MANGROVE GUIDEBOOK
FOR SOUTHEAST ASIA
Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non-government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat. These species include not only grasses, herbs and ferns, but also trees, shrubs and climbers.

Experts working for Wetlands International in Indonesia realized this constraint and commenced preparation of a mangrove guidebook with this extended scope in mind. By 2002, information had been compiled for 204 species. At the beginning of 2003, Wetlands International proposed a partnership with FAO to produce a mangrove guidebook for the whole of Southeast Asia. Thus, a joint effort began. Two and a half years later, a 534 page manuscript with many illustrations had been prepared with the aid of reviews by national mangrove experts. Further editorial work continued by the authors from Wetlands International and FAO forestry officers.

After nearly three years of hard work, this mangrove guidebook has been completed, and it gives me great pleasure to introduce this unique publication to those who study, manage, conserve and utilize mangrove forests. This book will contribute to guiding more people, especially the younger generation, to learn about mangrove forests in Southeast Asia. Thus, it supports further advancement of mangrove conservation and rehabilitation programmes.

We should all acknowledge with thanks the work done by the main authors headed by Mr Wim Giesen, mangrove botanist for Wetlands International, Mr Stephan Wulffraat, forester, now with WWF Indonesia, two FAO foresters, Dr Mette Loyche Wilkie, Senior Forestry Officer, FAO, Rome, Italy, and Mr Masakazu Kashio, Forest Resources Officer, FAO Regional Office for Asia and the Pacific, Bangkok, Thailand, and all of the reviewers in many countries for their valuable contributions. Without their painstaking efforts, this publication would not have seen the light of day.
We would also like to express our appreciation to the “Forestry programme for early rehabilitation of Asian tsunami-affected countries (OSRO/GLO/502/FIN)”, which is funded by the Government of Finland, for providing financial support to print the first 1,000 copies of this guidebook.

This publication is a useful tool for mangrove forest managers, foresters, coastal resource managers, scientists, students and interested lay persons, not only in Southeast Asian countries, but also in many other countries where mangroves grow.

He Changchui
Assistant Director-General and Regional Representative for Asia and the Pacific
Food and Agriculture Organization of the United Nations
It is with great pleasure that I am writing the foreword for this guide to the mangroves of Southeast Asia. Its development started in 1991 when a young Dutch student, Stephan Wulffraat, entered my office in Bogor (Asian Wetland Bureau - Indonesia), inquiring about possibilities for an internship.

I had worked extensively along the coasts and in the mangrove swamps of West Malaysia and Sumatra and often found it tedious to identify various plant species associated with these magnificent areas; not so much the true mangroves - which comprise relatively few species - but the many species in the backswamps, the slightly elevated areas and the sandy ridges associated with this brackish water habitat. For these, no concise field guide existed. As a Dutch researcher I was used to the fantastic field guides that can be obtained in almost any bookshop in Europe. For students in Southeast Asia it is much more difficult to get acquainted with the tremendous biodiversity around them. There are many more species but hardly any field guides. They have to scramble through many incomplete inventories, herbaria and obscure scientific papers. I believe that this dearth of access to basic knowledge is one of the most significant constraints for both the public and young scientists in Southeast Asia to develop a true appreciation of their biologically rich environment. I believe that this also sustains the limited understanding and awareness of the ecology of mangroves and their incredible productivity and usefulness for people.

I suggested Stephan to start the development of a field guide to the mangroves and associated plants species of Indonesia. I did not foresee that this would become a long process, hampered by lack of funding but carried on through the enthusiasm and interest of its consecutive authors and the drawing talents of Wahyu Gumelar, Triana, Iskak Syamsudin and Tilla Visser. The most significant driving force of it all was Wim Giesen, who was involved from the start and in the end even took the step to expand the focus to Southeast Asia. I would like to thank FAO for their support in the development and publication of this guidebook.

At last, here it is. I am extremely pleased with the end result. I call on students and nature lovers of Southeast Asia to go out there, study and appreciate why and how mangroves should be managed and protected, and to become knowledgeable advocates for their plight. Too many valuable areas have been lost.

It is time to turn the tide.

Marcel Silvius
Senior Programme Manager
Wetlands International
Wageningen, The Netherlands
AUTHORS’ PREFACE

The aim of this book is to provide those involved with the management and conservation of mangroves in Southeast Asia with a guidebook for identifying mangrove plants. At the same time, the book aims to provide a brief introduction to mangroves in general and Southeast Asia’s mangroves in particular. This would then also be of use to students and interested lay persons. Accordingly, the book has been split into two parts: part one deals with the mangrove habitat in Southeast Asia, while part two focuses on the mangrove plants themselves. The core of the book is formed by the black-and-white drawings of mangrove plants, skilfully drawn by Wahyu Gumelar, Tilla Visser, Iskak Syamsudin and Triana at the Wetlands International – Indonesia Programme office in Bogor, West Java.

Various guidebooks exist for mangroves of Southeast Asia, but all have a limited geographic scope covering only one country: Malaysia (Watson, 1928), Papua New Guinea (Percival & Womersley, 1975), Indonesia (Kitamura et al., 1997; Noor et al., 1999) and the Philippines (Aragones et al., 1998). An even more severe limitation of these guidebooks is that they focus almost exclusively on so-called ‘true mangrove species’ – i. e. species that occur in the mangrove habitat only and are not found in other habitats. While this is an approach that is common world-wide, the disadvantage is that many plant species found in the mangrove habitat are not dealt with, which can be most frustrating. Another disadvantage of most existing guidebooks is that they tend to ignore species other than trees and shrubs. Epiphytes and lianas, for example, are often ignored entirely even though some may only be found in mangroves.

Up to now, identifying all plants found in Southeast Asian mangroves was a daunting task, as comprehensive taxonomic works (or ‘floras’) of the region are bulky (Flora of Java, Tree Flora of Malaya), or both bulky and far from complete (Flora Malesiana, Flora of Thailand). The region is endowed with the world’s largest expanse of mangrove that at the same time is also the world’s most biologically diverse and varied in structure. This unparalleled natural heritage gives the region a particular responsibility, while providing a unique opportunity for all those wanting to study and enjoy this wondrous habitat.

This book represents the first attempt at covering all mangrove plant species in Southeast Asia, and is likely to be incomplete. The authors would therefore warmly welcome additional information, especially regarding geographic coverage and additional species not covered, so that this can be updated in future editions. Please forward your comments and suggestions to the lead author, Wim Giesen, at: wim.giesen@mottmac.nl
ACKNOWLEDGEMENTS

We would like to thank the many external experts who kindly gave their advice and assistance:

Taxonomists & herbaria

The late Dr A.J.G.J. (‘Doc’) Kostermans (Bogor Herbarium), Dra. J.J. Afriastini (for her kind help identifying specimens in the Bogor Herbarium), Ms Agustina Arobaya checked our orchid list for occurrence in Indonesian Papua, Dr Max van Balgooy (Rijksherbarium Leiden) and Dr E. Hennipman (Institute of Systematic Botany, University of Utrecht, The Netherlands). We thank the library staff of Bogor Herbarium for their kind help in locating (often very obscure) literature. Many thanks to the Royal Botanic Garden, Kew, especially Jim Kay and Trish Long for kindly providing illustrations of some of the most obscure and difficult to locate species, John Dransfield for providing contacts, and Jovita Yesilyurt for the digital image of *Schefflera lanceolata* – the last and most elusive. Lastly, lots of thanks also to Bogor Herbarium and Rijksherbarium Leiden for providing access to the herbarium collections and allowing us to make sketches, which made it possible to complete the illustrations that greatly enhance the usefulness of this book.

Other specialists

Jim Berdach, who provided us with information on protected mangroves and total mangrove area in the Philippines; Sim Cheng Hua, Sundari Ramakrishna and Murugadas Loganathan of Wetlands International Malaysia Programme for information about Malaysian mangroves; Tony Sebastian of Aonyx Environmental (Kuching) for information about mangroves of Brunei; Mam Kosal of Wetlands International Mekong Programme, Melissa Marschke of IDRC and Alvin Lopez of IUCN’s Mekong Wetlands Programme for information about mangroves of Cambodia; and last-but-not-least Mette Loyche-Wilkie of FAO for information about the mangroves of Papua New Guinea and Myanmar.

Production team

We would like to especially thank the staff of Wetlands International – Indonesia Programme who assisted with the production of this volume in many ways, but especially with the production of the excellent line drawings. We would like to thank Nyoman Suryadiputra, Yus Rusila Noor, Wahyu Gumelar, Tilla Visser, Triana, Iskak Syamsudin, Rosie Ounsted, Endah NIRARITA, Cecilia Luttrell, Penina Mampioper and George Sitania.
Thanks also goes to Taej Mundkur of Wetlands International Asia Programme, Sundari Ramakrishna of Wetlands International Malaysia Programme, and Marcel Silvius of Wetland International’s headquarters in the Netherlands, for their enduring support. A lot of thanks also goes to Paul Giesen for the grim task of sorting out the two very long indexes, and for assisting with scanning of the literature. Special thanks go to Masakazu Kashio, FAO, Bangkok, for his final reviews, comments, editing and formatting, and arrangement for printing.

We acknowledge with great thanks the financial support of the FAO “Forestry programme for early rehabilitation of Asian tsunami-affected countries (OSRO/GLO/502/FIN)”, which is funded by the Government of Finland, to print this guidebook.

Lastly, we would like to thank UNEP-WCMC for allowing us to reproduce the mangrove map of Southeast Asia, and the International Society for Mangrove Ecosystems (ISME, based in Okinawa, Japan) for their financial contribution towards the production of the Indonesian precursor of this guidebook.

Wim Giesen
Senior consultant with ARCADIS Euroconsult in the Netherlands
wim.giesen@mottmac.nl

&

Stephan Wulffraat
Senior forester/biologist for WWF, Tarakan, East Kalimantan, Indonesia
nebulosa@indo.net.id
Contents

FOREWORDS .. iii

AUTHORS’ PREFACE ... vi

ACKNOWLEDGEMENTS ... vii

PART ONE: INTRODUCTION TO THE MANGROVES IN SOUTHEAST ASIA

1 INTRODUCTION ... 1
 1.1 What are mangroves? ... 1
 1.2 Southeast Asia’s mangroves: the world’s largest and best-developed 2
 1.3 Scope of this guidebook ... 3

2 MANGROVE FLORA .. 5
 2.1 Flora and diversity ... 5
 2.2 Endemic and rare/uncommon plant species ... 9

3 THE MANGROVE HABITAT IN SOUTHEAST ASIA .. 11
 3.1 Introduction to the mangrove habitat ... 11
 3.2 Physical conditions ... 12
 3.3 Mangrove vegetation types .. 16
 3.4 Mangrove fauna .. 21

4 BENEFITS DERIVED FROM MANGROVES ... 29
 4.1 Mangrove uses .. 29
 4.2 Mangrove functions ... 34
 4.3 Economic value of mangroves ... 36

5 THE STATE OF SOUTHEASIAN MANGROVES ... 39
 5.1 Past and present area ... 39
 5.2 Causes of decline .. 44
 5.3 Mangrove conversion for aquaculture ... 47
 5.4 Mangrove restoration .. 51
 5.5 Mangroves and sea level rise ... 56

6 IMPORTANT AND PROTECTED MANGROVE AREAS IN SOUTHEAST ASIA 57
 6.1 Mangroves in the Protected Area System .. 57
 6.2 Important mangrove areas ... 58
 6.2.1 Brunei Darussalam .. 58
 6.2.2 Cambodia ... 58
 6.2.3 Indonesia ... 59
 6.2.4 Malaysia .. 63
 6.2.5 Myanmar .. 66
List of Tables:

Table 1 Species group diversity 6
Table 2 True mangrove species in Southeast Asia 7
Table 3 Mangrove (associate) species endemic to Southeast Asia 9
Table 4 Mangrove zones and species in Southeast Asian countries 22
Table 5 Quantitative list of plant products in Southeast Asia 30
Table 6 Mangrove products 33
Table 7 Economic value of various mangrove products 36
Table 8 Changes in mangrove area 1980-2000 43
Table 9 Brackish water fishponds in Southeast Asia 49
Table 10 Mangroves in Protected Areas 57
CHAPTER 1

INTRODUCTION

1.1 WHAT ARE MANGROVES?

The term ‘mangrove’ is used to define both the plants that occur in tidal forests, and to describe the community itself (Tomlinson, 1986; Wightman, 1989). In this guidebook, ‘mangrove’ is generally used to refer to the habitat, and the meaning is usually obvious from the context. Elsewhere, the term ‘mangal’ is used by some authors (e.g. MacNae, 1968; Chapman, 1976, 1977; Ogino & Chihara, 1988) in reference to mangrove vegetation, but its usage has not met with much support apart from in the Americas, and ‘mangal’ is therefore not used in this publication.

Mangroves can be broadly defined as woody vegetation types occurring in marine and brackish environments. They are generally restricted to the tidal zone, which is the strip of coast starting from the lowest low water level up to the highest high water level (spring tide). With a few exceptions, they occur only in the tropics and sub-tropics, and their closest equivalent in temperate zones are herbaceous salt marshes. In this publication the term ‘mangrove’ is used in its broadest sense, i.e. also including the Nypa formation and the margins of mangroves. These margins are inundated a few times a year only, mainly during spring tides or due to storm surges, and frequently include species from adjacent vegetation types. The latter may include species from the beach ‘Barringtonia formations’, other types of coastal forests, and from the sand dune ‘Pes-capre formation’ (van Steenis, 1958; MacNae, 1968; Tomlinson, 1986).

Although mangroves are not as poorly known as many other tropical and subtropical forest habitats, many myths remain. In a tiny 2-page paper on Mangrove mythology Jane Snedaker (1997, quoted in Lewis, 2001) proposes a true or false test with five questions:

a. Mangroves require salt water to develop and grow.

b. Mangroves extend shorelines.

c. Mangroves build up land.

d. The red mangrove (Rhizophora species) are the most valuable mangroves.

e. Some mangrove forest types are more important than others.

In fact, all five are common myths and all are false! Misconceptions are common and need to be addressed in order to fully understand and appreciate these unique ecosystems.
Estimates of former worldwide extension of mangroves vary from over 15 million hectares (Lanly, in Ogino & Chihara, 1988) to 16.2 (Thurairaja, 1994) and 16.67 (Saenger et al., 1983; Aksornkoae, 1993), and even as much as 19.9 million hectares (based on Groombridge, 1992). From a global perspective, Southeast Asia is well endowed as it supports the world’s largest area of mangroves, originally extending over 6.8 million hectares and representing 34-42 percent of the world’s total. Mangroves occur throughout Southeast Asia, from the Irrawaddy delta in Myanmar in the northwest, through the more than 17,000 scattered islands of the Indonesian and Philippine archipelagos to Papua New Guinea in the East, spanning a distance of more than 6,000 kilometres from east to west and 3,500 kilometres from north to south.

The largest areas of mangrove in Southeast Asia are found in Indonesia (almost 60 percent of Southeast Asia’s total), Malaysia (11.7%), Myanmar (8.8%), Papua New Guinea (8.7%) and Thailand (5.0%; Figure 1). Detailed figures and reports on changes in mangrove area over the past decades are provided in Chapter 5.

Southeast Asia’s mangroves are the best developed and probably the most species-diverse in the world (Giesen & Wulffraat, 1998; chapter 2). Fifty-two Southeast Asian species are found in the mangrove habitat only and nowhere else; this group of so-called ‘true mangrove species’ includes 42 trees and shrubs (Annex 1). Saenger et al. (1983) record a world-wide total of 60 plant species exclusive to the mangrove habitat, and although the lists are not entirely identical, it is apparent that Southeast Asia has a very significant share of ‘true’ mangrove species.
1.3 SCOPE OF THIS GUIDEBOOK

This manual is intended to be a guide to the mangrove plants of Southeast Asia, i.e. all higher plants occurring in mangroves, and not only those species exclusive to this habitat. Southeast Asia was chosen as geographic scope, as this region has proven to be the world’s richest in terms of biological diversity (Chapman, 1976a,b; Tomlinson, 1986; Giesen & Wulffraat, 1998). Covered – from west to east – are Myanmar, Thailand, Cambodia, Viet Nam, Malaysia, Singapore, Brunei, the Philippines, Indonesia, Timor-Leste and Papua New Guinea. The criterion for inclusion of a particular plant species in this guidebook has been that it must either be recorded as occurring in the mangrove habitat by the taxonomic reference used, or there must be at least two reliable non-taxonomic records of this species occurring in the mangrove habitat. Hybrid species are mentioned under the description of the parent species and are not treated separately.

In all, 268 species are covered (Annex 1), but more may be recognised in the future as more studies are carried out and as more taxonomic revisions become available. In terms of taxonomy, scientific names as revised by the Flora Malesiana have generally been adhered to, except where they have been superseded by Tomlinson (1986), Flora of Thailand, or revisions by the Missouri Botanical Gardens tropical botany database1.

It is not surprising to see lists of species that include the same species recorded under various names, or incorrectly spelled names. Partly, this confusion is because of the multitude of synonyms used in taxonomic literature – some species with more than 50 synonyms – especially common but highly variable species are often endowed with many different names. To help sort out this confusion, a separate index of scientific names has been appended to guide the reader to the correct name (Annex 2).

A separate index of local names is also provided (Annex 3), but it may be noted that this is still far from complete as local names are often not recorded in taxonomic (or indeed other) literature. The authors would be grateful if readers could assist with updating this list of local names – preferably by emailing the first author.

Part one of this guidebook provides an introduction to mangroves in general, and to Southeast Asian mangroves in particular. Chapter 1 provides definitions and places Southeast Asia’s mangroves in a global context, while Chapter 2 gives an account of the mangrove flora. Chapter 3 describes mangrove habitats in Southeast Asia, including information on soils, vegetation types and fauna.

1 www.mobot.org
Chapter 4 explains about the benefits derived from mangroves, while Chapter 5 focuses on the current state of mangroves in Southeast Asia. Chapters 6 and 7 are provided for those wanting to engage in field work: six informs us where the most important areas are, while seven explains some of the basic techniques for studying mangroves.

Part two is the heart of the publication, providing the reader with keys for identification of mangrove plants, plus a 1-page data sheet and a line drawing of all mangrove plant species. Where possible, the use of specialist terms has been avoided, and those that have been used are clarified in a glossary of explanatory terms and illustrations. The mangrove plants have been ordered into seven easily recognised groups (mainly lifeforms), namely i) ferns, ii) grasses and grass-like herbs, iii) (other) ground herbs, iv) epiphytes, v) climbers, vi) palms and palm-like plants, and vii) trees and shrubs. Seven identification keys have been developed, one for each of these groups. It must be noted that some variable species can belong to more than one group – for example, Hypserpa polyandra (Menispermaceae) can form a shrub, but usually occurs as a large woody climber - in this case the predominant form prevails. Note that lifeforms are also listed in Annex 1.

Appended is a map showing the distribution of mangroves in Southeast Asia, kindly reproduced under licence from UNEP-WCMC (see Annex 2). This map gives an indication of the location of the most important mangrove sites in Southeast Asia. For more detailed maps, please refer to their website\(^2\).

Southeast Asia’s mangroves are the best developed and most species-diverse in the world (Giesen & Wulffraat, 1998). A total of 268 plant species have been recorded in Southeast Asian mangrove vegetation, including 129 trees and shrubs, 50 terrestrial herbs (including 27 grasses and grass-like plants), 28 climbers, 28 epiphytes, 24 ferns, seven palms, one pandan and one cycad (Annex 1; Figure 2). Of these 268 species, 52 are found in the mangrove habitat only, and this group of so-called ‘true mangrove species’ includes 42 trees and shrubs (Annex 1).

Note that ‘trees’ include shrubs; ‘palms’ include palm-like pandans and cycads; ‘herbs’ are non-grass-like terrestrial herbs; ‘grasses’ include grass-like sedges and bulrushes; and epiphytes do not include epiphytic ferns.

As mentioned in chapter one, Saenger et al. (1983) record a world-wide total of 60 plant species exclusive to the mangrove habitat, and although the lists are not entirely identical, it is apparent that Southeast Asia has a very significant share of ‘true’ mangrove species. The northern Indian Ocean and the north-western Pacific region (stretching from the Red Sea to Japan and Indonesia) harbours the world’s most diverse mangroves. Indeed, these two regions respectively harbour 44 and 38 of the 60 ‘true’ mangrove species listed by Saenger et al. (1983), while the other four regions harbour only seven (western America/eastern Pacific, eastern America/Caribbean,
western Africa) to nine (eastern Africa) true mangrove species\(^3\). In terms of plants, Southeast Asia’s biodiversity ranks highest in the northern Indian Ocean/northwestern Pacific region, as is evident in Table 1.

The largest plant families recorded in Southeast Asian mangroves are the:

- Leguminosae (Fabaceae) or legumes (22 species),
- Cyperaceae or sedges (17 species),
- Rhizophoraceae – usually regarded as the family of mangrove trees, many with stilt roots and other adaptations (12 species), although non-mangrove species also exist (e.g. the Southeast Asian *Carallia brachiata*),
- Orchidaceae or orchids (11 species),
- Asclepiadaceae or Milk Weed family – in the mangrove habitat consisting mainly of climbers and epiphytes, all with characteristic white latex (10 species),
- Polypodiaceae or Polypody fern family – one of the main fern families world-wide (10 species),
- Poaceae or true grasses (9 species),
- Arecaceae or palms (7 species),
- Rubiaceae – the coffee family; in the mangrove habitat consisting mainly of trees and shrubs (7 species),
- Combretaceae or Terminalia family (6 species),
- Euphorbiaceae or Spurge family, with many species containing a toxic white latex (6 species),
- Loranthaceae or Mistletoe family, consisting entirely of parasitic epiphytes (6 species),
- Avicenniaceae, another family of true mangrove trees, characterised by pneumatophores, i.e. roots that emerge, peg-like, from the mangrove soil (5 species), an
- Sonneratiaceae, another family consisting predominantly of mangrove tree species (5 species).

Some of these most common families abound in species with a very wide geographic range (e.g. Cyperaceae and Poaceae) and consist largely of ubiquitous weed species.

\(^3\) Saenger et al. (1983)’s list of ‘true mangroves’ (60 worldwide) is not the same as our number of ‘true mangroves’ (52 in Southeast Asia). The reason for this difference is that there are 11 species in Southeast Asia that are exclusive to mangroves (and therefore ‘true mangrove’ species), but are not recorded in Saenger’s list.
Table 2 gives the distribution of all ‘true’ mangrove species (i.e. species found in the mangrove habitat only) in Southeast Asia. At least 48 of the 52 species listed occur in Indonesia, which is the more biodiverse of the Southeast Asian countries, followed in this respect by Malaysia, with 42 species. This supports the claim by Giesen and Wulffraat (1998) that Indonesia’s mangroves are the most biodiverse in the world. Least diverse are Timor-Leste and Brunei Dar es Salaam (Figure 3), which is not surprising given the relatively small size of their territories.

This diversity appears to not only hold for angiosperms, but seems to be true for other (plant) taxons. Tanaka and Chihara (1988), for instance, in their study of macroalgae in eastern Indonesian mangroves, state that “It may be concluded that the Indonesian mangrove area is one of the most important distributional centres of macroalgae associated with mangroves in the world.” Other interesting accounts of mangrove-associated algae and their diversity in the Southeast Asian region are given by Johnson (1979) and Chihara & Tanaka (1988).

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>True mangrove species in Southeast Asia (These species occur in the mangrove habitat only)</th>
<th>Brunei</th>
<th>Cambodia</th>
<th>Indonesia</th>
<th>Malaysia</th>
<th>Myanmar</th>
<th>PNG</th>
<th>Philippines</th>
<th>Singapore</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acanthus ebracteatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Acanthus ilicifolius</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Acanthus volubilis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Acrostichum aureum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Acrostichum speciosum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Aegialitis annulata</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Aegialitis rotundifolia</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Aegiceras corniculatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Aegiceras floridum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Amyema anisomeres</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Amyema gravis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>Amyema mackayense</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>Avicennia alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Avicennia eucalyptifolia</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Avicennia lanata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>Avicennia marina</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>Avicennia officinalis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>Brownlowia argentata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>Brownlowia tersa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>Bruguiera cylindrica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>Bruguiera exaristata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>Bruguiera gymnorrhiza</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>Bruguiera hainesii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>Bruguiera parviflora</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>Bruguiera sexangula</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>Camptostemon philippinense</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
PART 1: MANGROVE FLORA

True mangrove species in Southeast Asia

<table>
<thead>
<tr>
<th>Species</th>
<th>Brunei</th>
<th>Cambodia</th>
<th>Indonesia</th>
<th>Malaysia</th>
<th>Myanmar</th>
<th>PNG</th>
<th>Philippines</th>
<th>Singapore</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camptosieremon Schultzii</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceriops decandra</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excoecaria agallocha</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritiera fomes</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritiera globosa</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritiera littoralis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kandelia candel</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumnitzera littorea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumnitzera racemosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nypa fruticans</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osbornia octodonta</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberonia rhizophoreti</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pemphis acidula</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora apiculata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora stylosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scyphiphora hydrophyllaee</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia apetala</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia caseolaris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia griffithii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia ovata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus moluccensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus rumphii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of species: 25, 34, 48, 42, 34, 40, 38, 33, 33, 24, 31

FIGURE 3
True mangrove species in Southeast Asia
Fifty-one species or 18 percent of the mangrove flora of Southeast Asia are endemic to the region, and includes 22 trees and shrubs, 13 epiphytes, eight ferns, four palms and four climbers (Table 3). These endemics include eight species found in the mangrove habitat only (and are therefore ‘true mangroves’), including two mistletoes Amyema anisomeres and A. gravis, one orchid Oberonia rhizophoreti, and five trees Aegiceras floridum, Avicennia eucalyptifolia, A. lanata, Camptostemon philippinense and Heritiera globosa. Some of the Southeast Asian species are very rare, such as the epiphytic parasite Amyema anisomeres.

Table 3

<table>
<thead>
<tr>
<th>Group</th>
<th>Species</th>
<th>Group</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees & shrubs</td>
<td>Aegiceras floridum</td>
<td>Ferns</td>
<td>Cleopteris moultoni</td>
</tr>
<tr>
<td></td>
<td>Avicennia eucalyptifolia</td>
<td></td>
<td>Davallia parvula</td>
</tr>
<tr>
<td></td>
<td>Avicennia lanata</td>
<td></td>
<td>Elaphoglossum amblyphyllum</td>
</tr>
<tr>
<td></td>
<td>Azima sarmentosa</td>
<td></td>
<td>Loxogramma involuta</td>
</tr>
<tr>
<td></td>
<td>Barringtonia conoidesa</td>
<td></td>
<td>Pachypleura angustata</td>
</tr>
<tr>
<td></td>
<td>Blumeodendron tokbrae</td>
<td></td>
<td>Photinopteris speciosa</td>
</tr>
<tr>
<td></td>
<td>Camptostemon philippinense</td>
<td></td>
<td>Platycentrum coronarium</td>
</tr>
<tr>
<td></td>
<td>Croton heterocarpus</td>
<td></td>
<td>Selliguea heterocarpa</td>
</tr>
<tr>
<td></td>
<td>Fagraea crenulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gluta velutina</td>
<td>Epiphytes</td>
<td>Amyema anisomeres</td>
</tr>
<tr>
<td></td>
<td>Heritiera globosa</td>
<td></td>
<td>Amyema gravis</td>
</tr>
<tr>
<td></td>
<td>Ilex cymosa</td>
<td></td>
<td>Bulbophyllum xylocarpi</td>
</tr>
<tr>
<td></td>
<td>Ilex maingayi</td>
<td></td>
<td>Cymbidium finlaysonianum</td>
</tr>
<tr>
<td></td>
<td>Isora timoriensis</td>
<td></td>
<td>Dendrobium aloefolium</td>
</tr>
<tr>
<td></td>
<td>Ochthocharis bornensis</td>
<td></td>
<td>Dendrobium pachyphyllum</td>
</tr>
<tr>
<td></td>
<td>Podocarpus polystachyus</td>
<td></td>
<td>Dendrobium subulatum</td>
</tr>
<tr>
<td></td>
<td>Quassia harmandiana</td>
<td></td>
<td>Oberonia laeta</td>
</tr>
<tr>
<td></td>
<td>Rapanea porteriiana</td>
<td></td>
<td>Oberonia rhizophoreti</td>
</tr>
<tr>
<td></td>
<td>Scopolia macrophylla</td>
<td></td>
<td>Pachycentria constricta</td>
</tr>
<tr>
<td></td>
<td>Serianthes grandiflora</td>
<td></td>
<td>Rhododendron brookeanum</td>
</tr>
<tr>
<td></td>
<td>Sindora siamensis</td>
<td></td>
<td>Schefflera lanceolata</td>
</tr>
<tr>
<td></td>
<td>Symplocos celastrifolia</td>
<td></td>
<td>Schefflera ridleyi</td>
</tr>
<tr>
<td>Palms</td>
<td>Calamus erinaceus</td>
<td>Climbers</td>
<td>Calycopteris floribunda</td>
</tr>
<tr>
<td></td>
<td>Corypha saribus</td>
<td></td>
<td>Combretum tetralophum</td>
</tr>
<tr>
<td></td>
<td>Licuala spinosa</td>
<td></td>
<td>Combretum trifoliatum</td>
</tr>
<tr>
<td></td>
<td>Oncosperma tigillarium</td>
<td></td>
<td>Derris scandens</td>
</tr>
</tbody>
</table>

At least 35 plant species occurring in Southeast Asian mangroves are uncommon or rare:

- Twenty-one of these may be locally relatively common, but rare on the whole: Acanthus volabilis, Aegiceras floridum, Blumeodendron tokbrae,
Calycopteris floribunda, Cassine viburnifolia, Ceriops decandra, Croton heterocarpus, Dalbergia menoeides, Diospyros maritima, Ficus curtipes, Ilex maingayi, Oberonia laeta, Olax imbricata, Osbornia octodonta, Quassia indica, Rhizophora exaristata, Rhododendron brookeanum, Scyphiphora hydrophyllacea, Sindora siamensis, Smythea lanceata and Sonneratia ovata.

- Eight species are uncommon to rare in Southeast Asia, but common elsewhere (Cyperus scariousus, Eleocharis parvula, Eleocharis spiralis, Fimbristylis sieberiana, Leptochloa neesii, Scirpus lacustris, S. litoralis, S. maritimus). These are wide ranging, weedy sedge and grass species that do not appear to have gained a firm footing in Southeast Asia.

- The remaining six species, Amyema anisomeres, Kandelia candel, Oberonia rhizophoreti, Quassia harmandiana, Scaevola hainanensis and Schefflera lanceolata are truly rare in Southeast Asia. Apart from the previously mentioned Amyema anisomeres, these species are generally known from a few scattered localities only. *Scaevola hainanensis*, for example, is known from only a few scattered localities in Viet Nam and Southern China, while *Quassia harmandiana* has been collected a few times only in Cambodia and Thailand. *Kandelia candel* is rare in Southeast Asia, but has become more common in Viet Nam due to planting programmes. It is also naturally common in Southern China, for example in Guangdong (Zhanjiang Mangrove National Nature Reserve) and Hong Kong (Mai Po Nature Reserve).

4 Interestingly, *Kandelia candel* is found as far north as Japan, and is a common species in Hong Kong, being the most common Rhizophoraceae in the Mai Po marshes.
CHAPTER 3
THE MANGROVE HABITAT IN SOUTHEAST ASIA

3.1 INTRODUCTION TO THE MANGROVE HABITAT

A wonderful, unsurpassed general description of Southeast Asian mangroves is given by van Steenis (1958) – one of the fathers of plant taxonomy in Southeast Asia – in his introduction to the taxonomy of the Rhizophoraceae:

“Seen from a distance the mangrove makes the impression of a dark-green more-or-less monotonous type of forest. On entering it on foot with ebb its eerie aspect appears at once from the oppressing heat, the damp atmosphere, the bare, stinking mud, covered with stilt-rooted trees..., and several kinds of other root formations (knee-like roots, knobs, snake-like roots, erect peg- or torpedo-shaped pneumatophores), the mud teeming with crabs, fishes, shells, worms and their holes, mud-heaps and shallow pools, the air with plenty mosquitoes, the silence only interrupted now and then by the sudden rush of monkeys though the gloomy foliage, the thud of a fruit falling in the mud, or the forlorn cry of a passing seabird. For a tourist the place is singularly uninviting, but for the biologist it is a most fascinating biotope, and the secrets of its life and life conditions are certainly far from being exhausted. Entering the mangrove on board a small prahu <local canoe> during high tide..., gliding through the silent waters of the creeks, bordered now and then by the flooded forest which is nearly submerged up to the flattish underside of the tree crowns, the aspect is less fascinating and appears more monotonous, as the foliage of the trees is much alike even of representatives of very different families, all of them having dark-green, elliptic to obovate, medium-sized blades of the laurel type but rather coriaceous <leathery> and slightly fleshy. Flowers are not particularly striking, and those which are, as e.g. of Sonneratia and Dolichandrone, are nocturnal.”

Van Steenis’ view that mangroves are very interesting, but not the place you would go to on a picnic, is pretty much the way these habitats are seen today. Mangroves are not easy environments to work in, but they can be very rewarding. Their structure is generally straightforward and simple,

and the number of species is limited. However, the species that do occur may be very abundant, and as long-term studies show, they are often highly productive. Fortunately for the average lay person, many protected mangrove areas have now been made at least partially accessible by the construction of walkways, which help overcome at least some of the physical discomfort. For an overview of some of the main protected mangrove areas, see chapter 5.

3.2 PHYSICAL CONDITIONS

Many mangrove plants have special adaptations to counteract the effects of inundation, high salinity and an unstable soil. A number possess mechanisms to actively remove salt from their tissues (e.g. leaves excreting salt), or have stilt or prop roots for support, and pneumatophores (‘air roots’) to assist oxygenation of root systems. Many typical mangrove tree genera, such as Avicennia, Bruguiera, Ceriops and Rhizophora, are characterized by vivipary. That is, the seeds germinate while still attached to the mother plant, and what is commonly regarded as, for example, a long Rhizophora ‘fruit’, is in fact a hypocotyl (i.e. primary stem) emerging from the fruit.

Zonation

Mangrove vegetation typically displays band-like zonation patterns (e.g. Figures 4, 5), that have alternately been linked by various authors to soil type (mud, sand or peat), exposure to wave action, salinity, freshwater inflow from the hinterland and tidal influence (e.g. Watson, 1928; van Steenis, 1957; Chapman, 1976a, 1976b, 1977; Bunt & Williams, 1981; White et al., 1989; Aragones et al., 1998). The width of a mangrove zone rarely exceeds four kilometres, and usually it is much narrower. On eroding or steep coasts it may be scarcely 50 metres wide, while in some estuaries and sheltered, shallow bays it may be as wide as 18 kilometres (Sungai Sembilang, South Sumatra; Danielsen & Verheugt, 1990) or even 30 kilometres (Bintuni Bay, Papua; Erfemeijer et al., 1989). Along tidal rivers a mangrove fringe may be found occurring upstream for many tens of kilometres, depending on saltwater intrusion. This in turn is determined by tidal amplitudes, river discharges and slopes. The last true mangrove tree species to disappear along tidal rivers is often either Bruguiera parviflora (van Steenis, 1957, 1958) or Sonneratia caseolaris, while the mangrove palm Nypa fruticans may occur even much further inland.
Soil substrates mainly clay, with the exception of a limestone rock in the center of the island.

Ae. - *Aegiceras corniculatum*
A.s. - *Acrostichum speciosum*
B.p. - *Bruguiera parviflora*
F.s. - *Ficus* sp. (non-mangrove species)
M.h.- *Myristica hollrungii*
P.p. - *Pongamia pinnata*
R.m.- *Rhizophora mucronata*

Soil substrates of frontal area consist of coarse sands, while inland it is mixed with loam & clay.

B.c. - *Bruguiera cylindrica*
C.t. - *Ceriops tagal*
H.l. - *Heritiera littoralis*
L.l. - *Lumnitzera littorea*
N.f. - *Nypa fruticans*
P.a. - *Pemphis acidula*
R.s. - *Rhizophora stylosa*
S.a. - *Sonneratia alba*
Climatic conditions

The impact of climatic conditions and mangrove vegetation is not yet fully understood. Exceptions aside, mangroves are known to occur in areas where the average annual temperature is at or above approximately 18°C (Chapman, 1976a; 1977), or that has absolute temperatures above 15°C (Puff, 2001). Climatic conditions further affect mangroves, especially by influencing the salinity of the landward fringing (back- or hind-) mangroves, and by weather influence upon stream and river discharges, and affecting silt deposition along the coast. Weather conditions also affect coastal accretion or erosion, which is dealt with briefly below.

Salinity

Salinity affects mangrove composition, as various species deal with the ‘salinity problem’ in different ways. Some simply do not grow in waters that are too saline and are found in brackish zones only. Many species are able to selectively prevent salt absorption at the root, although this requires a good deal of expended energy. Others are able to excrete salt from their (leaf) tissues and may be covered with fine salt crystals. Aegiceras corniculatum, for example, has salt-excretion glands located on the leaf surface and stalk, which may be whitish and covered with salt.

Some species have a very wide range of tolerance, such as Sonneratia casuarina, which may be found in pure seawater or along tidal rivers where salinity is almost that of freshwater (i.e. <0.1% seawater). The species even thrives in a freshwater pond in the Bogor Botanic Gardens in Java! Species, such as Bruguiera species, are generally found only where salinities are low. MacNae (1968), for example, gives 2 percent seawater as the optimum for Bruguiera parviflora and 1.0-2.5 percent for Bruguiera gymnorrhiza. Some mangrove species require high salinities, and Rhizophora mucronata, for instance, requires a minimum of 1.2 percent seawater for its growth, while Aegiceras corniculatum requires 2.0-4.0 percent seawater for optimal growth (Chapman, 1976a). Seasonality of freshwater reaching the coastal zone also affects the mangrove habitat, as in some areas salinities can fluctuate wildly according to the seasonality of rainfall in the interior.

Some plants are avoided by herbivores because of their ability to accumulate salt. Up to 11 percent dry weight of the grass Xerochloa imberbis, for example, may consist of salt, and it is therefore shunned by cattle.

Eroding versus accreting coastlines

Mangrove pioneers are found where sediments accumulate, and usually assist in the stabilisation of coastal sediments, though probably not very actively contributing to the accumulation of sediments (van Steenis, 1957). Mangroves occur on coastlines that are stable, rising or falling. On a rising coastline they form a fringe zone only, while on a stable coast, their extent

6 Average seawater salinity is equivalent to about 3.4 % salt content (i.e. 34 grams/litre); 0.1 % seawater is therefore equivalent to 0.0034 % salt content or 0.34 grams/litre.
depends on the slope. On a subsiding coast mangroves tend to be extensive to very extensive (Chapman, 1976b).

Mangroves on an eroding coastline have often developed during an earlier period, when the coastline was still stable. A first pioneer zone is often lacking or degrading, and the seaward fringe often consists of a Rhizophora-dominated zone, which is usually the second zone on a stable coastline.

Substrates

Most mangrove species do best on muddy soils, i.e. in areas where silt accumulates (Watson, 1928; van Steenis, 1957; Chapman, 1976a, 1977; Aragones et al., 1998), and typical for muddy substrates in Southeast Asia are the well-developed stands of *Rhizophora mucronata* and *Avicennia marina* (Watson, 1928; Kint, 1934; van Steenis, 1958). Tall stands of *Bruguiera* dominated forests are often found on deep muddy soils.

Certain species such as *Rhizophora stylosa* also do well on sands, and even on coral islands which have a substrate consisting of coral debris, shells and *Halimeda* (calcareaous seaweed) fragments (Ding Hou, 1958). Kint (1934) reports that in Indonesia, *Rhizophora stylosa* and *Sonneratia alba* typically occur on sandy, and even rocky shores. Aragones et al. (1998) report that in the Philippines *Rhizophora, Bruguiera, Sonneratia* and *Ceriops* do well on coral beaches and areas along or close to channels, while *Sonneratia* are more common in open bays, and *Xylocarpus, Lumnitzera* and *Aegiceras* do well along inner, landward margins. Stands of *Lumnitzera littorea* are common on this kind of sites on islands of the Riau archipelago in Indonesia.

On certain subsiding coasts mangroves may develop on peat soils (e.g. Florida, USA; Chapman, 1976a), and in Indonesia such habitats occur in South Sulawesi, Indonesia (northern Bone Bay and the Lariang-Lumu plains; Giesen et al., 1991). In the Lariang-Lumu area, for example, exceptionally well developed *Rhizophora-Bruguiera* mangroves were found on deep peat (>3 m deep) overlain with a shallow (0.5 m) layer of sand. Mangrove soils with a high content of organic matter (62%) have also been reported from the Thousand Islands group, off Jakarta Bay, Indonesia (Hardjowigeno, 1989).

Another typical feature of soils of mangrove areas is the development of iron pyrites (FeS\(_2\)) in the soil. This typically occurs in estuaries because of the presence of iron (scarce in seawater, but abundant in river water), sulphates (in seawater) and organic matter, and a lack of oxygen in the soil. These soils form ‘Potential Acid Sulphate’ soils, which upon development and exposure to air may turn highly acidic due to the reaction of iron pyrites with oxygen, resulting in the production of sulphuric acid (Dent, 1986; Craswell & Pushparajah, 1989; Hardjowigeno, 1989; Konsten & Klepper, 1992). Mobilisation of toxic aluminium ions due to a lowering of the pH seems to be one of the major problems associated with these soils (Dent, 1986).
Tides
Mangrove vegetation zones are clearly linked with tides, and various authors report of a good correlation with either tidal amplitude or frequency of flooding (Watson, 1928; de Haan, 1931; van Steenis, 1958; Chapman, 1976a). In Southeast Asia, areas that are flooded during all high tides tend to be dominated by *Avicennia alba*, *A. marina* or *Sonneratia alba*, while areas that are flooded by most high tides are dominated by *Rhizophora* species. Mangroves flooded by normal high tides are dominated by *Bruguiera* species, with *Xylocarpus granatum* on the landward fringe. Areas inundated by spring tides only, i.e. for only a few days per month, are dominated by *Bruguiera sexangula*, *Heritiera* species and *Lumnitzera littorea*. Boundaries of vegetation zones therefore often coincide with tidal isohyets (contours). For instance, the seaward facing zone is usually located between the lowest low water level and the mean low water level, above which the second zone often begins (for example, see Figures 4b & 4c).

3.3 MANGROVE VEGETATION TYPES

Structure
Mangroves in Southeast Asia may range from 1-2 metre tall *Avicennia alba* or *Avicenia marina* stands on the seaward side of accreting shores, to 30-40 metre tall stands of mixed *Bruguiera*-Rhizophora mangrove forest. On more exposed but not eroding coastlines one may find *Sonneratia alba* and *Avicennia alba*, and along waters of lower salinity (e.g. in estuaries) *Nypa fruticans*, *Cerbera odollam* and *Sonneratia caseolaris* are common. Apart from saplings, undergrowth is often scarce but certainly not absent, and species such as sea holly *Acanthus ilicifolius* and mangrove fern, *Acrostichum aureum* may be common along banks of creeks and in disturbed areas.

In clear tidal creeks of Peninsular Malaysia, Viet Nam, Thailand, western Indonesia and Papua New Guinea one may find the ornamental aroid *Cryptocoryne ciliata*, while *Najas* species and *Ruppia maritima* have been recorded in small mangrove pools. Climbers are relatively common, especially on the landward fringes of mangroves. Epiphytes, such as orchids, ferns and mistletoes are common in older, well-developed mangroves, but may be scarce or absent in younger mangrove stands such as regenerating, logged-over forests.

Mangroves typically display zonation, and when viewed from the air or from an observation tower the bands of different vegetation types can easily be discerned. The cause of this zonation has been attributed to salinity, elevation and exposure to wave action. The general consensus, however, is that these patterns are determined by a combination of these factors, but that tidal inundation is the dominating factor (e.g. Watson, 1928; Kint, 1934; van Steenis, 1958; Chapman, 1976a; Aksornkoae, 1993).

Mangroves are dynamic habitats, with rapid changes (e.g. local die-off) followed by rapid regrowth (Jiménez & Lugo, 1985). Changes may be either
cyclic (Jiménez & Lugo, 1985) or successional (Carter, 1959; Chapman, 1976, 1977), but whatever process may be occurring, the net result is the formation of distinct zones or bands of different vegetation types. Rapid colonisation of newly formed mudflats is a common process along expanding coastlines, such as in the estuaries of large rivers.

Five main mangrove zones

In their simplest form, Southeast Asian mangroves generally occur in five zones:

- one on the highly exposed seaward side that is inundated during all high tides;
- one on less dynamic, exposed, seaward sides, inundated by all high tides;
- a central, well-developed mangrove inundated by normal high tides;
- a landward/freshwater-influenced zone (the back-, hind- or rear-mangrove) inundated by spring tides, and
- a zone occurring along brackish to almost fresh streams and/or occasionally inundated by exceptionally high tides.

Hong (2000) recognises a combination of salinity and tidal regime (see Figure 5), which nicely illustrates the interaction between these two factors. However, such combined systems seem to have only a local relevance, as there is much variation throughout the region, and for the sake of simplicity the five zone system recognised by Watson (1928), van Steenis (1958), Chapman (1975) and Aksornkoae (1993) is probably the best point of departure. These zones are described in some detail below, while Table 4 provides a list of species recorded in these zones per country – this is not exhaustive, but based on a number of key references only.

Zone 1) - highly exposed mangrove, occurring on the seaward side of mangrove belts and inundated by all high tides. According to Watson (1928), van Steenis (1958) and Aksornkoae (1993), this type of habitat is devoid of all species except for *Rhizophora mucronata*, and even this species requires that its crown remains above water. This zone is not always present.

Zone 2) - exposed mangrove, occurring on the seaward side of mangrove belts and inundated by medium high tides. According to van Steenis (1958), this is the zone of the *Sonneratias* and *Avicennias*, and most commonly *Sonneratia alba* and *Avicennia alba* co-dominate in this deeply inundated coastal zone. With some minor variation, this observation is supported by most authors reporting on Southeast Asian mangroves, and similar observations have been made by Watson (1928) in Peninsular Malaysia, Percival and Womersley (1975) in Papua New Guinea (where *Avicennia marina* replaces *A. alba* as the most common *Avicennia* in this habitat), Aragones et al. (1998) in the Philippines and Hong (2000) in Viet Nam. Often one of the two genera may dominate. Komiyama et al. (1988),
The pioneer community of *Sonneratia alba* and *Avicennia alba* occur on new mud flats of estuaries. The pioneer population of *Avicennia alba* developed along the river banks. *Rhizophora* species dominate on sands, or on corals, as on the islands in the Handeuleum bay of Ujung Kulon (West Java, Indonesia), while according to van Steenis (1958) *Avicennia marina* and *Rhizophora mucronata* tend to dominate on muddier shores. According to Kantor Menteri Negara Lingkungan Hidup (1993), however, *Sonneratia* is associated with the ubiquitous *Avicennia* if the muddy soils are rich in organic matter. On muddy shores on the north coast of West Java, this zone consists mainly of *Avicennia marina* and *A. alba*.

Zone 3) - central mangroves are usually dominated by *Rhizophora* species but in the Karang Agung area (South Sumatra, Indonesia), Samingan (1980) found it to be dominated by *Bruguiera cylindrica* (his *B. caryophylloides*). Other important species he found in this zone in Karang Agung include *Bruguiera sexangula* (his *B. eriopetala*), *B. gymnorrhiza*, *Rhizophora mucronata*, *Xylocarpus granatum* and *X. moluccensis*. In mangroves on the north coast of New Britain (PNG), this zone was found to be dominated by tall *Bruguiera*....

Source: adapted from Hong (2000), who developed this system based on Can Gio mangroves in Viet Nam’s Mekong Delta. MLWL = Mean Low Water Level.
gymnorrhiza, B. sexangula and Rhizophora apiculata trees, together with Bruguiera parviflora and Xylocarpus granatum of somewhat shorter stature. Older Bruguiera trees were found to be particularly rich in epiphytes.

Many forms and types van been described in Southeast Asia by various authors (e.g. Watson, 1928; Kartawinata & Walujo, 1977; Kartawinata et al., 1979; Komiyama et al. 1988; Mirmanto et al., 1989; Abdulhadi & Suhardjono, 1994, Aragones et al., 1998), and include many combinations of the true mangrove species described in this publication.

This zone can often be sub-divided into a more seaward facing zone dominated by Rhizophora species and a more landward facing zone dominated by Bruguiera species, frequently with a lower storey of Ceriops. The Rhizophora zone is then often considered a second pioneer zone, while the Bruguiera zone is considered the real climax zone. However, because of the high degree of dynamics of mangroves, some authors tend to regard all mangroves as pioneer vegetation.

Zone 4) - rear mangrove (or hind-mangrove, back mangrove, landward mangrove) occurs in the landward zone behind true mangrove belts, and are inundated by the highest tides only. This does not automatically mean that this zone is less saline than the other mangrove zones, as this depends upon climatic conditions and the shape of the terrain. In a monsoonal climate, this zone can even become hypersaline, as during the dry season, part of the seawater entering the zone during spring tides evaporates, leaving behind salt deposits that are not washed away until the next spring tide several weeks later. In more humid parts of Southeast Asia, however, this zone may be almost freshwater throughout a greater part of the year. Species commonly found in this zone include Excoecaria agallocha, Ficus microcarpa (often wrongly recorded as Ficus retusa), Intsia bijuga, Nypa fruticans, Lumnitzera racemosa, Pandanus tectorius and Xylocarpus moluccensis (Kantor Menteri Negara Lingkungan Hidup, 1993). On Pulau Rambut, West Java, Heritiera littoralis and Xylocarpus moluccensis are very common in this zone, but on coral islands in Ujung Kulon, West Java, this zone is dominated by Lumnitzera littorea. This is the most species-rich zone, and probably almost three-quarters of all species listed in this field guide are found in this zone at one time or another.

Zone 5) - brackish stream mangroves, found along brackish to almost freshwater streams, are usually dominated by Nypa or Sonneratia communities. Samingan (1980) found in the Karang Agung area in South Sumatra that the Nypa fruticans community occurred in narrow belts along most streams. These belts often consisted of pure stands of Nypa fruticans, but was backed by vegetation that included Cerbera species, Gluta velutina, Stenochlaena palustris and Xylocarpus granatum. Closer to the coast Samingan found that a mixed Sonneratia-Nypa community often occurred. In many areas, however, Sonneratia caseolaris may be dominant, especially in almost freshwater parts of the estuaries, for example on Pulau Kaget and Pulau Kembang in the estuary of the Barito river (South Kalimantan, Indonesia),
in the mouth of the Singkil river in Southwest Aceh (Sumatra, Indonesia; Giesen & van Balen, 1991), or on newly formed sedimentation islands in the mouth of the Cisadane River in Banten, West Java.

Sonneratia caseolaris is almost absent along tidal creeks in Way Kambas National Park (Lampung, Indonesia), where the dominant species is in most places Nypa fruticans, with many Cerbera odollam and Dolichandrone spathacea trees. Brackish stream mangroves can also occur in wider areas, such as brackish water marshes, where Nypa fruticans is generally (very) dominant, covering up to 90 percent of the area. This is for instance the case in most of the estuaries of the large rivers of eastern Borneo (East Kalimantan and Sabah). In South Sumatra, Oncosperma tigillarium is the dominant species of the landward fringe of these brackish water swamps.

Within the exposed and central mangroves one can also recognize zonation of other taxons. Macroalgae associated with Southeast Asian mangroves, for instance, show a clear zonation linked with tidal exposure. Rhizoclonium species occur in the upper intertidal zone, Bostrychia species in the upper to middle intertidal zones, Caloglossum species in the middle intertidal zone and Catanella, Caldophora and Geledium species in the lower intertidal (Chihara & Tanaka, 1988).

One must be careful not to oversimplify, however, as many forms and overlapping vegetation types/zones occur, and structures/correlations found in one area are often not directly applicable to other areas. As mentioned above, the structure of individual stands may vary from 30+ metre-tall Rhizophora-Bruguiera forest to dwarfish stands of 1-2 metre-tall Avicennia. Some authors (e.g. Janzen, 1985) have oversimplified the structure concept and concluded that mangroves totally lack an understorey and climbers. Janzen is supported by some, including Corlett (1986), who gives examples of mangrove vines and shrubs, but goes on to conclude that “most mangrove forests do lack an understory and vines”. Southeast Asian mangroves include at least 43 shrub species, 28 climbers and 53 terrestrial herb species, of which many occur exclusively in the ‘true mangrove environment’. In terms of area, vines and shrubs cover very little, but they appear as important elements along streams, on exposed, open patches in mangrove forest, and thinly scattered through the well-developed forest.

Mangrove vegetation is one of the two main types of coastal forest in Southeast Asia. The other type is Beach Forest, which in Southeast Asia is usually identical with the “Barringtonia formation” (e.g. van Steenis, 1958) or Barringtonia asiatica-Terminalia catappa vegetation. Beach forest generally occurs along exposed, sandy or coral coasts. Unlike mangroves, they are almost never inundated by seawater, but root in freshwater, although evidently influenced by the sea. Many typical beach forest species such as Barringtonia species, Pemphis acidula, Terminalia catappa, Calophyllum inophyllum and Thespesia populnea can often be found in the landward fringe of mangroves as well.
Mangroves provide food, shelter and a home for many animal species, which in some ways are not markedly different from terrestrial environments, and in other ways are totally different.

Molluscs
Molluscs are abundant in Southeast Asia’s mangroves and Budiman (1985), for instance, has described a total of 91 species from one site in Ceram (in the Moluccas, Indonesia) alone. This included 33 species that normally occur on a reef flat, but also ‘visit’ adjacent mangroves. Some of these 91 species occur as infauna (in the soil), others are ground dwellers, while the remainder occur on the vegetation. The latter consist of sessile (mainly bivalves) and mobile species, some of which migrate up and down with the tidal movement (Chen, 1982). Other sites may not be quite as rich as the Ceram site: Giesen et al. (1991) recorded 74 mollusc species in mangroves of South Sulawesi (Indonesia), while Budiman (1988) found 40 species in Halmahera (Moluccas, Indonesia). A large proportion of the mollusc fauna found in mangroves may be confined to this habitat; 24 out of the 40 species found at Halmahera by Budiman (1988), for instance, are specific mangrove species.

Some of the most common gastropod species include the telescope snail Telescopium telescopium, mudcreeper Terebralia palustris, zoned horn shell Batillaria zonalis and the obtuse horn shell Cerithidea obtusa. Common mangrove bivalves include the toothless lucina Anodontia edentula, sunset siliqua Siliqua radiata and the gaudy asaphis Asaphis deflorata (Tucker Abott, 1991).

Crabs
Crabs are particularly abundant in mangroves, and densities of 10-70 individuals per square metres can be found (Macintosh, 1984), especially of burrowing species of the genera Cleistocoeloma, Macrophthalmus, Metaplax, Ilyoplax, Sesarma and Uca (Calling- or Fiddler Crabs) (Tweedie & Harrison, 1954; MacNae, 1968; Macintosh, 1984; Wada & Wowor, 1989; Sasekumar et al., 1989). Special mention should be made of the Mangrove Crab (or Asiatic Edible Crab), Scylla serrata, which is an important commercial species and appears confined to this habitat (Delsman, 1927). Many crab fattening industries in Southeast Asia are based on this species. More than 100 brachyuran mangrove crabs are known from Malaysia, and 76 species are known from Singapore; in the latter this represents 22 percent of the total brachyuran fauna for the island state (Tan & Ng, 1994). Indonesia’s crab fauna has been studied in less detail, and the records are patchy.
<table>
<thead>
<tr>
<th>Zone 1: Highly exposed mangrove</th>
<th>Cambodia</th>
<th>Indonesia</th>
<th>Malaysia</th>
<th>PNG</th>
<th>Philippines</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizophora mucronata</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zone 2: Exposed mangroves								
Avicennia alba	+	+	+	+	+			
Avicennia marina		+						
Sonneratia alba	+	+	+	+	+			
Rhizophora mucronata		+						+

Zone 3: Central mangroves								
Acanthus ilicifolius	+	+						
Acrostichum aureum		+						
Avicennia officinalis								+
Bruguiera cylindrica	+	+						
Bruguiera gymnorrhiza		+						
Bruguiera parviflora	+	+	+	+	+			
Bruguiera sexangula	+	+						
Ceriops decandra	+	+	+	+	+			
Ceriops tagal	+	+	+		+			
Derris trifoliata					+			
Excoecaria agallocha	+	+	+		+			
Kandelia candel								+
Lumnitzera litorea	+	+						
Lumnitzera racemosa	+	+	+	+	+			
Rhizophora apiculata	+	+			+			
Rhizophora mucronata	+	+	+					
Sonneratia alba	+	+	+		+			
Xylocarpus granatum	+	+			+			
Xylocarpus moluccensis		+						+

Zone 4: Rear mangroves								
Acrostichum aureum	+	+			+			
Aglaia cucullata	+	+	+		+			
Barringtonia acutangula					+			
Bruguiera gymnorrhiza	+	+	+					
Bruguiera sexangula	+	+						
Calophyllum inophyllum	+	+						
Camptostemon schultzii					+			
Cycos rumphi								
Clerodendrum inerme	+	+			+			
Dalbergia candenatensis								
Dolichandron spathacea					+			
Excoecaria agallocha	+	+	+		+			
Ficus microcarpa								
Zone 4: Rear mangroves (ctd.)

<table>
<thead>
<tr>
<th>Species</th>
<th>Cambodia</th>
<th>Indonesia</th>
<th>Malaysia</th>
<th>PNG</th>
<th>Philippines</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flagellaria indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardenia tubifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glochidion littorale</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritiera littoralis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibiscus tiliaceus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumnitzera littorea</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lumnitzera racemosa</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajutii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Melastoma malabathricum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myristica hollrungii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nypa fruticans</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phoenix paludosa</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluchea indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rhizophora apiculata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Thespesia populnea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus moluccensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Zone 5: Brackish stream & rarely inundated mangroves

<table>
<thead>
<tr>
<th>Species</th>
<th>Cambodia</th>
<th>Indonesia</th>
<th>Malaysia</th>
<th>PNG</th>
<th>Philippines</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthus ebracteatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthus ilicifolius</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barringtonia acutangula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruguiera gymnorrhiza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerbera manghas</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerbera odollam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptocoryne ciliata</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derris trifoliata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolichandrone spathacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gluta velutina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nypa fruticans</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Onospermia tigillarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia caseolaris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenochlaena palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Xylocarpus moluccensis</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Giesen, et al. (1991) recorded a total of 28 crab species in mangroves of South Sulawesi, and as often is the case, the dominant genera are Sesarma and Uca. Wada (1988) gives some useful observations on mangrove crab behaviour and the different assemblages associated with various mangrove habitats. The two most common species found by Adiwiryono et al. (1984) in South Sumatra were mud lobster Thalassina anomala and the fiddler crab Uca dussumieri. The numerous mounds seen in mangroves are made by the mud lobster, while the holes themselves are often inhabited by Sesarma crabs, which are actually the second ‘tenants’ (Tweedie & Harrison, 1954).

Other crustaceans

Mangroves are an important habitat for many other crustaceans, and it should be noted that they form a very important breeding and nursery area for commercially important shrimp species. Sasekumar et al. (1992) recorded nine species of prawns in the mangrove creeks and inlets of Selangor State, Peninsular Malaysia, the majority of which were present there as juveniles. Giesen et al. (1991) record 14 prawn species in mangroves of South Sulawesi, including Macrobrachium (8 species), Metapeneus (2 species) and Palaemonetes (2 species). Toro (1979; quoted by Manuputty, 1984) recorded 28 crustacean species, including eight prawn species, in the mangroves of Pari Island, one of the Thousand Islands, off Jakarta Bay. Adiwiryono et al. (1984) found an even higher crustacean diversity - 34 species - in mangroves of Tanjung Bungin (South Sumatra, Indonesia).

