum h is: 
1
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The sample standard deviation, sh, is the square root of the variance, 2
hh ss =  and 

the coefficient of variation will be 
h

h

y
s

cv = . 

4.3.2 All strata 
Given independent simple random samples from each strata, each of size nh, the total 

sample size is ∑=
=

k

h
hnn

1
. 

Under these conditions, the total value of characteristic Y in the whole sample is 

the sum of the sample total values in each stratum, ∑=
=

k

h
hyy

1
 

The stratified sample mean, sty , is given by the weighted average of the sample 

means of the characteristic of interest from each stratum,  
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and the stratified sample variance is simply the sum of the variances within each 
stratum. This is achieved because there is no sampling of strata (all are observed) and 
sampling is carried out independently within each of them, 

∑=
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h
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22  

The stratified sample standard deviation, sst, is the square root of the variance,  

2
stst ss = and the coefficient of variation will be 

st

st
st y

s
cv = . 

4.4 THE SAMPLING WORLD 
4.4.1 Stratum h 
Estimator of the mean value 
Within each stratum, simple random sampling is used. So, the sampling distribution of 
the estimators of the population parameters of each stratum is that given for simple 
random sampling. 

An unbiased estimator hŶ , of the mean of characteristic Y, of the stratum h, hY ,  
is hy . 

The sampling distribution of hŶ  is approximately normal, ),(ˆ VENYh

•

∩ , where E is 

the expected value and V is the sampling variance of the estimator in stratum h: 
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where fh is the sampling fraction defined by 
h

h
h N

n
f = , hn  is the sample size in 

stratum h and hN  is the size of stratum h. 
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An unbiased estimator of 2

hS  is the sample variance 2
hs : 
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An estimator of the sampling variance of the estimator can thus be obtained by 
replacing 2

hS  by 2
hs  in the corresponding expression: 
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Estimator of the total value  

Let hŶ  be an estimator of the total value Yh of stratum h, given by:  hhh yNY =ˆ  
where hy is the mean of stratum h. 

hŶ  is an unbiased estimator of Yh with an approximately normal sampling 

distribution, [ ]VENYh ,ˆ •

∩ , where: 
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and 
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where hf is the sampling fraction of stratum h, 
h

h

N
n

. 

The square root of the sampling variance, V  is the error of the estimator. 
An unbiased estimator of the sampling variance V is obtained by replacing the 

population variance by the sample variance in the corresponding expression: 
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where 2
hs  is an estimate of 2

hS , given by the sample variance. 

4.4.2 All strata 
Estimator of the mean value 
An unbiased estimator of the population stratified mean, for all strata, is given by the 
sample stratified mean, 
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The sampling distribution of Ŷ  is approximately normal, ),(ˆ VENY
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∩ , where E is 

the expected value and V is the sampling variance of the estimator, given by: 
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In these expressions, fh is the sampling fraction defined by 
h

h
h N

n
f = , hn  is the 

sample size in stratum h and hN  is the size of stratum h. 
An unbiased estimator of the sampling variance of the estimator of the stratified 

mean value can be obtained by replacing 2
hS  by 2

hs  in the corresponding expression: 
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Estimator of the total value  
As sample selections in different strata have been made independently, an estimator of 

the total value of the population is: styNY =ˆ  

where sty  is the stratified sample mean, given by  
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The estimator Ŷ  has an approximately normal distribution, [ ]VENYh ,ˆ •

∩ , where E 

and V are the expected value and the sampling variance, respectively, of the estimator, 

and are given by 
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Like for the mean value, an unbiased estimator of the sampling variance of the 
estimator of the stratified mean value can be obtained, by replacing the population 
variance 2

hS  by the corresponding sample variance 2
hs  in its expression: 
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4.5 ALLOCATION OF THE SAMPLE AMONG THE STRATA 
In stratified sampling, the size of the sample from each stratum is chosen by the 
sampler, or to put it another way, given a total sample size kh nnnnn +++++= ......21 , 
a choice can be made on how to allocate the sample among the k strata. There are 
rules governing how a sample from a given stratum should be taken. Sample size 
should be larger in strata that are larger, with greater variability and where sampling 
has lower cost. If the strata are of the same size and there is no information about the 
variability of the population, a reasonable choice would be to assign equal sample 
sizes to all strata. 

4.5.1 Proportional allocation 
Let n be the total size of the sample to be taken. 

If the strata sizes are different, proportional allocation could be used to maintain a 
steady sampling fraction throughout the population. The total sample size, n, should 
be allocated to the strata proportionally to their sizes: 

N
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N
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4.5.2 Optimum allocation 
Optimum allocation takes into consideration both the sizes of the strata and the 
variability inside the strata. In order to obtain the minimum sampling variance the 
total sample size should be allocated to the strata proportionally to their sizes and also 
to the standard deviation of their values, i.e. to the square root of the variances. 
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where n is total sample size, hn  is the sample size in stratum h, hN  is the size of 

stratum h and hs  is the square root of the variance in stratum h. 

4.5.3 Optimum allocation with variable cost 
In some sampling situations, the cost of sampling in terms of time or money is 
composed of a fixed part and of a variable part depending on the stratum. 

The sampling cost function is thus of the form:  
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where C is the total cost of the sampling, c0 is an overhead cost and ch is the cost 
per sampling unit in stratum h, which may vary from stratum to stratum. 

The optimum allocation of the sample to the strata in this situation is allocating 
sample size to the strata proportional to the size, and the standard error, and inversely 
proportional to the cost of sampling in each stratum. This gives the following sample 
size for stratum h: 
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Very often, it is the total cost of the sampling, rather than the total sample size, that 
is fixed. This is usually the case with research vessel surveys, in which the number of 
days is fixed beforehand. In this case, the optimum allocation of sample size among 
strata is  
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4.6 COMMENTS 
To obtain the full benefits of the stratification technique, the relative sizes of strata 
must be known. 

Each stratum should be internally homogeneous. If information about heterogeneity 
is not available then consider all strata equally variable. A short stratified pilot survey 
can sometimes provide useful information about internal dispersion within strata. 

A small sized sample could be taken from a stratum if the variability among their 
units is small. 
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Compared with the simple random sample, stratification results almost always in a 
smaller sampling variance of the mean or total value estimators, when: 

• The strata are heterogeneous among themselves 
• The variance of each stratum is small. 
A larger sample from a stratum should be taken if: 
• The stratum is larger 
• The stratum is more heterogeneous 
• The cost of sampling the stratum is low. 
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5. Cluster sampling 

5.1 INTRODUCTION 
In cluster sampling the population is partitioned into groups, called clusters. The 
clusters, which are composed of elements, are not necessarily of the same size. Each 
element should belong to one cluster only and none of the elements of the population 
should be left out. 

The clusters, and not the elements, are the units to be sampled. Whenever a cluster 
is sampled, every element within it is observed. 

In cluster sampling, only a few clusters are sampled. Hence, in order to increase the 
precision of the estimates, the population should be partitioned into clusters in such a 
way that the clusters will have similar mean values. As the elements inside the clusters 
are not sampled, the variance within clusters does not contribute to the sampling 
variance of the estimators. Therefore, in order to decrease the sampling variance of the 
estimators the variation within the clusters should be as large as possible, while the 
variation between clusters should be as small as possible. 

It should be noted that the partitioning of the population into clusters follows two 
opposite criteria to the criteria of partitioning a population into strata, that is, the 
heterogeneity within clusters as opposed to the homogeneity within strata and the 
similarity of cluster means as opposed to the differences in strata means. 

Cluster sampling is often more cost effective than other sampling designs, as one 
does not have to sample all the clusters. However, if the size of a cluster is large it 
might not be possible to observe all its elements. The next chapter will show that there 
are ways to overcome these difficulties. 

In fisheries, cluster sampling has been used to estimate landings per trip in artisanal 
fisheries with a small number of vessels landing at many sites (beaches). Consider, for 
instance, a fishery with 100 small beaches, where a few vessels land at each beach. One 
is interested in the total catch per day of the vessels landing at these beaches, but one 
does not have the possibility to visit all of them. In this case each beach can be a 
cluster. If a beach is sampled, all its elements (vessel landings) should be observed.  

Another example of cluster sampling in fisheries is the sampling of the length 
composition of an unsorted large catch of a species kept in fish boxes onboard a 
vessel. Let us assume that the catch in each box is as heterogeneous as possible. The 
fish boxes can then be looked upon as clusters, and when a box has been selected for 
sampling, all the elements (fish) inside the box have to be observed.  

5.2 THE POPULATION 
To be consistent with other methods, the symbol N  is used to designate the total 
number of population sampling units, which in this case are the clusters and not the 
elements. 

The number of elements in a cluster i is denoted by iM . 

The total number of elements in the population is: 
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and the mean number of elements per cluster is: 

N
M

M o=  
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The value of the characteristic Y in element j from cluster i is ijY  and iY  is the total 
value of the characteristic in cluster i: 
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The mean value per element in cluster i is:  
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i
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The total value of the characteristic in all the elements of the population is: 
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In cluster sampling, two means can be considered: 
The mean per cluster  

N
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the mean per element 
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In cluster sampling, two types of variances can be considered. The first is the 
variance between clusters, and the second is the variance within clusters, or between 
elements within clusters. 

The variance between cluster totals is:  
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The variance within a cluster i, denoted by 2
2 iS , is  
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Table 5.1 presents a summary of the main parameters of a discrete population 
divided into clusters that are most used in fisheries research. 

5.3 The sample 
In cluster sampling, n is the number of clusters to be sampled and im  is the number of 

elements sampled from cluster i. Note that, in this case, ii Mm = , since all elements of 

every cluster sampled are observed. The total number of elements observed (i.e the 

total number of elements in the sample) is then ∑=
=

n

i
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1
 and the mean number of 

elements per cluster in the sample is 
n

m
m o= .  
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For any sampled cluster i, the value of the chosen characteristic of element j is yij 

and ∑==
=

im

j
ijii yYy

1
 is the total value of the characteristic in cluster i. Note that the 

sampled cluster total yi is equal to the population cluster total Yi, since there is no 

sampling inside the clusters (all elements of the clusters sampled are observed). 

TABLE 5.1 
Summary of population parameters of most interest in fisheries research 

N Number of clusters in the population 

iM  Number of elements in cluster i 

∑=
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1
 Total number of elements in the population 

N
M

M o=  Mean number of elements per cluster 

ijY  Value of characteristic Y in element j of cluster i 
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j
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 Total value of the characteristic Y in cluster i 
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Y =  Mean value of the characteristic Y in the elements of cluster i 
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 Total value of characteristic Y of all the elements in the population 
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Y =  Mean value of characteristic Y per cluster 
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==  Mean value of characteristic Y per element 
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 Variance of characteristic Y between cluster totals 
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 Variance of characteristic Y within cluster i 

The mean value of the characteristic Y in all the elements of cluster i is: 

i

i
i m

y
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The total value of the characteristic Y in all the elements of all the clusters sampled 

is denoted by: ∑=
=
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The mean value of the characteristic Y per cluster is: 
n
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The mean value of the characteristic Y per element is: 
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The variance between total values of the characteristic Y in the clusters sampled is: 

( )
1

2

12
1 −

∑ −
= =

n

yy
s

n

i
i

 

The variance of the values of the characteristic Y within the ith sampled cluster is: 
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Table 5.2 presents a summary of the most common sample statistics in cluster 
sampling applied to fisheries. 

TABLE 5.2 
Most common sample statistics in cluster sampling 

n  Number of clusters sampled 

im  Number of elements in cluster i (Note that ii Mm = ) 

∑=
=

n

i
io mm

1
 Total number of elements in sample 

n
m

m o=  Sample mean number of elements per cluster  

ijy  Value of the characteristic Y in element j of cluster i 
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 Total value of the characteristic Y in the sampled cluster i 
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Variance between total values of the characteristic Y in the clusters sampled 
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Variance of the values of characteristic Y within the sampled cluster i 
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5.4 THE SAMPLING WORLD 
As mentioned in the introduction to this chapter, in cluster sampling the sampling 
units are the clusters. The selection of the clusters can be made by random sampling 
with equal probabilities (simple random sampling) or with different probabilities. A 
particular case of random sampling with different probabilities is when the 
probabilities are proportional to the sizes of the clusters. 

The most important estimators in cluster sampling are the estimators of the total 
value, of the mean per cluster and of the mean per element.  

5.4.1 Selection with equal probabilities 
First, let us consider an example where the clusters are selected by simple random 

sampling without replacement. In this case, the probability of selecting any cluster i, 

in one extraction, is constant and equal to 
N

Pi

1
= . 

