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Abstract. Irrigation is the most important water use
sector accounting for about 70% of the global freshwater
withdrawals and 90% of consumptive water uses. While
the extent of irrigation and related water uses are reported
in statistical databases or estimated by model simulations,
information on the source of irrigation water is scarce and
very scattered. Here we present a new global inventory
on the extent of areas irrigated with groundwater, surface
water or non-conventional sources, and we determine the
related consumptive water uses. The inventory provides data
for 15 038 national and sub-national administrative units.
Irrigated area was provided by census-based statistics from
international and national organizations. A global model
was then applied to simulate consumptive water uses for
irrigation by water source. Globally, area equipped for
irrigation is currently about 301 million ha of which 38% are
equipped for irrigation with groundwater. Total consumptive
groundwater use for irrigation is estimated as 545 km3 yr−1,
or 43% of the total consumptive irrigation water use of
1277 km3 yr−1. The countries with the largest extent of
areas equipped for irrigation with groundwater, in absolute
terms, are India (39 million ha), China (19 million ha) and
the USA (17 million ha). Groundwater use in irrigation
is increasing both in absolute terms and in percentage of
total irrigation, leading in places to concentrations of users
exploiting groundwater storage at rates above groundwater
recharge. Despite the uncertainties associated with statistical
data available to track patterns and growth of groundwater
use for irrigation, the inventory presented here is a major step
towards a more informed assessment of agricultural water
use and its consequences for the global water cycle.

Correspondence to:S. Siebert
(s.siebert@uni-bonn.de)

1 Introduction

For many important agricultural production areas, ground-
water will remain the ultimate source of freshwater when
surface water sources have been depleted. The aquifers that
host groundwater are the primary buffers against drought for
both human requirements, and crop production. In many
concentrations of intensive agriculture, groundwater offers
reliability and flexibility in access to water that irrigation
canals can hardly match. Additionally, groundwater is
generally less prone to pollution than surface water. While
the rising importance of groundwater withdrawals in global
freshwater supply is well established, there is still a
large uncertainty on the volumes and spatial distribution
of both groundwater recharge and withdrawals. Using a
global hydrological model, mean annual direct groundwater
recharge was estimated at 12 600 km3 yr−1 which is about
one third of the total renewable freshwater resources
(Döll, 2009). However, this global estimate explicitly
excludes indirect recharge resulting from runoff events and
transmission losses. These indirect recharge processes are
dominant in semi-arid and arid countries where interior
or coastal alluvial plains receive high volumes of runoff
from surrounding mountain fronts (Scanlon et al., 2007).
The Tihama and Batinah coastal plains in Yemen and
Oman are prime examples. Total groundwater withdrawals
are estimated to be in the range 600–1100 km3 yr−1 or
between one fifth and one third of the total global freshwater
withdrawals (D̈oll, 2009; Shah et al., 2007; Zektser
and Everett, 2004). There are large regional differences
in the patterns of aquifer recharge and groundwater
withdrawals. Recharge of aquifers is mainly influenced by
three environmental factors: hydrometeorological influences
that include the intensity, duration and volume of the
precipitation and the ambient atmospheric conditions; the
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hydrogeological influences that include the geomorphology,
geology and pedology of the land surface where the
precipitation occurs or over which runoff subsequently
flows; and the type of vegetation cover and land use. In
humid regions, groundwater recharge is likely to exceed
groundwater withdrawals such that groundwater discharge
contributes significantly to river flows (the base flow
component). In semi-arid and arid regions, high water
withdrawals are required by the agricultural sector as it
takes advantage of long growing seasons, high insolation
and low pest and disease risk. Generally, the rates of
groundwater recharge in these semi-arid and arid regions are
low such that, in the absence of alternative sources of water,
groundwater withdrawals can exceed aquifer recharge and
can result in depletion. Aquifer depletion has been reported
for many semi-arid and arid regions world-wide and can
be attributed to agricultural withdrawals (Ahmed and Umar,
2009; Central Groundwater Board, 2006; Foster and Loucks,
2006; Guzman-Soria et al., 2009; Konikow and Kendy, 2005;
Rodell et al., 2009; Scanlon et al., 2007; Shah et al., 2007;
Wang et al., 2009).

Globally, irrigation accounts for more than 70% of
total water withdrawals and for more than 90% of
total consumptive water use (Döll, 2009; FAO, 2010;
Shiklomanov et al., 2000). Therefore, to better understand
the impact of human water use on the water cycle, it
is necessary to identify the source of the water used for
irrigation. Up to now, three different approaches have
been used to determine irrigated areas that are supplied by
groundwater and the related water uses. First, using the
statistical data reported in FAO’s AQUASTAT data base at
the country level, it was estimated that the area irrigated
with groundwater was 89 million ha or 37% of the total area
equipped for irrigation (Burke, 2002). To our knowledge this
has been the first quantitative estimate of the global extent of
areas equipped for irrigation with groundwater. This estimate
was based on data for 63 of the 137 countries with irrigation.
56% of the global area equipped for irrigation was located
in countries for which data on the extent of groundwater
irrigation was available. Most of the statistics considered
in this estimate referred to the 1990s. For the remaining
countries area irrigated with groundwater was determined by
expert judgement.

Second, Shah et al. (2007) collected information from
many different sources and estimated the area irrigated
with groundwater in the range 83–576 million ha. Here,
uncertainties lie mainly in the use of different definitions
for irrigated land. In addition to this, the source of
irrigation water is not reported in the official statistics
for many countries, while in other countries the extent of
groundwater irrigation area is systematically underestimated
in the statistics, in particular in regions with a very dynamic
development of groundwater irrigation (Giordano, 2006;
Shah et al., 2007). Finally, as with estimated irrigated
areas serviced by groundwater irrigation, there is also a

large uncertainty in the statistics regarding the related water
use. It was estimated that groundwater contributes to 20%
of the global irrigation water withdrawals, to 40% of the
total industrial water withdrawals and to 50% of the total
municipal water withdrawal (Zekster and Everett, 2004).

Third, Thenkabail et al. (2009) developed a global
irrigation map that is mainly based on remote sensing. Their
final classification contains 28 land use classes and represents
a combination of crop type and water source. According to
this inventory, 54% of the total area available for irrigation
is irrigated with surface water, 5% with groundwater, and
41% by conjunctive use of both water sources with less than
15% surface water contribution in conjunctive use. Major
limitations for this data set were identified: the coarse spatial
resolution of the satellite imagery used to develop the data
set; the class labelling process which was based on subjective
criteria making a reproduction of the classification difficult
or impossible; and the fact that sub pixel-fractions were
constant all over the world for all pixels belonging to the
same class resulting in a significant, albeit not estimated,
level of uncertainty (Ozdogan and Gutman, 2008; Pervez et
al., 2008; Siebert et al., 2006; Thenkabail et al., 2009). In
addition, the methods used to distinguish groundwater and
surface water irrigation and to quantify the contribution of
surface water in conjunctive use are not described.

Finally, global hydrological models with a spatial
resolution of 0.5 degree by 0.5 degree were used to estimate
the fraction of irrigation water withdrawals that cannot be
met by local renewable water sources (Rost et al., 2008;
Wisser et al., 2009; D̈oll et al., 2009). Depending on the
modelling approach, results vary between 20% and 50%
of irrigation requirements. However, the fraction does not
permit estimation of groundwater use in irrigation since
it includes both non-renewable groundwater resources and
long-distance surface water transfers e.g. via irrigation canal
networks, and because the local renewable water resources
include both surface water and groundwater resources.