Other arthropods

Arboreal mangrove arthropods, including insects, are described for Halmahera (Moluccas, Indonesia) by Abe (1988), and the most common orders were found to be Hymenoptera, Diptera and Psocoptera (all of which are insects). Even to the casual visitor it is obvious that mangroves are great habitats for mosquitoes - although humans may make great meals the most obvious prey of adult mosquitoes in most mangroves are birds and amphibians.

Mosquitoe attacks are not restricted to any particular group of organisms, and MacNae (1968) reported that he once observed mosquitoes biting the heads of mudskippers. During their aquatic larval life cycle, mosquito larvae may make a significant contribution to the benthic food chain, and various marine organisms (esp. fish) feed on them. Among the most common mosquitoes in Southeast Asia is the Anopheles (Myzomyia) sundaicus, which is apparently restricted to the western regions of the Indonesian Archipelago, where it is responsible for most cases of malaria (MacNae, 1968). According to MacNae (1968), Aedes amesi is the most common mosquito in mangroves from Malaysia and Sumatra to the Philippines and Thailand. In Sulawesi alone, there are about 125 species of mosquitoes in all (only some of which are mangrove species), but only four genera act as vectors for debilitating diseases such as malaria (Anopheles and Culex), dengue fever (Aedes) and filariasis (Mansonina and Culex) (Whitten et al., 1988). Species commonly associated with mangroves in Southeast Asia are Aedes alternans, A. amesi, A. butleri, A. fumidus, A.
littoreus, A. niveus, A. pembaensis, A. scutellaris, A. vigilax, Anopheles amictus, A. barbirostris, A. farauti, A. subpictus, A. sundaicus and Culex sitiens. It might be possible to strongly reduce the abundance of mosquitoes in mangroves by ensuring that no stagnant pools remain during low tides. This could be a consideration when aiming to retain mangroves in the vicinity of urban areas.

Fish

Mangroves are highly important breeding and nursery habitats for many fish species, including many commercial fish species. Sasekumar et al. (1992) recorded 119 fish species in mangrove creeks and inlets of Selangor State, Peninsular Malaysia, the majority of which were present as juveniles. Conspicuous at low tide are the many species of mudskipper (*Periophthalmus* species, *Scartelaos* species; MacNae, 1968) that occur in pools or perched on the lower stems of mangrove plants, ready to leap if danger should arise. In Indonesia, Burhanuddin (1993) recorded 62 fish species in mangroves of Ujung Kulon-Pulau Penaitan National Park. In both areas, the dominant species is the herbivorous *Mugil cephalus*, while other common species include the carnivorous *Caranx kalla*, *Holocentrum rubrum*, *Lutjanus fulviflamma* and *Plotosus canius*, and the insectivorous *Toxotes jaculator* (the famous ‘archer fish’).

Amphibians & reptiles

Few amphibians can survive the saline mangrove environment, but two species of frog are nevertheless fairly common, especially in the rear mangrove areas: the mangrove frog *Fejervarya cancrivora* and the grass frog *Fejervarya limnocharis* (formerly known as *Rana cancrivora* and *Rana limnocharis*; MacNae, 1968; Inger & Stuebing, 1997; Iskandar, 1998). *Fejervarya cancrivora* owes its scientific name (and one of its common names) to its habit of devouring small crabs. The common toad *Bufo melanostichus* may also be found upon occasion, especially on landward margins, and in Viet Nam tree frogs *Racophorus lecuomystax* are regularly recorded (Hong, 2004).

Reptiles commonly occurring in Southeast Asian mangroves are the estuarine crocodile *Crocodylus porosus*, water monitor *Varanus salvator*, rainbow water-snake *Enhydris enhydris*, crab-eating water snake *Fordonia leucobalia*, mangrove snake *Boiga dendrophila*, marine file snake *Acrochordus granulosus*, dog-faced water snake *Cerberus rhynchops*, Wagler’s pit viper *Trimeresurus wagleri* and the shore pit viper *Trimeresurus purpureomaculatus* (MacNae, 1968; Keng & Tat-Mong, 1989; Stuebing & Inger, 1999). The dog-faced water snake is a common species of mangrove mudflats, where it feeds mainly on mudskippers (Giesen, 1993). None of these species are exclusive, as most are also found in adjacent freshwater or dryland environments.

Birds

Birds occurring in mangroves may be quite similar to those of adjacent dryland forest. Van Balen (1989) reports that of the 167 bird species
recorded in mangroves of Java, six are confined to mangroves while a further three are characteristic for this habitat. Other groups make use of mangroves, for example as roosts on a daily basis (mainly waterbirds; for example on Pulau Dua and Pulau Rambut, West Java), daily foraging (includes a number of pigeons) and as a seasonal stop-over site on migrations (e.g. a number of waterbirds, and insectivorous birds). The majority of the species, however, are found both in adjacent rain forests, rural and urban areas. The Indonesian Wetland Data Base (operated by Wetlands International-Indonesia Programme) lists a total of more than 200 bird species occurring in mangrove habitats, which is about 13 percent of the (very rich) Indonesian avifauna (1,532 species; Andrew, 1992). Mangroves play an important role for migratory waterbirds, mainly as roosting sites during high tide, but also as places of shelter and foraging.

The total number of bird species found at any one site are of course much lower. In the Sungai Merbok mangroves of Kedah, Malaysia, Noske (1993; cites in Wetlands International-Asia Pacific, 1996) recorded a total of 48 species. On a slightly greater scale (Kedah State mangroves, with 8,000 hectares of mangrove; AWB, 1995), Gregory-Smith (1993) recorded 78 bird species in this habitat, of which 73 fed in the mangrove, 48 were regular or occasional resident species, 15 were mainly mangrove dependent, and 12 roosted in the mangrove. The mainly mangrove depedent species include striated heron Butorides striatus, masked finfoot Heliopais personata, common kingfisher Alcedo atthis, brown-winged kingfisher Pelargopsis amauropterus, ruddy kingfisher Halcyon coromanda, collared or mangrove kingfisher Todiramphus chloris, mangrove pitta Pitta megarhyncha, ashy drongo Dicrurus leucophaeus, golden-bellied gerygone Gerygone sulphurea, ashy tailorbird Orthotomus ruficeps, mangrove blue-flycatcher Cyornis rufigastra, pied fantail Rhipidura javanica, mangrove whistler Pachycephala grisola, plain-throated sunbird Anthreptes malacensis and copper-throated sunbird Nectarinia calcostetha (Gregory-Smith, 1993).

Particularly important to migratory waterbirds are the mangroves along the Irrawaddy delta, Myanmar (Scott, 1989; Maung, 2003), the Mekong delta (Scott, 1989; Hong & San, 1993), west coast of Peninsular Malaysia (Scott, 1989), eastern coast of Sumatra (Silvius, 1986; Silvius, Verheugt & Iskandar, 1986; Danielsen & Verheugt, 1989; Giesen, 1991;), the north coast of Java (Erftemeijer & Djuharsa, 1988) and the western coast of South Sulawesi (Baltzer, 1990; Giesen et al., 1991).

East Sumatra’s mangrove coasts have been found to seasonally harbour more than 90 percent of the world population of milky stork Mycteria cinerea (listed as Vulnerable by IUCN), which does not occur in large numbers elsewhere (<200 in Malaysia). The north coast of Java and the east coast of Sumatra supports about 90 percent of the world population of (IUCN listed) Near-threatened Asian dowitcher Limnodromus semipalatus during migration (Silvius, pers. comm. December 2004).

Mammals
Mammals commonly found in Southeast Asia’s mangroves include wild boar Sus scrofa, sambar Cervus unicolor, hog deer Cervus porcinus, mouse deer Tragulus
Mangrove Guidebook for Southeast Asia

PART 1: THE MANGROVE HABITAT

...javanicus, barking deer *Muntiacus muntjak*, tapir *Tapirus indicus*, flying foxes *Pteropus* species (e.g. roosting colony on Pulau Rambut, Jakarta Bay), otters (*Lutra perspicillata* and *Aonyx cinerea*), silvered leaf monkeys *Trachypithecus auratus* (commonly known as *Presbytis cristata*), and proboscis monkey *Nasalis larvatus* (endemic to Borneo; MacNae, 1968; Payne, Francis & Phillipps, 1985; Melisch et al., 1993).

None of these are exclusive to mangroves: although it was formerly thought that proboscis monkey were only found in mangroves (MacNae, 1968), it is now well known that this species also occurs in Kalimantan’s (peat-) swamp and riparian forests (e.g. Payne, Francis & Phillipps, 1985). Long-tailed (or crab-eating) macaques *Macaca fascicularis* are common in mangroves throughout their range (Viet Nam and Burma, to Sumatra, Java and Kalimantan)\(^7\), and are often seen foraging on the mudflats between mangroves and along creeks at low tide (Giesen, 1991a, 1991b). *Macaca ochreata ochreata* (one of the leaf monkeys endemic to Sulawesi) was observed to be common in mangroves near Malili, in Bone Nay, South Sulawesi (Giesen et al., 1991).

More rarely, one may also encounter the rare fish-eating cat *Felis viverrina*, elephant *Elephas maximus*, pather *Panthera pardus* or tiger *Panthera tigris*. Curiously, squirrels are rarely seen in mangroves, although Southeast Asia has an extremely rich squirrel fauna.

Wild elephant are found scattered in small numbers in Southeast Asia, including in Myanmar, Cambodia, Thailand, Viet Nam, Malaysia (Peninsular and Sabah) and Indonesia (Sumatra). Upon occasion they may also be found in mangroves – during dry summer months in Myanmar, for example, elephants come down from the mountains to the mangroves to drink salt water.\(^8\)

Tigers are found in small numbers and widely scattered in Myanmar, Thailand, Cambodia, Malaysia and Indonesia (Sumatra). Because of their affinity for water, they do well in wetland areas including mangroves. The Sumatran tiger *Panthera tigris sumatranus* occurs in the newly established (2003) Sungai Sembilang National Park in South Sumatra (Danielsen & Verheugt, 1989), and in combination with adjacent Berbak National Park in Jambi this area may be the best bet for survival of this sub-species in Southeast Asia (Frazier, 1992). In Myanmar, tigers used to be plentiful throughout the country forty years ago, but now at most 150 remain, and it is unknown how many, if any, use the dwindling mangroves.

\(^7\) The Long-tailed Macaque has apparently recently been introduced to South Sulawesi (Giesen et al., 1991)

\(^8\) http://www.worldwildlife.org/wildworld/profiles/terrestrial/im/im1404_full.html
CHAPTER

4 BENEFITS DERIVED FROM MANGROVES

Mangroves are highly beneficial, as they yield many valuable products, while also performing, free-of-cost, many important functions that support the often dense coastal populations. Economically, they are thus highly important, be it at local, regional or even national level.

4.1 MANGROVE USES

Mangroves are very productive ecosystems, and the list of mangrove products commonly used in Southeast Asia is long and impressive (Table 6). The economies of coastal villages are often very dependent on adjacent mangroves, either directly, because of the products they derive from these habitats and are able to sell, or because of the coastal fisheries that are supported by mangroves, or the coastlines that are sheltered from storms. Many commercially important fish, shellfish and prawn species depend on mangroves at least during part of their life cycle (Foo & Wong, 1980; Adiwiryonono et al., 1984; Sasekumar et al., 1992; Burhanuddin, 1993), and it has been demonstrated that the productivity of coastal fisheries is directly correlated with the area of mangrove: the more mangrove, the better the fisheries.

Table 5 presents the main direct uses of mangrove plants in Southeast Asia – apparent is that 77 percent of all mangrove plants have some know use, and that many species have a multiple use. The most common use (41% of all species) is medicinal: mangroves are veritable medicine chests for coastal communities. This is followed by construction material at 25 percent, food (vegetable, spice, fruit) at 22 percent, ornamental use at 17 percent and fuel at (at least) 12 percent. Many minor uses are not tabulated, for example, plants used for making skirts, fruits used in games or as storage vessels, or for making food wrappers.
Mangrove Guidebook for Southeast Asia

PART 1: BENEFITS DERIVED FROM MANGROVES

TABLE 5

<table>
<thead>
<tr>
<th>Mangrove use</th>
<th>Number of species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal</td>
<td>110</td>
<td>41</td>
</tr>
<tr>
<td>Construction material</td>
<td>67</td>
<td>25</td>
</tr>
<tr>
<td>Food</td>
<td>58</td>
<td>22</td>
</tr>
<tr>
<td>Ornamental</td>
<td>46</td>
<td>17</td>
</tr>
<tr>
<td>Fuel*</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>Utensils</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Fodder</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Tannin</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Oil & wax</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Rope & binding</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Mats and baskets</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Hedges & fencing</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Dye</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Perfume</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Glue</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Roofing & thatching</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>No known use</td>
<td>62</td>
<td>23</td>
</tr>
</tbody>
</table>

* Use as fuel (fuel wood and charcoal) is under reported.

Data is based on the species descriptions provided in Part 2 of this publication.

Wood, timber & tannin

For ages, people have exploited mangroves for timber and fuel, and even commercial exploitation has a long history, commencing with the export of timber (esp. durable poles), bark (for tannin) and charcoal from mangrove areas to larger towns. In Indonesia, large amounts of Rhizophoraceae poles are still commonly used for building foundations on soft sediments in coastal areas. Larger scale exploitation of mangroves in Indonesia began early this century, in Java and Sumatra (van Bodegom, 1929; Boon, 1936), but mechanised logging did not really commence until 1972 (Min. of Forestry & FAO, 1990). By 1985, however, 14 companies had been issued licenses for logging concessions covering a total area of 877,200 hectares, or about 35 percent of the mangroves remaining at that time (Min. Forestry & FAO, 1990). Much of the production of these concessions is in the form of wood chips, but also round timber and charcoal are exported. In 1990 these had a total value of about US$25 million, up from US$2.6 million for logs and US$1.37 million for charcoal in 1978 (Burbridge & Koesoebiono, 1984; chips were not exported). Following a ban on the export of roundwood in the 1990s, the main export was in the form of charcoal and wood chips. In 1998, 330,000 tons of charcoal were produced in Indonesia, both for the local market and for export to Japan, Taiwan and Singapore. At the same time, 250,000 tons of mangrove wood chips were exported to Korea and Japan, at a value of US$10 million. By 2001, all wood chips exported from Indonesia came from Papua province, indicating that concessions in other provinces are depleted.

9 www.jica.or.id/p_Bali2_2.html

Box 1. Matang forestry, Malaysia

Matang Mangrove Forest Reserve (MMFR), located on the north-west coast of Peninsular Malaysia, has a long and impressive history of sustainable management. MMFR has been managed for the production of fuel wood and poles on a sustainable basis since 1902-04, when almost the entire area was gazetted as a forestry reserve. By 1908, the entire reserve came under intensive management, which has now been carried out for almost a century (Gan, 1993), making the area one of the world’s oldest well-managed mangrove area exploited on a sustainable basis. Some small pockets of dryland forest exist, but the majority of the area consists of a large expanse of mangrove forest, of which 34,769 hectares are classified as ‘productive forest’ and 5,942 hectares ‘unproductive forest’, managed by the Perak State Forest Department.

Forestry practices at the MMFR are mainly based on the extraction of *Rhizophora apiculata* and *R. mucronata*, for fuel (especially charcoal) and poles. There is a 30-year logging cycle, and about 900 hectares are harvested annually, of which 800 hectares were for charcoal production, and 100 hectares for poles (MCF, 1987; pers. comm. MMFR 1997). In the past, a rotation cycle of 40 years was tried, but this was found less productive than the current 30 year cycle, which has three thinnings: at 10 years, 15-20 years, and 20-25 years (Ong et al., 1984b). Logging is primarily clear-felling, but at least 5-10 mature trees are left per hectare to ensure an ample supply of seeds and seedlings. Also, a narrow belt of mangrove is left standing along all waterways, to prevent erosion of the river banks. After logging, plots are left for 1-2 years to allow natural regeneration to take hold, following which, enrichment planting - usually with *Rhizophora apiculata*, but also *R. mucronata* - takes place in areas with low stocking rates. About 10,000 seedlings per hectare is deemed optimal. Net productivity of the *Rhizophora apiculata* dominated mangrove forests was found to be in the range of 16-50 tons per hectare, per year (Ong et al., 1984b).

Tannin from mangrove bark has traditionally been an important use of mangroves, and used to be one of the main products. However, in recent years synthetic tannin has to a large extent replaced this use (Hong, 2003).

Mangrove associated fisheries

By far the most important economic gain derived from mangrove products in many areas is that of the coastal fisheries, which depend on particulate organic matter ‘exported’ from mangroves for food (Boto & Bunt, 1981; Johnstone, 1981; Woodroffe, 1985) and the mangrove environment for shelter (Sasekumar et al., 1992). As stated above, the productivity of these fisheries is directly correlated to the area of mangroves: for every hectare of mangrove cleared, near-coastal fisheries lose approximately 480 kilogramme of fish per year (MacKinnon & MacKinnon, 1986). This compares with an average productivity of 287 kilogrammes per hectare, per year for extensively managed brackish water fishpond or *tambak* in Sumatra (MacKinnon & MacKinnon, 1986).

Certain commercially important species, such as barramundi (ikan kakap) *Lates calcarifer*, mangrove Crab *Scylla serrata* and threadfin salmon *Polynemus sheridani* are directly dependent on mangroves and are caught in this habitat (Griffin, 1985). Indonesia’s marine fisheries are largely near-coastal, being carried out by local fishing communities in a little-mechanised fashion, or by commercial fishing fleets operating from larger harbour towns. In 1990, the total production of Indonesia’s marine fishery was 2.49 million tons, involving almost 400,000 families, or about 2 million persons (Biro Pusat Statistik, 1993). The total value is not indicated in the national statistics, but is estimated to be in the range of US$500-1245 million; much of this is for subsistence, local markets and the national market. By 2000,
production had increased to 3.7 million tons, not including the 320,000 tons of crustaceans and molluscs (WRI, 2003)\(^\text{11}\).

<table>
<thead>
<tr>
<th>Box 2. Matang fisheries, Malaysia</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Matang Mangrove Forest Reserve is highly important for fisheries, which form the bulk of the income from this area, and targeted species include prawns, shrimps, seabass, mangrove crabs and cockles. While the forests are exploited by the Perak State Forestry Department, fisheries resources are exploited by local fishing communities, and MMFR fisheries are essentially an open-access resource. All fisheries are capture fisheries, although some species, such as sea bass and mangrove crab, may be reared and fattened before being sold. There are no aquaculture ponds.</td>
</tr>
</tbody>
</table>

Fifteen species of penaeid prawn and 5 species of palaemonid prawns are found in the MMFR, with \textit{Parapenaeopsis} species generally preferring the mudflats, and the \textit{Penaeus} and \textit{Metapenaeus} species preferring river mouths and creeks. Mean densities were 7.35 kilogrammes per hectare (4,092 individuals) for rivers and creeks, and 7.19 kilogrammes per hectare (2,666 individuals) for mudflats. These areas are important nursery areas for juvenile prawns, which comprise 70-98 percent of the river, and 40-90 percent of the mudflat populations (Chong, 1994). Common prawns in the MMFR are \textit{Penaeus monodon}, \textit{P. merguiensis} and \textit{P. indicus} (Khoo, 1991). A total of 117 fish species (of 49 families) have been recorded at MMFR, of which the most abundant are the ambassids (18.0%) and the sciaenids (17.5%). Average biomass in river channels was 40.0 kilogramme per hectare, while that of the adjacent mudflats was 30.5 kilogramme per hectare; fish densities were 8,517 and 6,999 individuals per hectare, respectively, for river channels and mudflats. Juvenile fish comprise 85 percent of all individuals, both in river channels and above mudflats (Sasekumar et al., 1994).

Tourism
Mangrove areas are increasingly becoming important for (eco)tourism, education and study, especially in areas where they are readily accessible. In Malaysia, for example, Kuala Selangor Nature Park on the west coast of Peninsular Malaysia, is a popular destination for nature lovers, birders and students, especially as it only an hour’s drive from Kuala Lumpur and has accessible trails and walkways through the mangroves. Chek Jawa on Singapore is similarly popular, especially with schools and students, and has its own home page\(^\text{12}\). Indonesian mangroves are generally less accessible, but mangrove islands just off the coast of Java (near Jakarta) such as Pulau Rambut and Pulau Dua, are popular destinations for birders. In Thailand, mangrove sites such as Yaring Mangrove Education Center at Pattani, are popular tourist destinations and much used by local schools.

\(^{11}\) www.earthtrends.wri.org (2003)
\(^{12}\) http://habitatnews.nus.edu.sg/news/chekjawa
TABLE 6
Mangrove products

<table>
<thead>
<tr>
<th>Category & type of use</th>
<th>Examples of species used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel:</td>
<td></td>
</tr>
<tr>
<td>Firewood</td>
<td>Most tree species</td>
</tr>
<tr>
<td>Charcoal</td>
<td>Many tree species</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Nypa fruticans</td>
</tr>
<tr>
<td>Construction:</td>
<td></td>
</tr>
<tr>
<td>Timber, scaffolds</td>
<td>Bruguiera, Rhizophora spp.</td>
</tr>
<tr>
<td>Heavy construction</td>
<td>Bruguiera, Rhizophora spp.</td>
</tr>
<tr>
<td>Railroad sleepers</td>
<td>Rhizophora, Ceriops spp.</td>
</tr>
<tr>
<td>Mining pit props</td>
<td>Bruguiera, Rhizophora spp.</td>
</tr>
<tr>
<td>Boat building</td>
<td>Corypha sanibus (masts), Lumnitzera</td>
</tr>
<tr>
<td>Dock pilings</td>
<td>Lumnitzera spp.</td>
</tr>
<tr>
<td>Beams & poles for buildings</td>
<td>Rhizophora, Bruguiera spp.</td>
</tr>
<tr>
<td>Flooring, panelling</td>
<td>Oncosperma tigillarium</td>
</tr>
<tr>
<td>Thatch</td>
<td>Nypa fruticans, Acrostichum speciosum</td>
</tr>
<tr>
<td>Matting</td>
<td>Cyperus malaccensis, Eleocharis dulcis</td>
</tr>
<tr>
<td>Fence posts/water pipes</td>
<td>Scolopia macrophylla</td>
</tr>
<tr>
<td>Chipboards</td>
<td>Mainly Rhizophoraceae</td>
</tr>
<tr>
<td>Glues</td>
<td>Cynas rumphii</td>
</tr>
<tr>
<td>Fishing:</td>
<td></td>
</tr>
<tr>
<td>Poles for fishing traps</td>
<td>Ceriops spp.</td>
</tr>
<tr>
<td>Fishing floats</td>
<td>Dolichandrone spathacea, Sonneratia alba</td>
</tr>
<tr>
<td>Fish poisons</td>
<td>Derris trifoliata, Cerbera floribunda</td>
</tr>
<tr>
<td>Tannings for nets & line</td>
<td>Rhizophoraceae</td>
</tr>
<tr>
<td>Rope</td>
<td>Stenochlaena palustris, Hibiscus tilaceus</td>
</tr>
<tr>
<td>Anchors</td>
<td>Pemphis acidula, Rhizophora apiculata</td>
</tr>
<tr>
<td>Caulking of boats</td>
<td>Atuna racemosa, Osbornia octodonta</td>
</tr>
<tr>
<td>Textiles, leather:</td>
<td></td>
</tr>
<tr>
<td>Synthetic fibres (e.g. rayon)</td>
<td>Mainly Rhizophoraceae</td>
</tr>
<tr>
<td>Dye for cloth</td>
<td>Excoecaria indica, Peltakhorum pterocarpum</td>
</tr>
<tr>
<td>Tannings</td>
<td>Mainly Rhizophora, Lumnitzera spp.</td>
</tr>
<tr>
<td>Clothing (skirts)</td>
<td>Eleocharis dulcis</td>
</tr>
<tr>
<td>Agriculture:</td>
<td></td>
</tr>
<tr>
<td>Fodder, green manure</td>
<td>Paspalum vaginatum, Colocasia esculenta</td>
</tr>
<tr>
<td>Paper Products:</td>
<td></td>
</tr>
<tr>
<td>Paper of various kinds</td>
<td>Avicennia marina, Camptodemon schultzii</td>
</tr>
<tr>
<td>Household items:</td>
<td></td>
</tr>
<tr>
<td>Furniture</td>
<td>Many timber species</td>
</tr>
<tr>
<td>Decorations</td>
<td>Xylocarpus granatum, Scaevola taccada</td>
</tr>
<tr>
<td>Glue</td>
<td>Cynas rumphii</td>
</tr>
<tr>
<td>Hair oil</td>
<td>Xylocarpus mekongensis</td>
</tr>
<tr>
<td>Perfume</td>
<td>Phymatodes scolopendria</td>
</tr>
<tr>
<td>Tool handles</td>
<td>Dolichandrone spathacea, X. granatum</td>
</tr>
<tr>
<td>Pillow stuffing</td>
<td>Typha angustifolia</td>
</tr>
<tr>
<td>Baskets</td>
<td>Cyperus malaccensis, Scirpus grossus</td>
</tr>
<tr>
<td>Toys</td>
<td>Dolichandrone spathacea, Excoecaria indica</td>
</tr>
<tr>
<td>Incense</td>
<td>Cerbera manghas (insecticide)</td>
</tr>
<tr>
<td>Ornamental plant</td>
<td>Cryptocoryne cillata, Crinum asiaticum</td>
</tr>
<tr>
<td>Wax (candles)</td>
<td>Horafeldia iya</td>
</tr>
<tr>
<td>Medicines</td>
<td>Drymoglossum pilosellioides, Drynaria rigidula</td>
</tr>
<tr>
<td>Insect repellent</td>
<td>Osbornia octodonta, Quassa indica</td>
</tr>
<tr>
<td>Vinegar</td>
<td>Nypa fruticans</td>
</tr>
<tr>
<td>Buttons</td>
<td>Nypa fruticans</td>
</tr>
<tr>
<td>Charms, decorations</td>
<td>Nypa fruticans</td>
</tr>
</tbody>
</table>
4.2 MANGROVE FUNCTIONS

Shoreline protection

Mangroves play an important role in protecting shorelines from waves, winds and storms. The roots of mangrove plants bind and stabilize the substrate, the plants themselves dissipate wave and current energy, and the vegetation as a whole can trap sediments (Davies & Claridge, 1993; Othman, 1994). They offer the best protection against tropical storms, storm surges and tsunamis, and are being replanted in certain areas where they have been felled in the past (e.g. Bay of Bengal, Mekong Delta of Viet Nam) especially for this purpose. In Bangladesh, a storm surge in 1970 killed 150,000-300,000 persons, and in June 1985, 40 000 people were drowned (Maltby, 1986). A study of the 1970 disaster found that about a third of the survivors saved themselves by clinging to trees. Recognising the role of mangroves, the government of Bangladesh replanted a total of 25 000 hectares of mangrove (Maltby, 1986) and is continuing this process at present. One of the few quantitative studies on wave attenuation reported by Kogo and Kogo (2004), found that a 1.5 kilometre-wide belt of 2 metre tall Kandelia candel at Thai Thuy (northern Viet Nam), reduced a 1.0 metre high wave crest to a benign 5 centimetres. Without the young Kandelia belt these waves would still have been 75 centimetres tall, and capable of considerable damage.

In October 1999, mangrove forests reduced the impact of a ‘super-cyclone’ that struck Orissa on India’s east coast, killing at least 10 000 people and making 7.5 million homeless. Those human settlements located behind healthy mangrove stands suffered little, if any, losses. According to a report
from India, when the tsunami that originated near Aceh, in Sumatra, struck India’s southern state of Tamil Nadu on 26 December 2004, areas in Pichavaram and Muthupet with dense mangroves suffered fewer human casualties and less damage to property compared to areas without mangroves (Mangrove Action Project, 4 January 2005). Similar findings are reported for southern Thailand, where evidence suggests that mangroves helped reduce the devastation caused by the tsunami’s waves (Harakunarak & Aksornkoae, 2005).

Formerly, sediment binding by mangroves was seen as an active process: “where you have mangroves you would automatically get accretion” (e.g. Steup, 1941), but the consensus now is that mangroves stabilize and bind on already accreting shores (van Steenis, 1958; Chapman, 1976, 1977). Mangrove vegetation can also shield structures, crops and coastlines from damage by strong wind or salt-laden wind.

Support to food web
The role of mangroves in supporting near-shore fisheries is twofold. Firstly, they play an important role in the life cycles of many fish, shrimp and mollusc species (MacNae, 1968; Chapman, 1976; Mann, 1982; Davies & Claridge, 1993; Mastaller, 1997; Figure 6), as these environments provide a combination of shelter and (via the detritus chain) an abundance of organic matter: food. Secondly, mangroves are net exporters of organic matter, thus providing food for organisms that inhabit waters well outside the actual mangrove (Chapman, 1976; Mann, 1982; Sasekumar, 1992; Mastaller, 1997).

Adapted from a poster produced by Asian Wetland Bureau – Indonesia Programme (1992)

FIGURE 6
Food web and use of mangroves in Indonesia

13 http://www.earthisland.org/map/
Carbon sequestration

Mangroves are able to sequester some 1.5 metric tons of carbon per hectare per year (Ong, 1993; according to Fujimoto, 2004, this may range from 0.22-1.24 tons per hectares per year), and the upper layers of mangrove sediments have a high carbon content, with conservative estimates indicating levels of 10 percent. Conversion of mangroves to fishponds – which invariably involves excavation of about two metres of sediment – will eventually result in a release of about 1,400 tons of carbon from the sediments alone (Ong, 2002). According to calculations by Ong (2002), the conversion of two percent of mangroves to aquaculture already means that the advantage of mangroves as a sink of atmospheric carbon are lost.

4.3 Economic Value of Mangroves

Over the past 10-15 years, numerous economic and valuation studies have been carried out on mangrove ecosystems, both in Southeast Asia and beyond (e.g. Ruitenbeek, 1992; Spaninks & van Beukering, 1997; Gammage, 1997; Satharathai, 1997; Bann, 1998; Khalil, 1999, Pearce et al., 2002; PEMSEA, 2004). These consistently show that these systems are highly valuable assets, and of prime importance to coastal communities and local and regional economies. Fisheries are often the most valuable extracted products, followed by timber products (see Table 7), but mangrove services (e.g. coastal protection or biodiversity value) may be worth many times this. A total economic valuation study in Indonesia (Moosa et al., 1996), for example, shows that the archipelago’s mangroves and their biodiversity was worth more than US$350 billion, or US$110,000 per hectare if all benefits are included.

<table>
<thead>
<tr>
<th>Product</th>
<th>Country</th>
<th>Kg/ha.year</th>
<th>Value (US$/ha.yr)</th>
<th>Year</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penaeid shrimp</td>
<td>Various</td>
<td>13-756</td>
<td>91-5,292</td>
<td>1999</td>
<td>1</td>
</tr>
<tr>
<td>Mud crabs</td>
<td>Various</td>
<td>13-64</td>
<td>39-352</td>
<td>1999</td>
<td>1</td>
</tr>
<tr>
<td>Fish</td>
<td>Various</td>
<td>257-900</td>
<td>475-713</td>
<td>1999</td>
<td>1</td>
</tr>
<tr>
<td>Molluscs</td>
<td>Various</td>
<td>500-979</td>
<td>140-274</td>
<td>1999</td>
<td>1</td>
</tr>
<tr>
<td>Fish & shrimp</td>
<td>Thailand</td>
<td>30-2,000</td>
<td>750</td>
<td>1978</td>
<td>2</td>
</tr>
<tr>
<td>Shrimp & fish</td>
<td>Malaysia</td>
<td>2,772</td>
<td>1,982</td>
<td>1979</td>
<td>4</td>
</tr>
<tr>
<td>Fishery products</td>
<td>Malaysia</td>
<td>750</td>
<td>1,982</td>
<td>1979</td>
<td>5</td>
</tr>
<tr>
<td>Forestry products</td>
<td>Malaysia</td>
<td>225</td>
<td>1,982</td>
<td>1979</td>
<td>5</td>
</tr>
<tr>
<td>Wood products</td>
<td>Malaysia</td>
<td>16,000-50,000</td>
<td>1,982</td>
<td>1984</td>
<td>6</td>
</tr>
<tr>
<td>Charcoal & wood chips</td>
<td>Indonesia</td>
<td>10-20</td>
<td>1,978</td>
<td>1978</td>
<td>2</td>
</tr>
<tr>
<td>Charcoal</td>
<td>Thailand</td>
<td>4,000</td>
<td>1,991</td>
<td>1991</td>
<td>3</td>
</tr>
</tbody>
</table>

References:
6. Ong, 1984b
Indonesia

A landmark economic study carried out in Bintuni Bay, in Indonesia’s Papua province by Ruitenbeek (1992) showed that traditional uses of the 300,000 hectare mangrove area by the 3,000 local inhabitants of the bay were valued at US$10 million per year. At the same time, fisheries were valued at US$35 million per year, and selective mangrove cutting schemes were calculated to be valued at US$20 million per year. Selective cutting of 25 percent of the mangrove appeared to be the optimal strategy, under the likely scenario of 5-year delayed linkages between economics and environment. Other scenarios were found to be less optimal, and the economic benefits of limited selective cutting was found to be greater than the clear cutting option, and the option of more extensive cutting (Ruitenbeek, 1992).

Malaysia

The Matang Mangrove Forest Reserve in Malaysia (see 4.1) is of considerable economic importance to Perak State, and the area is a major supplier of seafood to the local and international market. Revenues from forestry were US$6-9 million annually in the early 1980s (MCF, 1987), and totalled more than US$12 million by the late 1990s. In 1979 the value of the prawn and cockle industries in the area was estimated to be at least US$30 million (Ong, 1982). By 1994, the prawn industry alone valued at US$48 million (Sasekumar et al., 1994), and the fishing industry of the area is estimated to be valued at more than US$60 million annually. The total value of the forestry and fisheries alone means that the Matang mangroves are valued at an impressive US$1,800 per hectare, per year. Elsewhere, one square kilometre of mangrove forest was calculated to be capable of sustainably producing 38 tonnes of fish per year, and providing nursery grounds for an added 48 tonnes of fish and shrimp that mature elsewhere each year.14

Thai land

Studies by Sathirathai (1997) and summarised by the Regional Task Force on Economic Valuation15 indicate that the total economic value (TEV) of Thai mangroves was in the range of US$520-667 per hectare per year. This calculation included a host of direct uses (timber, fuelwood, wood/animal products), offshore fisheries, coastal protection and carbon sequestration. However, it does not include non use values such as biodiversity, and uniqueness to culture and heritage.

Viet Nam

Studies on mangroves in Quang Ninh, Nam Dinh, Cuu Long and Ca Mau by Nguyen Ngoc Binh and Huynh Minh Hong (summarised by the Regional Task Force on Economic Valuation13) indicate that the total economic value of Vietnamese mangroves was in the range of US$315-1,085 per hectare per year, averaging at US$721 per hectare per year. At the lower end of the scale was Quang Ninh, where environmental services

14 http://home.alltel.net/bsundquist1/07.html#A
were regarded as zero, as they did not need to mitigate typhoons, and there was no ecotourism. At the upper end of the scale was Nam Dinh in the Red River estuary, where fisheries accounted for two-thirds of mangrove value, but where environmental services and ecotourism were also significant. The valuation study did not include carbon sequestration, nor did it include non-use values such as biodiversity, and uniqueness to culture and heritage.

Malacca Straits

A recent valuation study on coastal and marine resources in the Malacca Straits, between Malaysia and Indonesia (PEMSEA, 2004) shows that the TEV of mangrove resources in this area is US$3.25 billion, with a net market value of US$582 million. Of this TEV, US$1.1 billion is attributable to fisheries alone. In Indonesia, Malacca Strait mangroves had a direct use value of US$734 million, of which 80 percent for fisheries, 12.4 percent for charcoal and poles, 6.1 percent for tourism, 1.2 percent for traditional uses and 0.3 percent for wildlife (PEMSEA, 2004).
CHAPTER 5

THE STATE OF SOUTHEAST ASIAN MANGROVES

5.1 PAST AND PRESENT AREA

All over the world mangrove resources are increasingly being lost due to unsustainable utilization and habitat conversion (Snedaker, 1984; Fiseler et al., 1990; Groombridge, 1992; Aksornkoae, 1993, Thurairaja, 1994; Mastaller, 1997), and on the whole, Southeast Asia is no exception. Around 1980, the total mangrove area in Southeast Asia totalled 6.8 million hectares (Table 8), which is about 34-42 percent of the world’s total (see 1.2). By 1990, however, this had dropped to under 5.7 million hectares, representing a decrease of about 15 percent or more than 110,000 hectares per year. Between 1990-2000 the annual loss had decreased to 79,400 hectares, but as the total area had also decreased there was still a 13.8 percent decline in mangrove area during this decade.

Brunei Darussalam

Brunei’s mangrove area has remained relatively constant since about 1980, having declined from about 18,000 to about 16,000 hectares in 2000 (Table 8), although WCMC report a remaining area of only 7,000 hectares in 1990 (see Table 8). Much of this mangrove area is located around Brunei Bay, and significant amounts are included in the country’s protected area system (Scott, 1989).

Cambodia

Cambodia’s mangroves dropped from 83,000 hectares in 1980, to less than 60,000 hectares by about 1990 (Fisheries Department Cambodia, 2001), having suffered ‘tremendous deterioration’ over recent decades. Reliable figures later than 1990 are absent, other than a WRM (2000) website report stating that the government admitted that the total area had deteriorated to about 16,000 hectares. Most (75%) of the remaining mangrove area is found in Koh Kong Province, along with 13,500 hectares in Sihanoukville, and 7,900 hectares in Kampot and Kep City (Smith, 2001).
Indonesia

Southeast Asia’s largest mangrove area occurs in Indonesia, where just under 60 percent of the region’s mangroves are located (Table 8). This extended over 4.25 million hectares in 1980, but had been reduced to under 3 million hectares by 2000, with losses of more than 90 percent in some regions (e.g. Java; see 5.2). Giesen (1993) calculated a total mangrove area of 2.49 million hectares remaining by the late 1980s, based on a combination of RePPProT (1985-1989) mapping data, satellite imagery (Sumatra and South Sulawesi) and data on area converted to brackish water fishponds. The 2.5 million hectares figure is now more generally used in Indonesia (e.g. Soegiarto, 2004), although figures ranging between 3-4.5 million hectares are also in use.

By most calculations, more than half (55%) occurs in Papua province, with a further 19 percent in Sumatra and 16 percent in Indonesian Borneo (Kalimantan). Indonesian data, however, are fraught with inaccuracies, and there are two major sources of error. Firstly, there are very few actual calculations of mangrove area, and more often than not, outdated references are quoted again and again16 (e.g. Burbridge & Koesoebiono, 1980; Burbridge, 1982). Secondly, estimates for the Papuan region vary widely, from 0.97 to 2.94 million hectares (Min. of Forestry & FAO, 1990), mainly because of a lack of reliable data (little ground truthing, few maps or cloud-free remote sensing imagery).

Malaysia

Malaysia is next in terms of mangrove area, harbouring about 11.7 percent of Southeast Asia’s mangroves. This extended over almost 670 000 hectares in 1980, but had been reduced to about 570 000 hectares by 2000. Mangroves primarily occur in Sabah (57%), Sarawak (26%) and the west coast of peninsular Malaysia (17%). Of these, 440 400 hectares are reserve forests. About 20 percent of the total mangrove area has been lost to various development activities in the last two decades. The most significant losses have been in Peninsular Malaysia, where large areas have been converted for agriculture, coastal road development and housing estates.

Myanmar

About 8.8 percent of Southeast Asia’s mangroves are located in Myanmar, of which 46 percent is located in Ayeyarwady (Irrawaddy) Division, 37 percent in Tanintahryi Division and 17 percent in Rakhine State. The total area was about 530 000 hectares in 1980, but this had dropped to 425 000 hectares by 2000 (Table 8), or perhaps as low as 382 032ha17. Prawn and fish ponds are only just being constructed since about 2000 (Maung, 2003). Myanmar’s mangroves are reportedly some of the most degraded or destroyed mangrove systems in the Indo-Pacific18.

16 www.reefbase.org
Papua New Guinea
According to most references, Papua New Guinea has about 8.7 percent of Southeast Asia’s mangroves, extending just over 500 000 hectares in the 1980s (see Table 8). Areas remain fairly stable, and by 2000 mangrove area amounted to just over 400 000 hectares. WCMC, however, report that only 200 000 hectares existed in the 1970s (Table 8), perhaps because island fringing mangroves were not included in their calculations. The largest areas of mangroves occur in the south, especially along the Gulf of Papua into which several large rivers flow (e.g. the Fly, Kikori and the Purari). On the whole, the north coast is not as rich in mangroves as the south coast, although several species such as Avicennia alba and Sonneratia caseolaris appear to be confined to the north coast19.

The Philippines
The Philippines harbours about 2.2 percent of Southeast Asia’s remaining mangrove area. Brown and Fisher (1918; cited by Primavera, 2004) calculated that the Philippines had a total mangrove area of 500 000 hectares at the turn of the last century. According to Aragones et al. (1998), Janssen and Padilla (1996) and Aypa and Baconguis20, Philippine mangroves declined from 418 990 hectares in 1967 to 288 035 hectares in 1970, 204 253 hectares in 1987 and 123 400 hectares in 1993. By 2000 it was estimated that this had further declined to just over 100 000 hectares (Table 8). According to Davies et al. (1990) only 119 000 hectares remained in 1990, of which only 81 400 hectares could be classified as undisturbed (Petocz, 1988). Much of this decline seems linked with the development of brackish water aquaculture (see below; Janssen & Padilla, 1996).

Singapore
Formerly, about 13 percent of Singapore island consisted of mangrove forest, but nowadays less than 0.5 percent (500 ha) remain. Some of this is protected in several small reserves, such as Sungai Buloh21.

Thailand
According to Aksornkoae (1993), Thailand had 367 900 hectares of mangrove in 1961, which was reduced to 174 000 hectares by 1990 (Wattayakorn, 1998), and had reportedly further declined to 167 582 hectares by 1996. Most of this dramatic decline appears to have been between 1975-199122.

Since the mid-1990s, however, two changes have occurred in Thailand that have reversed this trend of decline. Firstly, the method by which the Royal Forest Department (RFD) assessed forest areas changed: formerly they interpreted imagery at a scale of 1:250 000, but in the latest assessments (e.g. 2002), imagery at a scale of 1:50 000 was used. This change in scale

20 http://www.mangroveweb.net/html/country.htm
22 (www.worldwildlife.org/wildworld/profiles/terrestrial/im/im1402_full.html).
made the assessment of mangrove areas more accurate, and also allowed the inclusion of smaller areas in the overall calculation. Secondly, Thailand has invested in large-scale reforestation programmes in abandoned shrimp pond areas and other degraded sites since the late 1990s. The net effect has been that by 2000, the total mangrove area was determined to be 244,161 hectares (RFD Forestry Statistics 2002). As a result, Thailand is the only Southeast Asian country that has witnessed an increase in mangrove area during the past decade, although total areas are still well below what was present in the 1960s.

Thailand presently has just under five percent of Southeast Asia’s mangroves, covering large areas along the western peninsula coast and also along the eastern peninsula coast, in the Chao Phraya delta and along the south-eastern coast. The best developed mangrove forest in Thailand occurs on the west coast of the peninsula in Ranong, Phang Nga, Krabi, Trang and Satun. Mangroves in the inner and western part of the gulf of Thailand are mainly converted into shrimp farms, while the remaining mangroves are largely composed of small sized trees.

Timor-Leste

Timor-Leste’s mangroves extend over just 3,000 hectares, and are found mainly on the north coast of the island, where the sea is calmer, especially near Metinaro, Tibar and Maubara. Along the south coast mangroves are not found beyond the mouths of streams and adjacent swampy areas.

Viet Nam

Viet Nam has about 2.1 percent of Southeast Asia’s mangroves (just over 100,000 hectares in 2000), and the largest area of remaining mangroves is around Ca Mau Point at the southern tip of Viet Nam, with smaller areas in the Mekong delta region (together 66 percent of remaining mangroves), in south central Viet Nam around Cam Ranh Bay, and in northern Viet Nam in the Red River delta area (13%) and in Quang Ninh Province (15%). The central coast of Viet Nam (2%) is largely free of mangroves because of the exposed coastline, absence of major river deltas, and low tidal fluctuations in this area. Far more extensive stands of mangroves once occurred, with 408,500 hectares being recorded in 1945 and 290,000 hectares in 1953 (Hong, 2003). The extensive military use of defoliants and napalm during the Viet Nam War (1962-1972) destroyed a major part of mangrove forests, especially in southern Viet Nam, but these are recovering under active reforestation programmes.

WCMC figures: http://www.wcmc.org.uk/marine/data/coral_mangrove/marine.maps.main.html

<table>
<thead>
<tr>
<th>TABLE 8</th>
<th>Changes in mangrove area 1980-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Most recent reliable mangrove estimate</td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>17100</td>
</tr>
<tr>
<td>Cambodia</td>
<td>72835</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3493110</td>
</tr>
<tr>
<td>Malaysia</td>
<td>587269</td>
</tr>
<tr>
<td>Myanmar</td>
<td>452492</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>464000</td>
</tr>
<tr>
<td>Philippines</td>
<td>127610</td>
</tr>
<tr>
<td>Singapore</td>
<td>500</td>
</tr>
<tr>
<td>Thailand</td>
<td>244161</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>3035</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>252500</td>
</tr>
<tr>
<td>Total</td>
<td>5714612</td>
</tr>
</tbody>
</table>
5.2 CAUSES OF DECLINE

Direct causes of mangrove decline
Developments that have contributed to decline of Southeast Asian mangroves are commercial logging, conversion to brackish water fishponds, agriculture (mainly rice paddies and coconut), fuelwood and charcoal production, and conversion for housing. The impact of each of these varies per country. In countries with major fishing industries such as Thailand, Indonesia, the Philippines and Viet Nam, conversion to brackish water aquaculture is a major agent of change. In small, densely inhabited Singapore the need for land for housing and industry has lead to infilling and disappearance of mangroves. Myanmar and Papua New Guinea have a less developed fishing industry and no great shortage of land, hence there has been little conversion other than for forestry and fuel production.

Underlying causes of mangrove decline
A complicating factor in mangrove conversion is often land ownership. Legal ownership of mangroves is complicated due to the many different institutions involved, unclear land allocation procedures, and lack of a centralised up-to-date administration of land titles. Mangrove land can be obtained relatively easily and at low investment costs for the development of tambak and housing estates. This low cost does not reflect the true market value of mangroves, a problem that seems to occur throughout Southeast Asia (Othman, 1995; Thurairaja, 1994). Permits may be provided without proper consultation of higher authorities, a problem that is exacerbated by sectoral approaches, with one agency approving what another might find undesirable (e.g. conversion of 2,500 hectares of Karang Gading Langkat Timur Laut in North Sumatra in the 1980s; Giesen & Sukotjo, 1991).

Local people have exploited mangroves for eons, usually without noticable degradation of this environment. This has changed during the past decades, however, with increased internal (e.g. population) and external (e.g. investment, immigration) pressures. To quote Fiselier et al. (1990): “Reclamation for aquaculture and agriculture is currently considered the main way to achieve development of mangrove areas. These types of reclamation are costly, often unsustainable, and have adverse environmental effects. They mainly benefit outsiders, and to a lesser extent local communities, to the prejudice of those traditionally engaged in fisheries and the gathering of forest products.” This is supported by Ong (1982) in his discussion on mangrove conversion in Malaysia, who concludes that “... both economics and ecology argue against aquaculture.”

Cambodia
The main threats to Cambodian mangroves have been from conversion to aquaculture, charcoal production, and salt pan construction. Unregulated exploitation of mangroves for firewood and charcoal took place during the Pol Pot era and further intensified since the 1990s, both for commercial and export purposes. In Peam Krasoap (Koh Kong District) alone, for example,
the number of kilns for producing mangrove charcoal increased to 300 by mid 1996, using 26,760 cubic metres of mangrove wood (Sour, 2003). Although exact figures are lacking, the greatest threat to Cambodian mangroves has been from conversion to shrimp ponds, especially in the area close to the Thai border, where local communities have cleared and converted mangroves following investments by Thai businessmen. Ponds in this area have been heavily impacted by disease, with shrimp production dropping from 731 tons in 1995, to just 52 tons in 2002. As a result, many ponds have been abandoned. Some mangrove areas have also been cleared for construction purposes and for establishing salt pans, especially in Kampot province and Kep Municipality (Sour, 2003).

Indonesia
While conversion for aquaculture contributed about 25 percent of the loss of mangroves (see 5.3), the remaining 75 percent seems to stem from a combination of a) conversion to agriculture, b) growth of secondary (non-forest) vegetation after over-exploitation by coastal communities, c) lack of forest regeneration after commercial logging, and d) coastal erosion (likely to be very minor factor).

Commercial logging of mangroves formerly centered on Riau, South Sumatra, Aceh and Kalimantan provinces, but present activities are mainly in Papua. The area under logging concession has increased from 455,000 hectares in 1978 (Burbridge & Koesoebiomo, 1980) to 877,200 hectares in 1985 (Min. of Forestry and FAO, 1990), or about 35 percent of the remaining area of mangroves at the time. It is difficult to assess the effect logging has had on mangrove loss, however. Nurkin (1979) describes how former mangrove areas in South Sulawesi were invaded by *Acrosticum aureum* ferns following logging operations, a process that often affects mangrove regeneration. However, in other areas mangroves re-establish themselves vigorously, for example in Southeast Riau province, Sumatra (Giesen, 1991b), and in remnant mangroves of Sungei Kecil in West Kalimantan, Indonesia (Abdulhadi & Suhardjono, 1994).

Regeneration does not always imply that the same vegetation returns, however, and quite often less desirable tree species may become dominant, such as *Xylocarpus granatum* (Bakung Island, Riau; Giesen, 1991b), *Excoecaria agallocha* and *Bruguiera parviflora* (both at Karang Gading Langkat Timur Laut, North Sumatra; Giesen & Sukotjo, 1991). Sustainable logging of mangrove forests seems to be a possibility, because of the rapid regeneration, the availability of sufficient nutrients and the relatively simple vegetation structure. However, sustainable forest management generally implies a removal of commercially less-desired species, and thus decrease of biodiversity. Old trees are harvested which causes a significant decrease of epiphytes, parasites and climbers.

25 This did not include the Marubeni concession in Bintuni Bay, Papua, which was more than 250,000 hectares, but has been cancelled since then.
A rather recent development is land-reclamation of former mangrove areas for housing and recreation estates. In Indonesia this started with the successful reclamation of the Ancol marshlands, on the outskirts of Jakarta, in the early 1970s. After that the Pluit marshlands were reclaimed, and reclamation is still continuing in a westward direction. These land reclamation activities are not confined to the urban parts of Java; the city of Ternate (Maluku) is planning to reclaim 30 hectares of former mangrove area (Kompas, August 9, 1996).

Malaysia

About 20 percent of Malaysia’s total mangrove area has been lost to various development activities in the last two decades. The most significant losses have been in Peninsular Malaysia, where large areas have been converted for agriculture and housing estates, but also to make way for coastal roads. Aquaculture development, however, has been limited. According to the Malaysia Nature Society, Peninsular Malaysia has lost more than one-third of its mangrove forest during the past two decades, a lot of it cleared illegally. Only a relatively small percentage has been lost to aquaculture development (see 5.3), which totalled about 5,100 hectares in 2002.

Myanmar

According to WWF, Myanmar’s mangrove forests are subject to severe degradation because there is no clearly defined land-use system. Mangrove forests have been converted to agriculture and other development activities throughout the country. They have also been felled on a large scale to meet the domestic demand for fuelwood and charcoal production. By 2000, there were about 12,000 hectares of shrimp ponds in former mangrove areas, and there were plans for conversion of another 40,000 hectares for this industry. The Irrawaddy River is one of the most heavily silted rivers in the world, and with a sedimentation rate of 299 million tons per year, and it ranks fifth behind the Yellow, Ganges, Amazon, and Mississippi rivers in silt deposition. The sedimentation rate is getting worse as deforestation and agricultural erosion continue. If the situation between 1977 and 1986 is maintained, it was estimated that all the mangrove forests will disappear in fifty years.

Philippines

According to Aragones et al. (1998) and Aypa and Baconguis, the main causes of decline of mangroves in the Philippines are charcoal and firewood utilisation, followed by the expansion of agricultural areas, fishponds, urban and industrial development, harbor construction, mining and housing projects. According to Janssen and Padilla (1996), however, shrimp pond construction is the main contributing factor, and this is supported by their data (Figure 7). According to Alvarez (1984), the main cause up to the 1980s was a combination of legal and illegal felling.

26 http://www.worldwildlife.org/wildworld/profiles/terrestrial/im/im1404_full.html
27 www.mangroveweb.net/html/country.htm
28 http://www.mangroveweb.net/html/country.htm
Thailand

Some areas of mangrove forest have been reclaimed for urban development and agriculture, but the main driving force behind the decline of the country’s mangroves has been aquaculture (Aksornkoae, 1993). According to Wattayakorn (1998), conversion to aquaculture accounted for 64 percent of mangrove loss between 1960-1990, while coastal development (urbanisation, industrial expansion, infrastructure, ports and harbours) accounted for 24 percent. Thailand’s mangroves have been heavily exploited for shrimp farming since 1975 (see 5.3), and especially during 1985-1990 (Aksornkoae, 1993). Most of the remaining mangroves (143 961 ha) are under concessions designated for charcoal production, and at present they are controlled by 40 mangrove management units. Large areas of mangrove have been logged for charcoal production, to supply the domestic market and markets in Malaysia, Singapore, and Hong Kong (Spalding et al. 1997).

Viet Nam

Before 1945, Viet Nam had an estimated 408 500 hectares of mangrove, which subsequently declined to about 290 000 hectares by 1953. The mangrove forests of the Mekong Delta – especially in Can Gio and the Ca Mau peninsula – were extensively damaged by bombs and defoliants, the most notorious of which was ‘agent orange’30. The major use of herbicides during the war was from 1966-1970, which resulted in the almost total destruction of the delta’s mangroves – a loss of 149 851 hectares of forest – and along with it much of the accompanying biota (Hong, 2003). Even by the early 1990s, satellite images still showed patterns left by the defoliants – broad swathes of vegetation differing in texture and colour. Since the end of the conflicts there have been two major developments: fish and shrimp ponds (see 5.3), and a widespread reforestation drive. By 1999, Viet Nam had an estimated 155 290 hectares of mangrove, of which 96 876 hectares were planted in a number of reforestation programmes (Hong, 2003).

5.3 MANGROVE CONVERSION FOR AQUACULTURE

More than 1.2 million hectares of mangrove in Southeast Asia have been converted to brackish water fishponds (see Table 9), and it is regarded as probably the greatest single cause of mangrove decline in the region. Although not all brackish water fishponds have been converted from mangroves, most have been established in (former) mangrove areas, and in most countries in Southeast Asia the link is very evident. In the Philippines, for example, the loss of mangroves from 1970 to 2000 was almost 180 000 hectares, mirroring the 93 000 hectares of brackish water fishponds that were developed during the same period (Figure 7).

29 http://www.assn.moe.go.th/MANGROVE%20RESOURCE%20MANAGEMENT.htm
30 Agent Orange was a 50/50 mix of two herbicides, 2,4-D (2,4-dichlorophenoxyacetic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid). Of major health concern is the contamination with dioxin.
Figures for brackish water fishponds in Southeast Asia have been compiled (Table 8). Four countries (Thailand, Indonesia, Viet Nam and the Philippines) have each developed well over 200,000 hectares of brackish water fishpond, and more than a million hectares of mangrove have been converted to fishponds over the past three decades alone (Table 8). Other countries such as Myanmar have only minor fishpond industries, but have developed plans for similar large-scale development.

Indonesia

In Indonesia, where these ponds are called *tambak*, a total area of almost 269,000 hectares already existed by 1990 (Directorate General of Fisheries, 1991; see chapter 5). There was a surge in *tambak* development in the 1990s, and by 2001 the total area had increased to 438,010 hectares\(^\text{31}\) (see Figure 8). Previously, these fishponds were established within mangrove forest and trees were retained on pond dikes or on islands in the *tambak*. Later, however, clear-felling was carried out prior to the construction of a *tambak*, leaving these more recent fishponds with a tree cover of almost zero. Many of these *tambak* are exploited on an extensive basis, and shrimp fry are usually obtained from adjacent mangrove areas. In many cases, *tambak* development is carried out to obtain land titles to formerly communally-held areas, or areas of government land.

TABLE 9
Brackish water fishponds in Southeast Asia

<table>
<thead>
<tr>
<th>Country</th>
<th>Area of brackish water fishponds (in ha)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambodia</td>
<td>>800</td>
<td>2000</td>
<td>Smith (2001)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>438 010</td>
<td>2001</td>
<td>www.perikanan-budidaya.gov.id/stistik/tambak/budiday_tambak.htm</td>
</tr>
<tr>
<td></td>
<td>12 000*</td>
<td>2001</td>
<td>www.mangroveweb.net/html/country.htm</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>minor?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>minor</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 000</td>
<td>2000</td>
<td>Hong (2003)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 219 946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* According to www.mangroveweb.net/html/country.htm, there were plans in 2000 for the conversion of a further 40 000 hectares to shrimp ponds.

In 2001, about 34.0 percent of all tambak were located in Java, while a further 28.2 percent were located in Sulawesi, 23.4 percent in Sumatra and 10.8 percent in Kalimantan, which has seen the latest surge in this development. The coastal areas of the northern part of East Kalimantan, around the estuaries of the Kayan, Sesayap and Sebuku rivers, were until recently covered with broad expanses of mangroves. Most of these have however been converted to prawn ponds in the last decade.

The shrimp industry is a highly valuable one, providing the country with very high revenues. In 1992, for example, exports of shrimp from Indonesia were valued at US$680 million, of which 65 percent went to Japan, 16 percent to USA and 9 percent to Singapore (Biro Pusat Statistik, 1993). Shrimp exports increased from 97 228 metric tons in 1989, to 117 847 metric tons in 1998. A second important product from tambak are milkfish Chanos chanos, which are very popular in Sulawesi and Java. In the 1970s milkfish was the principle crop of all tambak (Shang, 1976), but this has been displaced by shrimp since 1979 (Djadjiredja, 1981). Many ponds for prawn production were made by simply deepening former milkfish ponds. Prawn tambak are capital intensive enterprises that need a high energy input, and

their establishment usually requires provision of electricity. In contrast with ordinary *tambak*, which are operated by local farmers, prawn ponds are usually operated by urban entrepreneurs.

The total of 438,010 hectares of *tambak* correspond to more than 10 percent of the former mangrove area, which means that brackish water fish pond development may be responsible for about 25 percent of mangrove loss. In the late 1990s there were plans to expand the total area by a further 320,000 hectares, but this expansion has since been slowed down by the 1997-1998 financial crisis (see Figure 8).

The occurrence of *tambak* does not always mean an absence of mangroves, as is exemplified by the Javan *tambak tumpang sari* fishpond system, whereby a central part of the pond is purposely left shallower and vegetated with mangroves. *Tambak tumpang sari* is a multiple use system involving joint production of mangrove forestry and fishery produce (Sukardjo, 1989); the system is also relatively benign, and can be of importance for maintaining mangrove forest (in some form or other; Sukardjo, 1989) and waterbird populations (Erftemeijer & Djuharsa, 1988). Sometimes vegetation is retained along creeks in fishpond areas, and here the last specimens of mangrove species formerly common in the area can often be found.

