Plant Pest Surveillance

A guide to understand the principal requirements of surveillance programmes for national plant protection organizations
Plant Pest Surveillance

A guide to understand the principal requirements of surveillance programmes for national plant protection organizations

Publication notes:
Version 1.1 published March 2016

Did you read this?
We would appreciate your feedback through a fast and easy two-question survey here: https://www.surveymonkey.com/r/pestsurveillance. This will help the IPPC Secretariat and Capacity Development Committee strengthen this and other training resources.

This guide provides information to support the surveillance activities that national plant protection organizations (NPPOs) need to undertake as part of national phytosanitary systems and as obligations under the International Plant Protection Convention (IPPC). This guide was created as a component of the IPPC National Phytosanitary Capacity Building Strategy, which was adopted by the fifth session of the Commission on Phytosanitary Measures (CPM) (2010) of the IPPC. This work has been developed by Jeffrey Jones, Amanda Hodges, Jennifer Carr and Carla Burkle, among other selected experts, and reviewed by the IPPC Capacity Development Committee (including phytosanitary experts from the seven FAO regions), the technical consultation among regional plant protection organizations (RPPOs) and the IPPC Secretariat. The elaboration of this guide was possible thanks to the financial contribution of the Standards and Trade Development Facility (STDF Project 350).
Contents

Definitions Used ... 5
Acronyms and Abbreviations ... 7

Section 1: Introduction .. 8
1. Organizational Arrangements .. 9
 1.1 NPPO as a quarantine section within a plant protection department ... 9
 1.2 Semi-autonomous and autonomous NPPOs ... 9
 1.3 Integrated institutions ... 9
2. Surveillance Approaches and Application 10
 2.1 General surveillance ... 10
 2.2 General surveillance approach and application .. 10
 2.3 Specific surveillance ... 11

Section 2: Organizational Arrangements 12
3. National Legislation .. 13
4. Funding and Sustainability ... 14
 4.1 Potential sources of funding ... 14
5. Management .. 16
 5.1 Strategy .. 16
 5.2 Authority .. 16
 5.3 Responsibilities .. 16
 5.4 Planning .. 17
 5.5 Resources and budget allocation ... 17
 5.6 Engagement mechanisms ... 17
 5.7 Performance review ... 17
 5.8 Monitoring and evaluation ... 18
6. Human Resources ... 19
 6.1 Training .. 19
 6.2 Staff retention .. 19
 6.3 Safety at work .. 19
7. Information Management ... 20
 7.1 Data flow: structure and presentation ... 20
8. Communication ... 21
 8.1 Communication strategy ... 21
 8.2 Stakeholder engagement ... 21
 8.3 Reporting .. 22
 8.4 Awareness-raising and advocacy ... 22

Section 3: Planning and Prioritization 23
9. Planning a Surveillance Programme 24
 9.1 Cost–benefit analysis ... 24
 9.2 Key issues .. 24
 9.3 Surveillance implementation ... 25
CONTENTS

10. Prioritization .. 26
 10.1 Early detection ... 26
 10.2 Stakeholder interests ... 26
 10.3 Responses to outbreaks or incursions .. 26

11. Designing a Specific Plant Pest Surveillance Programme .. 28
 11.1 Survey design .. 28
 11.2 Pest-specific surveillance ... 28
 11.3 Commodity-specific surveillance .. 28
 11.4 Examples of survey design ... 28

12. Response, Delimiting and Trace-back Surveillance .. 32
 12.1 Early warning detection surveys .. 32
 12.2 Investigation plan .. 32
 12.3 Delimiting surveillance ... 33

Section 4: Operations ... 34

13. Resource Requirements ... 35
 13.1 Human resources ... 35
 13.2 Financial resources ... 35
 13.3 Physical resources .. 35

14. Methodologies .. 36
 14.1 General surveillance ... 36
 14.2 Specific surveys ... 36
 14.3 Methods .. 37
 14.4 Inspection .. 40
 14.5 Sample coding ... 40
 14.6 Sample collection .. 40
 14.7 Submission to diagnostic laboratory .. 41

15. Data Collection and Submission .. 43

16. Field Communication and Feedback ... 44
 16.1 Pre-survey briefing ... 44
 16.2 Survey (in-field) communications ... 44
 16.3 Methods of communication .. 44

17. Interaction with Stakeholders ... 45

18. Supervision of Activities ... 46

Section 5: Bibliography and Additional Resources ... 47

Bibliography ... 48

ISPMs Directly Related to Surveillance .. 51

Internet Resources ... 52

Appendix A: Surveillance Equipment ... 54
Definitions Used

Area of low pest prevalence
An area, whether all of a country, part of a country, or all or parts of several countries, as identified by the competent authorities, in which a specific pest is present at low levels and which is subject to effective surveillance or control measures [IPPC, 1997; revised CPM, 2015]

Detection survey
Survey conducted in an area to determine if pests are present [FAO, 1990; revised FAO, 1995]

General surveillance
A process whereby information on particular pests which are of concern for an area is gathered from many sources, wherever it is available, and provided for use by the NPPO [ISPM 6, 1997]

Monitoring survey
Ongoing survey to verify the characteristics of a pest population [FAO, 1995]

National plant protection organization
Official service established by a government to discharge the functions specified by the IPPC [FAO, 1990; formerly "plant protection organization (national)"]

Pest
Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products [FAO, 1990; revised FAO, 1995; IPPC, 1997; revised CPM, 2012]

Pest free area
An area in which a specific pest is absent as demonstrated by scientific evidence and in which, where appropriate, this condition is being officially maintained [FAO, 1995; revised CPM, 2015]

Pest free place of production
Place of production in which a specific pest is absent as demonstrated by scientific evidence and in which, where appropriate, this condition is being officially maintained for a defined period [ISPM 10, 1999; revised CPM, 2015]

Pest free production site
A production site in which a specific pest is absent, as demonstrated by scientific evidence, and in which, where appropriate, this condition is being officially maintained for a defined period [ISPM 10, 1999; revised CPM, 2015]

Pest risk analysis (agreed interpretation)
The process of evaluating biological or other scientific and economic evidence to determine whether an organism is a pest, whether it should be regulated, and the strength of any phytosanitary measures to be taken against it [FAO, 1995; revised IPPC, 1997; ISPM 2, 2007]

Phytosanitary legislation
Basic laws granting legal authority to a national plant protection organization from which phytosanitary regulations may be drafted [FAO, 1990; revised FAO, 1995]

Point of entry
Airport, seaport, land border point or any other location officially designated for the importation of consignments, or the entrance of persons [FAO, 1995; revised CPM, 2015]

Quarantine pest
A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled [FAO, 1990; revised FAO, 1995; IPPC, 1997]
Regulated pest
A quarantine pest or a regulated non-quarantine pest [IPPC, 1997]

Specific surveys
Procedures by which NPPOs obtain information on pests of concern on specific sites in an area over a defined period of time [ISPM 6, 1997]

Surveillance
An official process which collects and records data on pest presence or absence by survey, monitoring or other procedures [CEPM, 1996; revised CPM, 2015]

Note: IPPC definitions are sourced from the IPPC *Glossary of phytosanitary terms* (ISPM 5). The glossary is updated annually based on decisions taken by the IPPC Commission on Phytosanitary Measures. The complete and updated glossary is maintained at: http://www.ippc.int/publications/glossary-phytosanitary-terms. The definitions are accurate as of November 2015.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPP</td>
<td>Area of low pest prevalence</td>
</tr>
<tr>
<td>CDC</td>
<td>Capacity Development Committee (of the IPPC)</td>
</tr>
<tr>
<td>CEPM</td>
<td>Committee of Experts on Phytosanitary Measures</td>
</tr>
<tr>
<td>CPM</td>
<td>Commission on Phytosanitary Measures</td>
</tr>
<tr>
<td>EPPO</td>
<td>European and Mediterranean Plant Protection Organization</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic information system</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>HLB</td>
<td>Huanglongbing disease</td>
</tr>
<tr>
<td>IPPC</td>
<td>International Plant Protection Convention</td>
</tr>
<tr>
<td>ISPM</td>
<td>International Standards for Phytosanitary Measures</td>
</tr>
<tr>
<td>LoA</td>
<td>Letter of agreement</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>MoA</td>
<td>Memorandum of agreement</td>
</tr>
<tr>
<td>MoU</td>
<td>Memorandum of understanding</td>
</tr>
<tr>
<td>NPPO</td>
<td>National plant protection organization</td>
</tr>
<tr>
<td>PCN</td>
<td>Potato cyst nematodes</td>
</tr>
<tr>
<td>PFA</td>
<td>Pest free area</td>
</tr>
<tr>
<td>PFPP</td>
<td>Pest free place of production</td>
</tr>
<tr>
<td>PFPS</td>
<td>Pest free production site</td>
</tr>
<tr>
<td>PRA</td>
<td>Pest risk analysis</td>
</tr>
<tr>
<td>RPPO</td>
<td>Regional plant protection organization</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedure</td>
</tr>
<tr>
<td>SPS</td>
<td>Agreement on the Application of Sanitary and Phytosanitary Measures of the WTO</td>
</tr>
<tr>
<td>STDF</td>
<td>Standards and Trade Development Facility</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
Section 1: Introduction

International Standards for Phytosanitary Measures (ISPM) no. 6 (Guidelines for surveillance) refers to “the components of survey and monitoring systems for the purpose of pest detection and the supply of information for use in pest risk analyses, the establishment of pest free areas and, where appropriate, the preparation of pest lists”. These components constitute a plant pest surveillance system. Surveillance is an obligation of a national plant protection organization (NPPO) and underpins other obligations and phytosanitary decision-making. It is a critical part of the national phytosanitary system. Plant pest surveillance thus plays a key role in the overall mandate of the NPPO and is required by Article IV.2(b) of the International Plant Protection Convention (IPPC).

A national plant pest surveillance programme should be conducted in such a way that its results are accurate, credible and contribute to national goals and priorities. Management support is critical to a strong, sustainable programme. This guide addresses aspects of policy and management, which together should outline the rationale for the establishment of a national plant pest surveillance programme. In order to be successful, a programme needs to be underpinned by legislation, effective coordination, management, communication and training. In some cases, capacity development may be needed to ensure these requirements can be met.

Surveillance activities can be expensive. However, as activities that support national phytosanitary policy, the benefits will invariably outweigh the costs.
Organizational arrangements for a functional NPPO differ between contracting parties and discharging these functions may therefore require different systems of management. Plant pest surveillance is one of those functions that may be organized on the basis of the structure and capacity of the NPPO. Here are three examples of different organizational arrangements that would affect how surveillance is managed.

1.1 NPPO as a quarantine section within a plant protection department

In developing countries, in particular, there may be a shortage of trained personnel and resources within the NPPO. In this case, national legislation or administrative instruments may require that other sections of the ministry, e.g. research or plant protection, be responsible for surveillance. Some national industry boards and research institutions may also be engaged in surveillance activities. The management challenge for the NPPO becomes one of coordination among the various units involved to ensure accountability, timely implementation, reporting, information sharing and ensuring that protocols are consistent with the IPPC, ISPMs and guidelines.

