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Abstract 

The land-use change in the Hasdeo River watershed has been observed with all its 

subwatersheds. The changing patterns may portend localized impairment to forest and 

agricultural watershed. In this study, Land-use land-cover (LULC) change was modeled using 

terrset modeling software. The Hasdeo river watershed (geographical extent of 10,396.373 

km2) is a part of the Mahanadi River basin in Chhattisgarh, India. Hasdeo River originates 

from Sonhat (Koriya district, Chhattisgarh, India) and is submerged into the river Mahanadi. It 

flows in the stretch of 330 km from north to south direction. This river has eight subwatersheds 

with rich forest diversity and perennial water resources. IRS-1D & P6 LISS3 images from the 

years 2000 and 2013 were used to investigate the LULC pattern. This has been used for the 

prediction of LULC change patterns for the years 2035 and 2050 based on the Markov model. 

The result of the project LULC map for the year 2000-2035 and 2000-2050 shows that the 

dense forest area will decrease by 12.30% and 15.68% respectively. The settlement area will 

significantly increase by 20.13% (2035) and 34.90% (2050) and will be the dominant land-use 

type in the watershed. It shows that population pressure will directly affect forest vegetation 

and agriculture activities. This study will be helpful for the effective sustainability approach 

for maintaining the proper LULC pattern of LULC pattern of land-use change in the watershed. 

This changing pattern will also influence the farming pattern in the catchment area of the 

Hasdeo River watershed.  

Keywords: Adaptive and integrated management, Deforestation and forest degradation, 

Landscape management, Monitoring and data collection, Sustainable forest management 

Introduction 

In the recent decade, a variety of land-use change models have been developed globally to meet 

the needs of land management and a better evaluation of the future role of LULC changes. 

Modelling of the LULC projection is a useful tool for  alternate future paths, as well as for 

conducting experiments to test our understanding of essential processes and quantitatively 

defining the land use pattern (Karimi et al., 2018; Veldkamp and Lambin, 2001). Satellite-

The boundaries and names shown and the designations used on these map(s) do not imply the expression of any opinion whatsoever on the part of 
FAO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. Dashed lines on 
maps represent approximate border lines for which there may not yet be full agreement. 
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based remote sensing is now widely employed to detect LULC changes in a reliable manner. 

Satellite data are useful, inexpensive, and widely used to create LULC datasets (Singh et al., 

2019, Lu et al., 2014). The rapid increase in population and extension of settlement and miming 

areas as a result of  extensive ignorance on natural resource exploitation system has a 

significant impact on LULC patterns, as well as the conversion of fertile land and vegetation 

to land use for various purposes (An et al., 2018). Satellite data is used in GIS technology to 

monitor LULC types by using spectral categorization and spatio-temporal reflectance to 

construct linear connections (Tan et al., 2009). 

Land use  and land cover analysis tracks change dynamics and uses land cover modelling to 

make a probabilistic prediction (Amsalu et al. 2007; Wubie et al., 2016). LULC modelling aids 

in predicting future land use/cover for a given area (Pontius and Chen 2006; Stefanov et al., 

2001). In LULC change investigations, very few studies have attempted to combine satellite 

remote sensing and GIS to qualitative modelling methodologies. The Cellular Automata (CA) 

Markov chain is one of the most widely used land use and land cover modelling tools and 

approaches. It is a form of spatial transition-based model that may be used to forecast future 

land development using probabilistic predictions. Because RS and GIS data can be 

conveniently incorporated (Rozario et al., 2017) and provide more precise information on a 

synoptic scale, the coupling of CA Markov Chain Model provides a robust approach in spatial 

and temporal dynamics modelling of LULCC (Schweitzer, 1968; Soe and Le, 2006). To assess 

the quantitative and qualitative character of the LULC change data and to priorities locations 

of impairment within a sub-watershed, Markov Chain models are used. It is a descriptive and 

interrogative technique for quantifying changes in land usage throughout a human-dominated 

landscape (Omar et al., 2014; Muller and Middleton, 1994). This model examines how LULC 

affects interact with natural resource management practises (Piyathamrongchai et al., 2016; 

Wehmann and Liu, 2015). 

The current study describes a method for analysing and forecasting LULC changes in the 

Hasdeo watershed, which is part of the Mahanadi river basin in Chhattisgarh, India, between 

2000 and 2050, using satellite remote sensing, GIS, and Markov chain modelling. 

