The "Initiative for Collaboration to Control Natural Resource Degradation (Desertification) of Arid Lands in the Middle East", later renamed the "Regional Initiative for Dryland Management", is a little publicized initiative designed to facilitate Arab-Israeli technical cooperation in support of the peace process of the 1990s. Conceived in the years of enthusiastic support for what appeared to be an opportunity to end a long-standing regional conflict, this 10-year program, implemented between 1996 and 2006, tells the story of political, institutional, and technical realities on the ground, constraining what enthusiastic participants, donors, and other stakeholders set out to achieve. It is the story of bold objectives, sobering experiences, continuous adaptations, and – against all odds – remarkable achievements during times of continued conflict. The story will not do justice to all the great personal efforts that made this program happen. It can only provide an indication of some of the joys and pains endured during the 10-year implementation period.

The “Regional Initiative for Dryland Management” was designed to bring together technical experts from Israel and Arab countries in an attempt to build bridges of confidence among conflicting parties, bridges that would eventually facilitate rapprochement and ultimately peace. As such, the Initiative was – by design – a “mission impossible”. It was not a research program, given that the research was motivated by and aimed at Arab-Israeli dialogue. If a choice had to be made between the continuation of meetings and dialogue and the strict enforcement of technical quality objectives, Arab-Israeli dialogue was always favored. On the other hand, technical dialogue cannot – by definition – achieve peace, given that peace negotiations are conducted by political representatives, diplomatic experts, and social groups. How then does one measure the result of this program? – The Initiative’s objective was simple: bringing technical experts together to discuss technical issues of mutual interest, in this case dryland management and desertification. And the Initiative did bring together Arab and Israeli technical experts throughout the entire lifetime of the program: a remarkable achievement in light of the ups and downs of the peace process.

This final report has been initiated and produced by the International Center for Agricultural Research in the Dry Areas (ICARDA) as the implementing agency of the Initiative, with support from the World Bank as the representative of the donors and Chair of the Steering Committee. The report has been written by leading participants in the program, one Arab and one Israeli, with contributions from technical teams in participating countries. The report is testimony to the dedicated efforts of both Arab and Israeli experts to start building bridges of confidence.

Inger Andersen
Director, Sustainable Development Department
Middle East and North Africa Region
The World Bank
CARDA, as the implementing agency of the Regional Initiative for Dryland Management (RIDM) and producer of this final report, would like to acknowledge the tremendous efforts by the two authors, Drs. Uriel Safriel and Samir Abo Sliman, to review available material and to synthesize the knowledge and experience gained throughout the ten years of program implementation. The contributions from all national coordinators and partner countries in compiling information and reviewing several draft versions of the report are highly appreciated. We are most grateful to Mr. Gunnar Larson for editing the draft report and to the program facilitators, Drs. Scott Christiansen and Abelardo Rodriguez, who provided useful comments. Special thanks are also due to Dr. Rodomiro Ortiz of CIMMYT who peer-reviewed this report. We gratefully acknowledge the financial contributions of the World Bank for the production of this final report. The World Bank task team, led by Matthias Grueninger, also provided significant contributions to the structure and contents of the report itself, for which we are grateful.

Beyond the production of this report, ICARDA would like to express its gratitude to the National Coordinators and scientists of the thematic working groups in the participating countries for their dedication and collaboration during the implementation of this exceptional program with rich personal and institutional experiences. Finally, ICARDA gratefully acknowledges the generous contributions – in cash and in kind – during the lifetime of the RIDM from the following donors (listed in alphabetical order): Canada, European Union, Japan, Luxemburg, Republic of Korea, Switzerland, USA, and the World Bank.

Photo Credits
All photos were taken and kindly provided by Matthias Grueninger, with the following exceptions: Uriel Safriel: Figures 22, 52, 57, 59, 60, 61, 62; US Government/public domain: Figure 20; Abelardo Rodriguez 35, 55, 66, 67.
CONTENTS

Executive Summary ... 1

I. Natural Resource Degradation in The Middle East and North Africa9
 A. Geography, Demography and Economy ... 9
 B. Land and Water Resources .. 11
 C. Controlling Land Degradation .. 18
 Increasing Water Availability ... 18
 Improving Water Use Efficiency ... 20
 Reusing Existing Water: Wastewater, Drainage Water and Biosolids 21

 A. The Middle East Peace Process and the Conception of the Initiative 25
 B. Implementation of the Peace Agreements and the Birth of the Initiative 27
 C. The Ups and Downs of the Peace Process during the Life of the Initiative 27

