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Abstract  

Sustainable forest management is a powerful nature-based solution for climate-change adaptation and 

mitigation. In this sense, knowledge of the ecosystem services (ES) generated by forests is essential to plan and 

implement efficient management alternatives, especially when resources are threatened by climate change. 

Even more so in forests with low timber productivity, such as semi-arid Mediterranean ecosystems, where forest 

management based exclusively on timber products, which is the most easily monetizable service and therefore 

the most attractive for companies and individuals, is not profitable. C.A.F.E. (Carbon, Aqua, Fire & Eco-resilience) 

is a Multi-Objective Decision Support System for forest management that quantifies and optimizes ES derived 

from forest management, thus paving the way to payment for ES schemes. It is based on the combination of 

multiple pyro-eco-hydrological processes simulated by process-based models and multi-criteria optimization 

with genetic evolutionary algorithms. This tool allows managers to plan the silvicultural operations oriented 

towards thinning or planting necessary for multi-criteria forest management, answering the following 4 

fundamental questions: How much, where, when or how do I have to act? In addition, it allows to see how 

climate change scenarios influence silvicultural actions and the production of goods and ES. The provided results 

are a list of possible silvicultural actions (Pareto front), each of one, associated with the quantification of the 

targeted ES and compared to the base line situation. As Pareto front, all solutions provided are equally valid and 

none is better than the other. To select a final solution, users must establish their priorities in terms of ES by 

filtering the solutions with the help of an iterative visualization interface. 

Keywords: Sustainable forest management, Climate change, Knowledge management, Landscape management, 

Innovation. 

Introduction, scope and main objectives 

Forest ecosystems provide ecological, economic and social services, including sustaining biodiversity, supplying 

food biodiversity, provision of food, medicines and forest products, regulation of the hydrological cycle, soil 

protection or recreational uses (Bonan, 2008). However, to be multifunctional, appropriate management of their 

natural resources is necessary to ensure their sustainability. In addition, forest management enables forests to 

perform better and make them more resilient to disturbances. Historically, European forest ecosystems have 

had mainly a productive role and have therefore been managed accordingly. Over time, this approach has 

evolved to the present day, which recognizes the multifunctionality of forests, combining the provision of 

multiple ecological, economic and social goods and services. Such approach, while increasing the complexity of 

forest management, increases the sustainability of forest management and highlights its role as a regulator of 

the provision of goods and services. Moreover, if we consider climate forecasts here, the application of this type 

of management becomes even more necessary (Bravo et al., 2017). 

Decision support systems (DSS) are essential tools that enable forest managers to consider the offsetting among 

different Ecosystem Services (ES) and its economic and legal implications that interfere with forest planning 

(Segura et al., 2014). They  can be defined and take many different forms, but over the years they have evolved 

into interactive and flexible software that allows managers to make sound management and planning decisions 
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when faced with an ill-structured or unstructured problem through direct interaction with data and analysis 

models (Rauscher et al., 2000). 

These tools appeared after the second half of the 20th century, in the business sector, where mainly companies 

developed and applied the use of DSS to realize management and administration strategies. In the 1980s, they 

started to be used in the forestry sector and have continued to be used to this day. Its use has been changing 

throughout time, due to the multi-functionality of forests (Vacik and Lexer, 2014). Since the development of the 

first DSSs for forest management, multi-objective forest management was already being carried out, this is why 

these tools were so well received by managers. A multitude of complex processes occur in natural ecosystems, 

which make decision-making difficult for the manager. Furthermore, in order to achieve sustainable ecosystem 

management, the socio-ecological aspects involved in ecosystem processes must be understood (Ananda and 

Herath, 2009). Thus, the uses of these management tools are all the more necessary to achieve this goal. 

Due to the large number of complex processes occurring in ecosystems, the importance of these tools in forest 

management has led to their wide and varied use in the sector. This is why numerous DSSs have been developed 

for forest management that consider a diverse range of goods, services and aspects related to environmental 

management, such as wildlife (Garcia and Armbruster, 1997), fire or disturbance risk (Noble and Paveglio, 2020), 

landscape management (Jahani and Rayegani, 2020), consideration of climate change constraints (Cristal et al., 

2019) or uncertainties in logistics operation (Maldonado et al., 2019). In addition, there are multi-objective DSSs 

that allow understanding how these multiple objectives are interacting and which solutions are the most optimal 

Given the multifunctionality and complexity of forest ecosystems, this approach is necessary to manage a forest 

in a sustainable way by managing forests in a way that maximizes and quantifies ecosystem services. 