The NPPO may have limited flexibility to respond to emergencies, to negotiate with partners such as universities or research institutions in the country, and to seek external funding from trading partners. In this case, the NPPO should clearly identify the importance of such partnerships and solicit the government's full support to put measures in place to engage these institutions and allocate funding for phytosanitary emergencies.

It is essential to prioritize activities to match the level of predictability and availability of funding provided by the government for plant pest surveillance activities. The NPPO and any surveillance committee needs to carefully consider cost–benefit implications for all aspects of the programme in order to optimize the allocation of resources.

1.2 Semi-autonomous and autonomous NPPOs

Semi-autonomous and autonomous NPPOs are usually well-defined institutions with competencies and capabilities for fulfilling the functions of the NPPO and are able to manage their surveillance programmes both onshore and offshore. They are characterized by:

- independence and flexibility to establish necessary systems and policies to effectively implement their functions
- power to choose to contract surveillance to a third party while maintaining responsibility
- budgetary independence and flexibility in allocation of resources
- ability to attract their own funding from stakeholders.

These types of NPPO can therefore establish a national programme based on their government’s priorities, with access to the necessary resources to fund these priorities.

1.3 Integrated institutions

Integrated institutions cover a regulatory sanitary and phytosanitary framework (animal health, plant health and food safety); they are sometimes referred to as biosecurity agencies. They are normally characterized by:

- providing technical and managerial support for each programme
- acting as an umbrella agency responsible for procuring funding and other resources
- enjoying strong recognition by and collaboration with external agencies
- having a framework for management of emergencies and crises and management of pest incursions or outbreaks.
2. Surveillance Approaches and Application

ISPM 6 (*Guidelines for surveillance*) recognizes two kinds of surveillance: general surveillance and specific surveys.

2.1 General surveillance

General surveillance is defined in ISPM 6 as “a process whereby information on particular pests which are of concern for an area is gathered from many sources, wherever it is available and provided for use by the NPPO.”

General surveillance should:

- support NPPO declarations of pest status
- provide information on the early detection of exotic pests
- report to other organizations, such as other NPPOs, regional plant protection organizations (RPPOs) and the Food and Agriculture Organization of the United Nations (FAO)
- compile host and commodity pest lists and distribution records.

Outcomes of general surveillance may include:

- the imposition or lifting of quarantines based on the knowledge gained
- the design of a specific survey if more information about a pest is needed within a geographic region.

2.2 General surveillance approach and application

According to ISPM 6, a general surveillance approach should include the following.

2.2.1 Sources of information

These may include: NPPOs, other national and local government agencies, research institutions, universities, scientific societies (including amateur specialists), producers, consultants, museums, the general public, scientific and trade journals, unpublished data and contemporary observations. In addition, the NPPO may obtain information from international sources, such as FAO, the IPPC, RPPOs, etc.

2.2.2 Collection, storage and retrieval of information

To use data from these sources, it is recommended that NPPOs develop a system for collecting, verifying and compiling pest information.

Components of such a system should include:

- the NPPO or another institution designated by the NPPO acting as the national repository for plant pest records
- a record-keeping and retrieval system
- data verification procedures
- communication channels to transfer information from the sources to the NPPO.

Components of such a system may also include incentives to report, such as:

- legislative obligations (for the general public or specific agencies)
- cooperative agreements (between the NPPO and specific agencies)
- use of contact personnel to enhance communication channels to and from NPPOs
- public education and awareness programmes.

2.2.3 Use of information

Information gathered through such general surveillance will most often be used to:

- support NPPO declarations of pest freedom
- aid in the early detection of new pests
- report to other organizations such as RPPOs and the IPPC Secretariat
- compile host and commodity pest lists and distribution records.

An NPPO should establish a general surveillance activity as part of its regular work programme. This would involve:

- designating staff to compile, screen and analyse comprehensive pest information from diverse sources, as appropriate
- keeping pest status information updated
- establishing and maintaining a system to store, analyse and retrieve data
2.3 Specific surveillance

ISPM 6 defines specific surveys as “procedures by which NPPOs obtain information on pests of concern on specific sites in an area over a defined period of time”.

Specific surveys may be focused on a pest or on a host or commodity. Types of specific survey include:

- detection
- delimiting
- monitoring.

Specific survey outcomes should:

- support NPPO declarations of pest freedom
- aid in the early detection of exotic pests
- assist in reporting to organizations, such as other NPPOs, RPPOs and FAO.

Figure 1: Decision support process for planning pest surveillance

```
Is the pest present?

Yes

Is the pest population distribution known?

Yes

Monitoring survey

No

Detection survey

No/Don’t know

Is the pest present?
```

- ensuring that third parties involved in surveillance are aware of the need to cooperate with the NPPO, particularly for pest reporting – designated staff would ensure that agreements made with such third parties are updated, amended, monitored, issued, reviewed and revoked, as necessary
- establishing a reporting system internal to the NPPO as well as a reporting system for external inputs from third parties
- establishing a system to analyse and validate information compiled through this activity before official reports are made to other contracting parties – this could be done through sector-specific groups, scientific panels, etc.
Section 2: Organizational Arrangements

The building blocks for a national plant pest surveillance system

Organizational arrangements for a functional NPPO differ between contracting parties, and discharging these functions may therefore require different systems of management. Surveillance is one of those functions that may be organized on the basis of the structure and capacity of the NPPO. Examples of organizational arrangements are given in the IPPC manual Establishing a national plant protection organization (IPPC, 2015) and may impact on how surveillance is managed.

Regardless of the national institutional structure, an NPPO can establish a national surveillance programme on the basis of its government's priorities, with access to the required resources. An appropriate management structure needs to be established for a surveillance programme.

Figure 2 is a conceptual plan that may be adapted to suit national institutional structures. It suggests the need for a national pest surveillance manager with an appropriate line of command through regional, state, provincial and field staff. It shows the relationship between manager and administrative and logistic support unit, and the technical support unit. Where appropriate, there may be a relationship established between the NPPO and third party providers and industry where they are required to provide services on behalf of the NPPO. Appointment of a national surveillance committee may also be appropriate in some countries.

Figure 2: Conceptual organization of a management structure for a national surveillance programme
3. National Legislation

Appropriate national phytosanitary legislation is a basic requirement for supporting activities of a surveillance programme. National legislation should have clear provisions related to powers, authority and responsibilities regarding surveillance.

Legislation should ensure the following.

- It provides authority and responsibility to the NPPO and authorized entities for all surveillance activities (e.g. the right to enter premises, inspect, take samples) in support of the IPPC Article IV.2(b), which requires NPPOs to be responsible for the surveillance of plants to report the occurrence, outbreak and spread of pests. Authority and responsibility should be supported by formal pest exclusion mechanisms to prevent the introduction of pests of phytosanitary concern entering the country, as well as to prevent pest movement into endangered areas such as pest free areas (PFAs), areas of low pest prevalence (ALPPs) and areas that are under official control.

- Provincial or state legislation, where appropriate, is consistent with and supports national legislation to avoid impediments to implementation of surveillance activities.

- Provisions are made for third party institutions and personnel acting on behalf of the NPPO, for example:
 - mechanisms of engagement (e.g. letter of agreement (LoA), memorandum of understanding (MoU), contracts)
 - mechanisms for recognizing and dealing with conflicts of interest
 - level of accountability to the NPPO
 - redress in cases of breach of trust or contract.

- Staff involved in surveillance programmes are legally protected in performing their duties (e.g. against accidents, trespass charges, physical attacks).

- Confidentiality in use of data is maintained.
4. Funding and Sustainability

The cost of running an effective national plant pest surveillance programme can be very high and funding from government budgets alone may not be sufficient. Collaboration between the government and stakeholders may be needed to ensure that adequate funding is available. Stakeholders such as industry and producers often contribute to surveillance efforts where the benefits to them can be clearly demonstrated.

Sustainability should also be considered, including, for example:
- adequate resources and a predictable source and level of funding are essential
- adequately trained and sufficient staff
- supporting diagnostic institutions are adequately equipped and diagnostic procedures are consistent to ensure accurate identification, verification and storage of specimens
- appropriate information management systems are current and adequate to allow for data analysis, accessibility and sharing of information – the information management system should be supported by a structure that facilitates data collection and collation.

4.1 Potential sources of funding

4.1.1 Government-funded national plant pest surveillance programme
A government may absorb the total cost of a national plant pest surveillance programme, particularly when it is seen as a public good. Measures or actions are usually trade driven and directed at a specific commodity. Or they may impact a wider range of plants and their products, so that economic impact is broadly shared. These measures or actions are often implemented as very structured programmes under the responsibility of the NPPO.

4.1.2 Industry funding
Strong and well-established industries (e.g. coffee, tea, banana, rice) may fund plant pest surveillance operations completely if they stand to benefit from such investments through market access or improved food quality. Where market access is the desired outcome, a strong collaboration may be established with the NPPO so that their procedures conform to international standards.

4.1.3 Joint funding between government and industry
- Appropriate arrangements are made between government and industry to address priorities through a cost-sharing platform.
- Partial investment cost is provided as a start-up incentive for specific programmes. This may hold true for cases where the establishment of a PFA or ALPP are the most appropriate pathways for market access.
- Cost-sharing between the government and the stakeholder (e.g. private sector producer): contributions may be financial or in-kind (e.g. related to oversight, supervision or the production and dissemination of guidance materials to industry).

4.1.4 Technical cooperation to facilitate trade
An importing country or potential importing country that has a strong interest in importing a commodity from a country where it is evident that risks cannot be adequately managed without additional measures may choose to fund the cost of specific surveys in order to help mitigate risks associated with the imported commodity.
4.1.5 Loans or grants
A government or autonomous NPPO may obtain a loan or grant from a donor country, or from national or international lending institutions in cases where very clear surveillance targets can be met and can be seen to result in significant benefits to the country.

4.1.6 Technical assistance programmes
Institutions involved in capacity building in developing countries generally have technical assistance programmes to respond to specific and urgent requests that meet certain criteria, including opportunities for trade or food security. FAO, the IPPC and the Standards and Trade Development Facility of the World Trade Organization (WTO), for example, have mechanisms to provide technical assistance in support of the enhancement of phytosanitary capacity that may include national plant pest surveillance. These may require counterpart contributions in kind.