III. Evolution of the Thematic and Administrative Structures of the Initiative31
 A. Program objectives and components ... 31
 B. The Participating Institutions ... 40
 C. Program Management .. 41
 D. Donors and Partners, Financing and Budgeting .. 43
 E. Relationships with Other Regional Programs ... 44

IV. Communication, Knowledge Sharing, and Capacity Building ..49
 A. Regional Communication .. 49
 Regional Meetings and Workshops ... 49
 Electronic Communication and Documentation .. 51
 B. Institutional Capacity Building ... 54
 C. National Integration and Coordination ... 56
 D. Community Participation, Dissemination, and Outreach ... 58

V. Technical Activities of the Dryland Initiative ...65
 A. The Watershed Management programs of the Dryland Initiative 65
 Increasing Water Availability through Water Harvesting and Storage 65
 Field Crop Production and Rangeland Management .. 69
 Fruit and Non-Fruit Tree Cultivation .. 71
 Genetic Resources and Biodiversity .. 74
 Diversifying Farming Systems and Promoting Off-farm Activities 77
 B. The Treated Wastewater and Biosolids Re-use programs of the Dryland Initiative 80
 Wastewater Treatment .. 80
 Treated Wastewater Reuse in Agriculture ... 81
 Brackish Drainage Water Reuse in Agriculture .. 85
 Biosolids Treatment and Use in Agriculture and Energy .. 86
 Social, Economic, and Policy Implications of Treated Wastewater Reuse 89

VI. Implications for Future Technical Cooperation Programs ..91
Annex 1: Project Sites and Areas

A. Egypt
Marsa Matrouh Governorate, Watershed Management
The Sinai Peninsula, Germplasm for Arid Lands
The Nile Delta, Kafr El Sheikh Governorate, Treated Wastewater and Biosolids Re-use

B. Israel
The Yatir Watershed, Watershed Management for Afforestation
Avdat and Mashash Experimental Runoff Farms, Watershed Management
Semiarid, Coastal and Valley Agriculture in Israel, Treated Wastewater
The Northern Negev, Biosolids Re-use

C. Jordan
Watershed Management Project sites
Treated Wastewater and Biosolids Re-use Sites

D. Palestinian National Authority
Watershed Management sites
Treated Wastewater and Biosolids Re-use

E. Tunisia
The Zammour Valley and Menzel Habib, Watershed Management
The Dissa Perimeter, Treated Wastewater and Biosolids Re-use

