Increasing the efficiency of water use and enhancing agricultural water productivity at all levels of the production chains are becoming priorities in a growing number of countries. In particular, shifting to modern on-farm irrigation practices can contribute to a substantial increase in both water use efficiency and water productivity. The objective of this handbook is to provide a practical guide on the use of pressurized irrigation techniques to farmers, irrigation technicians, and extension workers in the field.
Contents

Foreword xxiii

Acknowledgements xxiv

List of acronyms xxv

Chapter 1: Introduction 1.1

Chapter 2: Pressure piped irrigation techniques 2.1

Pressure piped irrigation systems 2.1

Network layout 2.1
 Head control 2.2
 Main pipeline 2.2
 Submains 2.3
 Offtake hydrants 2.3
 Manifolds (feeder lines) 2.3
 Laterals (irrigating lines) 2.3
 Emitters 2.3

System classification 2.4
 Pressure 2.4
 Water delivery method 2.4
 Type of installation 2.5

Piped irrigation techniques compared with traditional irrigation methods 2.5
 Irrigation efficiency 2.5
 Economic return per unit of water 2.5
 Operation and maintenance (O&M) 2.5
 Cost 2.6
Chapter 3: Irrigation equipment and jointing techniques

Introduction

Pipes
- **Steel threaded pipes**
- **Quick coupling light steel pipes**
- **Quick coupling aluminium pipes**
- **Rigid PVC pipes**
- **Polyethylene (PE) pipes**
- **Selection of PVC and PE pipe’s dimensions**
- **Layflat hose**

Pipe connector fittings
- **Malleable iron threaded**
- **Polypropylene (PP) pipe connector fittings**
- **PVC fittings**

Flow control devices
- **Shut-off valves or stop valves**
- **Check valves**
- **Regulating valves**
- **Meters**
- **Pressure gauges**
- **Air valves**
- **Safety valves (also called pressure relief valves)**

Filters
- **Gravel filters**
- **Hydrocyclone (sand separator) filters**
- **Screen type filters**
- **Disk type filters**
- **Automatic self-cleaning filters**

Fertigation equipment
- **Fertilizer (closed) tank**
- **Venturi type**
- **Piston pump**