Thus, it appears very difficult to determine groundwater
use for irrigation by either remote sensing or modelling.
Acknowledging of the severe limitations of statistical data
on groundwater use, we think that compilation of statistical
data is still the preferred approach. Hence, we present a
new global inventory that indicates the source of irrigation
water of areas equipped for irrigation (AEI) and of areas
actually irrigated (AAI) for 15 038 national and subnational
administrative units. The inventory is mainly based on
statistics published in national census reports available
on-line or made available from the FAO-AQUASTAT
library. In addition, by linking these statistics to the
Global Crop Water Model GCWM (Siebert and Döll,
2010), consumptive irrigation water use from groundwater
and surface water is estimated. The inventory and the
underlying data are available athttp://www.fao.org/nr/water/
aquastat/irrigationmap/index.stmas component of FAO’s
AQUASTAT information system. In this publication we
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document first the data, definitions and methods used in
the development of the inventory (Sect. 2). Then we show
results at the global, regional and country scale (Sect. 3), we
discuss the major uncertainties and limitations and compare
our results to independent estimates (Sect. 4). For a
complete country-wise documentation of data sources and
assumptions made when developing the data set readers are
referred to Supplement S1. Area equipped for irrigation,
area actually irrigated and the consumptive water use from
groundwater, surface water and non-conventional water
sources are listed for each country in Supplement S2, in
addition to tables and figures shown in the manuscript.
Supplement S3 provides the countries in each continent,
region and sub-region, while the acronyms used in this article
are listed and explained in Supplement S4.

2 Definitions, data and methods

2.1 Terms and definitions

Groundwater is usually defined as water contained in
an aquifer matrix located beneath the surface in the
saturated zone, as opposed to free surface water bodies
like streams, reservoirs, or lakes. But clearly the dynamic
exchange between groundwater and surface water through
the hydrological cycle is complex and makes categorical
definitions problematic: groundwater may become surface
water through springs and drainage into rivers, lakes and
wetlands. Conversely, surface water bodies may seep into
the ground and recharge the aquifers, e.g. when flood water
percolates through the unsaturated zone to the saturated zone.
However, to be consistent with definitions in many water
use statistics, we distinguish three possible types of water:
groundwater, surface water and non-conventional water
sources. Water withdrawn from aquifers using wells, and
water taken from springs is considered to be groundwater.
Water extracted directly from rivers, lakes, ponds, reservoirs
or wetlands is defined as surface water while treated
wastewater and desalinated water are considered to be
non-conventional sources of water. Surface water that
infiltrates aquifers due to groundwater pumping close to the
surface water body and is extracted from the groundwater
(bank filtrates) are in general categorised as groundwater.
The term conjunctive use of groundwater and surface water
refers to the intentional use of both water sources.

With regard to irrigation practice, definitions are
used in this article according to the FAO AQUASTAT
glossary (http://www.fao.org/nr/water/aquastat/data/
glossary/search.html?lang=en). First, the area equipped
for irrigation (AEI) is the area of the land that is equipped
with infrastructure to provide water to crops. It includes
areas equipped for full/partial control irrigation, equipped
lowland areas, and areas equipped for spate irrigation.
Second, the area actually irrigated (AAI) and the irrigated

area harvested (AHI) denote the portion of the area equipped
for irrigation that is actually irrigated in a given year.
The AAI refers to physical areas and irrigated land that
is cultivated more than once a year is counted only once,
while in the case of the AHI, land area that is harvested and
irrigated more than once in the same year is counted double
or threefold, depending on the number of crop harvests on
the same area. Consequently AAI is always smaller or equal
to AEI and AHI.

2.2 Data and methods

2.2.1 Subdivision of irrigated areas into areas
irrigated with groundwater, surface water or
non-conventional water sources

Statistics on area equipped for irrigation with groundwater
(AEI GW), with surface water (AEISW) or with water de-
rived from non-conventional sources (AEINC) and on area
actually irrigated with groundwater (AAIGW), with surface
water (AAI SW) or with water from non-conventional
sources (AAINC) were collected from national census
reports or online data bases and complemented with
country information available from the FAO-AQUASTAT
library, data collected by other international organizations
or statistical services (e.g. Eurostat) or data taken from
the literature. The inventory contains statistics for
15 038 national or sub-national administrative units (Fig. 1).

For many countries the statistics on AEI are consistent
with data used to develop version 4 of the Global Map of
Irrigation Areas (GMIA; Siebert et al., 2005 updated by
Siebert et al., 2006) because the same sources of information
were used. However, for several countries more recent
statistics became available and replaced the GMIA statistics.
For almost all countries it was required to fill gaps in the
statistics caused by missing data. Furthermore, AEI is
reported in most cases as part of land use statistics while AAI
is usually collected as part of water use surveys. Therefore in
many countries different ministries are responsible to process
the data and to provide the statistics resulting in different
reference years and different resolution of the statistics. We
used the following rules for the selection of statistics used for
this inventory and to fill data gaps:

1. Statistics provided at high resolution, for the most
recent reference year and using similar definitions, were
preferred unless proved wrong (see Supplement S1).

2. If statistics on AEI were available at higher resolution as
compared to AAI statistics, then AAI was downscaled
by using the ratio between AAI and AEI reported at
lower resolution (e.g. if the ratio between AAI and AEI
was 0.8 for a first level administrative unit and for the
second level administrative units only AEI was known,
then AAI was computed as 80% of AEI for all the
second-level administrative units).
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Table 1. Type of census statistics used to define irrigated area by source of irrigation water, number and percentage of administrative units
or percentage of global area equipped for irrigation (AEI) for which the different variables were used.

Variables used to define irrigated Administrative Administrative AEI separated
area by source of irrigation water units (number) units (%) into groundwater

and surface water
supply (%)

Area equipped for irrigation with 554 3.7 38.6
groundwater, surface water or water
from non-conventional sources

Area actually irrigated with 1185 7.9 36.7
groundwater, surface water or water
from non-conventional sources

Irrigation water use from 7274 48.4 17.3
groundwater, surface water or
non-conventional water sources

Other data or own estimate 5984 39.8 7.3

No irrigation 41 0.3 0.0

Total 15 038 100.0 100.0

No irrigation
AEI_GW statistics
AAI_GW statistics
IWWD_GW statistics
Others or own estimate

Statistical unit
Sub-region
Region

Fig. 1. Regions and sub-regions used in this paper as well as
administrative units distinguished in the groundwater irrigation
inventory (top), and type of input data used to develop the
inventory (bottom). AEIGW = area equipped for irrigation with
groundwater, AAIGW = area actually irrigated with groundwater,
IWWD GW = groundwater withdrawals for irrigation (see the
electronic Supplement for a high resolution version of this figure).

3. If statistics on the source of irrigation water were
available for AEI only or for AAI only, then the fraction
of area irrigated with water from the different sources
was assumed to be the same, e.g. if 15% of the AEI was
reported to be irrigated with groundwater and AAIGW
was unknown, then AAIGW was set to 15% of total
AAI as well.

4. If the extent of AEI and AAI irrigated with water from
the different sources was unknown but irrigation water
use from different sources was reported, then the water
use statistics were used to downscale the irrigated area
statistics (e.g. if 20% of irrigation water use was from
groundwater, then it was assumed that also 20% of AEI
and of AAI were irrigated with groundwater).

5. If for specific countries the source of irrigation water
was unknown for AEI and AAI and water use statistics
were not available as well, the percentage of AEI
and AAI irrigated with groundwater, surface water
or non-conventional sources was estimated based on
other information, e.g. qualitative estimates in the
literature, based on borehole inventories or based on the
availability of water resources.

6. Areas with conjunctive use of groundwater and surface
water were assigned with 50% to AEIGW and 50% to
AEI SW if not otherwise noted.
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For only about 12% of the 15 038 administrative units,
statistics on AEI or AAI by source of water have been
available (Fig. 1 and Table 1). However, about 75% of the
global AEI is located in these 1739 administrative units. For
7274 administrative units containing 17% of the total AEI,
water use statistics were used to compute AEIGW, AEI SW
and AEI NC. For 6025 administrative units containing 7%
of the global AEI, other data or own estimates were applied.
The data for the different spatial units represent different
periods of time, such that it is impossible to state exactly
for which time period this global inventory is representative.
In many units, however, the situation around the year 2000 is
represented. For a detailed country-wise description of input
data, references and methods used to develop this inventory,
readers are referred to Supplement S1.