An unbiased estimator of the population total value, Y, is: 

   ˆ
1
∑=
=

n

i
iy

n
N

Y or yNY =ˆ   

The factor 
n
N  is a raising factor, which raises the sample total, y, to the estimator  

of the population total Ŷ . 

The sampling distribution of this estimator is approximately normal with expected 
value E, and variance V: 

),(ˆ VENY
•

∩  

where 

[ ] YYEE == ˆ  (Ŷ  is an unbiased estimator of Y)  

and 

[ ] ( )
n

S
fNYVV

2

12 1ˆ −==  

An estimate of the sampling variance can be obtained by replacing the population 
variance 2

1S  with the sample variance 2

1s  in the expression of the sampling variance: 

[ ] ( )
n

s
fNYv

2
12 1ˆ −=  

5.4.2 Selection with unequal probabilities  
Two cases of selecting the sample with unequal probabilities will be considered: 
selection with replacement and selection without replacement. In the former, the 
Hansen-Hurwitz estimator will be described. The particular case of selection with 
probabilities proportional to the sizes of the clusters will be also studied. 

Another estimator, the Horvitz-Thompson estimator, is applicable in both cases, 
i.e., with or without replacement. 
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Hansen-Hurwitz estimator – selection with replacement  
Let Pi be the probability of selecting cluster i, with replacement, in one extraction 

(Note that ∑ =
=

N

i
iP

1
1). In this case an unbiased estimator of the population total value is: 

∑=
=

n

i
i

i

P
y

n
Y

1

1ˆ  

 
This estimator has an approximately normal distribution with expected value E, 

and variance, V: 

),(ˆ VENY
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∩  

where 

[ ] YYEE == ˆ  (Ŷ is an unbiased estimator of Y) 

and 
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An estimate of the sampling variance ⎥⎦
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Selection with probabilities proportional to cluster sizes 
Let us consider the special case where the selection probability is proportional to the 

size of the clusters, 
o

i
i M

M
P =  

In this case, the estimator of the total value, Ŷ , its sampling variance and all the 

other expressions can be obtained replacing Pi in the case previously described, by 

o

i

M
M

 i.e.: 
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The sampling variance is: 
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Another expression of this variance can also be obtained: 
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An estimate of this variance is: 
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Note that in order to use this estimate one needs to know the total number of 
elements in the population, Mo. 

An estimator of the mean value per element is: 
oM

Y
Y
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=  or        
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which has a sampling variance given by: 
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An estimate of the sampling variance can be calculated replacing the variance of the 
population total by its sample estimate:  
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Note that in order to use this estimate one does not need to know the total number 
of elements in the population, Mo. 

The estimator of the mean value per cluster is: 

N
Y

Y
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with a sampling variance: 
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An estimate of this sampling variance can be obtained from 
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In order to use this estimator one needs to know Mo , or at least the mean number 

of elements per cluster, 
N
M

M 0= . 
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Selecting clusters with probabilities proportional to their sizes is not always easy. 

A simple procedure for selecting n clusters with probabilities proportional to their  

sizes (
o

i
i M

M
P = ), that can be easily used in fisheries research, is given below: 

• calculate the cumulative numbers of elements of the population in each cluster; 
• assign intervals of “selection numbers” to each cluster, based on these 

cumulative numbers; 
• use the “selection numbers” in order to choose the n clusters to be sampled, with 

a probability proportional to sizes. For this purpose, select (applying a simple 
random sampling design) one of the total number of the “selection numbers” to 
get the corresponding cluster; 

• repeat the selection of "selection numbers" to obtain the required number of 
clusters. 

A simple example to illustrate the procedure: 
Consider a situation where one wishes to select three out of five boats landing fish 

on a beach. The boats are considered as the clusters to be sampled. Each boat carries a 
different number of fish boxes to be landed. The percentages of the total number of 
fish boxes carried by each one of the five boats will be considered as the probabilities 
proportional to the sizes of the clusters. Table 5.3 shows the original data and how to 
calculate what can be designated as the “boat selection numbers”. 

TABLE 5.3 
Original data and calculation of “boat selection numbers” 

Boat Number of fish 
boxes 

Cumulative 
numbers 

Boat selection 
numbers  Selection Probability 

1 5 5 1- 5   5/50=0.10 

2 10 15  6-15  10/50=0.20 

3 7 22 16-22   7/50=0.14 

4 13 35 23-35  13/50=0.26 

5 15 50 36-50  15/50=0.30 

 
By repeating three times a simple random sampling of one out of fifty numbers, 

one will get three boat selection numbers corresponding to the boats to be sampled 
(ignore the selected numbers corresponding to clusters already chosen). 

Horvitz-Thompson estimator – selection with or without replacement  
It is convenient, before describing this estimator and its sampling characteristics, to 
show how inclusion probabilities can be calculated. 

Let πi denote the probability of including cluster i in a sample of size n. The 
inclusion probability, πi, is connected with the probability Pi of selecting cluster i in 
one single extraction. 

To derive the relation between πi and Pi it is preferable to use complementary 

probabilities. In this way, the probability, 1-πi, of not including cluster i in the sample 

of size n can be calculated as the probability of not selecting the cluster i in any of the 

n extractions, that is, n
ii P )1(1 −=−π . Therefore the inclusion probability πi will be: 

n
ii P )1(1 −−=π  

Let us now consider the probability, πij, that both cluster i and cluster j are 

included in a sample of size n. The probability of extracting either cluster i or cluster j, 
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in one extraction, is ji PP +  and so the probability of neither extracting cluster i nor 

cluster j, will be )(1 ji PP +− . 

In n independent extractions the probability of neither extracting cluster i nor 

cluster j will be [ ]n
ji PP )(1 +− . Therefore the probability of extracting either cluster i or 

cluster j in n extractions will be [ ]n
ji )P(P +−− 11 .  

Alternatively, the same probability - that either cluster i or j be included in the 

sample, could also be expressed as the probability of including cluster i plus the 

probability of including cluster j minus the probability of including both i and j, that 

is, ijji πππ −+ )( .  

The two last expressions are different ways to refer to the same probability, thus: 

( )[ ]n
jiijji PP +−−=−+ 11)( πππ  

Finally the inclusion probability, πij, can be calculated as: 

( )[ ]{ }n
jijiij PP +−−−+= 11)( πππ  

The calculations of the inclusion probabilities, for the example presented 

previously, are shown below. 

 

Prob. of  
inclusion, πi 

Inclusion probabilities, πij Boat, i Prob.  
of selection, Pi 

 1 2 3 4 

1 5/50=0.10 π1 = 0.271     

2 10/50=0.20 π2 = 0.488 0.102    

3 7/50=0.14 π3 = 0.364 0.074 0.139   

4 13/50=0.26 π4 = 0.595 0.128 0.240 0.175  

5 15/50=0.30 π5 = 0.657 0.144 0.270 0.197 0.337 

Total 1.00      

 
Calculations: 
 

271.0)10.01(1 3
1 =−−=π   

488.0)20.01(1 3
2 =−−=π  [ ] 102.0})20.010.0(11{488.0217.0 3

12 =+−−−+=π  

364.0)14.01(1 3
3 =−−=π  [ ] 074.0})14.010.0(11{364.0217.0 3

13 =+−−−+=π  

 [ ] 139.0})14.020.0(11{364.0488.0 3

23 =+−−−+=π  

 etc. 

The Horvitz-Thompson estimator of the total value of the population is: 

∑=
=

*

1

ˆ n

i i

iy
Y

π
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where yi is the total value of the variable, in the distinct sampled cluster i; πi is the 
probability of inclusion of the cluster i in the sample and *n  is the "effective" size of 
the sample, that is, the number of distinct clusters, in a sample of size n. Note that 
clusters sampled repeatedly are eliminated from the calculations. 

The estimator is unbiased and its sampling variance can be written as: 
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An unbiased estimate of this variance is: 
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Note that inclusion probabilities should be different from zero. 
These estimates of the variances can be negative. A way to avoid this inconvenience 

is as follows: 
Calculate, from each effective sampled cluster i, the following ti statistics: 

i
i

y
nt

π
*=  

Each of the ti values calculated can be considered as an estimate of the total  
value, Y. 

The mean of ti for all clusters effectively sampled is a Horvitz-Thompson estimator 

of the total value Y:  
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The estimate, [ ]Yv ˆ , of the sampling variance of this estimator is:  
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6. Two-stage sampling  

6.1 INTRODUCTION 
In the two-stage sampling design the population is partitioned into groups, like cluster 
sampling, but in this design new samples are taken from each cluster sampled. The 
clusters are the first stage units to be sampled, called primary or first sampling units 
and denoted by SU1. The second-stage units are the elements of those clusters, called 
sub-units, secondary or second sampling units and will be denoted by SU2. 

Two-stage sampling is used when the sizes of the clusters are large, making it 
difficult or expensive to observe all the units inside them. This is, for example, the 
situation when one wishes to estimate total landing per trip of a fishery with many 
landing sites and also with a large number of vessels. 

Sometimes, in order to decrease the sizes of the primary sampling units, one can 
previously stratify the population and apply two-stage sampling to each stratum. 

It is possible to extend the two-stage sampling design to three or more stages. A 
short reference will be made to a three-stage sampling design, using a case where the 
procedure to estimate errors is simple. 

6.2 THE POPULATION 
Most of the population parameters of interest to fisheries research in the two-stage 
sampling design are the same as in cluster sampling. These are summarised below. 
 

TABLE 6.1 
Main population parameters of interest to fisheries research in two-stage sampling design 

N Number of clusters (SU1) in the population 

Mi Number of elements (SU2) in cluster (SU1) i 

∑=
=

N

i
io MM

1
 Total number of elements (SU2) in the population 

N
M

M o=  
Mean number of elements (SU2) per cluster (SU1). This is useful when 

a population has clusters (SU1) of unequal size. 

ijY  Value of the chosen characteristic of element (SU2) j in cluster (SU1) i 

∑=
=

iM

j
iji YY

1
 Total value of the chosen characteristic in cluster (SU1) i 

i

i
i M

Y
Y =  Mean value of the characteristic Y in the elements (SU2) of cluster  

(SU1) i 

∑=
=

N

i
iYY

1
 Total value of the characteristic Y in the population 

N
Y

Y =  Mean value of the characteristic Y per cluster (SU1) 
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TABLE 6.1 (cont.) 

M
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===  Mean value of the characteristic Y per element (SU2) 
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Mean value of the characteristic Y per element (SU2) if  
Mi = constant = M 
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Variance between total values of the characteristic Y per cluster 
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Variance between mean values of the characteristic Y per cluster (SU1) 

The asterisk is used in the symbol, 2*
1S , to differentiate the variance 

between mean values of the characteristic per cluster (SU1) and the 

variance 2
1S  between total values of the characteristic per cluster 

(SU1) 
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Variance between values of the characteristic Y in the elements (SU2) 
within cluster (SU1) i 

N

S
S

N

i
i∑

= =1

2
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2
2  

Variance between values of the characteristic Y in the elements (SU2) 
within all clusters (SU1) 

6.3 THE SAMPLE 
In this design, as opposed to cluster sampling, the numbers mi of elements sampled in 
the second sampling stage are not equal to the sizes of the corresponding clusters. The 
sample statistics common of this design that are most important to fisheries research 
are summarised below. 
 

TABLE 6.2 
Main sample statistics of interest to fisheries research in two-stage sampling design 

n Number of clusters (SU1) sampled 

mi Number of elements (SU2) sampled from cluster (SU1) i 

∑=
=

n

i
io mm

1
 Total number of elements (SU2) sampled 

n
m

m o=  Mean number of elements (SU2) sampled per cluster (SU1) 

ijy  Value of the characteristic Y in element (SU2) j of cluster (SU1) i 

∑=
=

im

j
iji yy

1
 Total value of the characteristic Y in the elements (SU2) sampled from cluster 

(SU1) i 

i

i
i m

y
y =  Mean value of the characteristic Y in the elements (SU2) sampled from cluster 

(SU1) i 
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TABLE 6.2 (Cont.) 
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 Total value of the characteristic Y in the clusters (SU1) sampled 
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y =  Sample mean value of the characteristic Y per cluster (SU1) 
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Sample mean value of the characteristic Y per element (SU2) if  
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Sample variance between total values of the characteristic Y per cluster (SU1) 
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Sample variance between mean values of the characteristic Y per cluster (SU1) 
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Sample variance between values of the characteristic Y in the elements (SU2) 
sampled within cluster (SU1) i 
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Sample variance between values of the characteristic Y in the elements (SU2) 
sampled within all clusters (SU1), if mi  = constant = m 

6.4 THE SAMPLING WORLD  
In two-stage sampling design, the expected values and the variances of an estimator in 
the sampling world are calculated taking into consideration the two stages. 

