

Storage behavior of the endangered alpine conifer *Abies nephrolepis* **Maxim**.

Da hyun Lee¹, Cho Hui Park², Jin Hyeon im ³, Young Ho Jung⁴, Byeon Jun Ki⁵, Chae sun Na^{*}

Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum, Bonghwa-gun 26209, Korea <u>E-mail: dahyun0519@koagi.or.kr</u>, Tel : +82-054-679-0815

INTRODUCTION

- Abies nephrolepis Maxim. is an endangered alpine coniferous species distributed in the alpine regions of Korea, and it is a species that must be preserved both in-situ and ex-situ.
- However, the storage behaviors of the seeds have not been confirmed, and it is not clear whether they can be stored under long-term storage conditions (-20°C, RH40% or less).
- According to the storage behaviors s of the seeds, it is possible to determine whether the seeds can

Fig 1. Abies nephrolepis Maxim.

be stored under long-term storage behaviors.

 This study was carried out to confirm the storage behaviors for the safe storage seeds under longterm storage conditions.

MATERIALS AND METHODS

• The seeds were collected from plants growing at Mt. Balwang on September 2019. After collection, the equilibrium relative humidity (eRH) of the seeds was measured.

Germination test

X-ray test
Filled rate(%) = the number of filled seeds/total number of seeds ×100
Germination test

Under 10 different temperature conditions

Germination percentage(%) = the number of germinated seeds / total number of seeds ×100

Tetrazolium test

Use 1% tetrazolium solution
Determine viable • nonviable seed according to dying status

Desiccation tolerance

● Drying 15,20,30,40,50% relative humidity at 15°C using LiCl solutuion

Determine moisture content and viability assay by 15, 20, 30, 40, 50% eRH

Moisture contents

 When the moisture equilibrium is reached, measure the equilibrium relative humidity using a hygrometer and drying 103°C, 17hr method according to the National seed resources seed inspection Guidlines

RESULTS

Table 1.Effect of under 10 different temperature conditions on germination

Temperature(°C)	Germination percentage(%)	
25/5	17.5±4.8	
25/10	47.5 ± 4.8	
25/20	40.0 ± 5.8	
25	50.0 ± 10.8	
20	52.5 ± 16.0	
15	15.0 ± 2.9	
20/15	27.5 ± 10.3	
25/15	47.5 ± 7.5	
30/15	45.0 ± 6.5	
35/15	37.5±6.3	

Immediately after initial collection, the seeds of *A. nephrolepis* had a relative humidity of 43% and showed the highest germination rate of 52.5% under the condition of 20°C (constant temperature).

Table 2. Effect of total viability and Moisture contents of *A. nephrolepis.*

eRH(%)	Moisture content(%)	Germination percentage(%)	Total viability
15	$4.33 \pm 0.14a$	$49.0 \pm 5.8 ns$	50.0 ± 5.8 ns

No loss of viability could be confirmed in the seed of A. nephrolepis at low relative humidity.

 The moisture content of the seeds of *A. nephrolepis* by condition was 4.32 ~ 7.03 %, which showed a tendency to increase with the relative humidity, but the moisture content did not increase as dramatically as other seeds.