2.2.2 Calculation of consumptive water use in irrigation
and breakdown by water sources

Average consumptive use of irrigation water was computed
for each administrative unit using the Global Crop Water
Model GCWM (Siebert and D̈oll, 2010). It was then
subdivided into irrigation consumptive water use from
groundwater (ICWUGW), irrigation consumptive water use
from surface water (ICWUSW) and irrigation consumptive
water use from non-conventional water sources (ICWUNC)
using the ratios of AAIGW, AAI SW and AAI NC to total
AAI. GCWM was applied using climate data for the period
1998–2002, and the FAO Penman-Monteith method (Allen et
al., 1998) was used to compute reference evapotranspiration.
In GCWM irrigation consumptive water use is computed
as the difference between potential crop evapotranspiration
(calculated as reference evapotranspiration multiplied by a
crop and growing stage specific “crop factor”) and water
limited actual evapotranspiration of the same crop under
rainfed conditions. The model considers 26 different crop
classes and evapotranspiration is simulated based on a soil
water balance performed in daily time steps. Cropping
patterns and cropping seasons are provided by MIRCA2000
(Portmann et al., 2010), a global data set of monthly irrigated
and rainfed crop areas of these 26 crop classes at 5 arc-min
resolution and mainly based on FAO cropping calendars and
cropping factors. The growing areas of irrigated crops in
MIRCA2000 are consistent with version 4 of the global map
of irrigation areas but not with the inventory of irrigation
areas presented here because the irrigated area database was
updated with new information in many administrative units
(see Sect. 2.2.1 and Supplement S1). Therefore, a scaling
procedure was applied to adapt the water uses computed with
GCWM based on MIRCA2000 to irrigated area statistics
used in this inventory.

Irrigation water use is more closely related to AAI than to
AEI. A scaling coefficient based on AAI per administrative
unit in this inventory as compared to MIRCA2000, however,
could not be computed because AAI is not reported by

MIRCA2000. Therefore, a scaling coefficientcs1 was
computed for each administrative unit as

cs1 =
AEI

AEIMIRCA
(1)

where AEI was the area equipped for irrigation recorded in
the new inventory (ha) and AEIMIRCA was the area equipped
for irrigation used for the same administrative unit when
developing the MIRCA2000 data set (ha). Then, a second
scaling coefficientcs2 was computed as

cs2 =


AAI

cs1 × AHIMIRCA
if AAI > cs1 × AHIMIRCA

AAI
cs1 × MMGAMIRCA

if AAI < cs1 × MMGAMIRCA

1 else
(2)

where AAI was the area actually irrigated recorded in the
new inventory (ha), AHIMIRCA was the harvested area of
irrigated crops in MIRCA2000 (ha) and MMGAMIRCA was
the maximum of the sum of monthly growing areas of all
irrigated crops in MIRCA2000 (ha). MMGAMIRCA was
computed by adding up in each 5 arc-minute grid cell the
growing area of all irrigated crops for each month and by
afterwards selecting the maximum of the 12 total monthly
growing areas. AHIMIRCA is larger than MMGAMIRCA when
irrigated crops are cultivated in different seasons without an
overlap of the growing season, e.g. when multi-cropping
occurs. Therefore AAI has to be larger or equal to
MMGAMIRCA and lower or equal to AHIMIRCA which is
reflected by Eq. (2). The adjusted irrigation water use was
then computed for each administrative unit as

ICWU = cs1 × cs2 × ICWUGCWM (3)

where ICWU was the consumptive use of irrigation water
in the new inventory (m3 yr−1) and ICWUGCWM was the
consumptive use of irrigation water as computed by GCWM
using the MIRCA2000 crop data (m3 yr−1).

In 443 administrative units with an AEI of 377 978 ha
(0.12% of total AEI), AAI was larger than 0 in the new
inventory but AEIMIRCA and ICWUGCWM was zero. This
happened mainly in regions where the resolution of the
irrigation statistics was much higher in the new inventory
as compared to the resolution of the statistics in version 4
of the global irrigation map as used when developing
MIRCA2000 (e.g. in Mexico and Chile). ICWU for
these administrative units was computed by interpolating
ICWUGCWM per MMGAMIRCA from grid cells belonging
to neighbouring administrative units and by multiplying this
interpolated ratio with the reported AAI.

3 Results

3.1 Irrigated area and consumptive irrigation water use

Total AEI recorded in this inventory is 301 million ha while
total AAI is 253 million ha, i.e. about 84% of the equipped
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Table 2. Total area equipped for irrigation (AEI), area equipped for irrigation irrigated with groundwater (AEIGW), total area actually
irrigated (AAI TOT), area actually irrigated with groundwater (AAIGW), total consumptive irrigation water use (ICWU) and consumptive
groundwater use for irrigation (ICWUGW) per continent, region and sub-region.

Continent, region or sub-region AEI AEIGW AEI GW AAI TOT AAI GW ICWU ICWU GW
(ha) (ha) (%) (ha) (ha) (Mm3 yr−1) (Mm3 yr−1)

Africa 13 576 142 2 505 954 18.5 11 527 882 2 157 978 98 251 17 863
Northern Africa 6 377 826 2 092 196 32.8 6 017 624 1 817 844 65 365 15 685
Sub-Saharan Africa 7 198 316 413 758 5.7 5 510 258 340 134 32 886 2178

Central Africa 132 439 17 000 12.8 81 893 8000 464 50
Eastern Africa 622 059 21 285 3.4 612 617 21 190 2922 117
Gulf of Guinea 593 357 86 545 14.6 484 661 82 829 2182 426
Indian Ocean Islands 1 119 903 7 711 0.7 1 109 247 6822 2881 21
Southern Africa 2 063 428 157 991 7.7 1 925 095 151 369 11 478 908
Sudano-Sahelian 2 667 130 123 226 4.6 1 296 745 69 923 12 958 655

America 48 903 652 21 548 173 44.1 39 556 109 17 621 335 224 238 107 358
Central America and Caribbean 1 895 292 683 462 36.1 1 054 535 324 967 4179 1252

Caribbean – Greater Antilles 1 332 107 527 271 39.6 547 587 186 845 1743 519
Caribbean – Lesser Antilles 19 609 2549 13.0 12 616 1919 23 3
Central America 543 576 153 642 28.3 494 332 136 203 2413 730

Northern America 35 456 548 19 147 423 54.0 28 930 359 15 738 211 185 783 99 885
Mexico 6 418 803 2 489 785 38.8 5 648 547 2 191 011 27 163 11 386
Northern America 29 037 745 16 657 638 57.4 23 281 812 13 547 200 158 619 88 498

Southern America 11 551 811 1 717 288 14.9 9 571 215 1 558 158 34 276 6221
Andean 4 180 641 660 447 15.8 3 493 609 560 205 13 664 2619
Brazil 3 149 217 591 439 18.8 3 149 217 591 439 9576 2154
Guyana 207 348 302 0.1 207 038 286 431 < 0.5
Southern America 4 014 606 465 100 11.6 2 721 351 406 227 10 606 1447

Asia 211 796 335 80 582 458 38.0 185 139 307 72 531 008 890 679 398 631
Central Asia 14 673 971 1 149 245 7.8 11 787 249 780 969 67 696 4719
Middle East 23 562 117 10 838 415 46.0 17 749 167 9 059 714 130 813 71 261

Arabian Peninsula 2 791 906 2 467 433 88.4 2 221 846 1 938 015 23 559 20 759
Caucasus 2 132 320 147 577 6.9 1 402 060 107 329 6696 501
Islamic Republic of Iran 8 297 031 5 151 186 62.1 6 423 342 3 987 912 47 039 30 153
Near East 10 340 860 3 072 219 29.7 7 701 919 3 026 457 53 519 19 848

Southern and Eastern Asia 173 560 247 68 594 798 39.5 155 602 891 62 690 325 692 169 322 651
East Asia 67 625 487 19 330 590 28.6 58 263 052 16 351 657 167 433 57 515
Mainland Southeast Asia 12 517 821 627 118 5.0 11 066 386 613 263 37 294 2528
Maritime Southeast Asia 8 310 648 343 920 4.1 8 294 895 343 605 23 429 755
South Asia 85 106 292 48 293 169 56.7 77 978 559 45 381 801 464 013 261 852

Europe 22 651 784 7 349 929 32.4 13 301 498 4 816 935 47 885 18 206
Eastern Europe 4 898 893 493 257 10.1 1 708 100 342 734 4983 861

Eastern Europe 2 523 793 18 237 0.7 768 900 4622 2606 6
Russian Federation 2 375 100 475 020 20.0 939 200 338 112 2377 856

