Ultra-processed foods’ impacts on health
Ultra-processed foods’ impacts on health

Ultra-processed foods and beverages increase significantly the risks of obesity, and other noncommunicable diseases, and most causes of mortality, while reduced consumption has significant effects on health and well-being

Barry Popkin
Global Food Research Program University of North Carolina
Required citation:
Popkin, B. 2019. *Ultra-processed foods' impacts on health.* 2030 – Food, Agriculture and rural development in Latin America and the Caribbean, No. 34. Santiago de Chile. FAO.

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.

© FAO, 2019

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original English edition shall be the authoritative edition.”

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will be conducted in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL).

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications-sales@fao.org. Requests for commercial use should be submitted via: www.fao.org/contact-us/licence-request. Queries regarding rights and licensing should be submitted to: copyright@fao.org.

Photograph of the cover and back cover: ©envatoelements
1. What are processed foods?

Processed food is defined as any procedure that alters food from its natural state, such as freezing, drying, milling, canning, mixing, or adding salt, sugar, fat, or other additives (Dietary Guidelines Advisory Committee, 2010; US Food and Drug Administration and Department of Health and Human Services, 2011). Thus the US government’s definition of processed food—any food other than a raw agricultural commodity—includes diverse foods ranging from frozen vegetables, dried fruits, and canned beans to whole wheat breads, breakfast cereals, prepared meals, candies, and sodas (Dietary Guidelines Advisory Committee, 2010; US Food and Drug Administration and Department of Health and Human Services, 2011). Because of this heterogeneity, researchers developed classification systems to subdivide processed foods into refined categories based on the complexity of processing, the physical and chemical changes resulting from processing, and the purpose of processing. Foods are classified into levels along a spectrum ranging from minimally processed to ultra-processed (Eicher-Miller, Fulgoni and Keast, 2012; International Food Information Council Foundation, 2010; Monteiro et al., 2011; Slimani et al., 2009).

Most nutritionists and public health scholars have accepted C. A. Monteiro’s food classification, the most commonly used, as the global standard (Monteiro et al., 2017; Poti et al., 2015). Poti et al. (2015) provide the most detailed interpretation of Monteiro’s classification. Their layout includes several million foods, linked with nutrition fact panel data, and ingredient databases to use the NOVA system to also categorize all bar-coded items with convenience status (e.g., ready to eat or ready to heat). This is presented in Appendix Table 1.

Here we define ultra-processed foods as multi-ingredient, industrially formulated mixtures (Monteiro, Cannon, et al., 2017; Shewfelt, 2009).

Food processing can help ensure a safe, diverse, abundant, and accessible food supply (Floros et al., 2010). However, the current state of research shows that excessive consumption of ultra-processed food might contribute to poor dietary quality and obesity (Monteiro et al., 2011; Mozaffarian et al, 2011; Slimani et al., 2009). In addition, many ultra-processed foods are manufactured to be ready to eat requiring no preparation before quick, easy consumption (Harris and Shiptsova, 2007). Researchers hypothesize that convenience foods disrupt satiation/satiety signaling by encouraging a rapid eating rate and eating while distracted (e.g., watching television) (Appelhans et al., 2012; de Graaf, 2012; Robinson et al., 2014; Robinson et al., 2013; Viskaal-van Dongen, Kok and de Graaf, 2011).
2. Current knowledge on ultra-processed foods’ impacts on health

Ultra-processed foods in the global diet

A substantial factor affecting overweight/obesity has been a major shift in the types of ready-to-eat, ready-to-heat, processed, and packaged foods and beverages available for consumption (Poti et al., 2015). This has been particularly important in Latin America and the Caribbean, where Popkin and Reardon have documented regional food system changes related to overweight/obesity (Popkin, 2018). The last 60 years have seen a revolution in food science and manufacturing of highly processed foods, increasingly labeled ultra-processed foods in the literature. The proportion of calories obtained from these foods—which include additives that enhance flavors and scents and are high in added saturated fat, added sugar, and added salt—saw explosive growth first in high-income countries in 1970–2000, then in Latin America in the 1990s with modern retailing, and now across all remaining low- and middle-income countries (Canella et al., 2014; Cediel et al., 2017; Monteiro et al., 2011; Monteiro et al., 2013; Moubarac et al., 2014; Martínez Steele et al., 2016).

