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Simple Summary: We describe results from a panel study in which pigs from a 17-sow African
swine fever (ASF) positive herd in Thái Bình province, Vietnam, were followed over time to record
the date of onset of ASF signs and the date of death from ASF. Our objectives were to (1) fit a
susceptible-exposed-infectious-removed disease model to the data with transmission coefficients
estimated using approximate Bayesian computation; (2) provide commentary on how a model of this
type might be used to provide decision support for disease control authorities. Detailed datasets of
epidemics afflicting smallholder herds are rare. This study provides insight into how ASF progresses
in a small-scale semi-intensive pig herd in Vietnam and generated a dataset that facilitated the use of
a modeling approach to describe the transmission dynamics in this frequently underreported sector.

Abstract: We describe results from a panel study in which pigs from a 17-sow African swine fever
(ASF) positive herd in Thái Bình province, Vietnam, were followed over time to record the date
of onset of ASF signs and the date of death from ASF. Our objectives were to (1) fit a susceptible-
exposed-infectious-removed disease model to the data with transmission coefficients estimated using
approximate Bayesian computation; (2) provide commentary on how a model of this type might
be used to provide decision support for disease control authorities. For the outbreak in this herd,
the median of the average latent period was 10 days (95% HPD (highest posterior density interval):
2 to 19 days), and the median of the average duration of infectiousness was 3 days (95% HPD:
2 to 4 days). The estimated median for the transmission coefficient was 3.3 (95% HPD: 0.4 to 8.9)
infectious contacts per ASF-infectious pig per day. The estimated median for the basic reproductive
number, R0, was 10 (95% HPD: 1.1 to 30). Our estimates of the basic reproductive number R0 were
greater than estimates of R0 for ASF reported previously. The results presented in this study may
be used to estimate the number of pigs expected to be showing clinical signs at a given number of
days following an estimated incursion date. This will allow sample size calculations, with or without
adjustment to account for less than perfect sensitivity of clinical examination, to be used to determine
the appropriate number of pigs to examine to detect at least one with the disease. A second use of
the results of this study would be to inform the equation-based within-herd spread components of
stochastic agent-based and hybrid simulation models of ASF.

Keywords: infectious diseases; epidemic; outbreak; virus; transboundary; mathematical modeling;
simulation; epidemiology; livestock; panzootic
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1. Introduction

In late January 2019, a 20-sow family-owned piggery in Thái Bình province in Vietnam
experienced acute onset of illness in pigs of all age classes, with morbidity and mortality
rates reaching greater than 50% by early February. African swine fever (ASF) was confirmed
in this herd on 19 February 2019 [1]. Up to 31 December 2019, all 63 provinces through-
out Vietnam had been confirmed with ASF, with 8,537 of Vietnam’s 11,129 communes
(77%) affected.

Blood, tissues, secretions, and excretions of sick and dead animals are the major source
of the virus within ASF-positive herds [2]. Pigs that recover from either the acute or chronic
form of ASF can become carriers [3], and indirect transmission of disease can occur through
contact with ASF-contaminated feed and other fomites. Where incident ASF cases in a
herd are detected early, and effective disease control measures are applied rapidly, the
within-herd spread of disease can be quite low, with disease confined to only some sheds
or pens on a farm [4].

Infectious disease models have been used to reproduce the observed incidence and
prevalence of diseases of both humans and animals, including influenza [5], human immun-
odeficiency virus [6], smallpox [7], malaria [8], foot-and-mouth disease [9–11] and Ebola
virus disease [12]. Disease models are important tools for developing an understanding
of the behavior of the disease in complex environments and for assessing the impact of
interventions to limit disease spread. For example, models incorporating disease control
measures (e.g., vaccination, movement restrictions, depopulation) can be used to identify
situations where specific interventions or combinations of interventions are likely to have
the greatest effect [7,9,13,14]. The use of state-of-the-art modeling to incorporate limited
data from resource-poor settings affected by livestock diseases remains a challenge [15].

Susceptible-exposed-infectious-recovered or susceptible-exposed-infectious-removed
(both abbreviated SEIR) models [16,17] describe the number of susceptible, exposed (latent),
and infectious individuals in a population and how these numbers change over time. In an
SEIR model, transmission coefficients quantify the rate at which individuals transit from
the susceptible to exposed, exposed to infectious, and infectious to recovered or removed
states. Model transmission coefficients are of key importance in fit-for-purpose model
development because they are a major determinant of the accuracy of model predictions [18].
Approaches for numerical estimation of disease model transmission coefficients include
experimental studies [19] and observational studies in which individuals from a population
are assessed for the presence of disease at regular intervals [20]. In this study, we describe
results from an observational study in which pigs from a 17-sow ASF-positive herd in
Thái Bình province in Vietnam were followed over time to record the date of onset of ASF
signs and the date of death from ASF. Our objectives were to: (1) fit an SEIR (susceptible-
exposed-infectious-removed) model to the data with transmission coefficients estimated
using approximate Bayesian computation [21,22]; (2) provide commentary on how a model
of this type might be used to provide decision support for disease control authorities.

