Aquaculture is developing, expanding and intensifying in almost all regions of the world. Although the sector appears to be capable of meeting the gaps the past trends in aquaculture development and describes its current status globally.
Cover photo:
Penaeus monodon hatchery in Vizag, India. Courtesy Dr. G. Subbarao
Improving *Penaeus monodon* hatchery practices
Manual based on experience in India

Aquaculture Management and Conservation Service
Fisheries and Aquaculture Management Division
FAO Fisheries and Aquaculture Department

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2007
Preparation of this document

Responding to a request made by the Government of India, a Technical Cooperation Programme (TCP) project was structured, with the view to improve the capacity of the State of Andhra Pradesh to better manage the shrimp aquaculture sector, with special reference to controlling diseases and managing health. The TCP, besides assisting the Department of Fisheries (DOF) of the State Government of Andhra Pradesh in managing shrimp health, also assisted in creating national capacity for emergency preparedness, empowering rural farmers by providing tools for the self-management of farming systems, improving the quality of hatchery-produced postlarvae and establishing overall better management practices for the shrimp aquaculture sector. It was felt that this multidisciplinary approach is required to obtain positive and permanent results.

This publication, “Improving *Penaeus monodon* hatchery practices. Manual based on experience in India” is one of several outputs of the TCP. It reviews the status of broodstock, hatcheries, postlarval production, health and opportunities for improving hatchery biosecurity and larval quality of tiger shrimp (*Penaeus monodon*). The publication also provides technical protocols and guidelines for improving hatchery biosecurity and larval and postlarval quality.

In preparing Section 3.6 (Broodstock quarantine), we have drawn extensively on material previously published in FAO Fisheries Technical Paper No. 450, *Health management and biosecurity maintenance in white shrimp (Penaeus vannamei) hatcheries in Latin America* (FAO, 2003).
Abstract

The successful farming of tiger shrimp (*Penaeus monodon*) in India is mainly due to the existence of some 300 hatcheries whose capacity to produce 12,000 million postlarvae (PL) annually has provided an assured supply of seed. However, the sustainability of the sector is still hampered by many problems, foremost among these being a reliance on wild-caught broodstock whose supply is limited both in quantity and in seasonal availability and that are often infected with pathogens. The current low quality of hatchery produced PL due to infection with white spot syndrome virus (WSSV) and other pathogens entering the hatcheries via infected broodstock, contaminated intake water or other sources due to poor hatchery management practices, including inadequate biosecurity, is a major obstacle to achieving sustainable shrimp aquaculture in India and the Asia-Pacific region. Considering the major contribution of the tiger shrimp to global shrimp production and the economic losses resulting from disease outbreaks, it is essential that the shrimp-farming sector invest in good management practices for the production of healthy and quality seed.

This document reviews the current state of the Indian shrimp hatchery industry and provides detailed guidance and protocols for improving the productivity, health management, biosecurity and sustainability of the sector. Following a brief review of shrimp hatchery development in India, the major requirements for hatchery production are discussed under the headings: infrastructure, facility maintenance, inlet water quality and treatment, wastewater treatment, biosecurity, standard operating procedures (SOPS), the Hazard Analysis Critical Control Point (HACCP) approach, chemical use during the hatchery production process and health assessment. Pre-spawning procedures covered include the use of wild, domesticated and specific pathogen free/specific pathogen resistant (SPF/SPR) broodstock; broodstock landing centres and holding techniques; broodstock selection, transport, utilization, quarantine, health screening, maturation, nutrition and spawning; egg hatching; nauplius selection; egg/nauplius disinfection and washing and holding, disease testing and transportation of nauplii. Post-spawning procedures covered include: larval-rearing unit preparation, larval rearing/health management, larval nutrition and feed management, important larval diseases, general assessment of larval condition, quality testing/selection of PL for stocking, PL harvest and transportation, nursery rearing, timing of PL stocking, use of multiple species in shrimp hatcheries, and documentation and record keeping. Information on the use of chemicals in shrimp hatcheries and examples of various forms for hatchery record keeping are included as Annexes.