Over the last 25 years, the availability and sales of these ultra-processed foods have increased rapidly across low- and middle-income countries and all regions of the world, and a growing set of studies is measuring this shift (Canella et al., 2014; Cediel et al., 2017; Monteiro, et al., 2017; Monteiro et al., 2013; Moubarac et al., 2014; Martínez Steele, et al., 2017). More profoundly, research is establishing a solid link between the move from real foods which are unprocessed or minimally processed to ultra-processed foods and overweight/obesity and many nutrition-related noncommunicable diseases (NCDs).

Ultra-processed foods’ impacts on dietary intake, obesity, and NCDs

The rapid growth in sales of ultra-processed foods in low- and middle-income countries greatly threatens to increase overweight/obesity and undernutrition, because infants are increasingly fed these products. In addition, studies are beginning to associate ultra-processed foods with reduced length-for-age (Pries et al., 2019). The Pries et al. 2019 study is the only one linking infant consumption of any ultra-processed food aside from infant formula, which fits into a different category but is also ultra-processed. We need longitudinal studies on cohorts with more recent full dietary intake data to reflect the shift in diets toward ultra-processed foods, which infants globally are consuming increasingly (Feeley et al., 2016; Pries, Filteau and Ferguson, 2019; Pries, et al., 2016; Pries, et al., 2016; Pries et al., 2019; Vitta et al., 2016).
A team of US National Institutes of Health (NIH) researchers in 2019 conducted a random controlled trial with a crossover design, so each person was his or her own control. They fed normal-weight adults a diet of real food for two weeks and a diet of ultra-processed foods for two weeks. When fed the real food the adults lost 0.9 kilograms, but when fed the ultra-processed food they gained the same 0.9 kilograms. Each group started with one diet regimen and then shifted to the other (Hall, 2019). This NIH trial is important as up to this period all the studies discussed below were observational and therefore had focused on subsequent health risks for people according the amount of ultra-processed foods in their diet. Although these studies were controlled for a large list of potential confounders, such as physical activity and smoking, residual confounding never can be discarded. The NIH study put all subjects in a controlled food environment for a month. The researchers provided the two groups foods with the same distribution of fiber, protein, carbohydrates, fat, and total energy. However, while ultra-processed beverages can lower energy density and total energy, all ultra-processed foods are higher in energy density than real food. The two groups were allowed to eat ad libitum or the amount they wanted. As a result, the same individuals consumed 500 kilocalories more when they were in the ultra-processed food group than when they were in the real food group, which is important. Whether the mechanism involved is hyper palatability or energy density or both requires further study.

This NIH work was amplified by several papers that came out two weeks later in the British Medical Journal that looked at two large European cohorts and showed a strong positive relation between ultra-processed foods and cardiovascular disease and all-cause mortality (Fiolet et al., 2018; Lawrence and Baker, 2019; Rico-Campà et al., 2019; Srour et al., 2019). A large number of studies published earlier reported longitudinal data from children and adults that associated ultra-processed food intake with increased NCD risk (Adjibade et al., 2019; Costa et al., 2019; Cunha et al., 2018; Fiolet et al., 2018; Gómez-Donoso et al., 2019; Kim, Hu and Rebholz, 2019; Mendonça et al., 2017; Mendonça et al., 2016; Rauber et al., 2015; Rauber et al., 2018; Rico-Campà et al., 2019; Rohatgi et al., 2017; Sandoval-Insauti et al., 2019; Schnabel et al., 2019; Srour et al., 2019; Vandevijvere et al., 2019).
3. Impacts of regulations on ultra-processed food consumption

Globally most regulations focus on either fiscal policies or front-of-the-package labels (FOPLs). Nevertheless, some countries have focused on healthier eating in schools, and several have started to address marketing of ultra-processed foods directed toward children (Popkin, 2018; Shekar, 2019). These policies are discussed below in the context of reducing consumption of ultra-processed foods high in added sugar, added saturated fat, or added sodium or ultra-processed foods with high energy levels per 100 grams, since these elements have the strongest scientific basis.

