Tensile performance of glued-in-rod connections for larch glulam

Sung-Jun Pang¹, Kyung-Sun Ahn², Ji-Yong Kim³, Min-Jeong Kim⁴, Jung-Kwon Oh⁵

¹Department of Agriculture, Forestry, and Bioresources, Seoul National University, pangsungjun@snu.ac.kr

²Department of Agriculture, Forestry, and Bioresources, Seoul National University, rudtjs6339@snu.ac.kr

³Department of Agriculture, Forestry, and Bioresources, Seoul National University, led_zep@snu.ac.kr

⁴Department of Agriculture, Forestry, and Bioresources, Seoul National University, o3o22222@snu.ac.kr

⁵Department of Agriculture (Forestry, and Bioresources) and Research Institute of Agriculture and Life Sciences, Seoul National University, jungoh@snu.ac.kr

ntroduction

Trends of the timber construction industry

Domestic market: Focused on low-rise housing
120,000 to 150,000 dong / year

Mid- or high-rise timber building technology is required

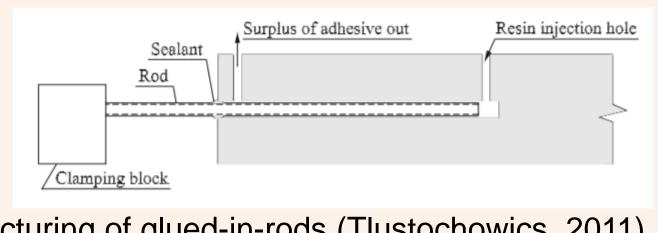
Overseas market: Focused on high-rise timber building in the city

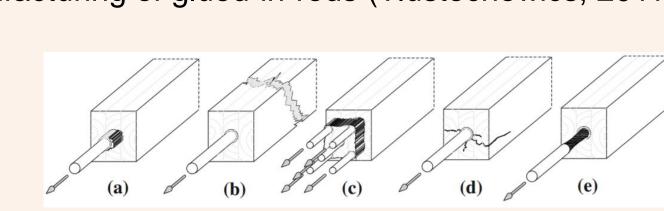
18-story UBC wooden tower (Canada)

24-story HoHo Tower (Austria)

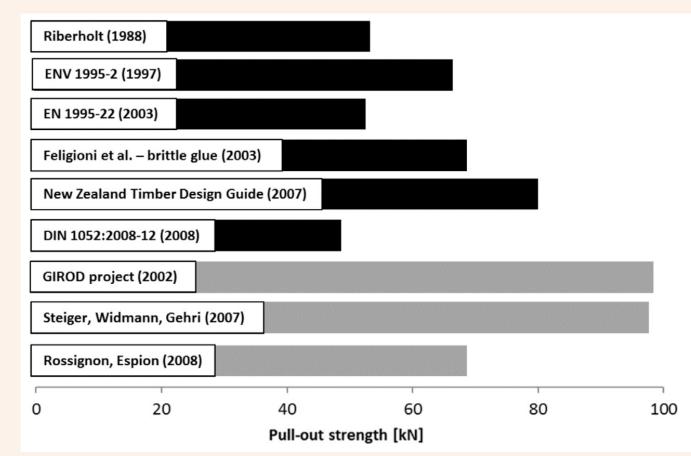
Prefabrication of timber members

- Securing uniform construction quality
- Shortening the construction period
- Minimize civil complaintsReduce field manpower




Source: Kyung Min Industrial co.,Ltd.

Glued-in-rod connections


- Glued-in rods are a suitable connection method for prefabrication
- The performance of glued-in-rods has been studied abroad. and a design method has been established.

Manufacturing of glued-in-rods (Tlustochowics, 2011)

Failure modes of glud-in-rods (Tlustochowics, 2011)

Tensile capacity of glued-in-rods (Steiger, 2015)

The aim of this study

Evaluate the tensile stiffness and strength of glued-in-rod connections for larch glulam

aterials and Methods

Materials

Glulam

Species: Larix kaempferi Carr. (density: 550 kg/m³)

Grade: 12S-30B

Lamina size : 200 mm × 200 mm × 500 mm

Moisture contents: 10 ± 2%

Steel (Deformed Bars)