Water emitters
- **Sprinklers**
- **Microsprinklers**
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spitters, micro-jets and sprayers</td>
<td>3.26</td>
</tr>
<tr>
<td>Bubblers</td>
<td>3.27</td>
</tr>
<tr>
<td>Dripplers</td>
<td>3.28</td>
</tr>
<tr>
<td>Drip tapes</td>
<td>3.28</td>
</tr>
<tr>
<td>Pressure compensated (PC) emitters</td>
<td>3.29</td>
</tr>
<tr>
<td>Pulsators</td>
<td>3.30</td>
</tr>
<tr>
<td>Porous pipes</td>
<td>3.31</td>
</tr>
<tr>
<td>Garden hoses</td>
<td>3.31</td>
</tr>
<tr>
<td>Automation equipment</td>
<td>3.32</td>
</tr>
<tr>
<td>Electric (solenoid) valves</td>
<td>3.32</td>
</tr>
<tr>
<td>Controllers</td>
<td>3.32</td>
</tr>
<tr>
<td>Automatic volumetric metering valves</td>
<td>3.33</td>
</tr>
<tr>
<td>Operation equipment</td>
<td>3.33</td>
</tr>
<tr>
<td>Soil moisture sensors</td>
<td>3.34</td>
</tr>
<tr>
<td>Conductivity meters</td>
<td>3.34</td>
</tr>
<tr>
<td>Soil solution extractors</td>
<td>3.34</td>
</tr>
<tr>
<td>Class A evaporation pan</td>
<td>3.35</td>
</tr>
<tr>
<td>Water-lifting devices</td>
<td>3.36</td>
</tr>
<tr>
<td>Direct-lift devices</td>
<td>3.37</td>
</tr>
<tr>
<td>Displacement pumps</td>
<td>3.38</td>
</tr>
<tr>
<td>Velocity pumps</td>
<td>3.38</td>
</tr>
<tr>
<td>Air-lift pumps</td>
<td>3.40</td>
</tr>
<tr>
<td>Impulse (water hammer) pumps</td>
<td>3.40</td>
</tr>
<tr>
<td>Gravity devices</td>
<td>3.41</td>
</tr>
<tr>
<td>Chapter 4: System design</td>
<td>4.1</td>
</tr>
<tr>
<td>Introduction</td>
<td>4.1</td>
</tr>
<tr>
<td>System design</td>
<td>4.1</td>
</tr>
<tr>
<td>Design of the laterals</td>
<td>4.1</td>
</tr>
<tr>
<td>Determination of the size of the pipelines</td>
<td>4.2</td>
</tr>
<tr>
<td>Lateral lines</td>
<td>4.2</td>
</tr>
<tr>
<td>Manifolds, submain and main pipelines</td>
<td>4.4</td>
</tr>
<tr>
<td>Head control</td>
<td>4.5</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Total dynamic head of the system</td>
<td>4.5</td>
</tr>
<tr>
<td>Total dynamic head of the pumping unit</td>
<td>4.6</td>
</tr>
<tr>
<td>Chapter 5: Equipment, standards and tenders for supply</td>
<td>5.1</td>
</tr>
<tr>
<td>Working pressure of the equipment</td>
<td>5.1</td>
</tr>
<tr>
<td>Main, submain and manifold pipelines, and hydrants</td>
<td>5.1</td>
</tr>
<tr>
<td>Laterals</td>
<td>5.2</td>
</tr>
<tr>
<td>Head control</td>
<td>5.2</td>
</tr>
<tr>
<td>Pumping unit</td>
<td>5.2</td>
</tr>
<tr>
<td>Standards</td>
<td>5.3</td>
</tr>
<tr>
<td>Tenders</td>
<td>5.8</td>
</tr>
<tr>
<td>Example</td>
<td>5.9</td>
</tr>
<tr>
<td>Tenders for the supply of irrigation equipment</td>
<td>5.9</td>
</tr>
<tr>
<td>Chapter 6: Irrigation scheduling</td>
<td>6.1</td>
</tr>
<tr>
<td>Soil-water relationship</td>
<td>6.1</td>
</tr>
<tr>
<td>Example</td>
<td>6.2</td>
</tr>
<tr>
<td>Effective root depth</td>
<td>6.2</td>
</tr>
<tr>
<td>Permissible deficit or depletion of soil available water</td>
<td>6.2</td>
</tr>
<tr>
<td>Net irrigation application depth</td>
<td>6.3</td>
</tr>
<tr>
<td>Crop water requirements</td>
<td>6.3</td>
</tr>
<tr>
<td>Example</td>
<td>6.4</td>
</tr>
<tr>
<td>Example</td>
<td>6.4</td>
</tr>
<tr>
<td>Effective rainfall</td>
<td>6.5</td>
</tr>
<tr>
<td>Ground cover</td>
<td>6.6</td>
</tr>
<tr>
<td>Irrigation interval or frequency</td>
<td>6.6</td>
</tr>
<tr>
<td>Example</td>
<td>6.6</td>
</tr>
<tr>
<td>Irrigation application efficiency</td>
<td>6.6</td>
</tr>
<tr>
<td>Example</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Gross irrigation application depth 6.7
Leaching requirements 6.7
System flow (system capacity) 6.7
General example 6.8

Chapter 7: Water quality for irrigation 7.1
Introduction 7.1
Classification of water quality for irrigation 7.1
The chemical quality of irrigation water 7.2
Composition and concentration of soluble salts 7.2
Effect of soluble salts on plants 7.3
Effects of soluble salts on oil 7.5
Crop tolerance to salinity 7.6
Water quality criteria 7.14
Salinity control 7.16
Micro-irrigation and salinity control 7.17

The physical quality of irrigation waters and treatment (filtration) 7.21
Filtration 7.22
Operation and maintenance 7.22
Application of chemicals 7.23

Quality of treated wastewater for irrigation (physical, biological and chemical) 7.23
Evaluation criteria and parameters 7.24
National guidelines and standards (The Cyprus case) 7.27
Pressurized irrigation with treated wastewater 7.28

Chapter 8: Hose-move sprinkler irrigation 8.1
Introduction 8.1
System layout and component parts 8.2
Sprinklers 8.2
Design criteria and considerations 8.3
Wind conditions 8.4

Irrigation scheduling programme 8.6

Cost 8.6

Advantages 8.6

Disadvantages 8.6

Example design – Hose-move sprinkler for cotton 8.8

- Area and crop 8.8
- Soil, water and climate 8.8
- Crop water requirements and irrigation scheduling 8.8
- System layout, performance and hydraulics 8.8