Let the sub-indices 1 and 2 refer respectively to the first and to the second 
sampling stages. 

First sampling stage 
E1 refers to the expected value of the estimator among all possible first-stage samples 
to be selected from the population. V1 refers to the sampling variance of the estimator 
among all possible first-stage samples to be selected from the population. 

Second sampling stage 
E2 refers to the expected value of the estimator among all possible second-stage 
samples to be selected from the first-stage clusters already sampled, that is, 
conditional on the SU1 sampled. 

V2 refers to the sampling variance of the estimator among all possible second-stage 
samples to be selected from the first stage clusters already sampled, that is, conditional 
on the SU1 sampled. 
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Using these definitions it can be demonstrated that, if θ̂  is an estimator of the 

population parameter θ, the expected value of the estimator is: 

[ ] ( )[ ]θθ ˆˆ
21 EEE =  

and its sampling variance is:  

[ ] ( )[ ] ( )[ ]θθθ ˆˆˆ
2121 VEEVV +=  

The first term relates to the sampling variance of the estimator between the clusters 
(SU1) and the second term relates to the sampling variance between the elements 
(SU2) within the clusters (SU1). 

This basic theorem is valid for the sampling distribution of any estimator and it is 
valid for any two-stage sampling design. These results can also be extended to 
sampling designs with more stages. 

There are different methods of selecting the sampling units in the two-stage 
sampling design. The units can be selected with simple random sampling, or with 
different probabilities in one or both stages. These choices will affect the sampling 
distribution of the estimators, and correspondingly the choice of estimators to use for 
any particular purpose. 

In this document the following methods will be analysed:  
• Simple random sampling at both stages  
• Random sampling with different probabilities at the first stage, and simple 

random sampling at the second stage.  
In two-stage sampling applied to fisheries science, the population total value, Y, 

and the mean per element, ,Y  are often the parameters to be estimated. 

6.4.1 First selection by simple random sampling, without replacement, and 
second selection by simple random sampling, without replacement 
In this two-stage sampling design, an unbiased estimator of the total value of the 
population is: 
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Y
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ˆˆ  

where iŶ  is an estimator of the total value of the characteristic in cluster (SU1) i. 
Taking into consideration that simple random sampling is adopted in the second 
sampling stage, the estimator iŶ  would be: 

iii yMY =ˆ  or i

i

i
i y

m
M

Y =ˆ  

Applying the general theorem from section 6.4.2, it can be proven that the 
estimator is unbiased with sampling variance equal to: 
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In this expression, the sampling fractions at the first and second stages are 
N
n

f =1   
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and 
i

i
i M

m
f =2  respectively, 2

1S  is the population variance between total values of the 

characteristic of clusters (SU1) and 2
2iS  is the population variance between the values 

of the characteristic of the elements (SU2) within cluster (SU1) i. 

An estimate of the variance, ( )YV ˆ , is obtained by replacing the population variance 

2
1S with a sample estimate, 2

1Ŝ  and the population variances 2
2iS  with the sample 

variances 2
2is : 
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Particular case of SU1s with equal sizes 
When the SU1 sampling units have equal sizes and both selections are with equal  

probabilities (
N
1  for the first stage and 

M
1  for the second stage), two-stage sampling  

design becomes a very simple particular case. 
Let M be the constant number of second-stage sampling units, SU2, in any of the 

N clusters (SU1) of the population and m the constant number of SU2 sampled from 
any SU1 of the sample. 

Replacing Mi with M and mi with m in the previous case, the above sampling 
variance will become: 
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In this case, the estimator of the mean per element, y , is given by 
NM
Y

y
ˆ

= . The 

sampling variance of this estimator is given by ( ) ( )
( ) 2

ˆ

NM
YV

yV =  and hence, from the 

previous expression of the sampling variance, this will be: 
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It was earlier seen that, for equal sizes of clusters SU1s and equal sizes of the 
respective SU2s samples, the variances between mean values of the characteristic Y in 
the SU1s and the variances between values of the characteristic Y in the SU2s could be 
written as:  

2

2
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Then the sampling variance of y  will take the form: 
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An estimate of the sampling variance is: 
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The second term of this variance is negligible when f1 is small. 
In the case of three-stage (or more stages) sampling with sampling units of equal 

sizes, the extension of the expressions above is simple. For example, considering 
three-stage sampling, the estimator of the population mean per element is: 

yY =
ˆ

 where 
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The sampling variance of this estimator will be: 
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An estimator of the sampling variance can be obtained from: 
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In the case of two-stage sampling with equal-sized SU1s, it is also simple to 
estimate the proportion of elements of the population belonging to one certain 
category.  

A proportion in a sample of size n is considered as a mean of n Bernoulli variables. 
Then, the proportion pi, in the ith sampled cluster ith SU1, is: 

ii yp =  

Then the sample mean per element is the overall proportion: 
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Therefore, the estimator of the overall proportion of the elements belonging to the 

category of interest can be the average, P̂ , of the proportions, pi, of the clusters 
sampled: 

pYP ==
ˆˆ  
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This estimator is unbiased, and an estimate of its sampling variance is given by: 
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6.4.2 First selection with unequal probabilities, with replacement, and second 
selection with equal probabilities, with replacement 
To analyse this design, let Pi be the known probability of selecting the ith cluster 

(SU1i) in one extraction, ∑ =
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An unbiased estimator of the population total, Y, is: 
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where iii yMY =ˆ   is an estimator of the total value, Yi, of the ith SU1. 

The sampling variance of this estimator will depend on the sampling design of the 
first stage. However if independent estimates, iŶ , of the total values, Yi, are available, 
an unbiased estimator of the sampling variance, will be: 
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The estimators presented for multi-stage sampling are in general efficient, but they 
suffer from the handicap of having complicated expressions. This complication arises 
from the unequal selection probabilities, requiring the calculation of weights for each 
cluster. Under some conditions of sample allocation, however, this estimator can be 
self-weighting. 

In fact, the estimator of the total value in the population can be rewritten as: 
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1ˆ  showing that the sample is self-weighted. 

The importance of self-weighting sampling is to facilitate the calculations, since the 
constant weight factors simplify the calculations of the estimators and of the estimated 
sampling variances.  
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Under these conditions, an estimate of the sampling variance is: 
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The population mean per element, Y , can be estimated using the estimator 
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The sampling variance of this estimator is: 
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As in the previous cases, this estimator requires that M0, the total number of 
elements of the population, is known. 
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7. Biological sampling at landing 
ports for one resource 

7.1 INTRODUCTION 
The objective of this chapter is to describe a practical sampling system for length 
composition of the annual total landings of one fishery resource along the coast of a 
certain area. The reason why only one resource is being used is just to simplify the 
explanations and calculations, but the sampling system could be developed for several 
resources. The sampling methods starts with a stratification of the population of 
landings of sardine, followed by multi-stage sampling applied to each stratum. Two of 
the sampling designs dealt with in previous chapters, stratified sampling and simple 
random sampling, are the basis for the whole plan. 

The sampling considers a region with several landing ports, different components 
of the fleet and the months of the annual landings. The specific example used in this 
chapter is an example of how to calculate the annual length composition of the 
Sardinella aurita fishery in a coastal area with several landing ports, where small purse 
seiners and trawlers fish this species. 

7.2 OBJECTIVES 
The annual length composition of the landings is important in itself, and equally as a 
basis for estimating other biological characteristics of the landings. Combining the 
information on the length composition of the landings with other information,  
such as:  

• average weight by length class; 
• age composition in each length group;  
• percentage of mature individuals in each length group; 
• percentage of sexes in each length group; 
• other biological characteristics (stomach contents, gonad somatic index, etc.) by 

size groups. 
The characteristics of the landings as a whole (e.g. length composition of the 

overall landings) can be estimated. 
In order to achieve these objectives, landing statistics (total annual catch) are 

needed. In this case it is assumed that all the fish caught in one year, in the area and by 
all fleet components come from a single population of the resource. 

If only the annual length composition of the landings is needed, one single 
sampling scheme will be set up. If on the other hand, other biological characteristics 
like those mentioned above (percentage of adults, age-length keys by length group, 
etc.) are intended, separate sampling systems should be established. 

A crucial issue in all these sampling designs is to ensure that the observation 
techniques used to determine the characteristics (length, weight, maturation, sex, age, 
etc.) are well defined. Although this may seem obvious, often sampling systems are 
invalidated due to inconsistencies during sampling activities. Therefore if, for example, 
total length is to be measured, every effort should be made to ensure that all the 
samplers are measuring the total length and not the fork length. Attention should also 
be paid as to whether the fish are measured to the cm below, to the cm above or to the 
nearest cm. 
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7.3 EXAMPLE OF A SAMPLING SCHEME FOR THE ANNUAL LENGTH 
COMPOSITION OF THE LANDINGS 
Definition of the population and sampling scheme 
As mentioned above, the population of interest is composed of all fishes caught by the 
entire fleet fishing the resource that are landed in all the ports of the area being 
considered, throughout one year. 

Total annual landings, which is the population to be sampled, will be divided into 
strata following a separation by month, fleet component and landing port.  

The number of strata is the product of the number of months (m) by the number 
of fleet components (fc) by the number of landing ports (p): 

Number of strata = m × fc × p 
Number of strata = 12 months × 2 fleet components × 3 ports = 72 strata 
Let us take the example of the Sardinella aurita fishery mentioned above and 

assume that the region has three landing ports. Remember that the Sardinella aurita 
was being fished by two fleet components (small seiners and trawlers) and that the 
objective is to estimate the annual (twelve months) length composition.  

According to sampling theory (see Chapter 4 on stratified sampling) all strata must 
be sampled. This means that a minimum of 72 samples must be taken. But only one 
sample from each stratum (month, port and fleet component) is insufficient for 
estimating the precision or the error of the annual length composition (at least 2 or 
preferably 3 samples from each stratum should be taken). Let us consider only one 
stratum, represented by the trawlers landing Sardinella aurita in Port A during the 
month of January. Figure 7.1 illustrates the sampling scheme adopted in this situation. 

The multistage sampling scheme represented in Figure 7.1 could be explained as 
follows: 

• in a stratum (defined by one fleet category, one landing port and one month) 
several days (selected by simple random sampling) will be sampled (sampling 
unit 1 – SU1); 
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• for each day selected for sampling, out of the total number of trawler landings, 
several trawler landings are selected (by simple random sampling) (sampling unit 
2 – SU2); 

• for each trawler landing selected in the previous step, several fish boxes are 
selected (by simple random sampling) (sampling unit 3 – SU3); 

• finally, from each of these boxes a number of fishes is selected (using simple 
random sampling without replacement) and measured (sampling unit  4 – SU4). 

In the last stage the length composition is calculated from the sampling unit 4. 
Then, by successive back-calculations, the sampled length composition is raised to the 
length composition of the stratum.  

Table 7.1 summarizes our sampling scheme. The notation is the same as that used 
in previous chapters. In order to simplify the explanation, only one stratum (one 
month, one port and one fleet component) has been considered. The procedure is 
repeated independently, for each stratum. 

TABLE 7.1 
Summary of a sampling scheme for estimating the length composition of landings 

 h is the index of a stratum: 
one fleet component, one port 

and one month 
h=1…K 

 

(Nh) 
total number of days (stratum 

size) in stratum h 

i, index for days 
i=1…Nh 

 

(nh) 
number of days sampled (sample 

size) in stratum h 
(simple random sampling) 

(Nhi) 
total number of landings in day i 

in stratum h 

j, index for landings 
j=1…Nhi 

(nhi) 
total number of landings 

sampled in day i in stratum h 
(simple random sampling) 

(Nhij) 
total number of boxes in landing 

j of day i in stratum h 

k, index for boxes 
k=1…Nhij 

(nhij) 
total number of boxes sampled 

from landing j of day i in  
stratum h 

(simple random sampling) 

(Nhijk) 
total number of fishes in box k of 
landing j from day i in stratum h 

l, index for fishes 
l=1…Nhijk 

(nhijk) 
total number of fishes sampled 

from box k of landing j from day 
i in stratum h 

(simple random sampling) 

Sampling 
The aim of this example was to illustrate how to raise successive estimates of each 
stage up to the stratum level. However to simplify the presentation we have reduced 
the number of some sampling units to one (as mentioned in the text this is not 
advisable in practical cases). Another simplification was to eliminate the first sub-
index (days). 

Let us consider once again the Sardinella aurita example in our particular area. The 
area under consideration has three landing ports (Port A, Port B and Port C). Each 
port has two fleet components fishing for Sardinella aurita (trawlers and small 
seiners). The objective is to estimate the annual (12 months) length composition of the 
landings. Remember that according to sampling theory, it is mandatory that all strata 
be sampled. In this particular case study there are hence 72 strata. 