4.1.7 Contingency and other emergency funds
The capability of the NPPO to access extra-budgetary financial resources in order to respond to phytosanitary emergencies (e.g. an introduced quarantine pest to be contained or eradicated, pest outbreaks, and compensating growers whose farms may be quarantined or where crops are subject to destruction or other actions that impact the livelihoods of producers) or emerging issues is very important. It is prudent to establish a contingency fund with substantial resources from extramural sources and from government, industry and other stakeholders to deal with emergencies.
5. Management

5.1 Strategy
The rationale for the establishment of a national plant pest surveillance strategy should relate directly to national priorities regarding trade and protection of plant resources and the environment. The creation of a clear vision provides an NPPO with a tool for encouraging broad support by setting out what is going to happen and what will be achieved. The strategy should ensure the highest level of cooperation, national response and participation. In this regard, pest surveillance is a critical part of a national phytosanitary system that, for example, allows an NPPO to:

- detect and monitor pest threats in order to prevent their introduction and to manage them if they become present in the country – this can be achieved by using:
 - pest alerts
 - unofficial and official information regarding the occurrence or changing status of a pest for which a pathway has been identified
 - reports in the press
 - scientific but unofficial reports
 - published data
- maintain and enhance market access and international trade by collecting and providing current surveillance data on the status of pests associated with commodities that are being or will be traded
- gain the confidence of trading partners by ensuring the availability of current and reliable data on pest status in the country
- support the preparation and updating of regulated pest lists and technically justifiable import requirements
- put in place phytosanitary improvement measures in the context of national programmes, including those that relate to the establishment and maintenance of PFAs, pest free places of production (PFPPs), pest free production sites (PFPs) and ALPPs where specific conditions must be met in order to support exports
- enhance food security and protect the environment through effective monitoring of threats to national plant resources.

5.2 Authority
The NPPO assumes all responsibilities for the plant pest surveillance programme. Clearly defined lines of command and delegation of different levels of authority must be addressed for a successful programme. In a decentralized system, levels of authority may be delegated to national, state, province, county and district levels so that there is a well-coordinated programme throughout the target areas.

The NPPO may authorize relevant institutions and personnel to work under its authority, but the NPPO in all cases maintains responsibility for all actions taken on its behalf.

5.3 Responsibilities
Responsibilities include:

- defining the programme
- selecting and approving partners
- public awareness
- training
- preparation of training materials and protocols
- implementation
- information management and communication.

The NPPO should take overall responsibility for management and coordination and inter alia, may:

- appoint a national surveillance manager and regional or provincial managers where decentralized management and supervision are necessary
- establish a national plant pest surveillance committee that includes key stakeholders but is managed by the NPPO.
5.4 Planning
Specific activities to be considered may include procurement and distribution of tools and equipment, trapping, sampling and transport.

- Consistency, credibility and sustainability in approaches should be maintained across all regions and among all actors:
 - all supervisors, regional and sub-regional managers and field staff use the same operating procedures
 - supervision and auditing are at the same level
 - access to the same support services
 - vehicles for timely transporting and sampling.

- Procedures and methodologies should be determined and standardized in their use, for example:
 - sampling and collection procedures
 - trapping densities
 - trap servicing
 - transporting samples
 - preparing samples for identification.

The NPPO should:

- establish documented procedures to ensure consistency at all levels of the operations
- ensure that adequate management systems are in place for the efficient and effective storage, retrieval and distribution of information
- ensure that adequate supporting systems, institutions and personnel are identified and engaged for:
 - diagnostics
 - reference collections
 - quality control (standard operating procedures, audits, tracking, etc.).

5.5 Resources and budget allocation

Resources need to be prudently sourced and applied across plant pest surveillance priorities and activities (see chapter 13). The NPPO should have a clear understanding of:

- the priorities and required activities
- the resource requirements for each priority to effectively launch and sustain the required activities
- the resources that are needed
- providers of these resources
- whether the sustainability of these resources is guaranteed.

5.6 Engagement mechanisms

The NPPO may:

- establish mechanisms of engagement between the NPPO and stakeholders so that responsibilities can be assigned, honoured and levels of accountability determined (see IPPC, 2015, section 8) – common examples of mechanisms of engagement include LoAs, memoranda of agreement (MoAs), contracts and government–industry agreements
- ensure that all stakeholders are properly informed and cued into the surveillance strategy and that their roles are clearly defined.

5.7 Performance review

Plant pest surveillance and the use of surveillance data in international trade and phytosanitary improvement are critical – the consequences of ineffective surveillance and monitoring to ensure accurate results can be devastating. The programme of plant pest surveillance should be technically sound, and include effective supervision of personnel and methods to ensure that all activities are undertaken correctly.

A surveillance programme should be regularly reviewed against its targets, goals and objectives. A formal review process may be established to ensure that:

- the programme is reliable and credible to stakeholders
- quality is assured and maintained throughout the programme
- all aspects of the programme are supported by current technology and procedures, and are appropriate to achieve the stated objectives
- efficiency is gauged against performance standards (auditing where applicable).

The occurrence of incidents that threaten the surveillance programme should be corrected transparently, urgently and effectively.

Internal reviews by a competent review panel may be undertaken periodically on all aspects of
the surveillance programme to ensure that quality is being maintained.

External reviews may also be appropriate in cases where a trading partner or potential trading partner needs verification of the quality and effectiveness of a surveillance programme such as PFA, ALPP or eradication.

5.8 Monitoring and evaluation
Monitoring and evaluation (M&E) together provide the knowledge required for effective surveillance programme management and reporting, and accountability. Countries that opt to establish an M&E system generally tend to do so at the level of a department, the ministry or, in other cases, at a higher, possibly national, level. Whatever the case may be, an M&E system developed for plant pest surveillance would need to be adapted to the existing system.

An M&E system is a tool in a project manager’s repertoire that uses methodologies designed to strengthen the ability of people and teams to make management decisions for the successful achievement of stated objectives. An M&E system should help the NPPO to:

- determine whether the surveillance programme is on track, on time and on target
- ensure that funds were used as intended
- determine whether the surveillance programme was implemented as planned
- learn whether the surveillance programme made a difference.
6. Human Resources

6.1 Training
Plant pest surveillance requires different skills and competencies from different groups of people. The NPPO responsible for any given plant pest surveillance programme should strive to maintain the technical integrity of all activities and be responsive to emerging and new pest situations. Specific, task-related training for those involved, as shown in Table 1, will address these issues.

6.2 Staff retention
Staff training is a costly but necessary investment, so efforts should be made to support retention of trained staff for the effectiveness and sustainability of the surveillance programme. This may be encouraged by providing, for example:
- salaries commensurate with tasks assigned
- attractive incentives and benefits
- conducive working conditions, such as appropriate tools and transport
- awareness of the importance of their tasks to national development.

The NPPO may ensure succession planning to provide for smooth transitions when required.

6.3 Safety at work
Safety at work is an important consideration to which management should be committed. Where applicable, management should lead by example. Management should also ensure adequate funding for:
- protective equipment
- personal security gear
- adequate health care and medical coverage
- first aid equipment
- clearly marked or identifiable means of conveyance or transport, where appropriate
- proper identification.

Table 1. The kinds of training that different groups of people involved in a surveillance programme might require

<table>
<thead>
<tr>
<th>Managers and supervisors</th>
<th>Plant protection and production personnel involved in surveillance activities</th>
<th>Farmers, producers and industry personnel</th>
<th>Subject specialists from universities and other research institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and supervision related to specific tasks</td>
<td>Data collection</td>
<td>Protocols for surveillance of specific pests</td>
<td>Relevant ISPMs</td>
</tr>
<tr>
<td>Personnel management</td>
<td>Information on pest biology and ecology</td>
<td>Pest and pest damage recognition</td>
<td>Procedures consistent with the IPPC in surveillance and pest diagnostics</td>
</tr>
<tr>
<td>Procedures for enforcement and integrity</td>
<td>Surveillance methods</td>
<td>Data collection and recording</td>
<td></td>
</tr>
<tr>
<td>Resources management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Information Management

Information systems are required to ensure effective management of information as it moves from the field to record-keeping to reporting.

The NPPO should select hardware and software in terms of short- and long-term programme goals. For example, in order to collect location data more efficiently, the geographic information system (GIS) software package in the office should be able to interact with the global positioning system (GPS) units of field workers. The NPPO should consult with a database administrator and hardware and software solution providers.

7.1 Data flow: structure and presentation

7.1.1 Workflow structure

- It is the responsibility of the surveillance manager to plan a complete data flow cycle in the very early stages of implementation.
- On the basis of strategic decisions regarding programme goals, a flow chart should be prepared to clarify the appropriate order for the transfer of data.
- A form, whether paper or computer based, needs to be designed for collecting raw pest data from the field; consistent layout is important.
- Surveyors need to understand the form, how often the form is transferred to data collectors, and by what means (paper forms will be faxed, computer files sent by e-mail, etc.).
- A computer-based collection scheme requires choosing a standardized file format.
- Data collectors must enter the new data, merging these into the growing database. As data are entered they should be validated.
- Data should be entered in a timely manner depending upon the requirements of the programme.

- The tools used to query the database to extract the required reports must be understood by data analysts (or field personnel if they serve dually as data analysts); data analysis should be relevant to the goals of the surveillance programme.

7.1.2 Record-keeping

ISPM 6 (Guidelines for surveillance) details a set of minimum records that need to be kept. These are:

- scientific name of the pest and European and Mediterranean Plant Protection Organization (EPPO) code, if available
- family/order
- plant part affected or means of collection (e.g. attractant trap, soil sample, sweep net)
- locality, e.g. location codes, addresses, coordinates
- date of collection and name of collector
- date of identification and name of identifier
- date of verification and name of verifier
- references, if any
- additional information, e.g. nature of host relationship, infestation status, growth stage of plant affected, or found only in greenhouses.

7.1.3 General guidelines for information management

- Data standards should be considered: they need to be consistent and allow for sharing of data (e.g. between surveillance programmes or between countries) as required.
- The NPPO is responsible for secure data storage and is the final authority for approval of a security protocol. Data should be stored in safe and secure locations and standard operating procedures (SOPs) should be developed for security protocols, data storage and backup.
- The database should be validated and updated as needed.
8. Communication

Communication helps to ensure that stakeholders and staff understand and support phytosanitary surveillance activities, requirements and systems, and have sufficient information to manage their own related activities. A communication strategy for plant pest surveillance will ensure that communications are handled as effectively as possible.

8.1 Communication strategy

A communication strategy should take into consideration:

◆ information needs of staff, stakeholders and affected parties
◆ urgency with which decisions need to be made
◆ extent to which engagement and communication will improve plant pest surveillance and use of information provided by surveillance
◆ costs of communication and engagement, both to the NPPO and to those engaged.

Coordination of surveillance programmes requires timely and effective means of communication. The NPPO should ensure that communication provisions cover all parties involved, as shown in Table 2.

8.1.1 NPPO internal communication

Internal communications are important to ensure that the surveillance programme is efficient and effective. Topics may include:

◆ line communication, reporting and feedback
◆ communication among field officers, for sharing experiences and relevant information, problem-solving, etc.
◆ communication among NPPO technical managers and supporting administrative staff, regarding budget, procurement and resource distribution, staffing issues, etc.

