

Characteristic analysis of the mucilage from Abelmoschus manihot

Hyung Won Lee¹, Jin-Sung Huh¹, Sora Lee¹, Hyunmo Choi¹, Kyoung Tae Lee¹, Oh-Kyu Lee^{1,*} ¹[Forest Biomaterials Research Center, National Institute of Forest Science, Dongdaemun-gu, Seoul, Korea (the Republic of). *Corresponding authors : okaylee@korea.kr]

Abstract

The mucilage obtained from the roots of *Abelmoschus manihot* is an important material in the manufacture of Hanji (Korean traditional paper) for dispersity of *Broussonetia kazinoki* bast fibers and separation of each paper from a pile of wet papers. *A. manihot* called 'Dakpul' in Korea is an annual herbaceous flowering plant belonging to the *Malvaceae* family. To understand the role of *A. manihot* mucilage in the manufacture of Hanji, it is necessary to study its chemical properties. In this study, chemical characterization of mucilage obtained from *A. manihot* root was carried out using Thermogravimetry analysis (TGA), Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS), Fourier Transform-Infrared Spectroscopy (FT-IR). The constituent of monomeric sugar (*Rhamnose, Arabinose, Xylose, Mannose, Galactose, Glucose*) and uronic acid (*Galactronic acid, Glucuronic acid*) components were also analyzed after sulfuric acid hydrolysis.

Introduction

< Abelmoschus Manihot >

- 1. Harvest and steaming, peeling bark to make white bark of paper mulberry tree
- 2. Cooking of the white bark using lye

< Manufacturing process of Hanji >

- **3.** Washing the cooked mulberry sunlight bleaching of the bast fiber, and cleaning impurities
- 4. Disintegrating mulberry fibers and mixing with 'mucilage of *Abelmoschus manihot* roots' (darkpul)
- **5. Forming the wet sheet (Hanji)**
- 6. Removing the water from the mat of sheet by pressing
- 7. Drying the sheet

Pyrolysis- GC/MS	Thermo chemical analysis
FT-IR	Surface Functional group analysis
TGA	Thermogravimetric analysis
Bio-LC	Sugar and uronic acid analysis
HyperCOOL	Freeze drying

FT-IR (Nicolet iS10, Thermo)

TGA (Pyris 1, Perkin Elmer)

Bio-LC (Dionex ICS-5000+, Thermo)

Result and Discussion

Sugars & Uronic acid composition (%)

Galacturonic Glucuronic

Pyrolysis - Gas Chromatography/Mass Spectrometry

HyperCOOL

Conclusions

As a result of chemical composition analysis, Glucose content was the highest(76.22%), followed by Rhamnose, Galactose, Mannose, Glucuronic acid, Galacturonic acid, Arabinose, and Xylose.
Thermal decomposition of *A. Manihot* was finished at around 450°C and Acetic acid, Levoglucosan and N compounds were mainly detected by thermochemical analysis.
FT-IR analysis showed the presence of C=O, C-O, -OH functional groups on the surface of *A. manihot* mucilage powder