Chapter 9: Traveller spray booms irrigation systems 9.1

Introduction 9.1

System layout and components 9.2

- The Boom with the water emitters (sprayers) and the trolley 9.3
- The Flexible polyethylene pipe 9.4
- The Reel machine 9.4

Design criteria and considerations 9.5

- Area and topography 9.5
- Soil 9.5
- Water availability 9.6
- Water quality 9.6
- Kind of crops 9.6

Special considerations and irrigation schedule 9.6

Cost 9.8

Advantages 9.8

Disadvantages 9.9

Example design – Spray Boom in alfalfa 9.10

- Area and crop 9.10
- Soil, water and climate 9.10
<table>
<thead>
<tr>
<th>Chapter 10: The center pivot irrigation system</th>
<th>10.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>10.1</td>
</tr>
<tr>
<td>System layout and component parts</td>
<td>10.2</td>
</tr>
<tr>
<td>The Pipeline</td>
<td>10.3</td>
</tr>
<tr>
<td>The water emitters</td>
<td>10.3</td>
</tr>
<tr>
<td>The Central Tower</td>
<td>10.5</td>
</tr>
<tr>
<td>The CP System Control</td>
<td>10.5</td>
</tr>
<tr>
<td>Driving</td>
<td>10.6</td>
</tr>
<tr>
<td>The generator</td>
<td>10.7</td>
</tr>
<tr>
<td>Cost</td>
<td>10.7</td>
</tr>
<tr>
<td>Advantages</td>
<td>10.8</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>10.8</td>
</tr>
<tr>
<td>Design criteria and considerations</td>
<td>10.8</td>
</tr>
<tr>
<td>Design and erection</td>
<td>10.8</td>
</tr>
<tr>
<td>Application rate and frequency of irrigation</td>
<td>10.10</td>
</tr>
<tr>
<td>Special considerations</td>
<td>10.11</td>
</tr>
<tr>
<td>The site selection criteria</td>
<td>10.12</td>
</tr>
<tr>
<td>Example design</td>
<td>10.14</td>
</tr>
<tr>
<td>Area, CP radius and crop</td>
<td>10.14</td>
</tr>
<tr>
<td>Crop water requirements and soil</td>
<td>10.15</td>
</tr>
<tr>
<td>System characteristics</td>
<td>10.15</td>
</tr>
<tr>
<td>Minimum specifications for the center pivot system</td>
<td>10.15</td>
</tr>
<tr>
<td>The general CP system characteristics</td>
<td>10.15</td>
</tr>
<tr>
<td>The technical specifications</td>
<td>10.16</td>
</tr>
<tr>
<td>System layout, performance and hydraulics</td>
<td>12.7</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Chapter 13: Bubbler irrigation of trees</td>
<td>13.1</td>
</tr>
<tr>
<td>Introduction</td>
<td>13.1</td>
</tr>
<tr>
<td>System layout and components</td>
<td>13.1</td>
</tr>
<tr>
<td>Bubbler emitters</td>
<td>13.1</td>
</tr>
<tr>
<td>Irrigation scheduling</td>
<td>13.2</td>
</tr>
<tr>
<td>Design criteria and considerations</td>
<td>13.2</td>
</tr>
<tr>
<td>Cost</td>
<td>13.3</td>
</tr>
<tr>
<td>Advantages</td>
<td>13.3</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>13.3</td>
</tr>
<tr>
<td>Example design – Bubbler irrigation with fruit trees</td>
<td>13.3</td>
</tr>
<tr>
<td>Area and crop</td>
<td>13.3</td>
</tr>
<tr>
<td>Soil, water and climate</td>
<td>13.3</td>
</tr>
<tr>
<td>Crop water requirements and irrigation scheduling</td>
<td>13.4</td>
</tr>
<tr>
<td>System layout, performance and hydraulics</td>
<td>13.4</td>
</tr>
<tr>
<td>Chapter 14: Drip irrigation</td>
<td>14.1</td>
</tr>
<tr>
<td>Introduction</td>
<td>14.1</td>
</tr>
<tr>
<td>System layout and components</td>
<td>14.1</td>
</tr>
<tr>
<td>Drip emitters (drippers)</td>
<td>14.3</td>
</tr>
<tr>
<td>Drip tapes</td>
<td>14.4</td>
</tr>
<tr>
<td>Porous-wall pipes</td>
<td>14.4</td>
</tr>
<tr>
<td>Filtration</td>
<td>14.4</td>
</tr>
<tr>
<td>Irrigation scheduling</td>
<td>14.4</td>
</tr>
<tr>
<td>Design criteria and considerations</td>
<td>14.5</td>
</tr>
<tr>
<td>Cost</td>
<td>14.6</td>
</tr>
<tr>
<td>Advantages</td>
<td>14.6</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>14.7</td>
</tr>
</tbody>
</table>
Example design – Drip irrigation in watermelons 14.7
 Area and crop 14.7
 Soil, water and climate 14.7
 Crop water requirements and irrigation schedule 14.7
 System layout 14.8
 System flow and operation 14.8
 Operating pressure 14.9