This work stems from the European LIFE project program "Life Resilient Forests" 

(https://www.resilientforest.eu/), which promotes a forest management approach at the watershed scale that 

improves forests resilience to wildfires, water scarcity, environmental degradation and other effects induced by 

climate change. The main aim of this work is to show the creation of a multi-objective DSS (CAFE, (Carbon, Aqua, 

Fire & Eco-resilience)) that combines simulation of process-based eco-hydrological models and optimization 

with multi-objective evolutionary algorithms to help managers to plan and carry out optimal and multi-objective 

forest management (Thinning or Planting), considering the 4 fundamental questions of forestry (How much do I 

act? Where do I act? When do I act? and How do I act?). 

Methodology/Approach 

1- DSS structure 

CAFE is a Multi-Objective DSS (MODSS) for forest management. This tool determines the optimum silvicultural 

activities (thinning or planting) to manage multiple goods and services such as biomass production, carbon 

sequestration, fire risk, water provisioning, climatic resilience or biodiversity, which are simultaneously 

quantified in time and space for a selected solution. To that end, CAFE. combines eco-hydrological simulation 

and multi-objectives optimization with evolutionary algorithms. Finishing the execution with an iterative 

visualization of the results that allows the user to understand and select the most appropriate option. Therefore, 

the three modules on which this DSS is structured are: simulation, optimization and visualization (Fig. 1). The 

combination and communication of these modules make it a multipurpose and useful tool for decision making 

by forest managers. 

https://www.resilientforest.eu/
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Fig. 1: Scheme of the Decision Support System (DSS), CAFE. 

Simulation: Process-based models 

Process-based models (PBM), also known as mechanical or ecosystem models, are the mathematical 

representation of the functioning of a well-defined biological system (Tanevski et al., 2017). These models 

represent and simulate physiological and biogeochemical processes and their interactions with the 

environment. Such models usually consist of a set of ordinary or partial differential equations that define the 

essence of each process (temporal patterns of key parameters), as well as its inputs and outputs, based on the 

first principles (generic PBM) or, otherwise, empirical knowledge (descriptive PBM) (Jorgensen, 2011; Wiegert, 

1975).   

PBM can be distributed and non-distributed, the difference being the spatial component. Distributed models 

discretise the simulation domain, being therefore able to differentiate the processes occurring in a given area 

by terrain or vegetation characteristics.  On the contrary, non-distributed models do not discretise the simulation 

domain, and represent its characteristics and processes averaged into a single area. Within this module, the tool 

has 4 simulation PBM. Being 2 distributed models (Rhessys and Tetis-Veg) and 2 non-distributed (Biome-Bgc and 

CLM). Both types have been implemented to meet the different needs of managers. They can simulate a whole 

forest or just a single stand. Distributed models can be interesting when the simulation domain is heterogeneous 

or the user just wants to spatially differentiate the domain. ON the contrary, if the user works with contemporary 

stand (productive or not), the non-distributed models can be used. 

The metrics that this tool provides are (Table 1): Biomass extracted, carbon sequestered, water increased, fire 

risk reduction, structural biodiversity and forest resilience. To obtain these metrics, the water and carbon cycle 

provided by the models must be evaluated. Since the tool development is not closed, new metrics are being 

included and the behaviour of the calculated values is being evaluated with field data. 

RHESSys is a hydro-ecological model designed to simulate integrated water, carbon, and nutrient cycling and 

transport over spatially variable terrain. The model is structured as a spatially nested hierarchical representation 

of the landscape with a range of hydrological, microclimate, and ecosystem processes that it has been applied 

in a variety of ecosystem types, including deciduous conifer forested and grassland regions, alpine and 

Mediterrain-type ecosystems and urban areas (Tague and Band, 2004). 
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Tetis-Veg is composed of two main modules: the TETIS hydrological module and the HORAS vegetation module. 

It is a conceptual distributed model that represents the catchment as a grid of interconnected cells according to 

the topographic configuration derived from a digital elevation model (DEM). The model adequately incorporates 

the spatial variability of hydrological cycles and vegetation growth. Its conceptual basis is based on the current 

state of the art and complies with the principle of parsimony (Francés et al., 2007). 

Biome-BGC-MuSo is a noon-distributed biogeochemical model that simulates the storage and flux of water, 

carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial 

ecosystem.  It was developed from the widely used Biome-BGC model (Hidy et al., 2016).  