Only the sampling of one stratum (Trawlers, Port A and January) is worked in 
detail, with the aim of simplifying the calculations. Also for simplicity the sub-index 
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for stratum is not indicated in the text and tables. The procedure is carried out for all 
the 72 strata in order to obtain the annual length composition. 

One day (“Day 1”) is selected (by simple random sampling) from the 31 days of 
the month of January in Port A. During the selected day, 30 trawlers landed 
Sardinella aurita at Port A. Out of the 30 landings, three landings (“Landing 1”, 
“Landing 2” and “Landing 3”) were selected (by simple random sampling). 

“Landing 1” was composed of 20 boxes in total, “Landing 2” of 10 boxes in total 
and “Landing 3” of 8 boxes in total. From “Landing 1” two boxes (“Box 1.1” and 
“Box 1.2”) out of the 20 are selected; from “Landing 2” one box (“Box 2.1”) is 
selected out of 10 and from “Landing 3” one box is also selected (“Box 3.1”) out of 8.  

All boxes were selected using a simple random sampling method. For simplicity 
more complicated sampling methods were avoided, e.g. selection with probabilities 
proportional to sizes of landings measured by the number of boxes. 

From each of the boxes selected one bucket (“Bucket 1.1.1”, “Bucket 1.2.1”, 
“Bucket 2.1.1”, and “Bucket 3.1.1”) of fishes is sampled (simple random sampling 
without replacement). The number of fishes in each bucket is: 

• Bucket 1.1.1 = 190 fishes 
• Bucket 1.2.1 = 102 fishes 
• Bucket 2.1.1 = 182 fishes 
• Bucket 3.1.1 = 200 fishes  
Previous calculations estimated that the weight of a box of Sardinella aurita was 

30 kg and the weight of a bucket of Sardinella aurita was 10 kg. 
The length of each fish is measured with the same observation technique, and the 

fishes are grouped into length classes. In the example 10 length classes are considered.  
The example could be represented by the following figure (Figure 7.2): 
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Calculations 
The measurements are organized in frequency tables (one table for each bucket). 

TABLE 7.2 
Frequency table for fish length – fish from buckets 

Bucket 1.1.1  Bucket 1.2.1  Bucket 2.1.1  Bucket 3.1.1 

Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency 

l1 4  l1 0  l1 8  l1 8 

l2 8  l2 0  l2 10  l2 14 

l3 30  l3 5  l3 23  l3 24 

l4 35  l4 7  l4 30  l4 30 

l5 37  l5 17  l5 30  l5 37 

l6 30  l6 23  l6 27  l6 38 

l7 27  l7 20  l7 20  l7 27 

l8 10  l8 15  l8 15  l8 10 

l9 8  l9 10  l9 12  l9 8 

l10 1  l10 5  l10 7  l10 4 

Total 190  Total 102  Total 182  Total 200 

 
The sample frequencies are raised to the total of each box. In order to do this, a 

factor, RF, that is the quotient of the box weight to the sample weight (in this 
particular case the sample weight is the weight of the full bucket of Sardinella aurita), 
is needed. It is known that the weight of each box is 30 kg and the weight of each 
bucket is 10 kg, therefore the factor would be: 

RF = box weight / sample weight = 30/10 = 3 
Each frequency is multiplied by the respective RF, in this case equal to 3. Table 7.3 

shows the results. 

TABLE 7.3 
Length composition by box after raising frequencies 

Box 1.1  Box 1.2  Box 2.1  Box 3.1 

Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency 

l1 12  l1 0  l1 24  l1 24 

l2 24  l2 0  l2 30  l2 42 

l3 90  l3 15  l3 69  l3 72 

l4 105  l4 21  l4 90  l4 90 

l5 111  l5 51  l5 90  l5 111 

l6 90  l6 69  l6 81  l6 114 

l7 81  l7 60  l7 60  l7 81 

l8 30  l8 45  l8 45  l8 30 

l9 24  l9 30  l9 36  l9 24 

l10 3  l10 15  l10 21  l10 12 

 
Now the length composition of each landing is calculated. In the case of Landing 1, 

since two different boxes were sampled, the length compositions of Box 1.1 and Box 
1.2 are summed (Table 7.4). 
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TABLE 7.4 
Length composition by landing (boxes 1.1 and 1.2 are summed) 

Box 1.1 + Box 1.2  Box 2.1  Box 3.1 

Classes  
(cm) 

Frequency  Classes  
(cm) 

Frequency  Classes 
 (cm) 

Frequency 

l1 12  l1 24  l1 24 

l2 24  l2 30  l2 42 

l3 105  l3 69  l3 72 

l4 126  l4 90  l4 90 

l5 162  l5 90  l5 111 

l6 159  l6 81  l6 114 

l7 141  l7 60  l7 81 

l8 75  l8 45  l8 30 

l9 54  l9 36  l9 24 

l10 18  l10 21  l10 12 

 
The frequencies of the boxes are raised to the total of each landing. The raising 

factor, RF, is the quotient of the total number of boxes landed by the total number of 
boxes sampled. Therefore the factors are: 

 

10
2
20

sampled boxes ofnumber  total
landed boxes ofnumber  total

  RF 1 Landing ===  

10
1

10
sampled boxes ofnumber  total
landed boxes ofnumber  total

  RF 2 Landing ===  

8
1
8

sampled boxes ofnumber  total
landed boxes ofnumber  total

  RF 3 Landing ===  

Table 7.5 shows the results of this raising. 

TABLE 7.5 
Length composition of the landings sampled 

Landing 1  Landing 2  Landing 3 

Classes  
(cm) 

Frequency  Classes 
(cm) 

Frequency  Classes 
(cm) 

Frequency 

l1 120  l1 240  l1 192 

l2 240  l2 300  l2 336 

l3 1050  l3 690  l3 576 

l4 1260  l4 900  l4 720 

l5 1620  l5 900  l5 888 

l6 1590  l6 810  l6 912 

l7 1410  l7 600  l7 648 

l8 750  l8 450  l8 240 

l9 540  l9 360  l9 192 

l10 180  l10 210  l10 96 

 
The length compositions of the sampled landings are now summed as shown in 

Table 7.6.  
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TABLE 7.6 
Sum of the length composition of landings 

Landing 1 + Landing 2 
+ Landing 3 

Classes 
(cm) 

Frequency 

l1 552 

l2 876 

l3 2316 

l4 2880 

l5 3408 

l6 3312 

l7 2658 

l8 1440 

l9 1092 

l10 486 

 

In order to raise the length composition to the total landing of the day, a 
factor, RF, that is, the quotient between the total number of landings during the 
day by the total number of landings sampled, is needed. Therefore the raising 
factor would be: 

10
3

30
sampled daythat  of landings ofnumber  total

day the during landings ofnumber  total
  RF ===  

Table 7.7 gives the final result. 
 

TABLE 7.7 
Length composition for the total landings of trawlers in Port A 
on January 1 

Total landings of day 

 
Classes 

(cm) 
Frequency 

l1 5520 

l2 8760 

l3 23160 

l4 28800 

l5 34080 

l6 33120 

l7 26580 

l8 14400 

l9 10920 

l10 4860 

 
The length composition of the total landings from the stratum (Trawlers, Port A 

and January) is obtained applying procedures similar to the ones just described to all 
the days sampled, summing them, and then raising the total length composition to the 
whole month. In this last raising, the raising factor is the ratio between the total 
number of days with landings in the month and the number of days sampled, 

sampled days ofNumber 
month the during landings  withdays ofNumber 

  RF =  
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The total length composition of Sardinella aurita landings during a month, and 
during a year are obtained adding together the raised length compositions for the 
month or for the year. 

7.4 FINAL COMMENTS 
• Sampling theory provides an estimator of the length composition of the 

landings. 
• Sampling theory indicates the expected value, the sampling variance and the 

sampling distribution of the values of the estimator, as well as the relation 
between these and the parameters of the population. 

• Our first objective with this sampling scheme was to obtain the annual length 
composition of a resource (Sardinella aurita) landed in a country. So we 
presented the calculations only for one day and did not extend the calculations 
to all strata.  

• Finally we are not trying to apply any other designs or to calculate sampling 
variances or errors of the estimators. 
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8. Exercises 

8.1 EXERCISE 1 
 

 

Group I – Small samples 
During the year 2000, a sample of Portuguese landings of hake (Merluccius merluccius) 
were recorded. Catches, in tonnes were the following: 
 
Catches (in tonnes) of a sample of Portuguese landings of hake 

48 372 174 165 130 473 148 

39 474 155 288 176 277 349 

301 508 339 114 211 477 170 

304 255 409 267 274 166 211 

299 353 192     

 
1. Calculate: 

a) The sample size. 
b) The range of the sample values. 
c) The median. 
d) The mean. 
e) The total value. 
f) The sample variance. 
g) The sample standard deviation. 
h) The sample coefficient of variation. 

Group II – Large samples 
A sample of 195 individuals was extracted from the catch of a trawler. The individual 
total lengths were measured to the cm below. Registered values were the following: 
 

Total length (in cm) of a catch 

24 15 16 17 18 19 20 30 26 23 22 24 27 22 21 

24 20 21 17 18 19 20 30 26 28 22 24 27 22 21 

19 20 21 17 18 19 20 30 26 28 22 24 23 22 21 

19 20 21 29 18 19 20 30 27 28 19 24 23 22 21 

19 20 21 18 30 19 20 30 27 28 19 24 23 26 21 

25 20 21 25 20 19 19 26 27 28 19 24 23 26 21 

25 20 21 25 20 21 19 26 27 28 29 24 23 26 21 

25 20 21 25 20 21 19 22 27 28 29 24 23 26 18 

25 20 23 18 20 21 19 22 31 28 29 24 23 22 18 

19 23 23 18 20 21 19 22 31 28 29 24 23 22 18 

19 23 23 18 20 21 19 22 26 20 29 26 21 27 22 

19 22 23 18 20 21 19 19 22 20 20 20 21 27 22 

26 26 23 27 23 27 23 19 21 25 25 25 25 25 22 
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1. From this data calculate the mean and the variance. 
2. Choose an adequate class interval and build up a table with the length 

frequencies distribution. 
3. From the table built in 2., calculate: 

a) The sample mean and sample variance. Compare these results with the 
ones obtained in 1. 

b) Three statistics of location. 
c) Three statistics of dispersion. 
d) Number of individuals with a length less than 20 cm. 
e) Percentage of individuals with a length equal to or greater than 20 cm. 
f) Percentage of observations between 23 and 25 cm. 
g) The value that corresponds to a length equal to or greater than 45% of 

all the observations. 
h) The value that corresponds to a length smaller than 21% of all the 

observations. 
i) The quantile of order 96%. 

8.2 EXERCISE 2 

Group I – Relative frequencies 
In certain ports, the fishing gears used by the vessels were classified into “purse 
seines”, “trawls”, “handlines”, “longlines” and “trammel nets”. We also know the 
types of the fishing vessels, that is, “small boats without engine”, “small boats with 
engine”, “purse seiners” and “stern trawlers”. The information about the numbers of 
vessels according to boat type and gear used is summarized in Table 8.1. 
 

TABLE 8.1 
Numbers of vessels according to the type of boat and gear used 

Type of  
vessel 

Fishing gear Total 

 Purse seines Trawls Handlines Longlines Trammel nets  

Small boats 
without engine 

15 0 22 20 8 65 

Small boats with 
engine 

15 4 23 40 17 99 

Purse seiners 50 0 0 0 0 50 

Stern Trawlers 0 51 0 0 0 51 

Total 80 55 45 60 25 265 

 
1. Calculate: 

a) Relative frequencies of number of boats by fishing gear. 
b) Percentage of vessels that operate handlines. 
c) Percentage of vessels that operate trammel nets. 

2. Calculate: 
a) Relative frequency of boats not operating trammel nets. 
b) Percentage of boats operating purse seines or longlines. 
c) Relative frequency of boats that do not operate with handlines, nor 

trammel nets, nor longlines. 
d) Proportion of the total fleet that are small boats without engine. 
e) Proportion of the total fleet that are small boats with engine. 
f) Proportion of the total fleet that are small boats. 
g) Check that the proportion of 2.f) is the sum of 2.d) plus 2.e). 
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3. Calculate: 
a) Proportion of small boats without engine that operate handlines. 
b) Proportion of the total fleet that are small boats without engine. 
c) Proportion of the total fleet that are small boats without engine 

operating handlines. 
d) Check that the proportion of 3.c) is the product of 3.a) times 3.b). 

4. Calculate: 
a) The percentage of small boats without engine operating handlines or 

longlines. 
b) The percentage of purse seiners operating purse seines. 
c) The relative frequency of vessels that are not purse-seiners. 
d) The percentage of small boats with engine that operate trawls. 
e) The percentage of the fleet that fishes with traps. 