FAO.
Foreword

The rapid development of shrimp farming in India is largely due to the setting up of a large number of hatcheries and the resulting availability of an assured supply of seed. Presently about 300 hatcheries are in operation with an annual capacity to produce about 12,000 million postlarvae (PL). In India wild-caught broodstock is the only source of shrimp seed. Studies indicate that about a quarter of wild-caught shrimp spawners are infected with white spot syndrome virus (WSSV). Furthermore the continuous exploitation of shrimp resources has brought about a scarcity of brooders, and their availability is also not uniform throughout the year. Viral-disease monitoring is an area of growing importance and biosecurity is also a serious concern for hatcheries, and thus protocols to address these concerns are urgently needed. Considering the major contribution of the tiger shrimp (Penaeus monodon) to global shrimp production and the economic losses resulting from disease outbreaks, it is essential that the Indian shrimp-farming sector invest in good management practices for the production of healthy and quality seed.

The FAO TCP/IND/2902 (A) project entitled “Health Management of Shrimp Aquaculture in Andhra Pradesh” is a result of a request made by the Government of India for assistance in building capacity to improve health management capabilities in shrimp farming in Andhra Pradesh. The TCP inter alia was aimed at providing tools to improve the quality of hatchery-produced PL through better health management and adoption of biosecurity measures at the farm and hatchery levels. The current low quality of hatchery-produced PL is considered a major obstacle to achieving sustainable shrimp aquaculture in the region.

The TCP benefited from close collaboration with other national and regional development agencies active in the field of aquaculture such as the Network of Aquaculture Centres in Asia-Pacific (NACA), the Aquaculture Authority (now Coastal Aquaculture Authority) and the Marine Product Export Development Authority (MPEDA). The TCP activities were conducted in collaboration with members of the private sector involved in hatchery production and the grow out of shrimp in Andhra Pradesh. This collaboration and cooperation between state agencies, regional and international agencies and the private sector not only improved the efficiency of implementation of project activities but also increased and expanded the size of the target groups and beneficiaries of the project.

This publication “Improving Penaeus monodon hatchery practices. Manual based on experience in India” is a major output of the TCP, based on strong consultation and collaboration between farmers, hatchery operators, scientists, state extensionists and several key experts in the field of shrimp hatchery production. We believe that this publication will be a milestone reference for shrimp hatchery operators and shrimp farmers in India and anyone interested in tiger shrimp farming globally. We commend and congratulate everyone involved in producing this document.

Ichiro Nomura
Assistant Director-General
Fisheries and Aquaculture Department
FAO

Yugraj Yadava
Member Secretary
Coastal Aquaculture Authority
India
Acknowledgements

The production of this manual was made possible thanks to the assistance of many people engaged in shrimp hatchery management and aquaculture (see Annex 1). In particular, major contributions were made by Drs Win Latt, Mathew Briggs and Rohana Subasinghe. Technical editing was done by Dr J. Richard Arthur. Mr José Luis Castilla Civit is acknowledged for layout design.

All other pictures, except cover page pictures are courtesy Dr Win Latt.

Mr P. Krishnaiah, Commissioner of Fisheries, Andhra Pradesh State Government is acknowledged for his leadership in the TCP project, which made this manual possible.