CLM (Community Land Model) is a model that formalizes and quantifies concepts of ecological climatology. It 

examines the physical, chemical, and biological processes by which terrestrial ecosystems affect and are affected 

by climate across a variety of spatial and temporal scales. The central theme is that terrestrial ecosystems, 

through their cycling of energy, water, chemical elements, and trace gases, are important determinants of 

climate (Lawrence et al., 2019). 

Table 1: Calculated metrics to quantify and optimize. 

Metric Description Units 

Biomass 
Extraction 

It is the sum of all the stands to which the carbon difference between the day 
before the thinning and after the thinning is applied and repeated as 
interventions throughout the simulation. 

Kg/m2 

Carbon 
Sequestration 

Metric calculated by the models which is averaged over the simulation period. 
Kg/m2 

Soil respiration Metric calculated by the models which is averaged over the simulation period. Kg/m2 

Percolation 
Metric calculated by the models to which the total sum is added for the 
simulation period and divided by the simulation years. 

Hm3 

Baseflow 
Metric calculated by the models to which the total sum is added for the 
simulation period and divided by the simulation years. 

Hm3 

Streamflow 
Metric calculated by the models to which the total sum is added for the 
simulation period and divided by the simulation years. 

Hm3 

KBDI This is the average KBDI value for the simulation period. - 

FWI This is the average FWI value for the simulation period. - 

Biodiversity 
Structure 

It is the sum of different structural values of the stand such as density, 
number of strata, diameters, dead wood on the ground and in flight and 
finally gap in the stand. 

- 

Resilience 
The average value of the annual mean values of the ratio between water used 
by the plant and wood growth, compared to the baseline situation. 

- 

Improve baseline 
It is the sum of the categorical value provided to each of the metrics that 
exceed the values with forestry performance at baseline. 

- 

 

Optimization: Multi-Objectives Evolutionary Algorithm 

A multiobjectives optimization problem (MOP) involves a number of objective functions that are to be either 

minimized or maximized, subjected to a number of constraints and variable bounds. The objectives often conflict 

with each other, where the improvement of one objective may lead to the deterioration of another. Thus, a 

single solution, which can optimize all objectives simultaneously, does not exist. Instead, the best trade-off 

solutions, called the Pareto optimal solutions, are important to a decision maker (DM). These solutions are the 

points lying on the non-domination front, where by definition, do not become dominated by any other point in 

the objective space; hence they are Pareto-optimal Front (PF). It is characteristic that no unique solution exists 

but a set of mathematically equally good solutions can be identified. Due to their population-based nature, 
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Multi-Objectives evolutionary algorithms (MOEAs) are able to approximate the whole PF of an MOP in a single 

run and is one of the most widely used heuristic optimization methods in research over the last 20 years (Deb, 

2015; Zhou et al., 2011). 

To create the optimization module with MOEA in CAFE, the open source python library Rhodium has been used, 

which allows for robust decision making (RDM), many-objective robust decision making (MORDM), and 

exploratory modelling. These decision-support frameworks enable the identification of robust strategies for the 

management of complex environmental systems, by evaluating the trade-offs among candidate strategies, and 

characterizing their vulnerabilities. Robust strategies refer to management options that perform sufficiently well 

or acceptably under a range of potential system conditions, rather than optimally in a single, nominal state of 

the world. Exploratory modelling allows for the simulation of the system under an ensemble of states of the 

world, so as to discover the ones with consequential effects on the system. Rhodium facilitates rapid application 

of the RDM and MORDM frameworks by providing a suite of optimization, visualization, scenario discovery, and 

sensitivity analysis functions. Rhodium is written in Python and can interface with models written in Python, C 

and C++, Fortran, R, and Excel (Hadjimichael et al., 2020). 

The first difference is given by the type of algorithm used; there are many different types of algorithms. Since in 

recent decades, multi-objective evolutionary algorithms have developed rapidly and are roughly divided into 

four phases, they are divided into four phases. Phase 3 and 4 are included in the optimisation block (NSGAII, 

EpsMOEA, GDE3, SPEA2, NSGAIII, MOPSO, SMPSO, CMAES, IBEA, PAES, PESA2, EpsNSGAII). The next part of 

MOEAs like any optimisation is the objective functions (OF). These are the formulation of the variables (metrics) 

that you want to optimise or quantify if they do not come into play in the optimisation. In this case, the MODSS 

has with OF all the metrics that the simulation models generate in the operations (Table 1). The selected 

algorithm must be told whether each of these is to be maximised, minimised or info. Another important section 

of these algorithms are the decision variables. These are the variables that the optimisation has to provide their 

appropriate values to maximise the OF. In CAFE there are up to 4 decision variables (Where? When? How? or 

How much?). All or only some of them can be used. Finally, there are the constraints, which are the limits that 

the optimisation has on the decision variables or the OFs. In this case the tool has implemented for the moment 

the maximum slope constraint, where a high thinning is not applied. 