Chapter 15: Low-cost family drip irrigation system 15.1

Introduction 15.1

The affordable micro-irrigation techniques (AMIT) 15.1

The family drip system 15.2
 What is new in the family drip system? 15.3

System layout and components 15.3
 The water tank 15.4
 The control head 15.5
 The water pipeline 15.5
 The dripper lines 15.5

Irrigation scheduling 15.5
 Irrigation requirements 15.5
 Number and frequency of irrigations 15.6

Design criteria and considerations 15.6
 Area, size and shape 15.6
 Topography and type of soil 15.7
 Water availability 15.7
 Water quality 15.7
 Kind of crops 15.7
 Special consideration 15.7

Cost 15.9

Advantages 15.10

Disadvantages 15.10

Example design – Family drip systems in tomatoes (trellised) 15.10
 Area and crop 15.10
Chapter 15: Soil, water and climate

- **Soil, water and climate** 15.11
- **Crop water requirements and irrigation scheduling** 15.11
- **The layout of the system (description and characteristics), performance and hydraulics** 15.12
- **Hydraulics of the system** 15.12
- **Various AMIT systems configuration (after IDE)** 15.13

Chapter 16: Fertigation

- **Introduction** 16.1
- **Fertilizer injectors** 16.1
 - **Fertilizer (closed) tank** 16.1
 - **Venturi type** 16.1
 - **Piston pump** 16.2
- **Fertilizer application** 16.3
 - **Solubility** 16.3
 - **Acidity** 16.3
 - **Quantity** 16.3
- **Example: fertigation with vegetables** 16.5

Chapter 17: Low-cost pipes distribution system

- **Introduction** 17.1
- **System layout and components** 17.2
- **Design criteria and consideration** 17.2
- **Cost** 17.4
- **Advantages** 17.4
- **Disadvantages** 17.4
- **Example design** 17.5
 - **Area and crop** 17.5
 - **Soil and water** 17.6
 - **Water requirements and irrigation scheduling** 17.6
 - **The system layout and dynamic head** 17.7
Chapter 18: Low-cost hose irrigation

Introduction

System layout and components

Hoses

System types and design criteria

- Conventional hose basin for trees
- Drag hose basin for trees
- Hose basin for field crops
- Hose furrow for vegetables

Cost

Advantages

Disadvantages

Example designs – Hose basin with trees:

conventional and drag types

Hose basin irrigation for maize and hose furrow for tomatoes

Chapter 19: An outline for engineering investigation for a pressurized irrigation system

Introduction

Data collection

Farm datasheet
Selection criteria and parameters for various systems

<table>
<thead>
<tr>
<th>System Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The center pivot (CP) irrigation systems</td>
<td>19.3</td>
</tr>
<tr>
<td>Traveller irrigation machines spray boom carts</td>
<td>19.4</td>
</tr>
<tr>
<td>The drip irrigation system</td>
<td>19.5</td>
</tr>
<tr>
<td>Mini-sprinklers irrigation systems (for fruit trees)</td>
<td>19.6</td>
</tr>
<tr>
<td>Pipe distribution system</td>
<td>19.7</td>
</tr>
<tr>
<td>Hose-move sprinkler irrigation system</td>
<td>19.8</td>
</tr>
<tr>
<td>Low-cost (family kid) drip irrigation systems</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Chapter 20: Operation and Maintenance

Introduction

Operation

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>When and how long to irrigate</td>
<td>20.1</td>
</tr>
<tr>
<td>Starting and stopping the system</td>
<td>20.2</td>
</tr>
<tr>
<td>System performance</td>
<td>20.2</td>
</tr>
<tr>
<td>The equipment needed for this task is as follows:</td>
<td>20.2</td>
</tr>
<tr>
<td>Pump plant</td>
<td>20.4</td>
</tr>
</tbody>
</table>

Maintenance

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System network</td>
<td>20.4</td>
</tr>
<tr>
<td>Pump plant</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Conclusion