Methodology 

Study Area 

The Hasdeo river is a tributary of Mahanadi river. It is located between 210 45’ North to 230 

33’ North latitude and 820 00’ East to 830 04’ East longitude in Chhattisgarh, India. The total 
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length of the river is 333 km. The geographical extent of the Hasdeo river watershed is 

10,396.37 km2. The watershed (fig. 1) is located in the northern topography of Chhattisgarh, 

India, and is one of the primary watersheds of the Mahanadi river basin. The watershed is 

geologically characterized by steep, rocky terrain, the presence of Gondwana rocks, and fertile 

soil, and it spans most of the area of the Koriya, Korba and Janjgir-Champa districts of 

Chhattisgarh state. The research area has a cool and warm sub-tropical climate with a good 

average rainfall of 1254 mm. The Hasdeo river (perennial) is the main stream of the Hasdeo 

watershed, with the Ahiran, Tan, Chornai, Bamhni etc as a tributary. The topographical 

conditions in the area is ideal for forest vegetation, irrigation and the production of high-

yielding crops. The northern and central part of the watershed is full of tropical dry deciduous 

type of forest species. Shorea robusta is the primary forest tree species found in the area. The 

other subsidiary species found are Tectona grandis, Terminalia arjuna, Terminalia tomentosa,  

Diospyrous melanoxylon, Anogeissus latifolia etc. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Location of Hasdeo watershed 

 

Materials and Methods 

The image data products used in this investigation are from the IRS 1-D & P-6 LISS- III (Linear 

Imaging and Self Scanning) sensor (Indian Remote Sensing). The study employed satellite data 
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from February 2000 and February 2013. The National Remote Sensing Centre (NRSC) in 

Hyderabad, India, provided the satellite data. Table 1 lists the specifications of the satellite data 

used for change analysis. The flowchart of the research field is shown in Fig. 2. 
 

Table 1. Satellite images and bands were used for the Hasdeo watershed landscape analysis. 
 

Satellite/Sensor Year of acquisition Spectral Band Resolution 

IRS 1D LISS 3 2000 B2: 0.52-0.59 µ 

B3: 0.62-0.68 µ 

B4: 0.77-0.86 µ 

B5: 1.55-1.70 µ 

23.5 m 

IRS P6 LISS 3 2013 B2: 0.52-0.59 µ 

B3: 0.62-0.68 µ 

B4: 0.77-0.86 µ 

B5: 1.55-1.70 µ 

23.5 m 

Source: National Remote Sensing Centre website (http:// nrsc.gov.in) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Khawaldah, 2016 

Fig. 2. Flowchart of the study methodology 

Acquisition of Satellite Images 

(IRS 1D 2000, IRS P6 2013) 

Image Processing Reconnaissance Survey  

Data Enhancement, 

Atmospheric Correction, 

Geometric Correction, Subset 

and Integration 

Development of a Classification 

Scheme 

Image Analysis using RS and GIS 

technique 
Ground control points 

LULC classification  Final production of LULC maps  

CA-Markov model for simulation of the year 2035 & 2050 

LULC using Change Detection Analysis for 2000 & 2013 

Validation of data 

Final Predicted future LULC data 
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Image Processing 

Prior to the identification of change, satellite image pre-processing is critical, with the primary 

goal of building a more direct link between the gathered data and biophysical processes. 

Change detection requires data improvement and radiometric correction, which can lessen the 

disparities between images in changing atmospheric circumstances. The two images were taken 

in the same season for this. Using ground control points and the Global Positioning System, all 

of the scenarios were chosen to be radiometrically and geometrically corrected (GPS). IRS1D 

and P6 image raw data were delivered in DN format, which represented reflected radiance for 

each pixel at the top of the atmosphere. As a result, it was necessary to use remote sensing 

software to perform a radiometric correction on the photos in order to convert the DN to 

reflectance values. This was accomplished by measuring the reference spectral reflectance of 

the reference object in the image using absolute radiometric correction. To improve the quality 

of each image, image enhancing techniques such as histogram equalization were used. For the 

purpose of constructing a series of classed maps, the data of ground control points were altered 

for each classifier produced by its spectral signature. 

Image analysis and LULC Classification: 

The hybrid classification technique was used to classify IRS 1D and P6 pictures. Images from 

2000 to 2013 were classified using the hybrid classification technique, which combined the 

findings of unsupervised and supervised classification to get the maximum possible accuracy. 

Using training areas, a supervised classification method was used. Finally, the unsupervised 

classification signature was combined with the supervised classification signature. We can 

assign each pixel in an image to a different land cover class using this method. Using IGIS 

software, a maximum likelihood technique was used to discover the LULC class types, and 

then GIS software was used to create the final map, as shown in Fig. 3. This study comprised 

eight LULC classes in its design. Dense Forest (DF), Open Forest (OF), Waterbody (WB), 

Riverbed (RB), Fallow Land (FL), Agriculture Land (AL), Settlement (ST) and Mines (M) are 

the LULC classes. Table 2 lists the descriptions of these classes. 