![FIGURE 8](image)

*Note: the area of *tambak* in Indonesia almost doubled in the period 1990-2001, in spite of the financial crisis in Southeast Asia in 1997-98, which led to a temporary decrease in investments, including in the fishpond sector.*

Other Southeast Asian countries

Similar developments have occurred in other Southeast Asian countries. Sour (2003) notes that most of the mangroves converted in Cambodia (19,700 hectares in Koh Kong Province alone since the 1990s) have been converted to shrimp ponds. Cambodian mangrove forests near the Thai
border have been cleared by local communities and Thai businessmen, but due to the outbreak of shrimp diseases many of these ponds have now been abandoned.

In Viet Nam’s Ca Mau Province, in the Mekong Delta, the area of mangroves declined from over 200,000 hectares in 1962 to 64,572 in 1999, and according to Tan (2001; cited in Hong, 2004) almost all of this destruction has been due to the shrimp culture. There are also plans for further conversion of at least 13,000 hectares in the near future. According to Benthem et al. (1999), mangrove forests in Ca Mau had declined from about 200,000 hectares in 1943 to 51,492 hectares in 1995, while shrimp farm acreage increased from 3,000 hectares in 1984 to 76,036 hectares in 1995. According to Tabuchi (2003), the acreage of shrimp ponds in Viet Nam increased from 96,060 hectares in 1990 to 249,394 hectares in 1998.

In Myanmar there has also been extensive conversion (Maung, 2003), but unlike in Cambodia, Thailand, the Philippines and Viet Nam, this has been mainly for agriculture and salt production. The shrimp industry in Malaysia has developed rapidly since the early 1980s, but the country is not one of the major producers of cultured marine prawn in the world, as the area under marine prawn culture is about 5,100 hectares (2,627 hectares in 1995). However, the country’s average production (metric tons/ha) is the third highest in the world, after Taiwan and Thailand, and plans for intensification and expansion have been drawn up33.

5.4 MANGROVE RESTORATION

Introduction to mangrove restoration

Mangrove restoration and rehabilitation is becoming increasingly important in Southeast Asia, especially as the effect of loss of mangroves becomes apparent in the form of loss of coastal fisheries productivity, loss of livelihood of coastal communities, and loss of life and property in the wake of storms and tsunamis. Promotion of regeneration of mangroves has been the goal of mangrove foresters in Southeast Asia, especially in Malaysia and Thailand, leading to establishment of nurseries and enrichment planting since the days of Watson (1928).

Restoration or rehabilitation of mangroves is often recommended when the ecosystem has been altered to such an extent that it cannot regenerate naturally. However, the concept has not been analysed or discussed much in mangrove literature, and as a result, those managing mangrove restoration frequently emphasize planting of mangroves as the primary tool in restoration (Lewis & Striever, 2000). Mangrove habitat can regenerate naturally in 15-30 years if: i) the normal tidal hydrology is not disrupted, and ii) the availability of waterborne seeds or seedlings (propagules) of mangroves from adjacent stands is not disrupted or

blocked. If hydology is still (near-)normal, but influx of seeds or seedlings is disrupted, then mangroves may be successfully established by planting (Lewis & Streever, 2000).

In order to achieve successful mangrove restoration, the following five critical steps need to be taken:

a. Understand the autoecology (i.e. individual species ecology) of the mangrove species at the site, in particular the patterns of reproduction, propagule distribution, and successful seedling establishment.

b. Understand the normal hydrologic patterns that control distribution and successful establishment and growth of targeted mangrove species.

c. Assess modifications of the original mangrove environment that currently prevent natural secondary succession.

d. Design the restoration programme to restore appropriate hydrology and, if possible, utilise natural volunteer mangrove propagule recruitment for plant establishment.

e. Only utilise actual planting of propagules, collected seedlings, or cultivated seedlings after determining (through steps a-d) that natural recruitment will not provide the quantity of successfully established seedlings, rate of stabilisation, or rate of growth of saplings established as objectives for restoration (Lewis & Streever, 2000).

In a logged mangrove area in Tembilahan, Indonesia, for example, Soemodihardjo et al. (1996) found that only 10 percent of the area needed replanting, as the rest of the area had seedling densities of more than 2,500 per hectare, more than enough for natural regeneration.

Practical guidelines for restoration

Mangrove reforestation may be carried out as a phase of a forestry system for sustainable management, as part of a coastal restoration project or simply just to restore a mangrove ecosystem. Exploitation of mangrove forests results in gaps and an open canopy. Generally, if these open patches are not too large and a sufficient number of seed-trees are available, regeneration will occur naturally. In controlled cases, species composition can be manipulated by eliminating undesired seed-trees, but generally the number of species around the gaps will be limited. Productivity of individual trees can be enlarged by carrying out a thinning after 2-5 years, if the young stand is very dense. Control of climbers (especially Derris species) and mangrove ferns (*Acrostichum aureum*) is often necessary as they often grow very vigorously in disturbed forests. In some areas *Acanthus ebracteatus* can form a dense cover that prevents regrowth – this was the case in the Tumpat Delta, Kelantan in Peninsular Malaysia, where Sulong et al. (2002) found that 25 percent of the mangrove area was covered by this species.

Reforestation of open mudflats is possible with natural regeneration if a sufficient supply of seeds, brought by the currents, is present. The emerging species will be the common pioneer species that naturally occur in that area. If the supply of seeds is insufficient, or if it is desirable that the
species composition shows more variety, sowing of (additional) seeds is an option. Re-greening programs are sometimes applied in fishpond areas, involving the sowing or planting of mangrove trees along fishpond dikes. Planting of young trees in the fishponds themselves is not successful as they cannot tolerate permanent inundation. Unfortunately, very often the exotic species *Acacia auriculiformis*, which can become a harmful pest, is planted in such projects in Southeast Asia. *Acacia auriculiformis* leaves form a litter layer with allelopathic characteristics, i.e. growth of other plant species is inhibited.

Successful reforestation of fishpond areas requires the restoration of original soil conditions and hydrology. Earthworks need to be carried out to remove the fishpond dikes and close the fishponds. Fishpond dikes are usually constructed with soil derived from pond excavation (Wulffraat, 1996b). Therefore, restoration can be carried out by simply reversing this process, and filling the ponds with the material from the surrounding dikes. This should preferably done by hand, as levelling by bulldozers requires draining until the area is dry enough for entering, and this often has a very negative impact on the soil chemistry.

Planting instead of sowing is a good option if the availability of seeds is limited (difficult to obtain or expensive) and if the success rate of sowing is questionable. The latter can be the case if, for instance, the area is very open, with unfavourable climatic conditions or strong waves, and if seed- (or seedling-)eating crabs are abundant or germination of certain species is difficult. To boost the rate of success, one may opt for establishing a mangrove nursery. The nursery should preferably be established in (former) mangrove areas, where original mangrove soil is available. Young plants can occasionally be flooded by seawater, but this is not necessary. A source of freshwater (not seawater) should be readily available, as young plants need regular watering in the first stage.

Mangrove plants can be grown best in plastic bags (polybags, diameter 20 cm), as this provides the best possibilities for their development, and with the least damage to their (complicated) root system. The bags should be filled with the original mangrove soil. Large seeds or propagules with a high germination success rate could be put directly in the bags, but for all other seeds it is advisable to let them germinate first in special germination trays. These germination trays should be filled with pure sand, with a humus content as low as possible, to avoid development of fungi. Seeds do not need external nutrients for germination. Some seeds need a treatment before being sown. Fruits of *Sonneratia* species, for instance, must be kept in wet sand until they are rotten; then the seeds are removed and let dry for a few hours, before they are sown (Wulffraat, 1996b).

After the seedlings start developing their second pair of leaves, they can be carefully transplanted to polybags. Seedlings of most species prefer some protection from direct sunlight for optimal growth. Seedlings are ready for planting in the field as soon as they have developed a rather strong stem,
usually when they are 30-60 centimetres high. Development of special roots (aerial roots, pneumatophores etc.) starts soon after planting in the field. Planting should preferably take place in a period when low tides occur (partly) during daytime and very high tides occur less often (Wulffraat, 1996b).

As a general rule, mangrove seedlings should be planted with 1 metre spacing, i.e. at a density of 10 000 per hectare. High initial mortality is not unusual, but survival rates of at least 50 percent should be expected. Typical forest density of mature mangroves is about 1 000 trees per hectare, so a 50 percent initial mortality of planted saplings should not lead to an unusually sparse forest (Lewis & Streever, 2000). Indeed, a round of thinning may be required in years 5-10 to prevent the establishment of ‘pole forests’, i.e. dense stands of thin, tall trees, as these may be particularly susceptible to storm damage.

According to Lewis (2001), the cost of mangrove restoration usually varies from US$225 per hectare to US$216 000 per hectare, depending on the location and technique used. Lewis recognises three approaches to restoration: i) planting alone, ii) hydrologic restoration, with or without planting, and iii) excavation or fill, with or without planting. The first type is cheap, costing only US$100-200 per hectare, but is often unsuccessful as hydrological aspects are not appreciated. The second type, when done with proper planning, can also be inexpensive and have a high rate of success. The third type is usually expensive and viable in developed countries only.

Indonesia

Mangrove restoration in Indonesia has been carried out for more than 10 years, generally carried out by NGOs and/or by donor aided projects, but also by the Forestry Department. Areas replanted have been modest, and during the period 1998-2002, for example, a total area of 7 130 hectares were replanted\(^3\), mainly in West and Central Java, North Sulawesi and North Sumatra. Almost 3 000 hectares of damaged mangroves have been rehabilitated in Cilacap on the south coast of Java over the last few years, funded out of a loan of more than US$45 million for conservation and development of this lagoonal system (ADB, 1996; Soegiarto, 2004). Similarly, more than 10 000 hectares of former mangroves have been replanted and restored on the north coast of West Java (Soegiarto, 2004). The latter were part of an aid scheme aimed at reducing flood damage in Jakarta, while at the same time taking local socio-economic conditions into account. Persons living in the vicinity of the replanted areas are allowed to catch or culture fish in the broad channels surrounding the rehabilitated mangroves for their livelihood. Several mangrove replanting projects have been carried out in Kupang Bay, West Timor, by Japanese organisations and NGOs since the early 1990s. *Rhizophora* and *Avicennia* seedlings were used in the north coast of West Java rehabilitation programme, whereas

Rhizophora and Bruguiera species were used in the Cilacap mangrove area. The survival rate of replanting was reported between 60-75 percent.\(^{35}\)

Myanmar

In the Irrawaddy (Ayeyarwady) Delta, mangrove forest plantations were established on a small scale basis from 1980 onwards in the townships of Laputta, Bogalay and Moulmyingyun. Large scale plantations were subsequently started in 1990. Plantations established by the Forestry Department often did not survive, as they were rapidly exploited by local communities. Community forestry mangrove plantations established in former mangrove areas appear to do much better. In Laputta Township, for example, 20 user groups have been formed and by 2003, 3,234 hectares of mangrove plantation had been established. Similarly, in Bogalay some 1,158 hectares, and in Moulmyingyun some 200 hectares of mangrove plantation had been established by 2003, bringing the total in Myanmar to almost 5,000 hectares (Maung, 2003).

Thailand

In Surat Thani, Lewis (2001) describes the restoration of 800 hectares of abandoned shrimp aquaculture ponds back to mangrove forests, being implemented by the Royal Forest Department. Calculation show that these forests can be restored for US$ 200 per hectare for hydrological restoration only (which according to Lewis may be sufficient), or US$700 per hectare if these areas are also replanted. Mangrove restoration projects in Thailand have also been carried out by the private sector and by NGOs. For example, a pilot project working with local communities in the Pattani Bay area and carried out by the Prince of Songkla University and Wetlands International, replanted over 100 hectares of mangroves in areas degraded by logging for charcoal or abandoned after being used for intensive shrimp farming. Besides planting of mangroves, the project provided support for alternative income-generating initiatives, and helped increase environmental awareness and community organisation. Bamroongrugsa (2002) reports that the community forestry programmes in Songkla Lake were not very effective due to the lack of community participation and inadequate knowledge of reforestation techniques. Successful trials were carried out with bagged seedlings and propagules of Rhizophora mucronata and wild seedlings of Sonneratia caseolaris, which were protected from wave action by bamboo fencing.

Viet Nam

In Viet Nam, the primary goal of mangrove regeneration has been the rehabilitation of land devastated during the war (Tabuchi, 2003), although much of the damage to mangroves was apparently caused in the post-war period, by unbridled conversion of partly affected areas for aquaculture. Over a 20-year period (1977-1997), 20,638 hectares of degraded mangrove were rehabilitated in the Mekong Delta region (Tabuchi, 2003). However, at

\(^{35}\)http://landbase.hq.unu.edu/Workshops/OkinawaMarch2000/Papers/Sogiertopapermar2000.htm
the same time much larger areas were converted to brackish water aquaculture, undoing most of the beneficial effects of mangrove restoration (see 5.3). Almost 1,000 hectares were also replanted in the mid-1990s in northern Vietnam at Tiong Lang, Thai Thuy and Tinh Gio using Bruguiera gymnorrhiza, Kandelia candel, Rhizophora stylosa and Sonneratia caseolaris (Kogo & Kogo, 2004).

In the 1990s, about 6,600 hectares of former mangrove areas were restored in the Ca Mau peninsula, in a replanting programme together with five State Forestry/Fisheries Enterprises (Benthem et al., 1999). The main species used in this programme were Rhizophora apiculata and Sonneratia caseolaris, although other species were also used in trials, mainly in the Can Gio Forestry Enterprise. Hong (2004) found in restored areas in Can Gio (south of Ho Chi Minh City, near the Mekong Delta) that the current mangrove flora is similar to that of the early 1960s before widespread destruction with herbicide occurred. However, the individual numbers and distribution of species has changed significantly.

5.5 MANGROVES AND SEA LEVEL RISE

The Intergovernmental Panel on Climate Change (IPCC) forecasts a global sea level rise of 9-88 centimetres by 2100, and these changes are likely to affect mangrove habitats world-wide (Ellison, 2003). The supply of sediment at a particular locality will determine the ability of mangroves to keep up with sea level rise, and mangroves on low relief islands without rivers are likely to be most affected. Historically, the retreat of mangrove zones has also been demonstrated along the margins of mainland areas, for example, on the extensive coastal swamps of southern Papua (Ellison, 2003).

Mean sea levels in Southeast Asia are rising, and in Indonesia, for example, it is estimated to amount from 4.8 to more than 9 millimetres per year (BAPPENAS, 2004). The predicted sea level rise of 60 centimetres over the coming decades could lead to the destruction or severe degradation of 4.3 million hectares of vital coastal areas in Indonesia (BAPPENAS, 2004), including an estimated one million hectares of mangroves. This sea level rise may also affect most of the remaining mangroves in Indonesia, and likely also in the rest of Southeast Asia. Adaptation of mangrove vegetation to rising sea levels and a retreating coastline would only be possible in area where a flat landscape exists behind the mangroves, and where the back mangroves and the hinterland have not been converted to other land use types.
CHAPTER 6

IMPORTANT AND PROTECTED MANGROVE AREAS IN SOUTHEAST ASIA

6.1 MANGROVES IN THE PROTECTED AREA SYSTEM

Out of the total mangrove area remaining in Southeast Asia, almost 20 percent was incorporated into the region’s protected area system by 2003 (Table 10). This is a large percentage, but one needs to be cautious as much of this consists of vast areas that are scarcely protected in the field.

<table>
<thead>
<tr>
<th>Country</th>
<th>Protected Mangroves (ha)</th>
<th>% remaining mangroves in PA system</th>
<th>same, according to WRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunei Darussalam</td>
<td>7 533</td>
<td>41</td>
<td>4.7</td>
</tr>
<tr>
<td>Cambodia</td>
<td>31 100 *</td>
<td>48.8</td>
<td>66</td>
</tr>
<tr>
<td>Indonesia</td>
<td>783 400 *</td>
<td>26.7</td>
<td>33</td>
</tr>
<tr>
<td>Malaysia</td>
<td>10 900 *</td>
<td>1.9</td>
<td>7</td>
</tr>
<tr>
<td>Myanmar</td>
<td>12 500 **</td>
<td>2.9</td>
<td>0</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>106 300 *</td>
<td>24.6</td>
<td>23</td>
</tr>
<tr>
<td>Philippines***</td>
<td>347 ***</td>
<td>unknown</td>
<td>0</td>
</tr>
<tr>
<td>Singapore</td>
<td>45</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Thailand</td>
<td>25 600 *</td>
<td>10.5</td>
<td>5</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>1 800 *</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>43 115 #</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>959 700</td>
<td>19.6</td>
<td></td>
</tr>
</tbody>
</table>

Sources:

** http://www.worldwildlife.org/wildworld/profiles/terrestrial/im/im1404_full.html
*** Figures for the Philippines are generally lacking; earthtrends.wri lists protected mangroves as ‘zero’, while WCMC (http://www.wcmc.org.uk/marine/data/coral_mangrove/marine.maps.main.html) lists more than 120 marine protected areas – but data regarding mangrove cover is totally lacking. The National Biodiversity Strategy and Action Plan for the Philippines also lists at least 13 Protected Areas with mangroves, but data on mangrove cover is provided for two sites only, Bongsanglay Mangrove Reserve (164 ha) and Pujada Bay Protected Landscape and Seascape (183 ha) (pers. comm. Jim Berdach, 4 September 2004).

Tuan et al. (2001)
Spalding et al. (1997)
6.2 IMPORTANT MANGROVE AREAS

Southeast Asia’s most important mangrove areas are briefly described below for each country, along with protected areas and locations designated as Ramsar sites. Ramsar site descriptions have been adapted from the Ramsar Database, at www.ramsar.org.

6.2.1 BRUNEI DARUSSALAM

Brunei’s mangroves are found in the estuaries of its four main river systems: the Temburong, Belait, Tutong and Brunei-Muara. However, the status of these mangroves remains unclear. Forest reserves are under the jurisdiction of the Forestry Department, but mangrove outside these areas are in effect unprotected since the areas are simply classified as “State Land”. The Integrated Management Plan for the Coastal Zone of Brunei recommended that 99 percent of the mangroves be protected. The plan proposed conversion of only 200 hectare, while 4,141 hectares were to be protected in national parks and 6,545 hectares were to be maintained for coastal protection. However, this plan was reportedly never implemented (in full) and mangrove clearance continues. According to Iremonger et al. (1997), 800 hectares of mangrove are protected in Brunei Darussalam. However, according to Anderson & Marsden (1984) 7,533 hectares of mangroves in Brunei are located in the Selirong and Labu Forest Reserve, of which 2,566 hectares is located in the Selirong Recreational Reserve. Charles (2002) states that the status of Selirong was altered from forest reserve to conservation reserve to recreational reserve, and that it is now officially called Pulau Selirong Forest Recreational Park (pers. comm. Anthony Sebastian, 3 September 2004).

6.2.2 CAMBODIA

Mangroves are found scattered along much of Cambodia’s coastline, but large and dense forests are found in the main estuarine areas of Peam Krasoap, Andong Tuk, Sre Ambel, Chak Sre Cham and the delta of Prek Kampot. Of the 85,100 hectares area reportedly occurring in 1992-1993, about 63,700 hectares was located in Koh Kong province alone, with 13,500 hectares in Sihanoukville and 7,900 hectares in both Kampot province and Kep Municipality (Sour, 2003).

Mangroves occur in three protected areas in Cambodia (Sour, 2003), namely Ream National Park, Peam Krasoap Wildlife Sanctuary and Batum Sakor National Park. Details on which acreage of mangrove is protected, however, is unavailable. Preah Sihanouk (Ream) National Park (21,000 ha) is covered by secondary, evergreen lowland forest, along with ‘some mangrove forest’. Batum Sakor National Park (171,250 ha) has the only

36 http://tracc.org.my/Borneoast/MANGROVES/MANGROVE_LOSS.html
coastal *Dacrydium-Podocarpus* swamp forest in Cambodia. Peam Krasoap Wildlife Sanctuary (23,750 ha) is reportedly the most important mangrove forest in Cambodia and possibly the most extensive remaining within the Gulf of Thailand. Within the Peam Krasoap Wildlife Sanctuary lies the Koh Kapik Ramsar Site, described below.

Koh Kapik and Associated Islets Wildlife Sanctuary. This area was declared a Ramsar Site (No. 998) under the Ramsar Convention\(^\text{37}\) on 23 June 1999. The total area is 12,000 hectares, and it is located at 11º28’N 103º04’E. It consists of alluvial islands immediately off the mainland of Koh Kong Province. Two major rivers flowing into the area bring a freshwater influence and create sand flats in some places. The site is mainly classified into two wetland types (Estuarine waters, and Intertidal mud, sand, or saltflats). The remaining relatively intact mangroves are said to have assumed increased importance in providing nursery and feeding grounds for various invertebrate species since the substantial removal of mangrove forests in nearby Thailand. The area of the site is state-owned and lies within the Peam Krasoap Wildlife Sanctuary, established in 1993.

6.2.3 INDONESIA

Indonesia reportedly had a total of 30 marine conservation areas in 1995 with a combined area of 2.8 million hectares (Moosa *et al.*, 1996).\(^\text{38}\) This has grown substantially since then, and statistics of the Forestry Department indicate that this had increased to 4.63 million hectares by 2002\(^\text{39}\). While some of these protected areas have substantial tracts of mangrove forest, it is unclear which area of mangrove forest this network protects. According to RePPProT (1990; cited by Ministry of Forestry & FAO, 1990) a total of 603,000 hectares of mangroves were gazetted as Conservation Area or Nature Reserve by 1989, and 633,000 hectares as Protection Forest\(^\text{40}\). In 1995 there were 41 officially protected (i.e. gazetted) areas throughout Indonesia that harbour at least some mangrove habitat, and the total area of ‘protected’ mangrove officially stood at 551,363 hectares.

Since then, the mangroves of Sembilang National Park in South Sumatra have also been gazetted, bringing the total to well over 600,000 hectares. This is equivalent to about one quarter of Indonesia’s remaining mangroves and about 15 percent of Indonesia’s former mangrove area. The figures are not consistent, however, and according to other sources within the Ministry of Forestry an area of 738,175 hectares of mangrove was protected by law by 1993, which is equivalent to about 17 percent of the original mangrove area in Indonesia (Abdullah *et al.*, 1993; *Kompas*: May 5, 1993).

\(^{37}\)Convention on Wetlands of International Importance, especially for Waterfowl; convened in Ramsar, Iran, in 1971.

\(^{38}\)The Development Plan of Marine Conservation in Indonesia lists 251 marine conservation areas, including 20 marine national parks, with a total area of 6.5 million hectares (Moosa *et al.*, 1996).

\(^{40}\)This does not include figures for Java, which were not included in the RePPProT study; however, the total mangrove area in Java is not very significant.
There are two premier mangrove reserves in Indonesia, namely Sembilang National Park in South Sumatra and Bintuni Bay Strict Nature Reserve in Papua. Both of these are described in more detail below. Other sites are briefly described in the island (group) description.

Sumatra

Apart from large stands of mangrove in Sembilang National Park, reasonable mangrove areas are included in Karang Gading Langkat Timur Laut Wildlife Reserve (North Sumatra) and Hutan Bakau Pantai Timur Laut Wildlife Reserve (Jambi). The former largely consists of secondary forest and abandoned brackish water fishponds, while the second forms a narrow green-belt along much of the coast of Jambi Province. However, both are very important in maintaining large populations of (migratory) waders, storks and ibises (Giesen, 1994). There are a few small islands with protected mangrove (e.g. Pulau Berkeh and Pulau Burung, Riau), but once again these are of importance to water birds, and have not been set aside as representative examples of mangrove habitat. Small remnants of mangrove forest remain in Way Kambas National Park (Lampung Province), where they are mainly located along tidal creeks, with some pioneer mangrove flats near the mouth of the Wako River; however, the mangrove belt lining tidal creeks is often very narrow.

Sembilang National Park. The 200,000 hectares Sembilang National Park (SNP) was gazetted in 2003 and is located in the delta of the Sembilang-Banyumasin-Musi rivers. It includes some of the most extensive mangroves in all of Southeast Asia, along with significant areas of mudflat, freshwater swamp forest and peat swamp forest. In combination with the adjacent Berbak National Park in Jambi Province, the combined wetland ecosystem covers more than 350,000 hectares of peatswamp forest, freshwater swamp forest and mangroves in Jambi and South Sumatra provinces. Along the Sembilang coast, there is an up to 15-18 kilometre wide belt of mangrove forests and mudflats, which forms an important wintering territory for as much as 150,000 migratory birds, and a spawning and nursery site for fish and shrimps. The whole area is considered as one of the most important water bird areas of the whole Indo-Malayan region. About 35 globally endangered species occur inside the Park’s borders, including Sumatran tiger *Panthera tigris*, clouded leopard *Neofelis nebulosa*, sun bear *Helarctos malayanus*, milky stork *Mycteria cinerea*, lesser adjutant *Leptoptilos javanicus* and Asian dowitcher *Limnodromus semipalmatus*. The area also includes a large colony of the endangered milky stork *Mycteria cinerea*41. The SNP mangroves are the second largest contiguous mangrove area in Southeast Asia, after those in Bintuni Bay, Papua.

Kalimantan

In Kalimantan, perhaps more than 15,000 hectares of protected mangroves occurred in Gunung Palung National Park and Muara Kendawangan

41 Taken from leaflet on the SNP, produced by the Indonesian Forestry Department, Local Government of South Sumatra, and Wetlands International (undated).
Wildlife Reserve (both in West Kalimantan) and Tanjung Puting National Park (Central Kalimantan). There have, however been unconfirmed reports of loss of mangroves in these reserves due to encroachment and illegal logging. Remaining ‘protected’ mangroves elsewhere in Kalimantan are either small and largely disturbed (Pulau Kaget, Pulau Kembang both South Kalimantan), or are being degazetted because of widespread logging (Kutai National Park in East Kalimantan, Pleihari Tanah Laut, South Kalimantan). All remaining large areas of mangroves in Kalimantan, in the Kapuas delta in West Kalimantan, and in the deltas of the Mahakam in East Kalimantan, either have been logged, or are currently undergoing logging.

Java

Mainland Java has lost more than 90 percent of its mangroves and little of this habitat is included in the current protected area system. The largest gazetted ‘mangrove’ area in Java (reportedly of 1 700 ha; Forestry Statistics, 2002) is located on Pulau Penaitan, an island off the western coast of West Java. However, this is clearly based on mis-identification of the well-developed *Terminalia catappa*-Barringtonia asiatica beach forests, which are very common on Penaitan. Hoogerwerf’s (1951) survey map shows a total area of 250-300 hectares of mangrove, with about two-thirds located around Legon Lentah. During surveys in August 1996, mangroves were found in the vicinity of Legon Sabini only, and this was estimated as being less than 100 hectares. Other important areas are Pulau Dua and Pulau Rambut, two tiny islands off the north coast of West Java. These islands are of primary importance as breeding and roosting sites for many species of water bird (Silvius et al., 1987). About 1 000 hectares of mangrove occur on the northern and northeastern shores of Ujung Kulon National Park (Hommel, 1987).

The Segara Anakan Lagoon, located on the south coast of Central Java near Cilacap, consists of a central lagoon surrounded by mangrove swamps and recently accreted intertidal land that has partially been converted into rice fields. The central lagoon has remaining surface area of about 1 700 hectares, and there are about 12 230 hectares of mangrove forests of which only about 5 600 hectares remains in slightly to moderately disturbed conditions (Abubakar et al., 2001). The lagoon is one of the few remaining wetland areas in the region and offers roosting and nesting places for resident and migratory birds, including the endangered milky stork, *Mycteria cinerea* (pers. comm. R. Dudley, June 2000). Mangroves are dominated by Avicennia, Rhizophora and Sonneratia, and especially *Sonneratia alba*. This area was proposed as a reserve in the early 1980s, but a combination of conservation and sustainable use is now considered the best option because of heavy development pressures (White et al., 1989).

Sulawesi

A total of about 7 000 hectares of mangrove have been officially gazetted in Sulawesi, which is about 8 percent of the mangrove area still occurring in 1990, or about 2.5 percent of the island’s former mangrove area. However, little remains of these officially gazetted mangroves. Surveys in South
(Giesen, et al., 1991) and Southeast Sulawesi in 1989-90 revealed that virtually all of the 2,000 hectares of the Lampuko-Mampie reserve (South Sulawesi), and most of the 3,000 hectares of mangroves of Watumohae Hunting Reserve (Southeast Sulawesi), have been felled and converted to brackish water fish ponds. Mangroves of northern Bone Bay (23,000 ha) and the Lariang-Lumu plains (7,800 ha), both in South Sulawesi, were proposed for conservation, for example, in a proposed reserve north of the Lariang River (Giesen et al., 1991) that would include 5,400 hectares of mangrove. However, both areas have since largely been converted for ponds, roads and agriculture.

Lesser Sundas

The mangroves of the Lesser Sunda islands (Nusa Tenggara) are probably well represented by the 3,000 hectares currently included in the Protected Area System, in Komodo National Park and Pulau Menipo Wildlife Reserve. Mangroves have never been that extensive in this part of Indonesia and the current remaining area of about 25,000 hectares represents about two-thirds of the former area. On Sumba Island, Indonesia, mangroves are often the only forest in an otherwise savanna-like landscape (Zieren et al., 1990).

Moluccas

About 14,000 hectares of mangroves have been gazetted in the Moluccas, in Manusela National Park (Ceram, 3,000 ha), Yamdena Nature Reserve (Tanimbar, 10,000 ha) and Pulau Baun Wildlife Reserve (Aru islands, 1,000 ha). This would seem a reasonable representation of this habitat, although for biodiversity conservation, it would be best to gazette further mangrove areas both in the Kei and Aru Islands.

Papua

Large mangrove areas, totalling perhaps as much as 600,000 hectares, have been gazetted in Papua Province, in the Lorentz National Park (total area 300,000 ha), on Pulau Kimaam (about 165,000 ha) in Wasur National Park (6,180 ha) and at Bintuni Bay Nature Reserve (120,000 ha). To date, however, only Wasur and Bintuni are actively managed, and both Kimaam and Lorentz are ‘paper reserves’, protected by their remoteness alone. Pulau Dolok (Kimaam) lies off the southwestern coast of Papua, and is separated from the mainland by a narrow channel. Pulau Kimaam was gazetted in July 1978 with a total area of 600,000 hectares, of which 165,000 hectares reportedly consists of mangrove forest dominated by Avicennia, Sonneratia and Rhizophora species. The island is an internationally important site for migratory waterfowl, with species such as Mongolian plover Charadrius mongolus, large sand plover Charadrius leschenaultii, whimbrel Numenius pharus, red-necked stint Calidris ruficollis and eastern curlew Numenius madagascarensis all recorded in large numbers.

Teluk Bintuni Nature Reserve: Bintuni Bay or Teluk Bintuni comprises a 450,000 hectares bay located on the western side of the Bird’s Head peninsula of Papua. Bintuni Bay consists of a large sheltered bay, bordered by intertidal mudflats, sandbars and extensive mangrove areas. Mangroves
extend over 440,000 hectares, representing perhaps 25 percent of Indonesia’s remaining mangrove area, and making this the second largest mangrove area in Asia (after the Sundarbans in Bangladesh-India). The mangrove belt at Bintuni attains a width of more than 30 kilometres at some points and stands of very mature mangrove occur. The mangrove forest is backed at many places by a five kilometre-wide Nypa palm zone, which is locally followed by freshwater swamp forests. Tropical lowland rainforest continues inland from the freshwater swamp zone.

Mangroves of the northern part of Bintuni Bay have been designated ‘protection forest’ (hutan lindung), while a 120,000 hectares Strict Nature Reserve has been established at the far eastern part of the bay and is largely untouched. Most of the southern and southeastern part of the bay is included in a mangrove logging concession held by PT. Bintuni Utama MWI. Erftemeijer *et al.* (1989) identified four main mangrove associations: a) pioneering *Avicennia* forest, b) maturing *Avicennia-Sonneratia* forest, c) *Rhizophora-Bruguiera* forests, and d) *Nypa* forest. The pioneering *Avicennia* forest is dominated by *Avicennia marina*, and locally also by *Avicennia eucalyptifolia*, together with *Sonneratia alba* and *Aegiceras corniculatum*. The maturing *Avicennia-Sonneratia* forest is dominated by *Avicennia marina* and *Sonneratia caseolaris*, together with *Aegiceras corniculatum*, *Avicennia officinalis*, *Nypa fruticans*, *Rhizophora mucronata* and *Xylocarpus granatum*. *Rhizophora-Bruguiera* forests are dominated by *Rhizophora mucronata*, *R. apiculata*, *R. stylosa*, *Bruguiera parvifolia* and *B. gymnorrhiza*, along with *Ceriops tagal*, *Avicennia alba*, *Aegiceras corniculatum* and *Xylocarpus moluccensis*. *Nypa fruticans* forests usually occur as dense stands of this palm, together with an occasional *Xylocarpus granatum* or *Sonneratia caseolaris*.

6.2.4 MALAYSIA

The total area of mangrove forest gazetted in reserves and protected areas in Malaysia is unclear. Information dating from the mid-1990s suggest that not more than about 5-10 percent of the country’s mangroves were incorporated in protected areas. According to statistics of 1993, there were 5,670 hectares of gazetted mangrove conservation areas in Malaysia. Also, the Malaysian Cabinet, in late 1996, directed that all mangrove swamps within 400 metres of the coastline be left untouched to check escalating erosion.

According to other reports (Wetlands International - Asia Pacific, 1996), 446,000 hectares of Malaysian mangrove have been gazetted in forest reserves and protected areas, of which the vast majority is found in forest reserves in Sabah (316,460 hectares or 71 percent of the total). Sarawak has much larger mangrove areas than Peninsular Malaysia, but most of this (131,000 out of 168,000 hectares in 1993) is not protected in forest reserves.

42 http://nature.org/wherewework/asiapacific/indonesia/work/art13456.html
Of the 92,000 hectares of mangrove forest reserves in Peninsular Malaysia, almost half (>40,000 hectares or 44%) is located in the Matang Mangrove Forest Reserve in Perak. However, it should be noted that mangroves in forest reserves are not protected, but are as a rule used as production forest and logged on a 20-30 year cycle. Forest reserves have also been converted for other uses (see Sungai Pulai, below).

According to TRACC, it has been suggested that a minimum of 5 percent of mangroves (30,000 ha) in Malaysia should be conserved as National Parks or other forms of protected areas. Progress towards this aim has been made, especially in Sarawak where approximately 2,500 hectares of mangroves are formally protected within various national parks and another 10,000 hectares are in the process of being gazetted.

More than 100 marine protected areas are listed in Malaysia by WCMC, but the extent to which mangroves occur within these reserves is not recorded, either in this list or in the Malaysia Wetland Directory (MCF, 1987), as both record mangrove presence and total reserve area only. According to the World Resources Institute, less than 12,000 hectares are included in the country’s Protected Area system. A few of the more well known ones are listed here, including the accessible Kuala Selagor Nature Park in Peninsular Malaysia, and three Malaysian Ramsar Sites. The 40,000 hectares Matang Forest Reserve is primarily a production forest (see 4.3), but is also important from the point of biodiversity.

Kuala Selangor Nature Park: The Park is situated at the mouth of Selangor River, in the state of Selangor, Peninsular Malaysia, some 75 kilometres from Kuala Lumpur. It extends over approximately 240 hectares of mangroves and mudflats and is the home to various wildlife such as smooth otters *Lutra perspicillata* and monkeys (long-tailed macaques *Macaca fascicularis* and silvered leaf monkeys *Trachypithecus aurata*). More than 140 species of birds have been sighted, including Nordman’s greenshank *Tringa guttifer* and the mangrove pitta *Pitta megarhyncha*. The park is also involved in a milky stork *Mycteria cinerea* reintroducitory programme. Fireflies inhabit the nearby *Sonneratia* trees lining the Selangor River near Kampong Kuatan, and form a night time attraction for tourists.

Pulau Kukup State Park: This area was declared a Ramsar Site (No. 1287) under the Ramsar Convention on 31 January 2003. The total area is 647 hectares, and it is located in Johore State at 01°19'N 103°25'E. It consists of an uninhabited mangrove island located 1 kilometre from the southwestern tip of the Malaysian peninsula – one of the few intact sites of this type left in Southeast Asia. Pulau Kukup has been identified by BirdLife International as one of the Important Bird Areas (IBA) for Malaysia. Pulau Kukup is important for flood control, physical protection (e.g. as a wind-
breaker), and shoreline stabilization. It also supports an important shellfish and cage culture industry, and has significant potential for ecotourism.

Sungai Pulai Forest Reserve: This area was declared a Ramsar Site (No. 1288) under the Ramsar Convention on 31 January 2003. The total area is 9,126 hectares, and it is located in Johore State at 01°23’N 103°32’E. It is the largest riverine mangrove system in Johore State, located at the estuary of the Pulai River. With its associated seagrass beds, intertidal mudflats and inland freshwater riverine forest the site represents one of the best examples of a lowland tropical river basin, supporting a rich biodiversity dependent on mangrove. It is home for the uncommon mangrove tree *Avicennia lanata*. Although this area has been demarcated as a reserve forest, parts have lately been given way to conversion for land related development programs such as development of new port, aquaculture, charcoal-making industry as well as residential area for supporting the newly developed industries (Hashim & Kadir, 1999).

Tanjung Piai State Park: This area was declared a Ramsar Site (No. 1289) under the Ramsar Convention on 31 January 2003. The total area is 526 hectares, and it is located in Johore State at 01°16’N 103°31’E. The site consists of coastal mangroves and intertidal mudflats located at the southernmost tip of continental Asia, especially important for protection from sea-water intrusion and coastal erosion. Tanjung Piai supports many threatened and vulnerable wetland-dependent species, classified as vulnerable or near threatened listed in the IUCN Red Book 2000. Waters of the four main rivers traversing Tanjung Piai are abundant with commercially valuable species. The site enjoys the status of a State Park for Ecotourism.

Klias Wetland – Sabah. Located about 120 kilometres from Kota Kinabalu on the Klias Peninsula are the Klias Wetlands, extending over an area of about 8,700 hectares (DWNP, 1987). This Mangrove Forest Reserve is reportedly rich with river wildlife and birds, including proboscis monkeys, long-tailed macaques, silver leaf monkeys and a wide variety of birds.

Cowie Bay – Sabah. Extending from the Kalimantan border up to Tawau in the north, with mangroves covering an area of 39,018 hectares and gazetted as Tawau Mangrove Forest Reserve (DWNP, 1987). Sabah’s oldest and largest prawn farm is located in this area. The mangrove are also exploited commercially. The forest is composed of *Rhizophora apiculata*, *R. mucronata*, *Bruguiera parviflora* and *Ceriops tagal* with an intermixture of *Excoecaria* and *Avicennia*.

Sepilok, Sandakan Bay, Sabah. The mangrove forest of the Sandakan Bay area covers approximately 45,000 hectares, and is regarded as the largest area of accessible mangrove in Sabah. Together with the adjacent Tambisan coast

to the southeast, this extends over a total area of about 150,000 hectares (DWNP, 1987), which includes freshwater swamps on the landward side of the mangrove. The area is important for Storm’s stork Ciconia stormi, lesser adjutant Leptoptilos javanicus, proboscis monkey Nasalis larvatus, silvered leaf monkey Trachypithecus aurata and Bornean gibbon Hylobates muelleri.

Pulau Bruit, Sarawak. Extending over an area of 40,000 hectares, this low-lying island has extensive mudflats and mangrove forests on the northern and western shores. The northern area of 1,776 hectares around Tanjong Sirik has been proposed as a national park. A visitor during migration may record 10,000 waders, 14,000 terns, 500 egrets and 20 lesser adjutants, although numbers, especially of waders, have fallen recently.

Rajang delta, Sarawak. An extensive delta system is located at the mouth of the Batang Rajang, the largest river in Malaysia. The central delta area is a complex mangrove and Nypa system, with further accreting mangroves and extensive mudflats at the northern end of Pulau Bruit. A substantial part of the Rajang mangroves are clear-felled in rotation for wood-chips. The three most important parts of the delta are the Matu-Daro and Sibu Swamp Forests, Pulau Bruit and the Rajang Mangrove Forest. The Rajang Delta is particularly important for herons and egrets, migratory shorebirds and terns; over 20,000 shorebirds of at least 25 species and 14,000 terns of seven species utilise the area at certain times. The most abundant shorebirds are common redshank Tringa totanus, Terek’s sandpiper Xenus cinereus and great sand plover Charadrius leschenaultii. Several uncommon species such as Swinhoe’s egret (or Chinese egret) Egretta eulophotes, Asian dowitcher Limnodromus semipalmatus and Far-Eastern curlew Numenius madagascariensis have been reported at Pulau Bruit. Reptiles include the river monitor Varanus salvator and estuarine crocodile Crocodylus porosus. The latter breeds in the delta, but despite the abundance of suitable habitat, is now rare, presumably because of the harvesting of live hatchlings. Mammals include proboscis monkey Nasalis larvatus, silvered leaf monkey Trachypithecus aurata (Presbytis cristata), smooth otter Lutra sumatranra, leopard cat Felis bengalensis and wild boar Sus barbatus.

6.2.5 MYANMAR

According to Spalding et al. (1997) the largest mangrove areas are in the Irrawaddy (Ayeyarwady) Delta, but these were already heavily degraded in the early 1980s and the best mangroves were thought to occur in the northern state of Rakhine and in Tanintharyi, near the border with Thailand in the south. Maung (2003) reports that the most important mangrove areas in Myanmar still occur in the Irrawaddy Delta, but that other important mangrove areas also occur in coastal areas of Rakhine State and Tanintharyi Division.

‘Protected’ mangroves extend over 12,500 hectares and occur in three (proposed) protected areas in Myanmar\(^5\), namely Letkokkon PA (400 ha), Kadonlay Kyun (100 ha) and Meinmahla Kyun (12,000 ha). All three sites occur in the Irrawaddy Delta, and are described in the *Directory of Asian Wetlands* (Scott, 1989), from which the following descriptions have been adapted. Meinmahla Kyun is an estuarine island located in the mouth of the Bogale and Kadonkani rivers, and is almost entirely comprised of sediments from the Bogale River. The island is almost entirely covered with mangrove forest, but has been logged in the past, and much of the forest is degraded. Meinmahla was designated a Reserved Forest since 1895, a status that has been proposed for upgrading to that of Wildlife Reserve.

Kadonlay Kyun is a small, flat, lowlying island of 260 hectares, and like Meinmahla it has been formed out of deposits from the Bogale River. About 100 hectares consists of (degraded) mangrove, while the rest primarily consists of grassland. The island has been proposed as a wildlife sanctuary, as it is an important breeding site for sea turtles, especially olive Ridleys *Lepidochelys olivacea*, loggerhead *Caretta caretta*, green turtle *Chelonia mydas* and leatherback *Dermochelys coriacea*.

Letkokkon consists of a group is small islands and mudflats formed by deposits from the China Bakir River, extending over a total area of about 388 hectares. How much of this consists of mangrove is unclear: while the World Wildlife Fund website reports of 400 hectares of mangrove, Scott (1989) reports that the principal vegetation consists of ‘extensive reedbeds, with low scrub colonising areas above the high tide mark’.

Few recent reports exist on these areas, other than that the mangroves are generally ‘in a sorry state’.

6.2.6 PAPUA NEW GUINEA

Papua New Guinea mangroves are found along extensive lengths of the country’s coastline. There are several disjunct sections along the north coast, including adjacent to the mouths of the Sepik and Ramu rivers, and Dyke Ackland Bay and Ward Hunt Strait. The longest and deepest stretches of mangroves are found on the south side of the island, especially at the mouths of the Purari, Kikori, Fly, Northwest, and Otakwa rivers. On the Pacific (northern) coast of mainland Papua and the smaller islands (New Britain, New Ireland) many smaller mangroves areas occur on less exposed coast. These mangroves, such as found along the northern coast of West New Britain Province (see Figure 4B), are often rich in plant species, with several mangrove species that are endemic to the eastern part of Southeast Asia, such as *Cerbera floribunda* and *Myristica hollrungii*.

Although 24 percent of the country’s mangroves are listed as ‘protected’, it is generally acknowledged that PNG lacks a protected area system that is representative of its diverse habitats, and urgently requires specific conservation interventions52.

Tonda Wildlife Management Area: Tonda was declared a Ramsar Site (No. 591) under the Ramsar Convention on 16th March 1993. The total area is 590,000 hectares, and it is located in Western Province at 08º45’S 141º23’E. It is also a Shorebird Network Site. It mainly consists of flat, coastal plains subject to seasonal, freshwater flooding. The site, bordering Indonesia, includes tidal river reaches, mangrove areas, grassland, and savannah woodlands. It is an important wetland for over 250 species of resident and migratory waterbirds and as a refuge during drought. Most of the world population of little curlew *Numenius minutus* stage on the plains during migration. Tonda Wildlife Management Area has been declared a Wildlife Management Area under the Fauna Protection and Control Act. The Act allows the local Management Area Committees (consisting of local landowners) to set rules regulating the taking of various species and restricting access to certain areas. In the case of Tonda, rules allow for the issue of licences for the taking of certain species, restrict the use of shotguns, regulate the size and sex of fauna taken, and determine the areas where hunting is allowed.

6.2.7 PHILIPPINES

The *Directory of Asian Wetlands* (Scott, 1989) lists 63 wetland sites, of which 30 had mangrove habitats with an unspecified area. However, most of this information is outdated, and given the rate of mangrove conversion since the 1980s, many of these may no longer exist. According to Spalding *et al.* (1997), the largest remaining areas are located to the south of the archipelago, on Mindanao and Samar, and also on Palawan in the west.

The Philippines has more than 120 marine reserves (see WRI website53), although it is unknown how extensive mangroves are in this system. The National Biodiversity Strategy and Action Plan for the Philippines lists at least 13 Protected Areas that include mangrove habitat, but data on mangrove area is provided for two sites only, Bongsanglay Mangrove Reserve (164 ha) and Pujada Bay Protected Landscape and Seascape (183 ha; Jim Berdach, pers. comm., 4 September 2004). The Philippines has four Ramsar Sites, of which two are freshwater and only one includes protected mangrove habitat, namely Olango Island.

Olango Island Wildlife Sanctuary: The area was declared a Ramsar Site (No. 656) under the Ramsar Convention on 1 July 1994. The total area is 5,800 hectares, and it is located in Cebu at 10º16’N 124º03’E; it is also a Shorebird Network Site. It mainly consists of a low-lying island surrounded by

52 http://www.solutions-site.org/artman/publish/article_44.shtml
53 See http://www.wcmc.org.uk/marine/data/coral_mangrove/marine.maps.main.html
extensive intertidal sandflats, mangroves, seagrass beds, coral reefs and islets. It is one of the most important areas in the country for significant numbers of migratory waterbirds, providing habitat for staging, wintering, roosting and feeding birds.

6.2.8 SINGAPORE

Mangrove forest cover has been reduced from an estimated 13 percent of Singapore Island in the 1820s to only 0.5 percent of the total land area at present. Mangrove forest is now found only in small patches with the largest areas in the northern part of the main island and on Pulau Tekong, Pulau Ubin and Pulau Semakau. Singapore has a remaining mangrove area of about 500 hectares, and of this about 9 percent are conserved in two protected areas:

- **Sungai Buloh Nature Park**, which extends over 87 hectares including visitor's area, trails, ponds and about 40 hectares of mangrove; and
- **Pasir Ris Nature Park**, which extends over about 70 hectares and includes about 5 hectares of mangrove.

In addition there are interesting remnants of mangrove at Mandai Besar/Kechil, Lim Chu Kang, Kranji, Sungei Pandan, Sungei Punggol, Pulau Tekong and Pulau Ubin.

6.2.9 THAILAND

According to WRI, about 25,000 hectares or 15 percent of the remaining mangroves are protected in Thailand. Both figures have changed considerably over the past years and are not very reliable. According to the 2002 statistics of the Royal Forest Department (figures are from 2000), the provinces with the largest remaining mangrove areas are Phang Nga (45,500 ha), Satun (35,300 ha), Krabi (35,000 ha), Trang (33,500 ha) and Ranong (25,300 ha). These are all along the west coast of peninsular Thailand, the area affected by the recent (26 December 2004) devastating tsunami. Some of the most important mangrove sites are designated as Ramsar sites and described below.

Gulf of Thailand: This is a large area of intertidal mudflats around the shores of a huge, shallow bay forming the estuary of four major rivers, the Mae Klong, Tachin, Chao Phraya and Bang Pakong. The area formerly supported extensive mangroves. While the largest areas have now been cleared for aquaculture and salt pans, much secondary mangrove still remains and is usually found as a narrow (10-100m) fringe along the seaward margins. Extensive areas of low scrub are found in the brackish marshes along the landward edge. In places, the open shrimp ponds and salt pans extend two to three kilometres inland and, together with the offshore mudflats, provide an important feeding and roosting area for...
many thousands of shorebirds. The human population density is extremely high, and there is an increasing amount of heavy industry, especially extending eastwards from Bangkok along the lower reaches of the Chao Phraya River. Mangroves are usually dominated by Rhizophora species, with Nypa fruticans along banks and in the Understorey. Extensive degraded areas are dominated by the mangrove fern Acrostichum aureum. Large areas of “back mangrove” are dominated by scrub formations grading into Typha marsh.

Don Hoi Lot: Don Hoi was declared a Ramsar Site (No. 1099) under the Ramsar Convention on 5 July 2001. The total area is 87,500 hectares, and it is located in Samut Songkhram Province at 13°21'N 099°59'E. It forms a rare type of natural wetland for Thailand, comprising sandbars at the mouth of the Mae Klong river with a vast area of intertidal mudflats, and an extremely productive location for the Hoi Lot (Solen regularis), an economically important mollusc unique to this region. Mangroves are present along the shoreline on the east side.

Had Chao Mai Marine National Park - Ta Libong Island Non-Hunting Area - Trang River Estuaries: This area was declared a Ramsar Site (No. 1182) under the Ramsar Convention on 14 August 2002. The total area is 66,313 hectares, and it is located in Trang Province at 07°22'N 099°24'E. It consists of three connected wetland ecosystems with riverine, estuarine, and coastal wetlands, including mangroves and Nypa, sand beach and rocky marine shores, mud flats, coral reefs and seagrass beds.

Kaper Estuary - Laemson Marine National Park - Kraburi Estuary: This area was declared a Ramsar Site (No. 1183) under the Ramsar Convention on 14 August 2002. The total area is 122,046 hectares, and it is located in Ranong Province at 09°36'N 098°39'E. The area has been declared a UNESCO Biosphere Reserve, and includes the largest concentration of mangrove forest remaining in the country and said to be one of the most extensive in the Indo-Pacific region, the site also includes Nypa forests, mud flats, sandy beaches, coral reefs, and seagrass beds.

Krabi Estuary National Reserve Forest: Krabi was declared a Ramsar Site (No. 1100) under the Ramsar Convention on 15 July 2001. The total area is 21,299 hectares, and it is located in Krabi Province at 07°58'N 098°55'E. The reserve consists of an area of sand beach, mangroves, and mudflats, with some steep wooded cliffs and intertidal mudflats extending up to 2 kilometres offshore at low tide. An area of mangroves and mudflats extending from the rocky headland of Khao Laem Nang, east past the complex of rivers which open to the sea at Pak Nam Krabi, to the Khlong Yuan and Khlong Taling Chan, and south to Ban Laem Hin. A complex of rivers open to the sea within the site, and extensive seagrass beds are

present at Sriboya Island. Most mangrove areas were forest concession, but were converted to conservation areas in 2001.

Mu Koh Ang Thong Marine National Park: The area was declared a Ramsar Site (No. 1184) under the Ramsar Convention on 14 August 2002. The total area is 10,200 hectares, and it is located in Surat Thani Province at 9°37’N 99°41’E. The area consists of a complex of 42 small islands in the Gulf of Thailand, including sandy beaches, rocky cliffs, coral reefs, and young mangrove forests.

Pang Nga Bay Marine National Park: Pang Nga was declared a Ramsar Site (No. 1185) under the Ramsar Convention on 14 August 2002. The total area is 40,000 hectares, and it is located in Pang Nga Province at 8°17’N 98°36’E. The area consists of a shallow bay with 42 islands, comprising shallow marine waters and intertidal forested wetlands, with at least 28 species of mangrove; seagrass beds and coral reefs are also present.

6.2.10 TIMOR-LESTE

Mangroves extend over only about 3,000 hectares in Timor-Leste, as natural circumstances are not conducive for the establishment of this habitat. Along most of the southern coastline, the sea is too dynamic, few sediments accumulate, and the coast is too rocky. Mangroves in the south therefore occur only at the mouths of the streams, and in adjacent marshy or swampy terrain. On the north coast, however, the sea is calmer and mangroves are found along wider areas such as in Metinaro, Tibar and Maubara.

6.2.11 VIET NAM

Hong (1993, 2003) recognises four mangrove zones in Viet Nam, each with varying conditions:

i. The Northeast Zone (Quang Ninh Province): 39,400 hectares in 1982; 22,949 hectares in 1999. Low winter temperatures limits the growth of certain species, although 15 true mangrove species have been recorded. Coastal mudflats are shielded by a number of islands, and as a result they are little affected by storms or strong winds. A typical region is Mui Chua cape and Tien Yen estuary, where Bruguiera gymnorrhiza-Rhizophora stylosa-Avicennia marina-Kandelia candel mangroves can reach a height of about 8 metres.

ii. The Northern Delta Zone: 7,000 hectares in 1982; 20,842 hectares in 1999. This is the area formed by accretion of sediments from the Thai Binh and Hong (Red) rivers. Although the mudflats are large and rich in alluvium and freshwater, this zone is subjected to strong winds, storms and waves. Also, as winter temperatures are low, mangrove stands are not extensive and the trees are relatively small. Mangroves are mainly found in sheltered parts of the estuaries of these two rivers, and are dominated by Sonneratia caseolaris, Kandelia candel and Aegiceras corniculatum.
iii. The Central Zone: 14 300 hectares in 1982; 3 000 hectares in 1999. The coastline along this area is rocky, surrounded by deep sea, and is influenced by strong wave action. As a result there are no mangroves along the seashore, although limited areas occur along river banks and in estuaries of small rivers.

iv. The Coast of Southern Viet Nam: 191 800 hectares in 1982; 102 497 hectares in 1999. Mangroves in this area occur in two main river systems: the Dong Nai River and the Cuu Long (Mekong) River. Conditions here are most favourable for mangrove development, because of higher temperatures, abundant sediments and fresh water, and the proximity of Indonesia and Malaysia, which have the highest level of mangrove species diversity.

According to Spalding et al. (1997), the largest areas of mangrove are in the Mekong Delta and further south on the Ca Mau Peninsula. Tuan et al. (2001) list 22 existing coastal and marine protected areas in Viet Nam, which altogether protect 43 115 hectares of mangrove habitat, or according to them, 39 percent of the remaining mangroves. Some of the most important sites are described below.

Dat Mui Nature Reserve (also known as Ca Mau cape or Mui Ca Mau) is the southernmost tip of Viet Nam. The area’s mangroves suffered badly during the war, but have recovered well since then, due to a combination of rapid accretion of sediments, natural regeneration and rehabilitation. The area is gazetted as a Nature Reserve since 1983 (or 1986, according to Tuan et al., 2001), extending over an area of 4 453 hectares.

Hon Mun Marine Protected Area, established in 2001, includes coral reef, mangroves and seagrass ecosystems. It is located near Nha Trang, Khanh Hoa province, South Viet Nam, and covers about 12 000 hectares, including 8 islands. There is a population of 5 000 people on the islands living in 7 villages.

The Can Gio mangrove forest was destroyed thoroughly during the war, but due to rehabilitation efforts it is now one of the country’s best mangrove areas. The area was recognised as a Nature Reserve in 1990, and as a UNESCO Biosphere Reserve on 21 January 2000. The Managed Nature Reserve extends over 42 630 hectares and lies in the Mekong Delta, near Ca Mau.

Xuan Thuy Natural Wetland Reserve: Xuan Thuy was declared a Ramsar Site (No. 409) under the Ramsar Convention on 20 September 1988. The total area is 12 000 hectares, and it is located in Nam Ha at 20°10’N 106°20’E. 7 686 has been gazetted as a Strict Nature Reserve since 1995. The area consists of delta and estuary islands supporting the last significant remnants of coastal mangrove and mudflat ecosystems in the Red River Delta; includes land enclosed by sea dikes, with fringing marshes.
CHAPTER 7

MANGROVE STUDIES: POINTS FOR BEGINNERS

7.1 IMPORTANT REFERENCES

Those wanting to study mangroves in greater detail should consult some of the classic references in this field that deal with mangroves in a broad way, such as MacNae (1968), Chapman (1976a), Saenger et al. (1983), and Mastaller (1997). Serious students of botany should refer to Tomlinson’s (1986) classic tome, augmented by Duke et al. (1984) and Duke (1992). Van Steenis (1958) provides a general introduction to mangroves, as a foreword to Ding Hou’s (1958) paper on the Rhizophoraceae for Flora Malesiana.

Country-wide publications on mangrove vegetation and flora (limited to ‘true mangrove’ species) exist for Malaysia (Watson, 1928), Thailand (Aksornkoae, 1993), Viet Nam (Hong & San, 1993), the Philippines (Aragones et al., 1998) and Papua New Guinea (Percival & Womersley, 1975). A general introduction to the mangroves of Indonesia is provided in Part Two of The Ecology of the Indonesian Seas (Tomascik et al., 1997), while chapters on mangroves of Sumatra and Sulawesi are provided by Whitten et al. (1984, 1987). Part of the present publication has appeared in much condensed form in an Indonesian translation (Noor et al., 1999).

7.2 FIELD TRIP BASICS

Basic mangrove studies require little more than an identification guide, binoculars, pencil-and-paper and a bit of time and endurance. As the mangrove environment is rather hot, wet, muddy and often teeming with mosquitoes, clothing and equipment need to be adapted. Best is cotton clothing, with long sleeves and trousers to avoid scratches and prevent mosquito bites – it is advisable to bring a waterproof repellent. Write in pencil (HB), as notebooks are likely to get damp and ink will run. As many trips to mangroves will involve boat trips, the use of a hat and/or sun block/cream is advisable. A small, collapsable umbrella can be helpful to keep both sun and rain off your back, and is useful for photography in the
rain. Normal cameras will not survive a dip in a saline pool, so waterproof containers are much recommended. Binoculars are of no use if they also have to remain in containers, so these should be waterproof, or cheap enough to run the risk of their being spoiled by moisture and/or fungus. All gear should preferably fit into a single bag, and a small backpack is usually handy, as this will free both hands when clambering among mangrove roots and simultaneously looking at the canopy for flowering specimens. Remember to bring plenty of drinking water, as mangrove field trips are usually thirsty affairs. Timing a trip is also important, as high water levels make boat travel easier, but impede observations of soil, infauna (animals living in the soil), and root types (important diagnostic characteristics for mangrove tree species).

Very practical advice for beginners is also provided by the *Shorebird Studies Manual* (Howes, 1989), which is still highly useful in spite of its age, and still commercially available.

7.3 MANGROVE PLANT SPECIMENS

Identification

Compared to studying Indonesian lowland forests, the study of mangrove vegetation is relatively easy, as the number of species is limited and flowering is often not very seasonal. This means that there are usually one or two specimens of each species in fruit and flower, making identification a simpler task. In addition, the vegetation is not as tall as lowland forest, and the observer does not need to stare up at a canopy of 40+ metres height. However, mangrove trees appear very similar in many of their vegetative characteristics: having leaves that are dark green, elliptic to obovate, medium-sized, of the laurel type but rather coriaceous and slightly fleshy.

What the observer should therefore focus on are the differences in bark, root types (stilts, pneumatophores, aerial roots), stipules, leaf insertion and flowers/fruit.