Chapter 21: Irrigation terminology

Chapter 22: Irrigation equipment supply database - IES

Annex: Units Conversion Table
List of figures

Figure 1.1 Wasteful surface irrigation method 1.1
Figure 2.1 Scheme of a network layout 2.2
Figure 2.2 Improved surface irrigation method with pipes 2.3
Figure 2.3 Modern irrigation techniques 2.6
Figure 2.4 Sprinkler irrigation techniques 2.7
Figure 3.1 A threaded steel pipe fitting (male adapter) 3.2
Figure 3.2 Quick coupling light steel galvanized pipes and fittings 3.3
Figure 3.3 Quick coupling aluminium pipes 3.4
Figure 3.4 Rigid PVC pipes 3.5
Figure 3.5 Polyethylene pipe in a coil 3.6
Figure 3.6 A layflat hose 3.10
Figure 3.7 Threaded galvanized steel pipe fittings 3.11
Figure 3.8 Polypropylene fittings compression type quick release 3.11
Figure 3.9 PVC solvent welding pipe fitting 3.12
Figure 3.10 PVC pipe with grooved ring socket push/fit joint 3.12
Figure 3.11 Various shut-off valves. From left to right a gate, a butterfly and ball valves 3.14
Figure 3.12 Scheme and photograph of a check valve 3.14
Figure 3.13 A pressure reducing valve maintains downstream pressure constant when pressure upstream increases 3.16
Figure 3.14 Cross-section of a water meter 3.17
Figure 3.15 A Bourdon type pressure gauge 3.17
Figure 3.16 Air valves operate by introducing and releasing air to the water system 3.19
Figure 3.17 Scheme and photograph of a safe valve 3.19
Figure 3.18 Scheme and photograph of a gravel filter 3.20
Figure 3.19 Scheme and photograph of hydrocyclones 3.21
Figure 3.20 Operational scheme and photograph of a screen filter 3.21
Figure 3.21 A grooved disk and a disk filter 3.22
Figure 3.22 An automatic self-cleaning filter uses the back flushing mechanism for the removal of accumulated debris 3.22
Figure 3.23 Scheme and photograph of a fertilizer closed tank 3.23
Figure 3.24 Scheme and photograph of a Ventury type fertilizer 3.24
Figure 3.25 Scheme and photograph of a piston pump fertilizer
Figure 3.26 Rotating sprinklers
Figure 3.27 A microsprinkler with a rotating spinner
Figure 3.28 Photograph of a micro-jet irrigating a citrus tree and in detail the microjet’s head with no-moving parts
Figure 3.29 Scheme of a bubbler
Figure 3.30 On top an on-line dripper, below an in-line dripper
Figure 3.31 Scheme and photograph of a drip tape
Figure 3.32 Differences in discharge between a normal emitter and an ideal and a real pressure compensated emitters
Figure 3.33 Picture of a pressure compensated emitter showing the membrane that is used as flow-regulator
Figure 3.34 Operational scheme and photograph of a pulsator
Figure 3.35 Scheme of a porous pipe
Figure 3.36 Photograph of a garden hose with outlet
Figure 3.37 Operational scheme and photograph of an electric control valve
Figure 3.38 Operational scheme and photograph of an irrigation controller device
Figure 3.39 Operational scheme and photograph of an automatic volumetric metering valve
Figure 3.40 Scheme and photographs of tensiometers and a TDR
Figure 3.41 Direct measurement of soil solution with a conductivity meter and extractors in the field
Figure 3.42 A class A evaporation pan in the field
Figure 3.43 Typical curves showing relationship between head, flow, speed, and efficiency (example for a centrifugal pump)
Figure 3.44 Scheme of a Persian wheel and photograph of a Noria
Figure 3.45 Left: Scheme of a hand pump with single acting bucket piston (piston valve shown open as on the down-stroke, and inlet valve is closed). Center: A peadle piston-type pump. Right: Scheme of a progressive cavity or "mono" pump
Figure 3.46 Rotodynamic pumps: (a) radial or centrifugal pump and (b) axial pump
Figure 3.47 Left: a rotodynamic pump powered by a tractor. Right: a pumping unit with rotodynamic pumps in parallel
Figure 3.48 Scheme of an air-lift pump
Figure 3.49 Schematic diagram of hydram installation
Figure 3.50 A syphon arrangement
Figure 3.51 Ht is the total head, Ha is the elevation head, Hi is the emitter operation head and Hp is the friction losses head (sum of friction losses in the main line, submains, manifolds, laterals, valves, pipe fittings and minor losses)
Figure 4.1 Operating pressure required for pressurized systems
Figure 7.1 Divisions for relative salt tolerance ratings of agricultural crops
Figure 7.2 Drip maize with recycled water
Figure 7.3 Sprinkling with treated municipal water
Figure 8.1 Hose-move sprinkler irrigation?
Figure 8.2 Profile of wetted soil under sprinklers
Figure 8.3 Hose move sprinkler irrigation
Figure 8.4 Hose - Move sprinkler jointing techniques
Figure 9.1 Spray Boom on Trolley in operation
Figure 9.2 The boom, the PR pipe and the reel machine
Figure 9.3 The full-circle and the half-circle Sprayers
Figure 9.4 The reel machine with the PE pipe
Figure 9.5 Towing the compact machine
Figure 9.6 Spray Boom in operation
Figure 9.7 Spray boom machine
Figure 9.8 Layout (setting) of Spray boom machine
Figure 9.9 Variable irrigation strip widths with different sprayers arrangements
Figure 10.1 The Center Pivot
Figure 10.2 A Center Pivot overview
Figure 10.3 Hose drops with sprayers
Figure 10.4 The Central tower and the control panel
Figure 10.5 The Support towers
Figure 10.6 High and Low-profile structures
Figure 10.7 The erection of a center pivot
Figure 10.8 Towing the system
Figure 10.9 Overview
Figure 10.10 System Layout
Figure 10.11 Connection to the water source