Financial assistance provided by the Government of Norway for publishing this manual, through the multilateral FishCode Trust (MTF/GLO/125/MUL) is gratefully acknowledged.
Contents

Preparation of this document iii
Abstract iv
Foreword v
Acknowledgements vi
Abbreviations and acronyms x

1. INTRODUCTION 1
1.1 Shrimp hatchery development in India 1

2. MAJOR REQUIREMENTS FOR EFFECTIVE HATCHERY PRODUCTION 3
2.1 Infrastructure 3
2.2 Facility maintenance 4
 2.2.1 Maintenance of machinery 5
 2.2.2 Regular cleaning and disinfection water, aeration and drainage pipelines 5
 2.2.3 Maintenance of tanks 6
 2.2.4 Maintenance of filters (slow sand, rapid, cartridge, UV/Ozone) 7
2.3 Inlet water quality and treatment 9
 2.3.1 Quality of intake water and treatment options 9
 2.3.2 Inlet water treatment protocol 10
 2.3.3 Seawater intake 11
 2.3.4 Sedimentation/sand filtration of inlet water 11
 2.3.5 Disinfection of inlet water using chlorine 12
2.4 Wastewater treatment 13
2.5 Biosecurity 15
 2.5.1 Personal sanitation and hygiene 16
2.6 Standard operating procedures (Sops) 16
2.7 Hazard analysis critical control point (HACCP) approach 18
 2.7.1 Seven steps in applying the HACCP principles 18
2.8 Chemical use during the hatchery production process 19
2.9 Health assessment 20
 2.9.1 Level 1 health assessment techniques 21
 2.9.2 Level 2 health assessment techniques 21
 2.9.3 Level 3 health assessment techniques 21

3. PRE-SPAWNING PROCEDURES 23
3.1 Wild broodstock 23
 3.1.1 The broodstock capture fishery 23
 3.1.2 Broodstock quality 27
 3.1.3 Pollution 28
3.2 Domesticated and SPF/SPR/SPT broodstock 29
 3.2.1 Limitations of SPF shrimp 32
 3.2.2 Importation of broodstock 33
3.3 Broodstock landing centres and holding techniques 33
3.4 Broodstock selection and transport from landing/auction centres 35
3.5 Broodstock utilization 36
3.6 Broodstock quarantine 36
3.7 Broodstock health screening 38
3.8 Broodstock maturation 40
3.9 Broodstock nutrition 42
3.10 Broodstock spawning 43
3.11 Egg hatching 45
3.12 Nauplius selection 45
3.13 Egg/nauplius disinfection and washing 46
3.13.1 Eggs 46
3.13.2 Nauplii 46
3.14 Holding and disease testing of nauplii 47
3.15 Transportation of nauplii 47

4. POST-SPAWNING PROCEDURES 49
4.1 Larval-rearing unit preparation 49
4.2 Larval rearing/health management 50
4.2.1 Stocking rate 50
4.2.2 Water exchange protocols 51
4.2.3 Siphoning of wastes 52
4.2.4 Aeration 52
4.2.5 Water quality monitoring 52
4.2.6 Chemical/antibiotic use 53
4.2.7 Use of probiotics to replace antibiotics 54
4.2.8 Responsible use of antibiotics 55
4.3 Larval nutrition and feed management 56
4.3.1 Use of live algae 57
4.3.2 Artemia use 59
4.3.3 Artificial feeds 62
4.4 Important larval diseases 62
4.4.1 Monodon baculovirus (MBV) 62
4.4.2 White Spot Syndrome Virus (WSSV) 63
4.4.3 Baculoviral midgut gland necrosis virus (BMNV) 63
4.4.4 Vibriosis 63
4.4.5 Larval mycosis 64
4.4.6 Ciliate infestation 64
4.4.7 Swollen hind gut (SHG) 64
4.4.8 Diseases of unknown aetiology 65
4.5 General assessment of larval condition 65
4.5.1 Level 1 Health assessment observations 66
4.5.2 Level 2 Health assessment observations 68
4.5.3 Level 3 Health assessment techniques 71
4.6 Quality testing/selection of PL for stocking 71
4.7 PL harvest and transportation 73
4.8 Nursery rearing 75
4.9 Timing of PL stocking 76
4.10 Use of multiple species in shrimp hatcheries 76
4.11 Documentation and record keeping 77