2. Materials and Methods
2.1. Study Population and Data Collection

This was a panel study of 17 pigs that comprised a small, family-owned farm in Thái
Bình province, approximately 100 kilometers to the east of Hanoi, Vietnam. The farm was
typical of smallholder swine enterprises in this area of Vietnam, with animals of a given age
and production class (gilts, weaners, growers, and finishers) sharing the same pen. Dry and
lactating sows were kept in individual stalls with little or no opportunity to make direct
physical contact with each other. The herd was comprised of five pregnant sows, three sows
that were nursing piglets, and nine gilts. Following the onset of clinical signs characteristic
of ASF on 15 March 2019 (day 0)—including high fever, anorexia, lethargy, cutaneous
hemorrhages, vomiting, respiratory distress, coughing, abortion, and unwillingness to
stand—the first and second authors visited the farm every 2 to 3 days to (1) examine
animals for the presence of clinical signs (including recording of body temperature using a
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digital thermometer), (2) take blood samples for real-time polymerase chain reaction assay
(RT-PCR) using the VDx ASFV Gene Diagnosis Kit (http://www.mediandiagnostics.com/,
accessed on 15 November 2022) [1], and (3) record the date and details of death for pigs
that died.

2.2. Model Structure

A frequency-dependent continuous time stochastic susceptible-exposed-infectious-
removed model was developed (Figure 1) using the Gillespie algorithm [23,24]. The model
was designed to estimate changes in the prevalence of infectious pigs as a function of the
number of days following the onset of clinical signs of the assigned index case in the herd.
Expressions defining the number of pigs transitioning out of the susceptible state into the
exposed, infectious, and removed states as a function of time are shown in Equations 1 to
4, respectively.

dS
dt

= −βSI/N (1)

dE
dt

= βSI/N − σE (2)

dI
dt

= σE − γI (3)

dR
dt

= γI (4)
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Figure 1. Schematic diagram of the susceptible-exposed-infectious-removed (SEIR) model described 
in the text. Sojourn times in the exposed I and infectious (I) states were split into 4 sub-compart-
ments, effectively following Erlang distributions with shape parameter k = 4. 

Figure 1. Schematic diagram of the susceptible-exposed-infectious-removed (SEIR) model described
in the text. Sojourn times in the exposed I and infectious (I) states were split into 4 sub-compartments,
effectively following Erlang distributions with shape parameter k = 4.

The rate at which pigs transitioned from the susceptible to the exposed state was
dependent on a transmission coefficient, β. The rate at which pigs transitioned from the
exposed to infectious state was dependent on σ such that the average latent period was
equal to 1/σ. The rate at which individuals transition to the removed state was dependent
on γ, defined as the inverse of the average duration of infectiousness [16]. The length of time
individuals remained in the exposed (E), and infectious (I) states were assumed to follow
Erlang distributions with a shape parameter k = 4 which provides a good approximation
to the latent and infectious length distributions [25]. With this approach, we allowed for a
steeper increase in incidence and a shorter duration of the modeled outbreak [26], which
captures the disease dynamics observed (Figure 1).

2.3. Model Parameters

Approximate Bayesian computation (ABC) [27] methods using a Sequential Monte
Carlo (SMC) algorithm to optimize computational efficiency [28,29] were used to estimate
values of β, σ, and γ (Table 1) for the process that generated the available dataset. The
bounds of the uniform prior distributions used in the ABC-SMC were set at values that
encompassed the range of plausible values. These were based on a review of published
literature from studies that reported on epidemiological parameters from field observations
of African swine fever outbreaks (see Table 1), where possible, confined to estimates based