Fiscal policies

To date the most widespread fiscal policies have put taxes on sugar-sweetened beverages (SSBs), and at this point, over 42 countries have this type of taxes. In the Americas these taxes have been based on volume (Figure 1: Sugary drinks taxes in Americas). For example, Mexico’s tax, approximately 10% [one Mexican peso per liter on any nonalcoholic drink with added sugar] (Colchero, et al., 2016; Colchero, et al., 2017). Chile raised the tax on SSBs with more than 15 grams of sugar per 240 milliliters from 13% to 18% (Caro et al., 2018). Several Caribbean islands have implemented similar small, incomplete taxes (Alvarado et al., 2019). Globally only the United Kingdom (UK) and South Africa have instituted taxes that include a tier that is not taxed. The UK’s has three tiers in addition to no tax on low-sugar products, and South Africa taxes products per gram of sugar. Most of these taxes exclude dairy products and 100% fruit juice, but the latter is increasingly considered for taxation, as the health impact of 100% fruit juice is comparable to that of SSBs. Increasingly countries are now including taxes on milk products with added sugar.

Only a few countries tax nonessential foods. Hungary and Mexico are the two most prominent, both countries taxes a subset of foods that the government denoted as unhealthy. The Mexican government taxes energy-dense foods with more than 275 calories per 100 grams at 8% of the price, and evaluations show that this tax has had an impact on nonessential food purchases equivalent to the tax level (Batis et al., 2016; Taillie et al., 2017). Similarly, the Hungarian tax adopted in 2012 applies to the sugar, caffeine, and salt contents of various categories of ready-to-eat foods and drinks, including energy drinks, which youths widely consumed. One econometric analysis using broad food and beverage categories from household expenditure data in Hungary found a 3.4% decrease in purchases of taxed processed food and a 1.1% increase in unprocessed food purchases (Biró, 2015). Other initial reports suggest a much larger 27% decline in sales of taxed foods and extensive reformulation of ultra-processed food (WHO Regional Office for Europe (Nutrition Physical Activity and Obesity Programme), 2015).

The fiscal policies show two major gaps. To date no country has used a systematic approach to identify all ultra-processed foods and beverages rather than taxing the entire class of items. Which could be done with Chile’s nutrient profiling model or a similar one (Corvalan et al.,
Many countries have used this option to encourage healthy eating and reduce the risks accompanying unhealthy nutrients (Figure 2). The key nutrients addressed have been sugar, saturated fat, and sodium. Some countries have also focused on energy density in unhealthy foods and beverages. There are several types of labelling: Healthy food options logos, Warning labels systems, Guidelines of Daily Allowance, Traffic label systems and Nutriscore.

The long history of FOPLs began in 1989, when the Swedish government established the Keyhole logo to designate healthy food options and set nutrition criteria for its use. Sweden, Denmark, and Norway launched the Keyhole logo as a common Nordic label on 17 June 2009, and Lithuania followed in 2013. The Keyhole logo helps consumers choose products that contain less fat, salt, and sugar. Its use is voluntary, but products must conform to the nutrition criteria, which are identical among participating countries. The program set stricter criteria in 2016 (Becker et al., 2015; Hawley et al., 2013; Nestle, 2018; U.K. Department of Health, 2013; World Cancer Research Fund International, 2019).
The evidence that positive logos have an impact on food purchasing behavior is minimal. One study reported that the Choices International program has a small impact on reformulation (AJ Roodenburg, BM Popkin, & JC Seidell, 2011; Vyth et al., 2012). Another study looked at the impact of the Choices logo that the Netherlands required and the tick type of logo in Denmark and reported that only the Choices logo was linked with increases in nutritional food purchases of 10% in one group (Smed, Edenbrandt and Jansen, 2019). There is a large number of random controlled trials that show that simpler FOPL’s work best (Ares et al., 2018; Feunekes et al., 2008; Hamlin, McNeill and Moore, 2014; Roodenburg, Popkin and Seidell, 2011; Wartella, Lichtenstein and Boon, 2010).