Group II – Properties of probabilities 
Consider Table 8.1 presented in Group I. 

We want to choose one boat, randomly, out of the 265 boats. Every boat has the 
same probability of being selected.  

1. What is the probability that the boat operates: 
a) Handlines. 
b) Trammel nets. 
c) Does not operate trammel nets. 
d) Operates purse-seines or longlines. 
e) Does not operate handlines, nor longlines neither trammel nets. 

2. What is the probability that the boat will be: 
a) A small boat without engine. 
b) A small boat with engine. 
c) A small boat. 
d) Show that the probability 2.c) is equal to the sum of probability 2.a) plus 

the probability 2.b). 
3. Calculate the probability of the boat being: 

a) A purse seiner. 
b) A stern trawler. 
c) Neither a purse seiner nor a stern trawler. 
d) Show that probability 3.c) is equal to probability 2.c). 

4. Calculate: 
a) If we choose a boat from the small boats without engine, what is the 

probability that she operates with handline? 
b) If we choose a boat out of the total fleet what is the probability that she 

is a small boat without engine? 
c) If we choose a boat out of the total fleet what is the probability that she 

is a small boat without engine operating with handline? 
d) Check that the probability of 6.c) is equal to the product of the 

probability of 4.a) times the probability of the 4.b). 

Group III – Normal distribution 
A random variable X is normally distributed with a mean μ = 20.6 and a standard 
deviation σ = 2. 

1. Calculate: 
a) The probability of X being less than or equal to 18. 
b) The probability of X being greater than 18. 
c) The probability of X being less than 25. 
d) The probability of X being between 18 and 25. 
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2. Calculate x such that: 
a) Prob {X ≤ x} = 0.8413. 
b) Prob {X ≥ x} = 0.9772. 
c) Prob {X < x} = 0.9986. 
d) x is the 95% quantile of the distribution of X. 
e) x is the median of the distribution of X. 

Group IV – The standard normal distribution 
The random variable Z has a standard normal distribution.  

1. Calculate: 
a) The probability of the values of Z being between -1 and 1. 
b) The probability of the values of Z being between -2 and 2. 
c) The probability of the values of Z being between -3 and 3. 

2. Calculate: 
a) The z1 value for which the probability that the values of the variable Z 

will be smaller than z1 is 2.5% (Prob{Z<z1}=0.025). 
b) The z2 value for which the probability of the variable Z being smaller 

than z2 is 97.5% (Prob{Z<z2}=0.975). 
3. Consider the interval limited by z1 and z2 of the previous exercises 2.a)  

and 2.b). 
a) Compute the probability that the variable Z will be within the interval  

(z1, z2). 
b) Repeat exercise 3.a) but with (Prob{Z<z1}= 0.004) and 

(Prob{Z<z2}= 0.954). 
c) Repeat exercise 3.a) but with probabilities 0.012 and 0.962. 
d) Note that the Prob{z1 ≤ Z ≤ z2} is equal to 0.950 in the exercises 3.a), 3.b) 

and 3.c). Verify that the smallest of these intervals is the interval with 
symmetrical values, z1 and z2. 

Group V – t-student distribution 
Using the t-student distribution: 
1. Calculate: 

a) Prob {t(10) >1.812}. 
b) Prob {t(19) <1.729}. 
c) Prob {-1.34 < t(15) < +2.602}. 

2. Calculate the value of a that makes the following expressions true:  
a) Prob {t(8) < a} = 0.95. 
b) Prob {t(26) > a} = 0.99. 
c) Prob {-a < t(20) < +a} = 0.95. 

The general result of Group IV 3.d) is also true for the t-student distribution. 
3. Calculate the a value such that: 

a) Prob {t < a} = 0.95, with 40, 60, 120 and infinite degrees of freedom. 
b) Compare the values a obtained in 3.a) with the corresponding a values if 

the probability distribution of 3.a) was replaced with the Z-distribution, 
i.e., Prob {Z < a} = 0.95. 

Group VI – Bernoulli distribution 
Consider the discrete variable X which takes the value 1 with probability P= 0.18 and 
the value 0 with probability Q= 0.82. 

1. Show that the expected value of the random variable X is equal to P. 
2. Show that the variance of the random variable X is equal to PQ. 
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8.3  EXERCISE 3  
An important element in fish stock assessment is the knowledge of the total catch 
landed for each of the main fisheries and species. The total catch per fishing trip is an 
element in this assessment, but given the irregular pattern of port calls and the low 
numbers of port samplers, it is difficult to get many records.  

In a given fishing port, the port samplers have been instructed to record the total 
shrimp catch of at least three landings every week, which they do using a pre-
determined and fixed sampling strategy. 

Group I – Sample 
In the first week of May 2000, they recorded the catch of three shrimp trawlers. The 
data collected is shown in the following table.  
 

Shrimp landings recorded in three landings  
(first week of May 2000) 

Landing no. 1 2 3 

Shrimp landing (Kg) 538 435 1352 

 
1. Calculate, from the sample and the knowledge of total number of landings: 

a) The mean shrimp landing per sampled fishing trip. 
b) The variance of the sampled landings. 
c) The standard deviation of the sampled landings. 

2. By the end of the week, and from the port records, the scientist in charge of the 
sampling programme learned that a total of 10 landings of shrimp were done 
during that week. Guess the total amount of shrimp landed in that week. 

Group II – Population 
A few months later, for the purpose of this exercise, an agreement with the fishing 
companies gave the scientist access to the data from all landings actually done on that 
week (table below). These data represent thus the population of shrimp landings done 
during that week. 
 
Population of all shrimp landings (in kg) 

Landing no. 1 2 3 4 5 6 7 8 9 10 

Shrimp landing 538 0 906 442 598 0 435 859 1352 711 

 
1. Using these data, calculate the following parameters: 

a) The population mean, that is, the average shrimp landing per fishing trip 
during that week. 

b) The population variance and the modified variance of the landings. 
c) The standard deviation of the landings. 
d) The total amount of shrimp landed. 
e) The proportion of all landings below 400 Kg. 
f) The relative frequency of landings between 400 and 800 Kg. 

2. Build at least 10 samples of 3 landings each that could have been selected from 
that population. 

3. Repeat the calculations done on number 1. a) to d), for each of these samples. 
4. Compare the values of the statistics obtained in the previous item with the 

values of the corresponding population parameters. 
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Group III – Sampling 
Table 8.2 is presented at the end of this exercise with data from the 120 different 
samples of 3 landings that could have been taken from the 10 landings that actually 
took place during that week. 

Using these data, and adopting the sample mean landing as the estimator, Ŷ , of the 
population mean landing. 

1. Plot the histogram of the sampling distribution of the estimator, Ŷ , using an 
appropriate class interval. 

2. Calculate from the data of the sampling distribution of the samples presented in 
Table 8.2: 

a) The 120 values of the estimator. 

b) The expected value of the estimator, ⎥⎦
⎤

⎢⎣
⎡YE ˆ . 

c) The sampling variance of the same estimator, ⎥⎦
⎤

⎢⎣
⎡YV ˆ . 

d) The error, 
Ŷ

σ  of the estimator. 

3. Compare the expected value obtained in 2.b) with the population calculated in 
Group I − 1.a). 

4. Using the results obtained in previous exercises, check the theoretical 
expression: 

 

 
n
S

N
n

YV
2

)1(ˆ −=⎥⎦
⎤

⎢⎣
⎡   

 
5. Calculate: 

a) The percentiles of the sampling distribution of the estimator with the 
following orders: 
i) 1.0%. 
ii) 2.5%. 
iii) 3.5%. 
iv) 50.0%. 
v) 95.0%. 
vi) 96.0%. 
vii) 97.5%. 
viii) 98.5%. 

b) Four intervals that encompass 95% of all possible sample means. 
c) The width of the four intervals. 

6. What is the shortest of these intervals that holds 95% of all possible sample 
means. 

7. Considering that the port samplers could have taken any of the possible 
samples, calculate the probability of getting a sample of 3 landings with an 
average landing. 

a) Below or equal to 600 Kg. 
b) Above 600 Kg. 
c) Between 199 and 953 Kg. 

8. Calculate: 
a) The value l such that there is a probability of 95% of getting a sample 

with an average landing smaller than l. 
b) Two values l1 and l2 that there is a probability of 95% of getting a sample 

with an average landing between l1 and l2. 
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TABLE 8.2 
All possible samples of 3 landings that could have been taken  from the 10 landings that actually took place 
in that week 

No. Landing 1 Landing 2 Landing 3 No. Landing 1 Landing 2 Landing 3 No. Landing 1 Landing 2 Landing 3 

1 538 0 906 41 0 906 859 81 906 435 1123 

2 538 0 230 42 0 906 1123 82 906 435 711 

3 538 0 598 43 0 906 711 83 906 859 1123 

4 538 0 20 44 0 230 598 84 906 859 711 

5 538 0 435 45 0 230 20 85 906 1123 711 

6 538 0 859 46 0 230 435 86 230 598 20 

7 538 0 1123 47 0 230 859 87 230 598 435 

8 538 0 711 48 0 230 1123 88 230 598 859 

9 538 906 230 49 0 230 711 89 230 598 1123 

10 538 906 598 50 0 598 20 90 230 598 711 

11 538 906 20 51 0 598 435 91 230 20 435 

12 538 906 435 52 0 598 859 92 230 20 859 

13 538 906 859 53 0 598 1123 93 230 20 1123 

14 538 906 1123 54 0 598 711 94 230 20 711 

15 538 906 711 55 0 20 435 95 230 435 859 

16 538 230 598 56 0 20 859 96 230 435 1123 

17 538 230 20 57 0 20 1123 97 230 435 711 

18 538 230 435 58 0 20 711 98 230 859 1123 

19 538 230 859 59 0 435 859 99 230 859 711 

20 538 230 1123 60 0 435 1123 100 230 1123 711 

21 538 230 711 61 0 435 711 101 598 20 435 

22 538 598 20 62 0 859 1123 102 598 20 859 

23 538 598 435 63 0 859 711 103 598 20 1123 

24 538 598 859 64 0 1123 711 104 598 20 711 

25 538 598 1123 65 906 230 598 105 598 435 859 

26 538 598 711 66 906 230 20 106 598 435 1123 

27 538 20 435 67 906 230 435 107 598 435 711 

28 538 20 859 68 906 230 859 108 598 859 1123 

29 538 20 1123 69 906 230 1123 109 598 859 711 

30 538 20 711 70 906 230 711 110 598 1123 711 

31 538 435 859 71 906 598 20 111 20 435 859 

32 538 435 1123 72 906 598 435 112 20 435 1123 

33 538 435 711 73 906 598 859 113 20 435 711 

34 538 859 1123 74 906 598 1123 114 20 859 1123 

35 538 859 711 75 906 598 711 115 20 859 711 

36 538 1123 711 76 906 20 435 116 20 1123 711 

37 0 906 230 77 906 20 859 117 435 859 1123 

38 0 906 598 78 906 20 1123 118 435 859 711 

39 0 906 20 79 906 20 711 119 435 1123 711 

40 0 906 435 80 906 435 859 120 859 1123 711 
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8.4 EXERCISE 4  

Group I – Estimation of the population mean 
Consider a Population with Y  = 40, S2 = 25 and N = 2000. A sample of 21 elements 
was selected from the population, with a simple random sampling design, without 
replacement. 

Table below presents the values selected: 
 

Sample data 

30 42 38 38 41 42 42 46 36 42 34 35 40 35 39 38 39 40 37 46 45 

 
1. Compute the following statistics from the sample: 

c) The mean y . 
d) The variance s2. 
e) The standard deviation s. 

2. Adopt y  as an estimator of the population mean, μ, and estimate: 
a) The population mean. 
b) The estimator is biased? 
c) The sampling variance of y . 
d) The error of y . 
e) A 95% confidence interval of μ. 

Group II – Estimation of the population total 
Consider a population of 20 purse seiners landing their catches at a certain port during 
one day.  

The vessels are numbered from 1 to 20 according to the arrival time. 
1. Describe a procedure to select a simple random sample of 4 numbered vessels. 
2. Consider the following possible sample:  

Vessels number 3, 15, 10 and 6 
At the arrival of the vessels it was verified that their corresponding landings 
were: 
Landings (Kg) 17.9, 2.8, 6.5 and 3.5 

a) Choose an estimator of the total amount of fish landed in the port 
during this day. 

b) Indicate the sampling distribution of that estimator and present the 
formulae to obtain the expected value and the expected sampling 
variance. 

3. Based on the sample presented in 2., estimate: 
a) The total landing. 
b) The sampling variance. 
c) The error of the estimate. 
d) A 95% confidence interval for the population total landings. 