Table 2. LULC classification classes and description. 

Class Description 

Dense forest (DF) Trees growing very closely together or closed canopy. 

Open forest (OF) Trees growing in gaps or open canopy 

Waterbody (WB) River, open water, lakes, ponds, and reservoirs 

Riverbed (RB) Channel occupied by a river 
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Mines (M) Land representing coal mines  

Fallow land (FL) Land areas of exposed soil and barren area 

Agriculture land (AL) Land devoted to agriculture 

Settlement (ST) Residential, commercial, industrial, transportation, roads, mixed urban 

CA-Markov Model 

In GIS, a raster data model is used to describe continuous data over space and to create a 

specific layer that the TerrSet land change modeller of Clark Labs, USA was used. The 

technique used to analyse expected LULC based on early and later maps of LULC that have 

enabled us to obtain  probability matrix records, which is a probability of each land cover 

category changing to another category.  

Using two LULC in 2000 and 2013 derived from satellite images, the CA-Markov model was 

used to predict the change for each class in the years 2035 and 2050, and to apply this model, 

which is based on the number of a random process, X(t), if the Markov process for any 

moment of time, t1, t2......tn tn +1, thus, the random process will satisfy the equation: 

Fx(X(tn+1)≤ xn+1/X(tn)=xn, X(tn-1)=xn-1, X (t1) = Fx (X (tn+1) ≤ xn+1) / X(tn) = xn)    

When tn is the current time, tn+1 represents some future points, and t1, t2, tn1 represents 

various points in the past . The future is independent of the past based on current data. To put 

it another way, the future of a random process is not determined by where it is now or where 

it was previously (Memarian et al., 2012; Thomas and Laurence, 2006). The probability of 

transitioning from state I to state j in one time instant is; if the Markov chain is expressed by 

X[k], and the states are x1, x2, x3, then the probability of transitioning from state I to state j 

in one time instant is; Pi,j Pr (X[k+1] = j / X [k] = i)                                             

Results and Discussion 

The correctness of the produced classes must be tested, hence accuracy assessment was tested.  

A total of 20346 pixels were chosen for the IRS-1D LISS3-2000 LULC map, which were 

validated at 1:50,000 topographic maps. The overall accuracy of the results is 98.02 percent. 

The Kappa coefficient  index was calculated 99.10 percent. This  indicates that the 

classification method correctly classified 99.10% of the data.  

A total of 33450 pixels were chosen for the IRS-P6-2013 LULC map and validated on 1:50,000 

topographic maps. The overall accuracy of the results is 99.23 percent.  The Kappa co-efficient 

index was 99.56 percent. The value indicates that the method was successful in avoiding 

99.23% of the errors. 
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Finally, the overall accuracy of more than 90% for the two maps (2000 and 2013) demonstrates 

that the image processing approach used in this work has proven to be effective in providing 

compatible LULC data throughout time. 

 

Detection of LULC 

In the current study the classification of LULC was done using the USGS Land Cover System 

classification scheme. The land cover classes were separated into two tiers under the USGS 

method given in Table 3. To incorporate the LULC classes concentrating on watershed health 

for the two-time series and build a thematic map to investigate dynamics of distinct LULC 

classes in the Hasdeo watershed, GIS and remote sensing were employed (Fig. 2). The data 

showed that between 2000 and 2013, the settlement area and waterbody rose by 1527.39 km2 

and 81.81 km2, respectively, indicating that the number of people has increased and this has an 

influence on agricultural land, dense forest, and fallow land. During the period, the fallow land 

showed the loss, accounting for 1.04 percent of the total area. Fellow and agricultural land 

encroachment was evident in the south-western half of the watershed, continuing toward Pali 

area. Agricultural land, open forest, and dense forest areas, on the other hand, have dropped by 

173.43 km2 (1.67 percent), 533.68 km2 (5.13 percent), and 739.81 km2 (7.12 percent) 

respectively over the same time period.  