In 1998 the food industry initiated the Guidelines of Daily Allowance (GDA), a voluntary collaboration between the UK government, the food industry, and consumer organizations. Subsequently the Grocery Manufacturers of America and food industry lobbies in many other countries pushed it. Several governments allow use of the GDAs and only Mexico requires it but that law will be shifted to a warning label. The GDAs is the laxest FOPLs. They list five key nutrients, energy, fat, saturates, sugar, and salt, and indicate the percentage of the recommended daily value of each per serving and the absolute amount per serving. Dozens of random controlled trials report that their impact is negligible, and no study has found that they positively affect food purchases, while others have found GDAs ineffective and difficult to understand:

- Qualitative research in Mexico found that GDAs were the hardest to understand and least accepted FOPL due to the technical terms and lack of comprehensive nutrition information (De la Cruz-Góngora et al., 2017).

- Consumers require more time to assess GDAs and have much less success understanding them than other labeling approaches (Bialkova et al., 2014; Siegrist, Leins-Hess and Keller, 2015).

- GDAs do not reduce consumption of unhealthy products (Boztuğ et al., 2015).

- All nonindustry-funded studies comparing GDAs with other systems (traffic lights, Nutri-Score, Choices, Health Star Rating, and Chile’s and Brazil’s warning labels) show that GDAs are the least effective at encouraging consumers to make healthier choices (Ducrot et al., 2016; Ducrot et al., 2015; Julia et al., 2017; Siegrist et al., 2015).

- Studies in Australia and New Zealand found that GDAs (locally referred to as Daily Intake Guides) were less preferred by consumers and less effective at helping them discriminate between healthy and unhealthy products compared to traffic lights and Health Star Rating labels (Pettigrew et al., 2017; Talati et al., 2017).

- Studies using eye-tracking technology have found that GDA labels are less effective at getting consumers’ attention and thus less able to help consumers identify whether a product is unhealthy compared to warning labels (Centurión, Machín and Ares, 2019; Popova et al., 2019).

The UK government was the first to use the Traffic label system (Hawley et al., 2013; Health, 2013; Sacks et al., 2011). A red light indicates a high level of that nutrient, an amber light a medium level, and a green light a low level according to the nutrition criteria their Food Standards Agency set. Evaluations have found no evidence that traffic lights have a positive impact on food
purchases. The traffic light system was first introduced as a voluntary system in the UK and is now implemented also in Ecuador and South Korea (Freire, Waters and Rivas-Mariño, 2017; Hawley et al., 2013).

The Nutriscore is a completely untested system but has attracted a great deal of attention. It was developed to be consumer friendly and has had the support of most major global food companies. This system classifies food and beverages according to five categories of nutritional quality, indicated via a color scale ranging from dark green to dark red, along with a letter from A to E with A equal to dark green. It is based on 100 grams and positive nutrients (fiber, protein, fruit and vegetables) and negative (energy, saturated fatty acids, sugars, salt). They use a complex non-transparent scoring system. It was introduced as a voluntary system in France in 2016, and after European Commission approval in 2017, it was required.

Chile was the first country to use the warning label approach to delineate ultra-processed or heavily processed foods by focusing on added sugar, added sodium, and added saturated fat, and for foods with added sugar or added saturated fat it also included an energy density cutoff (Corvalan et al., 2019; Reyes et al., 2019). This warning label system is rapidly spreading globally as countries learn of the impact of the Chilean law on purchase of ultra-processed food and beverages. As we discuss below, Chile used this nutrient profile model in an array of linked policies. Over four years the country instituted three phases of increasingly stringent cutoffs and identified those foods with a black stop sign warning label. Chile is the first country to demarcate in forthcoming papers the impacts of this warning label on both industry reformulation and significant declines in purchases of regulated foods and beverages. In addition, this policy seems to be linked with potential eating norm changes (Correa et al., 2019). Journals are reviewing the research.

- Research shows significant reformulation of foods and beverages high in added sodium and added sugar, and has found reductions of saturated fat only in selective food groups (Reyes et al., 2019).

