MASTER LAND USE PLAN
ETHIOPIA

ANNEX 2
REGIONAL PROFILES OF LAND RESOURCES

Report prepared for
the Government of the People’s
Democratic Republic of Ethiopia

based on the work
of
B.L. Henricksen

in collaboration with
E. de Fauw

UNITED NATIONS DEVELOPMENT PROGRAMME
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

Rome 1988
This technical report is one of series of reports prepared during the course of the projects identified on the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project.

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the United Nations and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
AKNOWLEDGEMENTS

The Food and Agriculture Organization is greatly indebted to all those who assisted in the implementation of the project by providing information, advice and facilities. In particular, the Master Land Use Plan preparation mission wishes to acknowledge the special assistance provided by the following agencies of the Government of Ethiopia: the Fourth Livestock Development Project, the Forestry Department, the Soil Conservation and Community Forestry Department, the Land Use Planning and Regulatory Department and the Agricultural Development Department, the Project Planning Group and the Special Land Resource Studies group of the Ministry of Agriculture, the Agricultural Marketing Corporation, the Ministry of Coffee and Tea, the Water Resources Development Authority, the Relief and Rehabilitation Commission, the National Meteorological Services Agency, the Agricultural Inputs and Supplies Corporation, the Institute of Agricultural Research, the Ethiopian Mapping Agency, the Nationalities Commission and the Central Statistics Office. Special thanks are also directed to the offices of the following International Agencies in Ethiopia: the International Livestock Centre for Africa, the World Bank, the World Food Program, the United Nations Development Program, the office of the FAO Representative and the national and international staff of the FAO/UNDP Assistance to Land Use Planning project.
<table>
<thead>
<tr>
<th>TABLE OF CONVERSION FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.07 ETHIOPIAN BIRR = 1.00 US DOLLAR</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. INTRODUCTION...5
 1.1 Background..5
 1.2 Structure of this report...5
2. TRADITIONAL ALTITUDE ZONES...6
 2.1 General..6
 2.2 How to use the bar charts..6
 2.3 DEPENDABLE GROWING PERIOD......................................7
 2.4 General..7
3. LAND MANAGEMENT CLASSES...9
 3.1 General..9
 3.2 Interpretation of the charts..9
4. ESTIMATED SOIL LOSS RATE..11
 4.1 General..11
1. INTRODUCTION

1.1 Background

The terms of reference of the Master Land Use Plan request that the large quantity of land resource data produced during the various phases of the FAO/UNDP Assistance to Land Use Planning Project, be represented in manner suitable for the use of senior planners and higher level officials in Government. Previously, the land resources data base required considerable technical experience on the part of those who wished to use it. While this was quite valid in the original context of a technical project, a growing need has arisen since the data was first generated for a limited technical appreciation of the nature and distribution of land resources in Ethiopia among a much more diverse and less technical audience of planners and officials. The information in this annex is therefore presented in a graphic form, on a Region and Awraja basis, to help achieve these objectives.

1.2 Structure of this report

The report is divided into several sections, each of which contains a summary by Region and Awraja of a particular land resource theme. The details concerning land resources are presented in the form of bar graphs to make a general appraisal of the character of each Awraja possible with a minimum of effort. The first section of the annex provides details on the percentage of the traditional altitude zones which go to make up the Regions and Awrajas. The second section gives details of the dependable growing period, a concept explained in more detail later in the report. This is followed by information on the distribution of land management classes in each Awraja. Finally, the estimated soil loss rates in each Awraja are shown in four classes, from none to slight to very high.
2. TRADITIONAL ALTITUDE ZONES

2.1 General

Information on traditional altitude zones is an important means of gaining a first impression of the environmental character of any locality in Ethiopia, because altitude is strongly related to temperature and, to a lesser extent, moisture availability.