4. Estimate the approximate size of the sample necessary if one would like to have 
an error 10% smaller than the one previously calculated in 3.c). 

Group III – Proportions 
Consider a population of 100 shrimps in a box. 

The aim is to estimate the proportion, P, of females within the box and the total 
number of females within the box. It was decided to select a simple random sample of 
size n = 30, and to adopt as estimator of P, the proportion, p, of females in the sample. 
The number of females in the sample was 12. 
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1. Estimator of the proportions. 
a) Calculate the proportion of females in the sample. 
b) Calculate the sample variance. 
c) Write, according to the sampling theory, the expressions for the 

expected value of p, and for the sampling variance of p. 
d) Estimate the sampling variance of p. 
e) Estimate the error of p. 
f) Estimate the 95% confidence interval for the proportion P applying the 

binomial distribution. 
g) Estimate the 95% confidence interval for the proportion P applying the 

normal approximation to the binomial distribution. 
2. Estimator of total number with proportions. 

a) Estimate the total number of females in the population. 
b) Estimate the sampling variance and the error of the total number. 
c) Estimate the 95% confidence interval for the total number of females of 

the population applying the binomial distribution. 
d) Estimate the 95% confidence interval for the total number of females of 

the population applying the normal approximation to the binomial 
distribution. 

8.5 EXERCISE 5  
Group I – Landing ports 
Consider a purse seiner fleet landing sardines in a given fishing port. A stratified 
sampling design is to be applied in order to estimate the total landings from these 
vessels. The composition of the fleet is given by Table 8.3. 

TABLE 8.3 
Number of vessels by power classes of a purse seiner fleet 

Power class 
(HP) 

Number of vessels 

100- 10 

200- 50 

>300 20 

Total 80 

 
1. A random stratified sampling design will be applied considering the 3 HP 

categories as strata. The total size of the sample will be 16 vessels allocated 
proportionally to the number of vessels in each stratum. Calculate the number 
of vessels to be sampled in each stratum. 

2. The landing of sardines of each sampled vessel was registered. Table 8.4 
summarises the sample values of total landings and coefficients of variation 

TABLE 8.4 
Total landings of sardines and coefficient of variation by vessel  
power classes 

Power class  
(HP) 

Total landings 
(tonnes) 

CV 

100- 4 0.98 

200- 60 0.73 

>300 20 0.68 

 
a) Calculate the average landing per vessel in each category. 
b) Calculate the variance between total landings within each stratum. 
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3. Present estimates for each stratum of: 
a) Mean landing. 
b) Expected sampling variance of the estimator of the mean. 
c) Error of the estimator of the mean. 
d) Total landing. 
e) Expected variance of the estimator of total landing. 
f) Error of the estimator of total landing. 

4. Present estimates for the total fleet of: 
a) Mean landing. 
b) Expected variance of the estimator of the mean. 
c) Error of the estimator of the mean. 
d) Total landing. 
e) Expected variance of the estimator of total landing. 
f) Error of the estimator of total landing. 

Group II – Surveys 
A research vessel has carried out a demersal trawl survey on the continental shelf and 
on the slope off Libya. The goal of the survey was to estimate the biomass of the 
European hake (Merluccius merluccius) in the area.  

The survey was designed as a stratified random survey. The study area was divided 
into 10 strata, according to two geographical areas and five depth levels. Each haul 
was done at a speed of 3 knots, with one-hour duration. The trawl net had a 
horizontal opening of 50 m. It is assumed that the vertical opening was enough to 
catch all the hakes that occur in the trawling area. 

Table 8.5 presents the two areas and their respective depth zones, the area of each 
stratum in square nautical miles (nm2), the number of hauls carried out, the average 
catch and the standard deviation within each stratum. The sampling fraction is 
negligible. 

TABLE 8.5 
Characteristics of the survey area 

Depth  
(m) 

Area 
(mn2) 

Number of trawls Average catches 
(kg) 

Standard deviation of 
catches 

(Kg) 

Area 1 

100-200 2085 12 5 1.4 

200-300 755 13 28 10.5 

300-400 660 9 134 47.8 

400-500 540 10 43 14.7 

500-600 880 11 13 3.6 

Area 2 

100-200 1252 11 49 14.5 

200-300 500 14 122 27.7 

300-400 350 8 55 14.0 

400-500 445 10 64 15.7 

500-600 450 9 57 16.4 

 
1. For each stratum estimate: 

a) An index of total biomass of European hake. 
b) The error of the estimator. 
c) The coefficient of variation of the estimator. 
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2. For the total area estimate: 
a) Total biomass of European hake. 
b) The error of the estimator. 
c) The 95% confidence limits of the total biomass in the area. 

3. Consider that only 100 trawls can be carried out during the next year’s survey. 
Under these conditions: 

a) Calculate the proportional allocation of the total 100 trawls to the strata 
areas. 

b) Calculate the strata allocation that gives the maximum precision in the 
estimation of the total abundance. 

8.6 EXERCISE 6  
Group I - Selection of the clusters 
Along the coast of a region, divided into 5 provinces, 35 landing places were 
identified. The landing places and their number of vessels are presented in Table 8.6. 
The sizes of the landing places were considered to be the number of vessels in each 
place. 

With the objective of estimating the total landing of the region, it was decided to 
select 15 landing places. 

TABLE 8.6 
Number of vessels of each province, by landing place 

Landing Place Number of Vessels Landing Place Number of Vessels 

- Province 1 - - Province 4 - 

1 9 19 28 

2 30 20 60 

3 12 21 16 

4 9 22 24 

5 9 23 36 

6 4 24 20 

7 5 25 52 

8 10 26 13 

  27 35 

 

- Province 2 - - Province 5 - 

9 30 28 13 

10 150 29 48 

11 41 30 14 

12 18 31 16 

13 8 32 12 

14 27 33 13 

15 4 34 11 

  35 38 

 

- Province 3 -   

16 25   

17 5   

18 15   

Total 860 
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1. Select the 15 clusters with equal probabilities.  
2. Select the 15 clusters with probabilities proportional to the cluster sizes. 
3. Considering the 5 provinces as strata, select 3 clusters from each province with 

probabilities proportional to the sizes of the clusters of each stratum. 

Group II – Selection with equal probabilities 
Consider a population divided into 23 clusters. Aiming at estimating the total value of 
the population, it was decided to select 5 clusters using the simple random criteria 
with replacement. Table 8.7 presents a summary of the obtained data. 
 

 TABLE 8.7 
Sample data 

Clusters Sizes of the clusters Total values of the clusters 

11 50 1244 

7 50 1324 

2 50 1335 

14 50 1300 

9 50 1270 

Total 250 6473 

 
1. Indicate: 

a) The number of clusters in the population. 
b) The number of clusters in the sample. 
c) The number of elements in cluster 14. 

2. Calculate: 
a) The sample mean value per cluster. 
b) The sample mean value per element. 
c) The sample variance between clusters.  

3. Choose an estimator of the total value of the population and estimate: 
a) The expected value of the estimator. 
b) The sampling variance of the estimator. 
c) The error of the estimator. 

Group III – Selection with probabilities proportional to sizes, with 
replacement 
Consider a population of fishing vessels divided into 23 clusters with an unequal 
number of vessels, which are taken as cluster sizes. With the aim of estimating the 
total landings, Y, of the population, a sample of 5 sites was selected using a random 
criterion with probabilities proportional to the size of the cluster and with 
replacement. Table 8.8 summarises the sample data. 

TABLE 8.8 
Sample data 

Clusters sampled Number of vessels Mean landings per vessel, 

y  

1 30 23.78 

4 32 24.46 

8 20 25.05 

13 20 24.15 

18 27 23.70 

Total fleet 822 -- 
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1. Adopting the Hansen-Horowitz estimator of the total landing, estimate: 
a) The total value of the population. 
b) The error of your estimator. 

2. Adopting the Horvitz-Thompson estimator of the total landing, estimate: 
a) The total landing of all the vessels. 
b) The sampling variance of your estimator and its error. 
c) An approximate 95% confidence interval of the total landing. 

 

8.7 EXERCISE 7   
Group I – Selection with simple random sampling at both stages 
A two-stage sampling has been carried out in order to estimate the total landings from 
the demersal longline fleet. During the first stage 5 vessels out of 58 have been 
sampled with a simple random criteria without replacement. During the second stage 
a sample of 50 fish boxes was drawn (by simple random criteria without replacement) 
from each selected vessel. The sample information of this two-stage sampling is 
summarized in Table 8.9. 

1. Estimate: 
a) The total weight of fish landed. 
b) The error of the estimation. 

2. Proportions 
 Consider that in the 5 vessels sampled, 10, 15, 7, 5 and 20 boxes of fish were 

observed among the boxes sampled in vessels 1, 2, 3, 4 and 5, respectively 
(Table 8.7). 

a) Estimate the proportion of boxes in the total landings. 
b) Estimate the error of the estimation. 

TABLE 8.9 
Sample data 

Vessel Total number of boxes  
in the vessels 

Number  
of boxes sampled 

Total weight  
of the sample  

(Kg) 

SD of box weight  
in each vessel 

(Kg) 

1 200 50 990 2.02 

2 100 50 1405 1.90 

3 250 50 1440 2.14 

4 90 50 1330 2.21 

5 230 50 1105 3.24 

 

Group II – First selection – unequal probabilities with replacement. Second 
stage – simple random sampling with replacement 
A two-stage sampling has been undertaken with the aim of estimating the total weight 
of shrimp landed.  

During the first stage, 5 out of 58 trawlers were randomly sampled with 
replacement, and unequal probabilities. During the second stage, a sample of 50 boxes 
was simple randomly drawn from each of the vessels selected in the first stage. The 
sample information is summarized in Table 8.10. 
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TABLE 8.10 
Sample data 

Sampled vessel 
number 

Probability of the 
vessel being sampled

Total number of 
boxes 

Number of 
boxes sampled

Total weight of 
the sample  

(Kg) 

SD of box weight 
in each vessel 

(Kg) 

1 0.02 250 50 24.80 1.20 

2 0.03 300 50 26.48 1.19 

3 0.01 100 50 26.70 1.32 

4 0.04 150 50 26.00 1.44 

5 0.10 200 50 25.40 2.18 

Fleet total  12000    

 
1. Estimate the total weight of shrimps landed. 
2. Estimate the error of the estimation. 
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9. Solutions 

Solutions for the exercises in Chapter 8. 
 
Exercise Group No. Question Answer 

8.1 I 1-a) The sample size 31 

   The range of the sample values 469 cm 

   The median 267 cm 

   The mean 261.9 cm 

   The total value 8118 cm 

   The sample variance 15636.5 

   The sample standard deviation. 125.0 cm 

   The sample coefficient of variation. 0.48 

8.1 II 1 From this data calculate the mean and 
the variance. 

Mean(x) = 23.2 cm 
Var(x) = 12.5 

  2 Choose an adequate class interval and 
build up a table with the length 
frequencies distribution 

Class interval chosen – 1 cm 
Because it is simple, and gives an adequate 
number of classes (between 15 and 30) 

  3-a) The sample mean and sample variance. 
Compare this results with the ones 
obtained in 1 

Sample mean = 23.2 cm 
Sample variance = 12.5 
The values of the statistics are equal. 
Since the class interval used was the same as 
the resolution of the original measurements, 
no information was lost. 

  3-b) Three statistics of location Mean = 23.2 cm 
Median = 22.5 cm 
Mode = 20 cm 

  3-c) Three statistics of dispersion Inter Quartile Range = 5.5 cm 
Variance = 12.49 
CV = 0.15 

  3-d) Number of individuals with a length less 
than 20 cm 

41 

  3-e) Percentage of individuals with a length 
equal to or greater than 20 cm 

79% 

  3-f) Percentage of observations between 23 
and 25 cm 

15% 

  3-g) The value that corresponds to a length 
equal to or greater than 45% of all the 
observations 

21.5 cm 

  3-h) The value that corresponds to a length less 
than 21% of all the observations 

26.5 cm 

  3-i) The quantile of order 96% 30.5 cm 

8.2 I 1-a)  Relative frequencies of number of boats 
by fishing gear 

Purse-seines: 0.3 
Trawls: 0.21 
Handlines: 0.17 
Longlines: 0.23 
Trammel nets: 0.09 
Purse-seines: 0.3 

  1-b) Percentage of vessels that operate 
handlines 

17% 

  1-c) Percentage of vessels that operate 
trammel nets 

9% 



 76 Sampling methods applied to fisheries science: a manual

 
Exercise Group No. Question Answer 

  2-a) Relative frequency of boats not operating 
trammel nets 

0.91 

  2-b) Percentage of boats operating purse seines or 
longlines 

53% 

  2-c) Relative frequency of boats that do not operate 
with handlines, nor trammel nets, nor longlines 

0.51 

  2-d) Proportion of the total fleet that are small boats 
without engine 

0.25 

  2-e) Proportion of the total fleet that are small boats 
with engine 

0.37 

  2-f) Proportion of the total fleet that are small boats 0.62 

  2-g) Check that the proportion of 2.f) is the sum of 
2.d)  
plus 2.e) 

0.62 = 0.25+0.37 

  3-a) Proportion of the small boats without engine 
that operate handlines 

0.34 

  3-b) Proportion of the total fleet that are small 
boats without engine 

0.25 

  3-c) Proportion of the total fleet that are small 
boats without engine operating handlines 

0.08 

  3-d) Check that the proportion of 3.c) is the product 
of 3.a) times 3.b) 

0.08 = 0.34×0.25 

  4-a) Percentage of small boats without engine 
operating handlines or longlines 

65% 

  4-b) Percentage of purse seiners operating purse 
seines 

100% 

  4-c) Relative frequency of vessels that are not purse-
seiners. 