Western and Central Europe 17 752 891 6 856 671 38.6 11 593 398 4 474 201 42 902 17 344
Central Europe 2 418 969 302 049 12.5 909 437 118 233 1986 264
Mediterranean Europe 10 375 898 3 920 338 37.8 7 942 875 2 963 597 36 486 15 179
Northern Europe 859 696 520 927 60.6 313 280 224 467 119 66
Western Europe 4 098 328 2 113 358 51.6 2 427 806 1 167 904 4310 1836

Oceania 3 967 179 949 921 23.9 3 054 250 693 923 15 880 3301
Australia and New Zealand 3 962 741 949 172 24.0 3 049 812 693 174 15 880 3301
Other Pacific Islands 4438 749 16.9 4 438 749 < 0.5 < 0.5

WORLD 300 895 091 112 936 434 37.5 252 579 046 97 821 180 1 276 932 545 359
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area is actually irrigated. Total ICWU computed using
GCWM is 1277 km3 yr−1 corresponding to 506 mm yr−1

of irrigation water consumed by the crops on average and
related to AAI. About 70% of the AEI is recorded for Asian
countries, 16% is located in America, 8% in Europe, 5% in
Africa and 1% in Oceania (Table 2). At the country scale the
largest extent of AEI is reported for China (62 million ha),
India (62 million ha), the USA (28 million ha), and Pakistan
(17 million ha). About 56% of the total AEI is located in
these four countries (Supplement S2). The percentage of
cultivated land that is equipped for irrigation is largest in
Asia (37%) while it is smallest for the African continent
(5%) (Table 3). At the sub-regional scale AEI as percentage
of cultivated land is largest in the sub-regions of Caucasus
(68%), Arabian Peninsula (49%), Islamic Republic of Iran
(45%), South Asia (42%) and East Asia (41%) while it is
less than 1% for the Pacific Islands, Central Africa and the
Gulf of Guinea (Table 3). We computed a consumptive water
use for irrigation larger than the total internal renewable
water resources for the sub-regions Northern Africa and
Arabian Peninsula (Table 3), indicating over-exploitation of
existing water resources by irrigation (Arabian Peninsula) or
a dependency on external water resources (inflow of river
Nile water into the sub-region of Northern Africa). More
than 25% of the internal renewable water resources are used
for irrigation in the sub-regions of Islamic Republic of Iran,
South Asia and Central Asia (Table 3).

The estimated consumptive water use for irrigation
(ICWU) comprises both evaporation (E) and transpira-
tion (T ), and is calculated over cropped areas as the
difference between crop evapotranspiration under no-stress
conditions and crop evapotranspiration under rainfed
circumstances. In the case of paddy rice, also a certain
amount of water needs to be added for crop water
management on the field, but the ICWU does not account
for this additional water requirement. When calculated
as a percentage of reported agricultural water withdrawals
AWWD (FAO, 2010) it can be taken as a notional indicator of
irrigation “efficiency” because irrigation water withdrawals
represent by far the largest part of total agricultural water
withdrawals in most countries, much more than direct water
use for livestock (stock-watering, washing and cooling).
In the following we refer to the ratio of ICWU and
AWWD as the consumptive fraction. At the field scale
the consumptive fraction depends on the method of water
application (surface, sprinkler or localized irrigation), on
the soil properties, the size of the basins when surface
irrigation is being used, on the climate conditions and other
factors. Low consumptive fractions of 0.2 or even lower
were reported for flooded paddy rice cultivation while large
consumptive fractions of more than 0.8 can be achieved
when using localized irrigation. However, the consumptive
fraction at the scale of a large irrigation scheme or a
river basin can be much higher when drainage water is
reused several times in the downstream area. While for

example in Egypt the consumptive fraction at scheme level
may be rather low, it is higher at basin level due to the
reuse of agricultural drainage water in downstream schemes.
The consumptive fractions computed here for regions and
sub-regions (Table 3) are used to check the consistency
of computed ICWU to reported AWWD. The largest
consumptive fractions were computed for Australia and New
Zealand (0.84), Northern Africa (0.82) and the Arabian
Peninsula (0.81) while lowest consumptive fractions were
computed for Northern Europe (0.11), Eastern Europe (0.12),
the Russian Federation (0.18), Guyana, Greater Antilles
and Indian Ocean Islands (0.19), Mainland Southeast Asia
(0.22) and Maritime Southeast Asia (0.23). The large
values of ICWU as a fraction of AWWD in Northern Africa
may be realistic because of the reuse of drainage water in
the large irrigation schemes along the Nile river in Egypt
(Oosterbaan, 1999) while the low values for Southeast
Asia may reflect the importance of paddy cultivation in
this region. In contrast, the low consumptive fractions
computed for Northern Europe, Eastern Europe and the
Russian Federation may be caused by the importance of other
agricultural water uses (livestock, fish ponds) in Northern
Europe or indicate an overestimation of current agricultural
water withdrawals in the statistical data used here. For
example, AWWD reported by FAO-AQUASTAT for Sweden
was 260 million m3 yr−1 in year 2000 while ICWU computed
here was 48 million m3 yr−1 (Supplement S2) resulting in a
consumptive fraction of 0.19. In contrast, national statistics
reported an AWWD of 132 million m3 yr−1 for year 2005, of
which 94 million m3 yr−1 (71%) was for irrigation (Statistics
Sweden, 2007). However, it should be noted that even the
national statistics for irrigation water withdrawals are based
on a survey undertaken in year 1985 and reflecting water
uses that would occur in a dry year (Brånvall et al., 1999;
Statistics Sweden, 2007). Another example is the Russian
Federation. The latest available statistics on AWWD in
FAO-AQUASTAT refer to year 2001 (13.2 km3 yr−1). ICWU
computed here for the Russian Federation was 2.4 km3 yr−1

(Supplement S2) resulting in a consumptive fraction of 0.18.
National statistics reported an AWWD of 8.5 km3 yr−1 in
year 2005 based on an irrigated area of 4.6 million ha
(Federal State Statistics Service, 2006). However, according
to the results of the agricultural census undertaken in year
2006 AEI was only 2.38 million ha, of which 0.94 million ha
were actually irrigated in year 2006 (Federal State Statistics
Service, 2008). Therefore AWWD is very likely much lower
than estimated in the national water use statistics.

3.2 Importance of groundwater use for irrigation

The total area equipped for irrigation with groundwater
(AEI GW) is 113 million ha or 38% of total AEI, while the
total area actually used for groundwater irrigation (AAIGW)
is 98 million ha or 39% of total AAI (Table 2). Computed
consumptive groundwater use for irrigation (ICWUGW) is
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Table 3. Area equipped for irrigation as percentage of cultivated land (AEICULT), consumptive irrigation water use as percentage of
total internal renewable water resources (ICWUREN), consumptive irrigation water use as fraction of agricultural water withdrawals
(ICWU AWWD) and consumptive groundwater use for irrigation as percentage of internally produced groundwater (ICWUGW REN) per
continent, region and sub-region (cultivated land, internal renewable water resources, agricultural water withdrawals and internally produced
groundwater per country was derived from the FAO AQUASTAT main country database,http://www.fao.org/nr/water/aquastat/data/query/
index.html?lang=en, last access: 16 March 2010).