Five main zones are summarized for each Region and Awraja in the following charts. For clarity of understanding, no attempt was made to subdivide the traditional zones in more detail. The zones, the corresponding altitude ranges, and the codes used to describe them in the bar charts are as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Altitude Range (meters)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Wurch</td>
<td>> 3500</td>
<td>UW</td>
</tr>
<tr>
<td>Wurch</td>
<td>2900 - 3500</td>
<td>W</td>
</tr>
<tr>
<td>Dega</td>
<td>2300 - 2900</td>
<td>D</td>
</tr>
<tr>
<td>Weina Dega</td>
<td>1800 - 2300</td>
<td>WD</td>
</tr>
<tr>
<td>Kolla</td>
<td>< 1800</td>
<td>K</td>
</tr>
</tbody>
</table>

2.2 How to use the bar charts

Between 1 and 5 bars may represent the traditional altitude zones in each Awraja, depending on the number of zones which occur in the Awraja. The bars are hatched according to the legend at the bottom of the chart and correspond to the letters in the table above, ie UW, W, D, WD, and K. The hatching styles are consistent in all charts. The percentage of the traditional altitude zones in each Awraja is represented by the relative length of the different bars and can be determined from the values indicated on the y-axis of the charts.
2. DEPENDABLE GROWING PERIOD

2.1 General

The following information describes the dependable moisture conditions for rainfed crop production in each Region and Awraja in the Ethiopia. Growing period is a technical term used to describe the period in a year when soil moisture conditions are satisfactory for rainfed crop production without moisture stress. The manner in which a growing period is estimated is described in Technical Report 5, Agroecological Zones Study.

Dependable growing period (DGP) is a term used to describe the statistical reliability of a growing period. Growing periods (GPs) can be estimated for individual seasons, years, averaged over many years or, as is done for the following presentation, calculated to represent a probability of occurrence 8 years in 10. A GP is usually estimated in days from beginning to end. The length of this period is crucial to the satisfactory development and maturation of crops. Some crops require a long GP of more than 200 hundred uninterrupted growing days, others as little as 60 days. If the expected length of the GP is known with some certainty, agricultural planning can be substantially improved. In highly variable rainfall environments, such as occur in many parts of the north and east of Ethiopia, knowledge of the average situation is not very useful for year to year planning of agriculture. If it is clear that 8 years in every 10 the GP will begin in early July and last until the end of September, then only crops which will prosper under such a short GP can be planted with a high probability of successfully reaching maturity. On the other hand, the average GP may appear to start in June and continue until October. Relying on averages could therefore lead to crop failures of longer season varieties chosen on this basis.

It is with this background that the information on DGP were compiled for the MLUP. The main growing season in each Awraja (the Meher season) is plotted on bar charts which indicate the length of the DGP in days and the percentage of the Awraja which has such a GP. Since many Awrajas occur in areas with more than one rainy season, it is possible for more than one GP to occur in a year. Just because it rains, however, is not sufficient cause to assume a GP will occur. The balance between rainfall, evaporation, runoff and the storage capacity of the soils concerned must reach certain thresholds before a GP can begin. In areas with a substantial two season or bimodal rainfall pattern, the DGPs resulting from rains early in the year (Belg season) are also plotted on the bar charts, but using a different symbol. There are 5 classes of DGP as follows:

- < 60 days - here cropping is usually not practised as the GP is too unreliable,
60-90 days - cropping practised but success limited to 5 years in every 10 on average. Fast maturing, drought resistant crops required.

91-120 days - cropping practised and successful 8 years in 10. Short season crops and varieties required.

121-150 days - cropping reasonably secure in all but the worst drought years.

150-210 days - cropping secure.

> 210 days - cropping secure for annuals, perennial crops begin to appear as suitable above this threshold.

3. LAND MANAGEMENT CLASSES

3.1 General

Land resource data generated during the FAO/UNDP Assistance to Land Use Planning Project has been condensed in the following pages to provide a general assessment of the extent of 5 important land management classes in each Region and Awraj of Ethiopia. Data are again presented in the form of bar charts to make comprehension easier.