81% 

  4-d) Percentage of small boats with engine that 
operate trawls 

4% 

  4-e) Percentage of the fleet that fishes with traps 0% 

8.2 II 1-a) Probability that the boat operates handlines 0.17 

  1-b) Probability that the boat operates Trammel nets 0.09 

  1-c) Probability that the boat does not operate 
trammel nets 

0.91 

  1-d) Probability that the boat operates purse-seines 
or longlines. 

0.53 

  1-e) Probability that the boat does not operate 
handlines, nor longlines nor trammel nets 

0.51 

  2-a) Probability that the boat will be a small boat 
without engine 

0.245 

  2-b) Probability that the boat will be a small boat 
with engine 

0.374 

  2-c) Probability that the boat will be a small boat 0.62 

  2-d) Show that the probability 2.c) is equal to the 
sum of probability 2.a) plus the probability 2.b) 

0.619 = 0.245+0.374 

  3-a) Probability of the boat being a purse seiner 0.189 

  3-b) Probability of the boat being a stern trawler 0.192 

  3-c) Probability of the boat not being a purse seiner 
nor a stern trawler 

0.619 

  3-d) Show that probability 3.c) is equal to 
probability 2.c) 

Shown from the 
comparison of the 
values 

  4-a) If we choose a boat from the small boats 
without engine, what is the probability that she 
operates with handline? 

0.338 

  4-b) If we choose a boat out of the total fleet what 
is the probability that she is a small boat 
without engine? 

0.245 
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  4-c) If we choose a boat out of the total fleet what is the 
probability that she is a small boat without engine 
operating with handline? 

0.083 

  4-d) Check that the probability of 4.c) is equal to the 
product of the probability of 4.a) times the probability 
of the 4.b). 

0.083 = 
0.338×0.245 

8.2 III 1-a) Probability of X being less than or equal  
to 18 

0.097 

  1-b) Probability of X being greater than 18 0.903 

  1-c) Probability of X being less than 25 0.986 

  1-d) Probability of X being between 18 and 25 0.889 

  2-a) x such that Prob {X ≤ x} = 0.8413 22.60 

  2-b) x such that Prob {X ≥ x} = 0.9772 16.60 

  2-c) x such that Prob {X < x} = 0.9986 26.58 

  2-d) x such that x is the 95% quantile of the distribution of X 23.89 

  2-e) x such that x is the median of the distribution of X 20.60 

8.2 IV 1-a) Probability of the values of Z being between -1 and 1 0.683 

  1-b) Probability of the values of Z being between -2 and 2 0.954 

  1-c) Probability of the values of Z being between -3 and 3 0.997 

  2-a) The z1 value for which the probability that the values of 
the variable Z will be smaller than z1 is 2.5% (Prob{Z<z1} 
= 0.025) 

-1.96 

  2-b) The z2 value for which the probability of the variable Z 
being smaller than z2 is 97.5% (Prob{Z<z2} = 0.975) 

1.96 

  3-a) Probability that the variable Z will be within the interval 
(z1, z2) given by (Prob{Z<z1} = 0.025) 
(Prob{Z<z2} = 0.975) 

0.950 

  3-b) Probability that the variable Z will be within the interval 
(z1, z2) given by (Prob{Z<z1} = 0.004) 
Prob{Z<z2} = 0.954). 

0.950 

  3-c) Probability that the variable Z will be within the interval 
(z1, z2) given by (Prob{Z<z1} = 0.012) 
(Prob{Z<z2} = 0.962) 

0.950 

   Verify that the smallest of these intervals is the interval 
with symmetrical values, z1 and z2 

Width 3-a) = 1.96-(-1.96) = 3.92 
Width 3-b) =1.68-(-2.65) = 4.33 
Width 3-c) = 1.77-(-2.26) = 4.03 

8.2 V 1-a) Prob {t(10) >1.812}  0.050 

  1-b) Prob {t(19) <1.729} 0.950 

  1-c) Prob {-1.34 < t(15) < +2.602} 0.890 

  2-a) a such that Prob {t(8) < a} = 0.95 1.860 

  2-b) a such that Prob {t(26) > a} = 0.99 -2.479 

  2-c) a such that Prob {-a < t(20) < +a} = 0.95 2.086 

  3-a) a such that Prob {t < a} = 0.95, with 40, 60, 120 and 
infinite degrees of freedom 

40 df: a = 1.684 
60 df: a = 1.671 
120 df: a = 1.658 
∞ df: a = 1.645 

  3-b) Compare a obtained in 3.a) with a such that  
Prob {Z < a} = 0.95 

a(Z) = 1.645 = a(t∞) 
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Exercise Group No. Question Answer 

    

8.2 VI 1 Show that the expected value of the random 
variable X is equal to P 

 

     

     

     

     

   
2 

 
Show that the variance of the random
variable X  
is equal to PQ 

 

     

     

     

8.3 I 1-a) Mean shrimp landing per sampled 
fishing trip 

698.7 Kg 

  1-b) Variance of the sampled landings 137 696 

  1-c) Standard deviation of the sampled 
landings 

371.1 Kg 

  2 Estimate of the total amount of 
shrimp landed in that week 

6 986.7 Kg 

8.3 II 1-a) Average shrimp landing per fishing 
trip during that week 

542 Kg 

  1-b) Population variance and modified 
variance of the landings 

σ2 = 127 730 
S2 = 141 922 

  1-c) Standard deviation of the landings 357.4 Kg 

  1-d) Total amount of shrimp landed 5 420 Kg 

  1-e) Proportion of all landings below  
400 Kg 

0.300 

  1-f) Relative frequency of landings 
between 400 and 800 Kg 

0.400 

  2 Build at least 10 samples of 3 
landings each that could have been 
selected from that population. 

Sample Land 1 Land 2 Land 3 
no. 

1 538 0 906 
2 538 0 230 
3 538 0 598 
4 538 0 20 
5 538 0 435 
6 230 598 0 
7 230 598 435 
8 230 598 859 
9 230 598 1123 
10 230 598 711 
 

  3 Repeat the calculations done on 
number 1.  
a) to d), for each of these samples 

Sample. Average Var SD Total
no. 

1 481 207617 456 4813
2 256 72868 270 2560
3 379 108441 329 3787
4 186 93028 305 1860
5 324 81546 286 3243
6 276 90988 302 2760
7 421 34003 184 4210
8 562 99864 316 5623
9 650 201416 449 6503
10 513 63259 252 5130

   4 Compare the values of the statistics 
obtained in the previous item with the 
values of the corresponding population 
parameters. 

The values of these statistics both over-
estimate and under-estimate the 
corresponding population parameters 
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Exercise 

8.3 

Group 

III 

No. 

1 

Question 

Histogram of the sampling distribution of 

the estimator, Ŷ , using an appropriate 

class interval. 

 

Answer 

Appropriate Class Interval: 50 Kg (approx.  
20 classes) 
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Exercise Group No. Question Answer 

 
8.3 

 
III 

 
2-a) 

 
The 120 values  
of the estimator 

 
No. Mean Land No. Mean Land
1 1481.3 41 588.3 
2 256.0 42 676.3 
3 378.7 43 539.0 
4 186.0 44 276.0 
5 324.3 45 83.3 
6 465.7 46 221.7 
7 553.7 47 363.0 
8 416.3 48 451.0 
9 558.0 49 313.7 
10 680.7 50 206.0 
11 488.0 51 344.3 
12 626.3 52 485.7 
13 767.7 53 573.7 
14 855.7 54 436.3 
15 718.3 55 151.7 
16 455.3 56 293.0 
17 262.7 57 381.0 
18 401.0 58 243.7 
19 542.3 59 431.3 
20 630.3 60 519.3 
21 493.0 61 382.0 
22 385.3 62 660.7 
23 523.7 63 523.3 
24 665.0 64 611.3 
25 753.0 65 578.0 
26 615.7 66 385.3 
27 331.0 67 523.7 
28 472.3 68 665.0 
29 560.3 69 753.0 
30 423.0 70 615.7 
31 610.7 71 508.0 
32 698.7 72 646.3 
33 561.3 73 787.7 
34 840.0 74 875.7 
35 702.7 75 738.3 
36 790.7 76 453.7 
37 378.7 77 595.0 
38 501.3 78 683.0 
39 308.7 79 545.7 
40 447.0 80 733.3 

8.3 III 2-b) Expected value of the estimator 542.0 Kg 

  2-c) Sampling variance of the estimator 33 115.2 

  2-d) Error of the estimator 182.0 Kg 

     

  3 Compare the expected value obtained in 2.b) 
with the population mean calculated in 
Group I – 1.a) 

They have the same value 

  4 Check the theoretical expression: 
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Exercise Group   No. Question Answer 

  5-a) Percentiles of the 
sampling distribution of 
the estimator with the 
following orders: 
i) 1.0% 
ii) 2.5% 
iii) 3.5% 
iv) 0.0% 
v) 95.0% 
vi) 96.0% 
vii) 97.5% 
viii) 98.5% 

 
 

 
i) 1.0%: 158.2 Kg 
ii) 2.5%: 205.5 Kg 

iii) 3.5%: 222.8 Kg 
iv) 50.0%: 540.7 Kg 
v) 95.0%: 840.8 Kg 

vi) 96.0%: 856.7 Kg 
vii) 97.5%: 876.2 Kg 

viii) 98.5%: 901.0 Kg 
 

  5-b) 
 

Four intervals that 
encompass 95% of all 
possible sample means 

Interval Lower Limit Upper Limit 
From minimum value  
to 95th percentile 83.3    840.8 
From 5th percentile to  
largest value 242.9    962.7 
From 1st percentile to  
96th percentile 158.2    856.7 
From 2.5th percentile  
to 97.5th percentile 205.5    876.2 

8.3 III 5-c) The width of the four 
intervals 

Interval Width 
From minimum value to 95th  
percentile 757.5 
From 5th percentile to largest value 719.8 
From 1st percentile to 96th  
percentile 698.5 
From 2.5th percentile to 97.5th  
percentile 670.7 

  6 The shortest of these intervals 
that holds 95% of all possible 
sample means 

The last interval 

  7-a) Probability of getting a 
sample of  
3 landings with an average 
landing below or equal to 600 
Kg 

62.5% 

  7-b) Probability of getting a 
sample of 3 landings with an 
average landing above 600 Kg 

37.5% 

  7-c) Probability of getting a sample 
of 3 landings with an average 
landing between 199 and  
953 Kg 

96.7% 

  8-a) l such that Prob { y  < l} = 0.95 840.8 Kg 

  8-b) l1 and l2 such that Prob {l1 < y  < 
l2} = 0.95 

l1=205.5 Kg 
l2=876.2 Kg 

8.4 I  1-a) Mean 39.29 

  1-b) Variance 16.41 

  1-c) Standard deviation 4.05 

  2-a) Estimate of population mean 39.29 

  2-b) The estimator is biased? No 

  2-c) Sampling variance of y  4.10 

  2-d) Error of y  2.03  

  2-e) A 95% confidence interval of μ 
 
35.32 – 43.26 
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Exercise Group No. Question Answer 

8.4 II 1 A procedure to select a simple 
random sample of 4 numbered 
vessels 

Select a whole random number between 
1 and 20. Include the corresponding 
vessel in the sample. Repeat 4 times. If at 
any moment the vessel selected was 
already included in the sample, repeat 
the random number selection, until a 
new vessel is selected. 

