Germination characteristics and Storage behavior of Codonopsis pilosula Nannf. seeds

Da hyun Lee¹, Hee Ho Lee², Chung Youl Park³, Young Ho Jung⁴, Mi Hyun Lee⁵, Jun Hyeok Kim⁶,

Un Seop Shin⁷, Chae sun Na^{*}

Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum, Bonghwa-gun 26209, Korea <u>E-mail: dahyun0519@koagi.or.kr</u>, Tel: +82-054-679-0815

INTRODUCTION

- Codonopsis pilosula Nannf. is classified as an endangered species (VU) in Korea.
- Ex situ conservation through long-term storage of seeds is, in principle, possible for a significant proportion of plants.
- However, it is not known whether these seeds are orthodox; that is, if they can survive under long-term storage conditions (-20 °C, 40 % relative humidity (RH) or less) without being damaged.
- We determined the germination characteristics and storage behavior of C. pilosula.

Fig 1. Codonopsis polosula Nannf.

MATERIALS AND METHODS

The seeds were collected from plants growing at the Baekdudaegan Arboretum on September 17, 2020.
 After collection, the equilibrium relative humidity (eRH) of the seeds was measured.

Germination test

- X-ray test Filled rate(%) = Filled seeds/ Total number of seeds \times 100
- Germination test GA_3 100, 250ppm (Constant temperature 15, 20, 25°C)
- Germination percentage(%) = the number of germinated seeds/ Total number of seeds ×100

Tetrazolium test

Use 1% tetrazolium solution
 Determine viable · nonviable seed according to dying status

Desiccation tolerance

- Drying 15,20,30,40,50% relative humidity at 15℃ using LiCl solutuion
- Determine moisture content and viability assay by 15, 20, 30, 40, 50% eRH

Moisture contents

• When the moisture equilibrium is reached, measure the equilibrium relative humidity using a hygrometer and drying 103℃, 17hr method according to the National seed resources seed inspection Guidlines

RESULTS

Table 1.Effect of concentration of GA_3 and constant temperature on germination

or irritation				
Treatment	Temperature(°C)	Germination percentage(%)		
Control	15	11.0±3.0		
	25	9.0±3.0		
	25	1.0±1.0		
GA ₃ 100	15	60.0±4.1		
	20	60.0±7.1		
	25	72.5±2.5		
GA ₃ 250	15	90.0±7.1		
	20	90.0 ± 7.1		
	25	60.0±9.1		

• The average germination percentage (GP) of untreated seeds was below 11 \pm 3 %. The highest GP of seeds following GA3 treatment was 90 \pm 0.70 %.

Table 2. Effect of total viability and Moisture contents of *C. pilosula*.

eRH(%)	Moisture content(%)	Germination percentage(%)	Total Viability(%)
15	3.05±0.07	84.0 ± 0.4	88.0±2.8
20	3.24±0.08	84.0±0	91.0±1.0
30	3.92±0.08	72.0±1.7	75.0±6.8
40	4.78±0.09	70.0±5.0	73.0±5.0
50	5.99±0.07	82.0±2.6	90.0±2.6
7.0 ¬			

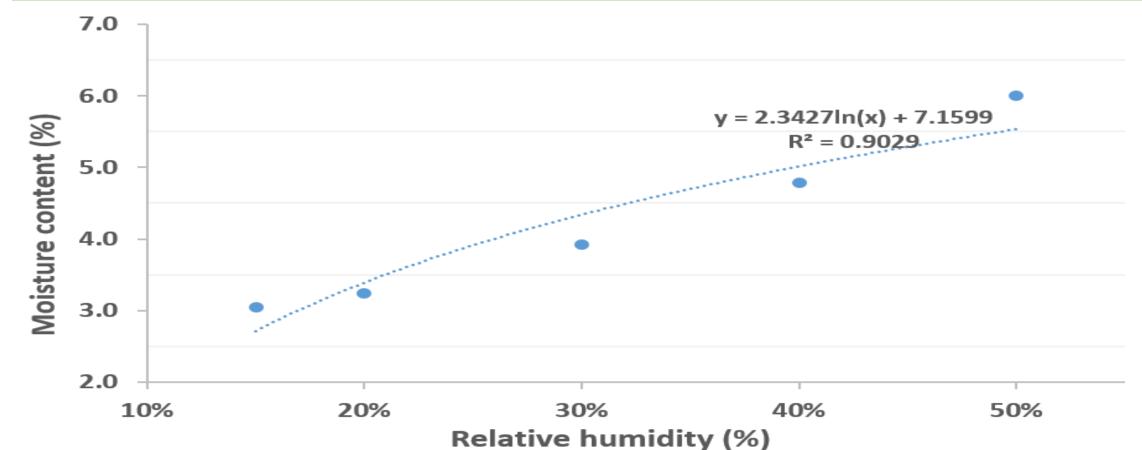


Fig 2. Moisture content graph by relative humidity

• The initial seed viability percentage was 90.3 \pm 2 %. The highest viability percentage was identified at 91 \pm 0.25 % in equilibrium with 20 % (eRH) at 15 ° C with a moisture content of 3.23 % Fresh weight.