References
LIST OF TABLES

<table>
<thead>
<tr>
<th>Caption</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Regional Meetings of the Dryland Initiative</td>
<td>52</td>
</tr>
<tr>
<td>Table 2: Overview of treated wastewater and biosolids field work under the RIDM.</td>
<td>88</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Caption</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: MENA countries and their drylands.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2: The RIDM countries by dryland zone</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3: Drylands in Northwest Egypt</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4: Rainfall Variability</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5: The distribution of aridity in each of the RIDM countries, expressed in the percentage of land belonging to each dryland category</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6: Germination of annual plants – response to first rain in the arid dryland of Israel (loess soil)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 7: Drylands Initiative land area by aridity classification and by country</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8: Water resources per person and population growth rate.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 9: Percentage of water used for agriculture, and domestic and industry purposes, related to the percentage of rural population within each country.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 10: The divergent dependence of RIDM countries on the three natural water resources – surface runoff, groundwater and trans-boundary, external resources, mainly rivers and rainfall per country.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 11: Development Indicators.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 12: Primary / secondary wastewater treatment in Jordan.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 13: Classification of water-harvesting systems.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 14: Small runoff basin water-harvesting at ICARDA station, at Tel Hadya, in Aleppo, Syria.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 15: Harvested rainwater in depressions in Marsa Matrouh, Northern Egypt.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 16: Wastewater (treated): a water resource of increasing importance in dryland areas.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 17: Primary Wastewater Treatment.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 18: Secondary Wastewater Treatment.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 19: Tertiary Wastewater Treatment.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 20: Arafat and Rabin shake hands after signing the Palestinian-Israeli Peace Accord, September 13, 1993.</td>
<td>26</td>
</tr>
<tr>
<td>Figure 21: Arid drylands in spring flowering; Tunisia (sandy soil).</td>
<td>31</td>
</tr>
<tr>
<td>Figure 22: Gully erosion in an arid rangeland, Negev Desert, Israel.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 23: Support Programs of the different phases of the RIDM.</td>
<td>34</td>
</tr>
<tr>
<td>Figure 24: Afforestation – saplings on large earth dykes, protected by plastic cylinders from browsing by livestock; Israel.</td>
<td>34</td>
</tr>
<tr>
<td>Figure 25: A new cistern built by the Initiative in the Jordanian rangeland.</td>
<td>35</td>
</tr>
<tr>
<td>Figure 26: Contour terraces in a Wadi; West Bank.</td>
<td>36</td>
</tr>
<tr>
<td>Figure 27: Measuring rainfall and the resulting surface runoff generated by the forest surface; Yatir forest; Israel.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 28: Water collection and measurement through tipping buckets (inside box); Israel.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 29: Experimental production of Rye Grass; Jordan.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 30: Initiative funding by donor (US$ Millions equivalent). Phase I includes the "transition" period between Phase I and Phase II, and Phase II includes the Extension period.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 31: Phase I Funding by Recipient Country (excluding Facilitation Unit).</td>
<td>43</td>
</tr>
<tr>
<td>Figure 32: Phase II Funding by Recipient Country.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 33: Extension Phase 2003-2005: Funding by Theme</td>
<td>44</td>
</tr>
<tr>
<td>Figure 34: Regional Consultation Meeting in Sede Boqer, Israel, in October 1999: Field Tour to the northeastern Negev. An Israeli farmer explains to representatives of the five partner countries the drip-irrigation system applying treated wastewater to fruit trees.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 35: A Regional Thematic Workshop, Reading, England, Extension of Phase II.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 36: Rectangular (“diamond-shaped”) micro-catchments, Hebron Region, West Bank (PNA).</td>
<td>56</td>
</tr>
<tr>
<td>Figure 37: Farmers participating in the Initiative’s field work; Matrouh, Egypt.</td>
<td>57</td>
</tr>
<tr>
<td>Figure 38: Earthen dyke (or bank); Jordan.</td>
<td>58</td>
</tr>
<tr>
<td>Figure 39: Farmers participating in the Initiative’s field work in Tunisia.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 40: Farmers discussing crops at Initiative nursery; Egypt.</td>
<td>60</td>
</tr>
<tr>
<td>Figure 41: Extension brochures, produced by the Egyptian Initiative team.</td>
<td>61</td>
</tr>
<tr>
<td>Figure 42: Treated wastewater reuse in Gabès; Tunisia.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 43: Watershed Management.</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 44: Gullies and large-scale earthen ridges in an Egyptian watershed.

Figure 45: Contours, terraces, and gullies in sloping arid drylands; Israel.

Figure 46: Large-scale contours and terracing in the West Bank semiarid drylands.

Figure 47: Contour "sinks" on gentle slopes in Jordan through deep rippling.

Figure 48: Contour terraces in a Wadi. West Bank.

Figure 49: Micro-catchments in Northwestern Egypt.

Figure 50: Rectangular ("diamond-shaped") micro-catchments, Hebron Region, West Bank (PNA).

Figure 51: Runoff conveyed to trench through pipe after going through a stilling pond. Mashash Experimental Farm, Israel.

Figure 52: Increasing water storage by deep trenches, supporting olives at 100 mm rainfall; Mashash Experimental Farm, BIDR, Israel.

Figure 53: Runoff collection in cistern; Jordan.

Figure 54: Improving cropland and rangeland productivity in Egypt.

Figure 55: Rangeland rehabilitation in Henchir Senoussi and Ouled Hfaiedh, Menzel Habib region, Tunisia. Overgrazed sandy rangelands (foreground) degraded into shifting sand dunes (background, right).

Figure 56: Opuntia cactus produced at eco-tourism site; Jordan.

Figure 57: Run-off harvesting for tree cultivation. Almond trees on the Awdat Runoff Agriculture Demonstration Farm; Israel. Run-off generating area is the rocky slopes at the background. Small dykes (arrows) lead the runoff to the terraces.

Figure 58: Drip irrigation system, using pumped groundwater from a 20-meter deep well, used in winter vegetables intercropped with figs; Egypt.

Figure 59: Firewood and fodder trees. Acacia saligna is cultivated for perennial production of firewood. Regeneration following lopping. Runoff through a wadi bed is channeled to this run-off collecting enclosure circled by earthen dykes.

Figure 60: Exploring the pros and cons for arid afforestation. Afforested and non-afforested areas of the Yatir Watershed in the spring growing season; Israel.

Figure 61: Summer, non-afforested vegetation is mostly standing-dead. The Israeli WSM team harvests the annual production of the indigenous vegetation cover.

Figure 62: Exploring within-species variability and trait heritability of two forage plants, Dactylis glomerata and Trifolium purpureum, collected along a rainfall gradient in Israel.