8.1.2 NPPO external communication

External communications are also necessary to ensure that all parties directly engaged in the programme are kept informed. NPPOs should be prepared to communicate with:

◆ industry groups, especially those directly involved in surveillance activities and those directly affected by outcomes, timely and effective communication regarding ongoing issues that may arise from strategies, and procedures and implications of findings
◆ third party providers acting on behalf of the NPPO regarding progress, implementation issues, ongoing monitoring and review activities
◆ surveillance committees on strategic issues and outcomes for decision-making
◆ the general public regarding outreach programmes for effective cooperation, restrictions on movement of plant material, where appropriate, and reporting relevant observations.

8.2 Stakeholder engagement

Meaningful engagement of stakeholders requires effective bidirectional communication between the

<table>
<thead>
<tr>
<th>Communication</th>
<th>Reporting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPPO internal communication</td>
<td>Concerned trading partners</td>
</tr>
<tr>
<td>NPPO and industry groups</td>
<td>RPPOs</td>
</tr>
<tr>
<td>NPPO and third party providers</td>
<td>IPPC, FAO</td>
</tr>
<tr>
<td>NPPO and surveillance committee</td>
<td></td>
</tr>
<tr>
<td>NPPO and general public</td>
<td></td>
</tr>
<tr>
<td>NPPO and media</td>
<td></td>
</tr>
</tbody>
</table>

NPPO and all stakeholders regarding their possible and assigned roles in the detection of plant pests.

Stakeholders and their roles may include:

◆ universities, research institutions and subject specialists to undertake specific surveys with related activities, such as:
 - provide training in surveillance methodology for specific plant pests or pest groups
 - prepare protocols and data sheets
 - make arrangements for diagnostics
 - provide aerial photos to aid delimiting surveys where appropriate (e.g. lethal yellowing disease in areas that are otherwise impossible to reach)

◆ industry groups (banana, tea, coffee, citrus, etc.):
 - provide information on occurrence or incidence on farms
 - provide data gathered over time on pest occurrence and status
 - provide staff for training and deployment on farm to collect information, set and service traps, sampling and other services, where possible and according to protocols provided by the NPPO

◆ farmers and producers, plant nurseries:
 - provide alerts on current and past occurrences, service traps

◆ forestry, parks commissions and similar groups:
 - report incidence of plant pests or pest damage, outbreaks of pests on ornamentals and forestry crops

◆ consumers, markets and vendors:
 - report unusual or new cases to the NPPO

◆ press and media:
 - disseminate information
 - educate and raise awareness
 - encourage support for the programme and related activities.

8.3 Reporting
The NPPO has a responsibility to report the results of surveillance activities, specifically the occurrence, outbreak and spread of plant pests, and efforts to control them. Information gathered through general surveillance will be used most often for reporting to concerned trading partners, RPPOs and the IPPC (Article IV).

Plant pest surveillance results should be reported in a timely manner to concerned trading partners in a spirit of international cooperation to prevent the spread of pests. Industry groups affected by the results of surveillance should be properly informed.

8.4 Awareness-raising and advocacy
It is valuable for key groups and individuals to understand the surveillance programme’s goals, its main operations and what support is needed in order for the programme to function well. The surveillance programme will benefit from having a plan in place to generate awareness and build support among key stakeholders.

An awareness-raising plan should identify the interests of different stakeholders and refine messages and styles of communications to match the interests of the stakeholders, helping them to understand why the surveillance programme is important.

The stakeholders may include:

◆ private sector, who may be concerned about losses both from pests and from control programmes

◆ high-level government officials, who may not be familiar with the technical issues of phytosanitary measures but may be very concerned about access to export markets, protection of domestic natural resources and jobs, and who may be influential in the policy-setting and budget-planning processes

◆ the general public, who may be concerned about plant pest surveillance and control programmes as a result of concerns about damage to natural resources and loss of jobs in addition to concerns about consequences to the environment and human health of chemical control of pests

◆ academia.

An advocacy plan would target these stakeholders differently to address each group’s concerns and help them to understand why a surveillance programme is important and how it will benefit them. The plan can encourage them to ensure that the surveillance programme receives the sustained financial, political and public support needed in order to function effectively and achieve its goals.
Planning and implementation of a surveillance programme must occur through the establishment of priorities. The cost of surveillance will be prohibitive if planning has not been carried out.
9. Planning a Surveillance Programme

An NPPO generally plans a surveillance programme on the basis of a need to facilitate trade and protect national plant resources. Such a plan has several components.

9.1 Cost–benefit analysis
A cost–benefit analysis must be carefully considered prior to the expenditure of significant resources. For examples of surveillance planning and cost consideration, refer to Pheloung (2005).

Some considerations for a surveillance programme cost–benefit analysis include:
- level of stakeholder interest in a surveillance programme
- importance of the agricultural commodity at risk to the local economy
- potential export economic importance of an agricultural commodity
- economic importance of an agricultural commodity to an importing country
- risk of pest introduction
- estimated economic damage and impact of a pest to an agricultural commodity
- available field, diagnostic and administrative human resources to implement a surveillance programme
- available target-specific traps, lures and other tools for pest detection
- feasibility of the surveillance programme with available monitoring tools.

If the estimated economic cost for conducting a surveillance programme does not outweigh the value of the benefit to a country’s agricultural and natural areas, then an adequate return on investment may be anticipated. Although several possible surveillance programme efforts could result in a significant return on investment, the NPPO must prioritize the most important needs for the country. Refer to chapter 10 for more guidance on pest prioritization.

9.2 Key issues
The NPPO will need to consider several key issues in formulating the surveillance plan.

9.2.1 Strategic rationale:
- threat detection and contingency or mitigation
- early warning
- rapid and appropriate response
- preparedness for negative impact to certain productive sectors or to avert environmental damage.

9.2.2 Feasibility:
- technical feasibility
- economic feasibility.

9.2.3 Stakeholder relations and support:
- an established record of trust and the protection of the country’s agricultural and natural resources is necessary
- the surveillance programme needs to clearly identify its purpose (current or future benefit) and its beneficiaries
- key personnel within the NPPO should be assigned to establish, manage and maintain stakeholder relations.

Stakeholders interested in a surveillance programme should first consult with their own NPPO and consider the following:
- identity and availability of subject matter specialists – if expert contacts are not available within a given NPPO, consider whether regional or international expertise could provide cooperative project support; other regional governments may also be at risk from newly introduced pest-detection or trade barriers and would mutually benefit from the partnership
- the availability of pest reference collection repositories
- budgetary supply and human resources for monitoring, sample screening, management and general surveillance.
9.2.4 Other considerations
The difficulty of plant pest detection can negatively impact a surveillance programme in terms of rationale, design, operation and cost.

Pest-specific surveys with clear protocols and commercially available traps will be easier to deploy uniformly and monitor regularly.

A surveillance programme needs a communications plan (see chapter 8). Even if stakeholder support is obtained, mismanagement of public communications may end a surveillance programme. A good message for the general public should be simple and appropriate for a broad audience. Producers and other stakeholders who are more directly affected by the surveillance programme will need additional information.

9.3 Surveillance implementation
An NPPO should review the procedures and results of other surveillance programmes with similar goals and consider the following questions related to survey programme implementation.

- If surveillance programmes on this pest have been conducted in other regions, what was the outcome?
- How can an improved surveillance programme be implemented, based on lessons learned from other surveillance programmes focused on this pest?
- If surveillance programmes have been conducted on similar pests in your country or other regions, how can you apply the lessons learned to your surveillance programme?
- Has the pest of focus in your surveillance programme been reported on new hosts or within a new ecological niche?
- Has the pest you are surveying been detected outside previously known environmental limits?

A pest’s ability to respond to a new habitat is often unknown; however, some inferences can be deduced from a pest’s invasion history in similar habitats to those in the country of concern. The surveillance results of another NPPO can also assist to guide the development of a pest-specific survey.

A surveillance programme is generally designed either to generate a commodity pest list to facilitate export of a new agricultural commodity or to assist with a regulated pest list. A regulated pest list may include pests of quarantine significance and may affect imports or assist with defining pest risk analysis (PRA) needs. A regulated non-quarantine pest may economically affect plants for planting (see Table 3).

The gathering of information should focus on the needs of and generally relates to both general and specific surveillance programmes. Methods may include the following.

- Horizon scanning: identifying current issues or strategies that may have a significant medium- to long-term future impact on the successful outcome of the survey. An NPPO may also use results from PRA for this purpose.
- Article mining: discovering interesting and useful patterns and relationships in large volumes of data.
- In-country sources: information from producers, immigration information, customs data, traders, etc.
- Formal requests to NPPOs of other countries.

<table>
<thead>
<tr>
<th>Table 3. Definitions associated with categories of pests and lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific terminology</td>
</tr>
<tr>
<td>Commodity pest list</td>
</tr>
<tr>
<td>Regulated pest</td>
</tr>
<tr>
<td>Regulated non-quarantine pest</td>
</tr>
</tbody>
</table>
10. Prioritization

Failure to properly assign NPPO resources to the highest risk plant pests may result in:
- delays in new market access
- unnecessary or unjustifiable import requirements
- significant and devastating agricultural crop loss.

PRA can be an important component of the decision process for target pest or commodity-focused surveillance programmes.

10.1 Early detection

Early detection and rapid pest eradication are often the goals of a regulatory surveillance programme. Available field tools, such as species-specific pheromone-baited traps, can significantly improve field detection efficiency. However, visual scouting remains a relatively low-cost and frequently used method in many cases. Budget plans for trained field scouting personnel need to be considered. The visual scouting process often seeks to detect "hotspots" or concentrated small patches of pest activity.

The NPPO should consider the difficulty of pest detection and overall cost during the development of the surveillance programme. If a pest is difficult to detect and unlikely to be reported early in the invasion phase, the NPPO may choose not to designate resources to the pest even if it is high risk. A pest that is of medium to high priority and easy to detect may receive a higher priority in a surveillance programme because there are more opportunities to detect a successful pest invasion.

10.2 Stakeholder interests

Stakeholder input must be considered in prioritization. A lack of stakeholder support will hinder success of the programme. External stakeholders may need pest status information in order to complete a PRA for a commodity. Producers and other individuals employed in agriculture may be the first to detect a pest or symptom of concern. Producers and exporters may also be required to provide information related to market access. Finally, producers will be primarily interested in local and export pest management recommendations.

10.3 Responses to outbreaks or incursions

A response to a plant health emergency involves detection, identification, confirmation, assessment, containment, control and management of the plant
pest. A strong network of trained individuals who are prepared to respond is an essential component of an emergency response programme. Although not every pest outbreak will trigger a formal emergency response programme, pest outbreaks often influence prioritization.

Following a new pest outbreak, resource allocations and personnel must be shifted to the new, high-target pest. Response activities from national agencies may include the following:

- rapid detection and delimiting surveys
- technical working groups
- identification and diagnostics
- emergency funding
- emergency response coordination
- mobilization
- unified command
- data management
- regulatory framework
- environmental compliance
- situation reports.