Continent, region or AEICULT ICWU REN ICWU AWWD ICWU GW REN
sub-region

Africa 5.5 2.5 0.53 1.3
Northern Africa 22.9 139.5 0.82 106.1
Sub-Saharan Africa 3.3 0.8 0.31 0.2

Central Africa 0.6 < 0.1 0.42 < 0.1
Eastern Africa 1.5 1.0 0.24 0.1
Gulf of Guinea 0.9 0.2 0.25 0.2
Indian Ocean Islands 29.3 0.8 0.19 < 0.1
Southern Africa 6.1 4.2 0.76 1.1
Sudano-Sahelian 4.9 8.1 0.25 1.1

America 12.4 1.2 0.58 n.a.
Central America and 12.3 0.5 0.28 n.a.
Caribbean

Caribbean – Greater Antilles 19.3 2.0 0.19 2.1
Caribbean – Lesser Antilles 9.2 0.6 0.56 n.a.
Central America 6.5 0.4 0.41 0.4

Northern America 14.1 3.1 0.71 5.5
Mexico 23.9 6.6 0.45 8.2
Northern America 12.9 2.8 0.79 5.3

Southern America 9.2 0.3 0.31 0.2
Andean 23.6 0.3 0.34 0.2
Brazil 4.7 0.2 0.26 0.1
Guyana 39.0 0.1 0.19 < 0.1
Southern America 9.8 0.8 0.32 0.4

Asia 36.9 7.2 0.45 14.4
Central Asia 36.5 25.7 0.45 8.4
Middle East 36.6 27.0 0.58 43.3

Arabian Peninsula 49.1 385.6 0.81 401.1
Caucasus 68.4 9.2 0.55 1.8
Islamic Republic of Iran 44.7 36.6 0.55 61.2
Near East 27.9 19.4 0.54 24.2

Southern and Eastern Asia 37.0 5.9 0.43 12.7
East Asia 41.5 4.9 0.33 6.5
Mainland Southeast Asia 27.7 2.1 0.22 0.8
Maritime Southeast Asia 14.8 0.5 0.23 0.1
South Asia 41.6 26.6 0.57 49.4

Europe 7.7 0.7 0.44 1.4
Eastern Europe 2.9 0.1 0.14 0.1

Eastern Europe 5.6 1.9 0.12 < 0.1
Russian Federation 1.9 0.1 0.18 0.1

Western and Central Europe 14.1 2.0 0.58 3.5
Central Europe 5.9 0.7 0.57 0.4
Mediterranean Europe 30.6 8.6 0.59 16.2
Northern Europe 10.6 < 0.1 0.11 < 0.1
Western Europe 9.6 0.7 0.51 1.0

Oceania 8.6 1.8 0.84 n.a.
Australia and New Zealand 8.7 1.9 0.84 n.a.
Other Pacific Islands 0.6 < 0.1 0.01 n.a.

WORLD 19.4 3.0 0.48 n.a.
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Fig. 2. Percentage of area equipped for irrigation that is irrigated
with groundwater per statistical unit (top) and per irrigated grid cell
in version 4 of the global map of irrigation areas (Siebert et al.,
2006; bottom; see the electronic Supplement for a high resolution
version of this figure).

545 km3 yr−1 (Table 2). The relative importance of ground-
water use in irrigation varies strongly among continents,
regions, sub-regions (Table 2), countries (Supplement S2)
and different agricultural regions within the countries
(Supplement S2, Fig. 2). More than half of the AEI is
equipped for irrigation with groundwater in the sub-regions
Arabian Peninsula (88%), Islamic Republic of Iran (62%),
Northern Europe (61%), Northern America (57%), South
Asia (57%) and Western Europe (52%) (Table 2). In contrast,
it is less than 10% in 10 out of the 33 sub-regions (Table 2).
More than one million ha of AEIGW are recorded for
India (39.4 million ha), China (18.8 million ha), the USA
(16.6 million ha), Pakistan (5.2 million ha), Islamic Republic
of Iran (5.2 million ha), Bangladesh (3.5 million ha), Mexico
(2.5 million ha), Saudi Arabia (1.7 million ha), Turkey
(1.7 million ha), Spain (1.4 million ha), Italy (1.3 million ha)
and France (1.2 million ha). The largest ICWUGW
values were computed for India (204 km3 yr−1), USA
(88 km3 yr−1), China (57 km3 yr−1), Pakistan (39 km3 yr−1)
and the Islamic Republic of Iran (30 km3 yr−1). In
29 countries ICWUGW was larger than 1 km3 yr−1

(Supplement S2). ICWUGW as percentage of internally
produced groundwater is largest for the sub-regions
Arabian Peninsula (401%), Northern Africa (106%), Islamic
Republic of Iran (61%), South Asia (49%), the Near East
(24%) and Mediterranean Europe (16%) indicating a large
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Fig. 3. Percentage of 5 arc min grid cell area equipped for irrigation
with groundwater (top) and with surface water (bottom; see the
electronic Supplement for a high resolution version of this figure).

pressure of irrigation water use on groundwater resources
and at least in case of the Arabian Peninsula and Northern
Africa, groundwater over-abstraction and the use of fossil
groundwater (Table 3).

At the sub-national scale, areas predominantly irrigated
with groundwater (red colours in Fig. 2) are found in a
stripe stretching through the whole central part of Northern
America, in a stripe of about 500 km width and 2500 km
length in Brazil, in the north-eastern part of Argentina, in the
northern and western part of India, the north-eastern part of
China and in large parts of Northern Africa, Western Europe,
the whole Arabian Peninsula, the eastern and central part of
the Islamic Republic of Iran and the provinces of Punjab and
Baluchistan in Pakistan. In contrast, the irrigation sector in
Eastern Europe, in the states of the former Soviet Union, in
Southeast Asia, the southern part of China, in Sub-Saharan
Africa, in the north-western part of the USA, Oceania and
in most regions of Southern America mainly uses surface
water (Fig. 2). Figure 3, which shows the percentage of
each 5 arc min grid cell area equipped for irrigation with
groundwater and surface water, takes into account the density
of irrigation areas. This map was generated by combining
the subnational groundwater inventory to the percentage of
grid cell area equipped for irrigation in version 4 of the
global map of irrigation areas. The highest density of
AEI GW was mapped for northern India and Pakistan in the
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Ganges and upper Indus watersheds, in Bangladesh, western
India, the North China Plain, the High Plains aquifer and
the alluvial aquifer along the Mississippi river in the USA
and in the major irrigation areas of the Islamic Republic of
Iran and Saudi Arabia (Fig. 3 top). In contrast, AEISW
was concentrated along the river Nile, in the lower Indus
basin, the Euphrates Tigris basin in Turkey, Syrian Arab
Republic and Iraq, in South China, Thailand, the island of
Java (Indonesia), the river Po plain in northern Italy and in
the arid regions along the South American west coast in Peru
and Chile (Fig. 3 bottom).

4 Discussion

4.1 Limitations of the data used to develop the
inventory

Data on the source of water used for irrigation and on the
related areas equipped for irrigation are very scarce for most
of the countries. As shown in Sect. 2.2, AEIGW was
available for 554 administrative units containing 39% of the
total AEI. In another 37% of the total AEI, statistics on
the source of water related to AAI was used, 17% of the
AEI was assigned based on water use statistics and 7.3%
based on other data or own estimates (Table 1, Fig. 1).
Furthermore, there are large differences in the resolution
of the sub-national statistics. Statistics for second level or
even third level administrative units were collected for many
countries in South Asia, America, Europe and Oceania while
for most of the countries in Africa and for the countries of the
former Soviet Union only statistics at the national scale were
available. Therefore, heterogeneity within these countries is
not represented, such that maps with grid cell resolution (like
Fig. 3) may be misleading.

Another aspect of uncertainty of the information presented
here is the reference year of the statistics used to distinguish
AEI GW, AEI SW and AEINC because the importance of
groundwater use for irrigation is changing in time. For the
two countries India and USA this is illustrated in Fig. 4.
While in year 1920 only about 10% of the irrigated area in
the USA was irrigated with groundwater, this share increased
to 35% in year 1950, 55% in year 1982 and 61% in year
2003. A similar trend was observed for India, with 29% of
the irrigated area irrigated with groundwater in 1951, 38% in
1971, 51% in 1991 and 62% in 2003 (Fig. 4). Consequently,
in the USA, area irrigated with groundwater in 2003 is
20 times larger than the area recorded for year 1920. In
India, area irrigated with groundwater is nowadays about
5 times larger than the groundwater irrigated area in year
1951. In contrast, total area irrigated with surface water
is not increasing anymore in the USA since 1940 and in
India since 1981 (Fig. 4). There is no doubt that during
the last two decades the percentage of AEI irrigated with
groundwater has been increasing in many other countries and
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Fig. 4. Historical development of area actually irrigated with
groundwater (AAIGW) as percentage of total actually irrigated
area, AAI GW as index (2003 = 100), area actually irrigated
with surface water (AAISW) as index (2003 = 100) for India
and the USA (sources: agricultural census data reported in
INDIAAGRISTAT (2010) and Narayanamoorthy (2006) for India
and US Department of Commerce (1922, 1932, 1942, 1952, 1984),
US Department of Agriculture (1996), Glickman et al. (1999) and
Veneman et al. (2004) for the USA).

very likely at the global scale as well (Shah, 2009; Shah et
al., 2007), although time series of the related statistics have
been available only for very few countries. We therefore
consider that AEIGW is probably underestimated for
several countries in the inventory presented here when recent
statistics have not been available. For example, AEIGW
was computed for Afghanistan based on statistics related to
year 1967 and for Angola based on statistics for year 1975.
In 52 administrative units the base year of the statistics has
been a year before 1994, and for the other units a year
between 1994 and 2007 (Supplement S2). Another reason
for expecting an underestimation of groundwater-based
irrigation is that areas under groundwater pumping are much
less reported in statistics than surface water irrigation areas.
This is particularly the case in areas where farmers practice
conjunctive use of surface water and groundwater.