Figure 63: In-situ conservation, establishing an educational protected area; West Bank.

Figure 64: Gabès Nursery, Tunisia.

Figure 65: Nursery Egypt.

Figure 66: The Jordanian Initiative team raises awareness for the production of herbal and medicinal plants among rural women.

Figure 67: Jordanian lavender sold on a French market.

Figure 68: Rye Grass is being fed to sheep, reducing pressure on over-exploited rangeland; on-farm trials; Jordan.

Figure 69: Secondary treatment of wastewater in Gabès, Tunisia.

Figure 70: Tertiary wastewater treatment funded by the Initiative; Gabès; Tunisia.

Figure 71: Wastewater Treatment Plant at Al Arroub Agricultural School, West Bank.

Figure 72: (Primary) Treated Wastewater. Visual appearance gives first indication of water quality and often causes social rejection of wastewater reuse, especially on food crops.

Figure 73: Treated wastewater trials, Kaf El Sheikh, Egypt. Indoor experiments.

Figure 74: Treated wastewater trials, Kaf El Sheikh, Egypt. Outdoor experiments.

Figure 75: (Primary) Treated Wastewater Reuse in fodder and tree crop production; Jordan.

Figure 76: TWW reuse in Tunisia.

Figure 77: Citrus irrigation with treated wastewater; Israel.

Figure 78: Tree crop production with treated wastewater; Jordan.

Figure 79: Herbal and medicinal plants irrigated with treated wastewater; Jordan.

Figure 80: Cut-flowers irrigated with TWW, drip-irrigation in a greenhouse; Jordan.

Figure 81: Mixtures of drainage water, freshwater, and TWW used in crop production (sugar beet), on-farm trial; Kaf el Sheikh, Egypt.

Figure 82: Mixtures of drainage water, freshwater, and TWW used in crop production (sugar beet), on-farm trial; Kaf el Sheikh, Egypt. Salt crust building up.

Figure 83: Manure treatment, Jordan.

Figure 84: Composting sludge, ONAS Plant in Gabès, Tunisia. Drying sludge before grinding.

Figure 85: Experimental cereal crops with sludge application (herbizide application to separate two different treatments); Israel.

Figure 86: Biogas generation, Egypt.

Figure 87: Herbal and medicinal plants irrigation with treated wastewater, Jordan.
LIST OF ACRONYMS

ACSAD Arab Center for the Studies of Arid Zones and Dry Lands
ARC Agricultural Research Center
BIDR Blaustein Institutes for Desert Research, Ben Gurion University of the Negev
BOD Biological Oxygen Demand
CIDA Canadian International Development Agency
CITET Centre International des Technologies de l’Environnement de Tunis (Tunisia International Center for Environmental Technologies)
COD Chemical Oxygen Demand
CRDA Commissariat Régionaux au Développement Agricole (Regional Commission for Agricultural Development)
DFG Deutsche Forschungsgemeinschaft (German Research Foundation)
DRC Desert Research Center
EC Electrical Conductivity
EPA Environmental Protection Agency
ERM External Review Mission
EWG Environment Working Group
FAO Food and Agricultural Organization of the United Nations
FU Facilitation Unit
GIS Geographic Information System
GTZ Gesellschaft für Technische Zusammenarbeit (Agency for Technical Cooperation)
ICARDA International Center for Agricultural Research in the Dry Areas
IRA General Institut des Régions Arides (Institute of Arid Regions)
ISNAR International Service for National Agriculture Research
MEDRC Middle East Desalination Research Center
MENA Middle East and North Africa Region
MERC Middle East Regional Cooperation program, USAID
MOA Ministry of Agriculture
MRMP Matrouh Resource Management Project
NCRATT National Center for Agricultural Research and Technology Transfer
NGO Non-Governmental Organization
ONAS Office National de L’Assainissement (National Agency for Sanitation)
PMAT Publications and Mail Administration Tool
PNA Palestinian National Authority
QRDP Quasr Rural Development Project
RIDM Regional Initiative for Dryland Management
RSCN Royal Society for the Conservation of Nature
RSP Regional Support Program
SAR Sodium Absorption Ratio
SRMP Sustainable Range Management Project
SSC Statistical Service Center
TFC Total Fecal Coliform
TSS Total Soluble Salts
UNEP United Nations Environment Programme
USAID United States Agency for International Development
WANA West Asia and North Africa
The Regional Initiative for Dryland Management was established in 1996 to promote technical cooperation between Egypt, Israel, Jordan, the Palestinian National Authority, and Tunisia. The Initiative was conceived by the Multilateral Working Group on the Environment (WGE) as an instrument to serve the Middle East peace process through scientific collaboration on relatively uncontroversial, apolitical issues that mutually affected the five parties concerned. The Multilateral Working Group itself had been established during the Madrid Peace Conference in October 1991. In a meeting of the Working Group held in Tokyo in May 1993, land degradation or desertification was identified as just such a common issue, one which would be best served through regional cooperation, including direct interaction between technical experts from Arab countries and Israel. Three months later the Oslo Accords were finalized, and catalyzed planning for the Initiative, originally named the "Initiative for Collaboration to Control Natural Resource Degradation (Desertification) of Arid Lands in the Middle East," but more widely referred to simply as the "Desertification Initiative." Later, as controversy arose over the definitions of "desertification" and drought in dryland ecosystems, its name was changed to "Regional Initiative for Dryland Management (RIDM)" (for simplicity reasons, this report will use the term "Dryland Initiative"). Its program was adopted by the Working Group in 1994, and in 1995 the World Bank raised funds from donor countries facilitating the Initiative's creation the following year.