People are often inclined to simply browse through the drawings of a guidebook to find a picture that matches the specimen that they want to identify. This might work out well for the smaller plant groups and the moderately large, but highly diverse plant groups (such as the palms and ferns groups in this book), but often not for the larger or more complicated groups. An accurate identification can best be obtained by using the identification keys provided in this book.

These keys were designed in such a way so that the most obvious vegetative characteristics come out first. This will in most cases enable people without training in botany identify the species in question.
The most obvious characteristic of a plant is its general appearance: whether it is a tree or shrub, a herb, a grass (or sedge), a climber or a fern. For herbs and ferns, it is important to look whether the plant is growing on trees or shrubs (i.e. they are epiphytes), or whether it is growing directly on the surface/soil. Several mangrove trees and shrubs have very specific respiration roots, such as aerial roots, knee roots or pencil-shaped roots. These root types are an easy and important characteristic to identify many mangrove taxa, and can readily be observed, even on young trees.

Looking at the leaves is the next step. Compound leaves can usually easily be distinguished from simple leaves, but certain species – such as *Xylocarpus* – may lead to confusion at times. When in doubt, it is usually a good idea to check out a new leaf that is developing from a bud. It is usually obvious whether leaves are opposite or not (to avoid confusion, no distinction is made in this publication between alternate and spirally arranged insertion), but one should not be confused by bunches of leaves apparently randomly grouped at the end of a branch. It that case it is better to observe young, newly developing branches where leaf arrangement may be clearer.

Stipules – small leaflets at the base of a leaf stalk – are also important for identification. These leaflets are often shed, but if this has happened they will have left a characteristic scar on the twigs. Leaf shapes are often used in the key, in particular the shape of the leaf tip (apex). It is recommended that persons interested in using the guide for identification familiarise themselves with the names of some of the most common leaf shapes.

The calyx (outer leaflets of a flower) of several mangrove trees remain more or less persistent on the fruit, and provide a good determination characteristic. Some trees have a white or colored latex or resin in the leaves and/or bark. This can be a handy characteristic for identification. However, one should be careful with this, since most of these resins are poisonous and irritating. Also, we do not want to encourage the slashing of the bark of trees for the sole purpose of identification.

Herbarium

It is always best to try to identify the species in the field, using a guidebook such as this one. If pressed for time, you can take plant specimens with you for later identification in the lab or at home – remember to take notes about site, location, date, trunk type, bark, habit and root type! Plant specimens are best kept folded between newspaper in a plant press (two perforated plywood boards of about 25 by 35 centimetres will do). Without further treatment, pressed specimens will keep for about 2-3 days, after which decay and fungal growth will set in; in many cases, 2-3 days is probably long enough for ‘identification-at-leisure’. If you want to preserve specimens for a longer time, they should be dried in an oven - usually this can be

58 Instead of small leaflets, stipules may also consist of small, leafy sheaths that enclose buds of new leaves.
improvised with a box over a low fire, separated by a thin metal sheet. Oven-dried specimens will last one to several months, depending on the ambient humidity.

Herbariums treat their specimens with ‘sublimate’ (Mercuric oxide), which will allow you to preserve specimens for decades, but this process has its disadvantages as this chemical is highly toxic. If you need to preserve specimens but cannot dry the plants (e.g. on a long boat trip), specimens can be preserved by keeping them in newspaper bound in cardboard, and keeping them in strong, waterproof, well-sealed plastic bags after drenching them with methylated spirits (= Schweinfurth method). Kept wet (in spirits), they will remain in a good condition for many months. The disadvantages are that methylated spirits may be fairly expensive if many specimens are to be collected (requires about 1-1.5 litre for a pile of about 25-35 specimens); in addition, spirits are highly inflammable and they evaporate easily through even the smallest perforation.

7.4 FLORA STUDIES

For studying any kind of vegetation, it is always wise to first obtain good topographic and thematic maps. General, large-scale maps indicating the location of mangroves are available in Spalding et al. (1997; now somewhat outdated), and at the UNEP-WCMC website59. A smaller and less accurate version of the Southeast Asian part of the latter is appended in Annex 2. Along with maps, remote sensing images are the most useful tool for someone wanting to conduct vegetation studies. Remote sensing images, in their broadest sense, can include photographs taken from the top of a hill or from the window of an aeroplane. More professional imagery is provided by commercial aerial photography (available via national mapping agencies such as BAKOSURTANAL in Indonesia, but this generally requires security clearances), radar imagery, and satellite imagery.

Of the latter, Landsat and SPOT are most commonly available and used. Images are available directly via Landsat or SPOT websites60, or via national agencies such as LAPAN in Indonesia (Indonesian Satellite Imagery Receiving Centre, Jakarta), the Bangkok Landsat receiving station, and SPOT headquarters in Toulouse, France. The choice of imagery type depends on the level of details needed for the survey. The present available satellite images can be used for a scale as large as 1:25 000 (for vegetation mapping), but for a larger scale aerial photographs are more suitable. Usually directly discernible on remote sensing imagery are the different vegetation zones within the mangrove belt – this simplifies the making of a draft map of a given site.

60 www.Landsat.org or www.SPOT.com
A map produced on the basis of remote sensing imagery alone does not tell us very much, as ground data must be gathered, correlated to the image characteristics and entered into the legend of the map. Data on the vegetation requires identifying which species occur where. This involves elucidating which species occur together (in plant communities), and those which never occur together and may therefore be differentiating species.

The easiest way to do this is to describe vegetation transects in the mangrove vegetation; basically there are two transect types, namely line-intercept transects, and broad swathe transects. Line-intercept transects are the simplest: this involves laying out a line of given length (e.g. 100 m) in a discrete vegetation, and noting which plants (species and number of individuals) the line intercepts. Broad-swathe line (or belt) transects are similar, except that the line has a discrete width, of say 5 or 10 metres: all plants (species and number of individuals) in this broad swathe are then noted. Line transect data can later be compared with each other, either visually, or by means of specific computer programmes.

A remotely sensed image is interpreted and a preliminary map is drawn, based on image characteristics and terrain features, displaying land units with similar characteristics. After that, an adequate number of field samples are taken of each land unit, and the ground data is correlated to the remotely sensed data. Those field samples should not only consist of vegetation records, but soil samples and observations of other physical conditions, such as hydrology, as well. This will result in a land-ecological vegetation map with an integrated legend, clearly displaying the correlation between vegetation (communities or types) and physical factors. Mangrove vegetation may also be studied by analyzing quadrats, i.e. estimating the density of certain species in a given (small) area, e.g. a 10 by 10 metre square of vegetation. For obvious reasons, the quadrat method works best in herbaceous vegetation. These methods are described in detail by Mueller-Dombois and Ellenberg (1974), Chapman (1984) and English et al. (1994), and in Indonesian language by Kusmana (1997), to name a few examples.

7.5 FAUNA STUDIES

Many qualitative studies have been carried out on mangrove fauna in Southeast Asia, and a good account of the methodology is provided by Sasekumar (1984) and English et al. (1994). Studies focus on the zonation of mangrove fauna, faunal density & productivity, vertical distribution patterns (especially in relation to the tide), and soil in fauna. Techniques are generally quite simple, involving no more than sieving, netting, quiet observing and (often more than) a bit of patience. As a scientist involved with education, Lim (1995) regards mangroves as an ideal learning environment for students, both at tertiary and secondary levels, because of the simplicity of structure, and the sheer abundance coupled with a relatively low diversity of animal life. For the study of shorebirds, the volume by Howes (1989) is most
practical and unsurpassed, certainly for beginners. Part Two of *The Ecology of the Indonesian Seas* (Tomascik et al., 1997) provides a good introduction to the fauna of Indonesian mangroves, with extensive species lists of the main faunal groups occurring throughout the archipelago.
REFERENCES

Asian Development Bank (2000) – Coastal and Marine Environment Management in the South China Sea (East Sea), Phase 2. Viet Nam Coastal and Marine Protected Areas Plan.

Backer, C.A. (1934) - Onkruidflora der Javasche Suikerrietgronden.

Cockburn, P.F. (1976) Trees of Sabah volume one. Sabah forest record no. 10, Borneo literature bureau for Forest Department Sabah, Kuching.

Department of Forestry and Wildlife, Forest Wildlife Research and Education Institute, Cambodia. (1998) – Forest Cover Statistics.

Hannibal, L.S. (undated) - A Systematic Review of the Genus Crinum (Amaryllidaceae). Published online at URL: www.crinum.org/review.html (71 pp.)

Mangrove Guidebook for Southeast Asia

PART 1: REFERENCES

Khan, M.S. and M.K. Alam (1996) – Homestead flora of Bangladesh. Bangladesh Agricultural Research Council (BRAC) and the International Development research Centre (IDRC), Village and Farm Forestry Project, SDC. Dhaka, 275 pp.

Kindt, R & R.W. Burn (2002) – The Biodiversity Analysis Package. Resources and guidelines for the analysis of biodiversity and ecological information. Version 1. World Agroforestry Centre & Faculty of Agricultural and Applied Biological Sciences (Ghent University) and Statistical Services Centre (Reading University).

Kitamura, S., C. Anwar, A. Chaniago & S. Baba (1997) – Handbook of Mangroves in Indonesia, Bali and Lombok. JICA and ISME.

Merrill, E.D. (1946) Plantlife of the Pacific world.

Semenuk, V. et al. (1978) Mangroves of Western Australia. Handbook no. 12, Western Australian naturalistsclub, Perth.

van Steenis, C.G.G.J. (1937) – De soorten van het geslacht Acanthus in Nederlandsch-Indië. In: De Tropische Natuur, jrg. XXVI.

Versteegh, F. (1951) Proeve van een bedrijfsregeling voor de vloedbossen van Benkalis. In: Tectona XLI.

ANNEX 1 Table of Southeast Asian mangrove species

NOTE: Numbers correspond with the species number as this is dealt with in part 2 of the mangrove guide.

<table>
<thead>
<tr>
<th>No.</th>
<th>Family</th>
<th>Scientific name</th>
<th>Malaysia</th>
<th>Philippines</th>
<th>Singapore</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspleniacae</td>
<td>Asplenium macrophyllum</td>
<td>f</td>
<td>+</td>
<td>*</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Asplenium nidus</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Blechnaceae</td>
<td>Stenochlaena palustris</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Davallia</td>
<td>Davallia divaricata</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Davallia parvula</td>
<td></td>
<td>f</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pachypleuria angustata</td>
<td></td>
<td>f</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Grammitidaceae</td>
<td>Cheiropleura moultoni</td>
<td>f</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Hymenophyllaceae</td>
<td>Hymenophyllum holochilum</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Lomario psidaceae</td>
<td>Elaphoglossum amблиphyllum</td>
<td>f</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lycopodiaceae</td>
<td>Lycopodium carinatum</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nephrolepidaceae</td>
<td>Nephrolepis acutifolia</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Polyopodiaceae</td>
<td>Drymoglосsum piloselloides</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Drynaria rigidula</td>
<td></td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Drynaria</td>
<td>sparsisora</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Loxogramma involuta</td>
<td></td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Myrmelepisma suosa</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Phtinopteris spicosa</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Phymatodes scolopendria</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Platycerium coronarium</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Pyrosia longifolia</td>
<td></td>
<td>f</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Selvinea heterocarpa</td>
<td></td>
<td>f</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Peridaceae</td>
<td>Acrostichum aureum</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Acrostichum speciosum</td>
<td></td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Vittariaceae</td>
<td>Vittaria elongata</td>
<td>f</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Scientific name</td>
<td>Mangrove</td>
<td>Lifeform</td>
<td>Brunei</td>
<td>Cambodia</td>
<td>Indonesia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>52</td>
<td>Acanthaceae</td>
<td>Acanthus ebracteatus</td>
<td>M</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>53</td>
<td>Acanthaceae</td>
<td>Acanthus ilicifolius</td>
<td>M</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>54</td>
<td>Acanthaceae</td>
<td>Acanthus volubilis</td>
<td>M</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>55</td>
<td>Aizoaceae</td>
<td>Sesuvium portulacastrum</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>56</td>
<td>Trapa portulacastrum</td>
<td></td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>57</td>
<td>Amaryllidaceae</td>
<td>Crinum asiaticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Anacardiaceae</td>
<td>Gluta velutina</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Apocynaceae</td>
<td>Cerbera floribunda</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Cerbera manghas</td>
<td>Cerbera odollam</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>143</td>
<td>Aquifoliaceae</td>
<td>Ilex cymosa</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>144</td>
<td>Ilex maingayi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Araceae</td>
<td>Colocasia esculenta</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>59</td>
<td>Cryptocoryne ciliata</td>
<td></td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>60</td>
<td>Lasia spinosa</td>
<td></td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>146</td>
<td>Araliaceae</td>
<td>Polycias macgillivrayi</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Schefflera elliptica</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>76</td>
<td>Schefflera lancedata</td>
<td></td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Schefflera radlei</td>
<td></td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Arecaceae</td>
<td>Calamus erinaceus</td>
<td></td>
<td></td>
<td>p(c)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>132</td>
<td>Caryota urens</td>
<td></td>
<td>p</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Corypha saribus</td>
<td></td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>134</td>
<td>Licuala spinosa</td>
<td></td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>135</td>
<td>Nypa fruticans</td>
<td></td>
<td>M</td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>136</td>
<td>Oncosperma bigillarium</td>
<td></td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>137</td>
<td>Phoenix paludosa</td>
<td></td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>147</td>
<td>Asclepiadaceae</td>
<td>Calotropis gigantea</td>
<td>t(h)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>78</td>
<td>Dischidia benghalensis</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>79</td>
<td>Dischidium nummularia</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>80</td>
<td>Dischidium rafflesiana</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>103</td>
<td>Finlaysonia obovata</td>
<td></td>
<td>c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>104</td>
<td>Gymnanthera oblonga</td>
<td></td>
<td>c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>81</td>
<td>Hoya parasitica</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>105</td>
<td>Asclepiadaceae</td>
<td>Oxyselma carnosum</td>
<td>c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>106</td>
<td>Sarcolobus carinatus</td>
<td></td>
<td>c</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Sarcolobus globosus</td>
<td></td>
<td>c</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Asteraceae</td>
<td>Pluchea indica</td>
<td>t(h)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>149</td>
<td>Pluchea pteropoda</td>
<td></td>
<td>t(h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Wedelia bifora</td>
<td></td>
<td>c(h)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>150</td>
<td>Avicenniaceae</td>
<td>Avicennia alba</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>151</td>
<td>Avicennia eucalyptifolia</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>152</td>
<td>Avicennia lanzata</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>153</td>
<td>Avicennia marina</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Scientific name</td>
<td>Mangrove</td>
<td>Lifiform</td>
<td>Brunei</td>
<td>Cambodia</td>
<td>Indonesia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>154</td>
<td>Avicennia officinalis</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Batidaceae</td>
<td>Batis argillicola</td>
<td>t (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Bigbioniaaceae</td>
<td>Dolichandrone spathacea</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Bombaceae</td>
<td>Camptostemon philippinense</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Camptostemon schultzii</td>
<td>Camptostemon philippinense</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Boerhavaceae</td>
<td>Cordia cochinchnensis</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Cordia dichotoma</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Cordia subcordata</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Cauvarinaceae</td>
<td>Casuarina equisetifolia</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Celastraceae</td>
<td>Cassine viburnifolia</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Loesneriella macrantha</td>
<td>Loesneriella macrantha</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Maytenus emarginata</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Cheno podiaceae</td>
<td>Halocnemum cinereum</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Combretaceae</td>
<td>Calycophytis floribunda</td>
<td>c(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Combretum trilobatum</td>
<td>c(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Lumnitzera littorea</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Lumnitzera racemosa</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Terminalia catappa</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Ipomoea gracilis</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Ipomoea maxima</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Ipomoea pes-capre</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Ipomoea tuba</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Cycas rumphii</td>
<td>p</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Cyperus compactus</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Cyperus javanicus</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Cyperus malaccensis</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Cyperus scariosus</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Cyperus stoloniferus</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Eleocharis dulcis</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Eleocharis parvula</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Eleocharis spiralis</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Fimbristylis cymosa</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Fimbristylis ferruginea</td>
<td>Fimbristylis ferruginea</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Fimbristylis polytrichoides</td>
<td>Fimbristylis polytrichoides</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Fimbristylis sericea</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Fimbristylis sebena</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Scirpus grossus</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Scirpus lacustris</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HIGHER PLANTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Family</th>
<th>Scientific name</th>
<th>Malaysia</th>
<th>Philippines</th>
<th>Singapore</th>
<th>Thailand</th>
<th>Timor-Leste</th>
<th>Viet Nam</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Ebenaceae</td>
<td>Diospyros kaki</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Scientific name</td>
<td>Mangrove</td>
<td>Brunei</td>
<td>Cambodia</td>
<td>Indonesia</td>
<td>Malaysia</td>
<td>Myanmar</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>124</td>
<td>Mucuna gigantea</td>
<td></td>
<td>c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>198</td>
<td>Peltophorum pterocarpum</td>
<td></td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>199</td>
<td>Pongamia pinnaata</td>
<td></td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>Seriandhes grandiflora</td>
<td></td>
<td>t</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>201</td>
<td>Sindora siamensis var. maritima</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>125</td>
<td>Lophopyxis maingayi</td>
<td></td>
<td>c</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>83</td>
<td>Loranthaceae</td>
<td>Anyema anisomeris</td>
<td>M</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Anyema gravis</td>
<td></td>
<td>M</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Anyema mackayense</td>
<td></td>
<td>M</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Loranthaceae</td>
<td>Dendrophthoe pentandra</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Macrosolen cochinchenensis</td>
<td></td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Viscum ovalifolium</td>
<td></td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>202</td>
<td>Lythraceae</td>
<td>Pennipsis acidula</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Malpighiaceae</td>
<td>Ryssopterys timoriensis</td>
<td>c</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Tristellatea australasiae</td>
<td></td>
<td>c</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Malvaceae</td>
<td>Hibiscus tiliaceus</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Tristellatea australasiae</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Melastomataceae</td>
<td>Malastoma malabathricum</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Malastoma saigonense</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Ocithocharis bornensis</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Pachycentria consticta</td>
<td></td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Meliaceae</td>
<td>Aglaia cucullata</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Xylocarpus granatum</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Xylocarpus moluccensis</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Xylocarpus rumphii</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Menispermaceae</td>
<td>Anamirta cocculus</td>
<td>c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>129</td>
<td>Hypserpa polyandra</td>
<td></td>
<td>c(t)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Moraceae</td>
<td>Ficus curtipes</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Ficus microcarpa</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Myoporaceae</td>
<td>Myoporom bontsiodes</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Myristicaceae</td>
<td>Horsfieldia irya</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>216</td>
<td>Myristicaceae</td>
<td>Horsfieldia irya</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Myrsinaceae</td>
<td>Aegiceras corniculatum</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>218</td>
<td>Aegiceras floridum</td>
<td></td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>219</td>
<td>Ardisia elliptica</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Raphenia porteriana</td>
<td></td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Myrtaceae</td>
<td>Melaleuca caujupiti</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Osborneia octodonta</td>
<td></td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Najadaceae</td>
<td>Najas browniana</td>
<td>h</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Najas indica</td>
<td></td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>71</td>
<td>Najas marina</td>
<td></td>
<td>h</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Olacaceae</td>
<td>Olax imbricata</td>
<td>t(c)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Ximenia americana</td>
<td></td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Scientific name</td>
<td>Mangrove</td>
<td>Brunei</td>
<td>Cambodia</td>
<td>Indonesia</td>
<td>Malaysia</td>
<td>Myanmar</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>90</td>
<td>Orchidaceae</td>
<td>Aerides odoratum</td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>91</td>
<td>Bulbophyllum</td>
<td>Bulbophyllum xylocarpri</td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Cymbidium</td>
<td>Cymbidium finlaysonianum</td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>93</td>
<td>Dendrobium</td>
<td>Dendrobium aloeofolium</td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>94</td>
<td>Dendrobium</td>
<td>Dendrobium moschatum</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Dendrobium</td>
<td>Dendrobium pachyphyllum</td>
<td>e</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>96</td>
<td>Dendrobium</td>
<td>Dendrobium subulatum</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Dockrillia</td>
<td>Dockrillia teretifolium</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>98</td>
<td>Oberonia</td>
<td>Oberonia iridifolium</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Oberonia</td>
<td>Oberonia laeta</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Oberonia</td>
<td>Oberonia rhizophoreti</td>
<td>M</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Pandanaceae</td>
<td>Pandanus tectorius</td>
<td>p</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>72</td>
<td>Passifloraceae</td>
<td>Passiflora foetida</td>
<td>h c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>225</td>
<td>Plumbaginaceae</td>
<td>Aegialitis annulata</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Plumbaginaceae</td>
<td>Aegialitis rotundifolia</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Poaceae</td>
<td>Cynodon dactylon</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>43</td>
<td>Poaceae</td>
<td>Diplachne fusca</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Poaceae</td>
<td>Leptochloa neesii</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Poaceae</td>
<td>Myriostachya wightiana</td>
<td>g</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Poaceae</td>
<td>Paspalum vaginatum</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>47</td>
<td>Poaceae</td>
<td>Peracanthus karka</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>48</td>
<td>Poaceae</td>
<td>Sporolobus virginicus</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>49</td>
<td>Poaceae</td>
<td>Xerochloa imberbis</td>
<td>g</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Poaceae</td>
<td>Zoysia matrella</td>
<td>g</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Poaceae</td>
<td>Podocarpus polystachyus</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Rhamnaceae</td>
<td>Smythia lanceata</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Rhizophoraceae</td>
<td>Bruguiera cylindrica</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>229</td>
<td>Rhizophoraceae</td>
<td>Bruguiera exaristata</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Rhizophoraceae</td>
<td>Bruguiera gymnorrhiza</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>231</td>
<td>Rhizophoraceae</td>
<td>Bruguiera hainesii</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Rhizophoraceae</td>
<td>Bruguiera parviflora</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>233</td>
<td>Rhizophoraceae</td>
<td>Bruguiera sexangula</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>234</td>
<td>Rhizophoraceae</td>
<td>Ceriops decandra</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Rhizophoraceae</td>
<td>Ceriops tagal</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>236</td>
<td>Rhizophoraceae</td>
<td>Kandelia candels</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Rhizophoraceae</td>
<td>Rhizophora aciculata</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>238</td>
<td>Rhizophoraceae</td>
<td>Rhizophora mucronata</td>
<td>M t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>239</td>
<td>Rhizophoraceae</td>
<td>Rhizophora stylosa</td>
<td>M t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Rubiaceae</td>
<td>Gardenia tubifera</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Rubiaceae</td>
<td>Guettarda speciosa</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>101</td>
<td>Rubiaceae</td>
<td>Hydnophytum formicarum</td>
<td>e</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Rubiaceae</td>
<td>Ixora timorensis</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Scientific name</td>
<td>Mangrove</td>
<td>Brunei</td>
<td>Cambodia</td>
<td>Indonesia</td>
<td>Malaysia</td>
<td>Myanmar</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>243</td>
<td>Morinda citrifolia</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>102</td>
<td>Myrmecodia tuberosa</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Scyphiphora hydrophyllacea</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>73</td>
<td>Ruppiaceae</td>
<td>Ruppi maritima maritima</td>
<td>h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Rutaceae</td>
<td>Acronychia pedunculata</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Atalantia monophylla</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>247</td>
<td>Merope angulata</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Salvadoraceae</td>
<td>Azima sarmentosa</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Sapindaceae</td>
<td>Allophyllus cobbе</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>250</td>
<td>Mischocarpus sundaicus</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>251</td>
<td>Sapotaceae</td>
<td>Planchonella obovata</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>252</td>
<td>Simaroubaceae</td>
<td>Quassia harmandiana</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>Quassia indica</td>
<td>Quassia indica</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>254</td>
<td>Sonneratiaceae</td>
<td>Sonneratia alba</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>255</td>
<td>Sonneratia apetala</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Sonneratia cascularis</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>257</td>
<td>Sonneratia griffithii</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Sonneratia ovata</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>259</td>
<td>Sterculiaceae</td>
<td>Heritiera fomes</td>
<td>M</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Heritiera globosa</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Heritiera lixonalis</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Kleiniodia hospita</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>Symplocaceae</td>
<td>Symplocos celastrifolia</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>264</td>
<td>Tiliaceae</td>
<td>Brownlowia argentea</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Brownlowia tersa</td>
<td>M</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>51</td>
<td>Typhaceae</td>
<td>Typha angustifolia</td>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Verbeneaceae</td>
<td>Clerodendrum inerme</td>
<td>t</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Premna obtusifolia</td>
<td>t</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Stachyurphiia jamaicensis</td>
<td>h</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Vitex ovata</td>
<td>t(h)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALs:

| 52 | 268 | 126 | 141 | 243 | 221 | 148 | 160 | 155 | 138 | 186 | 99 | 152 |

Lifeforms (totals):

- Ferns (f) 24
- Grasses & grass-like herbs (g) 27
- Ground herbs (h) 23
- Epiphytes (c) 28
- Palms & palm-like species (p) 9
- Climbers (c) 28
- Trees & shrubs (t) 129

NOTE: M in mangrove column = true mangrove species; i.e. occurring in mangrove habitat only
ANNEX 2 Map of Southeast Asian mangrove areas

The map is provided on the next page, with kind permission from WCMC. Note that mangroves are indicated in green, coral reefs in red.
ANNEX 3 Index of scientific names

NOTE: Correct scientific names are given in **bold**, and the number added denotes the species number as this is dealt with in part 2 of the mangrove guide.

Abildgaardia javanica Steud.; see *Fimbristylis polytrichoides* (Retz.) R. Br.

Abildgaardia javanica Nees.; see *Fimbristylis polytrichoides* (Retz.) R. Br.

Abrus abrus W.Wight; see *Abrus precatorius* L.

Abrus cyaneus R.Vig.; see *Abrus precatorius* L.

Abrus frutex Rumphius; see *Abrus precatorius* L.

Abrus maculatus Noronha; see *Abrus precatorius* L.

Abrus minor Desv.; see *Abrus precatorius* L.

Abrus pauciflorus Desv.; see *Abrus precatorius* L.

Abrus precatorius L. – 115

Abrus precatorius var. *novo-guineensis* Zipp. ex Miq.; see *Abrus precatorius* L.

Abrus squamulosus E. Mey.; see *Abrus precatorius* L.

Abrus tunguensis P. Lima; see *Abrus precatorius* L.

Abrus wittei Baker f. *Glycine a*; see *Abrus precatorius* L.

Acantbus ebracteatus Vahl – 52

Acantbus ilicifolius L. – 53

Acanthus neo-guineensis; see *Acanthus ilicifolius* L.

Acantbus volubilis Wall. – 54

Acmella biflora L.; see *Wedelia biflora* (L.) DC.

Acronychia arborea; see *Acronychia pedunculata* (L.) Miq.

Acronychia laurifolia Blume; see *Acronychia pedunculata* (L.) Miq.

Acronychia pedunculata (L.) Miq. – 245

Acrorhopus parvula Bedd.; see *Davallia parvula* Wall. ex Hook. & Grev.

Acrostichum aureum Linné – 22

Acrostichum aureum var. *schmidtii* (Christ) C.Chr.; see *Acrostichum speciosum* Willd.

Acrostichum biforne Sw.; see *Platycurium coronarium* (Koenig.) Desv.

Acrostichum decurrens (non Desv.) Bl.; see *Elaphoglossum amblyphyllum* C.R. Bell.

Acrostichum heterophyllum L.; see *Drymoglossum piloselloides* (Linn.) Presl.

Acrostichum inaequale Willd.; see *Acrostichum aureum* Linné

Acrostichum lanceolatum *Burnm.*; see *Pyrospoa longifolia* (Bur.1.) Morton.

Acrostichum lineare Hassk.; see *Photinaopteris speciosa* (Bl.) Persl.

Acrostichum longifolium *Burnm.* f.; see *Pyrospoa longifolia* (Bur.1.) Morton.

Acrostichum obliquum Blume; see *Acrostichum aureum* Linné

Acrostichum obtusifolium (non Willd.) Bl.; see *Elaphoglossum amblyphyllum* C.R. Bell.

Acrostichum palustre (Burn.f.) C.B. Clarke; see *Stenochlaena palustris* (Burn. f.) Bedd.

Acrostichum rigidum Wall.; see *Photinaopteris speciosa* (Bl.) Persl.

Acrostichum scandens (Sw.) Hook.; see *Stenochlaena palustris* (Burn. f.) Bedd.

Acrostichum speciosum Willd. – 23

Acrostichum spectabile Zoll.; see *Acrostichum aureum* Linné

Actegalon sarmentosum BL.; see *Azima sarmentosa* (Bl.) B. & H.

Aegialitis annulata R.Br. – 225

Aegialitis annulata (sic); see *Aegialitis annulata* R.Br.

Aegialitis rotundifolia Roxb. – 226

Aegialitis annulata var. *rotundifolia*; see *Aegialitis rotundifolia* Roxb.
Aegianilites PresL.; see Aegialitis annulata R.Br.
Aegianilites rotundifolia; see Aegialitis rotundifolia Roxb.

Aegiceras corniculatum (L.) Blanco – 217
Aegiceras ferreum Blume; see Aegiceras floridum Roemer & Schultes

Aegiceras floridum Roemer & Schultes – 218
Aegiceras fragrans König; see Aegiceras corniculatum (L.) Blanco
Aegiceras majus Gaertn.; see Aegiceras corniculatum (L.) Blanco
Aegiceras malaspinae A.DC.; see Aegiceras corniculatum (L.) Blanco
Aegiceras nigricans A. Rich.; see Aegiceras floridum Roemer & Schultes
Aegiphila viburnifolia Juss.; see Cassine viburnifolia (Juss.) Ding Hou
Aerides cornuta Roxb.; see Aerides odoratum Reinw. ex Blume
Aerides dayanum hort.; see Aerides odoratum Reinw. ex Blume
Aerides nobile Warn.; see Aerides odoratum Reinw. ex Blume
Aerides odoratum Lour.; see Aerides odoratum Reinw. ex Blume

Aerides odoratum Reinw. ex Blume – 90
Aerides odoratum var. majus Ortgies.; see Aerides odoratum Reinw. ex Blume
Aerides rohanianum Rchb. f.; see Aerides odoratum Reinw. ex Blume
Aerides suavisissimum Lindley; see Aerides odoratum Reinw. ex Blume
Aerides virens Lindley; see Aerides odoratum Reinw. ex Blume
Aerides wilsonianum R.H. Torr.; see Aerides odoratum Reinw. ex Blume
Afzelia bijuga A. Gray; see Intsia bijuga (Colebr.) Kuntze
Afzelia retusa Kurz.; see Intsia bijuga (Colebr.) Kuntze

Aganope heptaphylla (L.) Polhill – 116
Agasta asiatica Miers.; see Barringtonia asiatica (L.) Kurz
Aglaia conduplifolia Elmer; see Aglaia cucullata (Roxb.) Pellegrin

Aglaia cucullata (Roxb.) Pellegrin – 208
Aglaia tripetala Merr.; see Aglaia cucullata (Roxb.) Pellegrin
Aglaia zollingeri C.DC.; see Xylocarpus rumphii (Kostel.) Mabb.
Agrostis matrella L.; see Sporobolus virginicus (L.) Kunth.
Albizia grandiflora (Benth.) F. Muell.; see Serianthes grandiflora Bentham.
Allophylus amboinensis Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus apicarpus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus Blancoi Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus cambessedei Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus celebicus Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus chlorocarpus Radlk.; see Allophylus cobbe (L.) Raeusch.

Allophylus cobbe (L.) Raeusch. – 249
Allophylus cobbe (L.) Raeuschel.; see Allophylus cobbe (L.) Raeusch.
Allophylus dimorphus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus filiger Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus fulvinervis (Blume) Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus glaber Boerl.; see Allophylus cobbe (L.) Raeusch.
Allophylus integrifolius Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus javensis (Blume) Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus leptococcus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus ligustrina Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus littoralis (Blume) Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus macrostachys Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus micrococcus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus quinatus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus rufescens Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus rugosa Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus sumatr anus Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus sundanus Miq.; see Allophylus cobbe (L.) Raeusch.
Allophylus ternatus Lour.; see Allophylus cobbe (L.) Raeusch.
Allophylus villosus (Roxb.) Blume; see Allophylus cobbe (L.) Raeusch.
Allophylus zeylanicus L.; see Allophylus cobbe (L.) Raeusch.
Allophylus setulosus Radlk.; see Allophylus cobbe (L.) Raeusch.
Allophylus unifoliolatus Radlk.; see Allophylus cobbe (L.) Raeusch.
Alocasia dussii Hort.; see Colocasia esculenta (L.) Schott
Alocasia illustris W. Br.; see Colocasia esculenta (L.) Schott
Ambrosinia ciliata Roxb.; see Cryptocoryne ciliata (Roxb.) Fisch. ex Schott
Amoora aherniana Merr.; see Aglaia cucullata (Roxb.) Pellegrin
Amoora auriculata Miq.; see Aglaia cucullata (Roxb.) Pellegrin
Amoora cucullata Roxb.; see Aglaia cucullata (Roxb.) Pellegrin
Amoora naumannii sensu C.D.C.; see Xylocarpus rumphii (Kostel.) Mabb.
Amoora salomoniensis C. DC.; see Xylocarpus granatum Koen.
Amoora zollingeri (C.D.C.) Koord.; see Xylocarpus rumphii (Kostel.) Mabb.
Ampactus litorae Rumph.; see Allophylus cobbe (L.) Raeusch.
Amyema anisomeres Dans. – 83
Amyema cycnei-sinus; see Amyema mackayense (Blakely) Danser
Amyema gravis Danser – 84
Amyema mackayense (Blakely) Danser – 85
Amyema mackayense ssp. cycnei-sinus.; see Amyema mackayense (Blakely) Danser
Amyris arborescens P. Browne; see Ximenia americana L.
Anamirta coccul us L. Wight & Arn. – 128
Anamirta jucunda Miers.; see Anamirta cocculus L. Wight & Arn.
Andersonia cucullata Roxb.; see Aglaia cucullata (Roxb.) Pellegrin
Andropogon dulce Burm.; see Eleocharis dulcis (Burm. f.) Henschel
Antrophyum involutum Bl.; see Loxogramma involuta Presl.
Apo retica penicellata Blanco; see Allophylus cobbe (L.) Raeusch.
Apo retica ternata Forst. & Forst.; see Allophylus cobbe (L.) Raeusch.
Aquifolium indicum Rumph.; see Acanthus ilicifolius L.
Araiostegia davaricata (Blume) M. Kato; see Davallia davaricata Blume
Arbor glutinosus Rumphius; see Cordia dichotoma G. Forst.
Arbor ovigera Rumph.; see Hernandia ovigera L.
Ardisia elliptica Thunberg – 219
Ardisia humilis Vahl.; see Ardisia elliptica Thunberg
Ardisia kotoensis Hayata; see Ardisia elliptica Thunberg
Ardisia littoralis Andr.; see Ardisia elliptica Thunberg
Ardisia squamulosa C. Presl.; see Ardisia elliptica Thunberg
Areca tigillaria Jack.; see Oncosperma tigillarium (Jack.) Ridl.
Arthrocnemum indicum (Willd.) Moq.; see Salicornia indica Willd.
Arum aegyptium Rumph.; see Colocasia esculenta (L.) Schott
Arum chinense L.; see Colocasia esculenta (L.) Schott
Arum colocasia L.; see Colocasia esculenta (L.) Schott
Arum colocasoides Desf.; see Colocasia esculenta (L.) Schott
Arum esculentum L.; see Colocasia esculenta (L.) Schott
Arum nymphaeifolia (Vent.) Roxb.; see Colocasia esculenta (L.) Schott
Arum peltata Lam.; see Colocasia esculenta (L.) Schott
Arundo karka Retz.; see Phragmites karka (Retz.) Trin. ex Steud.
Asclepias gigantea L.; see Calotropis gigantea (L) R.Br.
Asclepias parasitica Roxb.; see Hoya parasitica (Roxb.) Wall. ex Wight
Asplenium adiantioides C.Chr.; see Asplenium macrophyllum Sw.
Asplenium antiquum Makino; see Asplenium nidus Linn.
Asplenium australasicum (J.Sm.) Hook.; see Asplenium nidus Linn.
Asplenium canaliculatum Bl.; see Asplenium macrophyllum Sw.
Asplenium falcatum Lamk.; see Asplenium macrophyllum Sw.
Asplenium filicifolium Goldm.; see Asplenium nidus Linn.
Asplenium macrophyllum Sw. – 1
Asplenium nidus Linn. – 2
Asplenium oxyphyllum Cuming.; see Asplenium macrophyllum Sw.
Asplenium pachyphyllum; see Asplenium nidus Linn.
Asplenium polyodon Forst.; see Asplenium macrophyllum Sw.
Asplenium simile Bl.; see Asplenium macrophyllum Sw.
Atalantia monophylla DC. – 246
Atalantia spinosa Tanaka; see Atalantia monophylla DC.
Atriplex maritima (L.) Crantz.; see Suaeda maritima (L.) Dum.
Atuna alba Rumph.; see Atuna racemosa ssp. racemosa Rafin.
Atuna elata (King.) Kosterm.; see Atuna racemosa ssp. racemosa Rafin.
Atuna racemosa ssp. racemosa Rafin. – 166
Atuna scabra (Hassk.) Kosterm.; see Atuna racemosa ssp. racemosa Rafin.
Aubletia casolaris Gaertn.; see Sonneratia caseolaris (L.) Engl.
Avicennia alba Blume – 150
Avicennia eucalyptifolia Zipp. ex Moldenke – 151
Avicennia eucalyptifolia (Zipp. ex Miq) Moldenke; see Avicennia eucalyptifolia Zipp. ex Moldenke
Avicennia intermedia Griff.; see Avicennia marina (Forssk.) Vierh.
Avicennia lanata Ridley – 152
Avicennia marina (Forssk.) Vierh. – 153
Avicennia marina (Forssk.) Vierh. var. alba (Blume) Bakh.; see Avicennia alba Blume
Avicennia marina subsp. eucalyptifolia (Zipp. ex Moldenke) J. Everett; see Avicennia eucalyptifolia Zipp. ex
Moldenke
Avicennia marina var. acutissima Stapf & Moldenke; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. anomalae Moldenke; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. australasica (Walp.) J. Everett; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. eucalyptifolia (Zipp., ex Moldenke) N.C. Duke; see Avicennia eucalyptifolia Zipp. ex
Moldenke
Avicennia marina var. intermedia (Griff.) Bakh.; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. marina; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. resinifera (Forst.) Bakh.; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. rumphiana (Hall. f.) Bakh.; see Avicennia marina (Forssk.) Vierh.
Avicennia marina var. typica Bakhuizen; see Avicennia marina (Forssk.) Vierh.
Avicennia mindanaense Elmer; see Avicennia marina (Forssk.) Vierh.
Avicennia officinalis L. – 154
Avicennia officinalis L., Sceura marina Forssk.; see Avicennia marina (Forssk.) Vierh.
Avicennia officinalis var. eucalyptifolia Valet.; see Avicennia eucalyptifolia Zipp. ex Moldenke
Avicennia officinalis var. spathulata Kuntze; see Avicennia lanata Ridley
Avicennia rumphiana; see Avicennia lanata Ridley
Avicennia tomentosa Willd.; see Avicennia officinalis L.
Azalea brookeana Low ex Lindl.; see Rhododendron brookeanum Low ex Lindl. var. brookeanum
Azima nova Blanco; see Azima sarmentosa (Bl.) B. & H.

Azima sarmentosa (Bl.) B. & H. – 248
Baccharis indica L.; see Pluchea indica (L.) Less.
Balanopteris minor Gaertn.; see Heritiera littoralis Dryand.
Balanopteris tothila Gaertn.; see Heritiera littoralis Dryand.
Bancudus latifolia Rumph.; see Morinda citrifolia L.
Banisteria dichotoma (non L.) Spanoghe; see Ryssopterys timoriensis (DC.) Jussieu
Banisteria timoriensis A.P. DC.; see Ryssopterys timoriensis (DC.) Jussieu

Barringtonia acutangula (L.) Gaertn. – 187
Barringtonia acutangula subsp. spicata (Bl.) Payens; see Barringtonia acutangula (L.) Gaertn.

Barringtonia asiatica (L.) Kurz – 188
Barringtonia butonica Forster; see Barringtonia asiatica (L.) Kurz

Barringtonia conoidea Griff. – 189
Barringtonia edaphocarpa Gagn.; see Barringtonia acutangula (L.) Gaertn.

Barringtonia racemosa (L.) Spreng. – 190
Barringtonia racemosa (L.) Bl. ex DC.; see Barringtonia racemosa (L.) Spreng.
Barringtonia rubra Blume; see Barringtonia racemosa (L.) Spreng.
Barringtonia speciosa J. R. & G. Forster; see Barringtonia asiatica (L.) Kurz
Barringtonia spicata Blume; see Barringtonia acutangula (L.) Gaertn.
Barringtonia stravadarium Blanco; see Barringtonia racemosa (L.) Spreng.

Batis argillicola van Royen – 155b
Bigonia javanica Thunb.; see Dolichandrone spathacea (l.f.) K.Schum.
Bigonia longiflora Willd. ex DC.; see Dolichandrone spathacea (l.f.) K.Schum.
Bigonia longissima Lour.; see Dolichandrone spathacea (l.f.) K.Schum.
Bigonia spathacea L.; see Dolichandrone spathacea (l.f.) K.Schum.
Bintangur maritima Rumph.; see Calophyllum inophyllum L.
Bladidia kotoensis (Hayata) Nakai; see Ardisia elliptica Thunberg
Blatti acida Lamk.; see Sonneratia caseolaris (L.) Engl.
Blatti apetala O.K.; see Sonneratia apetala Buch.-Ham.
Blatti caseolaris O.K.; see Sonneratia caseolaris (L.) Engl.
Blatti pagatpat Niedenzu; see Sonneratia caseolaris (L.) Engl.
Blumeodendron elateriospermum J.J. Smith; see Blumeodendron tokbrai (Bl.) Kurz.
Blumeodendron paucinervium (Elm.) Merr.; see Blumeodendron tokbrai (Bl.) Kurz.
Blumeodendron tokbrai (Bl.) J.J. Smith; see Blumeodendron tokbrai (Bl.) Kurz.

Blumeodendron vernicosum (Hk. f.) Gage; see Blumeodendron tokbrai (Bl.) Kurz.	
Brachypterum scandens W & A.; see Derris scandens (Aubl.) Pittier
Bromus polystachyos Forsk.; see Diplachne fusc a (L.) Beauv.

Brownlowia argentata Kurz. – 264
Brownlowia beccarii (Mast.) Pierre; see Brownlowia tersa (L.) Kosterm.
Brownlowia lanceolata Benth.; see Brownlowia tersa (L.) Kosterm.
Brownlowia lepidota; see Brownlowia argentata Kurz.
Brownlowia riedelianum Hemsl.; see Brownlowia argentata Kurz.

Brownlowia tersa (L.) Kosterm. – 265
Bruguiera angulata Griff.; see Bruguiera sexangula (Lour.) Poir.
Bruguiera australis A. Cunn.; see Bruguiera sexangula (Lour.) Poir.
Bruguiera capensis Bl.; see Bruguiera gymnorrhiza (L.) Lamk.
Bruguiera caryophylloides Bl.; see Bruguiera cylindrica (L.) Bl.
Bruguiera conjugata (non Rhizophora conjugata L.) Merr.; see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera cylindrica (L.) Bl. – 228

Bruguiera cylindrica (non Bl.) Hance; see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera cylindrica (non Rhizophora cylindrica L.) Bl.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera decandra Griff.; see Ceriops decandra (Griff.) Ding Hou

Bruguiera eriopetala W. & A. ex Arn.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera exaristata Ding Hou – 229

Bruguiera gymnorrhiza (with one ‘r’); see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera gymnorrhiza (L.) Lamk. – 230

Bruguiera hainessii C.G.Rogers – 231

Bruguiera malabarica (non Arn.) F.-Vill.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera malabarica Arn.; see Bruguiera cylindrica (L.) Bl.

Bruguiera oxiphylla Miq.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera parietosa Griff.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera parviflora (Roxb.) W.& A. ex Griff. – 232

Bruguiera rheedii Bl.; see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera richiei Merr.; see Bruguiera parviflora (Roxb.) W.& A. ex Griff.

Bruguiera rumphii Bl.; see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera sexangula (Lour.) Poir. – 233

Bruguiera sexangularis Spreng.; see Bruguiera sexangula (Lour.) Poir.

Bruguiera wightii Bl.; see Bruguiera gymnorrhiza (L.) Lamk.

Bruguiera zippelii Bl.; see Bruguiera gymnorrhiza (L.) Lamk.

Buglossum litoreum Rumph.; see Scaevola taccada (Gaertn.) Roxb.

Bulbophyllum catenarium Ridl.; see Bulbophyllum xylocarpi J.J.Smith

Bulbophyllum ovalifolium Lindl. sensu lato; see Bulbophyllum xylocarpi J.J.Smith

Bulbophyllum xylocarpi J.J.Smith – 91

Bupariti populnea (L.) Rothmaler; see Thespesia populnea (L.) Soland. ex Correa

Butonica rosata Miers.; see Barringtonia racemosa (L.) Spreng.

Butonica rumphina Miers; see Barringtonia asiatica (L.) Kurz

Butonica terrestris rubra Rumph.; see Barringtonia racemosa (L.) Spreng.

Cacara litorea Rumph.; see Canavalia maritima Thouars

Cacoucia lucida Hassk.; see Combretum trifoliatum Vent.

Cacoucia trifoliata DC.; see Combretum trifoliatum Vent.

Caesalpinia arbores Zoll. ex Miq.; see Peltophorum pterocarpum (DC.) K. Heyne

Caesalpinia bonduc (L.) Roxb. – 117

Caesalpinia bonducella Flem.; see Caesalpinia crista L.

Caesalpinia crista L. – 118

Caesalpinia javyabo Maza.; see Caesalpinia bonduc (L.) Roxb.

Caesalpinia laevigata Perr.; see Caesalpinia crista L.

Caesalpinia nuga L.; see Caesalpinia crista L.

Caesalpinia sageronis Baker; see Caesalpinia bonduc (L.) Roxb.

Caju pinnatum O. Kuntze.; see Pongamia pinnata (L.) Pierre

Cajanus colosia W. Wight ex saff.; see Colocasia esculenta (L.) Schott

Caladum esculentum (L.) Vent.; see Colocasia esculenta (L.) Schott

Caladum nymphaeifolia Vent.; see Colocasia esculenta (L.) Schott

Caladum violaceum hort. ex Engl.; see Colocasia esculenta (L.) Schott

Calamus aquatilis; see Calamus erinaceus (Becc.) Dransfield

Calamus erinaceus (Becc.) Dransfield – 131

Calla gaby Blanco; see Colocasia esculenta (L.) Schott

Callisia carnosum; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Callista moschata Kuntze.; see Dendrobium moschatum (Buch.-Ham.) Sw.
Callista pachyphylla Kuntze.; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Callista pumila; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Callista teretifolia (Lindl.) Kuntze.; see Dockrillia teretifolia (R.Br.) Brieger
Calodium cocginchinensis Lour.; see Cassytha filiformis Linn.
Calonyction album House; see Ipomoea tuba Schlechtend.
Calonyction grandiflorum Choisy; see Ipomoea tuba Schlechtend.
Calonyction muticum Decaisne; see Ipomoea tuba Schlechtend.
Calonyction tuba; see Ipomoea tuba Schlechtend.
Calophyllum inophyllum L. – 183
Calotropis gigantea (L) R.Br. – 147
Calotropis gigantea (Willd.) Dryand.; see Calotropis gigantea (L) R.Br.
Calycoceris floribunda (Roxb.) Lamk – 110
Calycoceris nutans Kurz.; see Calycoceris floribunda (Roxb.) Lamk
Calystegia affinis (non Endl.) Schum.; see Ipomoea gracilis R. Br.
Camptostemon aruense; see Camptostemon schultzii Masters
Camptostemon philippinense (Vidal) Becc. – 157
Camptostemon schultzii Masters – 158
Canavalia apiculata Piper; see Canavalia maritima Thouars
Canavalia arenicola Piper; see Canavalia maritima Thouars
Canavalia baueriana Endl.; see Canavalia maritima Thouars
Canavalia emarginata (Jacq.) G.Don.; see Canavalia maritima Thouars
Canavalia lineata Prain non DC.; see Canavalia maritima Thouars
Canavalia lineata (Thunb.) DC.; see Canavalia maritima Thouars
Canavalia maritima (Aubl.) Urb.; see Canavalia maritima Thouars
Canavalia maritima Thouars – 68
Canavalia miniata (Kunth.) DC.; see Canavalia maritima Thouars
Canavalia moneta Welw.; see Canavalia maritima Thouars
Canavalia obtusifolia DC.; see Canavalia maritima Thouars
Canavalia podocarpa Dunn.; see Canavalia maritima Thouars
Canavalia rosea (Sw.) DC.; see Canavalia maritima Thouars
Canavalia maritima; see Canavalia maritima Thouars
Capriola dactylon (L.) O.K.; see Cynodon dactylon (L.) Pers.
Carapa borneensis Becc.; see Xylocarpus moluccensis (Lamk) M. Roem.
Carapa granatum (Koen.) Alston; see Xylocarpus granatum Koen.
Carapa indica A. Juss.; see Xylocarpus granatum Koen.
Carapa mekongensis (Pierre) Pellegr.; see Xylocarpus moluccensis (Lamk) M. Roem.
Carapa moluccensis auct. non Lam.; see Xylocarpus granatum Koen.
Carapa moluccensis auct. non Lam.; see Xylocarpus rumphii (Kostel.) Mabb.
Carapa moluccensis Lam.; see Xylocarpus moluccensis (Lamk) M. Roem.
Carapa obovata auct. non Blume; see Xylocarpus moluccensis (Lamk) M. Roem.
Carapa obovata Blume; see Xylocarpus granatum Koen.
Carapa rumphii Kostel.; see Xylocarpus rumphii (Kostel.) Mabb.
Carex tuberosa (non Degl.) Blanco; see Eleocharis dulcis (Burm. f.) Henschel
Caryota urens L. – 132
Cassia candenatensis Dennst.; see Dalbergia candenatensis (Dennst.) Prain
Cassine viburnifolia (Juss.) Ding Hou – 163
Cassytha americana Nees.; see Cassytha filiformis Linn.
Cassytha aphylla (Forssk.) Raenschel.; see Cassytha filiformis Linn.
Cassytha archboldiana C.K. Allen; see Cassytha filiformis Linn.
Cassytha brasiliensis Mart. ex Nees.; see Cassytha filiformis Linn.
Cassytha dissitiflora Meisn.; see Cassytha filiformis Linn.

Cassytha filiformis Linn. - 114
Cassytha filiformis L. var. pseudopubescens Domin.; see Cassytha filiformis Linn.
Cassytha filiformis L. var. subpubescens Meisn.; see Cassytha filiformis Linn.
Cassytha guineensis Schumach. & Thonn.; see Cassytha filiformis Linn.
Cassytha nooguineensis Kaeh. & Harusima; see Cassytha filiformis Linn.
Cassytha timorensis Gand.; see Cassytha filiformis Linn.
Cassytha zeylanica Gaertn.; see Cassytha filiformis Linn.

Casuarina equisetifolia L. - 162
Casuarina equisetifolia J.R. & G. Forst.; see Casuarina equisetifolia L.
Casuarina equisetifolia subsp. equisetifolia; see Casuarina equisetifolia L.
Casuarina equisetifolia subsp. incana (Benth.) L.A.S. Johnson; see Casuarina equisetifolia L.
Casuarina equisetifolia var. equisetifolia; see Casuarina equisetifolia L.
Casuarina equisetifolia var. incana Benth.; see Casuarina equisetifolia L.
Casuarina equisetifolia var. microcarpa F. Muell.; see Casuarina equisetifolia L.
Casuarina littoralis ex Fosberg & Sachet; see Casuarina equisetifolia L.
Casuarina muricata Roxb.; see Casuarina equisetifolia L.
Catha montana G. Don.; see Maytenus emarginata (Willd.) Ding Hou

Cathormion umbellatum (M. Vahl.) Kosterm. - 191
Cattimarus Rumph.; see Kleinovia hospita L.
Caulinia indica Willd.; see Najas indica (Willd.) Cham.
Celastrus marginatus Willd.; see Maytenus emarginata (Willd.) Ding Hou
Celastrus montanus Roth.; see Maytenus emarginata (Willd.) Ding Hou
Celastrus semiarillata Turcz.; see Maytenus emarginata (Willd.) Ding Hou

Cerbera floribunda K. Schumann - 141
Cerbera forsteri Seem.; see Cerbera manghas L.
Cerbera lactaria Hamilton; see Cerbera manghas L.
Cerbera linneai Montr.; see Cerbera manghas L.

Cerbera manghas L. - 142
Cerbera micrantha Kanehira; see Cerbera floribunda K. Schumann
Cerbera oddallam Bl.; see Cerbera manghas L.

Cerbera odollam Gaertn. - 143
Cerbera tanghina Hook.; see Cerbera manghas L.
Cerbera venenifera (Poir.) Steud.; see Cerbera manghas L.
Cerbera venenifera A.J.M.; see Cerbera manghas L.
Ceriops australis White; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops boiviniana Tul.; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops candolleana Arn.; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops candolleana var. sasakii Hayata; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops candolleana var. spathulata Blume; see Ceriops tagal (Perr.) C.B.Rob.

Ceriops decandra (Griff.) Ding Hou - 234
Ceriops forsteniana; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops lucida Miq.; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops pacificflora Benth.; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops roxburghiana Arn.; see Ceriops decandra (Griff.) Ding Hou
Ceriops somalensis Chiovenda; see Ceriops tagal (Perr.) C.B.Rob.

Ceriops tagal (Perr.) C.B.Rob. - 235
Ceriops tagal var. australis White; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops timoriensis Domin; see Ceriops tagal (Perr.) C.B.Rob.
Ceriops zippeliana Bl.; see Ceriops decandra (Griff.) Ding Hou
Chenopodina australis (R.Br.) Moq.; see Suaeda maritima (L.) Dum.
Chenopodina maritima (L.) Moq.; see Suaeda maritima (L.) Dum.
Chenopodina maritima var. vulgaris; see Suaeda maritima (L.) Dum.
Chenopodium australe R.Br.; see Suaeda maritima (L.) Dum.
Chenopodium maritimum L.; see Suaeda maritima (L.) Dum.
Chiratia leucantha Montr.; see Sonneratia alba J.E. Smith
Chlorocyperus malaccensis Palla; see Cyperus malaccensis Lamk.
Chrysodium aureum Mett.; see Acrostichum aureum Linné
Chrysodium aureum var. schmidtii Christ; see Acrostichum speciosum Willd.
Chrysodium inaequale Fée.; see Acrostichum speciosum Willd.
Chrysodium vulgare Fée.; see Acrostichum aureum Linné
Clerodendrum buxifolium (Willd.) Spreng.; see Clerodendrum inerme (L.) Gaertn.
Clerodendrum capsulare Blanco; see Clerodendrum inerme (L.) Gaertn.
Clerodendrum commersonii Spr.; see Clerodendrum inerme (L.) Gaertn.
Clerodendrum inerme (L.) Gaertn. – 266
Clerodendrum nereifolium (Roxb.) Schauer.; see Clerodendrum inerme (L.) Gaertn.
Climacandra obovata Miq.; see Ardisia elliptica Thunberg
Climacandra salicifolia Miq.; see Ardisia elliptica Thunberg
Clitoria rotundifolia (Vahl.) Sessé & MOC.; see Canavalia maritima Thouars
Cocculus populifolius DC.; see Anamirta cocculus L. Wight & Arn.
Cocos nypa Lour.; see Nypa fruticans Wurmb.
Collyris minor Vahl.; see Dischidia nummularia R.Br.
Colocasia acris (R.Br.) Schott.; see Colocasia esculenta (L.) Schott
Colocasia antiquorum Schott. & Endl.; see Colocasia esculenta (L.) Schott
Colocasia esculenta (L.) Schott – 58
Colocasia euchlora K. Koch & Linden; see Colocasia esculenta (L.) Schott
Colocasia fontanesii Schott.; see Colocasia esculenta (L.) Schott
Colocasia himalensis Royle; see Colocasia esculenta (L.) Schott
Colocasia nymphaefolia (Vent.) Kunth; see Colocasia esculenta (L.) Schott
Colocasia peregrina Raf.; see Colocasia esculenta (L.) Schott
Colocasia vulgaris Raf.; see Colocasia esculenta (L.) Schott
Combretopsis pentaptera K. Sch.; see Lophophyxis maingayi Hook.f.
Combretum acuminatum (non Roxb.) K. Schum. & Hollr.; see Combretum tetralophum Clarke
Combretum neurophyllum (non Miq.) Backer; see Combretum tetralophum Clarke
Combretum lucidum Blume; see Combretum trifoliatum Vent.
Combretum tetragonocarpum (non Kurz.) Koord.; see Combretum tetralophum Clarke
Combretum tetralophum Clarke – 111
Combretum trifoliatum Vent. – 112
Comminia cochinchinensis Lour.; see Excoecaria agallocha L.
Comocladia serrata Blanco; see Salacia chinensis L.
Convolvulus bilobatus Roxb.; see Ipomoea pes-capre (L.) Sweet.
Convolvulus brasiensis Linné; see Ipomoea pes-capre (L.) Sweet.
Convolvulus catharticus Blanco; see Ipomoea tuba Schlechtend.
Convolvulus denticulatus Desr.; see Ipomoea gracilis R. Br.
Convolvulus grandiflorus Jacq.; see Ipomoea tuba Schlechtend.
Convolvulus marinus Rumph.; see Ipomoea pes-capre (L.) Sweet.
Convolvulus maritima; see Ipomoea pes-capre (L.) Sweet.
Convolvulus maritimus Desr.; see Ipomoea pes-capre (L.) Sweet.
Convolvulus maximus L.; see Ipomoea maxima (L.f.) Don ex Sweet
Convolvulus pes-caprae Linné; see Ipomoea pes-capre (L.) Sweet.
Convolvulus tuba L.; see Ipomoea tuba Schlechtend.
Cordia banalo Blanco; see Cordia subcordata Lam.
Cordia blancoi Vidal.; see Cordia dichotoma G. Forst.
Cordia cochinchinensis Gagnep. – 159
Cordia dichotoma G. Forst. – 160
Cordia griffithii C.B. Clarke ; see Cordia dichotoma G. Forst.
Cordia moluccana Roxb.; see Cordia subcordata Lam.
Cordia myxa auct. non. L. ; see Cordia dichotoma G. Forst.
Cordia obliqua auct. non. Willd. ; see Cordia dichotoma G. Forst.
Cordia prennifolia Ridl.; see Cordia cochinchinensis Gagnep.
Cordia rumphii Blume; see Cordia subcordata Lam.
Cordia suaveolens Bl. ; see Cordia dichotoma G. Forst.
Cordia suaveolens Vidal ; see Cordia dichotoma G. Forst.
Cordia subcordata Lam. – 161
Cordia subdentata Miq.; see Cordia dichotoma G. Forst.
Corypha saribus Lour. – 133
Crinum amabile Donn.; see Crinum asiaticum L.
Crinum asiaticum L. – 57
Crinum cortfollium Hallier; see Crinum asiaticum L.
Crinum defixum auct. non. Ker-Gawl.; see Crinum asiaticum L.
Crinum firmifolium var. hygrophilum; see Crinum asiaticum L.
Crinum giganteum auct. non. Andr. Blanco; see Crinum asiaticum L.
Crinum macrantherum Engler; see Crinum asiaticum L.
Crinum macrophyllum Hallier; see Crinum asiaticum L.
Crinum northianum Baker; see Crinum asiaticum L.
Crinum pedunculatum R.Br.; see Crinum asiaticum L.
Crinum rumphii Merr.; see Crinum asiaticum L.
Crinum sumatranum Roxb.; see Crinum asiaticum L.
Crinum toxicarium; see Crinum asiaticum L.
Crithmus indicus Rumph.; see Sesuvium portulacastrum (L.) L.
Croton ardisioides Hook. f.; see Croton heterocarpus Müll. Arg.
Croton heterocarpus Müll. Arg. – 174
Croton heteropetalum (Sphalm.) Ridl.; see Croton heterocarpus Müll. Arg.
Cryptocoryne ciliata (Roxb.) Fisch. ex Schott – 59
Cryptocoryne ciliata var. latifolia (Roxb.) Rataj; see Cryptocoryne ciliata (Roxb.) Fisch. ex Schott
Ctenopteris moultoni (Copel.) C. Christ. & Tardieu – 7
Ctenopteris moultoni (Copel.) Hollt.; see Ctenopteris moultoni (Copel.) C. Christ. & Tardieu
Cummingia philippinensis Vidal; see Camptostemon philippinense (Vidal) Becc.
Cupania erythrorhachis Miq.; see Mischocarpus sudaicus Blume
Cupania lessertiana Cambess.; see Mischocarpus sudaicus Blume
Cupania mischocarpus Steud.; see Mischocarpus sudaicus Blume
Cupania revoluta Turcz. ; see Mischocarpus sudaicus Blume
Cupania spinosa Blanco; see Maytenus emarginata (Willd.) Ding Hou
Cycas celebica Miq.; see Cycas rumphii Miq.
Cycas circinalis L.; see Cycas rumphii Miq.
Cycas corsoniana D. Don.; see Cycas rumphii Miq.
Cycas recurvata Blume ex J. Schuster; see Cycas rumphii Miq.
Cycas rumphii Miq. – 138
Cycas sundaica Miq. ex J. Schuster; see Cycas rumphii Miq.