3.2 Interpretation of the charts

The 5 classes are defined as follows:

Arable land
- DGP > 90 days
- soil depth > 25 cm
- surface stoniness < 50-90% stone cover
- Vertisols not included
- slopes > 30% not included

Vertisols
- all areas predominantly covered by heavy black clays, which are > 50 cm in depth, which shrink and swell between wet season and dry season, which are seasonally inundated and which have high draught requirements for cultivation.

Steep land
- all land over 30% slope

Marginal land
- DGP < 90 days, Median Growing period (MGP) > 60 days
- all other factors except DGP the same as for arable land

Non-arable land
- < 60 days MGP
- soil depth < 25 cm
- surface stoniness > 50-90%
interpretation of the charts is straightforward, given the nature of the land in each class as described above. The percent of each Awraja occupied by the different classes is indicated by the height of the bar chart and can be estimated on the y-axis if required. As indicated previously, the objective of these charts is to provide higher level planners with a general overview of the land resources in each Administrative Region and Awraja.

The definition of arable land used in preparing these charts is somewhat generous, since soils down to 25 cm depth are not usually considered arable. In Ethiopia, however, they are used for cultivation of many local crops and varieties and yields remain sufficient to provide subsistence for families where land is scarce. A DGP of > 90 days was chosen as a cutoff point in the definition of arable land because, below this threshold, production of crops for subsistence cannot be considered secure with currently available crops and varieties in Ethiopia. Vertisols were separated from arable land because they have special management problems - drainage protection and high draught requirements being the two most serious. Steep land was also separated from arable land although this is also used extensively in areas where population pressure is high. Cultivation of slopes over 30% requires very special management to ensure that they are not eroded rapidly. Marginal land was separated to highlight the zone of Ethiopia in which production is currently insecure. At present, the marginal zone offers possibilities for successful crop production in approximately 5 years in 10. Appropriate short season crops and varieties offer substantial potential for more secure food production in these areas. The last category shown in the charts is non-arable land. In general, a short and highly variable growing season is the most limiting factor in these areas. Potential exists for livestock development and incense production in most localities classified as non-arable.
4. ESTIMATED SOIL LOSS RATE

4.1 General

The bar charts in this section are derived from the Soil Loss Rate map (FAO 1983), produced in the LUPRD as a component of the FAO/UNDP Assistance to Land Use Planning Project. The soil loss rate categories indicated on the original map have been clustered for a more convenient presentation in this document. The proportion of each Awraj falling into each of four soil loss rate categories is indicated by the percentage figures along the y-axis of the charts.

The original data on estimated soil loss rate were derived from consideration of rainfall erosivity, slope, soil characteristics, vegetation cover and land use. Data are for water erosion losses only. Because of the many approximations involved in the original study, the relative values presented should be considered as indicative of relative rather than absolute losses within and between Awrajas.

The four classes are defined as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Symbol</th>
<th>mm/annum</th>
<th>tonnes/ha/annum</th>
</tr>
</thead>
<tbody>
<tr>
<td>none to slight</td>
<td>N-SL</td>
<td>0 - 1</td>
<td>0 - 15</td>
</tr>
<tr>
<td>moderate</td>
<td>MOD</td>
<td>1 - 4</td>
<td>16 - 50</td>
</tr>
<tr>
<td>high</td>
<td>HIGH</td>
<td>4 - 16.5</td>
<td>51 - 200</td>
</tr>
<tr>
<td>very high</td>
<td>V.HIGH</td>
<td>16.5 - 25</td>
<td>200 - 300+</td>
</tr>
</tbody>
</table>

For further information on the methods used in the derivation of the soil loss rates shown in the charts, reference should be made to Field Document 5, FAO/UNDP Assistance to Land Use Planning, ETH/82/010, 1984.
TRADITIONAL ALTITUDE ZONATION
TRADITIONAL ALTITUDE ZONATION