- Research indicates a reduction of 25% in purchases of regulated SSBs (Taillie LS, 2019).

Israel, Peru, and Uruguay have implemented the warning label logo. Few countries have used any other FOPL as a mandatory system. Canada’s legislature has approved the warning label law and it is waiting for PM Trudeau’s signature. Over the next year, Mexico and Brazil will implement it, and a number of other countries are considering it. In all countries, the warning label has faced food industry opposition.
Marketing controls

Children are exposed every day to food marketing where they live, learn, and play—on TV, at school, at sports practice, in stores, at the movies, on mobile devices, and online (Federal Trade Commission, 2012; Harris et al., 2009; McGinnis, Gootman and Kraak, 2006; Palmer and Carpenter, 2006). In the United States children ages 2 to 11 view roughly 13 ads a day for foods, beverages, and restaurants on TV (Rudd Center For Food Policy and Obesity, 2014). A 2019 study of TV advertising in 22 countries found on average four times more ads for unhealthy foods and drinks than for healthy ones and 35% more unhealthy food ads during children's peak viewing times (Kelly et al., 2019). While TV has historically been the medium of choice to reach children, marketing via newer online, mobile, and social media has exploded in recent years, offering marketers more tools to target young audiences (Cheyne et al., 2013; Common Sense Media, 2014; McGinnis et al., 2006; Montgomery and Chester, 2009). The majority of promoted food products are calorie dense and nutrient poor with added sugar, saturated fat, and sodium well above recommended levels (e.g., sugary breakfast cereals, soft drinks, candy, salty snacks, and fast foods) (American Heart Association, 2016; Cairns et al., 2013; Federal Trade Commission, 2012; Harris, Pomeranz, et al., 2009; Kelly et al., 2010; Matthews, 2008; McGinnis et al., 2006; Palmer and Carpenter, 2006; World Health Organization, 2013, 2016). Children are extremely vulnerable to food marketing. Developmentally, they are highly impressionable, cannot yet recognize advertising intent, lack nutritional knowledge, and are motivated by immediate gratification rather than long-term consequences (Harris, Brownell and Bargh, 2009; McGinnis et al., 2006; Swinburn et al., 2011).
Chile is the only country that has systematically banned marketing of ultra-processed foods to children (Corvalan et al., 2019) and that included banning characters on packages of regulated foods (Mediano Stoltze et al., 2018). The marketing ban carried over to schools. In June 2019 the Chilean government initiated a total ban on marketing of all regulated phase 3 foods from 6 am to 10 pm, and during other hours all marketing of regulated foods is required to include a warning message. Initial evaluations of the child marketing ban show a significant reduction in children’s exposure to ads, but the total advertising did not decrease because promoters shifted to other TV programs (Carpentier, 2019; Correa et al., 2019).

Other countries have limited or voluntary bans on marketing to children (Figure 3). Few have been evaluated, and those that have been show minimal impacts. Effective food marketing regulations should address the types of foods and beverages regulated, the channels through which they are marketed (e.g., television, digital media, schools, etc.), and the audiences reached. The key concepts for developing effective regulations follow.

- Partial measures are ineffective as ways to avoid restrictions through alternative paths can be found to achieve the same reach to consumers (Galbraith-Emami and Lobstein, 2013; Swinburn et al., 2008).

- Effectiveness of industry self-regulation is questionable. Provisions are often weak, participation is voluntary, and enforcement and penalties are not strong enough to ensure compliance (Galbraith-Emami and Lobstein, 2013; Kelly et al., 2019; Swinburn et al., 2008). For example, studies have found that countries with voluntary industry self-regulation have more TV advertising for unhealthy foods during children’s peak viewing times than countries with no policy at all (Kelly et al., 2019).

- Rigorous enforcement is critical. Compliance is maximized only if marketers are likely to be caught and face meaningful penalties (Galbraith-Emami and Lobstein, 2013; Swinburn et al., 2008; World Health Organization, 2012).