Cyclandophora elata (King.) Kosterm.; see Atuna racemosa ssp. racemosa Rafin.
Cyclandophora glaberrimima Hassk.; see Atuna racemosa ssp. racemosa Rafin.
Cyclandophora scabra (Hassk.) Kosterm.; see Atuna racemosa ssp. racemosa Rafin.

Cyclanthus acrostichoides (G. Forst.) Presl.; see Pyrosia longifolia (Burm.) Morton.
Cyclanthus cinnamomeus; see Pyrosia longifolia (Burm.) Morton.
Cyclanthus longifolius Desv.; see Pyrosia longifolia (Burm.) Morton.

Cymbidium aloifolium (L.) Sw.; see Cymbidium finlaysonianum Wall ex Lindl.

Cymbidium finlaysonianum Wall ex Lindl. – 92

Cymbidium iridifolium Roxb.; see Oberonia iridifolia Lindl.
Cymbidium iridifolium Sw. ex Steud.; see Oberonia iridifolia Lindl.
Cymbidium moschatum Willd.; see Dendrobium moschatum (Buch.-Ham.) Sw.
Cymbidium pendulum (Roxb.) Sw. sensu latu; see Cymbidium finlaysonianum Wall ex Lindl.
Cymbidium pendulum var. brevilabre Lindl.; see Cymbidium finlaysonianum Wall ex Lindl.

Cymbidium tricolor Miq.; see Cymbidium finlaysonianum Wall ex Lindl.
Cyninosma pedunculata DC.; see Acronychia pedunculata (L.) Miq.
Cynanchum carnosum Domin.; see Oxystelma carnosum R. Br.
Cynanchum carnosum Merr. & Rolfe.; see Oxystelma carnosum R. Br.
Cynanchum carnosum (R.Br.) Schltr.; see Oxystelma carnosum R. Br.

Cynodon arculatus J.S. Presl. ex C.B. Presl.; see Cynodon dactylon (L.) Pers.

Cynodon dactylon (L.) Pers. – 42

Cynodon dactylon var. glabratus (Steud.) Chiov.; see Cynodon dactylon (L.) Pers.
Cynodon dactylon var. glabratus Steud.; see Cynodon dactylon (L.) Pers.
Cynodon dactylon var. Wight & Arn.; see Cynodon dactylon (L.) Pers.

Cynodon parviglumis Ohwi; see Cynodon dactylon (L.) Pers.
Cynodon polevansii Stent.; see Cynodon dactylon (L.) Pers.

Cynometra bijuga Span. ex Miq.; see Cynometra ramiflora L.
Cynometra bijuga var. mimosoides Merr.; see Cynometra iripa Kostel.

Cynometra iripa Kostel. – 192

Cynometra polyandra auct. non Roxb.; see Cynometra ramiflora L.

Cynometra ramiflora L. – 193

Cynometra ramiflora var. Wight & Arn.; see Cynometra iripa Kostel.
Cynometra ramiflora var. mimosoides Baker; see Cynometra iripa Kostel.
Cynometra schumanniana Harms.; see Cynometra ramiflora L.

Cynometra whitfordii Elmer; see Cynometra ramiflora L.
Cynomorium silvestre; see Cynometra ramiflora L.

Cyperus anomalus Steud.; see Cyperus javanicus Houtt.

Cyperus bulbosostoloniferus Steud.; see Cyperus stoloniferus Retz.
Cyperus bulbosus (non Vahl.) Camus.; see Cyperus stoloniferus Retz.
Cyperus canescens Vahl.; see Cyperus javanicus Houtt.

Cyperus compactus Retz. – 25

Cyperus corymbosus Rottb. var. scariosus Kük.; see Cyperus scariosus R. Br.
Cyperus diff forms (non L.) Blanco; see Scirpus grossus Linné
Cyperus alatus Vahl.; see Cyperus compactus Retz.

Cyperus diphyllos (Retz) Valck.; see Cyperus scariosus R. Br.
Cyperus dulcis Rumph.; see Eleocharis dulcis (Burm. f.) Henschel
Cyperus firmus Presl.; see Cyperus javanicus Houtt.
Cyperus grabowskianus Bolck.; see Cyperus compactus Retz.
Cyperus holciflorus Presl.; see Cyperus javanicus Houtt.

Cyperus javanicus Houtt. – 26

Cyperus lamprocarpus Nees; see Cyperus stoloniferus Retz.
Cyperus litoralis R.Br.; see Cyperus stoloniferus Retz.
Cyperus luzonensis Llanos; see Cyperus compactus Retz.

Cyperus malaccensis Lamk. – 27
Cyperus mayeri Kük; see Cyperus stoloniferus Retz.
Cyperus parviflorus Vahl.; see Cyperus javanicus Hoult.
Cyperus pennatus Lamk.; see Cyperus javanicus Houtt.
Cyperus rotundus (non L.) Benth.; see Cyperus stoloniferus Retz.
Cyperus rotundus L. var. pallidus Benth.; see Cyperus scariosus R.Br.

Cyperus scariosus R.Br. – 28
Cyperus septatus Steud.; see Cyperus compactus Retz.
Cyperus spaniophyllus Steud.; see Cyperus malaccensis Lamk.
Cyperus stigmaticus Steud.; see Cyperus javanicus Hoult.

Cyperus stoloniferus Retz. – 29
Cyperus stuppeus Forst.; see Cyperus javanicus Hoult.
Cyperus tegetiformis (non Roxb.) Benth.; see Cyperus malaccensis Lamk.
Cyperus tegetum (non Roxb.) Ridl.; see Cyperus malaccensis Lamk.
Cyperus tuberosus (non Rotb.) Kunth.; see Cyperus stoloniferus Retz.
Cyrtisus pinnatus Linn.; see Pongamia pinnata (L.) Pierre
Daemonorops erinaceus; see Calamus erinaceus (Becc.) Dransfield
Daemonorops leptopus; see Calamus erinaceus (Becc.) Dransfield
Dalbergia arborea Willd.; see Pongamia pinnata (L.) Pierre

Dalbergia candenatensis (Dennst.) Prain – 119
Dalbergia heterophylla, Robinia uliginosa Willd.; see Derris trifoliata Lour.

Dalbergia menoeides Prain. – 120
Dalbergia monosperma Dalzell; see Dalbergia candenatensis (Dennst.) Prain
Dalbergia pinnata (Lour.) Prain.; see Derris pinnata (Lour.) Prain
Dalbergia tamarindifolia Roxb.; see Derris pinnata (Lour.) Prain
Dalbergia torta Graham; see Dalbergia candenatensis (Dennst.) Prain
Davallia angustata Wall.; see Pachypleuria angustata (Wall. ex Hook. & Grev.) J. Sm.
Davallia divaricata Blume
Davallia mucronata Bl; see Davallia divaricata Blume
Davallia parvula Wall.; see Davallia parvula Wall. ex Hook. & Grev.

Davallia parvula Wall. ex Hook. & Grev. – 4
Davallia polyantha Hook; see Davallia divaricata Blume
Deguela negrensis (Benth.) Taub.; see Derris scandens (Aubl.) Pittier
Deguela scandens Aubl.; see Derris scandens (Aubl.) Pittier
Deguela uliginosa (Willd.) Baill.; see Derris trifoliata Lour.

Dendrobium aloefolium (Bl.) Rchb.f. – 93
Dendrobium aloifolium; see Dendrobium aloefolium (Bl.) Rchb.f.
Dendrobium baseyanum St. Cloud; see Dockrillia teretifolia (R.Br.) Brieger
Dendrobium borneense Finet.; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Dendrobium calamiforme Lodde. ex Lindley; see Dockrillia teretifolia (R.Br.) Brieger
Dendrobium carnosum Teijsm. et Binn.; see Dendrobium pachyphyllum (O.K.) Bakh. f.

Dendrobium moschatum (Buch.-Ham.) Sw. – 94
Dendrobium pachyphyllum (O.K.) Bakh. f. – 95
Dendrobium perpusillum Balakaristan; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Dendrobium pisibulbum Guillaumin; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Dendrobium pumila Roxb.; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Dendrobium pumilum (Bl.) Lindl.; see Dendrobium pachyphyllum (O.K.) Bakh. f.
Dendrobium serra; see Dendrobium aloefolium (Bl.) Rchb.f.
Dendrobium subulatum (Bl.) Lindl. – 96
Dendrobium teretifolium R. Br.; see Dockrillia teretifolia (R.Br.) Brieger
Dendrobium teretifolium forma aureum (F.M. Bailey) Clemesha; see Dockrillia teretifolia (R.Br.) Brieger
Dendrobium teretifolium var. aureum F.M. Bailey; see Dockrillia teretifolia (R.Br.) Brieger
Dendrobium teretifolium var. fasciculata Rupp.; see Dockrillia teretifolia (R.Br.) Brieger
Dendrophthoe farinosus Mart.; see Dendrophthoe pentandra (L.) Miq.
Dendrophthoe leucobotrya Miq.; see Dendrophthoe pentandra (L.) Miq.
Dendrophthoe pentandra (L.) Miq. – 86
Dendrophthoe venosus Mart.; see Dendrophthoe pentandra (L.) Miq.
Derris guianensis Benth.; see Derris scandens (Aubl.) Pittier
Derris heptaphylla (L) Merr.; see Aganope heptaphylla (L.) Polhill
Derris heterophylla (Willd.) Backer; see Derris trifoliata Lour.
Derris indica (Lam.) Bennet.; see Pongamia pinnata (L.) Pierre
Derris macroloba; see Aganope heptaphylla (L.) Polhill
Derris negrensis Benth.; see Derris scandens (Aubl.) Pittier
Derris pinnata (Lour.) Prain – 194
Derris pinnata Lour.; see Derris pinnata (Lour.) Prain
Derris pterocarpus (DC.) Killip.; see Derris scandens (Aubl.) Pittier
Derris scandens (Aubl.) Pittier – 121
Derris scandens Benth. J. Linn.; see Derris scandens (Aubl.) Pittier
Derris scandens (Roxb.) Benth.; see Derris scandens (Aubl.) Pittier
Derris sinuata Thwaites; see Aganope heptaphylla (L.) Polhill
Derris trifoliata Lour. – 122
Deguelia trifoliata (Lour.) Taub.; see Derris trifoliata Lour.
Derris uliginosa Willd. Benth.; see Derris trifoliata Lour.
Dialycarpa beccarii Mast.; see Brownloesia tersa (L.) Kosterm.
Dicerolopsis paludosa Blume; see Gymnanthera oblonga (Burm. f) P.S. Green
Didymoglossum affine v.d.B.; see Hymenophyllum holochilum (Bosch) C. Chr.
Didymoglossum holochilum Bosch; see Hymenophyllum holochilum (Bosch) C. Chr.
Dinebra verticillata Wight ex Steud.; see Myriostachya wightiana (Nees ex Steud.) Hook.f.
Diospyros abyssinica (Hiern.) F.White; see Diospyros ferrea (Willd.) Bakh.
Diospyros embryopteris Pers.; see Diospyros malabarica (Descr.) Kostel.
Diospyros embryopteris var. siamensis (Hochr.) Phengkli.; see Diospyros malabarica (Descr.) Kostel.
Diospyros ferrea (Willd.) Bakh. – 170
Diospyros ferrea var. buxifolia (Rottb.) Bakh.; see Diospyros ferrea (Willd.) Bakh.
Diospyros ferrea var. guineensis (Schumach. & Tonn.) Bakh.; see Diospyros ferrea (Willd.) Bakh.
Diospyros ferrea var. littorea; see Diospyros ferrea (Willd.) Bakh.
Diospyros ferrea var. madagascarensis (A.DC.) Bakh.; see Diospyros ferrea (Willd.) Bakh.
Diospyros ferrea var. reticulata; see Diospyros ferrea (Willd.) Bakh.
Diospyros glutinosa Koenig. & Roxb.; see Diospyros malabarica (Descr.) Kostel.
Diospyros kusanoi Hayata; see Diospyros maritima Blume
Diospyros littorea (R.Br.) Kostermans; see Diospyros ferrea (Willd.) Bakh.
Diospyros liuksiensis Makino; see Diospyros maritima Blume
Diospyros malabarica (Descr.) Kostel. – 171
Diospyros malabarica var. malabarica; see Diospyros malabarica (Descr.) Kostel.
Diospyros maritima Blume – 172
Diospyros maritima var. transita (Bakh.) Kosterm; see Diospyros maritima Blume
Diospyros melanoxylon Hassk.; see Diospyros malabarica (Descr.) Kostel.
Diospyros peregrina f. javanica (Gaert.) Guerke.; see Diospyros malabarica (Descr.) Kostel.
Diospyros peregrina Guerke.; see Diospyros malabarica (Descr.) Kostel.
Diospyros siamensis Hochr.; see Diospyros malabarica (Descr.) Kostel.

Diospyros siamensis Ridl.; see Diospyros malabarica (Descr.) Kostel.

Diphyes ovalifolia Blume; see Bulbophyllum xylocarp J.J.Smith

Diplachne fusca (L.) Beauv. – 43

Diplachne polystachya; see Diplachne fusca (L.) Beauv.

Dischidia benghalensis Colebr. – 78

Dischidia benghalensis var. cuneifolia (Wall.) Kuntze; see Dischidia benghalensis Colebr.

Dischidia benghalensis var. spathulata (Blume) Kuntze; see Dischidia benghalensis Colebr.

Dischidia cuneifolia Wall.; see Dischidia benghalensis Colebr.

Dischidia gaudichaudii Decne.; see Dischidia nummularia R.Br.

Dischidia minor (Vahl.) Merr.; see Dischidia nummularia R.Br.

Dischidia nummularia R.Br. – 79

Dischidia orbicularis Decne.; see Dischidia nummularia R.Br.

Dischidia rafflesiana Wall. – 80

Dischidia spathulata (Bl.); see Dischidia benghalensis Colebr.

Dockrillia calamiforme (Lodd. ex Lindl.) M.A. Clem. & D.L. Jones; see Dockrillia teretifolia (R.Br.) Brieger

Dockrillia teretifolia (R.Br.) Brieger – 97

Dolichandrone longissima K. Sch.; see Dolichandrone spathacea (l.f.) K.Schum.

Dolichandrone rhedii Seem; see Dolichandrone spathacea (l.f.) K.Schum.

Dolichandrone spathacea (l.f.) K.Schum. – 156

Dolichos emarginata Jacq.; see Canavalia maritima Thouars

Dolichos gigantea Willd.; see Mucuna gigantea (Willd.) DC.

Dolichos giganteus Willd.; see Mucuna gigantea (Willd.) DC.

Dolichos littoralis Vahl.; see Canavalia maritima Thouars

Dolichos maritimus Aubl.; see Canavalia maritima Thouars

Dolichos miniatuus Kunth.; see Canavalia maritima Thouars

Dolichos obcordatus Roxb.; see Canavalia maritima Thouars

Dolichos obvatus Schumach. & Thom.; see Canavalia maritima Thouars

Dolichis obtusifolius Lam.; see Canavalia maritima Thouars

Dolichos rosea Sw.; see Canavalia maritima Thouars

Dolichos rotundifolia Vahl.; see Canavalia maritima Thouars

Dondia maritima (L.) Druce; see Suada maritima (L.) Dum.

Dracontium spinosum L.; see Lasia spinosa (L.) Thwaites.

Drymoglossum heterophyllum C. Chr.; see Drymoglossum piloselloides (Linn.) Presl.

Drynaria linnaei Bory.; see Drynaria sparsisora (Desv.) Moore

Drynaria rigidula (Sw.) Bedd. – 13

Drynaria sparsisora (Desv.) Moore – 14

Drynostachyum speciosum Kuhn; see Photinopteris speciosa (Bl.) Persl.

Duraljouvea diluta Palla; see Cyperus compactus Retz.

Duvaljouvea pennata Palla.; see Cyperus javanicus Houtt.

Dysosmia foetida (L.) M. Roem; see Passiflora foetida L.

Ebenus buxifolius (Rottb.) Kuntze; see Diospyros ferrea (Willd.) Bakh.

Ebenus parvifolius Kunth.; see Diospyros ferrea (Willd.) Bakh.

Ehretia ferrea Willd.; see Diospyros ferrea (Willd.) Bakh.

Elaeodendron horizontale Turcz.; see Maytenus emarginata (Willd.) Ding Hou

Elaeodendron subrotundum King.; see Cassine viburnifolia (Juss.) Ding Hou

Elaeodendron viburnifolium Merr.; see Cassine viburnifolia (Juss.) Ding Hou

Elaphoglossum ambyphyllum C.R. Bell. – 9
Elaphoglossum decurrens Moore; see Elaphoglossum amblyphyllum C.R. Bell.
Elaphoglossum obtusifolium Bell.; see Elaphoglossum amblyphyllum C.R. Bell.
Elaterium pinnatum Kurz.; see Blumeodendron tokbrai (Bl.) Kurz.
Elaterium novum Kurz.; see Blumeodendron tokbrai (Bl.) Kurz.
Elcana seminuda Blanco; see Cerbera manghas L.

Eleocharis dulcis (Burm. f.) Henschel – 30
Eleocharis dulcis Trin.; see Eleocharis dulcis (Burm. f.) Henschel
Eleocharis equisetina Presl.; see Eleocharis dulcis (Burm. f.) Henschel
Eleocharis indica Druce; see Eleocharis dulcis (Burm. f.) Henschel

Eleocharis parvula (R. & S.) Link ex Bluff – 31
Eleocharis plantaginea; see Eleocharis dulcis (Burm. f.) Henschel
Eleocharis plantaginae Domin.; see Eleocharis dulcis (Burm. f.) Henschel

Eleocharis spiralis (Rottb.) R. & S. – 32
Eleocharis tuberosa R & S Mant.; see Eleocharis dulcis (Burm. f.) Henschel
Eleocharis variegata (non Presl., nec Kunth.) Merr.; see Eleocharis spiralis (Rottb.) R. & S.
Elytranthe ampullacea G. Don.; see Macrosolen cochinchenensis (Lour.) Tiegh.
Elytranthe cochinchenensis G. Don.; see Macrosolen cochinchenensis (Lour.) Tiegh.
Elytranthe elmeri Merr.; see Macrosolen cochinchenensis (Lour.) Tiegh.
Elytranthe farinosa & rigidia G. Don.; see Dendrophthoe pentandra (L.) Miq.
Embryogonia lucida Blume; see Combretum trifoliatum Vent.

Entada monostachya DC.; see Entada phaseoloides (L.) Merr.

Entada phaseoloides (L.) Merr. – 123
Entada pieraetha DC.; see Entada phaseoloides (L.) Merr.
Entada rumphi Scheff.; see Entada phaseoloides (L.) Merr.
Entada scandens (L.) Benth.; see Entada phaseoloides (L.) Merr.
Eperua decandra Blanco; see Intsia bijuga (Colebr.) Kuntze

Epidendrum moschatum Buch.-Ham.; see Dendrobium moschatum (Buch.-Ham.) Sw.
Epidendrum odoratum Poir.; see Aerides odoratum Reinw. ex Blume

Eragrostis wightiana Benth.; see Myriostachya wightiana (Nees ex Steud.) Hook.f.

Erythrina coralloendrum L. var. orientalis; see Erythrina orientalis (L.) Merr.
Erythrina indica Lam.; see Erythrina orientalis (L.) Merr.
Erythrina indica var. alba W.S. Millard & E. Blatter; see Erythrina orientalis (L.) Merr.
Erythrina indica var. fastigiata Guillaumin; see Erythrina orientalis (L.) Merr.
Erythrina indica var. marmorata (Planchon) B.& M.; see Erythrina orientalis (L.) Merr.
Erythrina indica var. picta (L.) B.&.M.; see Erythrina orientalis (L.) Merr.

Erythrina indica Zoll.; see Erythrina orientalis (L.) Merr.

Erythrina orientalis (L.) Merr. – 195

Erythrina variegata L.; see Erythrina orientalis (L.) Merr.
Erythrina variegata var. orientalis (L.) Merr.; see Erythrina orientalis (L.) Merr.

Eugenia racemosa L.; see Barringtonia racemosa (L.) Spreng.
Eugeniodes cerasifolius O.K.; see Symplocos cerasifolia Griff. ex Clarke
Euonymus cochinchenensis Merr.; see Cassine viburnifolia (Juss.) Ding Hou
Euonymus viburnifolius Merr.; see Cassine viburnifolia (Juss.) Ding Hou

Eurycoma harmandiana Pierre; see Quassia harmandiana (Pierre) Nootboom

Excoecaria agallocha L. – 175

Excoecaria indica (Willd.) Muell. Arg. – 176
Faba marina major Rumph.; see Entada phaseoloides (L.) Merr.

Fagraea crenulata Maingay ex C.B. Clarke – 180
Fagraea fastigiata (non Bl) Ridl.; see Fagraea crenulata Maingay ex C.B. Clarke
Ferolia glaberrima (Hassk.) O. Ktze.; see Atuna racemosa ssp. racemosa Rafin.
Ferolia scabra (Hassk.) O. Ktze.; see Atuna racemosa ssp. racemosa Rafin.
Ferrea guineensis (Hassk.) O. Ktze.; see Atuna racemosa ssp. racemosa Rafin.

Festuca fusca L.; see Diplachne fusca (L.) Beauv.
Feuillea serianthes Kunze; see Serianthes grandiflora Bentham.

Feuillea umbellata (Vahl.) Kunze; see Cathornia umbellatum (M. Vahl.) Kosterm.

Ficus curtipes Corner – 212
Ficus microcarpa L.f. – 213
Ficus obtusifolia Roxb.; see Ficus curtipes Corner
Ficus retusiformis H. Lév.; see Ficus microcarpa L.f.

Fimbristylis laevisima Steud.; see Fimbristylis cymosa R. Br.
Fimbristylis albescens Steud.; see Fimbristylis polytrichoides (Retz.) R. Br.
Fimbristylis arvensis Vahl.; see Fimbristylis sieberiana R. Br.
Fimbristylis atollens St. John; see Fimbristylis cymosa R. Br.
Fimbristylis ciliolata Steud.; see Fimbristylis cymosa R. Br.

Fimbristylis cymosa R. Br. – 33
Fimbristylis cystrophylla Miq.; see Fimbristylis ferruginea (L.) Vahl
Fimbristylis dasyphylla Miq.; see Fimbristylis sericea R. Br.
Fimbristylis decorata Nees & Mey. ex Nees; see Fimbristylis sericea R. Br.

Fimbristylis ferruginea (L.) Vahl – 34
Fimbristylis ferruginea (non Vahl.) Decne; see Fimbristylis sieberiana R. Br.
Fimbristylis ferruginea var. foliata Benth.; see Fimbristylis sieberiana R. Br.
Fimbristylis ferruginea var. sieberiana Boeck.; see Fimbristylis sieberiana R. Br.
Fimbristylis glomerata Nees ex Kunth.; see Fimbristylis cymosa R. Br.
Fimbristylis juncea (non R. & S.) Boeck; see Fimbristylis polytrichoides (Retz.) R. Br.
Fimbristylis junciformis var. latifolia (non Clarke) Camus; see Fimbristylis sericea R. Br.

Fimbristylis longispicata (non Steud.) Camus; see Fimbristylis ferruginea (L.) Vahl

Fimbristylis marginata Labill.; see Fimbristylis ferruginea (L.) Vahl
Fimbristylis paucispicata F. v. M.; see Fimbristylis sieberiana R. Br.
Fimbristylis polytrichoides (non R. BR.) Ridl.; see Fimbristylis ferruginea (L.) Vahl

Fimbristylis polytrichoides (Retz.) R. Br. – 35
Fimbristylis pygnocephala Hillebr.; see Fimbristylis cymosa R. Br.
Fimbristylis rigida Kunth.; see Fimbristylis cymosa R. Br.

Fimbristylis sericea R. Br. – 36

Fimbristylis sieberiana R. Br. – 37
Fimbristylis spathacea Roth.; see Fimbristylis cymosa R. Br.
Fimbristylis subbulbosa Boeck.; see Fimbristylis polytrichoides (Retz.) R. Br.
Fimbristylis trispicata Steud.; see Fimbristylis ferruginea (L.) Vahl
Fimbristylis tristachya R. Br.; see Fimbristylis sieberiana R. Br.
Fimbristylis varburgii K. Sch.; see Fimbristylis cymosa R. Br.

Finlaysonia maritima Backer; see Finlaysonia obovata Wall.

Finlaysonia obovata Wall. – 103
Flagellaria indica L. – 113
Flagellaria indica var. gracilis Backer; see Flagellaria indica L.
Flagellaria indica var. minor (Bl.) Koord.; see Flagellaria indica L.

Palmijuncus laevis Rumph.; see Flagellaria indica L.
Flagellaria minor Bl.; see Flagellaria indica L.
Flagellaria philippinensis Elmer; see Flagellaria indica L.
Fragarius niger Rumph.; see Melastoma malabathricum var. malabathricum L.
Funis convolutus Rumph.; see Aganope heptaphylla (L.) Polhill
Galedupa indica Lam.; see Pongamia pinnata (L.) Pierre
Galedupa maculata Blanco; see Pongamia pinnata (L.) Pierre
Galedupa pinnata Taub.; see Pongamia pinnata (L.) Pierre
Garcinia malabarica Desr.; see Diospyros malabarica (Descr.) Kostel.
Gardenia elata Ridl.; see Gardenia tubifera Wall.
Gardenia gymnifera; see Gardenia tubifera Wall.
Gardenia lucida Roxb.; see Gardenia tubifera Wall.
Gardenia resinifera Korth.; see Gardenia tubifera Wall.
Gardenia speciosa (Hk.) Hk. f.; see Gardenia tubifera Wall.
Gardenia tubifera Wall. – 240
Gela lanceolata Lour.; see Acronychia pedunculata (L.) Miq.
Gelala litorea Rumphius (=type)
Getonia floribunda Roxb.; see Calycopteris floribunda (Roxb.) Lamk
Glabaria tersa Linné; see Brownlowia tersa (L.) Koster.
Glochidion litorale Bl. – 177
Glochidion littoralis; see Glochidion litorale Bl.
Gluta coarctata Hook.; see Gluta velutina Bl.
Gluta velutina Bl. – 140
Gmella trifolia Lour.; see Allophylus cobbe (L.) Raeusch.
Goniophlebium rigidulum Moore; see Drynaria rigidula (Sw.) Bedd.
Grammitis heterocarpa Bl.; see Selliguea heterocarpa Blume
Grammitis involuta Don.; see Loxogramma involuta Presl.
Granadilla foetida (L.) Gaertn.; see Passiflora foetida L.
Granatum litoreum parvifolium Rumph.; see Xylocarpus moluccensis (Lamk) M. Roem.
Granatum littoreum parvifolium Rumph.; see Xylocarpus granatum Koen.
Granatum moluccensis (Lam.) Kuntze; see Xylocarpus moluccensis (Lamk) M. Roem.
Granatum obovatum (Blume) Kunze; see Xylocarpus granatum Koen.
Grevelia meyenniana Walp.; see Kleinhovia hospita L.
Guarea oblongifolia Griff.; see Xylocarpus granatum Koen.
Guettarda speciosa Linn. – 241
Guettarda vernicularis Blanco; see Guettarda speciosa Linn.
Guilandina bonduc L.; see Caesalpinia bonduc (L.) Roxb.
Guilandina bonducella L.; see Caesalpinia crista L.
Guilandina nuga L.; see Caesalpinia crista L.
Gymnanthera nitida R. Br.; see Gymnanthera oblonga (Burm. f) P.S. Green
Gymnanthera oblonga (Burm. f) P.S. Green – 104
Gymnanthera puludosa (Bl.) K.Schum.; see Gymnanthera oblonga (Burm. f) P.S. Green
Gymnogramma heterocarpa Bl.; see Selliguea heterocarpa Blume
Gymnogramma involuta Hook.; see Loxogramma involuta Presl.
Gymnosporia ambigua Vidal.; see Maytenus emarginata (Willd.) Ding Hou
Gymnosporia emarginata Thw.; see Maytenus emarginata (Willd.) Ding Hou
Gymnosporia inermis Merr. & Perry.; see Maytenus emarginata (Willd.) Ding Hou
Gymnosporia montana Benth.; see Maytenus emarginata (Willd.) Ding Hou
Gymnosporia spinosa (Blanco) Merr. & Rolfe.; see Maytenus emarginata (Willd.) Ding Hou
Gyrosorium cinnamomeus; see Pyrrosia longifolia (Burm.) Morton.
Gyrosorus fissum Bak.; see Pyrrosia longifolia (Burm.) Morton.
Haemanthus pubescens auct. non. L. f : Blanco; see Crinum asiaticum L.
Halocnemum cinereum F.v.Muell. – 61
Halosarcia indica (Willd.) Moq.; see Salicornia indica Willd.
Helicteres apetala Blanco; Heritiera littoralis Dryand.
Heptapleurum avene sensu King; see Schefflera lanceolata Ridl.

Heritiera attenuata; see Brownlowia tersa (L.) Kosterm.

Heritiera fomes Buch. Ham. – 259

Heritiera globsosa Kostermans – 260

Heritiera lanceolata; see Brownlowia tersa (L.) Kosterm.

Heritiera littoralis Dryand. – 261

Heritiera littoralis Dryand. ex W.Ait.; see Heritiera littoralis Dryand.

Heritiera minor Lam.; see Heritiera littoralis Dryand.

Hernandezia sonora (L.) Hoffman; see Hernandia ovigera L.

Hernandia guianensis Aubl.; see Hernandia ovigera L.

Hernandia javanica Tuyama; see Hernandia ovigera L.

Hernandia nymphaefolia (Presl.); see Hernandia ovigera L.

Hernandia ovigera L. – 184

Hernandia papuana C.T. White; see Hernandia ovigera L.

Hernandia peltata Meisn.; see Hernandia ovigera L.

Heymassoli inermis Aubl.; see Ximenia americana L.

Heymassoli spinosa Aubl.; see Ximenia americana L.

Hibiscus abutiloides Willd.; see Hibiscus tiliaceus L.

Hibiscus bacciferus Forster; see Thespesia populnea (L.) Soland. ex Correa

Hibiscus celebus Koord.; see Hibiscus tiliaceus L.

Hibiscus cuspidatus Sol. ex Park.; see Hibiscus tiliaceus L.

Hibiscus elatus (non Sw.) Miq.; see Hibiscus tiliaceus L.

Hibiscus hastatus L.; see Hibiscus tiliaceus L.

Hibiscus macrophyllus (Bl.) Oken; see Thespesia populnea (L.) Soland. ex Correa

Hibiscus populneus L.; see Thespesia populnea (L.) Soland. ex Correa

Hibiscus similis Blume; see Hibiscus tiliaceus L.

Hibiscus tiliaceus L. – 203

Hibiscus tricuspis Sol. ex Park.; see Hibiscus tiliaceus L.

Hieraea reclinata Blanco; see Tristellateia australasiae A. Rich.

Hillia longiflora Blanco; see Macrosolen cochinchenensis (Lour.) Tiegh.

Hippocratea hasseltiana Miq.; see Loeseneriella macrantha (Korth.) A.C. Smith

Hippocratea macrantha Korth.; see Loeseneriella macrantha (Korth.) A.C. Smith

Hippocratea trilobulata Ridl.; see Loeseneriella macrantha (Korth.) A.C. Smith

Hippuris indica Lour.; see Eleocharis dulcis (Burm. f.) Henschel

Hiraea obscura Blume; see Ryssopterys timoriensis (DC.) Jussieu

Hippuris ova Blume; see Ryssopterys timoriensis (DC.) Jussieu

Homalium gigianum Laut.; see Lophophyxis maingayi Hook.f.

Horsfeldia acuminata Merr.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia anklaal Kaneh.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia congestiflora A.C. Sm.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia irya (Gaertn.) Warb. – 215

Horsfeldia labillardieri Warb.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia lenmanniana (A.DC.) Warb.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia nuna Kaneh.; see Horsfeldia irya (Gaertn.) Warb.

Horsfeldia subglobosa (Miq.) Warb.; see Horsfeldia irya (Gaertn.) Warb.

Hoya hookeriana Wight; see Hoya parasitica (Roxb.) Wall. ex Wight

Hoya parasitica (Roxb.) Wall. ex Wight – 81

Humata angustata (Wall.) J.Sm.; see Pachypleuria angustata (Wall. ex Hook. & Grev.) J. Sm.
Humata angustata (Wall. ex Hook. & Grev.) J.Sm.; see Pachypleuria angustata (Wall. ex Hook. & Grev.) J.Sm.
Humata parvula (Wall.) Mett.; see Davallia parvula Wall. ex Hook. & Grev.
Huperzia carinata (Desv. ex Poir.) Trevis.; see Lycopodium carinatum Desv.
Hydnophytum amboinense Becc.; see Hydnophytum formicarum Jack
Hydnophytum formicarum Jack – 101
Hymenochaeta lacustris (L.) Nakai; see Scirpus lacustris L.
Hymenophyllum holochilum (Bosch) C. Chr. – 8
Hymenophyllum smithii Hook; see Hymenophyllum holochilum (Bosch) C. Chr.
Hypserpa montilfera; see Hypserpa polyanandra Becc.
Hypserpa polyanandra Becc. – 129
Hypserpa raapii; see Hypserpa polyanandra Becc.
Hypserpa selebica; see Hypserpa polyanandra Becc.
Ichthyocotonos litoarea Rumph.; see Excoecaria indica (Willd.) Muell. Arg.
Ilex cymosa Blume – 144
Ilex maingayi Hook f. – 145
Ilex singaporenana Wall.; see Ilex cymosa Blume
Inga corcondiana DC.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Inga pterocarpa DC.; see Peltophorum pterocarpum (DC.) K. Heyne
Inga umbellata (Vahl.) Willd.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Inocarpus edulis J.R. & G. Forst.; see Inocarpus fagifer (Parkinson) Fosb.
Inocarpus fagifer (Parkinson) Fosb. – 196
Inocarpus fagiferus; see Inocarpus fagifer (Parkinson) Fosb.
Inodaphnis lanceolata Miq.; see Inocarpus fagifer (Parkinson) Fosb.
Intsia amboinensis Thouars.; see Intsia bijuga (Colebr.) Kuntze
Intsia bijuga (Colebr.) Kuntze – 197
Intsia madagascariensis Thouars ex DC; see Intsia bijuga (Colebr.) Kuntze
Intsia retusa Colebr.; see Intsia bijuga (Colebr.) Kuntze
Ipomoea alba L.; see Ipomoea tuba Schlechtend.
Ipomoea biloba Forsk.; see Ipomoea pes-capre (L.) Sweet.
Ipomoea denticulata Choisy; see Ipomoea gracilis R. Br.
Ipomoea gracilis R. Br. – 64
Ipomoea grandiflora Hallier f.; see Ipomoea tuba Schlechtend.
Ipomoea macrantha Roem. & Schult.; see Ipomoea tuba Schlechtend.
Ipomoea maritima R.Br.; see Ipomoea pes-capre (L.) Sweet.
Ipomoea maxima (L.f.) Don ex Sweet – 65
Ipomoea littoralis BL.; see Ipomoea gracilis R. Br.
Ipomoea pes-caprae Roth.; see Ipomoea pes-capre (L.) Sweet.
Ipomoea pes-capre (L.) Sweet. – 66
Ipomoea sepiaria Koen. ex Roxb.; see Ipomoea maxima (L.f.) Don ex Sweet
Ipomoea subtrilobans Miq.; see Ipomoea maxima (L.f.) Don ex Sweet
Ipomoea tuba Schlechtend. – 67
Ipomoea verrucosa BL.; see Ipomoea maxima (L.f.) Don ex Sweet
Ipomoea violacea L.; see Ipomoea tuba Schlechtend.
Iridochis iridifolia (Lindl.) Kuntze; see Oberonia iridifolia Lindl.
Iriha cymosa O.K.; see Fimbristylis cymosa R. Br.
Iriha ferruginea O.K.; see Fimbristylis ferruginea (L.) Vahl
Iriha glomerata Nees; see Fimbristylis cymosa R. Br.
Iriha polytrichoides O.K.; see Fimbristylis polytrichoides (Retz.) R. Br.
Iriha sericea O.K.; see *Fimbristylis sericea* R. Br.
Ischnostemma carnosum (Schltr.) Merr. & Rolfe; see *Oxystelma carnosum* R. Br.
Isolepis haenkei Presl.; see *Fimbristylis cymosa* R. Br.
Isoloma lanuginosa Sm.; see *Nephrolepis acutifolia* (Desv.) H. Christ.
Ixora manila Blanco; see *Scyphiphora hydrophyllacea* Gaertn. f.

Ixora timorensis Decne – 242
Jambohifera pedunculata L.; see *Acronychia pedunculata* (L.) Miq.
Jasminum litoreaum Rumph.; see *Clerodendrum inerme* (L.) Gaertn.
Jasminum oblongum Burm.; see *Gynnanthera oblonga* (Burm. f) P.S. Green
Kambalā apetala Rafin.; see *Sonneratia apetala* Buch.-Ham.

Kandelia candel (L.) Druce – 236
Kandelia rheedei W. & A.; see *Kandelia candel* (L.) Druce
Kanilia caryophylloides Bl.; see *Bruguiera cylindrica* (L.) Bl.
Kanilia parviflora Bl.; see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Kerinozoma cheribon Steud.; see *Xerochloa imberbis* R. Br.
Kerinozoma collina Zoll.; see *Xerochloa imberbis* R. Br.
Kerinozoma littoralis Zoll.; see *Xerochloa imberbis* R. Br.
Kerinozoma suraboja Steud.; see *Xerochloa imberbis* R. Br.

Kleinhovia hospita L. – 262
Kleinhovia serrata Blanco; see *Kleinhovia hospita* L.
Languncularia vulgare Rumph.; see *Vitex ovata* Thunb.
Languncularia purpurea Gaud.; see *Lumnitzera littorea* (Jack) Voigt.
Languncularia rosea Gaud.; see *Lumnitzera racemosa* Willd.
Lasia aculeata Lour.; see *Lasia spinosa* (L.) Thwaites.
Lasia crassifolia Engl.; see *Lasia spinosa* (L.) Thwaites.
Lasia descisens S.chott.; see *Lasia spinosa* (L.) Thwaites.
Lasia heterophylla Schott.; see *Lasia spinosa* (L.) Thwaites.
Lasia roxburgii Griff.; see *Lasia spinosa* (L.) Thwaites.

Lasia spinosa (L.) Thwaites. – 60
Lasia zollingeri Schott.; see *Lasia spinosa* (L.) Thwaites.

Lasiosoma auct. non Schreber *Myrmecodia echinata*; see *Myrmecodia tuberosa* DC.
Leptochloa neesii (Thw.) Bth. – 44
Leptochloa panicea Retz.; see *Leptochloa neesii* (Thw.) Bth.
Leptochloa polystachya Retz.; see *Leptochloa neesii* (Thw.) Bth.
Leptochloa wightiana Nees ex Steud.; see *Myriostachya wightiana* (Nees ex Steud.) Hook.f.
Leptocionium affine v.d. B.; see *Hymenophyllum holochilum* (Bosch) C. Chr.
Leptocionium holochilum (Bosch) Bosch; see *Hymenophyllum holochilum* (Bosch) C. Chr.
Levchenia maritima (L.) Kuntze.; see *Suaeda maritima* (L.) Dum.
Leucostegia parvula J. Sm.; see *Davallia parvula* Wall. ex Hook. & Grev.
Licuala horrida; see *Licuala spinosa* Wurmb.
Licuala spinosa Poir.; see *Licuala spinosa* Wurmb.
Licuala spinosa Thunb.; see *Licuala spinosa* Wurmb.
Licuala spinosa var. *cochinchinensis* Becc.; see *Licuala spinosa* Wurmb.

Licuala spinosa Wurmb. – 134
Lignum equinum Rumph.; see *Dolichandrone spathacea* (l.f.) K.Schum.
Limacia monilifera; see *Hyperesia polyandra* Becc.
Lindsaya acutifolia Desv.; see *Nephrolepis acutifolia* (Desv.) H. Christ.
Lindsaya lanuginosa Wall. ex Hook.; see *Nephrolepis acutifolia* (Desv.) H. Christ.
Litsea tersa; see Brownlowia tersa (L.) Kosterm.
Livistona cochinensis; see Corypha saribus Lour.
Livistona saribus (Lour.) Merr. ex Chev.; see Corypha saribus Lour.
Lobelia frutescens Mill.; see Scaevola taccada (Gaertn.) Roxb.
Lobelia plumieri (non L.) Burm.; see Scaevola taccada (Gaertn.) Roxb.
Lobelia taccada Gaertn.; see Scaevola taccada (Gaertn.) Roxb.
Locandia glandulifera Pierre; see Quassia indica (Gaertn.) Nooteboom
Locandia harmandii Pierre; see Quassia harmandiana (Pierre) Nooteboom
Locandia indica O.K.; see Quassia indica (Gaertn.) Nooteboom
Locandia madagascariensis O.K.; see Quassia indica (Gaertn.) Nooteboom
Locandia mekongensis Pierre; see Quassia indica (Gaertn.) Nooteboom
Locandia merguensis Pierre; see Quassia indica (Gaertn.) Nooteboom
Locandia pendula Pierre; see Quassia indica (Gaertn.) Nooteboom
Loeseneriella macrantha (Korth.) A.C. Smith – 109
Locaria mollis Zoll.; see Photinopteris speciosa (Bl.) Persl.
Lomaria speciosa Bl.; see Photinopteris speciosa (Bl.) Persl.
Lomaria scandens (Sw.) Willd.; see Stenochlaena palustris (Burm. f.) Bedd.
Loranthus ampullaceus Roxb.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus carinatulus D.C.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus cochinchenis Lour.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus crassus Hook., f.; see Dendrophthoe pentandra (L.) Miq.
Loranthus cycnei-sinus; see Amyema mackayense (Blakely) Danser
Loranthus farinaceus Griff.; see Dendrophthoe pentandra (L.) Miq.
Loranthus flavus Bl.; see Dendrophthoe pentandra (L.) Miq.
Loranthus globosus Roxb.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus mackayensis Blakely; see Amyema mackayense (Blakely) Danser
Loranthus obovatus Schröt. & Back.; see Amyema gravis Danser
Loranthus oloidoides D.C.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus pallens D.C.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus patulus Jack.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus pentandra L.; see Dendrophthoe pentandra (L.) Miq.
Loranthus shawianus Elm.; see Dendrophthoe pentandra (L.) Miq.
Loranthus sphaecarpus Bl.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus sphaerocephalus Wurth.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus subglobosus D.C.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus subumbellatus Bl.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus trinacteatus Ridl.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus venosus Bl.; see Dendrophthoe pentandra (L.) Miq.
Loranthus viridiflorus Wall.; see Macrosolen cochinchenis (Lour.) Tiegh.
Loranthus zimmermanni Warb.; see Dendrophthoe pentandra (L.) Miq.
Loxogramma involuta Presl. – 15
Lumnitzera coccinea W. & A.; see Lumnitzera littorea (Jack) Voigt.
Lumnitzera littorea (Jack) Voigt. – 167
Lumnitzera purpurea Presl.; see Lumnitzera littorea (Jack) Voigt.
Lumnitzera racemosa var. lutea Gaud.; see Lumnitzera racemosa Willd.
Lumnitzera racemosa var. pubescens Koord. & Vahl.; see Lumnitzera racemosa Willd.
Lumnitzera racemosa var. racemosa Willd.; see Lumnitzera racemosa Willd.
Lumnitzera racemosa Willd. – 168
Lumnitzera rosea Presl.; see Lumnitzera racemosa Willd.
Lycopodium carinatum Desv. – 10
Lycophodium laxum Spring.; see Lycopodium carinatum Desv.
Lythrum pemphis L.; see Pemphis acidula J.R. & G. Forst.
Maba buxifolia (Rottb.) Juss.; see Diospyros ferrea (Willd.) Bakh.
Maba buxifolia Pers.; see Diospyros ferrea (Willd.) Bakh.
Maba cumingiana A.DC.; see Diospyros maritima Blume
Maba ebenus Spreng.; see Diospyros ferrea (Willd.) Bakh.
Maba ferrea (Willd.) Aubév.; see Diospyros ferrea (Willd.) Bakh.
Maba guineensis (Schumach. & Thonn.) A.DC.; see Diospyros ferrea (Willd.) Bakh.
Maba papuana (R.Br.) Kosterm.; see Diospyros ferrea (Willd.) Bakh.
Maba sneathmannii A.DC.; see Diospyros ferrea (Willd.) Bakh.
Macrolobium anboinensis Teijsm. ex Hassk.; see Intsia bijuga (Colebr.) Kuntze
Macrolobium bijugum Colebr.; see Intsia bijuga (Colebr.) Kuntze
Macrosonen cochinichinensis (Lour.) Tiegh. – 87
Macrosonen triracteatus Dans.; see Macrosolen cochinichinensis (Lour.) Tiegh.
Macrosonen aloeifolium; see Dendrobium aloeifolium (Bl.) Rchb.f.
Malapoenna tersa; see Brownlowia tersa (L.) Kosterm.
Malaspinia lamifolia Presl.; see Aegiceras corniculatum (L.) Blanco
Malaxis iridifolia (Lindl.) Rchb. f.; see Oberonia iridifolia Lindl.
Mallothus tokbrai (Bl.) Muell.; see Blumeodendron tokbrai (Bl.) Kurz.
Mallothus vernicosus (Hook. f.) Gage; see Blumeodendron tokbrai (Bl.) Kurz.
Malvaviscus populneus (L.) Gaertn.; see Thespesia populnea (L.) Soland. ex Correa
Mannea asiatica Linne; see Barringtonia asiatica (L.) Kurz
Mangifera xylocarpa Laut.; see Merrilliodendron megacarpum (Hemsl.) Sleum.
Mangium candelarium Rumph.; see Rhizophora apiculata Bl. and Rhizophora mucronata Lam.
Mangium caryophylloides Rumph.; see Bruguiera cylindrica (L.) Bl. and Ceriops tagal (Perr.) C.B.Rob.
Mangium caseolare album Rumph.; see Sonneratia alba J.E. Smith
Mangium caseolare rubrum Rumph.; see Sonneratia caseolaris (L.) Engl.
Mangium celsum Rumph.; see Bruguiera gymnorrhiza (L.) Lamk.
Mangium digitatum Rumph.; see Bruguiera sexangula (Lour.) Poir.
Mangium ferreum Rumph.; see Pemphis acidula J.R. & G. Forst.
Mangium minus Rumph.; see Bruguiera cylindrica (L.) Bl. and Bruguiera gymnorrhiza (L.) Lamk.
Mangium procellanicum Rumph.; see Pemphis acidula J.R. & G. Forst.
Manungala pendula Blanco; see Quassia indica (Gaertn.) Nootboom
Mariscus compactus Boldingh; see Cyperus compactus Retz.
Mariscus dilutus Nees; see Cyperus compactus Retz.
Mariscus javanicus Merr. & Metc; see Cyperus javanicus Houtt.
Mariscus microcephalus Presl.; see Cyperus compactus Retz.
Mariscus pennatus Domin.; see Cyperus javanicus Houtt.
Mariscus stuppeus Merr.; see Cyperus javanicus Houtt.
Marquartia leucantha; see Pandanus tectorius Sol
Mauduita penduliflora Comm.; see Quassia indica (Gaertn.) Nooteboom

Maytenus enarginata (Willd.) Ding Hou – 164
Meiena axillaris Rafin.; see Dendrophthoe pentandra (L.) Miq.

Melaleuca cajuputi Roxb. – 221
Melaleuca cajuputi subsp. cajuputi Roxb.; see Melaleuca cajuputi Roxb.
Melaleuca cajuputi subsp. cumingiana (Turcz.) Barlow; see Melaleuca cajuputi Roxb
Melaleuca leucadendra L.; see Melaleuca cajuputi Roxb
Melaleuca leucadendron (sensu lato); see Melaleuca cajuputi Roxb
Melanium fruticosum Spreng.; see Pemphis acidula J.R. & G. Forst.

Melastoma adpressum Wall., ex Triana; see Melastoma malabathricum var. malabathricum L.
Melastoma affine D.Don.; see Melastoma malabathricum var. malabathricum L.
Melastoma asperum Bl.; see Melastoma malabathricum var. malabathricum L.
Melastoma baumianum Naud.; see Melastoma malabathricum var. malabathricum L.
Melastoma candidum D.Don.; see Melastoma malabathricum var. malabathricum L.
Melastoma constrictum Blume; see Pachycentria constricta (Bl.) Blume
Melastoma imbricatum var. longipes Craib.; see Melastoma malabathricum var. malabathricum L.
Melastoma malabathricum var. grandiflorum Craib.; see Melastoma malabathricum var. malabathricum L.

Melastoma malabathricum var. malabathricum L. – 205
Melastoma malabathricum var. polyanthum (Bl.) Benth.; see Melastoma malabathricum var. malabathricum L.
Melastoma oliganthum Naud.; see Melastoma malabathricum var. malabathricum L.
Melastoma polyanthemum (Bl.) G.Don.; see Melastoma malabathricum var. malabathricum L.
Melastoma polyanthum Blume; see Melastoma malabathricum var. malabathricum L.
Melastoma pusillum Bl.; see Melastoma malabathricum var. malabathricum L.
Melastoma royeni Bl.; see Melastoma malabathricum var. malabathricum L.

Melastoma saigonense (Kuntze) Merr. – 206
Melastoma scabrum Ridl.; see Melastoma malabathricum var. malabathricum L.
Melastoma setigerum Bl.; see Melastoma malabathricum var. malabathricum L.
Melastoma tondanense Bl.; see Melastoma malabathricum var. malabathricum L.
Melastoma villosum Sims [non Aublet]; see Melastoma saigonense (Kuntze) Merr.
Menispermum cocculus L.; see Anamirta cocculus L. Wight & Arn.
Menispermum lacunosum Lamk.; see Anamirta cocculus L. Wight & Arn.
Meringium holochilum (Bosch) Copel.; see Hymenophyllum holochilum (Bosch) C. Chr.

Merope angulata (Willd.) Swingle – 247
Merope spinosa; see Merope angulata (Willd.) Swingle

Merrilliodendron megacarpum (Hemsl.) Sleum. – 185
Merrilliodendron rotense Kanehe; see Merrilliodendron megacarpum (Hemsl.) Sleum.
Millania rupstre Zipp.; see Pemphis acidula J.R. & G. Forst.
Millettia pinnata; see Pongamia pinnata (L.) Pierre
Mimosocarpa corcondiana Roxb.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Mimosocarpa scandens L.; see Entada phaseoloides (L.) Merr.
Mimosocarpa umbellata Vahl.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Mischocarpus lessertianus Ridley ; see Mischocarpus sondaicus Blume
Mischocarpus oppositifolius auct. non (Lour.) Merr. ; see Mischocarpus sondaicus Blume
Mischocarpus pyriformis auct. non Radlk. ; see Mischocarpus sondaicus Blume

Mischocarpus sondaicus Blume – 250
Mischocarpus vulcanicus Elmer ex Merrill; see Mischocarpus sondaicus Blume
Monetia barlerioides (non L’Hér) Miq.; see Azima sarmentosa (Bl.) B. & H.
Monetia sarmentosa Baill.; see Azima sarmentosa (Bl.) B. & H.
Monosoma littorata Griff.; see Xylocarpus granatum Koen.
Morinda citrifolia Hunter; see Morinda citrifolia L.
Morinda citrifolia L. – 243b
Mucuna gigantea (Willd.) DC. – 124
Myoporum bontoioides (Siebold & Zucc.) A. Gray – 214
Myriostachya wightiana (Nees ex Steud.) Hook.f. – 45
Myriostachya wightiana var. longispiculata Hook.f.; see Myriostachya wightiana (Nees ex Steud.) Hook.f.
Myriostachya wightiana var. wightiana; see Myriostachya wightiana (Nees ex Steud.) Hook.f.
Myristica albertisii Warb.; see Myristica hollrungii Warb.
Myristica euryocarpa Warb.; see Myristica hollrungii Warb.
Myristica globularia Blume; see Horsfieldia irya (Gaertn.) Warb.
Myristica heterophylla K. Schum; see Myristica hollrungii Warb.
Myristica hollrungii Warb. – 216
Myristica irya Gaertn.; see Horsfieldia irya (Gaertn.) Warb.
Myristica javanica Blume; see Horsfieldia irya (Gaertn.) Warb.
Myristica lemanniana A. DC.; see Horsfieldia irya (Gaertn.) Warb.
Myristica micrantha Wall.; see Horsfieldia irya (Gaertn.) Warb.
Myristica sphaerocarpa Wall.; see Horsfieldia irya (Gaertn.) Warb.
Myristica subgloboosa Miq.; see Horsfieldia irya (Gaertn.) Warb.
Myristica vriesiana Miq.; see Horsfieldia irya (Gaertn.) Warb.
Myrmecodia armata; see Myrmecodia tuberosa DC.
Myrmecodia rumphii Becc.; see Myrmecodia tuberosa DC.
Myrmecodia tuberosa DC. – 102
Myrmecophila sinuosa (Wall. ex Hook.) Nakai ex Hito – 16
Myrobalanus catappa Kuntze; see Terminalia catappa L.
Myrsine avenis (Blume) Mez.; see Rapanea porteriana Wall. ex A. DC.
Myrsine porteriana Wall. ex A. DC.; see Rapanea porteriana Wall. ex A. DC.
Myrsine umbellulata A. DC.; see Rapanea porteriana Wall. ex A. DC.
Nageia polystachyus (R.Br. ex Endl.); see Podocarpus polystachyus R.Br. ex Endl.
Nageia thevetiaefolia (Blume) F.v.M.; see Podocarpus polystachyus R.Br. ex Endl.
Najas browniana (non R.Br.) Miq.; see Najas indica (Willd.) Cham
Najas falciculata A. Braun.; see Najas indica (Willd.) Cham
Najas foveolata A. Br.; see Najas indica (Willd.) Cham
Najas indica (Willd.) Cham. – 70
Najas intermedia Gorski; see Najas marina L. var. marina
Najas kingii Kingi; see Najas indica (Willd.) Cham
Najas lacerata Rendle; see Najas indica (Willd.) Cham
Najas lobata Blanco; see Najas indica (Willd.) Cham
Najas major All.; see Najas marina L. var. marina
Najas marina var. angustifolia et intermedia Rendle; see Najas marina L. var. marina
Najas marina L. var. marina – 71
Najas minor var. indica A. Br.; see Najas indica (Willd.) Cham
Najas palustris Blanco; see Najas indica (Willd.) Cham
Najas terufolia (non R.Br.) Miq.; see Najas indica (Willd.) Cham
Neeea altissima (non BL.) F. Vill.; see Camptosetom philippinense (Vidal) Becc.
Neottoperis maritania Fée; see Asplenium nidus Linn.
Neottoperis musaefolia J. Sm.; see Asplenium nidus Linn.
Neottoperis nidus (L.) J. Sm.; see Asplenium nidus Linn.
Neottoperis rigidia Fée; see Asplenium nidus Linn.
Nephopepis actutifolia (Desv.) H. Christ. – 11
Neuroplatyceros biformis Fée.; see Platycerium coronarium (Koenig.) Desv.
Nidus formicarium niger Rumph.; see Hydnophytum formicarium Jack
Nidus formicarium ruber Rumph.; see Myrmecodia tuberosa DC.
Niota commersonii Pers.; see Quassia indica (Gaertn.) Nooteboom
Niota lamarchiana Bl.; see Quassia indica (Gaertn.) Nooteboom
Niota lucida Wall.; see Quassia indica (Gaertn.) Nooteboom
Niota pentapetala Poir.; see Quassia indica (Gaertn.) Nooteboom
Niota polyandra; see Browallia tersa (L.) Kosterm.
Niota tetrapetala Poir.; see Quassia indica (Gaertn.) Nooteboom
Niphobolus acrostichoides (G. Forst.) A.Richt.; see Pyrosia longifolia (Burm.) Morton.
Niphobolus cinnamomeus; see Pyrosia longifolia (Burm.) Morton.
Niphobolus fissus Bl.; see Pyrosia longifolia (Burm.) Morton.
Niphobolus longifolium Spr.; see Pyrosia longifolia (Burm.) Morton.
Niphobolus puberulus Bl.; see Pyrosia longifolia (Burm.) Morton.
Nothopanax macgillivrayi Seem.; see Polyscias macgillivrayi (Seem.) Harms.
Notochaena piloselloides Kaulf.; see Drymoglossum piloselloides (Linn.) Presl.
Novella litorea Rumph.; see Thespesia populnea (L.) Soland. ex Correa
Novella nigra Rumph.; see Cordia subcordata Lam.
Novella repens; see Hibiscus tiliaceus L.
Novella rubra; see Hibiscus tiliaceus L.
Nugae silvarum Rumph.; see Caesalpinia crista L.
Nummularia lactea minor Rumph.; see Dischidia nummularia R.Br.
Nyctanthes hirsuta Linn.; see Guettarda speciosa Linn.
Nypa fruticans Thunb.; see Nypa fruticans Wurmb.

Nypa fruticans Wurmb. – 135
Oberonia bertoldii; see Oberonia laeta J.J.S.
Oberonia gracillima; see Oberonia laeta J.J.S.
Oberonia iridifolia Lindl. – 98
Oberonia laeta J.J.S. – 99
Oberonia rhizophoreti Schltr. – 100
Oberonia rhizophoreti J.J. Sm.; see Oberonia rhizophoreti Schltr
Ochthocharis attenuata Backh. f.; see Ochthocharis bornensis Bl.
Ochthocharis borneensis (sic); see Ochthocharis bornensis Bl.

Ochthocharis bornensis Bl. – 207
Ochthocharis buruensis T. & B.; see Ochthocharis bornensis Bl.
Ochthocharis javanica (hautd Bl.); see Ochthocharis bornensis Bl.
Oetosis piloselloides O.K.; see Drymoglossum piloselloides (Linn.) Presl.