Figure 11.1 Microsprinkler emitters in potatoes

Figure 11.2 Low capacity sprinkler irrigation in potatoes (solid system)

Figure 11.3 Low capacity (micro) sprinkler system

Figure 12.1 Irrigation of citrus orchard with minisprinklers

Figure 12.2 Minisprinklers in trees

Figure 12.3 Minisprinkler irrigation in fruit trees

Figure 12.4 Minisprinkler system jointing techniques

Figure 13.1 Bubbler in fruit trees

Figure 13.2 Bubbler irrigation jointing techniques

Figure 14.1 The mains, manifold and dripper laterals

Figure 14.2 Double lines with bananas

Figure 14.3 Drip irrigation in watermelons

Figure 14.4 Head control unit in drip irrigation

Figure 15.1 AMIT Configuration of the typical Bucket kit with one 12 mm lateral and spaghetti micro-tubes fitted on either side.

Figure 15.2 The Family Drip System

Figure 15.3 Locally made Tank for FDS

Figure 15.4 FDS dripper lines in China

Figure 15.5 The FDS system layout

Figure 15.6 Drum kit using a 16 mm sub-main five 12 mm laterals with spaghetti micro-tubes in 120 m² area

Figure 15.7 System with dripper lines using standard sized holes as dripper emitters covered with plastic sleeves to control water discharge

Figure 15.8 Micro-sprinkler kit in 250 m²

Figure 15.9 Shiftable dripper lines system

Figure 15.10 Pitcher Irrigation

Figure 16.1 The Fertiliser Injectors

Figure 16.2 Preparing the fertilizer solution

Figure 17.1 Irrigating young trees with the PDS

Figure 17.2 Installation of the pipes

Figure 17.3 The PDS Control Head and the Hydrant

Figure 17.4 The Layout of the PDS

Figure 18.1 Hose basin irrigation in young fruit trees
Figure 18.2 Hose furrow irrigation in vegetables
Figure 18.3 Schematic diagram for hose basin for trees
Figure 18.4 Hose irrigation for vegetables & field crops. Hose positions and movements
Figure 18.5 Schematic diagram for short furrows
Figure 18.6 Women irrigating young trees with hose basin system
Figure 18.7 Hose irrigation for trees
Figure 18.8 Hose irrigation for early vegetables in low tunnel
Figure 18.9 Hose irrigation for vegetables and field crops
Figure 18.10 Hose irrigation jointing techniques
Figure 22.1 IES Web site