Visualization:  Iterative Results 

The last module implemented in CAFE is the iterative visualization part. It is divided into three parts, console, 

iterative graphics and thinning maps. The first one is where the values of each iteration are shown (Metrics-

Actuations), and where the optimization proposes the values of the decision variables ("Where? When? How 

much? How?", being able to be any combination of the four of them, according to the user's needs), the 

proposed changes are applied, and the simulation is launched. At the end of the simulation, the metrics to be 

quantified or optimized are calculated, according to the user's selection for each one (each one can be selected 

as Maximize, Minimize or Info). The value obtained in each metric (Objective Functions) is evaluated by the 

algorithm, and decides whether to store the solution or to discard it and go to the next iteration making changes 

in the decision variables to repeat the process. This is repeated until the optimization algorithm finds the PF. 

This is when the optimization is finished and the results generated are shown in a more detailed and interactive 

way, where the user can filter and select among all the possible solutions using the equalizer of Java J3 

application. J3 allows the iterative visualization of the PF, thanks to this free desktop application for producing 

and sharing high-dimensional, interactive scientific visualizations (https://github.com/Project-Platypus/J3). 

Thus, with J3, if at the time of choosing one metric is more important than another, it is only necessary to limit 

the range of that metric to the appropriate values for the user. For example, prioritizing higher values for 

biodiversity over biomass or prioritizing lower values for fire risk over carbon sequestration. 

When selecting the final solution, the user can see the quantification of all the metrics and the forestry actions 

needed to achieve them. When the case study uses distributed models, several stands come into play and 

therefore each stand has its own planting or thinning values. To see these spatial values, the thinning distribution 

https://github.com/Project-Platypus/J3


6 

map is displayed for the solution chosen by the user, giving as a result the thinning intensity (answering: How 

much?) and the location of those (answering: Where?) where it is necessary to act, being all or a limited number 

of them according to the user's criteria. If in addition, the user has selected more than one intervention, there 

will be a thinning map per intervention. Being the years in which the optimization has said that it is necessary to 

intervene for the chosen solution (answering: When?). All this is easily understandable thanks to an iterative 

visualization of the map, with a slider that allows to visualize the different performances in the appropriate 

years. The Plotly library (https://plotly.com/graphing-libraries/) in Python has been used to realize this, as it is 

an open source charting library that allows you to create interactive charts and maps that can be saved in Html 

format. 

2- Workflow 

The workflow performed for CAFE (Fig. 1) starts with the data to be entered by the user. On the one hand, the 

input data for the eco-hydrological simulation which will be different (format and required variables) according 

to the selected model. In addition, the tool must be provided with the directory of the executable of the case 

study, which for each model has an extension and internal parameters that it must contain. From this file, the 

tool obtains the simulation period and all the information of the study area.  

On the other hand, there is the optimisation part, where the user can choose the optimisation algorithm among 

the 6 available, where the default option is the best known (NSGA-II). Subsequently, the user must select the 

metrics to optimize (OF), if minimising or maximising each of them and which ones are only quantified (Info 

"Example: Carbon Sequestration"). Then to the user chooses the decision variables, which are the forestry 

questions that the user would like to answer (Where? When? How? or How much?). If “Where” is selected, the 

user must choose whether to act in all stands or in a limited number n to be selected by the algorithm (this only 

comes into play if the eco-hydrological model used is distributed). When selecting the decision variable “When”, 

the user must indicate the number of interventions to be performed, and the optimisation will calculate the 

time that must elapse between them to be applied. If “How” is selected, the user must indicate whether he/she 

wants to work at stand or stratum scale. The last decision variable, “How much”, always comes into play and the 

user must mark the maximum and minimum thinning values.  

Finally, if constrains have to be applied, the user must select them, such as maximum slope and maximum 

thinning value so that in those stands that have too much slope no high thinning is applied and thus no erosion 

damage is caused. 