According to the study, population pressure and settlement probability are constantly exerting 

pressure on agricultural land, open forest, and dense forest areas. Another decline occurred in 

the riverbed class, which decreased by 1.93 km2 (0.02 percent) during the same period, 

contrasted to the waterbody class, which gained an additional 81.81 km2 (0.79 percent) due to 

the good monsoon of 2013. Furthermore, because urban spread generally occurs in a radial 

fashion around the city centre or in a linear route along highways, a rapid urban sprawl occurred 

around the Baikunthpur, Korba and Surajpur mining landscape. As a result, Potter et al., (2009) 

found that the presence of transportation routes inside the research region supported urban 

sprawl, with city transportation as socially polarised as the city structure itself. The expansion 

of watershed settlement areas, particularly in metropolitan regions, had a severe impact on the 

local environment (Sudhira et al., 2004). The abundance of water bodies attracts people to stay 

in the watershed, but water resources are beginning to run out in some mining areas. Farming 

is the most common activity in the area, with about 80% of the inhabitants involved in some 

way. Paddy is the main crop, with some legumes and vegetable kinds added in for variety. 

Forest areas in the watershed's southwestern corner are in direct contact with the local people. 

They harvest key forest timber species (especially Shorea robusta) for personal or social gain. 
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Non-wood forest products such as tendu leaves, sal seed, mahua flower, wild medicinal herbs, 

and so on are not collected informally. The grazing habits of domestic animals have a direct 

impact on the ability of plants in the forest to regenerate, resulting in a significant loss of forest 

in the area over time. As a result, the study employed the markov model to forecast LULC for 

the years 2035 and 2050, as well as the future of watershed LULC health and direction, 

allowing for improved planning in the area. 

Table 3. Area estimation and the overall amount of change in LULC for the study area 

Level 1 Level 2 LULC-2000 LULC-2013 

Code Class name Class name Area Area 

Km2 % Km2 % 

1 OF Deciduous forest land, Mixed 
forest land 

2768.45 26.63% 2234.77 21.50% 

2 WB River, Pond, Lake, Streams, 

Well 

73.81 0.71% 155.62 1.50% 

3 DF Deciduous forest land, Mixed 

forest land 
2313.11 22.25% 1573.3 15.13% 

4 RB Channels of river 156.97 1.51% 155.04 1.49% 

5 FL Exposed soil and barren area 287.96 2.77% 179.89 1.73% 

6 AL Farmlands 3556.47 34.21% 3383.04 32.54% 

7 ST Residential, commercial, 

industrial, transportation, roads, 
mixed urban 

1063.51 10.23% 2590.9 24.92% 

8 M Strip mines, Gravel pits 176.09 1.69% 123.81 1.19% 

 

LULC-2000 

 

 

 

 

LULC-2013 
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Fig. 2. LULC changes during (2000-2013) in Hasdeo watershed 

 

Predicting 2035 and 2050 LULC using CA-Markov Model 

The CA-Markov model was used to forecast the 2035 and 2050 LULC based on probability 

matrix records derived from the observed 2000 and 2013 LULC. As illustrated in figure 3, 

agricultural land increase is forecast in the south-central part of the existing open forest region 

in 2035, rather than in the east of the Hasdeo swatershed. Another 565.33 km2 is expected to 

be added to the settlement area (to be 30.36 percent of the study area compared to 24.92 percent 

in 2013). Dense forest and Fallow areas are expected to account for 9.95 percent and 3.05 

percent of the study area in 2035, respectively, compared to 15.13 percent and 1.73 percent in 

2013. 

Agriculture land is expected to decrease in the west-central part of the watershed in (2000-

2035) and (2000-2050), with 6.08 percent and 9.09 percent, respectively. The dense forest is 

expected to shrink 12.30 percent in 2000-2035 and 15.68 percent in 2000-2050. The 

southwestern part of the watershed had the most projected forest decline. However, compared 

to 25.16 percent (2035), the open forest area is expected to shrink 24.69 percent (2050) (Table 

4). 

 

       

 

 

 

 

 

 

 

 

Year 2035                     Year 2050 

Fig. 3. Predicted LULC change from CA-Markov modeling for the years 2035 and 2050  

Table 4. Predicted areas of LULC for 2035 and 2050 in the study area 
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Year LULC 
classes 

OF WB DF RB FL AL ST M 

2035 Area in km2 2615.74 214.16 1034.61 24.43 317.49 2924.39 3156.23 109.32 

Area in 

percentage 25.16% 2.06% 9.95% 0.23% 3.05% 28.13% 30.36% 1.05% 

2050 Area in 
km2 2566.77 231.83 683.02 28 581.14 2611.06 3628.1 66.45 

Area in 

percentage 24.69% 2.23% 6.57% 0.27% 5.59% 25.11% 34.90% 0.64% 

 Validation of CA-Markov Model Results 

The validation of the model's performance is a critical step in determining the model's capacity 

to replicate the known data set. In the literature, many goodness-of-fit statistics have been 

utilised in spatial modelling (O’Sullivan, 2001; Knudsen and Fotheringham,1986). The 

performance of the Markov model will be evaluated and its predictions will be validated against 

a real data set using one main statistical test of goodness-of-fit. R2 (Birkin et al. 2015) is a 

regularly used statistic that is formulated as follows: 

 

Here, So represents the mean of the Sij’s (observed values) and Sc represents the mean of the 

ˆSij’s (predicted values). R2 values range between zero and one.  