The Chilean marketing ban is the most complete and should be a starting point for any future laws in the Americas. What has been and will be learned in Chile shows other countries the wisest paths forward.
School nutrition

School nutrition focuses most commonly on healthy meals or a total ban on selling and marketing ultra-processed foods and beverages, especially SSBs. Schools are meant to provide a healthy environment for children’s minds and bodies. As places of education, schools have an opportunity to encourage healthy eating both inside and outside the school environment. Providing and promoting unhealthy foods in and around schools contributes to poor nutrition. The standards for school vendors should mirror those of school meals. Such standards have been shown to decrease consumption of sugary drinks and unhealthy snacks in and out of school (Micha et al., 2018). A districtwide policy that banned all sugary drink sales in Boston, Massachusetts, public schools led to a significant reduction in students’ total consumption of sugary drinks (Cradock et al., 2011). In 2012 Massachusetts implemented nutrition standards for competitive foods sold in schools statewide that has also been associated with significant decreases in students’ sugar consumption both during and after school (Cohen et al., 2018). Seven years after Brazil implemented its first national law regulating sales of unhealthy foods in schools, nearly 70% of school vendors stopped selling fried snacks, sodas, ultra-processed popcorn, candies, lollipops, chewing gum, and packaged snacks (Gabriel et al., 2009).

Restrictions on marketing of unhealthy foods on school grounds are important. Heavy promotion of unhealthy foods and beverages on school grounds through direct advertising, branding, event sponsorships, and contractual vending and food service agreements reinforce unhealthy choices and undermine messages about healthy eating (Harris and Fox, 2014; McGinnis et al., 2018).
2006; Story and French, 2004). More importantly, it encourages students to become loyal consumers of unhealthy food and beverage brands (Connell, Brucks, and Nielsen, 2014; Harris et al., 2009).

Summary of policy options

A large number of countries have instituted fiscal food policies, mainly SSB taxes, and a few also tax ultra-processed foods. Solid evidence indicates that these taxes work. However, it is too early to know if a tiered tax like the one the UK has instituted, a tax on grams of sugar, or a volume tax is most effective. It is clear is that SSBs need to be taxed at 20% or higher to have a true impact on consumption and the risks of overweight/obesity and nutrition-related NCDs.

At the same time a nutrition profile model that identifies the unhealthiest ultra-processed foods can be used across many domains, including fiscal policies, FOPLs and warning labels, marketing bans, and restrictions in schools. Chile’s strong comprehensive policies are linked with significant overall changes in food purchasing and eating norms. Science tells us that FOPLs have the most immediate impact on purchases of ultra-processed foods. Moreover, this effort can be readily expanded to marketing, school nutrition, and fiscal policies.

Acknowledgements

Carlos Monteiro, University of Sao Paulo, is thanked for his assistance reviewing this document.
References

Batis, C., Rivera, J. A., Popkin, B. M., & Tailie, L. S. (2016). First-year evaluation of Mexico’s tax on nonessential energy-dense foods: an observational study. PLOS Medicine, 13(7), e1002057. doi:10.1371/journal.pmed.1002057

Becker, M. W., Bello, N. M., Sundar, R. P., Peltier, C., & Bix, L. (2015). Front of pack labels enhance attention to nutrition information in novel and commercial brands. Food Policy, 56, 76-86. doi:http://dx.doi.org/10.1016/j.foodpol.2015.08.001

Carpentier, F. R. D., Teresa Correa, Marcela Reyes, Lindsey Smith Taillie, (2019). Preschool and adolescent children’s changes in exposure to food advertising on television: evaluating the impact of Chile’s marketing regulation of unhealthy foods and beverages

Correa, T., Reyes, Marcela,Taillie, Lindsey Smith, Corvalan, Camila, Dillman Carpentier, Francesca R.,. (2019). Changes in TV advertising after the implementation of the Chilean Law of Food Labeling and Advertising: Evidence from a pre-post study. Institute of Nutrition and Food Technology, University of Chile, Santiago.

NOVA food classification and the trouble with ultra-processing. Public health nutrition, 21(1), 5-17. doi:10.1017/S1368980017000234

Rudd Center For Food Policy & Obesity. (2014). Trends in Television Food Advertising