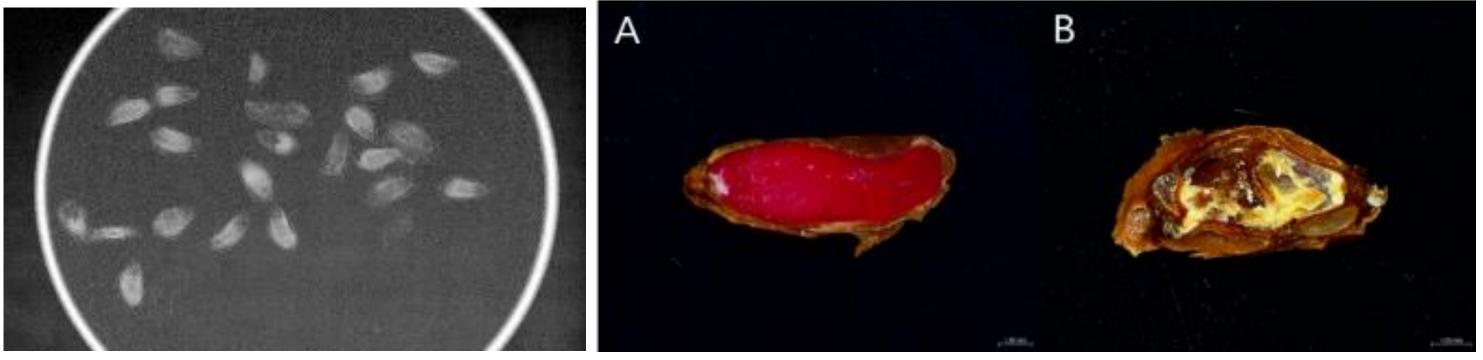
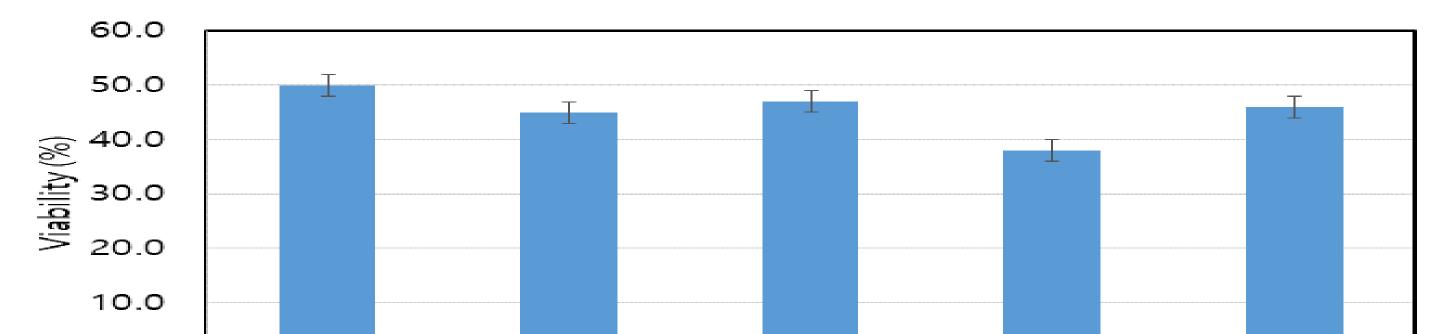
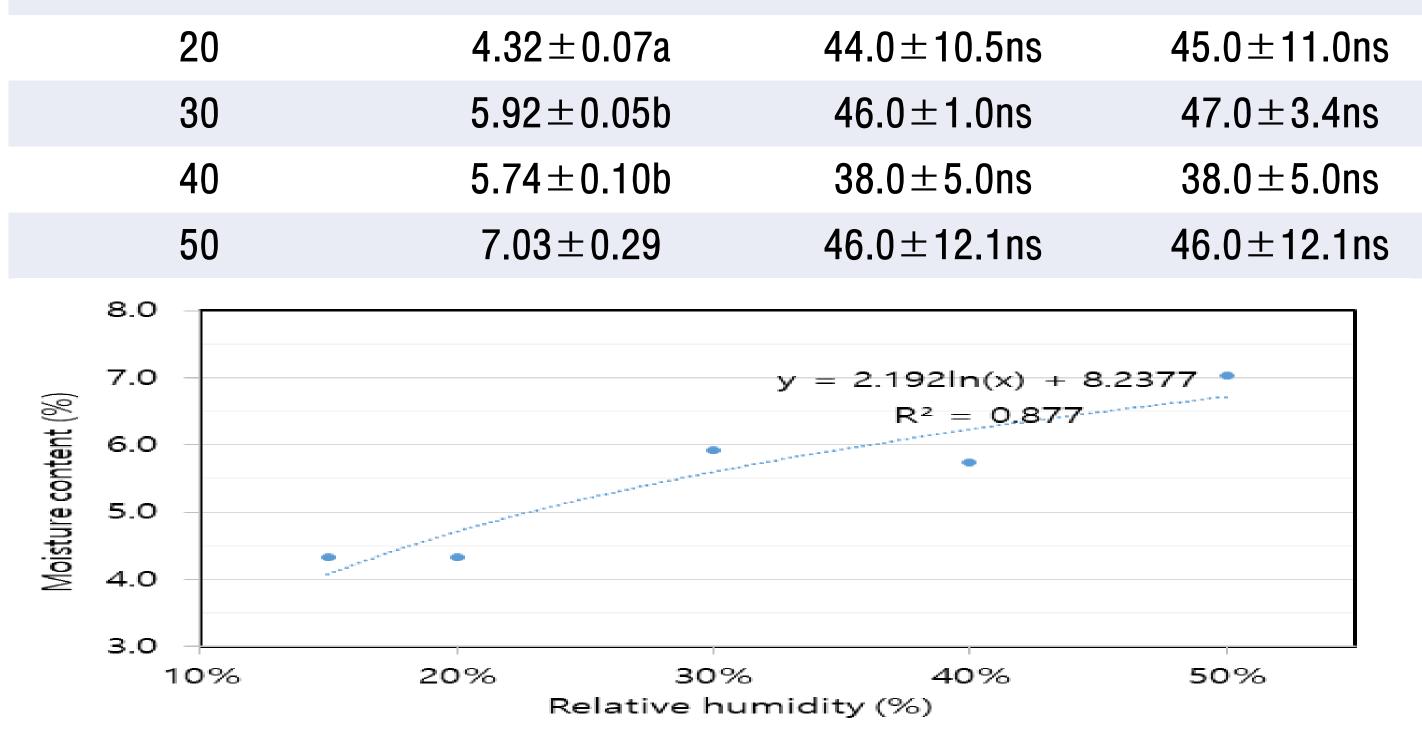




Fig 3. X-ray of *A. nephrolepis* Fig 4. TZ test of *A. nephrolepis* (*A: Viable. B: non-viable*)

Fig 2. Moisture content graph by relative humidity

* Correspondence: chaesun.na@ koagi.or.kr; Tel.: +82-054-679-2769 (C.S.N.)

0.0 ______ 15% 20% 30% 40% 50% Relative humidity (%)

Fig 5. Viability graph of Moisture content

- The collected seeds showed no statistically significant difference as a result of the viability test after checking the moisture contents of the seeds in 15, 20, 30, 40, 50% eRH conditions. Therefore, it could be confirmed that the seed of *A. nephrolepis* had resistance to drying.
- It could be confirmed that A. nephrolepis shows the behaviors of an Orthodox seed, and it can be stored under long-term storage conditions (-20℃, RH40% or less) after drying. After storage at -20℃ for 3 months, we plan to conduct a verification experiment to verify viability.