 

2000                                                 2013 

Calibration 
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2013 observed                      Validate                           

2013 predicted 

 

Fig. 4. Observed LULC change in 2013 versus the predicted for the same year in Hasdeo 

watershed 

Two maps of LULC in the study region for the years 2000 and 2013 were used to calibrate the 

Markov model in order to construct the 2013 LULC map in the study area using the Markov 

model (Fig. 4). The Markov-created LULC for 2013 was compared to the observed 2013 LULC 

of the research area for validation. The model validates the LULC areas as per received data 

by the user. The comparison of different classes was also based on conversion difficulties.   

Conclusion 

Not only is it vital to have information about how LULC patterns vary over time for sub-

watershed planning, but it is also necessary for better land resource management. This study 

has demonstrated the value of using RS and GIS techniques to produce accurate LULC maps 

and change statistics for one of the largest sub-watersheds of the Hasdeo watershed in Northern 

Chhattisgarh, which is useful for effectively monitoring settlement, forest area, and agriculture 

land expansion over time. 

The study area's dense forest covered 2313.11 km2 in 2000 and 1573.30 km2 in 2013, or 22.25 

percent and 15.13 percent of the study area, respectively, according to the results of LULC 

change detection. However, it is expected to shrink by 1034.61 km2 (9.95%) in the next 22 

years, 683.02 km2 (6.57%) in the next 37 years. Agricultural land change detection analysis, 

on the other hand, shows that agriculture land was 3556.47 km2 (34.21 percent) in 2000, but 

was reduced to 3383.04 km2 (32.54 percent) in 2013. However, it will be 2924.39 km2 (28.13 
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percent) and 2611.06 km2 (25.12 percent) in the next 22 and 37 years, respectively. However, 

according to the LULC, the settlement area in the study area was 1063.51 km2 (10.23 percent) 

in 2000, 2590.90 km2 (24.92 percent) in 2013, and expected to be 3156.23 km2 (30.36 percent) 

in 2035, and 3628.10 km2 (34.90 percent) in 2050. The statistics show a net decrease in thick 

forest area in the watershed's western, eastern and northern parts. It also suggests that due to 

the abundant water supply and well-connected highways, the settlement area will be primarily 

concentrated in the eastern and southern parts. 

In the next 37 years (2050), the settlement will also display an increasing pattern, indicating 

that the population in the area will be high. Because of the abundant work opportunities in the 

mining and industrial areas, the majority of migratory individuals from the state and other parts 

of the country will settle in the area. Riverbed, fallow land, and mines areas were converted to 

habitation and rich water availability between 2000 and 2013. 

The paper's second section looks at how to use a GIS-based Markov model to forecast future 

LULC change in the study area in 2035 and 2050. In 2013, the model was calibrated using 

satellite pictures from 2000 and 2013 of the research area to anticipate the LULC. The 

anticipated LULC map in 2013 was then compared to the observed LULC map in 2013. The 

results of calculating the predicted and observed LULC map of the study region in 2013 

revealed that the model performed well in simulating future LULC change within the study 

area. However, due to the rapid population growth noted above, real LULC class changes in 

the study area were larger than the expected expansion by the Markov model. 

Study Implications and Future Research 

The current study's implications can be stated in three areas. First, the findings suggested that 

dense forest, open forest, and agricultural land declination will occur in several places within 

the study area in 2035 and 2050, respectively, with an expansion in water body and settlement. 

In terms of road networks, infrastructure, pond creation, canal formation, agriculture land 

distribution, and allocating some locations for future watershed management activities, it 

should be taken into account by forest, agriculture, and water resource planners in their future 

plans for the Hasdeo watershed. Second, the analysis revealed that settlement and farm land 

displaced the majority of the forest(dense and open), which may be averted through future 

regulations or initiatives. Finally, for efficient monitoring of watershed planning and 

management trends, watershed planners and decision makers should use remote sensing and 

GIS approaches. As a result, their expectations and predictions of future settlement 
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development and location, forest distribution patterns, and agriculture land utilisation 

techniques would improve for more sustainable land management. 
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