5. REFERENCES 79
<table>
<thead>
<tr>
<th>ANNEXES</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex 1</td>
<td>Persons responsible for compiling this document</td>
<td>81</td>
</tr>
<tr>
<td>Annex 2</td>
<td>Chemicals and treatments used in shrimp aquaculture in India</td>
<td>88</td>
</tr>
<tr>
<td>Annex 3</td>
<td>List of antibiotics and pharmacologically active substances banned for use in aquaculture in India</td>
<td>93</td>
</tr>
<tr>
<td>Annex 4</td>
<td>Quarantine/maturation tank daily data sheet</td>
<td>94</td>
</tr>
<tr>
<td>Annex 5</td>
<td>Spawning/hatching tank daily data sheet</td>
<td>95</td>
</tr>
<tr>
<td>Annex 6</td>
<td>Larval-rearing tank daily data sheet</td>
<td>96</td>
</tr>
<tr>
<td>Annex 7</td>
<td>Level 1 larval health data sheet</td>
<td>97</td>
</tr>
<tr>
<td>Annex 8</td>
<td>Level 2 larval health data sheet</td>
<td>98</td>
</tr>
<tr>
<td>Annex 9</td>
<td>PL quality testing results sheet</td>
<td>99</td>
</tr>
<tr>
<td>Annex 10</td>
<td>Research and development and extension requirements</td>
<td>100</td>
</tr>
</tbody>
</table>
Abbreviations and acronyms

ACC Aquaculture Certification Council Inc.
BAP Best Aquaculture Practices
BIOTEC National Centre for Genetic Engineering and Biotechnology (Thailand)
BKC benzalkonium chloride
BMNV baculovirus midgut gland necrosis virus
BMP Better Management Practice
BP baculovirus penaei
BSCC Broodstock Collection Centre
CAA Coastal Aquaculture Authority
CCP Critical Control Point
CIBA Central Institute of Brackishwater Aquaculture
CMFRI Central Marine Fishery Research Institute
COC Code of Conduct
COP Code of Practice
CSIRO Commonwealth Scientific and Industrial Research Organization (Australia)
DOF Department of Fisheries
EDTA ethylene diamine tetraacetic acid
FAO Food and Agriculture Organization of the United Nations
FCR feed conversion ratio
FRDC Fisheries Research Development Centre
HACCP Hazard Analysis Critical Control Point
HH high health
HPV Hepatopancreatic parvo-like virus
HUFA highly unsaturated fatty acid
IHHNV infectious hypodermal and haematopoietic necrosis virus
LR laboratory grade reagent
LRT larval rearing tank
MAF Ministry of Agriculture and Forestry
MBV Monodon baculovirus
MPEDA Marine Product Export Development Authority
NACA Network of Aquaculture Centres in Asia-Pacific
NSTDA National Science and Technology Development Agency (Thailand)
OIE World Organisation for Animal Health
OSSPARC Orissa Shrimp Seed Production Supply and Research Centre
PCR polymerase chain reaction
PL postlarva, postlarvae (plural form) or postlarval
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>SIFT</td>
<td>State Institute of Fishery Technology</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen free</td>
</tr>
<tr>
<td>SPR</td>
<td>specific pathogen resistant</td>
</tr>
<tr>
<td>SPT</td>
<td>specific pathogen tolerant</td>
</tr>
<tr>
<td>TASPARC</td>
<td>Andhra Pradesh Shrimp Seed Production and Research Centre</td>
</tr>
<tr>
<td>TCBS</td>
<td>thiosulphate citrate bile salts</td>
</tr>
<tr>
<td>TSA</td>
<td>trypticase soy agar</td>
</tr>
<tr>
<td>TSV</td>
<td>Taura syndrome virus</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>WSSV</td>
<td>white spot syndrome virus</td>
</tr>
<tr>
<td>YHV</td>
<td>yellow head virus</td>
</tr>
</tbody>
</table>