Olax imbricata Roxb. – 223
Olax laxiflora Ridl.; see Olax imbricata Roxb.
Olax multiflora A. Rich.; see Olax imbricata Roxb.
Olax multiflora Ridl.; see Olax imbricata Roxb.
Olax rosea Ridl.; see Olax imbricata Roxb.
Olax seminifera Valet.; see Olax imbricata Roxb.
Olax wightiana Wall. ex Wight & Arn.; see Olax imbricata Roxb.
Olfersia blumeana Presl.; see Elaphoglossum amblyphyllum C.R. Bell.
Olfersia decurrens Presl.; see Elaphoglossum amblyphyllum C.R. Bell.
Olfersia scandens (Willd.) C. Presl.; see Stenochlaena palustris (Burm. f.) Bedd.
Olus calappoides Rumph.; see Cycas rumphii Miq.
Olus crepitans Rumph.; see Finlaysonia ovata Wall.
Oncosperma filamentosa Blume; see Oncosperma tigillarium (Jack.) Ridl.
Oncosperma filamentosum Blume; see Oncosperma tigillarium (Jack.) Ridl.

Oncosperma tigillarium (Jack.) Ridl. – 136

Oncospernum tigillaria (Jack.) Ridl.; see Oncosperma tigillarium (Jack.) Ridl.
Onoclea scandens Sw.; see Stenochlaena palustris (Burm. f.) Bedd.
Onychium subulatum Bl.; see Dendrobium subulatum (Bl.) Lindl.
Oporum serra; see Dendrobium aloefolium (Bl.) Rchb.f.
Ornitrophe integrifolia Willd.; see Allophylus cobbe (L.) Raeusch.
Ornitrophe glabra Roxb.; see Allophylus cobbe (L.) Raeusch.
Ornitrophe repanda Roxb.; see Allophylus cobbe (L.) Raeusch.
Ornitrophe villosa Roxb.; see Allophylus cobbe (L.) Raeusch.
Orxera cornuta Raf.; see Aerides odoratum Reinw. ex Blume
Osbeckia royeni (Bl.) Miq.; see Melastoma malabathricum var. malabathricum L.
Osbeckia saigonense Kuntze; see Melastoma saigonense (Kuntze) Merr.

Osbornia octodonta F.v.Muell. – 222

Osmunda coronaria J. König; see Platycerium coronarium (Koenig.) Desv.
Outea bijuga DC.; see Intsia bijuga (Colebr.) Kuntze

Oxystelma carnosum R. Br. – 105

Pachycentria constricta (Bl.) Blume – 89
Pachycentria cordata Blume; see Pachycentria constricta (Bl.) Blume
Pachycentria elliptica Blume; see Pachycentria constricta (Bl.) Blume
Pachycentria formicaria Merr.; see Pachycentria constricta (Bl.) Blume
Pachycentria jasovensis Hochr.; see Pachycentria constricta (Bl.) Blume
Pachycentria junghuhniana Miq.; see Pachycentria constricta (Bl.) Blume
Pachycentria lancolata O.Schwartz; see Pachycentria constricta (Bl.) Blume
Pachycentria laxiflora Blume; see Pachycentria constricta (Bl.) Blume
Pachycentria macrorhiza Becc.; see Pachycentria constricta (Bl.) Blume
Pachycentria oligosperma O.Schwartz; see Pachycentria constricta (Bl.) Blume
Pachycentria rigida Blume; see Pachycentria constricta (Bl.) Blume
Pachycentria tuberculata Korth.; see Pachycentria constricta (Bl.) Blume
Pachycentria varingiaefolia; see Pachycentria constricta (Bl.) Blume
Pachycentria zollingeriana Naudin; see Pachycentria constricta (Bl.) Blume

Pachypleuria angustata (Wall. ex Hook. & Grev.) J. Sm. – 6
Panax grandifolia Volkens; see Polyscias macgillivrayi (Seem.) Harms.
Panax macgillivrayi (Seem.) Benth.; see Polyscias macgillivrayi (Seem.) Harms.
Pandanus fascicularis; see Pandanus tectorius Sol
Pandanus foetidus; see Pandanus tectorius Sol
Pandanus inermis Reinw.; see Pandanus tectorius Sol
Pandanus laevis Kunth.; see Pandanus tectorius Sol
Pandanus littoralis Jungh.; see Pandanus tectorius Sol
Pandanus moschatus Miq.; see Pandanus tectorius Sol
Pandanus odoratissinus Park.; see Pandanus tectorius Sol
Pandanus odoratus Salisb.; see Pandanus tectorius Sol
Pandanus odorifer (Forssk.) Kuntze; see Pandanus tectorius Sol

Pandanus tectorius Sol – 139
Pandanus versus; see Pandanus tectorius Sol
Panicum dactylon L.; see Cynodon dactylon (L.) Pers.
Paramignya angulata (Willd.) Burkill; see Merope angulata (Willd.) Swingle
Paramignya longispina Hk.; see Merope angulata (Willd.) Swingle
Paratropia micrantha Miq.; see Schefflera elliptica (Blume) Harms.
Parechites bowringii Hance.; see Gymnanthera oblonga (Burm. f) P.S. Green
Parinarium amboinense Teijsm. & Binn.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium currani; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium elatum King.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium glaberrimum Hassk.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium hahlii Warb.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium lanceolatum Teijsm.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium laurinum A. Gray.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium macrophyllum T. & B.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium margarata A. Gray; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium mindanaense Perk. ex Merr.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium scabrum Hassk.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Parinarium warburgii Perk. ex Merr.; see *Atuna racemosa* ssp. *racemosa* Rafin.

Paritium tiliaceum (L.) St. Hil.; see *Hibiscus tiliaceus* L.

Paspalum vaginatum Sw. – 46
Paspalum littorale; see *Paspalum vaginatum* Sw.

Passiflora foetida L. – 72

Paulinia seriata auct. non L.: Burm F., *Rhus cobbe* L.; see *Allophylus cobbe* (L.) Rauesch.
Pedicellia sundaiica Pierre; see *Misocharpus sundaicus* Blume
Peekeliodendron missionarium Sleum.; see *Merrilliodendron megacarpum* (Hemsl.) Sleum.
Peltophorum ferruginea Decne.; see *Peltophorum pterocarpum* (DC.) K. Heyne
Peltophorum ferrugineum (Decne.) Benth.; see *Peltophorum pterocarpum* (DC.) K. Heyne
Peltophorum inerme Nav.; see *Peltophorum pterocarpum* (DC.) K. Heyne
Peltophorum inermis Roxb.; see *Peltophorum pterocarpum* (DC.) K. Heyne

Peltophorum pterocarpum (DC.) K. Heyne – 198
Peltophorum pterocarpum (DC.) Backer ex Heyne; see *Peltophorum pterocarpum* (DC.) K. Heyne

Pemphis acidula J.R. & G. Forst. – 202
Pemphis angustifolia Roxb.; see *Pemphis acidula* J.R. & G. Forst.
Pemphis setosa Blanco; see *Pemphis acidula* J.R. & G. Forst.
Pentacoelium bontioides Sieb. et Zucc.; see *Myoporum bontioides* (Siebold & Zucc.) A. Gray
Petaloma alba Blanco; see *Lumnitzera racemosa* Willd.
Petaloma coccinea Blanco; see *Lumnitzera littorea* (Jack) Voigt.
Petrocarya glaberrima (Hassk.) Miers.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Petrocarya scabra (Hassk.) Miers.; see *Atuna racemosa* ssp. *racemosa* Rafin.
Phaseolus maritimus purguns Aubl.; see *Canavalia maritima* Thouars
Phaseolus multiflorus purguns Aubl.; see *Canavalia maritima* Thouars
Pheugnariurus carinatus (Desv.) Ching.; see *Lycopodium carinatum* Desv.
Phoberos macrophylla W. & A.; see *Scolopia macrophylla* (W. & A.) Clos
Phoberos maritima Miq.; see *Scolopia macrophylla* (W. & A.) Clos
Phoberos rhinanthera Benn. & Br.; see *Scolopia macrophylla* (W. & A.) Clos

Phoenix paludosa Roxb. – 137
Photinopteris acuminata (Willd.) C.V. Morton; see *Photinopteris speciosa* (Bl.) Persl.
Photinopteris hirsutifolia J. Sm.; see *Photinopteris speciosa* (Bl.) Persl.
Photinopteris rigida Bedd.; see *Photinopteris speciosa* (Bl.) Persl.

Photinopteris speciosa (Bl.) Persl. – 17
Phragmites communis sensu Ridley; see *Phragmites karka* (Retz.) Trin. ex Steud.
Phragmites filiformis; see *Phragmites karka* (Retz.) Trin. ex Steud.

Phragmites karka (Retz.) Trin. ex Steud. – 47
Phragmites nobilis; see *Phragmites karka* (Retz.) Trin. ex Steud.
Phylanthus littoralis [sic] (Bl.) Muell.; see *Glochidion littorale* Bl.
Phyllitis arborea Rumph.; see *Asplenium nidus* Linn.
Phymatodes scolopendria (Burm.) Ching. – 18
Phymatodes sinuosa (Wall.) J. Sm.; see Myrmecophila sinuosa (Wall. ex Hook.) Nakai ex Hito
Phymatodes sinuosa Wall. ex Hook.; see Myrmecophila sinuosa (Wall. ex Hook.) Nakai ex Hito
Phymatodes vulgaris Presl.; see Phymatodes scolopendria (Burm.) Ching.
Phymatosorus scolopendria (Burm.) Pichi Serm.; see Phymatodes scolopendria (Burm.) Ching.
Pimecaria odorata Raf.; see Ximenia americana L.
Pisonia buxifolia Rottb.; see Diospyros ferrea (Willd.) Bakh.
Pithecellobium malayanum Pierre; see Cathormion umbellatum (M.Vahl.) Kosterm.
Pithecellobium moniliferum Miq.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Pithecellobium umbellatum (Vahl) Bth.; see Cathormion umbellatum (M.Vahl.) Kosterm.
Planchonella obovata (R.Br.) Pierre. – 251
Platycerium bifforme (Sw.) Blume; see Platycerium coronarium (Koenig.) Desv.
Platycerium coronarium (Koenig.) Desv. – 19
Pleopeltis heterocarpa v.A.bv. R.; see Selligaea heterocarpa Blume
Pleopeltis phymatodes Moore; see Phymatodes scolopendria (Burm.) Ching.
Pleopeltis schoutenii v.A.v.R.; see Selligaea heterocarpa Blume
Pleopeltis sinuosa (Wall. ex Hook.) Bedd.; see Myrmecophila sinuosa (Wall. ex Hook.) Nakai ex Hito
Plucheia leptophylla Hong & Chen; see Plucheia pteropoda Hemsl.
Plucheia indica (L.) Less. – 148
Plucheia pteropoda Hemsl. – 149
Poa panicosa Retz.; see Leptochloa neesii (Thw.) Bth.
Podocarpus nerifolius D.Don.; see Podocarpus polyctachyus R.Br. ex Endl.
Podocarpus polyctachyus R.Br. ex Endl. – 227
Podocarpus thevetiifolia Blume; see Podocarpus polyctachyus R.Br. ex Endl.
Podocarpus thevetiifolia D.Don.; see Podocarpus polyctachyus R.Br. ex Endl.
Pogonanthera pulverulenta; see Pachycentra constricta (Bl.) Blume
Polypodium acrostichoides G. Forst.; see Pyrrosia longifolia (Burm.) Morton.
Polypodium cinnamomeus; see Pyrrosia longifolia (Burm.) Morton.
Polypodium decorum; see Ctenopteris moultoni (Copel.) C. Christ. & Tardieu
Polypodium diversifolium R. Br.; see Drynaria rigidula (Sw.) Bedd.
Polypodium forbesii v.A.a.R.; see Phymatodes scolopendria (Burm.) Ching.
Polypodium gaudichaudi Bory.; see Drynaria rigidula (Sw.) Bedd.
Polypodium heterocarpum Mett.; see Selligaea heterocarpa Blume
Polypodium linnaei Bory.; see Drynaria sparsisora (Desv.) Moore
Polypodium mettenianum Cesati; see Selligaea heterocarpa Blume
Polypodium moultoni Copel.; see Ctenopteris moultoni (Copel.) C. Christ. & Tardieu
Polypodium palustre Burm.f.; see Stenochlaena palustris (Burm. f.) Bedd.
Polypodium phymatodes L.; see Phymatodes scolopendria (Burm.) Ching.
Polypodium rigidulum Sw.; see Drynaria rigidula (Sw.) Bedd.
Polypodium rigidum; see Drynaria rigidula (Sw.) Bedd.
Polypodium schoutenii v.A.v.R.; see Selligaea heterocarpa Blume
Polypodium scolopendria Burm.; see Phymatodes scolopendria (Burm.) Ching.
Polypodium scolopendrinum C. Chr.; see Loxogramma involuta Presl.
Polypodium sinuosum Wall. ex Hook.; see Myrmecophila sinuosa (Wall. ex Hook.) Nakai ex Hito
Polypodium sparsisora Desv.; see Drynaria sparsisora (Desv.) Moore
Polypodium speciosum Bl.; see Drynaria rigidula (Sw.) Bedd.
Polyscias magillienyi (Seem.) Harms. – 146
Pongamia glabra Vent.; see Pongamia pinnata (L.) Pierre
Pongamia mitis Merr.; see Pongamia pinnata (L.) Pierre
Pongamia pinnata (L.) Pierre – 199
Pongelia longiflora Rafin.; see Dolichandrone spathacea (L.f.) K.Schum.
Portulaca axilliflora (non Pers.) Blanco; see Trianthema portulacastrum L.
Portulaca monogynum (L.) Medik.; see Trianthema portulacastrum L.
Portulaca portulacastrum L.; see Sesuvium portulacastrum (L.) L.
Portulaca töston Blanco; see Trianthema portulacastrum L.
Potamogeton filiformis Phil.; see Ruppia maritima L. var. maritima
Pothis heterophyllus Roxb.; see Lasia spinosa (L.) Thwaites.
Pouteria obovata (R. Br.) Baehni.; see Planchonella obovata (R.Br.) Pierre.
Probistes cuneifolia; see Lumnitzera littorea (Jack) Voigt.
Pseudaleia imbricata (Roxb.) Hassk.; see Olax imbricata Roxb.
Pseudaleia longistyli Hassk.; see Olax imbricata Roxb.
Premna abbreviata Miq.; see Premna obtusifolia R. Br.
Premna corymbosa (Burm. f.) Rottl. & Willd.; see Premna obtusifolia R. Br.
Premna cyclophylla Miq.; see Premna obtusifolia R. Br.
Premna foetida Reinw. ex Blume; see Premna obtusifolia R. Br.
Premna gaudichaudii Schau.; see Premna obtusifolia R. Br.
Premna integrifolia L.; see Premna obtusifolia R. Br.
Premna laevisata Miq.; see Premna obtusifolia R. Br.
Premna littoralis K. & G.; see Premna obtusifolia R. Br.
Premna nitida K. Schum.; see Premna obtusifolia R. Br.
Premna obtusifolia R. Br. – 267
Premna opulifolia Miq.; see Premna obtusifolia R. Br.
Premna ovalifolia Wall.; see Premna obtusifolia R. Br.
Premna ovata R.Br.; see Premna obtusifolia R. Br.
Premna sambucina Wall.; see Premna obtusifolia R. Br.
Premna scandens Boj.; see Premna obtusifolia R. Br.
Premna serratifolia Blanco; see Premna obtusifolia R. Br.
Premna serratifolia L.; see Premna obtusifolia R. Br.
Premna subcordata Turcz.; see Premna obtusifolia R. Br.
Pteris piloselloides O.K.; see Drymoglossum piloselloides (Linn.) Presl.
Pteris scandens (Willd.) Roxb.; see Stenochlaena palustris (Burm. f.) Bedd.
Pterocarpus facetus Lour.; see Pongamia pinnata (L.) Pierre
Pterocarpus guianensis (Benth.) Kuntze.; see Derris scandens (Aubl.) Pittier
Pterocarpus negrensis (Benth.) Kuntze.; see Derris scandens (Aubl.) Pittier
Pyrrhanchus littoreus Jack.; see Lumnitzera littorea (Jack) Voigt.
Pyrosia acrostichoides G. Forst.; see Pyrosia longifolia (Burm.) Morton.
Pyrosia longifolia (Burm.) Morton. – 20
Pyxipoma polyandrurn Fenzl.; see Sesuvium portulacastrum (L.) L.
Quassia harmandiana (Pierre) Nooteboom – 252
Quassia indica (Gaertn.) Nooteboom – 253
Radix toxicaria.; see Crinum asiaticum L.
Rapanea porteriana Wall. ex A. DC. – 220
Rhannicastrum rhinanthera O. Ktze; see Scopilia macrophylla (W. & A.) Clos
Rhinanthera blumei Steud.; see Scopilia macrophylla (W. & A.) Clos
Rhizophora angula Lour.; see Bruguiéra sexangula (Lour.) Poir.
Rhizophora apiculata Bl. – 237
Rhizophora australis Steud.; see Bruguiéra sexangula (Lour.) Poir.
Rhizophora candel (non L.) Blanco; see Ceriops tagal (Perr.) C.B.Rob.
Rhizophora candel Linné; see Kandelia candel (L.) Druce
Rhizophora candelaria DC.; see Rhizophora apiculata Bl.
Rhizophora candelaria Wight & Arn.; see Rhizophora mucronata Lam.
Rhizophora caryophylloides (non Burm. f) Griff.; see Bruguiera hainessii C.G.Rogers
Rhizophora caryophylloides Burm.; see Bruguiera cylindrica (L.) Bl.
Rhizophora caseolaris Linné; see Sonneratia alba J.E. Smith and Sonneratia caseolaris (L.) Engl.
Rhizophora ceratophylloides Gmel.; see Bruguiera cylindrica (L.) Bl.
Rhizophora conjugata (non Linné) Arn.; see Rhizophora apiculata Bl.
Rhizophora corniculata L.; see Aegiceras corniculatum (L.) Blanco
Rhizophora cylindrica (non L.) Roxb.; see Bruguiera parviflora (Roxb.) W.& A. ex Griff.
Rhizophora cylindrica Linné; see Bruguiera cylindrica (L.) Bl.
Rhizophora decandra Roxb.; see Ceriops decandra (Griff.) Ding Hou
Rhizophora eriopetala Steud.; see Bruguiera sexangula (Lour.) Poir.
Rhizophora glornerulata Zipp. ex Bl.; see Ceriops decandra (Griff.) Ding Hou
Rhizophora gymnorrhiza L.; see Bruguiera gymnorrhiza (L.) Lamk.
Rhizophora lamarkii; see Rhizophora apiculata Bl.
Rhizophora latifolia Miq.; see Rhizophora mucronata Lamk.
Rhizophora longissima Blanco; see Rhizophora mucronata Lamk.
Rhizophora mucorrhiza Griff.; see Rhizophora mucronata Lamk.
Rhizophora mangle (non Linné); see Rhizophora apiculata Bl.
Rhizophora mangle (non Linné) Roxb.; see Rhizophora mucronata Lamk.
Rhizophora mucronata Lamk. – 238
Rhizophora mucronata var. stylosa Schimp.; see Rhizophora stylosa Griff.
Rhizophora mucronata var. typica Schimp.; see Rhizophora mucronata Lamk.
Rhizophora palan; see Bruguiera gymnorrhiza (L.) Lamk.
Rhizophora parviflora Roxb.; see Bruguiera parviflora (Roxb.) W.& A. ex Griff.
Rhizophora plicata Blanco; see Bruguiera sexangula (Lour.) Poir.
Rhizophora polyandra Blanco; see Bruguiera sexangula (Lour.) Poir.
Rhizophora rheedii Steud.; see Bruguiera gymnorrhiza (L.) Lamk.
Rhizophora sexangula; see Bruguiera sexangula (Lour.) Poir.
Rhizophora stylosa Griff. – 239
Rhizophora tagal Perr.; see Ceriops tagal (Perr.) C.B.Rob.
Rhizophora timoriensis DC.; see Ceriops tagal (Perr.) C.B.Rob.
Rhizophora tintoria Blanco; see Bruguiera gymnorrhiza (L.) Lamk.
Rhizophora lamarkii; see Rhizophora stylosa Griff.
Rhododendron brookeanum Low ex Lindl. var. brookeanum – 82
Ricinus communis L. – 178
Ricinus inermis Mill.; see Ricinus communis L.
Ricinus spectabilis Bl.; see Ricinus communis L.
Robinia mitis Linn.; see Pongamia pinnata (L.) Pierre
Rottlera tokbrai (Bl.) Scheff.; see Blumeodendron tokbrai (Bl.) Kurz.
Rumphius fasciculata Raf.; see Cassytha filiformis Linn.
Ruppia didyma Swartz ex Wickstr.; see Ruppia maritima L. var. maritima
Ruppia filifolia (Phil.) Skottstr.; see Ruppia maritima L. var. maritima
Ruppia marina Fries; see Ruppia maritima L. var. maritima
Ruppia maritima L. var. maritima – 73
Ruppia pectinata Rydberg; see Ruppia maritima L. var. maritima
Ruppia rostellata W.D.J. Koch ex Rchb.; see Ruppia maritima L. var. maritima
Ryssopterys abutilifolia Jussieu; see Ryssopterys timoriensis (DC.) Jussieu
Ryssopterys alcida Ryssopterys chrysantha (non Hassk.) Hochr.; see Ryssopterys timoriensis (DC.) Jussieu
Ryssopterys cumingana Jussieu; see Ryssopterys timoriensis (DC.) Jussieu
Mangrove Guidebook for Southeast Asia

Ryssopterys dealbata Jussieu; see Ryssopterys timoriensis (DC.) Jussieu
Ryssopterys intermedia Hochr.; see Ryssopterys timoriensis (DC.) Jussieu
Ryssopterys microstema Jussieu; see Ryssopterys timoriensis (DC.) Jussieu

Ryssopterys timoriensis (DC.) Jussieu – 126

Ryssopterys timorensis var. tiliifolia (non Vent.) K. Sch. & Laut.; see Ryssopterys timoriensis (DC.) Jussieu

Salacia chinensis L. - 165
Salacia latifolia Wall.; see Salacia chinensis L.
Salacia naumannii Engl.; see Salacia chinensis L.
Salacia littoralis Back.; see Salacia chinensis L.
Salacia kraemer (non Loes.) Kanehira; see Salacia chinensis L.
Salacia patens Decne.; see Salacia chinensis L.
Salacia prionoides D.C.; see Salacia chinensis L.
Salacia socia Craib.; see Salacia chinensis L.
Salicornia australasica; see Salicornia indica Willd.
Salicornia brachiata; see Salicornia indica Willd.
Salicornia fruticosa; see Salicornia indica Willd.
Salicornia cinerea F.v.Muell.; see Halocnemum cinereum F.v.Muell.

Salicornia indica Willd. – 62
Salsola indica Willd.; see Suaeda maritima (L.) Dum.
Salsola maritima (L.) Poir.; see Suaeda maritima (L.) Dum.

Sarcolobus banksii; see Sarcolobus globosus Wall.
Sarcolobus banksii Roem. & Schult.; see Sarcolobus carinatus Wall.

Sarcolobus carinatus Wall. – 106
Sarcolobus globosa R. & S.; see Sarcolobus globosus Wall.

Sarcolobus globosus Wall. – 107
Sarcolobus globosus subsp. globosus; see Sarcolobus globosus Wall.
Sarcolobus globosus subsp. peregrinus (Blanco) R.E. Rintz.; see Sarcolobus globosus Wall.

Scaevola frutescens; see Scaevola taccada (Gaertn.) Roxb.

Scaevola hainanensis – 181
Scaevola koenigii Vahl.; see Scaevola taccada (Gaertn.) Roxb.
Scaevola leschenaultii DC.; see Scaevola taccada (Gaertn.) Roxb.
Scaevola lobelia Murr.; see Scaevola taccada (Gaertn.) Roxb.
Scaevola macrocalyx de Vriese; see Scaevola taccada (Gaertn.) Roxb.
Scaevola piliplena Miq.; see Scaevola taccada (Gaertn.) Roxb.
Scaevola plumieri (non Vahl.) Bl.; see Scaevola taccada (Gaertn.) Roxb.
Scaevola sericea Vahl.; see Scaevola taccada (Gaertn.) Roxb.

Scaevola taccada (Gaertn.) Roxb. – 182
Scaevola velutina Presl.; see Scaevola taccada (Gaertn.) Roxb.

Schefflera elliptica (Blume) Harms. – 75
Schefflera elliptica var. microphylla Harms.; see Schefflera elliptica (Blume) Harms.

Schefflera lanceolata Ridley. – 76
Schefflera micrantha (Miq.) Ridley; see Schefflera elliptica (Blume) Harms.
Schefflera minimaflora Ridley; see Schefflera elliptica (Blume) Harms.
Schefflera musangensis Hend.; see Schefflera ridleyi (King) Viguier
Schefflera nitida Merr.; see Schefflera elliptica (Blume) Harms.

Schefflera ridleyi (King) Viguier – 77
Schefflera venulosa sensu Ridley; see Schefflera elliptica (Blume) Harms.
Schefflera venulosa var. curtissi Ridley; see Schefflera elliptica (Blume) Harms.

Scheffleropsis polyandra (Ridley) Ridley; see Schefflera ridleyi (King) Viguier

Schmidelia bantamensis Blume; see Allophylus cobbe (L.) Raeusch.
Schmidelia leptostachya Blume; see Allophylus cobbe (L.) Raeusch.
Schmidelia ligustrina Blume ex Teijsm.; see Allophylus cobbe (L.) Raeusch.
Schmidelia littoralis Blume; see Allophylus cobbe (L.) Raeusch.
Schmidelia macrophylla Zipp. ex Span.; see Allophylus cobbe (L.) Raeusch.
Schmidelia mutabilis Bl.; see Allophylus cobbe (L.) Raeusch.
Schmidelia obovata A. Gray; see Allophylus cobbe (L.) Raeusch.
Schmidelia parviflora Zipp. ex Span.; see Allophylus cobbe (L.) Raeusch.
Schmidelia racemosa L.; see Allophylus cobbe (L.) Raeusch.
Schmidelia terna (Forst. & Forst.) Cambess.; see Allophylus cobbe (L.) Raeusch.
Schmidelia timoriensis DC.; see Allophylus cobbe (L.) Raeusch.

Schmidelia tormentosa Hook.f. Usubsis triphylla Burm. f.; see Allophylus cobbe (L.) Raeusch.

Schoberia linifolia Nutt. ex Moq.; see Suaeda maritima (L.) Dum.

Schoenoplectus grossus Pallas; see Scirpus grossus Linné
Schoenoplectus lacustris (L.) Pallas.; see Scirpus lacustris L.

Sciandophyllum elliptica Blume; see Schefflera elliptica (Blume) Harms.
Scirpus aemulans Steud.; see Scirpus grossus Linné
Scirpus arvensis Retz.; see Limnophyllum serrulatum (L.) Vahl
Scirpus ferrugineus L.; see Limnophyllum serrulatum (L.) Vahl

Scirpus grossus Linné – 38
Scirpus grossus var. kysoor (non Clarke); see Scirpus grossus Linné
Scirpus kysoor (non Roxb.) Llanos.; see Scirpus grossus Linné

Scirpus lacustris L. – 39
Scirpus lacustris (non L.) Merr.; see Scirpus litoralis Schrad.
Scirpus lacustris subsp. validus (Vahl.) T. Koyama; see Scirpus lacustris L.

Scirpus litoralis Schrad. – 40
Scirpus litoralis (sic); see Scirpus litoralis Schrad.

Scirpus maritimus L. – 41
Scirpus maritimus var. aemulans Miq.; see Scirpus grossus Linné
Scirpus nanus (non Poir.) Spreng.; see Eleocharis parvula (R. & S.) Link ex Bluff
Scirpus parvulus R. & S.; see Eleocharis parvula (R. & S.) Link ex Bluff
Scirpus polytrichoides Retz.; see Fimbristylis polytrichoides (Retz.) R. Br.
Scirpus plantagineus Retz.; see Eleocharis dulcis (Burm. f.) Henschel
Scirpus pterolepis (Nees) Kunsch.; see Scirpus lacustris L.
Scirpus pusillus Vahl.; see Eleocharis parvula (R. & S.) Link ex Bluff
Scirpus spiralis Rottb.; see Eleocharis spiralis (Rottb.) R. & S.
Scirpus subulatus Vahl.; see Scirpus litoralis Schrad.
Scirpus thermalis Trab.; see Scirpus litoralis Schrad.
Scirpus triqueterr var. segregatus Clarke; see Scirpus lacustris L.
Scirpus tuberosus Roxb.; see Eleocharis dulcis (Burm. f.) Henschel
Scirpus tumidus Roxb.; see Eleocharis dulcis (Burm. f.) Henschel
Scirpus validus Vahl.; see Scirpus litoralis L.
Scirpus validus (non Vahl.) Beetle.; see Scirpus litoralis Schrad.
Sclerostylis spinosa see Merope angulata (Willd.) Swingle
Scolopia crenata (non (Wall.) Clos.) King; see Scolopia macrophylla (W. & A.) Clos
Scolopia macrophylla (W. & A.) Clos – 179
Scolopia maritima Warb.; see Scolopia macrophylla (W. & A.) Clos
Scolopia rhinanthera Clos; see Scolopia macrophylla (W. & A.) Clos
Scyphiphora hydrophylacea; see Scyphiphora hydrophyllacea Gaertn. f.
Spheliphora hydrophyllacea Gaertn. f. – 244
Secamone maritima Bl.; see Finlaysonia obovata Wall.
Selligheua fei Bory; see Selligheua heterocarpa Blume
Selligheua heterocarpa Blume – 21
Selligheua metteniana var. lateritium (Baker) Tardieu & C.Chr.; see Selligheua heterocarpa Blume
Serianthes dilmyi Fosberg; see Serianthes grandiflora Bentham.
Serianthes grandiflora Bentham. – 200
Sersalisia obovata R. Br.; see Planchonella obovata (R.Br.) Pierre.
Sesuvium portulacastrum (L.) L. – 55
Sesuvium polyandrum Fenzl. ex Britt.; see Sesuvium portulacastrum (L.) L.
Sideroxylon argentatum; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon bancanum; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon chrysophyllum; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon ferrugineum Hook. & Arn.; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon indicum; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon microcarpum Burck.; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon nodosum; see Planchonella obovata (R.Br.) Pierre.
Sideroxylon obovatum; see Planchonella obovata (R.Br.) Pierre.
Sinapistrum Rumph.; see Lophopyxis maingayi Hook.f.
Sindora conchinchinensis Baillon; see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Sindora maritima Pierre; see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Sindora siamensis Teijsm. ex Miq.; see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Sindora siamensis Teysm. ex Miq.; see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Sindora siamensis var. maritima (Pierre) K. & SS. Larsen – 201
Sindora wallichii var. siamensis (Teijsm.) Bak.; see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Smythea lanceata (Tul.) Summerh. – 130
Smythea pacifica Seem; see Smythea lanceata (Tul.) Summerh.
Soldanella marina indica Rumph.; see Ipomoea pes-capre (L.) Sweet.
Sonneratia acida Benth.; see Sonneratia alba J.E. Smith
Sonneratia acida Linné; see Sonneratia caseolaris (L.) Engl.
Sonneratia acida var. griffithii King.; see Sonneratia griffithii Kurz.
Sonneratia alba F.Vill.; see Sonneratia alba J.E. Smith

Sonneratia alba J.E. Smith – 254
Sonneratia alba auct. plur. Watson; see Sonneratia ovata Back.
Sonneratia alba (non SM) Griff.; see Sonneratia griffithii Kurz.

Sonneratia apetala Buch.-Ham. – 255
Sonneratia caseolaris (L.) Engl. – 256
Sonneratia caseolaris Engl.; see Sonneratia alba J.E. Smith
Sonneratia evenia BL.; see Sonneratia caseolaris (L.) Engl.

Sonneratia griffithii Kurz. – 257
Sonneratia griffithii (non Kurz) Watson; see Sonneratia alba J.E. Smith
Sonneratia X gulngai; = hybrid of Sonneratia caseolaris (L.) Engl. and Sonneratia alba J.E. Smith
Sonneratia iriomotensis Masamune; see Sonneratia alba J.E. Smith
Sonneratia lanceolata BL.; see Sonneratia caseolaris (L.) Engl.
Sonneratia mossambicensis Klotzsch ex Peters; see Sonneratia alba J.E. Smith
Sonneratia neglecta BL.; see Sonneratia caseolaris (L.) Engl.
Sonneratia ovata BL.; see Sonneratia caseolaris (L.) Engl.

Sonneratia ovata Back. – 258
Sonneratia pagatpat Blanco; see Sonneratia caseolaris (L.) Engl.
Sonneratia rubra; see Sonneratia caseolaris (L.) Engl.
Sophora heptaphylla L.; see Aganope heptaphylla (L.) Polhill
Spathodea diepenhorstii Miq.; see Dolichandrone spathacea (l.f.) K.Schum.
Spathodea longiflora Vent. Choix.; see Dolichandrone spathacea (l.f.) K.Schum.
Spathodea loureiriana DC.; see Dolichandrone spathacea (l.f.) K.Schum.
Spathodea luzonana Blanco; see Dolichandrone spathacea (l.f.) K.Schum.
Spathodea rheedii Spreng.; see Dolichandrone spathacea (l.f.) K.Schum.
Sphaeromariscus microcephalus Camus.; see Cyperus compactus Retz.
Spilanthes acmella Blanco; see Wedelia biflora (L.) DC.
Spilanthes peregrina Blanco; see Wedelia biflora (L.) DC.
Spironema aphyllum (Forssk.) Raf.; see Cassytha filiformis Linn.

Sporobolus virginicus (L.) Kunth. – 48
Stachydrispheta friedrichsii Hayek; see Stachydrispheta jamaicensis (L.) Vahl

Stachydrispheta jamaicensis (L.) Vahl – 74
Stemmodontia biflora W.F. Wight; see Wedelia biflora (L.) DC.

Stemnourus annuif (Kaneh.) Sleum. – 186
Stemnourus annuif (Kaneh.) Sleum.; see Stemnourus annuif (Kaneh.) Sleum.

Stenochlaena palustris (Burm. f.) Bedd. – 3
Stenochlaena palustris (Burm. f.) Bedd.; see Stenochlaena palustris (Burm. f.) Bedd.

Stereocaulon scandens (Sw.) J.Sm.; see Stenochlaena palustris (Burm. f.) Bedd.

Stillinaea agallocha (L.) Baill.; see Excoecaria agallocha L.

Stillinaea diversifolia; see Excoecaria indica (Willd.) Muell. Arg.

Stillinaea indica (Willd.) Baill.; see Excoecaria indica (Willd.) Muell. Arg.

Sitzolobium giganteum (Willd.)Sprengel; see Mucuna gigantea (Willd.) DC.

Suara indica Moq.; see Suara maritima (L.) Dum.

Suara maritima (L.) Dum. – 63
Suara australis (R.Br.) Moq.; see Suara maritima (L.) Dum.
Suara nudiflora Moq.; see Suara maritima (L.) Dum.

Sumplocos candidans Brand.; see Sumplocos celastrifolia Griff. ex Clarke
Symplocos celastrifolia Griff. ex Clarke – 263
Symplocos hutchinsonii Brand.; see Symplocos celastrifolia Griff. ex Clarke
Symplocos nigricans Brand.; see Symplocos celastrifolia Griff. ex Clarke
Symplocos peninsularis Brand.; see Symplocos celastrifolia Griff. ex Clarke
Syndesmis coarctata Griff.; see Gluta velutina Bl.
Tabernaemontana obtusifolia Poir.; see Cerbera manghas L.
Taenites piloselloides R. Br.; see Drymoglossum piloselloides (Linn.) Presl.
Tanghinia manghas (L.) G. Don.; see Cerbera manghas L.
Tarachia. canaliculata Presl.; see Asplenium macrophyllum Sw.
Tarachia falcata; see Asplenium macrophyllum Sw.
Tarachia oxyphylla Presl.; see Asplenium macrophyllum Sw.
Tecticornia australasica (Moq.) P.G. Wilson; see Halocnemum cinereum F.v.Muell.
Tecticornia cinerea F.v.Muell.; see Halocnemum cinereum F.v.Muell.
Terminalia catappa L. – 169
Terminalia catappa var. chlorocarpa Hassk.; see Terminalia catappa L.
Terminalia catappa var. macrocarpa Kass.; see Terminalia catappa L.
Terminalia catappa var. rhodocarpa Hassk.; see Terminalia catappa L.
Terminalia latifolia Blanco; see Terminalia catappa L.
Terminalia mauritiana (non Lamk.) Blanco; see Terminalia catappa L.
Terminalia moluccana Lamk.; see Terminalia catappa L.
Tetranthera tersa; see Brownlowia tersa (L.) Kosterm.
Thamnopteris nidus Presl.; see Asplenium nidus Linn.
Thamnopteris pachyphylla; see Asplenium nidus Linn.
Theleptepis palustris (A.Gray) Schott.; see Stenochlaena palustris (Burm. f.) Bedd.
Thespesia baralde Blanco; see Thespesia populnea (L.) Soland. ex Correa
Thespesia howii Hu; see Thespesia populnea (L.) Soland. ex Correa
Thespesia macrophylla Blume; see Thespesia populnea (L.) Soland. ex Correa
Thespesia populnea (L.) Soland. ex Correa – 204
Thespesia populneoides Roxb.; see Thespesia populnea (L.) Soland. ex Correa
Thicuania moschata (Sw.) Raf.; see Dendrobium moschatum (Buch.-Ham.) Sw.
Tieghemopanax macgillivrayi Viguier; see Polyscias macgillivrayi (Seem.) Harms.
Tinus squamulosa (C.Presl.) Kuntze; see Ardisia elliptica Thunberg
Tittius litorea; see Guettarda speciosa Linn.
Tonsella prinoides Willd.; see Salacia chinensis L.
Tonsella chinensis (L) Spreng.; see Salacia chinensis L.
Trachelospermum bowringii (Hance) Hemsl.; see Gymnanthera oblonga (Burm. f) P.S. Green
Treubia combretocarpa Pierre ex Boerl.; see Lophopyxis maingayi Hook.f.
Trianthema flexuosum Schumach. & Thon.; see Trianthema portulacastrum L.
Trianthema littoralis Cordem.; see Trianthema portulacastrum L.
Trianthema monanthogyna L.; see Trianthema portulacastrum L.
Trianthema monogyra L.; see Trianthema portulacastrum L.
Trianthema obcordata Roxb.; see Trianthema portulacastrum L.
Trianthema polyandrum Bl.; see Sesuvium portulacastrum (L.) L.
Trianthema portulacastrum L. – 56
Trianthema procumbens Mill.; see Trianthema portulacastrum L.
Tripsilina foetida (L.) Raf.; see Passiflora foetida L.
Tristellateia australasiae A. Rich. – 127
Tristellatia australasia Miq.; see Tristellateia australasiae A. Rich.
Tristellatia australis Jussieu; see Tristellateia australasiae A. Rich.
Tristellatia malintana Blanco; see Tristellateia australasiae A. Rich.
Tristerix viridiflorus Mart.; see Macrosolen cochinchinensis (Lour.) Tiegh.
Tuba baccifera Rumph.; see Anamirta cocculus L. Wight & Arn.
Typha angustata; see Typha angustifolia Linné

Typha angustifolia Linné – 51
Typha angustifolia ssp. javanica; see Typha angustifolia Linné
Typha capensis (non Rohrb.) Hall.; see Typha angustifolia Linné
Typha domingensis Pers.; see Typha angustifolia Linné
Typha domingensis var. javanica Geze; see Typha angustifolia Linné
Typha javana Schnizl.; see Typha angustifolia Linné
Typha orientalis Briggs & Johnson; see Typha angustifolia Linné
Umbraculum corniculatum (L.) Kuntze.; see Aegiceras corniculatum (L.) Blanco
Urandra ammui Kaneh.; see Stemonurus ammui (Kaneh.) Sleum.
Urandra elliptica Schellenb.; see Stemonurus ammui (Kaneh.) Sleum.
Urostachys carinatus (Desv.) Herter ex Nesse.; see Lycopodium carinatum Desv.
Urostigma microcarpum (L.f.) Miq.; see Ficus microcarpa L.f.
Urostigma obtusifolia (Roxb.) Miq.; see Ficus curtipes Corner
Varronia sinensis Loureiro; see Cordia dichotoma G. Forst.
Verbena jamaicensis L.; see Stachytarpheta jamaicensis (L.) Vahl
Verbescina biflora Linné; see Wedelia biflora (L.) DC.
Vidara littorea Rump.; see Ximenia americana L.
Vincetoxium carnosum (R. Br.) Benth.; see Oxystelma carnosum R. Br.
Viscum heyneanum DC.; see Viscum ovalifolium DC.
Viscum monoicum Presl.; see Viscum ovalifolium DC.
Viscum navicellatum Kirth.; see Viscum ovalifolium DC.
Viscum obtusum DC.; see Viscum ovalifolium DC.
Viscum orientale auct. non Willd.; see Viscum ovalifolium DC.

Viscum ovalifolium DC. – 88
Viscum pamattonis Korth.; see Viscum ovalifolium DC.
Viscum pedunculatum Barlow; see Viscum ovalifolium DC.
Viscum roxburghianaum Korth.; see Viscum ovalifolium DC.

Vitex ovata Thunb. – 268
Vitex rotundifolia L.f.; see Vitex ovata Thunb.
Vitex trifoliata var. ovata (Thunb.) Makino; see Vitex ovata Thunb.
Vitex trifolia var. simplicifolia Chamisso; see Vitex ovata Thunb.
Vitex trifolia var. unifoliolata Schauer.; see Vitex ovata Thunb.
Viscum verticillatum Roxb.; see Viscum ovalifolium DC.
Vitmannia elliptica Vahl.; see Quassia indica (Gaertn.) Nootboom

Vittaria elongata Sw. – 24
Vittaria loricca Fée; see Vittaria elongata Sw.
Vittaria planipes Kunze; see Vittaria elongata Sw.
Vittmannia polyandra; see Brownlowia tersa (L.) Kosterm.
Volkameria buxifolia Willd.; see Clerodendrum inerme (L.) Gaertn.
Volkameria inermis L.; see Clerodendrum inerme (L.) Gaertn.
Volkameria neriifolia Roxb.; see Clerodendrum inerme (L.) Gaertn.
Volutella aphylla Forssk.; see Cassytha filiformis Linn.

Wedelia biflora (L.) DC. – 108
Wedelia glabrata; see Wedelia biflora (L.) DC.
Wollastonia biflora DC.; see Wedelia biflora (L.) DC.

Xerochloa inberbis R. Br. – 49
Xerochloa littoralis Baill.; see Xerochloa inberbis R. Br.

141
Ximenia aculeata Crantz; see Ximenia americana L.

Ximenia americana L. 224

Ximenia americana fo. inermis (Aubl.) Engl.; see Ximenia americana L.

Ximenia americana var. ovata DC.; see Ximenia americana L.

Ximenia arborescens Tussac ex Walp.; see Ximenia americana L.

Ximenia fluminensis M. Roem.; see Ximenia americana L.

Ximenia inermis L.; see Ximenia americana L.

Ximenia loranthifolia Span.; see Ximenia americana L.

Ximenia montana Macfad.; see Ximenia americana L.

Ximenia multiflora Jacq.; see Ximenia americana L.

Ximenia oblonga Lam. ex Hemsl.; see Ximenia americana L.

Ximenia olacoides Wight & Arn.; see Olax imbricata Roxb.

Ximenia spinosa Salisb.; see Ximenia americana L.

Ximenia verrucosa M. Roem.; see Ximenia americana L.

Xylocarpus australasicus Ridley; see Xylocarpus moluccensis (Lamk) M. Roem.

Xylocarpus bednarensis Mattei; see Xylocarpus granatum Koen.

Xylocarpus carnulosus Zoll. & Mor.; see Xylocarpus granatum Koen.

Xylocarpus forstenii Miq.; see Xylocarpus rumphii (Kostel.) Mabb.

Xylocarpus gangeticus (Prain.) C. E. Parkinson; see Xylocarpus moluccensis (Lamk) M. Roem.

Xylocarpus granatum Koen. 209

Xylocarpus granatum auct. non. Koen.; see Xylocarpus rumphii (Kostel.) Mabb.

Xylocarpus mekongensis Pierre; see Xylocarpus moluccensis (Lamk) M. Roem.

Xylocarpus minor Ridley; see Xylocarpus granatum Koen.

Xylocarpus moluccensis (Lamk) M. Roem. 210

Xylocarpus moluccensis auct. non. M. Roem.; see Xylocarpus granatum Koen.

Xylocarpus moluccensis auct. non. M. Roem.; see Xylocarpus rumphii (Kostel.) Mabb.

Xylocarpus obovatus (Blume) A. Juss.; see Xylocarpus granatum Koen.

Xylocarpus parvifolius Ridley; see Xylocarpus moluccensis (Lamk) M. Roem.

Xylocarpus rumphii (Kostel.) Mabb. 211

Zamia corsoniana G. Don.; see Cycas rumphii Miq.

Zizyphus littorea Teysm.; see Ximenia americana L.

Zoysia malaccensis Gandoger; see Zoysia matrella (L.) Merr.

Zoysia matrella (L.) Merr. 50

Zoysia pungens Willd.; see Zoysia matrella (L.) Merr.
ANNEX 4 Index of local plant names

Bruneian:
Apung, see *Nypa fruticans* Wurmb.
Bagu, see *Tristellateia australiasiae* A. Rich.
Bejau, see *Tristellateia australiasiae* A. Rich.
Patakoana, see *Croton heterocarpus* Müll. Arg.
Pulut-pulut, see *Kandelia candel* (L.) Druce
Pungsu, see *Cassine viburnifolia* (Juss.) Ding Hou
Rambai, see *Derris scandens* (Aubl.) Pittier
Sugang, see *Gardenia tubifera* Wall
Sulang-sulang, see *Gardenia tubifera* Wall
Wirhemiere, see *Croton heterocarpus* Müll. Arg.

Cambodian:
Ampea, see *Sonneratia griffithii* Kurz.
Ampea, see *Sonneratia ovata* Back.
Ampouthmar, see *Sonneratia caseolaris* (L.) Engl.
Ampouthmar, see *Sonneratia alba* J.E. Smith
Basac kroahom, see *Bruguiera gymnorrhiza* (L.) Lamk.
Basac, see *Bruguiera cylindrica* (L.) Bl.
Basacsor, see *Bruguiera sexangula* (Lour.) Poir.
Brong, *Acrostichum aureum* Linné
Brong, see *Acrostichum speciosum* Willd.
Chark, see *Nypa fruticans* Wurmb.
Chheu chhor, see *Excoecaria agallocha* L.
Chompouprey, see *Cerbera odollam* Gaertn.
Dawm cheungtia, see *Cerbera odollam* Gaertn.
Dawm trojekbres, see *Barringtonia racemosa* (L.) Spreng.
Dawm-klai, see *Heritiera littoralis* Dryand.
Dyerehatt, see *Cordia cochinchinensis* Gagnep.
Kab-baspreyteukbray, see *Hibiscus tiliaceus* L.
Kann-kai, see *Heritiera littoralis* Dryand.
Khagn, see *Avicennia marina* (Forssk.) Vierh.
Khagnkmao, see *Avicennia officinalis* L.
Khagnsor, see *Avicennia alba* Blume
Khna ng n, see *Acrostichum speciosum* Willd.
Kongkang-slektoc, see *Rhizophora apiculata* Bl.
Krognyepkrohom, see *Lumnitzera litoralis* (Jack) Voigt.
Krognyep sor, see *Lumnitzera racemosa* Willd.
Krognyep-pka-krohom, see *Lumnitzera litoralis* (Jack) Voigt.
Krognyep-phasor, see *Lumnitzera racemosa* Willd.
Kroko-teukpray, see *Intsia bijuga* (Colebr.) Kuntze
Mouroujsrotorb, see *Avicennia alba* Blume
Mouroujsrotorb, see *Avicennia marina* (Forssk.) Vierh.
Omlann, see *Bruguiera cylindrica* (L.) Bl.
Pchek tekpry, see *Barringtonia racemosa* (L.) Spreng.
Pdaon dawk, see *Flagellaria indica* L.
Peng, see *Phoenix paludosa* Roxb.
Pilpicht, see *Cerbera odollam* Gaertn.
Porhteukprey, see *Thespesia populnea* (L.) Soland. ex Correa
Rhumjeik-samot, see *Pandanus tectorius* Sol
Rompea-chheu, see *Sonneratia alba* J.E. Smith
Semornsakmot, see *Heritiera littoralis* Dryand.
Smair sor, see *Ceriops decandra* (Griff.) Ding Hou
Sman, see *Avicennia alba* Blume
Smerkrohorm, see *Ceriops tagal* (Perr.) C.B. Rob.
Spong, see *Avicennia officinalis* L.
Sporn, see *Avicennia marina* (Forssk.) Vierh.
Tabann, see *Xylocarpus rumphii* (Kostel.) Mabb.
Tabonkmao, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Tabonsor, see *Xylocarpus granatum* Koen.
Tatom, see *Excoecaria agallocha* L.
Trohjiekcragn pkapor sar, see *Acanthus ebracteatus* Vahl.
Trohjiekcragn pkaporsvay, see *Acanthus ilicifolius* L.
Trohjiekcragn slekbanla, see *Acanthus ilicifolius* L.
Trohjiekcragn slekweng, see *Acanthus ebracteatus* Vahl.
Vorre, see *Flagellaria indica* L.

East-Timorese:
Bakulu, see *Morinda citrifolia* L.
Kayu gelang, see *Melaleuca cajuputi* Roxb.
Olas Mea, see *Ryssopterys timoriensis* (DC.) Jussieu
Sosa, see *Cyperus javanicus* Houtt.
Taktenas, see *Typha angustifolia* Linné

Indonesian:
Abat, see *Rhizophora apiculata* Bl.
Adad, see *Symplocos cealstrifolia* Griff. ex Clarke
Adu-adu, see *Lumnitzera racemosa* Willd.
Ahaha, see *Suaeda maritima* (L.) Dum.
Ai Bon, see *Bruguiera sexangula* (Lour.) Poir.
Ai elane, see *Melaleuca cajuputi* Roxb.
Ai kelane, see *Melaleuca cajuputi* Roxb.
Ai Pue, see *Excoecaria indica* (Willd.) Muell. Arg.
Ai Tohi, see *Excoecaria indica* (Willd.) Muell. Arg.
Ai Tui, see *Excoecaria indica* (Willd.) Muell. Arg.
Ai, see *Brownlowia argentata* Kurz.
Ain Hual, see *Inocarpus fagifer* (Parkinson) Fosb.
Akan pelanduk, see *Salacia chinensis* L.
Akan kangkong bulu, see *Ipomoea maxima* (L.f.) Don ex Sweet
Akar Aru, see *Combretum tetralophum* Clarke
Akar Bani, see *Dischidia rafflesiana* Wall.
Akar Banok, see *Dischidia rafflesiana* Wall.
Akar beluru, see *Entada phaseoloides* (L.) Merr.
Akar bering, see *Loeseneriella macrantha* (Korth.) A.C. Smith
Akar Hitang, see *Ipomoea gracilis* R. Br.
Akar Kelinci, see *Caesalpinia cristata* L.
Akar Kul, see *Dischidia rafflesiana* Wall.
Akar Kusu, see *Drynaria sparsisora* (Desv.) Moore
Akar nangkei, see *Combretum trifoliatum* Vent.
Akar Pakis, see *Stenochlaena palustris* (Burm. f.) Bedd.
Akar song song harus, see *Combretum trifoliatum* Vent.
Al tuban, see *Vitex ovata* Thunb.
Alakang, see *Barringtonia acutangula* (L.) Gaertn.
Alakang, see *Barringtonia racemosa* (L.) Spreng.
Alakang, see *Barringtonia racemosa* (L.) Spreng.
Alere, see *Ipomoea pes-capre* (L.) Sweet.
Alur, see *Suaeda maritima* (L.) Dum.
Ama, see *Cordia subcordata* Lam.
Ambung-ambung, see *Scaevola taccada* (Gaertn.) Roxb.
Anas, see *Scaevola taccada* (Gaertn.) Roxb.
Anggrek, see *Dendrobium subulatum* (Bl.) Lindl.
Anggrek, see *Dendrobium pachyphyllum* (O.K.) Bakh. f.
Angkaeng, see *Inocarpus fagifer* (Parkinson) Fosb.
Angkrek lilin, see *Aerides odoratum* Reinw. ex Blume
Anuanga, see *Cordia dichotoma* G. Forst.
Api, see *Scolopia macrophylla* (W. & A.) Clos
Api-api Abang, see *Avicennia marina* (Forssk.) Vierh.
Api-api Balah, see *Lumnitzera racemosa* Willd.
Api-api Daun Lebar, see *Avicennia officinalis* L.
Api-api Jambu, see *Lumnitzera racemosa* Willd.
Api-api Ludat, see *Avicennia officinalis* L.
Api-api Putih, see *Avicennia marina* (Forssk.) Vierh.
Api-api Uding, see *Lumnitzera littorea* (Jack) Voigt.
Api-api, see *Avicennia alba* Blume
Api-api, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Api-api, see *Avicennia lanata* Ridley
Aram Aron, see *Cathormion umbellatum* (M.Vahl.) Kosterm.
Areuj, see *Caesalpinia bonduc* (L.) Roxb.
Areuj, see *Caesalpinia crista* L.
Areuy ki loma, see *Derris pinnata* (Lour.) Prain
Areuy ki menter, see *Derris pinnata* (Lour.) Prain
Areuy Ki Tonggeret, see *Derris trifoliata* Lour
Areuy munding serakit, see *Derris pinnata* (Lour.) Prain
Arnana, see *Planchonella obovata* (R.Br.) Pierre.
Aru, see *Casuarina equisetifolia* L.
Aruk, see *Caesalpinia bonduc* (L.) Roxb.
Aruk, see *Caesalpinia crista* L.
Asa-Asa, see *Allophysus cobbe* (L.) Raeusch.
Asawali, see *Pongamia pinnata* (L.) Pierre
Asinan, see *Paspalum vaginatum* Sw.
Asiwung raja matri, see *Typha angustifolia* Linné
Atung Laut, see *Heritiera littoralis* Dryand.
Awakal, see *Pongamia pinnata* (L.) Pierre
Baba koan Lelaki, see *Scaevola taccada* (Gaertn.) Roxb.
Babakoan, see *Scaevola taccada* (Gaertn.) Roxb.
Babawangan, see *Eleocharis dulcis* (Burm. f.) Henschel
Badak, see *Cerbera odollam* Gaertn.
Bagoré, see *Caesalpinia bonduc* (L.) Roxb.
Bagoré, see *Caesalpinia crista* L.
Bahu, see *Hibiscus tiliaceus* L.
Baiibui, see *Intsia bijuga* (Coebr.) Kuntze
Ba’ileu, see *Fimbristylis ferruginea* (L.) Vahl
Bajang, see *Intsia bijuga* (Coebr.) Kuntze
Bajongbong, see *Phragmites karka* (Retz.) Trin. ex Steud.
Bakau Hitam, see *Rhizophora mucronata* Lamk.
Bakau Hitam, see *Rhizophora stylosa* Griff.
Bakau Korap, see *Rhizophora mucronata* Lamk.
Bakau Korap, see *Rhizophora stylosa* Griff.
Bakau Merah, see *Rhizophora mucronata* Lamk.
Bakau Merah, see *Rhizophora stylosa* Griff.
Bakau Tampusing, see *Bruguiera sexangula* (Lour.) Poir.
Bakau, see *Bruguiera exaristata* Ding Hou
Bakong, see *Crinum asiaticum* L.
Bakung, see *Crinum asiaticum* L.
Balam Timah, see *Planchonella obovata* (R.Br.) Pierre.
Balang, see *Heritiera littoralis* Dryand.
Balim-balim, see *Ipomoea pes-capre* (L.) Sweet.
Bampesu, see *Stenochlaena palustris* (Burm. f.) Bedd.
Bangka Itam, see *Rhizophora mucronata* Lamk.
Bangka Itam, see *Rhizophora stylosa* Griff.
Bangka Minyak, see *Rhizophora apiculata* Bl.
Bangkita, see *Rhizophora apiculata* Bl.
Bangkong, see *Pongamia pinnata* (L.) Pierre
Bara laut, see *Cordia subcordata* Lam.
Barak Laut, see *Cassine viburnifolia* (Juss.) Ding Hou
Barang-barang, see *Drynaria sparsisora* (Desv.) Moore
Barat Barat, see *Cassine viburnifolia* (Juss.) Ding Hou
Baru galang, see *Melaleuca cajuputi* Roxb.
Baru laut, see *Thespesia populnea* (L.) Soland. ex Correa
Baru, see *Hibiscus tiliaceus* L.
Batai Laut, see *Peltophorum pterocarpum* (DC.) K. Heyne
Batai, see *Peltophorum pterocarpum* (DC.) K. Heyne
Batang Lampung, see *Scaevola taccada* (Gaertn.) Roxb.
Batang-batin, see *Blumeodendron tokbrai* (Bl.) Kurz.
Bawang Hutan, see *Crinum asiaticum* L.
Bawuntulon, see *Scaevola taccada* (Gaertn.) Roxb.
Bebawangan, see *Scirpus grossus* Linné
Bebira, see *Fagraea crenulata* Maingay ex C.B. Clarke
Bekil, see *Lasia spinosa* (L.) Thwaites
Belangan, see *Scolopia macrophylla* (W. & A.) Clos
Belibu, see *Atuna racemosa* ssp. *racemosa* Rafin.
Belohila, see *Heritiera littoralis* Dryand.
Belukap, see *Rhizophora mucronata* Lamk.
Belukap, see *Rhizophora stylosa* Griff.
Beluntas, see *Pluchea indica* (L.) Less
Bendan, see *Derris scandens* (Aubl.) Pittier
Bendoh, see *Entada phaseoloides* (L.) Merr.
Bengkak, see *Hernandia ovigera* L.
Bengkudu, see *Morinda citrifolia* L.
Beowa, see *Terminalia catappa* L.
Beruwas Laut, see *Scaevola taccada* (Gaertn.) Roxb.
Beureum, see *Eleocharis dulcis* (Burm. f.) Henschel
Beus, see *Kandelia candel* (L.) Druce
Bhalang tambal, see *Entada phaseoloides* (L.) Merr.
Bhalang, see *Entada phaseoloides* (L.) Merr.
Bhunjok, see *Nympa fruticans* Wurmb.
Bidada, see *Sonneratia alba* J.E. Smith
Bidada, see *Sonneratia caseolaris* (L.) Engl.
Bidara laut, see *Ximenia americana* L.
Bidara, see *Ximenia americana* L.
Bidaro, see *Ximenia americana* L.
Bido-bido, see *Ceriops decandra* (Griff.) Ding Hou
Bido-bido, see *Ceriops tagal* (Perr.) C.B. Rob.
Biet, see *Phragmites karka* (Retz.) Trin. ex Steud.
Bilu Tasi, see *Cerbera manghas* L.
Bilu Tasi, see *Cerbera odollam* Gaertn.
Binasi, see *Planchonella obovata* (R.Br.) Pierre.
Bingalo, see *Vismum ovalifolium* DC.
Binong laut, see *Hernandia ovigera* L.
Bintan, see *Cerbera manghas* L.
Bintan, see *Cerbera odollam* Gaertn.
Bintana, see *Kleinhovia hospita* L.
Bintangur, see *Kleinhovia hospita* L.
Bintangur Pantai, see *Symplocos celastrifolia* Griff. ex Clarke
Bintaro, see *Cerbera manghas* L.
Bintaro, see *Cerbera odollam* Gaertn.
Bintitt, see *Mischocarpus sundaicus* Blume
Bira bira, see *Fagraea crenulata* Maingay ex C.B. Clarke
Biring jene, see *Clerodendrum inerme* (L.) Gaertn.
Biron, see *Stachytarpheta jamaicensis* (L.) Vahl
Bitung, see *Barringtonia asiatica* (L.) Kurz
Blakangabu, see *Heritiera littoralis* Dryand.
Boak, see *Avicennia alba* Blume
Bogem, see *Sonneratia alba* J.E. Smith
Bogem, see *Sonneratia caseolaris* (L.) Engl.
Bogem, see *Sonneratia ovata* Back.
Bojo, see *Scaevola taccada* (Gaertn.) Roxb.
Bojolo, see *Scaevola taccada* (Gaertn.) Roxb.
Bolowerke, see *Entada phaseoloides* (L.) Merr.
Bonduc, see *Caesalpinia crist* L.
Boppa Ceda, see *Scaevola taccada* (Gaertn.) Roxb.
Boroslanang, see *Eleocharis spiralis* (Rottb.) R. & S.
Buah letus, see *Artisia elliptica* Thunberg
Buah Pitrri, see *Passiflora foetida* L.
Buah tikus, see Passiflora foetida L.
Bubira, see Fagraea crenulata Maingay ex C.B. Clarke
Bukolako, see Scatochilus taccada (Gaertn.) Roxb.
Bulangan, see Azima sargentosa (BL.) B. & H.
Bundung, see Scirpus grossus Linné
Bunga Batang, see Wedelia biflora (L.) DC.
Bungan pulir, see Passiflora foetida L.
Bungkangan, see Mischocarpus sundalicus Blume
Burus, see Bruguiera cylindrica (L.) Bl.
Bus, see Melaleuca cajuputi Roxb.
Busing, see Bruguiera sexangula (Lour.) Poir.
Busung, see Bruguiera sexangula (Lour.) Poir.
Buta badak, see Cerbera manghas L.
Buta-buta Madang, see Cerbera manghas L.
Buta-buta Madang, see Cerbera odollam Gaertn.
Buta-buta, see Excoecaria agallocha L.
Butun Darat, see Barringtonia racemosa (L.) Spreng.
Butun, see Barringtonia asiatica (L.) Kurz
Buwa Goro, see Caesalpinia bonduc (L.) Roxb.
Buwa Goro, see Caesalpinia crista L.
Buyuk, see Nypa fruticans Wurmb.
Calpong, see Calophyllum inophyllum L.
Cangkudu, see Morinda citrifolia L.
Cantigi, see Pemphis acidula J.R. & G. Forst.
Cantinggi, see Pemphis acidula J.R. & G. Forst.
Cariju, see Entada phaseoloides (L.) Merr.
Cemara laut, see Casuarina equisetifolia L.
Cempaga, see Tristellateia australasiae A. Rich.
Cempaka hutan, see Gardenia tubifera Wall
Cena, see Cordia dichotoma G. Forst.
Cerlang Laut, see Heritiera littoralis Dryand.
Cikai, see Eleocharis dulcis (Burm. f.) Henschel
Cilekle, see Scatochilus taccada (Gaertn.) Roxb.
Cingam, see Scaphiphora hydrophyllacea Gaertn. f.
Cukilan, see Allophylus cocc (L.) Raeusch.
Culiket, see Diospyros malabarica (Descr.) Kostel.
Dadap, see Erythrina orientalis (L.) Murr.
Dalere, see Ipomoea pes-capre (L.) Sweet.
Dandulit, see Scaphiphora hydrophyllacea Gaertn. f.
Dangsa, see Phoenix paludosa Roxb.
Darendeng, see Cyperus malaccensis Lamk.
Daruyu, see Acanthus ilicifolius L.
Dau, see Bruguiera gymnorhiza (L.) Lamk.
Daun kambing, see Premna obtusifolia R. Br.
Daun korpa, see Dischidia banghalensis Colebr.
Daun pitis kecil, see Dischidia banghalensis Colebr.
Daun Pitis Kecil, see Dischidia nummularia R.Br.
Daun puyu, see Salacia chinensis L.
Daun saga, see Abrus precatorius L.
Da-usa, see *Crinum asiaticum* L.
Dekeng, see *Eleocharis dulcis* (Burm. f.) Henschel
Dekeng, see *Cyperus javanicus* Houtt.
Delima hutan, see *Gardenia tubifera* Wall
Dempul Lelet Gajah, see *Glochidion littorale* Bl.
Dempul, see *Glochidion littorale* Bl.
Dingkaran, see *Calophyllum inophyllum* L.
Donggo Akit, see *Rhizophora apiculata* Bl.
Dongoh Korap, see *Rhizophora mucronata* Lamk.
Dongoh Korap, see *Rhizophora stylosa* Griff.
Duduk Agung, see *Aegiceras comicum* (L.) Blanco
Duduk Agung, see *Lumnitzera littorea* (Jack) Voigt.
Duduk Gedeh, see *Lumnitzera littorea* (Jack) Voigt.
Duduk Laki-laki, see *Lumnitzera racemosa* Willdl.
Duduk Perempuan, see *Scyphiphora hydrophyllacea* Gaertn. f.
Duduk, see *Lumnitzera racemosa* Willdl.
Dudul Rayap, see *Scyphiphora hydrophyllacea* Gaertn. f.
Dudulan, see *Scyphiphora hydrophyllacea* Gaertn. f.
Dulang jai, see *Ricinus communis* L.
Dulok-dulok, see *Osbornia octobonata* F.v.Muell.
Dumpajang, see *Terminalia catappa* L.
Dungu, see *Heritiera littoralis* Dryand.
Dungun air, see *Brownlowia tessa* (L.) Kosterm.
Dungun laut, see *Heritiera littoralis* Dryand.
Dungun, see *Heritiera littoralis* Dryand.
Dunuko, see *Vitex ovata* Thunb.
Embet, see *Typha angustifolia* Linné
Endong, see *Eleocharis spiralis* (Rottb.) R. & S.
Endong, see *Scirpus litoralis* Schrad.
Fala, see *Cordia subcordata* Lam.
Fana, see *Cordia subcordata* Lam.
Fanasa, see *Ardisia elliptica* Thunberg
Fau, see *Hibiscus tiliacus* L.
Fete-fete, see *Crinum asiaticum* L.
Fikus, see *Ficus microcarpa* L.f.
Fojet, see *Dolichandrone spatula* (L.f.) K.Schum.
Gabus Cina, see *Scaevola taccada* (Gaertn.) Roxb.
Gabus, see *Scaevola taccada* (Gaertn.) Roxb.
Gabusan, see *Scaevola taccada* (Gaertn.) Roxb.
Gadel, see *Derris trifoliata* Lour
Gagabusan, see *Scaevola taccada* (Gaertn.) Roxb.
Gajam, see *Inocarpus fagifer* (Parkinson) Fosb.
Gajang, see *Inocarpus fagifer* (Parkinson) Fosb.
Gajonggong, see *Phragmites karka* (Retz.) Trin. ex Steud.
Galala, see *Erythrina orientalis* (L.) Murr.
Gali-gali, see *Lasia spinosa* (L.) Thwaites.
Galumi, see *Vitex ovata* Thunb.
Gambir ayer, see *Loeseneriella macrantha* (Korth.) A.C. Smith
Gambir laut, see *Clerodendrum inerme* (L.) Gaertn.
Gandu, see *Entada phaseoloides* (L.) Merr.
Ganggeng, see *Najas indica* (Willd.) Cham.
Gasep, see *Inocarpus fagifer* (Parkinson) Fosb.
Gatep Pahit, see *Quassia indica* (Gaertn.) Nooteboom
Gayaamu, see *Inocarpus fagifer* (Parkinson) Fosb.
Geida, see *Cyperus malaccensis* Lamk.
Gelala, see *Erythrina orientalis* (L.) Murr.
Gelam, see *Melaleuca cajuputi* Roxb.
Gerinjing, see *Lumnitzera littorea* (Jack) Voigt.
Gigi Gajah, see *Aegigerus corniculatum* (L.) Blanco
Gigirintingan, see *Cynodon dactylon* (L.) Pers.
Gilitopa, see *Scaevola taccada* (Gaertn.) Roxb.
Glagah Asu, see *Phragmites karka* (Retz.) Trin. ex Steud.
Gli-gli, see *Lasia spinosa* (L.) Thwaites
Gloah, see *Ricinus communis* L.
Goboel, see *Derris scandens* (Aubl.) Pittier
Gogopoa, see *Cycas rumphii* Miq.
Goleng, see *Mischocarpus sudaicus* Blume
Goro-goro Raci, see *Excocarica agallocha* L.
Goro-goro, see *Cerbera manghas* L.
Goro-goro, see *Cerbera odollam* Gaertn.
Grintingan, see *Cynodon dactylon* (L.) Pers.
Gumulong, see *Phragmites karka* (Retz.) Trin. ex Steud.
Haha, see *Batis argillicola* van Royen
Hapo-hapo, see *Hernandia ovigera* L.
Harendong, see *Melastoma malabathricum* var. *malabathricum* L.
Haruna, see *Guettarda speciosa* Linn.
Hata Diuk, see *Acrostichum aureum* Linné
Hau Kolo, see *Peltophorum pterocarpum* (DC.) K. Heyne
Heikre, see *Typha angustifolia* Linné
Hirang Krama, see *Cathormion umbellatum* (M.Vahl.) Kosterm.
Hokal, see *Scaevola taccada* (Gaertn.) Roxb.
Hutu, see *Barringtonia asiatica* (L.) Kurz
Inggolom, see *Melaleuca cajuputi* Roxb.
Ipi, see *Intsia bijuga* (Colebr.) Kuntze
Ipin, see *Intsia bijuga* (Colebr.) Kuntze
Ipio, see *Intsia bijuga* (Colebr.) Kuntze
Ipus in cawok, see *Entada phaseoloides* (L.) Merr.
Irono Ngelak, see *Melaleuca cajuputi* Roxb.
Iwal, see *Hibiscus tiliaeus* L.
Jabai, see *Ficus microcarpa* L.f.
Jabal, see *Cerbera manghas* L.
Jabal, see *Cerbera odollam* Gaertn.
Jaga, see *Barringtonia asiatica* (L.) Kurz
Jampak luyak, see *Derris pinnata* (Lour.) Prain
Jankar, see *Rhizophora apiculata* Bl.
Jankar, see *Rhizophora mucronata* Lamk.
Mangrove Guidebook for Southeast Asia