Figure 3 illustrates some of the clear differences between high-priority and low-priority surveillance programmes. However, many pest surveillance programmes may have a range of high- and low-priority factors contributing to the decision process.
11. Designing a Specific Plant Pest Surveillance Programme

11.1 Survey design
Survey design will depend on the purpose of the survey, whether to look for a pest of unknown status in an area, to gather data about an existing pest population in an area or to determine the boundaries of an infestation.

ISPM 5 (Glossary of phytosanitary terms) defines the following survey designs.

- **Detection survey**: "Survey conducted in an area to determine if pests are present". Detection surveys are appropriate if a pest's presence in an area is not known.
- **Monitoring survey**: "Ongoing survey to verify the characteristics of a pest population". Monitoring surveys are appropriate to document changes in prevalence of a particular pest population over time and to assist with pest management.
- **Delimiting survey**: "Survey conducted to establish the boundaries of an area considered to be infested by or free from a pest". Delimiting surveys are usually used to define the boundaries of spread for a new, invasive pest. A delimiting survey often precedes the implementation of an eradication programme. Delimiting surveys may also be useful for shipping commodities outside of the pest range for a pest of limited distribution.

11.2 Pest-specific surveillance
According to ISPM 6 (Guidelines for surveillance), a pest-specific surveillance approach should include the following:
- identification of the target pest(s)
- identification of scope (e.g. geographic area, production system, season)
- identification of timing (dates, frequency, duration)
- in the case of commodity pest lists, the target commodity
- indication of the statistical basis (e.g. level of confidence, number of samples, selection and number of sites, frequency of sampling, assumptions)
- description of survey methodology and quality management based on an understanding of the biology of the pest, purpose of the survey and including an explanation of:
 - sampling procedures (e.g. attractant trapping, whole plant sampling, visual inspection, sample collection and laboratory analysis)
 - diagnostic procedures
 - reporting procedures.

11.3 Commodity-specific surveillance
Specific pest lists of commodities can be useful in the context of cultural practices or to provide general data in the absence of general surveillance. Commodity-specific surveillance may also be useful to provide information to requesting countries to facilitate their PRAs.

According to ISPM 6, commodity-specific survey sites should be selected by the following parameters:
- geographic distribution of production areas and their size
- pest management programmes (commercial and non-commercial sites)
- cultivars present
- points of consolidation of the harvested commodity.

Survey methodology will depend on the harvesting time, target commodity pests and associated sampling techniques, and type of commodity.

11.4 Examples of survey design

11.4.1 Target pest: pink bollworm
The pink bollworm moth, *Pectinophora gossypiella* (Saunders) (Lepidoptera: Gelechiidae), is a globally
important pest of cotton. Prevention, management and yield loss associated with pink bollworm costs cotton producers in the United States of America an estimated US$ 32 million annually. Pink bollworm is capable of long-range migration and so cotton producing regions are at constant risk of infestation and reinfestation. Effective long-term surveillance is necessary to detect incursions and reduce the risk of establishment.

11.4.1.1 Sampling and collection methods for adults

- At planting, hang delta traps containing rubber septa impregnated with 4 mg of gossypolure pheromone attractant around the perimeter of cotton fields at a rate of one trap per 4 ha.
- Inspect delta traps weekly for adult pink bollworm moths, until harvest or killing freeze. Record presence (and quantity) or absence.

11.4.1.2 Sampling for larvae

- Select ten non-Bt cotton fields per 4 856–6 070 ha at random and visually inspect the blooms for signs of pink bollworm larvae. If larvae are detected, collect specimens and preserve in 70 percent ethanol to send out for expert identification.
- Start at the bloom stage and continue weekly inspection through cut-out. Record presence (and quantity) or absence.

11.4.1.3 Information management

- Sampling data may be recorded on paper or by electronic means in the field, but should be permanently stored in a secure electronic database. The NPPO should establish procedures for generating reports from field survey data and disseminating reports to relevant parties.

11.4.1.4 Occupational safety

Field survey workers will need the following to safely perform their survey activities.

- Basic first aid items, such as antiseptic wash, sterile bandages, pain reliever tablets and antihistamines.

- A field communications plan to keep workers connected to base operations. This may include mobile telephones or radio communications.
- Safe transportation to and from field sites.

11.4.1.5 Stakeholder engagement

Pink bollworm survey plans are best enacted with the cooperation of producer communities and government regulatory entities. Develop survey plans with cotton growers and create stakeholder buy-in through effective communication with the target audience.

11.4.2 Target pest: Asian citrus psyllid and Huanglongbing disease

The Asian citrus psyllid, *Diaphorina citri* Kuwayama (Insecta: Hemiptera: Psyllidae), is an important pest of citrus in several countries due to its ability to vector citrus greening or Huanglongbing disease (HLB). HLB is caused by the bacterium *Candidatus Liberibacter asiaticus* and originates from Asia or India. HLB can kill a citrus tree in as little as five years, and there is no known cure. The only method for protecting citrus trees is to prevent spread of the HLB pathogen through the control of psyllid populations and by the removal and destruction of infected trees.

11.4.2.1 Sampling and collection methods for adults

- Tap sample: Use a laminated sheet of paper or a smooth white surface such as a clipboard and a 0.3 m piece of half-inch or three-quarter-inch (or equivalent size) PVC (plastic) pipe. Place the sheet or board about 0.3 m below a leafy branch. Hit the branch three times with the pipe. Count and record the number of psyllids that fall onto the sheet. The slippery sheet surface prevents the psyllids from taking flight, but some may fly away before they can be counted if numbers are high.
- Sweep nets: Swing a 15-inch (or equivalent size) diameter sweep net in a 180° arc so that the net rim strikes well into the canopy. After a few sweeps, count and record the number of psyllids captured inside the net.
11. DESIGNING A SPECIFIC PLANT PEST SURVEILLANCE PROGRAMME

◆ Trees with apparent psyllids or psyllid feeding damage should be preferentially sampled. If trees do not have visible psyllids or psyllid damage, no more than 20 trees should be sampled at a given location. The number of trees sampled may be varied depending upon the needs of the surveillance programme.

11.4.2.2 Sampling for larvae
◆ Nymphs and eggs are found only on young flush and must be sampled by direct observation.
 – Field personnel should practise recognizing the difference between psyllid and aphid feeding on flush; the presence of the insect is always the best indicator of the actual cause of damage. In general, psyllid feeding results in twisted flush and aphid feeding causes leaf curl.
◆ The number of psyllids per shoot should be correlated with the percentage of infested shoots.
◆ Determine for each shoot examined whether psyllid eggs or nymphs are present.
◆ Ten shoots should be checked at each stop at the same ten locations per block used for the tap sample.
◆ Determine the amount of flush present and measure shoot density. Keep records of the number of trees needed to locate ten new shoots at each stop and the number of trees examined. No more than 20 trees should be examined at a given location even if ten new shoots are not found.

11.4.2.3 Sampling and collecting methods for HLB
◆ Samples should consist of short sections (10–15 cm or greater) of symptomatic branches with the attached leaves.
◆ If fruit is present on the branches, the fruit can either be left on or can be trimmed off the tree. If the fruit is removed, leave the fruit stem on the sample (i.e. trim the fruit off as close to the button as possible leaving the stem on the branch).
◆ If a variety of symptoms are present, the preferred samples (in order of preference) would be:
 – branches with mottled leaves
 – branches that contain shoots that are almost entirely yellow
 – branches that have leaves with yellow veins
 – branches with leaves that have either green islands on a yellow background or yellow islands on a green background
 – branches with nutrient deficiencies that have a "rabbit ear" appearance (small, upright leaves)
 – branches with leaves that show chlorosis and "vein corking"
 – branches with zinc or iron deficiencies that are not related to blight or other known causes.
◆ Place the leaves and twigs into a sealable (e.g. Ziploc) plastic bag and keep the sample cool and out of sunlight.
◆ Label the bags "HLB" to expedite their movement in the laboratory.
◆ Flag the tree or a branch in commercial sites in order to be able to rapidly recognize and revisit the place where a sample was collected. In residential sites flagging could be performed at the discretion of the surveyor.

11.4.3 Target pest: potato cyst nematodes
Potato cyst nematodes (PCN) (Nematoda: Tylenchida: Heteroderidae) comprise two closely related species – the pale cyst nematode, *Globodera pallida* (Stone) and the golden nematode, *Globodera rostochiensis* (Wollenweber). These microscopic worm-like organisms are quarantine pests and present a serious threat to domestic and international commerce in potatoes and nursery stock. They feed on the roots of the plant and can cause significant loss of yield, and the cysts can survive in the soil for many years, multiplying rapidly when a new crop of host plants is planted. PCN spread primarily by the transport of cysts in soil. Once a field is infested, management includes sanitation, crop rotation, use of resistant varieties and chemicals.
11.4.3.1 Sampling procedures

Field freedom from PCN, based on sampling and testing of soil prior to planting, is a general requirement for seed potatoes and may also be suitable to confirm lot freedom of ware potatoes. Fields are sampled at a standard rate of 1 500 ml/ha or, if certain conditions are met which reduce the risk of PCN infestation, at a lower rate of 400 ml/ha. These conditions relate to history of the land, in relation to previous potato crops and the size of the sampled unit. A field is eligible for the lower rate if:

- no potatoes have been grown there for six years prior to the test or
- no PCN have been found in the previous two official tests or
- no PCN or dead cysts have been found in the most recent official test.
12. Response, Delimiting and Trace-back Surveillance

12.1 Early warning detection surveys

12.1.1 Pest identification and information
Correct plant pest identification is critical to response, delimiting and trace-back surveillance. Information that needs to be prepared about the pest includes:
- field screening information for further pest surveys
- pest biology and origin
- distribution and establishment potential
- pest significance
- population dynamics and epidemiology
- pest vector status
- potential pathways
- potential establishment and range
- eradication, containment and control measures
- detection methods
- damage symptoms.

12.1.2 Public education to disseminate information for early warning
Public awareness programmes aimed at reminding the general public and target groups of the potential threats and where to report.

12.1.3 Training of principals (field personnel of NPPO and other technical stakeholders) in detection of the target pest
Training of personnel from the NPPO and other concerned stakeholders according to the target pest is essential. This may require time, resources and a certain level of commitment. The NPPO should plan accordingly. This is emphasized in sections 6.1, 6.2, 8.2 and 13.1.

12.1.4 Monitoring system
Where possible and as resources allow, establish a monitoring system using traps or other detection methods along likely pathways or most vulnerable areas.