4.2 Limitations of the methodology applied to develop
the inventory

Because of missing data it was required to convert data
between AEIGW and AAI GW and vice versa. For most
of the countries either AEIGW was reported in the statistics
or AAI GW, but rarely both variables. Furthermore statistics
on total AEI and total AAI often have a different resolution
(e.g. AEI available for third level administrative units but
AAI only at the national scale). The general procedure
to deal with those data gaps is described in Sect. 2.2.1
while a detailed description is available for each country
in Supplement S1. In most cases of missing data it was
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assumed that the ratio of AEIGW to total AEI and the ratio
of AAI GW to total AAI were the same. This assumption
is not valid in some cases, e.g. when groundwater is mainly
used in the private sector and surface water mainly in the
public sector and the fractions of AEI that are actually
being used differ significantly between the private and public
sector. Similar to this, it was assumed that the ratio
between ICWUGW and total ICWU was equal to the ratio
between AAIGW and total AAI, i.e. in each administrative
unit, average ICWU per unit AAI was equal for irrigation
with groundwater and irrigation with surface water. This
assumption represents a simplification of reality and may
not hold when groundwater and surface water use is specific
to different crops or different seasons, e.g. groundwater use
mainly for irrigation of vegetables and surface water use for
irrigation of cereals, or for different irrigation technologies,
e.g. groundwater may be more often used for pressurized
irrigation which also can be more efficient. Additionally,
farmers usually manage themselves pumps required to
extract groundwater, resulting in a more efficient use of the
water resource to reduce costs for energy. In contrast, surface
water supply in large irrigation schemes is often centrally
planned and occurs with a predefined schedule so that the
farmers irrigate when they have access to the water rather
than when they need to irrigate because of a soil water deficit.

Another limitation refers to the share of area irrigated with
groundwater and with surface water in case of conjunctive
use of both resources which is common in many large
irrigation schemes across the world, like in Pakistan for
example. If no other data was available we applied the
rule that in case of conjunctive use half of the area was
equipped for irrigation with groundwater and half of the
area for irrigation with surface water. In a strict sense
this assumption is wrong because in case of conjunctive
use the total area is irrigated by both, groundwater and
surface water. One positive implication of that rule is
that it avoids double counting and we ensure that way that
the sum of AEIGW, AEI SW and AEINC equals total
AEI. Furthermore, statistics specific to conjunctive use are
available for only a few countries. Splitting of conjunctive
use areas into AEIGW and AEISW makes it also possible
to compute the related water uses directly from the irrigated
areas. The major uncertainty in our approach refers to
the assumption of a 50% share assumed for AEIGW and
AEI SW. Even in the field it is difficult to identify the
accurate ratio of the water sources, e.g. because of the
conversions from surface water to groundwater and vice
versa.

Shallow aquifers are recharged by percolation losses from
irrigation canals or from the irrigated soil. Assuming a plot or
scheme irrigation efficiency of 25%, one hectare of AEISW
could provide enough seepage to irrigate three hectares of
AEI GW. Although in different categories, it is basically the
same water that is being applied in this case and there is
no easy solution for avoiding double counting of this water.

Even more complex is the situation when groundwater and
surface water is applied in different seasons because of the
combination of natural and artificial recharge in the shallow
aquifer. In contrast, water pumped out of deep aquifers may
in some regions form a fraction of the river base flow and
thus be converted to surface water when the efficiency of
groundwater irrigation is low. While it may be possible
to account for all these storages, flows and conversions in
models of the water cycle at the local scale, it is impossible
to model and assess the water cycle in that detail at the
global scale. This highlights the importance of the use of
consistent definitions and transparent assumptions in global
scale assessments of water resources and water use in order
to avoid the generation of additional uncertainties.

In order to estimate AEIGW and AEISW as a fraction of
the total 5 arc min grid cell area, we combined the percentage
of AEI GW and AEISW recorded in this inventory to
version 4 of the global map of irrigation areas (Fig. 3).
We need to point out that the statistics on AEI used for
the inventory presented here are more recent for several
countries and thus not fully consistent to the statistics used
to develop version 4 of the global irrigation map for many
countries. For example, in some administrative units there
is AEI in the new inventory but not in the current version of
the global irrigation map. Therefore Fig. 3 should be only
used to show general patterns but we will not redistribute the
underlying data as part of this inventory.

The limitations and uncertainties discussed in this and the
previous section indicate that the data set presented here
should be used with care and by considering our assumptions
that we presented in Sect. 2.2.1 and in Supplement S1.
We highly recommend limiting the use of the data set
for applications at the macro-scale (global or continental
assessments).

4.3 Indicators for mapping of groundwater use in
irrigation

Several studies have shown the systematic preference of
farmers for groundwater whenever it is available and
accessible (Shah, 2009), as it provides reliable and just
in time access to water. While in theory many surface
water irrigation systems should be able to provide water
at lower cost than groundwater, where pumping costs may
be substantial, the uncertainty and lack of predictability
associated with most surface irrigation systems force farmers
to seek solutions to these problems through a combination of
use of groundwater and surface water. Therefore, availability
of groundwater may be taken an indicator of probable
or potential use of groundwater in irrigation. Such an
indicator could be used to complement census-based data and
provide a means of downscaling groundwater use data. The
availability of groundwater resources is mainly determined
by aquifer conditions (transmissivity and storage volume)
and by the climatic conditions resulting in different levels of
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groundwater recharge (Fig. 5). Groundwater-based irrigation
is often located in regions where both aquifer and climatic
conditions are favourable, and where groundwater recharge
compensates groundwater extraction (lower left panel in
Fig. 5). Examples for such regions range from Bangladesh
to Denmark and include the lower River Ganges plain in
North India, the south-eastern part of the UK and the
states of Louisiana and Florida in the south-eastern part
of the USA. When climatic conditions are favourable but
aquifer conditions are unfavourable, irrigation is mainly
practised by using surface water. Examples include the
southern part of China, the upper Mekong basin, most
regions of Japan, Scandinavia (except of Denmark), the
northern part of Portugal, the provinces Galicia and Asturias
in north-western Spain or the north-eastern states of the USA
(lower right panel in Fig. 5). When both aquifer conditions
and climatic conditions are unfavourable, irrigation is only
possible through diversion from rivers, reservoirs or canals
supplied by water originating from regions with more
favourable climate conditions (upper right panel in Fig. 5).
Typical examples for those irrigation areas are Turkmenistan,
Mongolia, the province of Extremadura in Spain, the coastal
plains in western Chile and Peru and the largest part of
Kazakhstan. When aquifer conditions are favourable but
climatic conditions are unfavourable it is also necessary to
import water from regions with more favourable climate
conditions to ensure a sustainable use of water resources.
In this case, groundwater recharge by percolation losses
from canals, rivers or surface water-based irrigation can
be recycled through groundwater extraction resulting in a
conjunctive use of groundwater and surface water (upper left
panel in Fig. 5). Examples for this type of irrigation are the
Punjab province and the northern part of Sindh province in
Pakistan, the state of Nevada in the USA or the irrigation
areas along the river Nile in Egypt. Another option is the
exploitation of deep non-renewable groundwater, resulting in
a non-sustainable use of water resources like in Saudi Arabia,
western Egypt and the interior of the Libyan Arab Jamahiriya
(upper left panel in Fig. 5).