PART 1: ANNEX 4

Jankar, see *Rhizophora stylosa* Griff.
Jarak kosta, see *Ricinus communis* L.
Jarak, see *Ricinus communis* L.
Jaran Pelok, see *Dolichandrone spathacea* (l.f.) K.Schum.
Jaranan, see *Dolichandrone spathacea* (l.f.) K.Schum.
Jarang, see *Dolichandrone spathacea* (l.f.) K.Schum.
Jarang, see *Ricinus communis* L.
Jarong, see *Stachytarpheta jamaicensis* (L.) Vahl
Jarongan lalaki, see *Stachytarpheta jamaicensis* (L.) Vahl
Jarongan, see *Stachytarpheta jamaicensis* (L.) Vahl
Jati Pasir, see *Guettarda speciosa* Linn.
Jejawi, see *Ficus microcarpa* L.f.
Jekeng, see *Cyperus compactus* Retz.
Jekeng, see *Cyperus javanicus* Houtt.
Jengkot, see *Planchnonella obovata* (R.Br.) Pierre.
Jeraman, see *Glochidion littorale* Bl.
Jeruju, see *Acanthus ebracteatus* Vahl.
Jeruju, see *Acanthus ilicifolius* L.
Jerukan, see *Acronychia pedunculata* (L.) Miq.
Jingalo, see *Viscum ovalifolium* DC.
Joa-joa dowongi, see *Canavalia maritima* Thouars
Jomba, see *Xylocarpus granatum* Koen.
Kaap, see *Passiflora foetida* L.
Kabai-kabai, see *Ipomoea pes-capre* (L.)
Kabaru, see *Hibiscus tiliae*us L.
Kacang kayu laut, see *Pongamia pinnata* (L.) Pierre
Kacang Laut, see *Canavalia maritima* Thouars
Kaceprok, see *Passiflora foetida* L.
Kadong, see *Cerbera manghas* L.
Kadong, see *Cerbera odollam* Gaertn.
Kailau, see *Rhizophora apiculata* Bl.
Kajang-kajang, see *Crinum asiaticum* L.
Kajeng Kapal, see *Dolichandrone spathacea* (l.f.) K.Schum.
Kaju Ambong, see *Scaevola taccada* (Gaertn.) Roxb.
Kaju Pelok, see *Dolichandrone spathacea* (l.f.) K.Schum.
Kaju Pelumping, see *Dolichandrone spathacea* (l.f.) K.Schum.
Kala Keok, see *Acrostichum aureum* Linné
Kalak Kambing, see *Finlaysonia obovata* Wall.
Kalapa tiyung, see *Horsfieldia irya* (Gaertn.) Warb.
Kalapanrang, see *Excoecaria agallocha* L.
Kalembemba, see *Entada phaseoloides* (L.) Merr.
Kalikih alang, see *Ricinus communis* L.
Kalumagus, see *Rhizophora apiculata* Bl.
Kambing-kambing, see *Sarcolobus globosus* Wall.
Kamis, see *Hernandia ovigera* L.
Kamulut, see *Derris trifoliata* Lour.
Kandeka, see *Bruguiera gymnorrhiza* (L.) Lamk.
Kangkong Laut, see *Ipomoea gracilis* R. Br.
Kaniker, see *Caesalpinia bonduc* (L.) Roxb.
Kaniker, see Caesalpinia crista L.
Kanonang, see Cordia dichotoma G. Forst.
Kapal, see Dolichandrone spathacea (l.f.) K.Schum.
Kapo-kapo, see Glochidion littorale Bl.
Karamunting, see Ochtthocharis bornensis Bl.
Kasjanaf, see Hibiscus tiliacus L.
Kasongket, see Phragmites karka (Retz.) Trin. ex Steud.
Katang-katang, see Ipomoea pes-capre (L.) Sweet.
Katé-katé, see Caesalpinia bonduc (L.) Roxb.
Katé-katé, see Caesalpinia crista L.
Kateng, see Cynometra iripa Kostel.
Kateng, see Cynometra ramiflora L.
Kati-kati, see Dolichandrone spathacea (l.f.) K.Schum.
Katimaga, see Kleinhovia hospita L..
Katimaha, see Kleinhovia hospita L..
Katimahar, see Kleinhovia hospita L..
Kaya Kil, see Olax imbricata Roxb.
Kayu Besi Ambon, see Intsia bijuga (Colebr.) Kuntze
Kayu Bulan, see Fagraea crenulata Maingay ex C.B. Clarke
Kayu buta, see Excoecaria agallocha L.
Kayu buta, see Excoecaria agallocha L.
Kayu Jaran Binek, see Dolichandrone spathacea (l.f.) K.Schum.
Kayu Jaran, see Dolichandrone spathacea (l.f.) K.Schum.
Kayu Jiheran, see Dolichandrone spathacea (l.f.) K.Schum.
Kayu Juwok, see Peltophorum pterocarpum (DC.) K. Heyne
Kayu keramat, see Podocarpus polystachyus R.Br. ex Endl.
Kayu Kuda, see Dolichandrone spathacea (l.f.) K.Schum.
Kayu Kurita, see Cerbera manghas L.
Kayu Kurita, see Cerbera odollam Gaertn.
Kayu lampiko, see Ardisia elliptica Thunberg
Kayu Pahit, see Quassia indica (Gaertn.) Nootboom
Kayu pel, see Cynometra iripa Kostel
Kayu Pel, see Cynometra ramiflora L.
Kayu puti, see Melaleuca cajaputi Roxb.
Kayu Semidra, see Acronychia pelunculata (L.) Miq.
Kayu Semilit, see Pachycentria constricta (Bl.) Blume
Kayu sentigi, see Pemphis acidula J.R. & G. Forst.
Kayu Sila, see Aegiceras corniculatum (L.) Blanco
Kayu Susu, see Cerbera manghas L.
Kayu Susu, see Cerbera odollam Gaertn.
Kayu Tahun, see Kleinhovia hospita L..
Kayu Tanyong, see Symplocos celastrifolia Griff. ex Clarke
Kayu tulak, see Gardenia tubifera Wall
Kayu urum, see Mischocarpus sundiicus Blume
Kayu Wuta, see Excoecaria agallocha L.
Keben-keben, see Barringhonia asiatica (L.) Kurz
Kecipir, see Blumendron tokrai (Bl.) Kurz.
Kedabu, see Sonneratia ovata Back.
Kedot, see Cyperus malaccensis Lamk.
Kekara Laut, see Canavalia maritima Thouars
Kekara pedang, see Canavalia maritima Thouars
Keladi Payau, see Cryptocoryne ciliata (Roxb.) Fisch. ex Schott
Keladi, see Colocasia esculenta (L.) Schott
Kelaju, see Dolichandrone spathacea (l.f.) K.Schum.
Kelepis, see Quassia indica (Gaertn.) Nooteboom
Kemadean, see Dendrophthoe pentandra (L.) Miq.
Kemaduhan, see Macrosolen cochinchiensis (Lour.) Tiegh.
Kemalalaha, see Salicornia indica Willd.
Kemanden, see Melastoma malabathricum var. malabathricum L.
Kembang bugang, see Clerodendrum inerme (L.) Gaertn.
Kemlandean, see Dendrophthoe pentandra (L.) Miq.
Kemrounggi, see Caesalpinia bonduc (L.) Roxb.
Kemrounggi, see Caesalpinia crista L.
Kena, see Cordia subcordata Lam.
Kendal, see Cordia dichotoma G. Forst.
Kendung, see Symlocos celastrifolia Griff. ex Clarke
Keneas, see Pemphis acidula J.R. & G. Forst.
Keneras, see Allophylus coccineus (L.) Raeusch.
Kenyang-kenyang, see Guettarda spectosa Linn.
Kenyen Putih, see Cerbera odollam Gaertn.
Kenyeri Putih, see Cerbera odollam Gaertn.
Kepala Berok, see Hydnophyllum formicarum Jack
Kepel, see Cynometra iripa Kostel.
Kepel, see Cynometra ramiflora L.
Keptun, see Barringtonia asiatica (L.) Kurz
Ketapang, see Terminalia catappa L.
Ketapas, see Terminalia catappa L.
Keterung, see Blumeodendron tokbain (Bl.) Kurz.
Ketowang, see Ricinus communis L.
Ketumbang, see Glochidion litorale Bl.
Ketuwer, see Clerodendrum inerme (L.) Gaertn.
Ki Arak, see Dolichandrone spathacea (l.f.) K.Schum.
Ki bowe, see Mischocarpus sundaeicus Blume
Ki Jaran, see Dolichandrone spathacea (l.f.) K.Schum.
Klengkeng, see Acronychia polystachyaus R.Br. ex Endl.
Ki Putri, see Podocarpus polystachyus R.Br. ex Endl.
Ki salira, see Acronychia pedunculata (L.) Miq.
Kie, see Brownlowia argentata Kurz.
Kikisa, see Cyperus javanicus Houtt.
Kilaula, see Terminalia catappa L.
Kisokka, see Atuna racemosa sp. racemosa Rafin.
Ki Tasi, see Cathormion umbellatum (M.Vahl.) Kosterm.
Kleca, see Diospyros malabarica (Descr.) Kostel.
Klega, see Diospyros malabarica (Descr.) Kostel.
Klengkeng, see Caesalpinia bonduc (L.) Roxb.
Klengkeng, see Caesalpinia crista L.
Klihi, see Terminalia catappa L.
Klimasada, see Cordia subcordata Lam.
Klindo, see Scaevola taccada (Gaertn.) Roxb.
Klis, see Terminalia catappa L.
Kluruk, see Melastoma malabathricum var. malabathricum L.
Knadate, see Cordia dichotoma G. Forst.
Knias, see Lumnitzeria racemosa Willd.
Koak, see Avicennia alba Blume
Kodokan, see Fimbristylis cymosa R. Br.
Kodokan, see Fimbristylis ferruginea (L.) Vahl
Koi a koi, see Clerodendrum inerme (L.) Gaertn.
Kokole, see Scaevola taccada (Gaertn.) Roxb.
Kokrok, see Flagellaria indica L.
Korma Rawa, see Phoenix paludosa Roxb.
Koyandan, see Cerbera odollam Gaertn.
Krajep, see Trianthema portulacastrum L.
Krakas, see Acrostichum aureum Linné
Kranji, see Pongamia pinnata (L.) Pierre
Kroket, see Sesuvium portulacastrum (L.) L.
Kroket, see Trianthema portulacastrum L.
Krunjing, see Symplocos caesalpinaea Griff. ex Clarke
Kruppe, see Ananirta cocculia L. Wight & Arn.
Kubaing, see Combretum trifoliatum Vent.
Kuda-kuda, see Dolichandrone spathacea (f.f.) K.Schum.
Kudo-kudo Uwi, see Dolichandrone spathacea (f.f.) K.Schum.
Kulimbabok, see Symplocos caesalpinaea Griff. ex Clarke
Kumbu, see Cyperus malaccensis Lamk.
Kumpai Lubang, see Lycopodium carinatum Desv.
Kungkungan, see Barringtonia racemosa (L.) Spreng.
Kutuk, see Caesalpinia bonduc (L.) Roxb.
Kutuk, see Caesalpinia crista L.
Kwakatehi, see Ryssopterys timoriensis (DC.) Jussieu
Lagundi, see Vitex ovata Thunb.
Lalang-kapan, see Wedelia biflora (L.) DC.
Lambaran, see Cathornia umbellatum (M.Vahl.) Kosterm.
Lambideing, see Stenochlaena palustris (Burm. f.) Bedd.
Lampeni, see Ardisia elliptica Thunberg
Lamutasi, see Pluchea indica (L.) Less
Lana-lana, see Ricinus communis L.
Landing-landing, see Cassine viburnifolia (Juss.) Ding Hou
Langgade, see Bruguiera parviflora (Roxb.) W. & A. ex Griff.
Lantolo, see Cordia dichotoma G. Forst.
Lau bintang, see Aerides odoratum Reinw. ex Blume
Lau pandan, see Cymbidium finlaysonianum Wall ex Lindl.
Lawanan Kete, see Heritiera littoralis Dryand.
Lawang, see Heritiera littoralis Dryand.
Lawarani, see Vitex ovata Thunb.
Lemanas, see Passiflora foetida L.
Lemiding, see Stenochlaena palustris (Burm. f.) Bedd.
Lempeni, see Ardisia elliptica Thunberg
Lempoyan Paya, see Horsfieldia irya (Gaertn.) Warb.
Lenabou, see *Pluchea indica* (L.) Less
Lenggadai, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Lenggayong, see *Rhizophora mucronata* Lamk.
Lenggayong, see *Rhizophora stylosa* Griff.
Lenteng, see *Olax imbricata* Roxb.
Libung, see *Onosperma tigillarium* (Jack.) Ridl.
Lilanga, see *Drymaria sparsisora* (Desv.) Moore
Lilegundi, see *Vitex ovata* Thunb.
Lindur, see *Bruguiera clyndrica* (L.) Bl.
Lindur, see *Bruguiera gymnorrhiza* (L.) Lamk.
Lindur, see *Bruguiera sexangula* (Lour.) Poir.
Langi, see *Scirpus grossus* Linné
Lingkaren, see *Calophyllum inophyllum* L.
Lipa, see *Nypa fruticans* Wurmb.
Lisa, see *Terminalia catappa* L.
Loloro, see *Rhizophora mucronata* Lamk.
Loloro, see *Rhizophora stylosa* Griff.
Loloso, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Loloro, see *Ipomoea pes-capre* (L.) Sweet.
Lom, see *Cathornia umbellatum* (M. Vahl.) Kosterm.
Lomo, see *Atuna racemosa* sp. racemosa Rafin.
Lulang, see *Ricinus communis* L.
Luluk, see *Ricinus communis* L.
Lulun, see *Heritiera littoralis* Dryand.
Lumpui, see *Flagellaria indica* L.
Lumut Siarang, see *Najas indica* (Willd.) Cham.
Lutur bal, see *Ricinus communis* L.
Luumpoyang, see *Terminalia catappa* L.
Ma Gorago, see *Lumnitzera littorea* (Jack) Voigt.
Machlana, see *Hernandia ovigera* L.
Mahandap, see *Hernandia ovigera* L.
Mahar, see *Kleinhovia hospita* L.
Makasuta, see *Excoecaria agallocha* L.
Makente, see *Entada phaseoloides* (L.) Merr.
Makusi, see *Diospyros malabarica* (Descr.) Kostel.
Malabira, see *Fagraea crenulata* Maingay ex C.B. Clarke
Malegai, see *Barringtonia racemosa* (L.) Spreng.
Malur, see *Suaeda maritima* (L.) Dum.
Mampapu, see *Cordia dichotoma* G. Forst.
Mangandeauh, see *Macrosolen cochinchinensis* (Lour.) Tiegh.
Mangandeuh, see *Dendrophthoe pentandra* (L.) Miq.
Mangar, see *Kleinhovia hospita* L.
Mangga Brabu, see *Cerbera manghas* L.
Mangga Brabu, see *Cerbera odollam* Gaertn.
Mangi-mangi Putih, see *Avicennia alba* Blume
Mangkinang Tikus, see *Symplocos celsastrifolia* Griff. ex Clarke
Manonang, see *Cordia dichotoma* G. Forst.
Manor utan, see *Clerodendrum inerme* (L.) Gaertn.
Manuru dowongi, see *Clerodendrum inerme* (L.) Gaertn.
Mapopo, see *Hernandia ovigera* L.
Marauwen, see *Pongamia pinuata* (L.) Pierre
Marong, see *Scolopia macrophylla* (W. & A.) Clos
Mas Semasan, see *Cassyla filiformis* Linn.
Mata Buaya, see *Bruguiera sexangula* (Lour.) Poir.
Mata Huli, see *Excoecaria agallocha* L.
Mata ikan, see *Hernandia ovigera* L.
Mata Kijang, see *Caesalpinia bondoc* (L.) Roxb.
Mata Kijang, see *Caesalpinia crista* L.
Matonda, see *Asplenium nidus* Linné
Mawiao, see *Hernandia ovigera* L.
Mayu serai, see *Podocarpus polystachyus* R.Br. ex Endl.
Medang geliser, see *Gardenia tubifera* Wall
Mekudu, see *Morinda citrifolia* L.
Melabira, see *Fagraea crenulata* Maingay ex C.B. Clarke
Melat, see *Stenochlaena palustris* (Burm. f.) Bedd.
Mempenai, see *Cassine viburnifolia* (Juss.) Ding Hou
Menengan, see *Excoecaria agallocha* L.
Mengelangan, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Mengkuang, see *Pandanus tectorius* Sol
Mengkudu, see *Morinda citrifolia* L.
Mentigi, see *Pemphis acidula* J.R. & G. Forst.
Merbau cangkat, see *Intsia bijuga* (Colebr.) Kuntze
Merbau, see *Intsia bijuga* (Colebr.) Kuntze
Meta Pelandok, see *Cassine viburnifolia* (Juss.) Ding Hou
Miding, see *Stenochlaena palustris* (Burm. f.) Bedd.
Migin, see *Brownloeia argentata* Kurz.
Miju, see *Barringtonia asiatica* (L.) Kurz
Mojong Tihulu, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Moju, see *Barringtonia asiatica* (L.) Kurz
Mokal, see *Scaevola taccada* (Gaertn.) Roxb.
Molowahu, see *Hibiscus tiliaeus* L.
Monot-bonot, see *Osbornia octodonta* F.v.Muell.
Moteti, see *Passiflora foetida* L.
Murmasada, see *Cordia subcordata* Lam.
Namu-namu utan, see *Cynometra iripa* Kostel.
Namu-namu Utan, see *Cynometra ramiflora* L.
Nawoko ma lako, see *Hernandia ovigera* L.
Ngadi renga, see *Stachytarpheta jamaicensis* (L.) Vahl
Ngoa, see *Erythrina orientalis* (L.) Murr.
Niangka, see *Scaevola taccada* (Gaertn.) Roxb.
Nibong, see *Oncosperma tigillarium* (Jack.) Ridl
Nibung, see *Oncosperma tigillarium* (Jack.) Ridl.
Nipah, see *Nypa fruticans* Wurmb.
Niri Batu, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Niri, see *Xylocarpus rumphii* (Kostel.) Mabb.
Nonang, see *Cordia dichotoma* G. Forst.
Nomwai tasi, see *Cordia subcordata* Lam.
Nopu, see *Crinum asiaticum* L.
Nunang, see *Cordia dichotoma* G. Forst.

Nyalako, see *Hernandia ovigera* L.

Nyalu, see *Hernandia ovigera* L.

Nyambing, see *Lasia spinosa* (L.) Thwaites

Nyamplung, see *Calophyllum inophyllum* L.

Nyatoh labar, see *Planchonella obovata* (R.Br.) Pierre.

Nyatoh lamber, see *Planchonella obovata* (R.Br.) Pierre.

Nyireh, see *Xylocarpus rumphii* (Kostel.) Mabb.

Nyiri Gundik, see *Xylocarpus moluccensis* (Lamk) M. Roem.

Nyiri Hutan, see *Xylocarpus granatum* Koen.

Nyiri Udang, see *Xylocarpus granatum* Koen.

Nyuru, see *Xylocarpus moluccensis* (Lamk) M. Roem.

Olas Mea, see *Ryssopterys timoriensis* (DC.) Jussieu

Onne, see *Quassia indica* (Gaertn.) Nooteboom

Onunang, see *Cordia dichotoma* G. Forst.

Owar, see *Flagellaria indica* L.

Oyod Kambing, see *Finlaysonia obovata* Wall.

Oyod peron, see *Anamirta cocculus* L. Wight & Arn.

Oyod sambaing, see *Derris pinnata* (Lour.) Prain

Pacean, see *Passiflora foetida* L.

Paceda, see *Scaevola taccada* (Gaertn.) Roxb.

Padang Kawat, see *Cynodon dactylon* (L.) Pers.

Padang Lepas, see *Cynodon dactylon* (L.) Pers.

Pagoro, see *Eleocharis dulcis* (Burm. f.) Henschel

Pake Saukatibu, see *Merrilliodendron megacarpum* (Hemsl.) Sleum.

Pakis Bang, see *Stenochlaena palustris* (Burm. f.) Bedd.

Pakis Dongol, see *Cycas rumphii* Miq.

Pakis Duitan, see *Drymoglossum piloselloides* (Linn.) Presl.

Pakis Gajah, see *Cycas rumphii* Miq.

Pakis Haji, see *Cycas rumphii* Miq.

Pakis Laut, see *Cycas rumphii* Miq.

Pakis Menjangan, see *Platycerium coronarium* (Koenig.) Desv.

Pakis Raja, see *Cycas rumphii* Miq.

Pakis sarang semut, see *Myrmecophila sinuosa* (Wall. ex Hook.) Nakai ex Hito

Pakis Tanduk Rusah, see *Platycerium coronarium* (Koenig.) Desv.

Paku Cacing, see *Phymatodes scolopendria* (Burm.) Ching.

Paku haji, see *Cycas rumphii* Miq.

Paku hata, see *Acrostichum aureum* Linné

Paku Hurang, see *Stenochlaena palustris* (Burm. f.) Bedd.

Paku kawat, see *Lycopodium carinatum* Desv.

Paku Kayakas, see *Drynaria rigidula* (Sw.) Bedd.

Paku Latig Layangan, see *Drynaria sparsisora* (Desv.) Moore

Paku Laut, see *Acrostichum aureum* Linné

Paku layang layang, see *Drynaria sparsisora* (Desv.) Moore

Paku Lumut Batu, see *Davallia parvula* Wall. ex Hook. & Grev.

Paku Ramiding, see *Stenochlaena palustris* (Burm. f.) Bedd.

Paku sarang burung, see *Asplenium nidus* Linné

Paku Tjaj, see *Acrostichum aureum* Linné

Paku ton, see *Ricinus communis* L.
Paku Ular, see *Phymatodes scolopendra* (Burm.) Ching.
Palas duri, see *Licuala spinosa* Wurmb.
Palas, see *Licuala spinosa* Wurmb.
Palawan, see *Combretum trifoliatum* Vent.
Palun, see *Ceriops decandra* (Griff.) Ding Hou
Palun, see *Ceriops tagal* (Perr.) C.B. Rob.
Palungpung, see *Phragmites karka* (Retz.) Trin. ex Steud.
Pamuli, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Pancal, see *Planchonella obovata* (R.Br.) Pierre.
Pandan nipah, see *Pandanus tectorius* Sol
Pandan pudak, see *Pandanus tectorius* Sol
Pandaram Boheng, see *Inocarpus figifer* (Parkinson) Fosb.
Pangoke, see *Eleocharis dulcis* (Burm. f.) Henschel
Panimburana, see *Scaevola taccada* (Gaertn.) Roxb.
Panimburang, see *Scaevola taccada* (Gaertn.) Roxb.
Papa Blung, see *Cycas rumphii* Miq.
Papaceda, see *Scaevola taccada* (Gaertn.) Roxb.
Papajaran, see *Azima sarmentosa* (Bl.) B. & H.
Parai, see *Rhizophora apiculata* Bl.
Parongpong, see *Phragmites karka* (Retz.) Trin. ex Steud.
Parun, see *Ceriops decandra* (Griff.) Ding Hou
Parun, see *Ceriops tagal* (Perr.) C.B. Rob.
Pasilan kelapa, see *Drynaria rigidula* (Sw.) Bedd.
Pasilan, see *Dendrophthoe pentandra* (L.) Miq.
Pasilan, see *Macrosolen cochinchenensis* (Lour.) Tiegh.
Pasisir, see *Heritiera littoralis* Dryand.
Patuku, see *Cycas rumphii* Miq.
Pea-pea, see *Cyperus malaccensis* Lamk.
Pedada, see *Sonneratia alba* J.E. Smith
Pedada, see *Sonneratia caseolaris* (L.) Engl.
Pelenda Laut, see *Scaevola taccada* (Gaertn.) Roxb.
Peler kambing sejuk, see *Sarcolobus globosus* Wall.
Peler kambing, see *Sarcolobus globosus* Wall.
Pemandum, see *Brownlowia argentata* Kurz.
Penarah an, see *Horsfieldia irya* (Gaertn.) Warb.
Penggung, see *Barringtonia racemosa* (L.) Spreng.
Penjalinan, see *Misocharpus sudaicus* Blume
Penjalinan, see *Scirpus litonalis* Schrad
Peperetan, see *Eleocharis dulcis* (Burm. f.) Henschel
Percut kuda, see *Stachytarpheta jamaicensis* (L.) Vahl
Peredah Burung, see *Horsfieldia irya* (Gaertn.) Warb.
Perapat Lanang, see *Scyphiphora hydrophyllaceae* Gaertn. f.
Perapat Tudung, see *Aegiceras corniculatum* (L.) Blanco
Perapat, see *Sonneratia alba* J.E. Smith
Perapat, see *Sonneratia caseolaris* (L.) Engl.
Permot, see *Passiflora foetida* L.
Perapat Kecil, see *Aegiceras corniculatum* (L.) Blanco
Pertut, see *Bruguiera gymnorrhiza* (L.) Lamk.
Perumpung, see *Phragmites karka* (Retz.) Trin. ex Steud.
Peru-peru, see Eleocharis dulcis (Burm. f.) Henschel
Pai Lasa, see Acrostichum speciosum Willd.
Pidada, see Sonneratia alba J.E. Smith
Pidada, see Sonneratia caseolaris (L.) Engl.
Pijisan, see Drymoglossum piloselloides (Linn.) Presl.
Pikal, see Abrus precatorius L.
Pikat, see Entada phaseoloides (L.) Merr.
Piling-piling, see Abrus precatorius L.
Pisang-pisang laut, see Kandelia candel (L.) Druce
Piuweh, see Gardenia tubifera Wall
Pohodo’elang, see Scaevola taccada (Gaertn.) Roxb.
Pohon Kira-kira, see Xylocarpus granatum Koen.
Pohon Soga, see Peltophorum pterocarpum (DC.) K. Heyne
Pokok Serunai, see Wedelia biflora (L.) DC.
Pong-pong, see Gluta velutina Bl.
Porang, see Scaevola taccada (Gaertn.) Roxb.
Posi-posi Merah, see Sonneratia caseolaris (L.) Engl.
Posi-posi, see Luminitzera littorea (Jack) Voigt.
Posi-posi, see Sonneratia alba J.E. Smith
Pribo, see Brownlowia argentata Kurz.
Prumpung, see Phragmites karka (Retz.) Trin. ex Steud.
Prumpungan, see Cyperus compactus Retz.
Puang Tawang, see Tristellatea australasiac A. Rich.
Pulas laut, see Mischocarpus sndaicus Blume
Pulut-pulut, see Kandelia candel (L.) Druce
Punaga, see Calophyllum inophyllum L.
Punaga, see Calophyllum inophyllum L.
Purnamasada, see Cordia subcordata Lam.
Purun, see Fimbriostylis ferruginea (L.) Vahl
Putat Sungai, see Barringtonia racemosa (L.) Spreng.
Putat, see Barringtonia acutangula (L.) Gaertn.
Putat, see Barringtonia racemosa (L.) Spreng.
Putut, see Bruguiera gymnorrhiza (L.) Lamk.
Rabut loteng, see Derris scandens (Aubl.) Pittier
Rala, see Vitex ovata Thunb.
Rambai Laut, see Cassine viburnifolia (Juss.) Ding Hou
Rambai, see Sonneratia caseolaris (L.) Engl.
Rambut Putri, see Cassytha filiformis Linn.
Rampansi, see Ardisia elliptica Thunberg
Randai, see Luminitzera littorea (Jack) Voigt.
Raaaimariniu, see Ryssopterys timoriensis (DC.) Jussieu
Rappae-rappae, see Clerodendrum inerme (L.) Gaertn.
Rapus, see Quassia indica (Gaertn.) Nooteboom
Raru, see Xylocarpus moluccensis (Lamk) M. Roem.
Rebha Core Koko, see Cynodon dactylon (L.) Pers.
Rebha Kaproleam, see Fimbriostylis polytrichoides (Retz.) R. Br.
Rebha sekem-sekeman, see Zyzia matrella (L.) Merr.
Reduk, see Scirpus grossus Linné
Regil, see Mischocarpus sandaicus Blume
Remek getih, see *Stachytarpheta jamaicensis* (L.) Vahl
Remugak, see *Passiflora foetida* L.
Rengas Ayer, see *Gluta velutina* Bl.
Rengas Pantai, see *Gluta velutina* Bl.
Rengas Pendek, see *Gluta velutina* Bl.
Rengas, see *Gluta velutina* Bl.
Resak, see *Loeseneriella macroantha* (Korth.) A.C. Smith
Riang Laut, see *Lumnitzera littorea* (Jack) Voigt.
Rotan Bakau, see *Calamus erinaceus* (Becc.) Dransfield
Rotan Dapit, see *Flagellaria indica* L.
Rotan Dini, see *Flagellaria indica* L.
Rotan Kroh, see *Flagellaria indica* L.
Rotan Laki, see *Flagellaria indica* L.
Rotan Macik, see *Flagellaria indica* L.
Ru, see *Casuarina equisetifolia* L.
Rukam laka, see *Scolopia macrophylla* (W. & A.) Clos
Rukem Betina, see *Scolopia macrophylla* (W. & A.) Clos
Rumah Semut Hitam, see *Hydnophytum formicarum* Jack
Rumpat asinan, see *Paspalum vaginatum* Sw.
Rumpat bilulang, see *Xerochloa imberbis* R. Br.
Rumpat Kuluwing, see *Cyperus malaccensis* Lamk.
Rumpat peking, see *Zoysia matrella* (L.) Merr.
Rumung, see *Heritiera littoralis* Dryand.
Rurun, see *Heritiera littoralis* Dryand.
Sabrise, see *Terminalia catappa* L.
Sadina, see *Terminalia catappa* L.
Saga buncik, see *Abrus precatorius* L.
Saga, see *Abrus precatorius* L.
Saghakan, see *Abrus precatorius* L.
Sakat Ribu-ribu, see *Drymoglossum piloselloides* (Linn.) Presl.
Sakelan, see *Melaleuca cauputii* Roxb.
Sakot Kelembai, see *Dendrobium pachyphyllum* (O.K.) Bakh. f.
Sala-sala, see *Bruguiera gymnorhiza* (L.) Lamk.
Salimolé, see *Cordia subcordata* Lam.
Salimuli, see *Thespesia populnea* (L.) Soland. ex Correa
Salinsa, see *Barringtonia acutangula* (L.) Gaertn.
Salira, see *Acronychia pedunculata* (L.) Miq.
Sambang, see *Lasia spinosa* (L.) Thwaites
Sambiring, see *Planchonella obovata* (R.Br.) Pierre.
Sambuta, see *Excoecaria agallocha* L.
Sampi, see *Lasia spinosa* (L.) Thwaites
Sana keeling, see *Derris pinnata* (Lour.) Prain
Sana sungu, see *Derris pinnata* (Lour.) Prain
Sangari, see *Vitex ovata* Thunb.
Sangga Langit, see *Cassyytha filiformis* Linn.
Sangi, see *Dolichandra spathacea* (l.f.) K.Schum.
Sangir Langit, see *Cassyytha filiformis* Linn.
Sariboe, see *Corapha saribus* Lour.
Sarirah, see *Acronychia pedunculata* (L.) Miq.
Sarisa, see *Terminalia catappa* L.
Sarisei, see *Terminalia catappa* L.
Saruni, see *Wedelia biflora* (L.) DC.
Sayur kambing, see *Premna obtusifolia* R. Br.
Sayur Kelapa, see *Cycas rumphii* Miq.
Sekar laru, see *Stachytarpheta jamaicensis* (L.) Vahl
Semur, see *Crinum asiaticum* L.
Sendudok Air, see *Ochthocharis bornensis* Bl.
Senduduk, see *Melastoma malabathricum* var. *malabathricum* L.
Senggani, see *Melastoma malabathricum* var. *malabathricum* L.
Sentigi, see *Pemphis acidula* J.R. & G. Forst.
Senumpol, see *Atuna racemosa* ssp. *racemosa* Rafin.
Sepang, see *Combretum trifoliatum* Vent.
Serdang, see *Corypha saribus* Lour.
Seremai, see *Wedelia biflora* (L.) DC.
Serilang, see *Acronymia pedunculata* (L.) Miq.
Sernai, see *Wedelia biflora* (L.) DC.
Serunai Laut, see *Wedelia biflora* (L.) DC.
Seruni, see *Wedelia biflora* (L.) DC.
Sesak, see *Lumnitzera littorea* (Jack) Voigt.
Sesiil, see *Barringtonia racemosa* (L.) Spreng.
Sesira, see *Acronymia pedunculata* (L.) Miq.
Sesop, see *Lumnitzera littorea* (Jack) Voigt.
Seyawu saloyon, see *Ipomoea gracilis* R. Br.
Siba-siba, see *Cycas rumphii* Miq.
Sicancang, see *Allophylus cobbe* (L.) Rauesch.
Sijangè, see *Allophylus cobbe* (L.) Rauesch.
Sibu Tasi, see *Pemphis acidula* J.R. & G. Forst.
Simaralah, see *Horsfieldia irya* (Gaertn.) Warb.
Simbar Layangan, see *Drynaria rigidula* (Sw.) Bedd.
Simbar Layangan, see *Drynaria sparsisora* (Desv.) Moore
Simbar menjangan, see *Platycerium coronarium* (Koenig.) Desv.
Simbar, see *Drynaria sparsisora* (Desv.) Moore
Simbole, see *Entada phaseoloides* (L.) Merr.
Simpuru, see *Lophopyxis maingayi* Hook.f.
Sira, see *Intsia bijuga* (Clebr.) Kuntze
Sirisal, see *Terminalia catappa* L.
Siron, see *Hibiscus tiliaceanus* L.
Sisik Naga, see *Drymoglossum piloselloides* (Linn.) Presl.
Siureuh, see *Blumeodendron tokbrai* (Bl.) Kurz.
Sobi, see *Derris scandens* (Aubl.) Pittier
Soga, see *Peltophorum pterocarpum* (DC.) K. Heyne
Sompini, see *Caesalpinia bonduc* (L.) Roxb.
Sompini, see *Caesalpinia crista* L.
Songsong Harus, see *Combretum tetralophum* Clarke
Sono kelining, see *Derris pinnata* (Lour.) Prain
Sosa, see *Cyperus javanicus* Houtt.
Subang-subang, see *Scaevola taccada* (Gaertn.) Roxb.
Subeng-subeng, see *Scaevola taccada* (Gaertn.) Roxb.
Suket Dem, see *Cyperus malaccensis* Lamk.
Suket Dot, see *Fimbristylis ferruginea* (L.) Vahl
Suket Godokan, see *Fimbristylis ferruginea* (L.) Vahl
Suket Grinting, see *Cynodon dactylon* (L.) Pers.
Suket, see *Cyperus compactus* Retz.
Sulang Watu, see *Fimbristylis cymosa* R. Br.
Sungsung Arus, see *Combretum tetralophum* Clarke
Susong Harus, see *Combretum tetralophum* Clarke
Taburuh, see *Lophophyxis maingayi* Hook.f.
Taheup, see *Bruguiera gymnorrhiza* (L.) Lamk.
Talas, see *Colocasia esculenta* (L.) Schott
Tales, see *Colocasia esculenta* (L.) Schott
Tali Putri, see *Cassytha filiformis* Linn.
Tali Sasawi, see *Lophophyxis maingayi* Hook.f.
Talise, see *Barringtonia asiatica* (L.) Kurz
Talisei, see *Terminalia catappa* L.
Tangar, see *Ceriops tagal* (Perr.) C.B. Rob.
Tangkal Daon, see *Nyga fruticans* Wurmb.
Tangkele, see *Kleinovia hospita* L.
Taning bajang, see *Abrus precatorius* L.
Tanjang, see *Bruguiera cylindrica* (L.) Bl.
Tanjang, see *Bruguiera gymnorrhiza* (L.) Lamk.
Tanjang, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Tanjang, see *Bruguiera sexangula* (Lour.) Poir.
Tanjang Sukim, see *Bruguiera cylindrica* (L.) Bl.
Tanjong Jawa, see *Symplocos celastrifolia* Griff. ex Clarke
Tanjong-tanjong, see *Symplocos celastrifolia* Griff. ex Clarke
Taruntung, see *Lumnitzera littorea* (Jack) Voigt.
Tasi, see *Guettarda speciosa* Linn.
Tasi, see *Terminalia catappa* L.
Tatampayan besar, see *Ipomoea tuba* Schlechtend.
Tatepal, see *Phragmites karka* (Retz.) Trin. ex Steud.
Tatupele, see *Phragmites karka* (Retz.) Trin. ex Steud.
Taualis, see *Osbornia octodonta* F.v.Muell.
Tawi, see *Symplocos celastrifolia* Griff. ex Clarke
Tekere, see *Eleocharis dulcis* (Burm. f.) Henschel
Teki Parang, see *Fimbristylis cymosa* R. Br.
Teki Tike, see *Eleocharis dulcis* (Burm. f.) Henschel
Teki, see *Eleocharis dulcis* (Burm. f.) Henschel
Tekurung, see *Blumeodendron tokbrai* (Bl.) Kurz.
Telekan, see *Trianthema portulacastrum* L.
Temahau, see *Kleinovia hospita* L.
Temampayu besar, see *Ipomoea tuba* Schlechtend.
Temampau, see *Cordia dichotoma* G. Forst.
Tembagasua, see *Crinum asiaticum* L.
Tenggel, see *Bruguiera gymnorrhiza* (L.) Lamk.
Teo-teo, see *Cordia dichotoma* G. Forst.
Teruntum, see *Lumnitzera racemosa* Willd.
Teruntun, see *Aegiceras corniculatum* (L.) Blanco
Teruntun, see *Aegiceras floridum* Roemer & Schultes
Teruntung, see *Aegiceras corniculatum* (L.) Blanco
Tike, see *Eleocharis dulcis* (Burm. f.) Henschel
Tililo, see *Terminalia catappa* L.
Ting, see *Bruguiera sexangula* (Lour.) Poir.
Tingi, see *Ceriops decandra* (Griff.) Ding Hou
Tingih, see *Ceriops tagal* (Perr.) C.B. Rob.
Tingting, see *Combretum tetralophum* Clarke
Titi Laut, see *Guettarda speciosa* Linn.
Tokkbrai, see *Blumeodendron tokbri* (Bl.) Kurz.
Tolok, see *Inocarpus foiger* (Parkinson) Fosb.
Tomana, see *Dolichandrone spathacea* (l.f.) K.Schum.
Tomatangtang, see *Cordia dichotoma* G. Forst.
Tomo, see *Bruguiera gymnorrhiza* (L.) Lamk.
Tongke Perampuan, see *Bruguiera sexangula* (Lour.) Poir.
Tongke, see *Bruguiera gymnorrhiza* (L.) Lamk.
Toteo, see *Cordia dichotoma* G. Forst.
Toweran, see *Derris trifoliata* Lour
Toyokuku, see *Diospyros malabarica* (Descr.) Kostel.
Tuba Abal, see *Derris trifoliata* Lour
Tuba bijii, see *Anamirta cocculus* L. Wight & Arn.
Tuba Laut, see *Derris trifoliata* Lour
Tudung Laut, see *Aegiceras corniculatum* (L.) Blanco
Tumu, see *Bruguiera gymnorrhiza* (L.) Lamk.
Tumu, see *Bruguiera sexangula* (Lour.) Poir.
Turak, see *Dischidia nummularia* R.Br.
Tutu pupu, see *Asplenium nidus* Linné
Tuw, see *Dolichandrone spathacea* (l.f.) K.Schum.
Tuwa Areuy, see *Derris trifoliata* Lour
Tuwe-aj, see *Dolichandrone spathacea* (l.f.) K.Schum.
Tuwang, see *Caesalpinia bonduc* (L.) Roxb.
Tuwung, see *Caesalpinia crista* L.
Ukayu Datu, see *Cycas rumphii* Miq.
Urek-urek Polo, see *Hydnophytum formicarum* Jack
Urek-urek Polo, see *Myrmecodia tuberosa* DC.
Waba, see *Cerbera manghas* L.
Waba, see *Cerbera odollam* Gaertn.
Wahat Merah, see *Sonneratia caseolaris* (L.) Engl.
Wahat Putih, see *Sonneratia alba* J.E. Smith
Wakat Besi, see *Pemphis acidula* J.R. & G. Forst.
Wakati, see *Hibiscus tiliaeus* L.
Wali Ahuhun, see *Agaope heptaphylla* (L.) Polhill
Walik elar, see *Mischocarpus sudaicus* Blume
Walingi, see *Scirpus grossus* Linné
Walini, see *Typha angustifolia* Linné
Wama-wama, see *Ximenia americana* L.
Waran pisang, see *Anamirta cocculus* L. Wight & Arn.
Waru galang Iren, see *Melaleuca cauputi* Roxb.
Waru Laut, see *Hibiscus tiliaeus* L.
Waru Laut, see *Thespesia populnea* (L.) Soland. ex Correa
Waru Lenga, see *Hibiscus tiliaeus* L.
Waru Lengis, see *Hibiscus tiliaeus* L.
Waru Lot, see *Hibiscus tiliaeus* L.
Waru Lot, see *Thespesia populnea* (L.) Soland. ex Correa
Waru Pantai, see *Thespesia populnea* (L.) Soland. ex Correa
Waru, see *Casuarina equisetifolia* L.
Waru, see *Hibiscus tiliaeus* L.
Watata Ruruan, see *Ipomoea pes-capre* (L.) Sweet.
Wawalingian, see *Typha angustifolia* Linné
Weda, see *Phragmites karka* (Retz.) Trin. ex Steud.
Wegil, see *Mischocarpus sundaicus* Blume
Welompelong, see *Lumnitzera littorea* (Jack) Voigt.
Wesele, see *Intsia bijuga* (Colebr.) Kuntze
Wewa, see *Terminalia catappa* L.
Widuri, see *Calotropis gigantea* (L.) R.Br.
Wikakas, see *Acrostichum aureum* Linné
Wintangar, see *Kleinhovia hospita* L..
Wintungtasi, see *Scaevola taccada* (Gaertn.) Roxb.
Wiru salo, see *Clerodendrum inerme* (L.) Gaertn.
Wlingen, see *Scirpus grossus* Linné
Wlingian, see *Scirpus grossus* Linné
Wowo, see *Flagellaria indica* L.
Wrekas, see *Acrostichum aureum* Linné
Wunut, see *Cynometra iripa* Kostel.
Wunut, see *Cynometra ramiflora* L.
Wutunu, see *Barringtonia asiatica* (L.) Kurz

Malaysian:

Akar bintong, see *Loeseneriella macrantha* (Korth.) A.C. Smith
Akar China, see *Loeseneriella macrantha* (Korth.) A.C. Smith
Akar Kelinci, see *Caesalpinia bonduc* (L.) Roxb.
Akar mata pelanduk, see *Loeseneriella macrantha* (Korth.) A.C. Smith
Akar Pengalasan, see *Cassytha filiformis* Linn.
Akiik, see *Rhizophora apiculata* Bl.
Ambong-ampong, see *Scaevola taccada* (Gaertn.) Roxb.
Anggrek hutan, see *Dendrobium moschatum* (Buch.-Ham.) Sw.
Anggrek, see *Dendrobium subulatum* (Bl.) Lindl.
Api-api berbulu, see *Avicennia lanata* Ridley
Api-api bulu, see *Avicennia lanata* Ridley
Api-api puteh, see *Avicennia marina* (Forssk.) Vierh.
Api-api, see *Avicennia alba* Blume
Api-api, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Api-api, see *Avicennia officinalis* L.
Aru, see *Casuarina equisetifolia* L.
Asinan, see *Paspalum vaginatum* Sw.
Bakau akik, see *Rhizophora apiculata* Bl.
Bakau belukap, see *Bruguiera cylindrica* (L.) Bl.
Bakau belukap, see *Rhizophora mucronata* Lamk.
Bakau belukap, see *Rhizophora stylosa* Griff.
Bakau berus, see *Bruguiera cylindrica* (L.) Bl.
Bakau besar, see *Bruguiera gymnorrhiza* (L.) Lamk.
Bakau gelukap, see *Rhizophora mucronata* Lamk.
Bakau gelukap, see *Rhizophora stylosa* Griff.
Bakau hitam, see *Rhizophora mucronata* Lamk.
Bakau hitam, see *Rhizophora stylosa* Griff.
Bakau jankar, see *Rhizophora mucronata* Lamk.
Bakau jankar, see *Rhizophora stylosa* Griff.
Bakau kecil, see *Bruguiera cylindrica* (L.) Bl.
Bakau kurap, see *Rhizophora mucronata* Lamk.
Bakau kurap, see *Rhizophora stylosa* Griff.
Bakau minyak, see *Rhizophora apiculata* Bl.
Bakau puteh, see *Bruguiera cylindrica* (L.) Bl.
Bakau puteh, see *Rhizophora apiculata* Bl.
Bakau tandok, see *Rhizophora apiculata* Bl.
Bakau, see *Bruguiera exaristata* Ding Hou
Baru, see *Hibiscus tiliaceus* L.
Baru-baru, see *Hibiscus tiliaceus* L.
Batata Pantai, see *Ipomoea pes-capre* (L.) Sweet.
Bebaru bulu, see *Hibiscus tiliaceus* L.
Bebaru, see *Hibiscus tiliaceus* L.
Bebaru, see *Thespesia populnea* (L.) Soland. ex Correa
Bedara laut, see *Ximenia americana* L.
Begau, see *Eleocharis dulcis* (Burm. f.) Henschel
Beluntas, see *Pluchea indica* (L.) Less.
Benaga, see *Calophyllum inophyllum* L.
Benjek, see *Inocarpus fagifer* (Parkinson) Fosb.
Beras-beras, see *Kandelia candel* (L.) Druce
Berembang, see *Sonneratia caseolaris* (L.) Engl.
Berus Mata Buaya, see *Bruguiera hainessii* C.G.Rogers
Berus-berus, see *Kandelia candel* (L.) Druce
Betut, see *Bruguiera gymnorrhiza* (L.) Lamk.
Bidari, see *Ximenia americana* L.
Biga, see *Eleocharis dulcis* (Burm. f.) Henschel
Bintangur Laut, see *Calophyllum inophyllum* L.
Bonduc, see *Caesalpinia bondu* (L.) Roxb.
Bosang, see *Bruguiera cylindrica* (L.) Bl.
Bosua, see *Inocarpus fagifer* (Parkinson) Fosb.
Buah keras laut, see *Hernandia ovigera* L.
Bubpuk, see *Ilex cymosa* Blume
Bundung, see *Cyperus malaccensis* Lamk.
Bungor, see *Pemphis acidula* J.R. & G. Forst.
Bunyung, see *Cyperus malaccensis* Lamk.
Busing, see *Bruguiera sexangula* (Lour.) Poir.
Buta buta, see *Cerbera manghas* L.
Buta buta, see *Cerbera odollam* Gaertn.
Buta-Buta, see *Excoecaria agallocha* L.
Butong, see *Barringtonia asiatica* (L.) Kurz
Butun, see *Barringtonia asiatica* (L.) Kurz
Cemar, see *Cassyptha filiformis* Linn.
Chempaka utan, see *Gardenia tubifera* Wall
Dadap, see *Erythrina orientalis* (L.) Murr.
Damak-damak, see *Scolopia macrophylla* (W. & A.) Clos
Dangsa, see *Phoenix paludosa* Roxb.
Daun kambing, see *Prennia obtusifolia* R. Br.
Daun Katang, see *Ipomoea pes-capre* (L.) Sweet.
Daun korpa, see *Dischidia benghalensis* Colebr.
Daun Korpo, see *Finlaysonia obovata* Wall.
Daun pitis kecil, see *Dischidia benghalensis* Colebr.
Daun seberneh panjang, see *Drymoglossum piloselloides* (Linn.) Presl.
Daun Songa, see *Wedelia biflora* (L.) DC.
Dedahruang, see *Rapanea portera* Wall. ex A. DC.
Dedap, see *Erythrina orientalis* (L.) Murr.
Demundi, see *Vitex ovata* Thunb.
Derdap, see *Erythrina orientalis* (L.) Murr.
Dungun besar, see *Heritiera globosa* Kostermans
Dungun laut, see *Heritiera littoralis* Dryand.
Dungun, see *Brownlowia argentata* Kurz.
Dungun, see *Brownlowia tersa* (L.) Kosterm.
Dungun, see *Heritiera littoralis* Dryand.
Durian laut, see *Brownlowia argentata* Kurz.
Gambir laut, see *Clerodendrum inerme* (L.) Gaertn.
Gedabu, see *Sonneratia ovata* Back.
Gelam, see *Melaleuca cajuputi* Roxb.
Gelang, see *Sesuvium portulacastrum* (L.) L.
Gurah, see *Excoecaria indica* (Willd.) Muell. Arg.
Hitam, see *Acanthus ebracteatus* Vahl.
Jambu kera, see *Glochidion littoralis* Bl.
Jambulan pantai, see *Ardisia elliptica* Thunberg
Jangon, see *Atina racemosa* ssp. *racemosa* Rafin.
Jarak, see *Ricinus communis* L.
Jati bukit, see *Podocarpus polystachyus* R.Br. ex Endl.
Jawi jawi, see *Ficus microcarpa* L.f.
Jejawi, see *Ficus microcarpa* L.f.
Jemerlang Laut, see *Peltophorum pterocarpum* (DC.) K. Heyne
Jempalang, see *Barringtonia acutangula* (L.) Gaertn.
Jeruji puteh, see *Acanthus ilicifolius* L.
Jeruji, see *Acanthus ebracteatus* Vahl.
Jeruji, see *Acanthus volubilis* Wall.
Jukut Kakawatan, see *Cynodon dactylon* (L.) Pers.
Jukut Raket, see *Cynodon dactylon* (L.) Pers.
Kacang Kayu Laut, see *Pongamia pinnata* (L.) Pierre
Kacang Laut, see *Canavalia maritima* Thouars
Kachang kachang, see *Aegiceras corniculatum* (L.) Blanco
Kambing-kambing, see *Sarcobolus globosus* Wall.
Kankong, see *Ipomoea gracilis* R. Br.
Kapit, see *Inocarpus ficiger* (Parkinson) Fosb.
Karamunting, see *Ochthocharis bornensis* Bl.
Kateng, see *Cynometra iripa* Kostel.
Kateng, see *Cynometra ramiflora* L.
Katong laut, see *Cynometra iripa* Kostel.
Katong laut, see *Cynometra ramiflora* L.
Kayu buta-buta, see *Excoecaria agallocha* L.
Kayu Puteh, see *Melaleuca cajuputi* Roxb.
Kekara Laut, see *Canavalia maritima* Thouars
Kekara pedang, see *Canavalia maritima* Thouars
Keladi Payau, see *Cryptocoryne ciliata* (Roxb.) Fisch. ex Schott
Keladi, see *Colocasia esculenta* (L.) Schott
Kemedu, see *Morinda citrifolia* L.
Kerepit, see *Inocarpus faagifer* (Parkinson) Fosb.
Keretung, see *Blumeodendron tokbrai* (Bl.) Kurz.
Ketapang, see *Terminalia catappa* L.
Kodak acing, see *Oxalim imbricata* Roxb.
Komoi, see *Diospyros malabarica* (Descr.) Kostel.
Korma Paya, see *Phoenix paludosa* Roxb.
Kumun, see *Diospyros malabarica* (Descr.) Kostel.
Lagarteiro (Sabah), see *Croton heterocarpus* Müll. Arg.
Lagundi, see *Vitex ovata* Thunb.
Laki -laki, see *Finlaysonia obovata* Wall.
Landing-landing, see *Ceriops decandra* (Griff.) Ding Hou
Langkong, see *Barringtonia acutangula* (L.) Gaertn.
Lemau lilang, see *Merope angulata* (Willd.) Swingle
Lembang, see *Typha angustifolia* Linné
Lemuning, see *Vitex ovata* Thunb.
Lenggadai, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Lenggadis, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Lenggundi, see *Vitex ovata* Thunb.
Limau Hantu, see *Atalantia monophylla* DC.
Limau Lelang, see *Merope angulata* (Willd.) Swingle
Lunok, see *Ficus microcarpa* L.f.
Malabera, see *Fagraea crenulata* Maingay ex C.B. Clarke
Margimaly (Sarawak), see *Croton heterocarpus* Müll. Arg.
Masiang, see *Scirpus grossus* Linné
Mata ayam, see *Ardisia elliptica* Thunberg
Mata itek, see *Ardisia elliptica* Thunberg
Mata pelanduk, see *Ardisia elliptica* Thunberg
Melokan, see *Croton heterocarpus* Müll. Arg.
Membatu, see *Atuna racemosa ssp. racemosa* Rafin.
Mepisang, see *Kandelia candel* (L.) Druce
Menaga, see *Calophyllum inophyllum* L.
Menasi, see *Planchonella obovata* (R.Br.) Pierre.
Mendarong, see *Scirpus grossus* Linné
Mengkadai, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Mengkudu besar, see *Morinda citrifolia* L.
Mengkudu daun besar, see *Morinda citrifolia* L.
Mensiang, see *Scirpus grossus* Linné
Mangrove Guidebook for Southeast Asia