The Dryland Initiative was thus born out of an expectation that regional technical cooperation could be an instrument for peace and stability in the Middle East and North Africa (MENA), and between Israel and her Arab neighbors in particular. The notion that technical cooperation could be an instrument for peace rested on an assumption of both shared concerns and open communication. Of course technical cooperation was by no means expected to lead the Middle East peace process or to assume a central role in political dialogue, but it could potentially establish channels of technical dialogue and exchange, supporting a process of rapprochement and eventually political agreements and peace.

Regional cooperation, as envisaged in the original program of the Initiative, would rely on direct exchanges of knowledge and experience between national teams, enabling project implementation in one partner country to benefit from access to the experience of projects in other partner countries. More specifically, "regional" cooperation was explicitly related to Arab-Israeli cooperation. This report will use the term "regional" with this meaning.

The concept carried an implicit principle of relative comparative advantage, such that national institutions in one country might build capacity and cultivate expertise through interaction with counterparts in other countries. Such exchanges would not only serve to build capacity, but would build a collegial culture of mutual reliance, confidence, and respect. National teams would come to rely on one another and trust one another. Regional cooperation therefore had to be based on common regional issues and priorities such as management of dryland soil and water resources, endemic biological diversity etc. This internal sense of regional community was also to be served by mutual interaction with outside entities, joint planning to be approved by external sources, and joint reporting on the products delivered and progress achieved.

PHASE I: AUGUST 1996 – JUNE 2000

The original program laid out a series of four thematic areas around which the weight of Initiative
activities would be organized: Economic Forestry and Orchards, Rangeland Management and Livestock, Germplasm for Arid Lands, and Marginal Water and Saline Soils. These thematic areas would be coordinated at the regional level by four Regional Support Programs (RSPs), and at the national level by corresponding National Support Activities (NSAs). The Regional Support Programs were assigned to the participating countries based on informed estimations of their relative comparative advantages and national priorities. Egypt assumed responsibility for Germplasm for Arid Lands, based on the country’s long experience using dryland-adapted plants irrigated with Nile river water. Economic Forestry and Orchards would be hosted by Israel, based on the country’s extensive experience with dryland afforestation and horticulture. The Rangeland Management and Livestock RSP was assigned to Jordan, given the prevalence of livestock-dependent agro-pastoral livelihoods in the country, and the presence of research organizations with considerable capacity in rangeland research. Tunisia, which had pioneered the reuse of treated wastewater for agricultural production in MENA, would host the Marginal Water and Saline Soils program. The two year old Palestinian National Authority would not host a thematic Regional Support Program, but rather focus on building institutional capacity while benefiting from all four technical RSPs.

The original four-program thematic structure covered the initial four year period of the Initiative, generically referred to as “Phase I,” which began at the Initiative’s inception in August 1996 and which ended in June 2000.

PHASE II : JULY 2000 – JUNE 2003

Based on the recommendations of an external program review that evaluated the Initiative’s performance during this period, the Initiative was continued into a second three year “Phase II” with a simplified programmatic structure. The simplified thematic structure saw the Forestry, Germplasm, and Rangeland RSPs subsumed under a broader Watershed Management program. The Marginal Waters RSP was incorporated into a similarly broader Treated Wastewater and Biosolids Reuse program. The “Regional Support Program” designation was dropped, based on the understanding that all activities including national field activities were actually part of the regional thematic programs. Also based on recommendations of the external review, the revised Initiative program for Phase II introduced a third thematic Socio-Economy and Policy program to analyze sociological and economic dimensions of dryland management, and based on its findings, to develop policy recommendations and incentive strategies to raise rural incomes and encourage sustainable resource management.