12.1.5 Review
Adjust the survey strategy based on updated information.

12.2 Investigation plan

12.2.1 Pathway analysis
If a new, exotic invasive species is detected, the likely source of the pest should be analysed and determined. The following steps should be followed in order to determine the spread and origin of the pest:
- Conduct a delimiting survey around the site of initial detection. This will provide information about the spread of the pest. The NPPO may have to conduct interviews with the owners of plants where the pest was detected.
- Assess the degree of damage (insignificant to severe), level of infestation (low to high) and, if possible, duration (old to recent) of the infestation from the time of detection. During the delimitation survey this information should be collected and mapped along with GIS information. This information could assist determination of the likely origin or location (foci) of the infestation.
- Consider the native region and current distribution of the pest. What commodities are currently imported that could be a source of the pest? How were these commodities moved and transported?
- Once the origin has been identified (trace-back), a follow-up of areas that could have also received a pest introduction (trace-forward) also needs to occur.
- An effort to quarantine and eradicate the pest or maintain the pest within a quarantine zone may follow the delimiting survey.
Host plant and product movement in and out of the area of new pest detection should initially be controlled within the known distribution area and a buffer zone.

The pest biology will need to be understood in order to officially control the new pest.

12.2.2 Budget and human resources

Budget and human resource considerations for surveillance and sample processing need to be evaluated before implementing an extensive response. All response activities and resource allocations should be priority-based.

12.2.3 Data analysis and recommendation

Data entry needs to be streamlined for rapid electronic response. If data cannot be evaluated at least weekly, unnecessary resources may be expended. Data analysis also needs to be included in the budget.

12.3 Delimiting surveillance

These surveys are usually carried out to determine the boundaries of an infestation or area infected rather than to define an area that is “free from a pest”.

A delimiting survey generally:

- determines the extent and distribution of a pest incursion
- determines whether the pest can be eradicated.

12.3.1 Site selection

For delimiting survey sites:

- initial detection site or target zone – this is usually the starting point for the survey
- extent of survey is determined by the spread of the pest
- target plant hosts (number of and species) should be known
- alternative plant hosts should be known
- sampling and collecting methods specific to the target pest need to be identified and deployed
- some target pests may have species-specific traps or detection methods that may improve collection and hence knowledge of distribution.

12.3.2 Survey preparations

The following information must be prepared for a delimiting survey.

- Define the survey period that can be funded, based on the value of the crop or other relevant prioritization criteria.
- Identify equipment needed and purchase if necessary.
- Designate responsible personnel and agree overall logistical coordination.
- Establish budget availability and parameters.
- Prepare field survey guides.
- In some instances, an NPPO may choose to designate work to a non-regulatory entity through a cooperative agreement. The non-regulatory entity must understand the regulatory nature of the delimiting survey.
- Data collection and mitigation methods are established by the NPPO. Methods must be clearly described in an SOP and their application monitored by the NPPO.
- Awareness campaigns:
 - educational materials need to be prepared for field survey specialists and farmers
 - materials for the general public also need to be available
 - a chain of communication needs to be established for general inquiries and questions – a designated public information officer can assist with awareness questions or concerns.
- Data analysis and recommendations.
- Pest status reporting (see ISPM 17).
Section 4: Operations
13. Resource Requirements

Effective resource planning is essential to ensure that field activities are delivered in a timely and efficient manner. It is the responsibility of both the surveillance manager and operational staff to ensure that the staffing, financial and physical resources (equipment, traps and consumables) are in place before starting field activities.

13.1 Human resources
Human resources should include the relevant technical skills and training to effectively deliver the surveillance activity. This may also include resourcing additional surveillance officers to provide assistance.

13.2 Financial resources
Financial resources should cover all expenses relating to the delivery of the surveillance activities (travel, accommodation, per diems, equipment and supplies, etc.).

13.3 Physical resources
Infrastructure resources may include laboratory buildings, offices for staff, storerooms and warehouses, processing areas, communications infrastructure and waste facilities.

Equipment and supply resources may include vehicles, pest traps, lures and consumables (see Appendix A).

Data collection resources may include cameras, GPS units, smartphones, tablets, notebooks, computer equipment and stationary (see Appendix A).

Public awareness resource materials refers only to the physical materials used to enhance or gain support for surveillance activities, and may include items such as brochures, posters, postcards and calendars.

Note: These physical resource needs will be dependent on the methodology and equipment needs of the survey plan developed.
14. Methodologies

Surveillance protocols and methodologies provide consistent instruction on the delivery of a surveillance activity. Surveillance managers and surveillance officers need to be aware of current methods associated with pests of interest and must ensure that the methods meet survey objectives. Methods of plant pest surveillance are further described in *Guidelines for surveillance of plant pests in Asia and the Pacific* (McMaugh, 2005); chapter 8 focuses on specific case studies.

Surveillance methods may be based on recognized guidelines and international protocols or negotiated equivalents.

In some cases NPPOs may need to derive new methodologies when faced with new and emerging pests.

14.1 General surveillance

General surveillance activities provide a useful means for NPPOs to gather pest information beyond specific surveys. The importance of general surveillance and the central collection of data for national plant biosecurity is discussed in the *National Plant Biosecurity Surveillance Strategy 2013–2020* (PHA, 2013). General surveillance also serves the purpose of potentially proving the absence of a pest for trade purposes. Participatory engagement of industry, citizens, growers and academia is a critical component of general surveillance.

General surveillance activities can be delivered in the following ways:

- undertake desktop reviews of scientific journals, publications and databases
- deliver outreach and awareness campaigns to inform the audience about the target pests and ways in which they can assist
- ensure mandatory reporting for agencies and institutions involved in scientific research and publication – in some cases this may involve legislative obligations or cooperative agreements to report.

General surveillance systems must comply with ISPM 8 (*Determination of pest status in an area*) validation process, and so require adequate screening, validation, data management and analysis to manage data before they are included in information management systems.

Before implementing these general surveillance initiatives, it is important to ensure that adequate human and physical resources (computer systems, databases, communication systems, etc.) are available.

14.2 Specific surveys

Specific surveys provide the means for NPPOs to actively gather pest distribution information through structured programmes.

A wide variety of technical methods are available, based on the three fundamental types of surveillance:

- sampling survey: host material, target pests or soil are collected for identification and analysis
- trapping survey: chemical or physical traps used to capture target pests in a given area
- visual examination: host or habitat examined for life stages, signs or symptoms associated with target pests.

These methods may not always be delivered independently and some surveys may include a combination of sampling, trapping and visual inspection.

The three specific surveys recognized by ISPM 6 (*Guidelines for surveillance*) are:

- detection surveys: conducted in an area to determine if pests are present
- delimiting surveys: conducted to establish the boundaries of an area considered to be infested by or free from a pest
- monitoring surveys: ongoing survey to verify the characteristics of a pest population.

Table 4 indicates different circumstances under which certain types of survey are deployed.
14.3 Methods

14.3.1 Standard operating procedures

According to the guidelines for quality management in soil and plant laboratories, produced by the Natural Resource Management and Environment Department (Bashour and Sayegh, 2007), "A Standard Operating Procedure (SOP) is a document which describes the regularly recurring operations relevant to the quality of the investigation. The purpose of a SOP is to carry out the operations correctly and always in the same manner. A SOP should be available at the place where the work is done".

SOPs should include at least the information identified as a minimum requirement (refer to ISMP 6):

- purpose and scope
- timing and duration
- target pest
- target host
- target areas and site selection
- survey duration
- site selection
- statistical basis
- sample collection
- detailed survey methodology (procedures)
- biosecurity and sanitation considerations
- sample handling and laboratory submission
- equipment and supplies
- reporting.

SOPs may also include:

- legislative authority
- roles, responsibilities and accountabilities
- record-keeping
- reference material (keys, publications, protocols, etc.)
- occupational health and safety.

Note: SOPs must be available and accessible to all staff.

<table>
<thead>
<tr>
<th>Table 4. Use of specific surveys for different pest situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific survey</td>
</tr>
<tr>
<td>Monitoring</td>
</tr>
<tr>
<td>Detection</td>
</tr>
<tr>
<td>Delimiting</td>
</tr>
</tbody>
</table>

Source: derived from IAEA (2003).
14.3.2 Sampling
Sampling may be:

- random:
 - simple random sampling – unbiased; each unit has equal chance of being selected
 - stratified sampling – a form of random sampling that is based on knowledge of pest distribution and assures collection of pest
- systematic:
 - follows a predetermined pattern, such as X-, W- or Z-shaped transects
 - may involve collection of symptomatic or asymptomatic plants – visible field symptoms are often not immediately expressed at early-stage plant disease or nematode infections; the collection of asymptomatic plant samples provides valuable positive and negative data beyond the known infection range of a given pest.

Methods of sampling for pests are further described in McMaugh (2005): chapter 2 is devoted to designing a specific survey, and section 2.16 focuses on methods of collecting pest specimens.

14.3.3 Trapping
Traps can be used for many purposes, including:

- area pest control of a specific pest or type of pest, such as stink bug traps baited with a species-specific aggregation pheromone
- as part of a specific pest eradication effort
- surveillance (monitoring, delimiting and detection)
- sentinel traps for early detection of a new pest incursion in an area.

14.3.3.1 Trap types

Semiochemical-based traps use a message-bearing substance from a plant or animal (or a synthetic analogue) to solicit a behavioural response. See Table 5 for advantages and disadvantages.

Examples of semiochemicals include:

- allomones: a signal that benefits the sender, but not the receiving species
- kairomones: a signal that benefits a receiving species, but not the sender
- pheromones: a chemical released by a species for species-specific communication
- synomones: a chemical that benefits both the sender and receiver species.

Semiochemical-based trap lures are generally available through a speciality supplier and are relatively inexpensive.

Attractant-based traps often use food or insect-attracting visual clues to selectively trap a particular type of pest. See Table 6 for advantages and disadvantages.

Examples of visual-based attractant traps include

- light traps
- yellow or blue sticky cards.

Attractant-based and semiochemical trap lures are generally easy to set up in the field, but field placement and the time frame for a new attractant or semiochemical lure must be known. The NPPO should establish protocols for monitoring and replenishing traps on the basis of the known life cycle of the target pest.

Physical traps generally take the form of a mechanical or physical barrier that prevents pest movement. For example, a band of folded burlap can be placed around tree trunks that may be potentially infested with the Asian gypsy moth, *Lymantria dispar asiatica*. Caterpillars will use the burlap as a resting site and can then be destroyed. See Table 7 for advantages and disadvantages.
14.3.3.2 Application method

Trap site selection, mounting and placement will depend upon the target pest and host density. Once a trap has been deployed, GIS coordinates should be recorded. Urban trap locations should also include the full street address. Placement in natural or rural area should include the nearest address and landmarks, in addition to the GIS coordinates.

The following factors need to be considered with trap set-up.

◆ Concentration of attractants or semiochemicals:
 - release rate should be understood for a given geographical area (e.g. fruit fly pheromones have faster release in hot and dry conditions); release rate may also differ with trap type.

◆ Trap density (monitoring and control):
 - should be determined for each geographical region and species or species complex of concern
 - plan for appropriate personnel resources for trap services.

◆ Trapping period should be defined prior to initiating a trapping programme.

◆ Servicing and replacement:
 - instructions on servicing and replacement of commercially available lures should be followed
 - spilling liquid lures during trap servicing will reduce overall trap effectiveness.