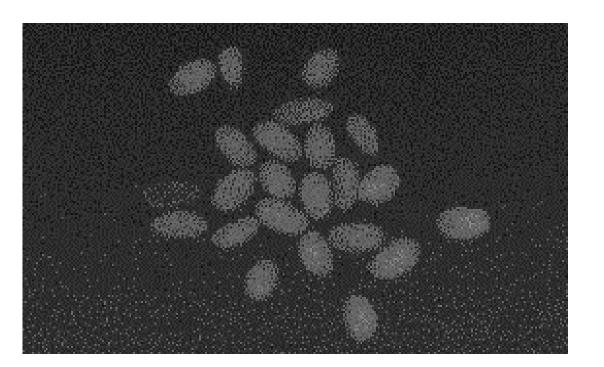


Fig 3. X-ray *C. polosula* Nannf.

Fig 4. Morphology of *C. polosula* Nannf.

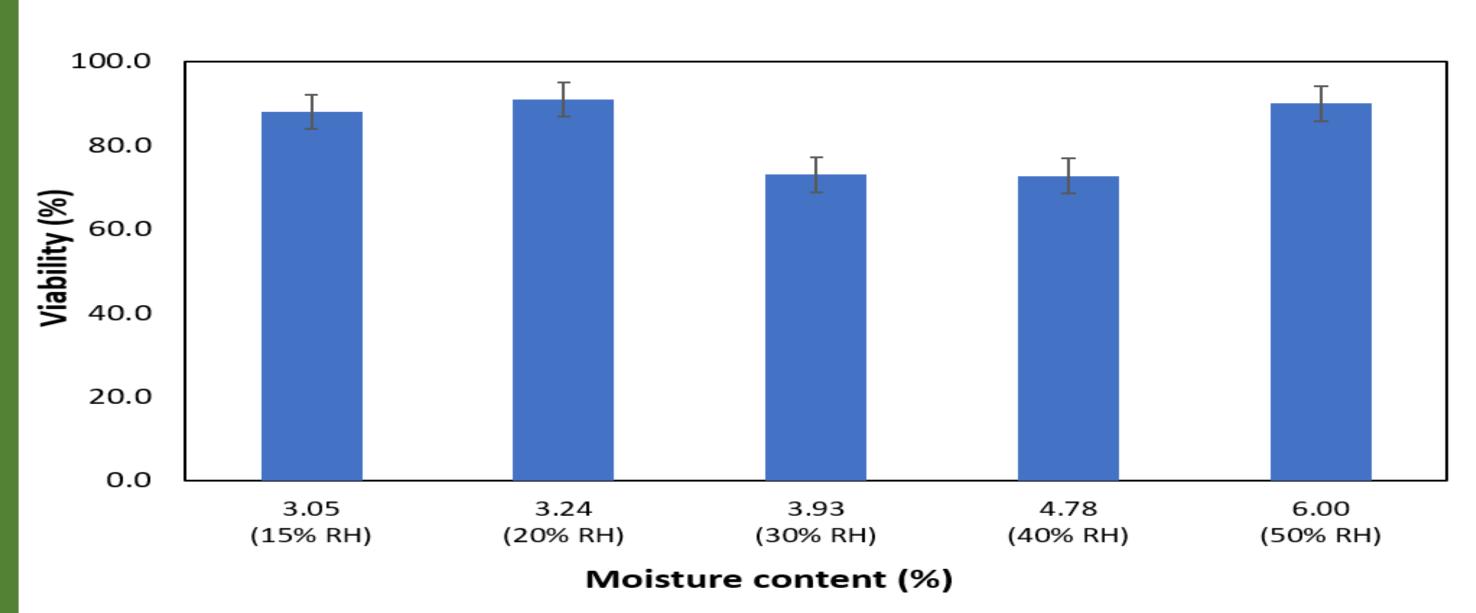


Fig 5. Viability graph of Moisture content

- *C. polosula* seeds showed a low germination rate of less than $11\pm3\%$ in the untreated condition, and it was confirmed that the GA3 treatment improved by $90\pm7.1\%$ in the 250ppm condition. The seeds of ginseng are presumed to be physiologically dormant seeds.
- The collected seeds showed a statistically significant difference as a result of the vitality test after confirming the moisture balance of the seeds under the conditions of 15, 20, 30, 40, and 50% RH.
- C. polosula shows the behaviours of orthodox seeds, and long-term s t o r a g e c o n d i t i o n s a f t e r d r y i n g . It was confirmed that it can be stored at (-20℃, RH40% or less).