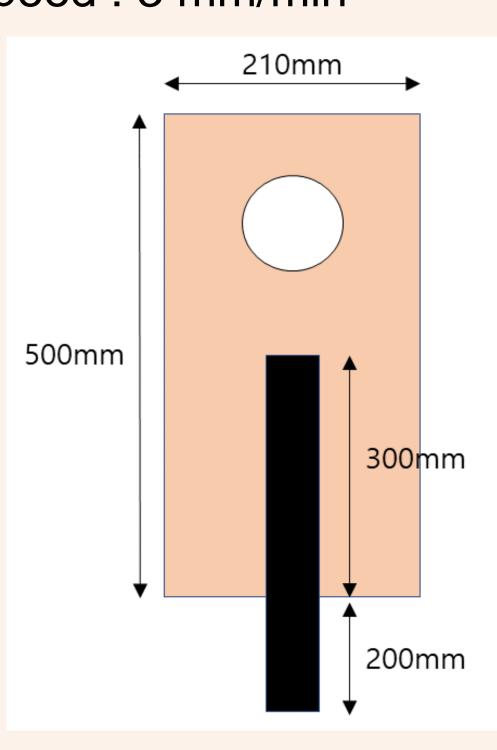
Grade: SD300, Size: Ø16 × 500 mm

Adhesive

Non-shrinkable epoxy resin

Experimental test

Glued-in-rods Specimens

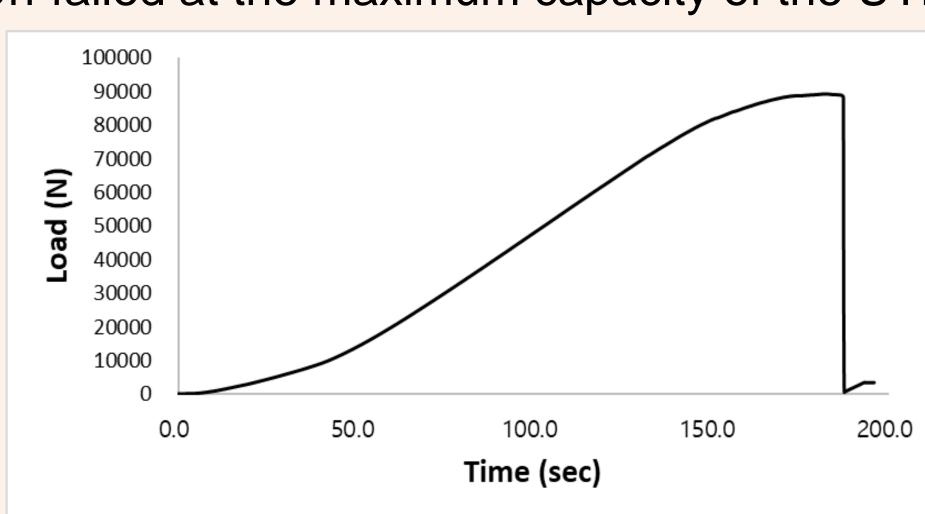

Hole size in glulam: Ø20 × 300 (depth) mm Length of penetrated depth of steel bar : 300 mm

Number of specimens: 6

Tensile test

Test method: KS F ISO 9087 Loading speed: 3 mm/min

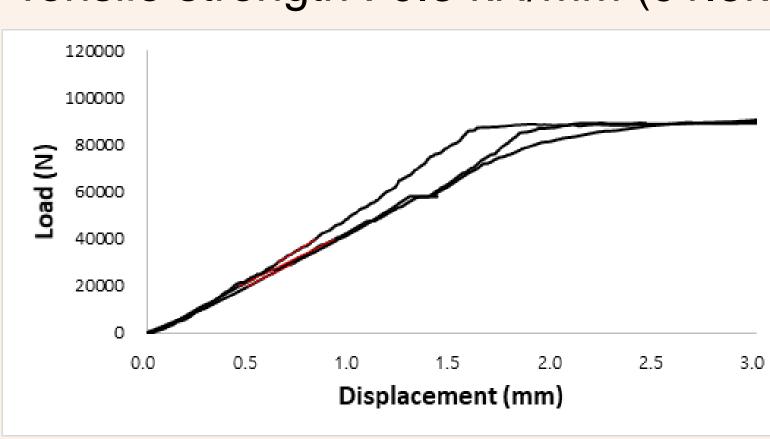



<Configurations of test specimen>

esults and discussion

Failure mode

Two of the six specimens: Steel bar was pulled out with wood Four of the six specimens: Un-failed at the maximum capacity of the UTM



<Failure mode>

<Time-load curve>

Tensile properties

Tensile stiffness: 41.7 kN/mm ~ 54.1 kN/mm Tensile strength: 0.3 kN/mm (91.5kN /300mm)

<	_oad	l-dis	place	ment	curve>
-------------	------	-------	-------	------	--------

<tensile results="" test=""></tensile>					
No.	Maximum load (kN)	Stiffness (kN/mm)			
1	100.2 (un-failed)				
2	98.5 (un-failed)	45.0			
3	89.3 (failed)	41.7			
4	99.1 (un-failed)	42.4			
5	99.5 (un-failed)	54.1			
6	99.9 (failed)	46.9			
평균	97.8	45.8			
5%	91.5				
COV	0.04	0.11			

Gonclusions

- The tensile stiffness was a range of 41.7 kN/mm ~ 54.1 kN/mm, and the average value was 45.8 kN/mm. The tensile strength was at least 0.3 kN/mm (91.5kN/300mm).
- The un-failed specimens will be subjected to periodic tensile tests in the future to observe changes in performance.