EXTENSION PHASE : JULY 2003 – APRIL 2006

Phase II itself would be extended by two years beginning in 2003, in another programmatic adaptation known as the “Extension Phase,” when the Socio-Economy and Policy program would be mainstreamed into its sister Watershed Management and Treated Wastewater programs, bringing the Initiative’s lifespan to ten years.

The Extension Phase program also laid out a transparent system of quarterly disbursement based on the delivery of agreed upon results, and on the satisfaction of clearly defined performance indicators. These developments made the final two years of the Initiative its most successful, although the lack of communication between workshops and meetings suggest the limitations that persisted throughout the Initiative’s life.

Regional dialogue in difficult context

Within – and forming an integral part of – the regional thematic programs, participating countries conducted technical field work at the national level.
These activities were carried out at project sites and research stations where the great bulk of the technical work under the Initiative took place. The national teams responsible for the conduct of the research and demonstration were to be supported by the corresponding regional program, which was charged with providing consultation and technology transfer services during regional meetings, seminars, training courses, and demonstration site visits. But the support and coordination elements of the regional programs would remain very limited owing largely to the resurgence of Israeli-Palestinian conflict that characterized the political setting in which the Initiative was implemented.

In fact, circumstance would undermine regional cooperation—the motivating principle behind the Dryland Initiative itself—from the Initiative’s very inception. While the Initiative was officially launched in 1995, it was not until August of 1996 that all national activities were fully formulated and all funding was in place. By then the peace process was unraveling. The period in which the Initiative was implemented was therefore starkly less hopeful than the period in which it was planned. The division of the Initiative’s lifespan into three successive phases was the result of external reviews conducted in three-year intervals which provided important inputs for technical and institutional adjustments but which also served to adapt the program to the compromised environment for regional cooperation.

Political circumstance impinged decisively on the life of the Initiative. The transition from the 1996-2000 Initiative for Collaboration to Control Natural Resource Degradation (Desertification) of Arid Lands in the Middle East (Phase I) to the abridged Regional Initiative for Dryland Management (Phase II and Extension Phase) did away with the innovative but non-functioning structure based on a separation of regional and national support programs and activities. Based on external review recommendations, Phase II maintained regional cooperation, defined as collaboration between Israel and Arab partners, as the project purpose, but it built its technical work entirely on national development projects within which the Dryland Initiative would provide incremental and integral knowledge services based on the Initiative’s applied research results. Hence the move from Phase I to Phase II was marked by refocusing the Initiative from its technical objectives (control of natural resource degradation and restoration of arid land productivity) to a dual objective structure in which regional cooperation and natural resource management appeared in parallel. This modification appeared subtle at the time but turned out to add to the difficulties in the prioritization of program activities. The Initiative, however, purposely reduced the “regionality” of its program and explicitly allowed national field activities to continue during times in which regional cooperation would be constrained by the resurgence of Israeli-Palestinian conflict. The original program of exchange visits and systematic knowledge sharing had to be relegated to periodic “regional” meetings, all of which had to take place outside the region by virtue of political tensions. Although Arab-Israeli cooperation was re-emphasized, especially during the final two years of the Initiative, cooperation would take the form of consultation and information sharing at these meetings, with little regular communication between meetings. Ironically, the success of the Initiative as an instrument for regional cooperation was constrained by the lack of this very regional cooperation in the absence of political rapprochement in the Region and was therefore contingent on factors external to the purview of the Initiative itself. The vagaries of the peace process and periodic outbreaks of violent conflict would indeed impinge heavily on the ultimate success of the Initiative in helping to create an environment of confidence.

However, throughout the 10-year lifetime of the Initiative and in parallel to the ups and downs of
the Middle East Peace Process, the Initiative demonstrated a remarkable resilience to these external political factors and always – without exception – maintained a minimum level of regional dialogue and exchange. Hence it fully achieved its objective of bringing together Arab and Israeli experts to discuss common technical issues, sometimes at the cost of technical quality and program visibility. Focusing on individuals willing to sustain these partnerships was a key success factor while at the same time a key constraint to achieve even broader outreach to the scientific community and political decision-makers. Especially during the Extension Phase, the Initiative’s Regional Thematic Workshops and Regional Capacity Building Workshops succeeded in bringing together Arab and Israeli counterparts in a diminished but tangible version of regional exchange. Face-to-face interactions were substantive and did afford the counterparts an opportunity to brief and be briefed by each other on the substance of recent work. For many of the participants of the capacity building workshops, this would be the first time they had encountered Arab or Israeli counterparts in person, and the proceedings of both types of workshop saw the exchange of informal advice, constructive criticism, and compared experiences.