Although the examples presented here are in good
agreement to the typology shown in Fig. 5, there are also
examples that do not fit in this typology. One example are
irrigation schemes located in many regions of Southeast Asia
(e.g. Mekong delta or the East coast of Sumatra) or the River
Po plain in northern Italy which according to the census
data use surface water but according to the typology should
use groundwater (lower left panel in Fig. 5). The reason is
here that in these more humid regions both types of water
resources, groundwater and surface water, are available and
that most of these irrigation schemes were constructed a long
time ago, often in large centrally planned public projects
(Cleary, 2003; Smith, 1852). The pumping technology
which is in use today was not available at the time of the
construction of these schemes. Therefore groundwater was
available but the required volumes were not accessible. Thus,

Surface water irrigation (from canals, 
rivers or reservoirs)

Irrigation using mainly renewable 
groundwater from springs and wells

Surface water irrigation (from canals, 
rivers or reservoirs) using runoff 
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Fig. 5. General typology of groundwater and surface water
resources use in irrigation dependent on climate and aquifer
conditions.

the technological development adds a historical component
which needs to be considered when describing changes of
water sources for irrigation in time. Pumping costs and the
relatively stable surface water availability may also explain
the preferred use of surface water.

The preference for groundwater or surface water use is
also related to tenancy, with private schemes more often
irrigated with groundwater and public or state farms more
often irrigated with surface water. Another factor is crop
type, with vegetables often irrigated with groundwater and
staple cereal crops cultivated at the large scale more often
irrigated with surface water. These are dimensions that
cannot be captured in a simple two-dimensional typology as
that of Fig. 5.

It has been shown before that many of the areas equipped
for irrigation with groundwater are located in regions of
high population density (e.g. for South Asia in Shah, 2009).
But this is also true for areas irrigated with surface water
because irrigation is used in general to intensify agricultural
production by reducing drought stress which results in higher
crop yields (Siebert and D̈oll, 2010). Such intensification is
necessary in particular in highly populated regions because
of the low per cap availability of agricultural land. Therefore,
in many regions the density of population is a good predictor
for the density of irrigated land. However, we cannot
see any reason why in regions of high population density
groundwater use in irrigation should preferred to surface
water use. Groundwater will not be used if it is not available
or accessible independently of any population density and
the same is valid for surface water as well. For example,
irrigation is mainly based on surface water in the highly
populated river Nile delta while in many regions in the
deserts, where population density is low, mainly groundwater
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is being used for irrigation. Therefore we are convinced
that the availability and accessibility of the water resource is
determining to a large extent whether groundwater or surface
water is being used for irrigation while population density,
together with other predictors like aridity, are good indicators
for the total density of irrigated land.

To test the simplified typology of Fig. 5, we in-
tersected areas equipped for irrigation with groundwater
at the 5 arc min pixel scale (Fig. 3, top) with the
continental groundwater resources maps of the World-wide
Hydrogeological Mapping and Assessment Programme
(WHYMAP, available athttp://www.whymap.org). This
map distinguishes three aquifer classes (major groundwater
basins, complex hydrogeological structures and local
and shallow aquifers) and five groundwater recharge
classes (0–2 mm yr−1, 2–20 mm yr−1, 20–100 mm yr−1,
100–300 mm yr−1 and larger than 300 mm yr−1). Although
36% of the global ice-free land was classified as major
groundwater basin, 56% of total AEI and 65% of AEIGW
were located there. In contrast, 47% of the global ice-free
land was classified as areas with local and shallow aquifers
but only 19% of total AEI and 10% of AEIGW was located
in these regions (Table 4). Globally averaged, the ratio of
AEI GW over AEI is 0.44 for major groundwater basins,
0.38 for areas with complex hydrogeological structure and
0.20 for areas with local and shallow aquifers. This
shows the importance of favourable aquifer conditions for
the establishment of irrigation infrastructure. However,
the majority of surface water based irrigation is also
located on aquifers favourable for groundwater extraction.
Furthermore, more than 44% of the AEIGW is located in
regions with a groundwater recharge of 20–100 mm yr−1,
compared to 14% of the ice-free land area and 32% of total
AEI located in these areas. Thus, there appears to be a
preference to groundwater use under conditions of medium
groundwater recharge because surface water availability in
many of the areas is seasonally strongly variable. Only
1.2% of total AEIGW and 1.7% of total AEI were located
in major groundwater basins with a groundwater recharge
larger than 300 mm yr−1, indicating that in these areas
enough rainfall is available for crop production. Considering
the coarse resolution of the hydrogeological map and of the
groundwater inventory (for several countries), we conclude
that groundwater availability is a reasonably good predictor
for the preference for groundwater use in irrigation, and that
the general typology of groundwater and surface water use
for irrigation (Fig. 5) is suitable.

4.4 Comparison to other estimates and data

Total area equipped for irrigation in this inventory is
301 million ha and therefore larger than AEI reported in
version 3 of the global map of irrigation areas (Siebert et
al., 2005) with 274 million ha, or version 4 of the same
map (Siebert et al., 2006) with 279 million ha. This is due

to an increase of irrigation extent mainly in South Asia
and Southeast Asia, and to a revision in the statistics for
China. The percentage of AEI irrigated with groundwater
is 38% in this inventory and thus similar to the percentage
estimated before in Burke (2002). The percentage of
total consumptive water use for irrigation that is from
groundwater is 43% in this inventory which is larger than a
previous estimate of 20% of water withdrawals for irrigation
stemming from groundwater (Zekster and Everett, 2004).
This difference between the computed consumptive use and
the reported withdrawal use may be explained, at least to
some extent, by the large conveyance losses of withdrawn
irrigation water by evaporation and deep percolation in
irrigation canals transporting surface water to the fields
(Bos and Nugteren, 1990). This results in a lower overall
irrigation “efficiency” in canal irrigation as compared to
groundwater which is usually withdrawn close to the location
of water application (Foster and Perry, 2010). Further the
consumptive fraction is in general lower in paddy fields that
are flooded during a large part of the growing season since in
addition to percolation losses the water needed additionally
for land preparation can be returned to underlying aquifers
(Guerra et al., 1998). GCWM does not account for these
water requirements as consumptive water use but the water
requirements are part of the irrigation water withdrawals
reported in water use statistics, resulting in low consumptive
fraction. Most of the irrigated paddy rice is produced in
South and Southeast Asia, and is in large majority based
on surface water sources. It is therefore very likely that the
groundwater proportion in irrigation water use is much larger
for consumptive use than for withdrawal use.

A comparison of computed ICWUGW to annual
groundwater withdrawals for irrigation reported for Federal
States and Union Territories in India (Central Ground Water
Board, 2006) shows a very good agreement for most
of the states with anr2 of 0.90 (Fig. 6). The annual
groundwater withdrawals were computed by multiplying
the average discharge and annual working hours of each
structure. The annual groundwater withdrawals for irrigation
should be larger than ICWUGW because of infiltration
losses estimated at about 30% (Central Ground Water
Board, 2009). However, the reported annual groundwater
withdrawal for India is 213 km3 yr−1 and thus only 4%
larger than the ICWUGW computed in this inventory
(204 km3 yr−1). This indicates either an underestimation of
the annual groundwater withdrawals, an overestimation of
infiltration losses in fields irrigated with groundwater by the
Central Ground Water Board or an overestimation of the
ICWU GW computed in the inventory presented here.

ICWU GW computed for the federal states of the USA
(88 km3 yr−1) is larger than the groundwater application for
irrigation reported by Veneman et al. (2004) for year 2003
(54 km3 yr−1) and even larger than groundwater withdrawals
for irrigation reported by the United States Geological
Survey (Kenny et al., 2009) for year 2005 (75 km3 yr−1).
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Table 4. Percentage of total surface area (AS), area equipped for irrigation (AEI) and area equipped for irrigation with groundwater
(AEI GW) per WHYMAP aquifer class and groundwater recharge class.