Once all the above steps have been completed by the user, it is time to run CAFE, where it first simulates the 

base line (starting point) in order to evaluate if the management improves the desired metrics with respect to 

the baseline. After this, the iterations between simulation-optimisation start, and the process can take more or 

less time depending on the selected model and the area to be applied. This can range from a few minutes to a 

couple of days. Once the execution is finished, the results of the most optimal solutions are obtained. This is 

when all these options are visualised with the iterative graphs and where the user can go back to edit and 

customise the interface to understand and filter with the equaliser the most appropriate solutions according to 

their criteria of preference. This reduces the number of solutions and makes it easier to choose the option that 

will be the final one. When this is reached, the next step is to see the silvicultural management selected by 

means of the thinning distribution map, which makes the solution more visual and easier to understand. 

Results  

CAFE provides users with two main outputs: (1) Pareto Front charts and (2) Thinning distribution maps. The first 

one allows the user to know the relationship between metrics and which solution is more adequate among all 

the possibilities. The second one, once the first one has been decided, is to see what, where and when the 

forestry actions should be done. Therefore, the result that the manager would have is the quantification with 

https://plotly.com/graphing-libraries/
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optimisation of multiple goods and services, and the spatial-temporal planning of the forest management that 

produces them. 

1- Pareto Front with Equalizers 

As an examplewe have run a case study, which is a Mediterranean forest with 205 stands, where only 190 can 

be managed. The optimization goal of the user were: maximising the extracted biomass, biodiversity, percolation 

and minimising the fire risk, while the rest of the variables were only quantified. The eco-hydrologial model used 

was RHESSys. The time period was 25 years, and the number of interventions was 3. In addition, a slope constrain 

was included with a maximum thinning of 40% when the slope exceeded 30%. For this case study the 

optimisation provided 69 possible solutions.  The graph that is generated is fully customisable and the user can 

provide more or less elements for its interpretation, this example has the PF, the cube, the table of values and 

the equaliser (Fig. 5). 

  

Fig. 5: Scheme of the Decision Support System (DSS), CAFE 

All solutions are equally valid and none is better than the other, where the user can select one. The user can 

prioritise the higher or lower value of one metric over another. As an example, a filtering is done with the 

equaliser, where first the highest values of extracted biomass and carbon sequestration will be prioritised, while 

the lowest values of KBDI are desired. Thus, the most suitable solution for the manager is the one that meets 

these criteria (Fig 6.a).  

If, on the other hand, the metrics prioritised by the manager were the highest values of biomass removal and 

structural biodiversity, the most appropriate solution would be number 7 (Fig. 6b). 

 

Fig. 6: Filtering of solutions with the equalizer according to user criteria ( a)Solution 56, b) solution 7). 

a) b) 
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Each of these solutions has of course a specific silvicultural management associated to it. 

2- Thinning Distribution Map 

The maps provided by this tool are those resulting from a solution chosen by the user. They are displayed when 

the user determines the most appropriate solution for his work. This is because it is a DSS and does not make 

the decision for the user but helps the user to decide. Hence the need for the results to be iterative and easy to 

interpret. To visualise these results, the two solutions filtered in the previous point are shown. Solutions 56 and 

7 will have the thinning distribution mapping (Fig. 7). A slider can be seen to move the following actions and the 

values of thinning of each stand in the legend that allows to click and activate or deactivate the stands of that 

value, so the user can see the stands that have more and less percentage of thinning. 

 

Fig. 7: Thinning distribution maps for the solutions selected by the user (a) Solution 56, b) Solution 7). 

Discussion 

CAFE is a tool that combines two main modules: ecohydrological simulation and multi-objective optimisation 

with evolutionary algorithms. It provides quantitative information on the processes occurring in ecosystems as 

they fluctuate when one forest management or another is carried out. Provided the complexity of each module, 

synthetic cases are required to understand how the changes in the solutions fluctuate when the simulation 

interacts with the optimisation depending on a multitude of factors such as: which model is used, which 

optimisation algorithm is used, which metrics are optimised and which are quantified, which questions (decision 

variables) come into play and applied constrains. All these questions need to be covered and realised in order 

for the application of this tool to be solid. 

The fact that the results can be edited by the user, makes the tool practical and interactive. It may seem complex 

at first glance, but given the amount of information that the tool provides, these measures are necessary for a 

correct interpretation of the results.  

Conclusions 

The combination of simulation models and optimization with multi-objective evolutionary algorithms makes this 

DSS offer the user a generalized view of all possible optimal combinations for a multi-criteria forest 

management, allowing to get the maximum ecosystemic benefit from the forest to be managed. Moreover, this 

is easy to handle and interpret thanks to the iterative visualization that provides plasticity and customization by 

the user who has to work with the results obtained. 

a) b) 
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