14.3.4 Sample screening

Traps should be positioned so that specimens can be easily retrieved.

Protocols for handling samples need to be clearly provided to field survey specialists.

◆ Field sample screening should include observations on the presence or absence of the suspect target, symptoms of plant damage and other relevant information.

◆ Field symptoms that should trigger an urgent sample submission should be clearly identified in the protocol.

◆ Transportation of the sample needs to be defined as:
 - hand carry
 - standard mail or express delivery.

◆ Appropriate equipment for labelling and

<table>
<thead>
<tr>
<th>Table 6. Advantages and disadvantages of attractant traps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
</tr>
<tr>
<td>Low cost and easy to deploy</td>
</tr>
<tr>
<td>Some selectivity may occur depending upon the available research for the pest</td>
</tr>
<tr>
<td>May be constructed and designed from local materials</td>
</tr>
<tr>
<td>May be used to enhance and improve semiochemical-based trapping methods</td>
</tr>
<tr>
<td>Species- or genera-specific attraction may occur for some species (e.g. fruit flies within the genus Anastrepha are more attracted to protein-based food lures)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7. Advantages and disadvantages of physical traps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
</tr>
<tr>
<td>Not generally harmful to the environment</td>
</tr>
<tr>
<td>Effective on small-scale areas of concern</td>
</tr>
<tr>
<td>Relatively easy to deploy</td>
</tr>
</tbody>
</table>
submitting samples should be provided.
- Digital images may be used to further support sample collection information
 - Digital images are not considered confirmatory for new pest detections or finds.

14.3.5 Data collection and reporting
Detailed overall trap information should be collected and related to a unique trap code.
Examples of important trap data include:
- date of servicing
- date of trap replacement.
 Information specific to the sample of specimen collected may include:
- host plant
- stage of host plant
- collection date
- collector
- GPS coordinates.
 Standards for initially reporting data in either paper-based or electronic form need to be clearly articulated in the protocol.
 Additional general information, such as weather patterns during sample collection or changes in crop management practices, should be noted.

14.3.6 Quality assurance
The NPPO should routinely conduct staff performance reviews in order to ensure that records are properly maintained and field staff time is managed appropriately.
Routine procedures for auditing equipment, supplies and data quality are recommended. Field personnel can also be periodically evaluated for competence by the assessment of marked specimens.

14.4 Inspection
Inspection methods for plants will depend on the target pest and commodity. Examples of target pest survey protocols are included in section 11.4.
Additional details regarding inspection methods are described in McMaugh (2005): chapter 3 includes inspection information.

14.5 Sample coding
Each sample should be given a unique identifier (label, number, etc.) to enable tracking and monitoring from the point of collection in the field through to other stages of processing and identification.
Potential coding types:
- permanent marker label (do not use whiteboard marker)
- paper-based labels
- automated barcode labels.
 Regardless of the method used, the surveillance officer must ensure that the label integrity is not compromised and that the label remains intact throughout processing.

14.6 Sample collection
Specimens must be collected in accordance with the relevant SOP and surveillance protocols to ensure specimen integrity for diagnostic processing.
The field data collection sheet may be electronic or in paper form, and will differ according to the purpose of the survey. Uniform sample collection information should be included on all data sheets used by all users within a given survey. Longitude and latitude coordinates should be recorded, preferably with GPS software. If field surveyors are conducting multiple surveys simultaneously, the data sheet should provide a clear indication of the survey of focus for the data collected. Examples of data that should be associated with a sample from a sample collection perspective (derived from ISPM 6) include:
- scientific name of host and Bayer (EPPO) code, if available and known
- plant part affected by symptoms
- means of collection:
 - attractant trap
 - soil sample
 - sweep net
- locality data:
 - location codes
 - addresses
 - coordinates
- date of collection and name of collector
additional information relevant to the sample collection may be:
- nature of host relationship
- infestation status
- growth stage of plant affected
specific details related to the infestation locality, such as:
- found in an agricultural field
- found in greenhouses.

14.7 Submission to diagnostic laboratory
Specimens must be handled, packaged and submitted to the diagnostic laboratory in accordance with the relevant SOP and surveillance protocols to ensure specimen integrity, preservation and timeliness for diagnostic processing. Additional details regarding the handling, packaging and submission of samples can be found in McMaugh (2005, section 2.16, Step 14).

Local diagnostic laboratories should be consulted for specific sample submission techniques and to confirm sampling handling capacity prior to submission. Sample submission will depend on the type of organism or type of sample collected. If pests are collected from multiple non-agronomic crop hosts, submission of plant samples to appropriate botanical staff is also recommended.

14.7.1 Packaging
Field personnel should receive training in the proper packaging and submission of samples for the focus pests within a surveillance programme. The NPPO should develop a general protocol for sample submission relevant to its country, and a survey-specific SOP for sample submission may also be needed.

General guidelines within a sample submission protocol may include these instructions on the preferred method of sample delivery:
- hand-delivered
- mail:
 - if a sample is suspected as high-risk, express or expedited mail services should be requested, if available
 - designated diagnostic labs should be aware of the anticipated sample volume and delivery prior to arrival
- include the sample submission form and data sheet with the sample
- use a crush-proof box or container for sample transport
- do not add water to the sample
- soil samples should be separated from leaf samples – soil on leaves may result in the development of additional plant pathogens on the surface of the leaves during the shipping process
- plant samples with a suspected plant disease should be submitted with multiple plant samples that show a range of symptoms
- a potential plant disease or micro-arthropod can be submitted by placing the plant segment within a dry paper towel and shipping the sample to an approved laboratory.

Sample submission also depends on the sampling technique used during collection. See Table 8 for details.

14.7.2 Sample preparation
Procedures for the specific sampling programme should be followed.

Basic techniques:
- prepare according to relevant SOP
- call laboratory if there are questions about shipping or preserving samples
- most specimens need to be kept cool to prevent degradation.

14.7.2.1 Insects
Larvae
Place into near-boiling water. Heat about 125 ml (½ cup) water (using a gas-burner, microwave oven or kettle) until the first signs of boiling. Add the larvae to this water and let sit for at least 30 s (up to 3 min for large larvae). Remove from water and place into vials with a 70 percent non-denatured ethanol solution. Put a paper label into the vial. The label must include the sample code, survey name and collector (written in pencil, rather than ink, which will dissolve in ethanol). Close the vial firmly and mail it in a well-padded tube or box.

Adult Lepidoptera and other fragile insects
Kill by freezing (two cycles). Submit between layers
of cotton in a labelled container. Place just enough pressure on the specimen to prevent it from moving and damaging scales in transit.

Arachnids, adult insects, molluscs, mites and most nymphs
Place live insects in a vial with 70 percent ethanol solution and a pencil-written label. For true bugs, note colour of live insect in comments section.

Mites smaller than 0.5 mm should be shipped live on host material in a tightly sealed, labelled plastic bag.

Plant tissue:
- samples should show signs of various stages of disease
- wrap samples in dry paper towels or newspaper and enclose in plastic bag
- place in polystyrene shipping container with a few frozen cold packs (wrapped in paper towel) at the bottom.

Nematodes:
- precautions must be taken to prevent drying, freezing and overheating of samples
- whole plants or roots with soil should be placed in plastic bags.

Table 8. Sample packaging

<table>
<thead>
<tr>
<th>Dry</th>
<th>Liquid</th>
<th>Sticky trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipped in vials or glassine envelope</td>
<td>Mites, insect larvae, soft-bodied and hard-bodied adult insects can be transferred to vials of 75–90 percent ethanol or an equivalent, such as isopropyl alcohol</td>
<td>Specimens (Lepidoptera, Diptera, etc.) are fragile and require special handling and shipping techniques</td>
</tr>
<tr>
<td>May break during shipment and only recommended for larger insects</td>
<td>Funnel trap samples may have rainwater in them; drain off all the liquid and replace with alcohol to prevent decay of insects</td>
<td>Specimens in traps should not be manipulated or removed for preliminary screening unless expertise is available</td>
</tr>
<tr>
<td>If a soft envelope is used, wrap it in shipping bubble sheets; if a rigid cardboard box is used, pack it in such a way that the samples are restricted from moving in the container</td>
<td>Vials used to ship samples should contain samples from a single trap and a printed or hand-written label with the associated collection number using a micron pen or a pencil</td>
<td>Traps can be folded, with Stick Em-glue on the inside, but only without the sticky surfaces touching, and secured loosely with a rubber band for shipping</td>
</tr>
<tr>
<td>Always include sample collection data</td>
<td>Inserting a few polystyrene (styrofoam) beads on trap surfaces without insects will cushion and prevent the two sticky surfaces from sticking during shipment to taxonomists</td>
<td>Do not fold traps flat or cover traps with transparent wrap (or other material), because this will damage the specimen making identification difficult or impossible</td>
</tr>
</tbody>
</table>
15. Data Collection and Submission

It is critical that survey data are collected in a consistent and uniform manner to ensure data integrity through to submission.

NPPOs should develop and implement minimum data standards (refer to ISPM 6) for use across all surveillance programmes.

Survey records should include (but not be limited to) the following data fields:
- scientific name of pest (and Bayer/EPPO code)
- family and order details of pest
- scientific name of host (and Bayer/EPPO code)
- plant part affected
- means of collection
- location details (GPS coordinates, addresses)
- date of collection and name of collector
- date of identification and name of identifier
- date of verification and name of verification
- references
- additional information relating to the data record.

Consistent application of minimum data standards will ensure that surveillance records may be utilized for official phytosanitary purposes.

Negative data
NPPOs should also recognize the importance of capturing and recording negative data in their data collection systems. Negative data are used by NPPOs to support a country’s pest status, PFAs and to support trade and market access.
16. Field Communication and Feedback

Effective field communications are essential to ensure that field surveillance findings are communicated back to the surveillance manager in a timely and regular manner throughout the delivery of the surveillance activity.

It is recommended that surveillance managers and surveillance officers conduct the following field communication and feedback as part of surveillance activities.

16.1 Pre-survey briefing
Surveillance managers and surveillance officers should conduct a pre-survey briefing to ensure that survey preparation, equipment methodologies, communication, data requirements and stakeholder engagement considerations are discussed and agreed prior to undertaking the survey activity. This could be summarized in a checklist review.

16.2 Survey (in-field) communications
Surveillance managers and officers should communicate regularly throughout the survey to ensure:
- communication of surveillance outcomes (significant findings, trapping results)
- communication of survey delivery issues (health and safety, equipment issues, emergency response, stakeholder concerns).

16.2.1 Post-survey briefing
Surveillance managers and surveillance officers should conduct a post-survey briefing to discuss the findings of the survey, delivery issues, methodology issues, stakeholder feedback and diagnostic considerations.

16.3 Methods of communication:
- face to face
- mobile phone
- UHF/HF radios
- e-mail communication (phone or tablet computer).
17. Interaction with Stakeholders

Stakeholder interaction and engagement is critical to the successful delivery of surveillance activities.