WHYMAP aquifer Groundwater re- AS (%) AEI (%) AEIGW (%)
classification charge (mm yr−1)

Major groundwater basin < 2 6.3 4.4 3.2
Major groundwater basin 2–20 8.0 12.0 13.6
Major groundwater basin 20–100 8.0 20.5 28.9
Major groundwater basin 100–300 8.7 17.6 18.3
Major groundwater basin > 300 4.3 1.7 1.2
Major groundwater basin Total 35.5 56.2 65.0

Area with complex 2–20 5.8 5.3 4.4
hydrogeological structure

Area with complex 20–100 5.7 11.3 15.0
hydrogeological structure

Area with complex 100–300 4.9 7.0 5.0
hydrogeological structure

Area with complex > 300 1.3 0.9 0.2
hydrogeological structure

Area with complex Total 17.7 24.4 24.6
hydrogeological structure

Area with local and shallow < 100 31.0 10.7 7.9
aquifers

Area with local and shallow > 100 15.9 8.7 2.5
aquifers

Area with local and shallow Total 46.8 19.4 10.4
aquifers

Ice-free land Total 100.0 100.0 100.0

There seems to be a systematic overestimation so that
a correlation between computed ICWUGW and reported
groundwater application yields a relatively high correlation
coefficient of 0.75 (Fig. 6). The overestimation may be
related to the assumptions about the start and the length
of cropping periods in GCWM. It also has been shown
before that irrigation water requirements computed for the
USA are very sensitive to the choice of the method for
computing potential evapotranspiration (Penman-Monteith
or Priestley-Taylor), and that irrigation water requirements
computed in GCWM using the Priestley-Taylor method fit
much better to irrigation water requirements reported in
census publications. Furthermore it is assumed in GCWM
that actual evpotranspiration of irrigated crops is equal to the
potential evapotranspiration resulting in an overestimation
of ICWU in case of deficit irrigation (Siebert and Döll,
2010). It should be noted, however, that irrigation water
withdrawals and irrigation water application reported in the
census publications were mostly modelled or estimated, not
measured. In 2003, only 16% of the wells used for irrigation
in the USA were equipped with meters (Veneman et al.,
2004).

ICWU GW was also compared to statistics on ground-
water abstraction for irrigation provided by Eurostat for
18 countries being a member or candidate of the European
Union (Table 5). For most of the European countries,
areas actually irrigated with groundwater were derived
from statistics collected for the farm structure survey 2003
and provided by Eurostat as well (see Supplement S1).
Therefore, we also used, if available, water abstraction
statistics for the reference year 2003 (Table 5). The
comparison shows that computed ICWUGW is larger than
reported groundwater abstraction for irrigation for most of
the countries. The major reason may be a discrepancy
between the groundwater-based irrigated area that was
assumed by Eurostat to determine groundwater abstractions
and AAI GW of this inventory (Table 5, 5th column). Ac-
cording to the farm structure survey 2003 (results made avail-
able at http://epp.eurostat.ec.europa.eu/portal/page/portal/
agriculture/data/adhoc tablesfarm structuresurvey), area
irrigated with groundwater in Spain is 1.3 million ha (37%
of the total AAI), area irrigated with surface water is
0.5 million ha (15% of the total AAI), 1.7 million ha (48%
of the total AAI) are irrigated with water from off farm
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Table 5. Groundwater extraction for irrigation reported for European countries (Eurostat,http://nui.epp.eurostat.ec.europa.eu/nui/show.do?
dataset=envwatq21&lang=en, last access: 9 April 2010), area actually irrigated with groundwater (AAIGW) and consumptive groundwater
use for irrigation (ICWUGW) as computed in this manuscript.

Country EUROSTAT This inventory

Reference Groundwater abstraction AAIGW ICWU GW

year for irrigation

(% of total (Mm3 yr−1) (% of total (% of total (Mm3 yr−1)
water ab- AAI) ICWU)

straction for
irrigation)

Turkey 2003 18.4 6073 49.3 50.4 9390
Portugal 1998 64.0 4193 54.9 54.5 731
Spain 2003 15.8 3859 37.1 39.3 7714
Greece 2003 40.0 3413 48.1 50.5 3605
France 2003 26.9 1482 44.6 40.4 1566
Cyprus 2003 70.3 126 59.7 59.7 203
Germany 2002 76.8 109 78.8 76.2 153
Austria 1999 100.0 68 83.2 84.0 27
The Netherlands 1999 76.3 58 58.0 54.7 29
Sweden 2003 20.2 19 34.1 35.3 17
Hungary 2003 9.9 17 22.0 21.7 68
Bulgaria 2003 0.7 5 22.6 22.3 49
Macedonia 2003 1.2 5 6.3 6.3 22
Norway 2003 6.0 4 5.8 5.7 1
Romania 2003 0.2 2 8.6 8.2 75
Lithuania 2004 66.7 1 73.7 73.7 1
Slovenia 2003 4.7 < 0.5 10.7 10.7 < 0.5
Czech Republic 2003 0.5 < 0.5 6.9 6.3 1
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Fig. 6. Computed consumptive groundwater use for irrigation
versus reported annual groundwater withdrawals for irrigation in
federal states and union territories of India and irrigation water
application from groundwater in federal states of the conterminous
USA (data sources: Central Ground Water Board, 2006; Veneman
et al., 2004).

water supply networks and 8520 ha (0.2%) are irrigated
with water from mixed sources. Even when assuming
that all the irrigation water provided by off farm water
networks belongs to the surface water category, ICWUGW
computed by GCWM was 39% of the total ICWU and
thus significantly larger than the percentage of groundwater
abstraction for irrigation reported by Eurostat for Spain
(16%). For Bulgaria the water use statistics reported that
only 0.7% of the total water use for irrigation was from
groundwater while at the same time, according to the farm
structure survey, 13 980 ha (18% of total AAI) was irrigated
with groundwater and 6600 ha (8% of total AAI) with
mixed surface and groundwater. In Portugal groundwater
abstraction for irrigation as reported by Eurostat was almost
six times larger than ICWUGW computed in this inventory.
The reason is that the water use statistics refer to year
1998 when total AAI was about 606 000 ha while total AAI
in 2003 was only 248 040 ha. This shows that it is very
important to consider data from similar reference years in
such a comparison.
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5 Conclusions

A global inventory of groundwater and surface water use
in irrigation has been compiled using mainly census based
statistical data. Uncertainties remain on the areas equipped
for irrigation with groundwater and on the related water uses
either due to missing data or use of a variety of definitions
for irrigated land and its water sources and conjunctive use of
groundwater and surface water. Considerable data “infilling”
is still required at sub-national level as indicated in Table 1
and the limitations of both the data and the methodology need
to be well understood. These limitations notwithstanding,
the inventory allows a comparison of irrigated areas that are
supplied by groundwater and by surface water together with
estimates of crop water use that can be attributed to either
source. While the macro-scale patterns of groundwater use
for irrigation are represented to give a refined global picture,
the nature of national statistical data collection will always
limit the precision at sub-national levels where irrigated
areas can be matched with groundwater resources. Hence
the inventory can only be recommended as a baseline for
studies at the global or continental scale since it has the
advantage of both global coverage and the application of
standard definitions. These properties of the inventory allow
regional comparisons to be made.

At national and sub-national level, the experience with the
compilation of groundwater use information (such as India)
leads to the conclusion that there is no substitute for national
census data. What can be advocated is the application of a
commonly accepted terminology and of similar definitions in
relation to water use. The AQUASTAT methodology offers
one standard that allows water use data in agriculture to be
compiled for the point of use and that could be used as a
starting point for such a standardisation.

In terms of global resource assessments, the point of
interest is the relation of the groundwater withdrawals
to the aquifers that furnish the resource. Here, the
relationship between the distribution of irrigated land in
the global map of irrigation areas and available aquifer
properties has been tested and shown to require a comparable
5 arc min resolution of continental geology/hydrogeology.
This requires digital continental geological/hydrogeological
mapping on at a more refined scale in which properties of
aquifers can be compared with the distributions of AEI. At
present such digital products are not available in the public
domain.

Groundwater use for irrigation is significant and increas-
ing (comp. Fig. 4). In general it provides farmers with a
reliable source of water that can be used in a flexible manner.
However, in many regions, declines of the groundwater table
have been reported with reductions of river base flow and
associated impacts on aquatic ecosystems. This inventory
offers a digital product that can be used to assess the impacts
of groundwater use in relation to spatial variations in water

availability to identify regions where groundwater-related
problems can be expected to emerge.

Supplementary material related to this
article is available online at:
http://www.hydrol-earth-syst-sci.net/14/1863/2010/
hess-14-1863-2010-supplement.zip.
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