EXTERNAL REVIEWS
The two external reviews that recommended continuation of the undertaking in 1999 and 2003 both coincided with lulls in the Israeli-Palestinian conflict, and were thus rather fortuitous in their timing. The first review was conducted in 1999, and coincided with the resumption of direct Israeli-Palestinian negotiations in September – a setting that reassured the external reviewers enough to recommend continuing the Initiative for another three years. Indeed, the development of the new program was carried out in a genuinely cooperative atmosphere, with interactive workshops, consultations, and field tours in all five countries, including Israel. The second external review, recommending the two-year Extension Phase in 2003, took place during a similar interim period of relative calm that preceded the Middle East Summit in Aqaba, during which Israel and the Palestinian National Authority both accepted the Road Map to a Permanent Two-State Solution to the Israeli-Palestinian Conflict. While all three review missions (including the final, post-operative review mission) observed the adverse effects of exogenous political events on regional exchange within the Initiative, all three concluded that the operation was manifestly worthwhile regardless of whether the peace process it was intended to serve was advancing or deteriorating. Indeed, the availability of such channels of communication is very arguably more valuable and urgent during difficult times, and is worth having readily in place for when relations improve.

AREAS OF STUDY
While the Initiative’s greater objective related to regional cooperation, the actual content and subject matter of work undertaken under its auspices was of course technical and scientific. During its decade-long work, the Initiative partners explored, tested, implemented, and demonstrated practices and innovations at projects sites in rural areas of their respective countries. Most of their work related to improving and applying existing knowledge, with limited efforts to generate new or novel technical innovations. Much of the work was expository, consisting of field surveys and plant species inventories. But the work was highly pertinent to the environment-development nexus in the five countries, and in the Middle East and North Africa generally. As such, it did expand the existing knowledge base of dryland natural resource management and agricultural and rural development.

Water harvesting and soil water storage techniques, and systems for promoting sub-surface water
storage, were prominent areas of study. Methods for promoting crop and livestock production to capitalize on the improved soil water storage were objects of intensive experimentation. The treatment and use of wastewater and biosolids to irrigate and fertilize crops, fodders, and trees was the focus of extensive experiments, applying various levels of differently treated wastewater and combinations of wastewater, drainage water, and fresh water to a wide range of plant varieties. Methods of soil conservation and stabilization using treated biosolids, afforestation, and improved rangeland management were explored at great length.

Research on farming system diversification and alternative non-farm rural livelihood sources would target methods to increase income levels among local communities and reduce pressure on local land resources. Biological diversity surveys and inventories on protected conservation sites and elsewhere saw the collection of plant materials for genetic resource facilities, including genebanks, greenhouses, and botanic gardens. These activities too were largely geared toward sustainable rural livelihoods, with thousands of seedlings of promising cash crops and fodders cultivated for distribution to local farmers and land users. A variety of social surveys were conducted in all five countries, profiling the needs of target communities in which Initiative-demonstrated practices would be demonstrated and hopefully adopted. Economic analyses evaluated the profitability, relative costs and benefits, and social acceptability of the practices and technologies that Initiative projects would seek to disseminate.

WORKING WITH LOCAL COMMUNITIES
All five country teams engaged local communities in their projects, and all five invested substantial effort in making the knowledge generated by the projects available to the participating communities, and in disseminating the knowledge beyond the boundaries of project sites. Evidence of the impacts of participatory activities in and around project sites would suggest that local awareness of demonstrated innovations in nearby communities was sometimes quite considerable. The teams sought permission from land owners to implement projects on their lands. When permission was granted, farmers became project participants and were often hired as project employees as well. Some community projects were identified as being complementary to Initiative projects and objectives, and therefore came to be co-financed with Initiative funding. Altogether—through demonstration sites, training courses, field days, extension services, capacity building efforts, and public awareness campaigns—the Initiative's outreach within the five participating countries was notable. The Palestinian programs in particular stressed public awareness, including the matter of public perceptions of the social acceptability of using treated wastewater and biosolids – an essential issue to the adoptability of applied technologies tested and demonstrated at project sites.