  2-a) An estimator of the total amount of 
fish landed in the port during this 
day 

N x Sample Mean 

  2-b) Sampling distribution of that 
estimator and the formulae to 
obtain the expected value and the 
expected sampling variance 

Sampling Distribution:  
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  3-a) Estimate of total landing 153.5 Kg 

  3-b) Estimate of sampling variance 3923.4 

  3-c)  Estimate of error of the estimate 62.6 Kg 

  3-d) A 95% confidence interval for the 
population total landings 

0 – 352.8 

  4 Approximate size of the sample 
necessary to have an error 10% 
smaller than the one previously 
calculated in 3.c) 

5 

8.4 III 1-a) Proportion of females in the sample 0.400 

  1-b) Sample variance 0.248 

  1-c) Expressions for the expected value of p, 
and for the sampling variance of p 

E[p]=P 
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  1-d) Estimate of the sampling variance of p 0.0058 

  1-e) Estimate of the error of p 0.0761 

  1-f) 
Estimate of the 95% confidence interval for 
the proportion P applying the binomial 
distribution 

0.227 – 0.594 

  1-g) 
Estimate of the 95% confidence interval for 
the proportion P applying the normal 
approximation to the binomial distribution 

0.251 – 0.549 

  2-a) Estimate of total number of females in the 
population 40 

  2-b) Estimate of the sampling variance and of 
the error of the total number 

V[Np]=57.93 
sNp=7.61 

  2-c) 

Estimate of the 95% confidence interval for 
the total number of females of the 
population applying the binomial 
distribution 

23 - 59 

  2-d) 

Estimate of the 95% confidence interval for 
the total number of females of the 
population applying the normal 
approximation to the binomial distribution 

25 - 55 
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Exercise Group No. Question Answer 

8.5 I 

(landing 

ports) 

1 Number of vessels to be sampled in  
each stratum 

Class (stratum) Sample Size 
100- 2 
200- 10 
>300 4 
Total 16 
 

  2-a) 

 
Average landing per vessel in each category Class (stratum) Average Landing 

100- 2 
200- 6 
>300 5 

  2-b) Variance between total landings within 
each stratum 

Class (stratum) Variance 
100-   3.84 
200- 19.18 
>300 11.56 

  3-a) Estimates of mean landing for each stratum Class (stratum) Est. Mean Landing 
100- 2 
200- 6 
>300 5 

  3-b) Estimates of expected sampling variance of 
the estimator of the mean for each stratum 

Class (stratum) Est. Exp. Var 
100- 1.54 
200- 1.54 
>300 2.31 

  3-c) Estimates of error of the estimator of the 
mean for each stratum 

Class (stratum) Est. Error 
100- 1.24 
200- 1.24 
>300 1.52 

 
8.5   I 3-d) Estimates of total landing for each stratum Class (stratum) Est. Total Landing 

100- 20 
200- 300 
>300 100 

  3-e) Estimates of expected variance of the 
estimator of total landing for each stratum 

Class (stratum) Est. Exp. Var. Total 
100- 153.66 
200- 3836.88 
>300 924.80 

  3-f) 

 
Estimates of error of the estimator of total 
landing for each stratum 

Class (stratum) Est. Exp. Error Total 
100- 12.40 
200- 61.94 
>300 30.41 

  4-a) Estimate of mean landing for total fleet 5.25 

  4-b) Estimate of expected variance of the 
estimator of the mean for total fleet 

0.77 

  4-c) Estimate of error of the estimator of the 
mean for total fleet 

0.88 

  4-d) Estimate of total landing for total fleet 420 

  4-e) Estimate of expected variance of the 
estimator of total landing for total fleet 

4915.34 

  4-f) Estimate of error of the estimator of total 
landing for total fleet 70.11 
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8.5 II 
(surveys) 

1-a) Estimate of index of total 
biomass of European hake 
for each stratum 

Stratum Est. Index (tonnes) 
A1, 100-200 m  129.8 
A1, 200-300 m  263.3 
A1, 300-400 m 1101.4 
A1, 400-500 m 289.2 
A1, 500-600 m 142.5 
A2, 100-200 m 764.0 
A2, 200-300 m 759.7 
A2, 300-400 m 239.7 
A2, 400-500 m 354.7 
 A2, 500-600 m  319.4 

  1-b) Estimate of error of the 
estimator for each stratum 

Stratum Est. Error (tonnes) 
A1, 100-200 m  3.0 
A1, 200-300 m  7.6 
A1, 300-400 m 43.7 
A1, 400-500 m  9.9 
A1, 500-600 m  3.6 
A2, 100-200 m 20.6 
A2, 200-300 m 12.3 
A2, 300-400 m  7.6 
A2, 400-500 m  8.7 
 A2, 500-600 m   10.2 

  1-c) Estimate of coefficient of 
variation of the estimator 
for each stratum 

Stratum     CV Est. 
A1, 100-200m 2.3% 
A1, 200-300 m 2.9% 
A1, 300-400 m 4.0% 
A1, 400-500 m 3.4% 
A1, 500-600 m 2.5% 
A2, 100-200 m 2.7% 
A2, 200-300 m 1.6% 
A2, 300-400 m 3.2% 
A2, 400-500 m 2.5% 
A2, 500-600 m 3.2% 

  2-a) Estimate of total biomass 
of European hake for the 
total area 

4 634 tonnes 

  2-b) Estimate of error of the 
estimator 

54 tonnes 
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8.5 II 2-c) Estimate of 95% confidence 
limits of the total biomass in 
the total area 

4 258 tonnes - 4 469 tonnes 

  3-a) Proportional allocation of the 
total 100 trawls to the strata 
areas 

Stratum CV Est. 
A1, 100-200m 26 
A1, 200-300 m 10 
A1, 300-400 m 8 
A1, 400-500 m 7 
A1, 500-600 m 11 
A2, 100-200 m 16 
A2, 200-300 m 6 
A2, 300-400 m 4 
A2, 400-500 m 6 
A2, 500-600 m 6 
Total 100 

  3-b) Strata allocation that gives the 
maximum precision in the 
estimation of the total 
abundance 

Stratum Num. Hauls 
A1, 100-200m 3 
A1, 200-300 m 8 
A1, 300-400 m 29 
A1, 400-500 m 8 
A1, 500-600 m 3 
A2, 100-200 m 17 
A2, 200-300 m 13 
A2, 300-400 m 5 
A2, 400-500 m 7 
A2, 500-600 m 7 
Total 100 

8.6 I 
(clusters) 

1 15 clusters selected with equal 
probabilities 

Element Cluster Nº 
1 20 
2 35 
3 11 
4 25 
5 21 
6 27 
7 5 
8 28 
9 4 
10 13 
11 1 
12 10 
13 30 
14 7 
15 19 
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8.6 I 2 15 clusters selected with probabilities  
proportional to the cluster sizes 

Element Cluster Nº 
1 10 
2 11 
3 20 
4 23 
5 9 
6 25 
7 14 
8 35 
9 24 
10 28 
11 12 
12 29 
13 27 
14 34 
15 22 

8.6 I 3 15 clusters selected by selecting 3 
clusters from each province with 
probabilities proportional  
to the sizes of the clusters of each 
stratum 

Element Prov. Cluster No. 
1 1 3 
2 1 7 
3 1 1 
4 2 10 
5 2 11 
6 2 9 
7 3 17 
8 3 16 
9 3 18 
10 4 20 
11 4 23 
12 4 25 
13 5 35 
14 5 28 
15 5 29 

8.6 II 1-a) Number of clusters in the population 23 

 1-b) Number of clusters in the sample 5 

 1-c) Number of elements in cluster 14 50 

2-a) Sample mean value per cluster 1294.6 

2-b) Sample mean value per element 25.9 

2-c) Sample variance between clusters 1422.8 

3-a) Estimate of the expected value of the 
estimator  

Estimator: N * Mean Value per Cluster 
Est. Expected value: 29 775.8 

3-b) Estimate of the sampling variance of the 
estimator 

222.7 

3-c) Estimate of the error of the estimator 14.9 



 87Solutions 

 
Exercise Group No. Question Answer 

8.6 III 1-a) Estimate of the total value of the 
population 

19 915.4 

 1-b) Estimate of the error of your 
estimator 

32.4 

 2-a) Estimate of the total landing of all 
the vessels 

21 205 

 2-b) Estimate of the sampling variance of 
your estimator and its error 

Sampling Var 38 482 456 
Sampling Error 6 203 

 2-c) Estimate of an approximate 95% 
confidence interval of the total 
landing 

3 981 – 38 428 

8.7 I 1-a) Estimate of the total weight of fish 
landed 

248 785 

 (two 1-b) Estimate of the error of the 
estimation 

48 003 

 stages) 2-a) Estimate of the proportion of boxes 
of fish in the total landings 

0.228 

  2-b) Estimate of the error of the 
estimation 

0.053 

8.7 II 1 Estimate of the total weight of fish 
landed 

192 090 

  2 Estimate of the error of the 
estimation 

50 285 



 

 



 88 

Bibliography 

Publications related to general sampling methods and survey sampling: 
Barnett, V. 1991. Sample Survey Principles and Methods. Edward Arnold, London, 173pp. 
Chaudhuri, A. & Stenger, H. 1992. Survey sampling: Theory and methods. Dekker, 384pp. 
Cochran, W.G. 1977. Sampling techniques. John Wiley & Sons, Inc., New York, 3rd ed., 428pp. 
Efron, B. & Tibshirani, R.J. 1993. An introduction to the bootstrap. Chapman & Hall, 

New York, 436pp. 
Green, R.H. 1979. Sampling design and statistical methods for environmental biologists. John Wiley 

& Sons, Inc., New York, 272pp. 
Hansen, M.H., Hurwitz, W.N. & Madow, W.G. 1993. Sample survey methods and theory. 

John Wiley & Sons, New York, Vol. 1. 664pp. 
Hansen, M.H., Hurwitz, W.N. & Madow, W.G. 1993. Sample survey methods and theory. 

John Wiley & Sons, New York, Vol. 2. 1016pp. 
Levy, P.S. & Lemeshow, S. 1991. Sampling of populations: Methods and applications, John Wiley 

& Sons, Inc., New York, 2nd ed., 420pp. 
Som, R.K. 1973. A manual of sampling techniques. Heinemann Educational Books Ltd., 

London, 384 pp. 
Thompson, S.K. 1992. Sampling. John Wiley & Sons, Inc., New York, 334 pp. 
Tryfos, P. 1996. Sampling methods for applied research: Text and cases. John Wiley & Sons, Inc., 

New York, 480pp. 
 

The practical application of sampling theory to estimate fish landings was based on 
the publications:  
Banerji, S.K. 1973. An assessment of the exploited pelagic fisheries of the Indian Seas. In 

Proceedings of the Symposium on Living Resources, Seas Around India, Spec. Publ., Cent. Mar. 
Fish. Res. Inst., p. 114-136, Cochin, India. 

Banerji, S.K. 1975. Fishery statistics needed for development planning. FAO Fisheries Circulars, 
No. 630. FAO, Rome. 10pp. 

Bazigos, G.P. 1974. Applied Fisheries Statistics. FAO Fisheries Technical Paper, No. 135. FAO, 
Rome. 172pp. 

Bazigos, G.P. 1974. The design of fisheries statistical surveys. Inland waters. FAO Fisheries 
Technical Paper, FAO, Rome. 133pp.  

Bazigos, G.P. 1975. Applied fishery statistics: vectors and matrices. FAO Fisheries Technical 
Paper, No. 135 (suppl. 1), FAO, Rome. 39pp. 

Gulland, J.A. 1966. Manual of sampling and statistical methods for fisheries biology. Part 1. In: 
Sampling methods. FAO Man. Fish. Sci., 3: 87pp. 

Sparre, P.J. 2000. Manual on sample-based data collection for fisheries assessment. Examples from 
Viet Nam. FAO Fisheries Technical Paper, No. 398. FAO, Rome. 171pp. 

 



.

434

....
..........

. . .
.. .. . . .. .

. . . . . .. . .
. . . . .

The main objective of this manual is to present the basic and standard concepts of 
sampling methods applied to fisheries science. In order to ensure sound fisheries research, 
it is essential to have reliable data from landing ports, fishery stocks and research surveys. 

A rational management of fishing resources can then be established to ensure a 
sustainable exploitation rate and responsible fisheries management, providing long-term 

benefits for all. This document provides an introduction to sampling theory and introduces 
the theory of the three worlds (population, sample and sampling), as well as a short 
revision of probability concepts. It also provides an overview of the simple random, 

random stratified, cluster and two-stage sampling methods. The expressions for estimating 
the mean and total of the populations, their sampling distributions, the expected values, 

the sampling variances and their estimates are included and justified for each of the 
sampling designs. The document also contains a case study of biological sampling from 

landing ports and exercises that should be used to further understanding of the objectives 
of sampling and its advantages for fishery resource studies.
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