Stakeholder types (for access considerations) may include:
- commercial (farmers, processing facilities, cooperatives)
- community (homeowners, traditional owners, reservations, interest groups, farmers markets)
- government (military, border, airports, seaports, rail, national parks, protected areas, etc.).

Stakeholder interaction and engagement considerations include:
- be prepared to show government identification and explain purpose of visit
- maintain a proper personal appearance and keep your vehicle clean and tidy
- provide business card or appropriate contact information
- provide pest information and relevant publications, where available
- always ask permission to enter property
- never assume permission will cover repeat visits – request permission for each visit
- do not try to anticipate consequences of survey results or discuss them with the property owner
- allow property owner or employee to accompany you if they express interest
- avoid damage to crops
- after the survey is completed, inform the property owner whether any samples have been taken and that the results will be forthcoming
- leave all gates, doors, etc., as you find them
- be aware of and comply with any biosecurity and sanitation measures in the location and protocols.

Provide survey result feedback as appropriate (considering programme and notification sensitivities and operational feasibility).
18. Supervision of Activities

Effective supervision is essential to ensure that field officers deliver survey activities in accordance with relevant SOPs. ISPM 26 (*Establishment of pest free areas for fruit flies (Tephritidae)*) provides the following specific language in relation to supervision of the establishment of PFAs for fruit flies (Tephritidae).

“The [fruit fly] PFA programme, including regulatory control, surveillance procedures (for example trapping, fruit sampling) and corrective action planning should comply with officially approved procedures. Such procedures should include official delegation of responsibility assigned to key personnel, for example:

- a person with defined authority and responsibility to ensure that the systems/procedures are implemented and maintained appropriately
- entomologist(s) with responsibility for the authoritative identification of fruit flies to species level.

The effectiveness of the programme should be monitored periodically by the NPPO of the exporting country, through review of documentation and procedures.” (ISPM 26, section 1.3)

Further explanation and information regarding effective supervision for a fruit fly area-wide programme can be found in the International Atomic Energy Agency guidelines (IAEA, 2003).

Key elements involved in a supervision plan include the following.

- Official independent evaluations should occur periodically to assess the effectiveness of surveillance activities. The timing of evaluations will differ across surveillance programmes, but it is recommended that they be conducted at least twice a year in programmes that run for six months or longer.
- The evaluation should address all aspects related to the ability to detect targeted pests within the time frame required to meet the survey outcomes.
- Aspects of an evaluation should ensure adherence to SOP (see section 14.3.1 for more detail). Aspects that are found to be deficient should be identified and specific recommendations should be made to correct these deficiencies.
- Proper record-keeping is crucial to the successful delivery of a survey. The records for each survey should be inspected to ensure that they are complete and up to date. Field confirmation can then be used to validate the accuracy of the records.

Feedback surveys may be used as an external evaluation tool by relevant stakeholders to assess the effectiveness of a surveillance programme.
Section 5: Bibliography and Additional Resources
Bibliography

Iowa State University of Science and Technology. 2015. Submitting an insect specimen. Plant and Insect Diagnostic Clinic. Available at http://www.ipm.iastate.edu/ipm/info/submit/insect#Digital_Image_Submission (last accessed on 23 November 2015).

Plant Health Department, BAHÁ. 2003. Pest risk analysis (PRA): When and why is it done and information that is required from importers for plant health to conduct PRA. Plant Health Department, Belize Agricultural Health Authority. Available at http://pflanzengesundheit.jki.bund.de/dokumente/upload/276cb_bz3-2006information_for_pest_risk_analysis.pdf (last accessed on 4 December 2015).

Riley, D.G. nd. Economic injury level (EIL) and economic threshold (ET) concepts in pest management. University of Georgia. Available at http://entomology.ifas.ufl.edu/capiner/eny5236/pest1/content/08/9_economic_injury.pdf (last accessed on 23 November 2015).

ISPMs Directly Related to Surveillance

The international standards that are directly concerned with matters relating to surveillance are listed below:

ISPM 1. 2006. *Phytosanitary principles for the protection of plants and the application of phytosanitary measures in international trade*. Rome, IPPC, FAO.

ISPM 10. 1999. *Requirements for the establishment of pest free places of production and pest free production sites*. Rome, IPPC, FAO.

ISPM 22. 2005. *Requirements for the establishment of areas of low pest prevalence*. Rome, IPPC, FAO.

ISPM 26. 2015. Establishment of pest free areas for fruit flies (Tephritidae). Rome, IPPC, FAO.

ISPM 29. 2007. *Recognition of pest free areas and areas of low pest prevalence*. Rome, IPPC, FAO.

ISPM 32. 2009. *Categorization of commodities according to their pest risk*. Rome, IPPC, FAO.
Internet Resources

International Plant Protection Convention (IPPC)
www.ippc.int/en/
The IPPC website contains ISPMs and links to other multinational plant protection organizations.

Phytosanitary Resources
http://www.phytosanitary.info/
The Phytosanitary Resources page includes over 300 technical resources that are freely available. These include e-learning modules, manuals, training materials, diagnostic protocols, videos, advocacy materials, photographs, a roster of consultants and databases of projects and activities.

European and Mediterranean Plant Protection Organization (EPPO)
http://www.eppo.int/
This organization is an RPPO and coordinates numerous aspects of plant protection across most European countries. EPPO has produced a number of standards on phytosanitary measures and plant protection products.

North American Plant Protection Organization (NAPPO)
http://www.nappo.org/
This organization is an RPPO and coordinates numerous aspects of plant protection across North American countries. NAPPO has produced a number of standards on phytosanitary measures.

The Plant Protection Committee (COSAVE)
http://www.cosave.org/
This organization is an RPPO and coordinates numerous aspects of plant protection across South American countries. COSAVE has produced a number of standards on phytosanitary measures.

CAB International (CABI)
http://www.cabi.org/
CABI is an international not-for-profit organization that improves people's lives by providing information and applying scientific expertise to solve problems in agriculture and the environment.

CABI Crop Protection Compendium
http://www.cabi.org/cpc
The compendium contains fact sheets on a wide diversity of pests.

Plantwise
http://www.plantwise.org/
Plantwise is a global programme led by CABI, which works to help farmers lose less of what they grow to plant health problems.
Animal and Plant Health Inspection Service (APHIS) of USDA
The website has manuals on a number of invertebrate pest species, with useful information on identification, survey methods and pest control. Pest risk assessments of commodities being considered for import into the United States are available for numerous pests and these can provide readily accessible information about host ranges and surveillance methods, among other useful sections. APHIS also provides useful links to a wide range of pest information databases.

American Phytopathological Society (APS)
http://www.apsnet.org
APSNet contains discussions of plant pathogens through newsletters, and an image collection. It also contains a database of pest lists for different crops and commodities.

Guidelines for surveillance for plant pests in Asia and the Pacific
This manual will assist plant health scientists to devise surveillance programmes and to transmit specimens to the laboratory for identification and preservation.
Appendix A: Surveillance Equipment

The list below is not exhaustive. Surveillance specialists should ensure they have the right equipment for the type of survey to be undertaken. This includes appropriate and reliable means of transport outfitted for the tasks to be undertaken ranging from domesticated draft animals, bicycles, motorbikes, all-terrain vehicles, motor vehicles, water craft, aircraft and other necessary vehicles. Safety equipment should always be carried without exception.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Reagents</th>
<th>Supplies</th>
<th>Tools for data collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol flame lamp</td>
<td>Ethanol (70–90 percent)</td>
<td>Brightly coloured ribbons</td>
<td>GPS unit</td>
</tr>
<tr>
<td>Spade</td>
<td>Calcium chloride chips (desiccant)</td>
<td>Spray paint</td>
<td>Maps</td>
</tr>
<tr>
<td>Soil sieves for nematodes</td>
<td>Water</td>
<td>Ice packs</td>
<td>Mobile phone, radio or satellite phone</td>
</tr>
<tr>
<td>Sweep net</td>
<td>Ethyl acetate</td>
<td>Camel hair brushes</td>
<td>Diagnostic keys</td>
</tr>
<tr>
<td>Pooter or aspirator</td>
<td>Ammonium carbonate</td>
<td>Corrugated cardboard</td>
<td>Random number generator</td>
</tr>
<tr>
<td>Collecting vacuum</td>
<td>Plastic tubes with snap on caps (assorted sizes)</td>
<td>Digital camera</td>
<td></td>
</tr>
<tr>
<td>Mounting boards</td>
<td>Tape</td>
<td>Watch</td>
<td></td>
</tr>
<tr>
<td>Scissors</td>
<td>Clear plastic bags (assorted sizes with zip lock or ties)</td>
<td>Notebook</td>
<td></td>
</tr>
<tr>
<td>Plant press</td>
<td>Newspaper</td>
<td>Permanent marker pens</td>
<td></td>
</tr>
<tr>
<td>Pruning saw</td>
<td>Pins for insects</td>
<td>Compass</td>
<td></td>
</tr>
<tr>
<td>Water spray</td>
<td>Lures</td>
<td>Laptop or personal handheld device</td>
<td></td>
</tr>
<tr>
<td>Small combination pick, mattock or trowel</td>
<td>Traps</td>
<td>Aerial drones</td>
<td></td>
</tr>
<tr>
<td>Field microscope</td>
<td>Glassine envelopes for delicate specimens (moths, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beating sheets</td>
<td>Specimen pots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammer</td>
<td>Glass vials with screw caps assorted sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chisel</td>
<td>Parafilm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>Reagents</td>
<td>Supplies</td>
<td>Tools for data collection</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Strong knife</td>
<td>Culture plates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secateurs</td>
<td>Razor blades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand lens</td>
<td>Scalpels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binoculars</td>
<td>Gloves (gardening type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey bag (backpack type)</td>
<td>Surgical gloves (disposable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small bucket</td>
<td>Absorbent fibre-free paper tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icebox</td>
<td>Disinfectant wipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power saw</td>
<td>Hand towels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machete</td>
<td>Acid-free collectors tags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penknife</td>
<td>Mosquito repellent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigarette lighter</td>
<td>Sunscreen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whistle</td>
<td>Disposable coveralls with boot covers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tweezers or forceps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collecting/killing jars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain gear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunglasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First aid kit with eyewash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spare clothing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The International Plant Protection Convention (IPPC) is an international plant health agreement that aims to protect cultivated and wild plants by preventing the introduction and spread of pests. International travel and trade are greater than ever before. As people and commodities move around the world, organisms that present risks to plants travel with them.

Organization

- The number of contracting party signatories to the Convention exceeds 181.
- Each contracting party has a national plant protection organization (NPPO) and an Official IPPC contact point.
- 10 regional plant protection organizations (RPPOs) have been established to coordinate NPPOs in various regions of the world.
- IPPC liaises with relevant international organizations to help build regional and national capacities.
- The Secretariat is provided by the Food and Agriculture Organization of the United Nations (FAO).