LINKING WITH NATIONAL PROGRAMS
Each national team collaborated in some way with other, ongoing programs at work on projects and activities addressing related issues and topics. These outside programs were carried out by local non-governmental organizations, government agencies, and bilateral and international organizations, and
the collaboration ranged from infrequent contacts and mutual awareness to intensive engagement and coordination. Ongoing initiatives like the Egyptian Matruh Resource Management Project or the Jordanian Sustainable Range Management Project derived mutual benefits from collaboration with Initiative programs. With the exception of the Israeli Watershed Management team based at Ben Gurion University of the Negev, every country team was government-based and staffed with government employees. This made for thorough coordination with relevant government agencies and natural compatibility between government and Initiative priorities. Given the limits of regional cooperation under the Initiative, few linkages were formed with other regional programs and processes like the Middle East Desalination Research Center or the United Nations Convention to Combat Desertification. Nor did the Arab partners link to thematically relevant regional projects outside of the peace process.

NATIONAL RESEARCH
The Initiative also increased the volume of national research within each of the five party countries. The additional funding and other resources it made available to national research and development would enable the national institutions it involved to intensify their field work. Most of the wastewater treatment plants, demonstration plots, nurseries, botanic gardens, and other facilities used by national Initiative teams would have been utilized without the Initiative, but with fewer projects and activities and at a slower pace than Initiative resources and incentives made possible. Initiative resources were also used to good effect in building professional capacity among participating national experts and scientists, a result that clearly transcends the life of the ten year undertaking.

LESSONS FOR THE FUTURE
In hindsight the original program of the Dryland Initiative was exceedingly ambitious, a product of the zeal and enthusiasm of the decidedly hopeful time during which the Multilateral Peace Talks on the Environment took place. Its mandate was extraordinarily broad in purpose, and assigned its implementers with three simultaneous objectives: to generate high-impact technical innovations, applied knowledge products, and policy advice; to actually improve natural resource management in dryland areas; and to strategically contribute to the Arab-Israeli peace process. The Initiative’s operating premise was that these three objectives were not only compatible, but mutually synergistic. This final report summarizes the extent to which and how these objectives were achieved.

The experience of the Dryland Initiative suggests a number of practical lessons for the design of future programs that focus on technical cooperation in a context of political conflict. Firstly, program design should establish a clear hierarchy of objectives and employ highly appropriate institutional structures that effectively focus and coordinate the content and flow of work. In particular the program’s priorities should be clearly articulated and assigned either to the quality of research and knowledge generated, or to communication and consensus building.

Secondly, the matter of issue selection is crucial. The issues around which technical cooperation is organized should make cross-boundary collaboration not only desirable, but required. In the case of the Middle East, a number of cross-boundary issues suggest themselves as providing more genuinely shared common ground between Israel and her Arab neighbors than land degradation and rural poverty – neither of which is a particularly prominent or pressing concern in Israel. Concerns over pollution management and the protection of marine environments in the Mediterranean are clearly shared between Lebanon, Israel, the Gaza Strip, Egypt, and the countries of the Maghreb. In the Gulf of Aqaba, marine coastal zone issues are already an
area of Israeli-Jordanian cooperation. The spread of pests and zoonotic diseases likewise clearly transcends national boundaries, and coordinating measures between countries is a critical and often necessary component of addressing and containing them effectively.

Identifying the most appropriate and qualified institutions to participate and collaborate in a program of technical cooperation is a crucial aspect of program design. Program planners are encouraged to undertake a broad survey of institutions and organizations that have experience and professional expertise in the technical issues that the program will address, including both governmental and non-governmental organizations and research institutes. Those organizations selected as prospective participants should be evaluated not only on the basis of their technical capacity, but their capacity to interact with counterparts within a larger framework of collaboration and exchange. With the commitment of participating institutions in place, “ownership” of the program comes to be shared by those institutions – as opposed to discrete individuals and groups of individuals who work within them. In this way the technical cooperation undertaken itself becomes institutionalized.

Should the program of technical cooperation planned include field work, suitable mechanisms to assure quality should be put into place, including a functioning peer review process, and appointment of an implementing agency that is well placed and fully qualified to provide technical support. The implementing agency appointed should necessarily be able to communicate freely and effectively with all participants. Future programs may also enjoy a wider range of options in establishing an appropriate framework of incentives, such as competitive research grants, which were not available to the Drylands Initiative. Finally, program design should provide for a broad framework of communication and information exchange, one that effectively employs state of the art information and communications technology systems.

In conclusion, it is recommended that the objective of any new confidence building program should be to place value on technical cooperation among the parties in areas that require this technical cooperation and to view such a goal as an end in itself. Genuine cooperation can be built and bridges of confidence constructed if non-cooperation on the subject matter is likely to create negative effects for both sides. And maybe, this cooperation will also generate personal contacts that will facilitate, in a very modest way, an enhancement of relations between the parties, thus creating one more bridge of confidence towards peace.