Shewa 2

TRADITIONAL ALTITUDE ZONATION

Shewa 3
DEPENDABLE GROWING PERIOD
DEPENDABLE GROWING PERIOD – DAYS
GOJAM – BAHIR DAR

DEPENDABLE GROWING PERIOD – DAYS
GOJAM – MOTA
DEPENDABLE GROWING PERIOD - DAYS

GOJAM - KOLA DEGA DAMOT

DEPENDABLE GROWING PERIOD - DAYS

GOJAM - AGW MIDIR

BELG SEASON

MEHER SEASON
DEPENDABLE GROWING PERIOD - DAYS
GOJAM - METEKE

DEPENDABLE GROWING PERIOD - DAYS
GONDER - WEGERA
DEPENDABLE GROWING PERIOD - DAYS
TIGRAY - TEMBIEH

PERCENT OF AGRICULTURAL AREA

<60 | 60-90 | 91-120 | 121-150 | 151-210 | >210

[Chart showing distribution of dependable growing period in days for Tigray - Tembien with categories belg season and meher season marked]

DEPENDABLE GROWING PERIOD - DAYS
TIGRAY - AXUM

[Chart showing distribution of dependable growing period in days for Tigray - Axum with categories belg season and meher season marked]
DEPENDABLE GROWING PERIOD - DAYS
TIGRAY - SHIRE

DEPENDABLE GROWING PERIOD - DAYS
WELEGA - HORGODURU
LAND MANAGEMENT CLASSES
LAND MANAGEMENT CLASSES

SHEWA - KEMBATA & HADIYA

PERCENT OF AREA

ARABLE VERTISOL STEEP MARGINAL NON-ARABLE

LAND MANAGEMENT CLASSES

SHEWA - CHEBO & GURAGIE

PERCENT OF AREA

ARABLE VERTISOL STEEP MARGINAL NON-ARABLE
LAND MANAGEMENT CLASSES

SIDAMO - SIDAMA

LAND MANAGEMENT CLASSES

SIDAMO - BORENA
LAND MANAGEMENT CLASSES

SIGAHO - GOA

LAND MANAGEMENT CLASSES

TIGRAY - AOMA
LAND MANAGEMENT CLASSES

Tigray – Agame

LAND MANAGEMENT CLASSES

Tigray – Hulet Ayllalo
LAND MANAGEMENT CLASSES

YELD - AHSA

LAND MANAGEMENT CLASSES

YELD - KALU
ESTIMATED SOIL LOSS RATE
ESTIMATED SOIL LOSS RATE

ERITREA 1

PERCENT OF AFRUJA

SAHIL KEY BAHIR AKALEGZAY SERAYE

N-SL MOD HIGH V.HIGH

ESTIMATED SOIL LOSS RATE

ERITREA 2

PERCENT OF AFRUJA

HAMASSIEN KEREN AKORDAI GASH & SETIT

N-SL MOD HIGH V.HIGH
ESTIMATED SOIL LOSS RATE

Shewa 2

ESTIMATED SOIL LOSS RATE

Shewa 3

N-SL
MOD
HIGH
V.HIGH
ESTIMATED SOIL LOSS RATE

SIDAMO 1

PERCENT OF AFRAJA

N-SL MOD HIGH V.HIGH

WELAYITA SIDAMA JEM JEM

ESTIMATED SOIL LOSS RATE

SIDAMO 2

PERCENT OF AFRAJA

N-SL MOD HIGH V.HIGH

BORENA ARERO GECIO
ESTIMATED SOIL LOSS RATE

WEL O 1

PERCENT OF AYIANA

RAYA & KOBQ
YEVU
AMBAS£L
AWSA

N-SL MOD HIGH V.HIGH

ESTIMATED SOIL LOSS RATE

WEL O 2

PERCENT OF AYIANA

KALU
DESE ZURIA
WEREILU
BORENA

N-SL MOD HIGH V.HIGH