PART 1: ANNEX 4

Mensirah, see *Ilex cymosa* Blume
Mentiong, see *Gardenia tubifera* Wall
Menurong, see *Scirpus grossus* Linné
Merambong, see *Scaevola taccada* (Gaertn.) Roxb.
Merbau ipil, see *Intsia bijuga* (Colebr.) Kuntze
Meribut, see *Olax imbricata* Roxb.
Merlimau, see *Atalantia monophylla* DC.
Misi, see *Planchonella obovata* (R.Br.) Pierre.
Muning, see *Vitex ovata* Thunb.
Murong, see *Scirpus grossus* Linné
Naga, see *Calophyllum inophyllum* L.
Nibung, see *Oncosperma tigillarium* (Jack.) Ridl.
Nikong, see *Oncosperma tigillarium* (Jack.) Ridl.
Niri, see *Xylocarpus granatum* Koen.
Niri, see *Xylocarpus rumphii* (Kostel.) Mabb.
Nona burung, see *Cordia dichotoma* G. Forst.
Nyan, see *Cerbera manghas* L.
Nyan, see *Cerbera odollam* Gaertn.
Nyireh batu, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Nyireh Bunga, see *Xylocarpus granatum* Koen.
Nyireh hudang, see *Xylocarpus granatum* Koen.
Nyireh, see *Xylocarpus granatum* Koen.
Nyireh, see *Xylocarpus rumphii* (Kostel.) Mabb.
Nyiri, see *Xylocarpus granatum* Koen.
Pakis sarang semut, see *Myrmecophila sinuosa* (Wall. ex Hook.) Nakai ex Hito
Paku achu, see *Calophyllum inophyllum* L.
Paku akar, see *Stenochlaena palustris* (Burm. f.) Bedd.
Paku gajah, see *Cycas rumphii* Miq.
Paku haji, see *Cycas rumphii* Miq.
Paku laut, see *Cycas rumphii* Miq.
Paku midung, see *Stenochlaena palustris* (Burm. f.) Bedd.
Paku naga, see *Stenochlaena palustris* (Burm. f.) Bedd.
Paku Pandan, see *Asplenium nidus* Linné
Paku ramu, see *Stenochlaena palustris* (Burm. f.) Bedd.
Paku Wanggi, see *Phymatodes scolopendria* (Burm.) Ching.
Palas duri, see *Licula spinosa* Wurmb.
Palas, see *Licula spinosa* Wurmb.
Pandan laut, see *Pandanus tectorius* Sol
Pedada, see *Sonneratia alba* J.E. Smith
Pedada, see *Sonneratia griffithii* Kurz.
Pekan heran, see *Gardenia tubifera* Wall
Pelampong, see *Scaevola taccada* (Gaertn.) Roxb.
Pelawas, see *Calopteris floribunda* (Roxb.) Lamk
Peler kambing, see *Sarcolobus globosus* Wall.
Penaga laut, see *Calophyllum inophyllum* L.
Penah, see *Ardisia elliptica* Thunberg
Penggu, see *Horsfieldia irya* (Gaertn.) Warb.
Periapat, see *Sonneratia alba* J.E. Smith
Periah, see *Ardisia elliptica* Thunberg

168
Pertun, see Barringtonia asiatica (L.) Kurz
Petekat, see Cordia dichotoma G. Forst.
Piai laut, see Acrostichum speciosum Willd.
Piai Raya, see Acrostichum aureum Linné
Pianggu, see Horsfieldia irya (Gaertn.) Warb.
Pidada, see Sonneratia alba J.E. Smith
Pidaroh, see Ximenia americana L.
Pisang-pisang laut, see Kandelia candel (L.) Druce
Podo laut, see Podocarpus pohystachyus R.Br. ex Endl.
Poko kulo, see Dolichandrone spathacea (l.f.) K.Schum.
Pokok rukam gajah, see Scolopia macrophylla (W. & A.) Clos
Pong pong, see Cerbera manghas L.
Pong pong, see Cerbera odollam Gaertn.
Pong pong, see Gluta velutina Bl.
Pulas laut, see Mischocarpus sordacicus Blume
Pulut-pulut, see Kandelia candel (L.) Druce
Putat ayam, see Barringtonia racemosa (L.) Spreng.
Putat Ayer, see Barringtonia coneidea Griff.
Putat Laut, see Barringtonia asiatica (L.) Kurz
Putat, see Barringtonia acutangula (L.) Gaertn.
Rengas Ayer, see Gluta velutina Bl.
Rengas Laut, see Gluta velutina Bl.
Rengas, see Gluta velutina Bl.
Rotan Bakau, see Calamus erinaceus (Becc.) Dransfield
Rotan Tikus, see Flagellaria indica L.
Ru, see Casuarina equisetifolia L.
Rukem Laut, see Scolopia macrophylla (W. & A.) Clos
Rumah Semut Merah, see Myrmecodia tuberosa DC.
Rumput laut, see Myriostachya wightiana (Nees ex Steud.) Hook.f.
Rumput Lingsing, see Cyperus javanicus Houtt.
Rumput Ruchut, see Fimbristyis ferruginea (L.) Vahl
Saga, see Abrus precatorius L.
Sakat Hitam, see Phymatodes scolopendria (Burm.) Ching.
Sakat ribu-ribu, see Drymoglossum piloselloides (Linn.) Presl.
Sapokei (Sabah), see Croton heterocarpus Müll. Arg.
Sarai, see Cyperus javanicus Houtt.
Sarai, see Cyperus javanicus Houtt.
Sari pelanduk, see Croton heterocarpus Müll. Arg.
Saruni Air, see Sesuvium portulacastrium (L.) L.
Sayur kambing, see Premna obtusifolia R. Br.
Sechirik laut, see Diospyros ferrea (Willd.) Bakh.
Sekendai, see Cordia dichotoma G. Forst.
Sekendal, see Cordia dichotoma G. Forst.
Selar Makan, see Guettarda speciosa Linn.
Selensur, see Glochidion littorale Bl.
Semun bidadari, see Platycerium coronarium (Koenig.) Desv.
Sendudok Air, see Ochthocharis bornensis Bl.
Senduduk, see Melastoma malabathricum var. malabathricum L.
Sepetir mempelas, see Sindora siamensis var. maritima (Pierre) K. & SS. Larsen
Serdang, see Corypha saribus Lour.
Sisek naga, see *Drymoglossum piloselloides* (Linn.) Presl.
Sugi, see *Mischocarpus sundacicus* Blume
Sulengseng, see *Cyperus javanicus* Houtt.
Tali Berkumpul, see *Aganope heptaphylla* (L.) Polhill
Tamu (Sabah), see *Croton heterocarpus* Müll. Arg.
Tapak Kuda Kecil, see *Ipomoea gracilis* R. Br.
Tapak Kuda, see *Ipomoea pes-capre* (L.) Sweet.
Tatampayan besar, see *Ipomoea tuba* Schlechtend.
Tebu Salah, see *Phragnites karka* (Retz.) Trin. ex Steud.
Temahau, see *Kleinhovia hospita* L..
Tengah, see *Ceriops tagal* (Perr.) C.B. Rob.
Tengal, see *Ceriops decandra* (Griff.) Ding Hou
Tengar, see *Ceriops decandra* (Griff.) Ding Hou
Tengar, see *Ceriops tagal* (Perr.) C.B. Rob.
Teruntum Merah, see *Lumnitzera littorea* (Jack) Voigt.
Teruntum, see *Lumnitzera littorea* (Jack) Voigt.
Timah-timah, see *ilex cymosa* Blume
Timun dendang, see *Passiflora foetida* L.
Timun hutan, see *Passiflora foetida* L.
Timun padang, see *Passiflora foetida* L.
Tuj, see *Dolichandrone spathacea* (l.f.) K.Schum.
Tumbus, see *Bruguiera gymnorrhiza* (L.) Lamk.
Tumu berau, see *Bruguiera sexangula* (Lour.) Poir.
Tumu mata buaya, see *Bruguiera sexangula* (Lour.) Poir.
Tumu, see *Bruguiera gymnorrhiza* (L.) Lamk.
Tumus, see *Bruguiera gymnorrhiza* (L.) Lamk.
Waru, see *Casuarina equisetifolia* L.
Wlingi Laut, see *Cyperus malaccensis* Lamk.

Myanmar:
Kanazo, see *Heritiera fomes* Buch. Ham.
Kaya, see *Aegiceras corniculatum* (L.) Blanco
Kyana, see *Xylocarpus granatum* Koen.
Madame, see *Ceriops decandra* (Griff.) Ding Hou
Madame, see *Ceriops tagal* (Perr.) C.B. Rob.
Mong-tain, see *Cycas rumphii* Miq.
Myinga, see *Cynometra ramiflora* L.
Pinlay-see, see *Ximenia americana* L.
Pinline-kanazo, see *Heritiera littoralis* Dryand.
Thame, see *Arvickenia officinalis* L.
Thayaw, see *Exocarica agallocha* L.

Papua New Guinean:
Ahake, see *Batis argillicola* van Royen
Aikanu, see *Stemonurus ammui* (Kaneh.) Sleum.
Aikove, see *Polyscias macgillivrayi* (Seem.) Harms.
Ailalo see *Stemonurus ammui* (Kaneh.) Sleum.
Aimaroko see *Stemonurus ammui* (Kaneh.) Sleum.
Ainunura see *Stemonurus ammui* (Kaneh.) Sleum.
Ammui see Stemonurus ammui (Kaneh.) Sleum.
Arara, see Bruguiera gymnorrhiza (L.) Lamk.
Asikua, see Atuna racemosa ssp. racemosa Rafin.
Asista, see Atuna racemosa ssp. racemosa Rafin.
Awol, see Xylocarpus granatum Koen.
Bata-bata, see Atuna racemosa ssp. racemosa Rafin.
Biagi, see Eleocharis dulcis (Burm. f.) Henschel
Dodogo kubar, see Scaevola taccada (Gaertn.) Roxb.
Ecahi, see Xylocarpus granatum Koen.
Gambou, see Polyscias macgillivrayi (Seem.) Harms.
Geida, see Cyperus malaccensis Lamk.
Kaav, see Xylocarpus granatum Koen.
Kabahai, see Xylocarpus rumphii (Kostel.) Mabb.
Kaiikikira, see Scaevola taccada (Gaertn.) Roxb.
Kalis, see Terminalia catappa L.
Koriki, see Rhizophora mucronata Lamk.
Koriki, see Rhizophora stylosa Griff.
Kris, see Terminalia catappa L.
Latita, see Atuna racemosa ssp. racemosa Rafin.
Latiu, see Dolichandronypeathaceae (f.) K.Schum.
Mala Sata see Stemonurus ammui (Kaneh.) Sleum.
Manggaresi, see Merrilliodendron megacarpum (Hemsl.) Sleum.
Mapeke, see Bruguiera gymnorrhiza (L.) Lamk.
Mokkemoffe, see Xylocarpus granatum Koen.
Naikaigwoo, see Polyscias macgillivrayi (Seem.) Harms.
Pabo, see Rhizophora mucronata Lamk.
Pabo, see Rhizophora stylosa Griff.
Paimeh, see Scaevola taccada (Gaertn.) Roxb.
Raumonas, see Polyscias macgillivrayi (Seem.) Harms.
Runge, see Terminalia catappa L.
Saki, see Atuna racemosa ssp. racemosa Rafin.
Tawihhi, see Xylocarpus rumphii (Kostel.) Mabb.
Tew, see Combretum trifoliatum Vent.
Togo, see Rhizophora mucronata Lamk.
Togo, see Rhizophora stylosa Griff.
Tortor, see Rhizophora mucronata Lamk.
Tortor, see Rhizophora stylosa Griff.
Totoa, see Rhizophora mucronata Lamk.
Totoa, see Rhizophora stylosa Griff.
Vabilisi, see Merrilliodendron megacarpum (Hemsl.) Sleum.
Wadawada, see Xylocarpus rumphii (Kostel.) Mabb.
Wampi lang, see Cyperus compactus Retz.
Wapi lang, see Cyperus javanicus Houtt.

Philippine:
Agás, see Scirpus grossus Linné
Agnaa, see Lumnitzera littorea (Jack) Voigt.
Agnaya, see Lumnitzera racemosa Willd.
Agnaya, see Scyphiphora hydrophyllacea Gaertn. f.
Agoho, see *Casuarina equisetifolia* L.
Agonoi, see *Wedelia biflora* (L.) DC.
Aguia Anilai, see *Lumnitzera littorea* (Jack) Voigt.
Agunoi, see *Wedelia biflora* (L.) DC.
Alagot-ot, see *Cordia subcordata* Lam.
Alai, see *Bruguiera sexangula* (Lour.) Poir.
Alipata, see *Excoecaria agallocha* L.
Almendras, see *Terminalia catappa* L.
Almendro, see *Terminalia catappa* L.
Aluma, see *Atuna racemosa* ssp. *racemosa* Rafin.
Amarok-barok, see *Pongamia pinnata* (L.) Pierre
Angasin, see *Tristellateia australasiae* A. Rich.
Anoioi, see *Wedelia biflora* (L.) DC.
Anudd, see *Flagellaria indica* L.v
Api-api, see *Avicennia alba* Blume
Api-api, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Api-api, see *Avicennia marina* (Forssk.) Vierh.
Apung-apung, see *Kleinhovia hospita* L..
Aragan, see *Najas indica* (Willd.) Cham.
Aranaya, see *Scyphiphora hydrophyllacea* Gaertn. f.
Arbon, see *Cerbera manghas* L.
Arinaya, see *Scyphiphora hydrophyllacea* Gaertn. f.
Arodaidai, see *Ipomoea pes-capre* (L.) Sweet.
Array, see *Anamirta cocculus* L. Wight & Arn.
Audi, see *Flagellaria indica* L.
Audi-si-gayang, see *Flagellaria indica* L.
Ayam, see *Trianthema portulacastrum* L.
Baga-as, see *Cyperus malaccensis* Lamk.
Bagaolan, see *Guettarda speciosa* Linn.
Bagit, see *Tristellateia australasiae* A. Rich.
Bagnang-lalake, see *Glochidion littorale* Bl.
Bagnei, see *Pongamia pinnata* (L.) Pierre
Bagnit, see *Tristellateia australasiae* A. Rich.
Bago, see *Hibiscus tiliaeus* L.
Bahau, see *Tristellateia australasiae* A. Rich.
Bait, see *Cycas rumphii* Miq.
Bakau, see *Bruguiera gymnorrhiza* (L.) Lamk.
Bakau, see *Rhizophora apiculata* Bl.
Bakau, see *Rhizophora mucronata* Lamk.
Bakau, see *Rhizophora stylosa* Griff.
Bakauan baler, see *Kandelia candel* (L.) Druce
Bakauan bato, see *Rhizophora stylosa* Griff.
Bakauan lalaki, see *Bruguiera sexangula* (Lour.) Poir.
Bakauan lalaki, see *Rhizophora apiculata* Bl.
Bakauan, see *Bruguiera cylindrica* (L.) Bl.
Bakauan, see *Bruguiera gymnorrhiza* (L.) Lamk.
Bakauan, see *Bruguiera sexangula* (Lour.) Poir.
Bakauan, see *Ceriops decandra* (Griff.) Ding Hou
Bakauan, see *Rhizophora apiculata* Bl.
Bakauan-babae, see Rhizophora mucronata Lamk.
Bakauan-babae, see Rhizophora stylosa Griff.
Bakauan-lalake, see Rhizophora apiculata Bl.
Bakauan-lalaki, see Bruguiera parviflora (Roxb.) W. & A. ex Griff.
Bakhau, see Rhizophora apiculata Bl.
Bakhau, see Rhizophora mucronata Lamk.
Bakhau, see Rhizophora stylosa Griff.
Bakhaw, see Rhizophora apiculata Bl.
Bakhaw, see Rhizophora mucronata Lamk.
Bakhaw, see Rhizophora stylosa Griff.
Baki-baking-pula, see Cyperus compactus Retz.
Bakting, see Lumnitzera littorea (Jack) Voigt.
Balabago, see Hibiscus tiliaceus L.
Balagon, see Olax imbricata Roxb.
Balak-balak, see Scaevola taccada (Gaertn.) Roxb.
Balangigan, see Guettarda speciosa Linn.
Balangot, see Typha angustifolia Linné
Balansi, see Kleinhovia hospita L.
Balasai, see Scyphiphora hydrophyllacea Gaertn. f.
Balibagan, see Guettarda speciosa Linn.
Balibago, see Hibiscus tiliaceus L.
Balikbalik, see Pongamia pinnata (L.) Pierre
Balinsarayan, see Bruguiera sexangula (Lour.) Poir.
Balitbitan, see Cynometra racemiflora L.
Balok, see Pongamia pinnata (L.) Pierre
Balok-balok, see Pongamia pinnata (L.) Pierre
Balok-Balok, see Scaevola taccada (Gaertn.) Roxb.
Balotbalot, see Pongamia pinnata (L.) Pierre
Balu, see Cordia subcordata Lam.
Balu, see Thespesia populnea (L.) Soland. ex Correa
Balu-balu, see Pongamia pinnata (L.) Pierre
Balu-balu, see Pongamia pinnata (L.) Pierre
Baluk-baluk, see Pongamia pinnata (L.) Pierre
Baluno, see Camptostemon philippinensis (Vidal) Becc.
Balut-balut, see Pongamia pinnata (L.) Pierre
Banag, see Thespesia populnea (L.) Soland. ex Correa
Banago, see Thespesia populnea (L.) Soland. ex Correa
Banalo, see Thespesia populnea (L.) Soland. ex Correa
Banaro, see Guettarda speciosa Linn.
Banaro, see Thespesia populnea (L.) Soland. ex Correa
Bangbangi, see Najas indica (Willd.) Cham.
Bangkau, see Rhizophora mucronata Lamk.
Bangkau, see Rhizophora stylosa Griff.
Bango-pula, see Thespesia populnea (L.) Soland. ex Correa
Bani, see Pongamia pinnata (L.) Pierre
Banit, see Pongamia pinnata (L.) Pierre
Bantana, see Kleinhovia hospita L.
Bantigi, see Pemphis acidula J.R. & G. Forst.
Banting, see Lumnitzera littorea (Jack) Voigt.
Banung-kalauai, see *Hernandia ovigera* L.
Baobao, see *Pongamia pinnata* (L.) Pierre
Ba-ot, see *Thepesia populnea* (L.) Soland. ex Correa
Barabai, see *Cerbera manghas* L.
Baraibai, see *Cerbera manghas* L.
Basit, see *Heritiera littoralis* Dryand.
Batag-batag, see *Aegiceras corniculatum* (L.) Blanco
Batag-batag, see *Aegiceras floridum* Roemer & Schultes
Batano, see *Cerbera manghas* L.
Batano, see *Excoecaria agallocha* L.
Bating, see *Lumnitzera littorea* (Jack) Voigt.
Batulinao, see *Diospyros ferrea* (Willd.) Bakh.
Bauan, see *Hibiscus tiliaceus* L.
Baut, see *Heritiera littoralis* Dryand.
Bayag-kabayo, see *Heritiera littoralis* Dryand.
Bayok-bayok, see *Pongamia pinnata* (L.) Pierre
Bigi, see *Xylocarpus granatum* Koen.
Bignon, see *Kleinhovia hospita* L..
Biknong, see *Kleinhovia hospita* L..
Bilang-bilang, see *Sesuvium portulacastrum* (L.) L.
Biluan, see *Kleinhovia hospita* L..
Bingkit, see *Ryssopterys timoriensis* (DC.) Jussieu
Binoil-ure, see *Xylocarpus granatum* Koen.
Binong, see *Kleinhovia hospita* L..
Binusisi, see *Tristellateia australasiae* A. Rich.
Biosan, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Biris, see *Bruguiera cylindrica* (L.) Bl.
Bitanag, see *Kleinhovia hospita* L..
Bitnong, see *Kleinhovia hospita* L..
Biton, see *Olax imbricata* Roxb.
Bitoon, see *Barringtonia asiatica* (L.) Kurz
Biuis, see *Bruguiera cylindrica* (L.) Bl.
Bius, see *Bruguiera cylindrica* (L.) Bl.
Bokabok, see *Scaevola taccada* (Gaertn.) Roxb.
Bo-o, see *Ximera americana* L.
Bosboron, see *Scaevola taccada* (Gaertn.) Roxb.
Botabon, see *Atuna racemosa* ssp. racemosa Rafin.
Bota-bota, see *Excoecaria agallocha* L.
Botga, see *Atuna racemosa* ssp. racemosa Rafin.
Boto, see *Scaevola taccada* (Gaertn.) Roxb.
Bual, see *Ximera americana* L.
Bubutigan, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Bugtung-aha, see *Ryssopterys timoriensis* (DC.) Jussieu
Bulakan, see *Ipomoea gracilis* R. Br.
Bulali, see *Aegiceras corniculatum* (L.) Blanco
Bulali, see *Aegiceras floridum* Roemer & Schultes
Bulokbulok, see *Lumnitzera littorea* (Jack) Voigt.
Bulubadiang, see *Ceriops decandra* (Griff.) Ding Hou
Bunayon, see *Sonneratia alba* J.E. Smith
Buñgalon, see *Avicennia marina* (Forssk.) Vierh.
Buñgalon, see *Camptostemon philippinense* (Vidal) Becc.
Buñgalon, see *Sonneratia alba* J.E. Smith
Bungan-puti, see *Avicennia alba* Blume
Bungan-sahing, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Buñgalu, see *Avicennia marina* (Forssk.) Vierh.
Bungkuang, see *Scirpus grossus* Linné
Busain, see *Bruguiera cylindrica* (L.) Bl.
Busain, see *Bruguiera sexangula* (Lour.) Poir.
Busaing, see *Bruguiera gymnorrhiza* (L.) Lamk.
Busaing, see *Bruguiera sexangula* (Lour.) Poir.
Busiin, see *Bruguiera gymnorrhiza* (L.) Lamk.
Buta, see *Excoecaria agallocha* L.
Butabul, see *Atuna racemosa* ssp. *racemosa* Rafin.
Buta-buta, see *Excoecaria agallocha* L.
Buta-buti, see *Cerbera manghas* L.
Buto-buto, see *Cerbera manghas* L.
Butong, see *Pongamia pinnata* (L.) Pierre
Cabezas de negrito, see *Eleocharis dulcis* (Burm. f.) Henschel
Dalunu-babae, see *Lumnitzera littorea* (Jack) Voigt.
Dampalit, see *Sesuvium portulacastrum* (L.) L.
Dandulit, see *Camptostemon philippinense* (Vidal) Becc.
Dangliu, see *Hibiscus tiliaceus* L.
Danglog, see *Hibiscus tiliaceus* L.
Darah-darah, see *Croton heterocarpus* Müll. Arg.
Daraput, see *Quassia indica* (Gaertn.) Nootboon
Dik-duk, see *Osbornia octodonta* F.v.Muell.
Dipodata, see *Excoecaria agallocha* L.
Dita, see *Cerbera manghas* L.
Ditadit, see *Ipomoea gracilis* R. Br.
Dulok-dulok, see *Lumnitzera littorea* (Jack) Voigt.
Dulok-dulok, see *Osbornia octodonta* F.v.Muell.
Dumanai, see *Aegiceras corniculatum* (L.) Blanco
Dumanai, see *Aegiceras florigum* Roemer & Schultes
Duñgas, see *Cerbera manghas* L.
Dungon, see *Heritiera littoralis* Dryand.
Dungon-late, see *Heritiera littoralis* Dryand.
Durugi, see *Cyperus compactus* Retz.
Gabi, see *Colocasia esculenta* (L.) Schott
Gapas-gapas, see *Camptostemon philippinense* (Vidal) Becc.
Getabon, see *Atuna racemosa* ssp. *racemosa* Rafin.
Giron, see *Cyperus compactus* Retz.
Gullum, see *Osbornia octodonta* F.v.Muell.
Gumaingat, see *Excoecaria agallocha* L.
Gumilum, see *Osbornia octodonta* F.v.Muell.
Habag, see *Hernandia ovigera* L.
Hagonoi, see *Wedelia biflora* (L.) DC.
Hamitanago, see *Kleinhovia hospita* L.
Hanbulali, see *Scyphiphora hydrophyllaca* Gaertn. f.
Hangalia, see Bruguiera parviflora (Roxb.) W.& A. ex Griff.
Hangarai, see Bruguiera parviflora (Roxb.) W.& A. ex Griff.
Hanot, see Hibiscus tiliacus L.
Hikau-hikauan, see Sonneratia alba J.E. Smith
Hikau-hikauan, see Sonneratia caseolaris (L.) Engl.
Himbabau, see Excoecaria agallocha L.
Iden, see Thespesia populnea (L.) Soland. ex Correa
Iiñgi, see Excoecaria agallocha L.
Ilukabban, see Sonneratia alba J.E. Smith
Ilukabban, see Sonneratia caseolaris (L.) Engl.
Ingual, see Flagellaria indica L.
Ipil, see Intsia bijuga (Coebr.) Kuntze
Ipil-lalao, see Intsia bijuga (Coebr.) Kuntze
Itil, see Intsia bijuga (Coebr.) Kuntze
Jojo saffranhout, see Cassine viburnifolia (Juss.) Ding Hou
Kabantigi, see Pemphis acidula J.R. & G. Forst.
Kachuchis, see Avicennia alba Blume
Kachuchis, see Avicennia eucalyptifolia Zipp. ex Moldenke
Kadel, see Pongamia pinnata (L.) Pierre
Kai-kai, see Cyperus javanicus Houtt.
Kalabayuan, see Bruguiera sexangula (Lour.) Poir.
Kalapinai, see Bruguiera cylindrica (L.) Bl.
Kalapini, see Avicennia marina (Forssk.) Vierh.
Kalapini, see Lumnitzera littorea (Jack) Voigt.
Kalapini-mañgitit, see Avicennia marina (Forssk.) Vierh.
Kalapini-maputi, see Avicennia marina (Forssk.) Vierh.
Kalimbabau, see Xylocarpus granatum Koen.
Kaliptan, see Cerbera manghas L.
Kolimbabing, see Guettarda speciosa Linn.
Kamigang, see Ipomoea pes-capre (L.) Sweet.
Kapagan, see Guettarda speciosa Linn.
Karifurong, see Lumnitzera littorea (Jack) Voigt.
Kasouai, see Barringtonia racemosa (L.) Spreng.
Katang-katang, see Ipomoea pes-capre (L.) Sweet.
Kayong, see Glochidion littorale Bl.
Kayongkong, see Glochidion littorale Bl.
Kindug-kindug, see Aegiceras corniculatum (L.) Blanco
Kindug-kindug, see Aegiceras floridum Roemer & Schultes
Kolimbauing, see Xylocarpus granatum Koen.
Kolinkogun, see Hernandia ovigera L.
Kolon-kogon, see Hernandia ovigera L.
Kolung-kolung, see Hernandia ovigera L.
Komon, see Cynometra ramiflora L.
Koron-koron, see Hernandia ovigera L.
Kulasi, see Lumnitzera littorea (Jack) Voigt.
Kulasi, see Lumnitzera racemosa Willd.
Kulasi, see Osbornia octoxantha F.v.Muell.
Kulasi, see Scyphiphora hydrophyllacea Gaertn. f.
Kung-kung, see Hernandia ovigera L.
Kurunggut, see *Passiflora foetida* L.
Kutkut-timbalon, see *Barringtonia racemosa* (L.) Spreng.
Kuyapi, see *Avicennia marina* (Forssk.) Vierh.
Labnig, see *Intisia bijuga* (Cleobl.) Kuntze
Labnot, see *Olax imbricata* Roxb.
Labui, see *Najas indica* (Willd.) Cham.
Lagairai, see *Ipomoea pes-capre* (L.) Sweet.
Lagasak, see *Bruguiera sexangula* (Lour.) Poir.
Lagbangan, see *Guettarda speciosa* Linn.
Lagoron, see *Wedelia biflora* (L.) DC.
Lagtang, see *Anamirta cocculus* L. Wight & Arn.
Lagun, see *Ryssopterys timoriensis* (DC.) Jussieu
Lagut-ut, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Lahunai, see *Wedelia biflora* (L.) DC.
Lambagu, see *Hibiscus tiliaceus* L.
Lambon, see *Guettarda speciosa* Linn.
Landing, see *Scyphiphora hydrophyllacea* Gaertn. f.
Langarai, see *Bruguiera cylindrica* (L.) Bl.
Langarai, see *Bruguiera parviflora* (Roxb.) W.& A. ex Griff.
Langari, see *Bruguiera parviflora* (Roxb.) W.& A. ex Griff.
Langari, see *Bruguiera sexangula* (Lour.) Poir.
Laogo, see *Hibiscus tiliaceus* L.
Lapa-lapa, see *Camptostemon philippinensis* (Vidal) Becc.
Lapuis, see *Kleinhowia hospita* L..
Laumus, see *Ryssopterys timoriensis* (DC.) Jussieu
Libato, see *Lumnitzera littorea* (Jack) Voigt.
Libatong-puti, see *Camptostemon philippinensis* (Vidal) Becc.
Libatu-pula, see *Lumnitzera littorea* (Jack) Voigt.
Ligad, see *Pemphis acidula* J.R. & G. Forst.
Ligat, see *Pemphis acidula* J.R. & G. Forst.
Ligtang, see *Anamirta cocculus* L. Wight & Arn.
Linas, see *Lumnitzera littorea* (Jack) Voigt.
Linatog-anat, see *Quassia indica* (Gaertn.) Nootboom
Liñgog, see *Avicennia marina* (Forssk.) Vierh.
Linton-gamai, see *Quassia indica* (Gaertn.) Nootboom
Linu, see *Scaevola taccada* (Gaertn.) Roxb.
Lipata, see *Cerbera manghas* L.
Lipatang-buhai, see *Excoecaria agallocha* L.
Lubanayong, see *Xylocarpus granatum* Koen.
Lukabban, see *Sonneratia alba* J.E. Smith
Lulasi, see *Avicennia marina* (Forssk.) Vierh.
Lupa pula, see *Rhizophora apiculata* Bl.
Mabaran, see *Avicennia marina* (Forssk.) Vierh.
Mabingdato, see *Quassia indica* (Gaertn.) Nootboom
Magalai, see *Bruguiera parviflora* (Roxb.) W.& A. ex Griff.
Magalolo, see *Lumnitzera littorea* (Jack) Voigt.
Magayao, see *Heritiera littoralis* Dryand.
Magit, see *Pongamia pinnata* (L.) Pierre
Magkanai, see Cerbera manghas L.
Magtangud, see Bruguiera cylindrica (L.) Bl.
Magtongod, see Ceriops tagal (Perr.) C.B. Rob.
Magtongog, see Bruguiera cylindrica (L.) Bl.
Malabagio, see Olax imbricata Roxb.
Malabutong, see Olax imbricata Roxb.
Malarayap, see Atalantia monophylla DC.
Malarungon, see Heritiera littoralis Dryand.
Malasaga, see Derris scandens (Aubl.) Pittier
Malasurut, see Guettarda speciosa Linn.
Malatangal, see Ceriops decandra (Griff.) Ding Hou
Malat-antañgan, see Hernandia ovigera L.
Malibago, see Hibiscus tiliaceus L.
Maling, see Osbornia octodonta F.v.Muell.
Malubago, see Hibiscus tiliaceus L.
Manlok-balok, see Pongamia pinnata (L.) Pierre
Manothonot, see Osbornia octodonta F.v.Muell.
Maoro, see Lumnitzera littorea (Jack) Voigt.
Maragomon, see Brownlowia tersa (L.) Kosterm.
Maraibai, see Cerbera manghas L.
Marakapas, see Hibiscus tiliaceus L.
Marakapas, see Kleinholia hospita L.
Marobahai, see Pongamia pinnata (L.) Pierre
Maruk-baruk, see Pongamia pinnata (L.) Pierre
Matangal, see Ceriops decandra (Griff.) Ding Hou
Mayambago, see Hibiscus tiliaceus L.
Miapi, see Avicennia marina (Forssk.) Vierh.
Mosboron, see Scaevola taccada (Gaertn.) Roxb.
Mulato, see Intsia bijuga (Coebr.) Kuntze
Nala, see Intsia bijuga (Coebr.) Kuntze
Nigad, see Glochidion littoreale Bl.
Niigi, see Xylocarpus granatum Koen.
Niigi-puti, see Camptostemon philippinense (Vidal) Becc.
Nilad, see Scyphiphora hydrophyllacea Gaertn. f.
Nilar, see Scyphiphora hydrophyllacea Gaertn. f.
Nipa, see Nypa fruticans Wurmb.
Nuling, see Barringtonia racemosa (L.) Spreng.
Odling, see Cynometra ramiflora L.
Padi-padi, see Glochidion littoreale Bl.
Pagatpat baye, see Sonneratia ovata Back.
Pagatpat, see Sonneratia alba J.E. Smith
Pagatpat, see Sonneratia casodalis (L.) Engl.
Pagatpat, see Sonneratia ovata Back.
Pagatpat-babae, see Xylocarpus granatum Koen.
Pagatput, see Aegiceras corniculatum (L.) Blanco
Pagatput, see Aegiceras floridum Roemer & Schultes
Pakat, see Ceriops tagal (Perr.) C.B. Rob.
Palagarium, see Quassia indica (Gaertn.) Nootboom
Palagium, see Quassia indica (Gaertn.) Nootboom
Palalan, see *Sonneratia alba* J.E. Smith
Palapat, see *Sonneratia caseolaris* (L.) Engl.
Palata, see *Sonneratia caseolaris* (L.) Engl.
Palatpat, see *Sonneratia alba* J.E. Smith
Paling, see *Barringtonia racemosa* (L.) Spreng.
Palingapoi, see *Heritiera littoralis* Dryand.
Palugapig, see *Heritiera littoralis* Dryand.
Palunag, see *Wedelia biflora* (L.) DC.
Palunai, see *Wedelia biflora* (L.) DC.
Palupa, see *Pemphis acidula* J.R. & G. Forst.
Pampas, see *Kleinhovia hospita* L.
Panabulon, see *Cerbera manghas* L.
Panampat, see *Kleinhovia hospita* L.
Pantigi, see *Pemphis acidula* J.R. & G. Forst.
Panting-panting, see *Lumnitzera littorea* (Jack) Voigt.
Pantog-lubo, see *Hernandia ovigera* L.
Papasil, see *Lumnitzera littorea* (Jack) Voigt.
Paronapin, see *Heritiera littoralis* Dryand.
Pata, see *Dolichandrone spathacea* (L.f.) K.Schum.
Patotan, see *Bruguiera gymnorrhiza* (L.) Lamk.
Patpat, see *Sonneratia alba* J.E. Smith
Paunapin, see *Heritiera littoralis* Dryand.
Payan, see *Sonneratia alba* J.E. Smith
Payar, see *Sonneratia caseolaris* (L.) Engl.
Pedada, see *Sonneratia caseolaris* (L.) Engl.
Petutan, see *Bruguiera gymnorrhiza* (L.) Lamk.
Piagao, see *Xylocarpus granatum* Koen.
Piagau, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Piapi, see *Avicennia alba* Blume
Piapi, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Piapi, see *Avicennia marina* (Forssk.) Vierh.
Piapik, see *Avicennia marina* (Forssk.) Vierh.
Pilapil, see *Aegiceras corniculatum* (L.) Blanco
Pilapil, see *Aegiceras floridum* Roemer & Schultes
Piliit, see *Pemphis acidula* J.R. & G. Forst.
Pindak, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Pipisig, see *Avicennia marina* (Forssk.) Vierh.
Pipisik, see *Aegiceras corniculatum* (L.) Blanco
Pipisik, see *Aegiceras floridum* Roemer & Schultes
Pipisik, see *Avicennia marina* (Forssk.) Vierh.
Pitogo, see *Cycas rumphii* Miq.
Ponoan, see *Quassia indica* (Gaertn.) Nooteboom
Potat, see *Barringtonia racemosa* (L.) Spreng.
Pototan lalaki, see *Bruguiera cylindrica* (L.) Bl.
Pototan, see *Bruguiera cylindrica* (L.) Bl.
Pototan, see *Bruguiera gymnorrhiza* (L.) Lamk.
Pototan, see *Bruguiera parviflora* (Roxb.) W. & A. ex Griff.
Pototan, see *Bruguiera sexangula* (Lour.) Poir.
Pulit, see *Xylocarpus granatum* Koen.
Pundung, see *Avicennia alba* Blume
Pundung, see *Avicennia eucalyptifolia* Zipp. ex Moldenke
Putad, see *Barringtonia racemosa* (L.) Spreng.
Putat, see *Barringtonia racemosa* (L.) Spreng.
Pututan, see *Bruguiera cylindrica* (L.) Bl.
Pututan, see *Bruguiera gymnorhiza* (L.) Lamk.
Pututan, see *Bruguiera sexangula* (Lour.) Poir.
Puyugan, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Ragindi, see *Hibiscus tiliaceus* L.
Ragiudiu, see *Scirpus grossus* Linné
Rungan, see *Ceriops tagal* (Perr.) C.B. Rob.
Sabasa, see *Scyphiphora hydrophyllacea* Gaertn. f.
Sagarai, see *Avicennia marina* (Forssk.) Vierh.
Sagasa, see *Bruguiera sexangula* (Lour.) Poir.
Sagasa, see *Glochidion littorale* Bl.
Sagasa, see *Lumnitzera littorea* (Jack) Voigt.
Sagasa, see *Osbornia octodonta* F.v.Muell.
Sagasa, see *Scyphiphora hydrophyllacea* Gaertn. f.
Sagaskak, see *Bruguiera sexangula* (Lour.) Poir.
Saging-saging, see *Aegiceras corniculatum* (L.) Blanco
Saging-saging, see *Aegiceras floridanum* Roemer & Schultes
Salasa, see *Lumnitzera littorea* (Jack) Voigt.
Salonai, see *Wedelia biflora* (L.) DC.
Sangkuyong, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Santing, see *Lumnitzera littorea* (Jack) Voigt.
Sapsap, see *Nympa fruticans* Wurmb.
Sasa, see *Nympa fruticans* Wurmb.
Sauang, see *Cyca rumphii* Miq.
Siak, see *Excoecaria agallocha* L.
Solasi, see *Lumnitzera racemosa* Willd.
Stanghas, see *Dolichandrone spathacea* (l.f.) K.Schum.
Sulasig, see *Aegiceras corniculatum* (L.) Blanco
Sulasig, see *Aegiceras floridanum* Roemer & Schultes
Supsupun, see *Lumnitzera littorea* (Jack) Voigt.
Taag, see *Kleinhovia hospita* L..
Taal, see *Intisia bijuga* (Colebr.) Kuntze
Tabaño, see *Glochidion littorale* Bl.
Tabao, see *Lumnitzera racemosa* Willd.
Tabataba, see *Hernandia ovigera* L.
Tabau, see *Lumnitzera littorea* (Jack) Voigt.
Tabau, see *Scyphiphora hydrophyllacea* Gaertn. f.
Tabau-tabau, see *Cerbera manghas* L.
Tabigi, see *Xylocarpus granatum* Koen.
Tabigi, see *Xylocarpus moluccensis* (Lamk) M. Roem.
Tabon-tabon, see *Atuna racemosa ssp. racemosa* Rafin.
Tabon-tabon, see *Guettarda speciosa* Linn.
Tabug, see *Guettarda speciosa* Linn.
Tagasa, see *Bruguiera sexangula* (Lour.) Poir.
Tagasa, see *Ceriops tagal* (Perr.) C.B. Rob.
Tagnag, see Kleinhovia hospita L..
Tagsiak, see Scyphiphora hydrophyllacea Gaertn. f.
Talau, see Lumnitzera littorea (Jack) Voigt.
Talisai, see Terminalia catappa L.
Tamanag, see Kleinhovia hospita L..
Tambon, see Guettarda speciosa Linn.
Tambo-tambo, see Xylocarpus granatum Koen.
Tambubunot, see Xylocarpus granatum Koen.
Tan-ag, see Kleinhovia hospita L..
Tanak, see Kleinhovia hospita L..
Tangag, see Kleinhovia hospita L..
Tangal lalaki, see Ceriops tagal (Perr.) C.B. Rob.
Tangal, see Ceriops decandra (Griff.) Ding Hou
Tangal, see Ceriops tagal (Perr.) C.B. Rob.
Tangalan, see Bruguiera cylindrica (L.) Bl.
Tangal-babae, see Bruguiera cylindrica (L.) Bl.
Taŋgas, see Dolichandrone spathacea (l.f.) K.Schum.
Tanggal, see Ceriops tagal (Perr.) C.B. Rob.
Tangi, see Xylocarpus granatum Koen.
Tangile, see Xylocarpus granatum Koen.
Tangkuyon, see Xylocarpus granatum Koen.
Tanhas, see Dolichandrone spathacea (l.f.) K.Schum.
Tarumpalit, see Sesuvium portulacastrum (L.) L.
Taulis, see Osbornia octodonta F.v.Muell.
Tayokon, see Aegiceras corniculatum (L.) Blanco
Tayokon, see Aegiceras floridum Roemer & Schultes
Tibigi, see Xylocarpus moluccensis (Lamk) M. Roem.
Tigal, see Intsia bijuga (Colebr.) Kuntze
Tigasan, see Ceriops tagal (Perr.) C.B. Rob.
Tiker, see Scirpilus lacustris L.
Timbabukis, see Aegiceras corniculatum (L.) Blanco
Timbabukis, see Aegiceras floridum Roemer & Schultes
Tindok-tindok, see Aegiceras corniculatum (L.) Blanco
Tindok-tindok, see Aegiceras floridum Roemer & Schultes
Tinduk-tindukan, see Aegiceras corniculatum (L.) Blanco
Tinduk-tindukan, see Aegiceras floridum Roemer & Schultes
Tiuayos, see Osbornia octodonta F.v.Muell.
Tiwi, see Dolichandrone spathacea (l.f.) K.Schum.
Toaus, see Osbornia octodonta F.v.Muell.
Toktok-kalau, see Cerbera manghas L.
Tolotok, see Kleinhovia hospita L..
Toston, see Trianthema portulacastrum L.
Tua, see Dolichandrone spathacea (l.f.) K.Schum.
Tuauis, see Osbornia octodonta F.v.Muell.
Tuba-tuba, see Barringtonia racemosa (L.) Spreng.
Tuba-tuba, see Thespesia populnea (L.) Soland. ex Correa
Tugsiak, see Scyphiphora hydrophyllacea Gaertn. f.
Tui, see Dolichandrone spathacea (l.f.) K.Schum.
Tulatalisai, see Guettarda speciosa Linn.
Tungod, see Ceriops tagal (Perr.) C.B. Rob.
Tungug, see Ceriops decandra (Griff.) Ding Hou
Tungung, see Ceriops decandra (Griff.) Ding Hou
Twei, see Dolichandrone spathacea (l.f.) K.Schum.
Uaduat, see Pemphis acidula J.R. & G. Forst.
Uakatan Bakad, see Rhizophora apiculata Bl.
Uakatan, see Rhizophora apiculata Bl.
Ubet-ubet, see Olax imbricata Roxb.
Ula, see Cynometra ramiflora L.
Ulisuman, see Trianthema portulacastrum L.
Ulud, see Cynometra ramiflora L.
Unapong, see Kleinhovia hospita L.
Unas, see Scyphiphora hydrophyllacea Gaertn. f.
Valo, see Thespesia populnea (L.) Soland. ex Correa
Venagalang, see Flagellaria indica L.

Thai:
Chaa luead, see Premna obtusifolia R. Br.
Chaak, see Nypa fruticans Wurmb.
Chak, see Nypa fruticans Wurmb.
Cha khraam, see Suaeda maritima (L.) Dum.
Chik an, see Barringtonia asiatica (L.) Kurz
Chik le, see Barringtonia asiatica (L.) Kurz
Chik nam, see Barringtonia asiatica (L.) Kurz
Chik suan, see Barringtonia racemosa (L.) Spreng.
Chuk rohini, see Dischidia rafflesiana Wall.
Daeng nam, see Aglaia cucullata (Roxb.) Pellegrin
Eng-air, see Melastoma saigonense (Kuntze) Merr.
Faad daeng, see Lumnitzera littorea (Jack) Voigt.
Faad khao, see Lumnitzera racemosa Willd.
Fat, see Lumnitzera littorea (Jack) Voigt.
Fat, see Lumnitzera racemosa Willd.
Gluey mu lang, see Dischidia rafflesiana Wall.
Hu kwang, see Terminalia catappa L.
Ka fak ma muang, see Dendrophthoe pentandra (L.) Miq.
Ka fak mai ta tum, see Viscum ovalifolium D.C.
Ka thok rok, see Passiflora foetida L.
Khale thale, see Dolichandrone spathacea (l.f.) K.Schum.
Kha pho, see Licuala spinosa Wurmb.
Khlongklen khon, see Melastoma saigonense (Kuntze) Merr.
Khluu, see Pluchea indica (L.) Less.
Klong-klen, see Melastoma saigonense (Kuntze) Merr.
Kongkaang bai leu, see Rhizophora apiculata Bl.
Kongkaang bai yai, see Rhizophora mucronata Lamk.
Kongkang, see Rhizophora apiculata Bl.
Kongkang, see Rhizophora mucronata Lamk.
Kongkang, see Rhizophora stylosa Griff.
Krathing, see Calophyllum inophyllum L.
Kruai, see Horsfieldia irya (Gaertn.) Warb.
Lao cha own, see *Oncosperma tigillarium* (Jack.) Ridl.
Lambit thale, see *Diospyros ferrea* (Willd.) Bakh.
Lampaen, see *Sonneratia ovata* Back.
Lampaen thale, see *Sonneratia griffithii* Kurz.
Lam phaen, see *Sonneratia caseolaris* (L.) Engl.
Lampoo, see *Sonneratia caseolaris* (L.) Engl.
Lampoo thale, see *Sonneratia alba* J.E. Smith
Lao cha on, see *Oncosperma tigillarium* (Jack.) Ridl.
Lumnok, see *Olax imbricata* Roxb.
Lumpho thale, see *Intsia bijuga* (Colebr.) Kuntze
Ma-ka-ba-ling, see *Sindora siamensis* var. *maritima* (Pierre) K. & SS. Larsen
Maphrao-sida, see *Cycas rumphii* Miq.
Melabira, see *Fagraea crenulata* Maingay ex C.B. Clarke
Nam nong, see *Brownlowia tersa* (L.) Kosterm.
Ngaa sai, see *Planchnella eobovata* (R.Br.) Pierre.
Ngon gai, see *Intsia bijuga* (Colebr.) Kuntze
Ngon kai, see *Heritiera littoralis* Dryand.
Ngon kai thale, see *Heritiera littoralis* Dryand.
Ngueak plaamo dok khao, see *Acanthus ilicifolius* L.
Ngueak plaamo dok muang, see *Acanthus ebracteatus* Vahl.
Nom pi kad, see *Hoya parasitica* (Roxb.) Wall. ex Wight
Nom tam lia, see *Hoya parasitica* (Roxb.) Wall. ex Wight
Non see, see *Peltophorum pterocarpum* (DC.) K. Heyne
Pangka hua sum dok khao, see *Bruguiera gymnorrhiza* (L.) Lamk
Pangka hua sum dok khao, see *Bruguiera sexangula* (Lour.) Poir.
Peng, see *Phoenix paludosa* Roxb.
Peng tha le, see *Phoenix paludosa* Roxb.
Pho thale, see *Hibiscus tiliaceus* L.
Pho thale, see *Thespesia populnea* (L.) Soland. ex Correa
Phueak, see *Colocasia esculenta* (L.) Schott
Phutsa-tha-le, see *Ximenia americana* L.
Po thale, see *Hibiscus tiliaceus* L.
Prasak, see *Bruguiera gymnorrhiza* (L.) Lamk.
Prasak nu, see *Bruguiera sexangula* (Lour.) Poir.
Prong, see *Ceriops decandra* (Griff.) Ding Hou
Prong, see *Ceriops tagal* (Perr.) C.B. Rob.
Prong, see *Cycas rumphii* Miq.
Prong daeng, see *Ceriops tagal* (Perr.) C.B. Rob.
Prong khoa, see *Ceriops decandra* (Griff.) Ding Hou
Prong nuu, see *Acrostichum speciosum* Willd.
Prong thale, see *Acrostichum aureum* L.
Prong-tha-le, see *Cycas rumphii* Miq.
Raamyai, see *Ardisia elliptica* Thunberg
Rang ka thae, see *Kandelia candel* (L.) Druce
Rock, see *Corypha saribus* Lour.
Rok thale, see *Scaevola taccada* (Gaertn.) Roxb.
Sai yoi bai thu, see *Ficus microcarpa* L.f.
Samae, see *Aegialitis rotundifolia* Roxb.
Samae, see *Avicennia marina* (Forssk.) Vierh.
Samae, see *Avicennia officinalis* L.
Samae dam, see *Avicennia officinalis* L.
Samae khao, see *Avicennia alba* Blume
Samae thale, see *Avicennia marina* (Forssk.) Vierh.
Samed, see *Melaleuca cajuputi* Roxb.
Sam ma ngaa, see *Clerodendrum inerme* (L.) Gaertn.
Samo thale, see *Excoecaria indica* (Willd.) Muell. Arg.
See ngam, see *Scyphiphonia hydrophylla* Gaertn. f.
Son thale, see *Cassiarina equisetifolia* L.
Taatum thale, see *Excoecaria agallocha* L.
Ta bun dam, see *Xylocarpus moluccensis* (Lamk.) M. Roem.
Ta bun khao, see *Xylocarpus granatum* Koen.
Tako suan, see *Diospyros malabarica* (Descr.) Kostel.
Tao rang, see *Caryota urens* L.
Tatum, see *Excoecaria agallocha* L.
Teenped saai, see *Cerbera manghas* L.
Teenped thale, see *Cerbera odollam* Gaertn.
Thian le, see *Pemphis acidula* J.R. & G. Forst.
Thua dam, see *Bruguiera parviflora* (Roxb.) W.& A. ex Griff.
Thua khao, see *Bruguiera cylindrica* (L.) Bl.
Ti tang, see *Melastoma saigonense* (Kuntze) Merr.
Tin pet, see *Cerbera manghas* L.
Toei thale, see *Pandanus tectorius* Sol.
To sai, see *Allophylus cobbe* (L.) Raeusch.
Yee thale, see *Pongamia pinnata* (L.) Pierre
Yi thale, see *Pongamia pinnata* (L.) Pierre

Vietnamese:
Bâ’n dâng, see *Sonneratia alba* J.E. Smith
Bâ’n ô’i, see *Sonneratia ovata* Back.
Bâ’n sé, see *Sonneratia caseolaris* (L.) Engl.
Bâng nu’ô’c, see *Fagraea crenulata* Maingay ex C.B. Clarke
Bó’ô’c Bà, see *Scolopia macrophylla* (W. & A.) Clos
Bó’ô’c Bó’n, see *Typha angustifolia* Linnè
Bông nem, see *Erythrina orientalis* (L.) Murr.
Caay cui, see *Heritiera littoralis* Dryand.
Cây Lú’c, see *Pluchea pteropoda* Hems.
Chà là, see *Phoenix paludosa* Roxb.
Chiê’c vàng, see *Barringtonia asiatica* (L.) Kurz
Chiê’c, see *Barringtonia acutangula* (L.) Gaertn.
Choi, see *Stenochlaena palustris* (Burm. f.) Beddd.
Chóc gai ho’côi, see *Lesia spinosa* (L.) Thwaites
Chùm lè, see *Azina sarmentosa* (Bl.) B. & H.
Cô’ cây, see *Fimbristylis ferruginea* (L.) Vahl
Cô’ cây, see *Sporobolus virginiticus* (L.) Kunth.
Cô’ gâ, see *Cynodon dactylon* (L.) Pers.
Cô gâ’u biën, see *Cyperus stoloniferus* Retz.
Cô sái hô’, see *Pluchea pteropoda* Hems.
Cóc dó, see *Lumnitzera littorea* (Jack) Voigt.
Cóc kèn, see *Derris trifoliata* Lour.
Cóc tra’ng, see *Lumnitzera racemosa* Willd.
Côi, see *Cyperus malaccensis* Lamk.
Côi, see *Scyphiphora hydrophyllacea* Gaertn. f.
Co’m ngưởi, see *Ardisia elliptica* Thunberg
Cui bien, see *Heritiera littoralis* Dryand.
Cui, see *Heritiera littoralis* Dryand.
Dà quánh, see *Ceriops decandra* (Griff.) Ding Hou
Dà với, see *Ceriops tagal* (Perr.) C.B. Rob.
Da-ba, see *Ficus curtipes* Corner
Dài ng’u’a nu’ó’c, see *Aglia cucullata* (Roxb.) Pellegrin
Dày câm, see *Sarcolobus globosus* Wall.
Dày chüm gò’i, see *Dendrophthoe pentandra* (L.) Miq.
Dày chüm gông, see *Clerodendrum inerme* (L.) Gaertn.
Dày ghi, see *Viscum ovalifolium* DC.
Dày Mô qua, see *Dischidia rafflesiana* Wall.
Dày mộc tiề’n, see *Dischidia nummularia* R.Br.
Dày Mu, see *Finlaysonia obovata* Wall.
Dày mu, see *Gymnanthera oblonga* (Burm. f) P.S. Green
Du’ong dâù kêt ho’p, see *Olax imbricata* Roxb.
Du’a nu’ó’c, see *Nypa fruticans* Wurmb.
Du’ng, see *Rhizophora mucronata* Lamk.
Du’ng, see *Rhizophora stylosa* Griff.
Du’ó’c, see *Rhizophora apiculata* Bl.
Giá, see *Excoecaria agallocha* L.
Gô nu’ó’c, see *Intsia bijuga* (Colebr.) Kuntze
Gó’a, see *Ficus microcarpa* L.f.
Ho dâu, see *Casuarina equisetifolia* L.
Kè, see *Coriophia saribus* Lour.
Ký nam, see *Hydnophyllum formicarum* Jack
Lá lua, see *Cynometra ramiflora* L.
Lac tiên, see *Passiflora foetida* L.
Lác, see *Cyperus malaccensis* Lamk.
Lúc cây, see *Pluchea indica* (L.) Less
Mái d’a’m, see *Cryptocoryne ciliata* (Roxb.) Fisch. ex Schott
M’à’m den, see *Avicennia officinalis* L.
M’à’m lu’o’i dính, see *Avicennia alba* Blume
M’à’m ơ, see *Avicennia marina* (Forssk.) Vierh.
M’à’m quán, see *Avicennia lanata* Ridley
Mày nu’ó’c, see *Flagellaria indica* L.
Mòn nu’ó’c, see *Colocasia esculenta* (L.) Schott
Mù u, see *Calophyllum inophyllum* L.
Mua, see *Melastoma malabathricum* var. *malabathricum* L.
Mùi, see *Glochidion littorale* Bl.
Muoi bien, see *Suaeda maritima* (L.) Dum.
Muóp xác vàng, see *Cerbera odollam* Gaertn.
Nâgg ho’ ráy, see *Crinum asiaticum* L.
Nâng bôp, see *Eleocharis dulcis* (Burm. f.) Henschel
Nhan lòng, see Passiflora foetida L.
Nhum, see Oncosperma tigillarium (Jack.) Ridl.
Ô rô gai, see Acanthus ilicifolius L.
Ô rô, see Acanthus ebracteatus Vahl.
Phi lao, see Casuarina equisetifolia L.
Quao nuốc, see Dolichandrone spathacea (L.f.) K.Schum.
Râng, see Acrostichum aureum Linné
Rau heo, see Sesuvium portulacastrum (L.) L.
Rau mui, see Wedelia biflora (L.) DC.
Rau muông biế'n, see Ipomoea pes-capre (L.) Sweet.
Sây, see Phragmites karka (Retz.) Trin. ex Steud.
Su ô'i, see Xylocarpus granatum Koen.
Su sú'ng, see Xylocarpus moluccensis (Lamk) M. Roem.
Sú, see Aegiceras corniculatum (L.) Blanccor
Tân móc lang see Cordia cochinchinensis Gagnep.
Thien tue, see Cycas rumphii Miq.
Tim lang, see Barringtonia racemosa (L.) Spreng.
Tra bô'dê', see Thespesia populnea (L.) Soland. ex Correa
Tra nhó't, see Hibiscus tiliaceus L.
Tràm, see Melaleuca cajuputi Roxb.
Trang, see Kandelia candel (L.) Druce
Vet dü' bông dò, see Bruguiera gymnorrhiza (L.) Lamk.
Vet dü, see Bruguiera sexangula (Lour.) Poir.
Vet tách, see Bruguiera parviflora (Roxb.) W. & A. ex Griff.
Vet thâng, see Bruguiera cylindrica (L.) Bl.