List of tables

Table 2.1 Comparative costs of piped irrigation systems
Table 2.2 Cost breakdown for piped irrigation systems
Table 3.1 Maximum recommended flow in plastic pipes without outlets
Table 3.2 uPVC Pipe series
Table 3.3 PE Pipes (50, 63, 80) wall thickness for PN 6 and PN 10
Table 3.4 Scheme for flow control devices
Table 3.5 Sprinkler classification
Table 4.1 F factor for multiple outlets
Table 4.2 Total pressure head of system
Table 5.1 A 4 inch rigid PVC pipe (6.0 bars) in two different national standards
Table 5.2 Equipment standards and specifications
Table 5.3 Bill of quantities
Table 5.4 Equipment specification
Table 6.1 Soil physical properties (average values)
Table 6.2 Example of rooting depth (metres) during the growing season
Table 6.3 Estimate of ETo in millimetres per day in the Wadi Tuban Delta
Table 6.4 Cotton, growing season August-December
Table 6.5 Crop factor (kc) for seasonal crops (average figures)
Table 6.6 Crop factor (kc) for permanent crops 6.5
Table 6.7 Approximate application efficiency of various on-farm irrigation systems and methods 6.7
Table 6.8 Cotton example 6.8
Table 6.9 Irrigation programme 6.9
Table 7.1 Principle ions present in irrigation water 7.2
Table 7.2 Relative salt tolerance of herbaceous crops – vegetables and fruit crops 7.7
Table 7.3 Relative salt tolerance of herbaceous crops – woody crops 7.8
Table 7.4 Relative salt tolerance of herbaceous crops – grasses and forage crops 7.9
Table 7.5 Boron tolerance limits for agricultural crops 7.10
Table 7.6 Salt tolerance of ornamental shrubs, trees and ground cover 7.12
Table 7.7 Boron tolerance limits for ornamentals 7.13
Table 7.8 Water classification by salinity 7.14
Table 7.9 Potential infiltration problem due to sodium in irrigation water 7.15
Table 7.10 Case 1: Water chemical analysis data sheet 7.18
Table 7.11 Case 2: Water chemical analysis data sheet 7.19
Table 7.12 Case 3: Water chemical analysis data sheet 7.20
Table 7.13 Cyprus Guidelines for Domestic Treated Effluents use for Irrigation 7.30
Table 8.1 Maximum number of low-medium pressure sprinklers on quick coupling lateral pipes 8.5
Table 8.2 Total dynamic head required 8.9
Table 8.3 List of the equipment required for the hose-move sprinkler system installation (bill of quantities) 8.9
Table 9.1 Example Performance Table for Boom Retraction Speed and Precipitation 9.8
Table 11.1 Maximum permissible length of laterals 11.3
Table 11.2 System’s operating pressure 11.6
Table 11.3 List of equipment needed for the installation 11.8
Table 12.1 Minisprinkler irrigation scheduling 12.3
Table 12.2 Maximum number of minisprinklers on the lateral and length of lateral on level ground. Minisprinkler flow rate at 2.0 bars 12.4
Table 12.3 System’s operating pressure 12.7
Table 12.4 Equipment required for the system installation 12.9
Table 13.1 System’s operating pressure 13.4
Table 13.2 Equipment required for the system installation 13.5
Table 14.1 Type of soil and average radius of water spread laterally with drippers 14.1
Table 14.2 System’s pressure required 14.9
Table 14.3 Equipment for system installation 14.9
Table 15.1 Useful data on common seasonal crops in the open 15.9
Table 15.2 The Irrigation program of the case example 15.11
Table 15.3 List of equipment for system installation (Low-cost Family Drip irrigation system) 15.13
Table 16.1 Net concentration of fertilizers in ppm 16.4
Table 17.1 Flow versus pipe diameter 17.4
Table 17.2 List of equipment needed for the Pipe Distribution System installation (Bill of quantities) 17.7
Table 18.1 Flow characteristics of 24 m hoses 18.2
Table 18.2 Slope and the size of the flow 18.5
Table 18.3 Conventional and drag hose basin 18.10
Table 18.4 Conventional hose basin system (trees) 18.10
Table 18.5 Drag hose basin installation (trees) 18.11
Table 18.6 Hose basin and hose furrow 18.14
Table 18.7 Hose basin installation (maize) 18.14
Table 18.8 Hose furrow installation (tomatoes) 18.15

List of boxes

Box 10.1 Low Energy Precision Application 10.4
Foreword

Water is essential for all socio-economic development and for maintaining healthy ecosystems. As population increases and development calls for increased allocations of groundwater and surface water for the domestic, agriculture and industrial sectors, the pressure on water resources intensifies, leading to tensions, conflicts among users, and excessive pressure on the environment. The increasing stress on freshwater resources brought about by rising demand and growing pollution worldwide, is of serious concern.

Increasing water productivity holds the key to future water scarcity challenges. Today, agriculture accounts for 70 percent of all water use globally, up to 95 percent in several developing countries. Adding to the pressures on agricultural use is the increased awareness of the instrumental value of water in maintaining environmental services. Increasing the efficiency of water use and enhancing agricultural water productivity at all levels of the production chains are becoming priorities in a growing number of countries.

A comprehensive approach to agricultural water productivity requires actions at all levels, from crops to irrigation schemes, and up to national and international economic systems. In particular, shifting to modern on-farm irrigation practices can contribute to a substantial increase in both water use efficiency and water productivity.

The objective of this handbook is to provide a practical guide on the use of pressurized irrigation techniques to farmers, irrigation technicians, and extension workers in the field. In this second edition, the handbook has been considerably revised, including new chapters on low-cost drip irrigation and pipe distribution systems for smallholders.
Acknowledgements

The handbook on pressurized irrigation techniques is a joint effort of the Water development and management Unit of FAO (NRLW) and of the International Programme for technology and research in irrigation and drainage (IPTRID).

The first edition of the handbook was published in 2001 and was prepared by Andreas Phocaides, irrigation technology consultant, with the assistance of Reto Florin, former Chief of the FAO Water Service and David Casanova, irrigation expert.

For its second edition, the handbook was completely revised, with the addition of several new chapters. The author was assisted in its preparation by Ines Beernaerts and Jean-Marc Faurès (FAO), and Virginie Gillet (IPTRID).
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Acrylonitrile butadiene styrene (thermoplastic material)</td>
</tr>
<tr>
<td>AMIT</td>
<td>Affordable micro-irrigation technologies</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASAE</td>
<td>Society for Engineering in Agriculture, Food, and Biological Systems (former American Society of Agricultural Engineers)</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing Material</td>
</tr>
<tr>
<td>BHP</td>
<td>Break horsepower</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>BS</td>
<td>British Standards</td>
</tr>
<tr>
<td>CAMS</td>
<td>Computer aided management systems</td>
</tr>
<tr>
<td>CEN</td>
<td>European Committee for standardization</td>
</tr>
<tr>
<td>CIF</td>
<td>Cost insurance and freight</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CP</td>
<td>Center pivot</td>
</tr>
<tr>
<td>CYS</td>
<td>Cyprus Standards</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung (German standards).</td>
</tr>
<tr>
<td>DN</td>
<td>Nominal diameter</td>
</tr>
<tr>
<td>ECe</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>ECiw</td>
<td>Electrical conductivity of irrigation water</td>
</tr>
<tr>
<td>ECw</td>
<td>Electrical conductivity of water</td>
</tr>
<tr>
<td>EN</td>
<td>European Standard</td>
</tr>
<tr>
<td>ESP</td>
<td>Exchangeable sodium percentage</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>ETc</td>
<td>Crop water requirements</td>
</tr>
<tr>
<td>ETo</td>
<td>Reference evapotranspiration</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FC</td>
<td>Field capacity</td>
</tr>
<tr>
<td>FDS</td>
<td>Family drip system</td>
</tr>
<tr>
<td>FOB</td>
<td>Free on board</td>
</tr>
<tr>
<td>HDPE</td>
<td>High density polyethylene</td>
</tr>
<tr>
<td>IES</td>
<td>Irrigation equipment supply database</td>
</tr>
<tr>
<td>IPTRID</td>
<td>International Programme for Technology and Research in Irrigation and Drainage</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>kc</td>
<td>Crop coefficient</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low density polyethylene</td>
</tr>
<tr>
<td>LEPA</td>
<td>Low energy precision application</td>
</tr>
</tbody>
</table>
LR Leaching requirements
NTU Turbidity
PC Pressure compensated
PDS Pipe distribution irrigation system
PE Polyethylene
PIP PVC irrigation pipe
PN Nominal pressure
PP Polypropylene
PR Pressure rating
PVC Polyvinyl chloride
PVC-U Polyvinyl chloride unplasticised (equivalent to uPVC)
O&M Operation and maintenance
RSC Residual sodium carbonate
SDR Standard dimension ratio
SS Suspended solids
Sa Available moisture
SAR Sodium adsorption ratio
SC Saturation capacity
TC Technical Committee
TDR Time domain reflectometry
TDS Total dissolved solids
uPVC Unplasticised polyvinyl chloride
USDA United States Department of Agriculture
WHO World Health Organization
WP Wilting point