http://www.mediandiagnostics.com/
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only on within-farm transmission. The viral strains circulating in Vietnam at the time of
the outbreak belonged to genotype II (p72 and p54 genes), serogroup 8 (CD2v gene), and
CVR I – which share 100% identity with previously reported Vietnamese ASF viral isolates
and those reported in China, Georgia, Korea, and Russia [30]. In order to perform an
exhaustive exploration of the parameter space, the minimum and maximum limits of our
prior distributions included parameter estimates derived from observational studies across
different regions. The ABC SMC algorithm involved sampling combinations of β, σ, and γ
values (i.e., particles) until n = 2000 particles were retained at each step, based on a distance
function. The distance function was estimated as the difference between the observed
data and three summary statistics for a simulation run on each particle: the number of
days to reach the outbreak peak, the peak outbreak size, and the sum of epidemic curve
residuals (i.e., the sum of the magnitude of the differences between the simulated and
observed epidemic curve, by day). In the first step, particles were accepted if their distance
from the observed data was within predefined tolerances, set to capture the peak within
± 4 days and ±4 cases, and an epidemic curve residual sum of ≤40 cases. The tolerance
was progressively narrowed in sequential steps of the SMC algorithm to the 75th percentile
of the distance from the observed data of the retained particles from the previous step,
per summary statistic. The ABC-SMC algorithm was coded in R [31] and run until there
was limited further gain with additional steps, in this case, for 18 steps. An estimate of
the basic reproductive number (R0), defined as the expected number of new infectious
individuals that one infectious individual will produce during its period of infectiousness
in a fully susceptible population [16], was obtained as a calculated output by dividing β by
γ for each particle. All inferred parameters were reported based on the highest posterior
density interval, using the contributed HDInterval package [32] in R. Research protocols
for this study were approved by the Committee on Animal Research and Ethics, Faculty of
Veterinary Medicine, Vietnam University of Agriculture (Approval No. CARE-201/04) and
followed the principles regarding the privacy of personal data outlined in the Universal
Declaration of Human Rights [33]. The data supporting the findings of this study were
obtained with the oral consent of the farm owners and are available on request from the
corresponding author. The data are not publicly available due to privacy reasons.

Table 1. Description of model parameters and prior distributions used in the ABC-SMC, based on
published information from empirical observations of within-farm spread of African swine fever.

Parameter Description Prior Use in ABC-SMC Prior Published
Ranges

Outbreak Location and Year, Strain
Virulence, and References

β Transmission coefficient Uniform (0.001, 10) 0.7 to 2.2
0.8 to 1.3

Russia 2010–2014, moderate virulence [34]
Ukraine 1977, high virulence [35]

σ
Inverse of the average

latent period Uniform (1/35, 1) 1/(5.8 to 9.7) Russia 2010–2014, moderate virulence [34]

γ
Inverse of the average

duration of infectiousness Uniform (1/35, 1)
1/(4.5 to 8.3)

1/15
1/(13 to 19)

Russia 2010–2014, moderate virulence [34]
Russia 2007–2010, moderate virulence [36]
Nigeria 1997–2005, moderate virulence [37]

R0 Basic reproductive ratio No prior calculated output

4.4 to 17
3.9 to 16
1.6 to 3.2
5.7 to 9.2

Russia 2010–2014, moderate virulence [34]
Russia 2007–2010, moderate virulence [36]

Uganda 2010–2011, high virulence [38]
Ukraine 1977, high virulence [35]

3. Results

A frequency histogram showing the date of onset of clinical signs and date of death as
a function of calendar date is shown in Figure 2. The index case developed clinical signs on
15 March 2019 (day 0) and died four days later on 19 March 2019 (day 4). In total, 10 of the
17 adult pigs in the herd died from ASF. One pig with ASF was culled due to the severity
of clinical signs. The last ASF death occurred on 23 April 2019 (day 39). The peak number
of pigs with clinical signs occurred on 5 April 2019 (day 21, Figure 2).
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Figure 2. Frequency histogram showing counts of animals showing clinical signs and counts of
animals that died as a function of calendar date.

Figure 3 shows rectal temperatures for 16 of the 17 adult pigs in the herd from day
5 (20 March 2019) until the date of death or day 40 (24 April 2019), whichever came first.
Eleven of the 16 pigs that were monitored developed fever, defined as a rectal temperature
greater than or equal to 40 ◦C [2], and, of this group, nine died. One pig was culled, and
one pig was alive on 24 April 2019 (day 40). A total of 22 real-time PCRs were carried out
on 10 pigs, with positive results (PCR Ct < 35) returned on 22 occasions. One pig returned
a positive test to PCR on 25 March 2019 (day 10) but did not develop a fever. This pig died
on day 26 March 2019 (day 11).

Descriptive statistics of the approximate posterior distributions of the transmission
coefficient β, the average latent period σ−1, the average duration of infectiousness γ−1 and
the basic reproductive number R0 are presented in Table 2. Figure 4 shows the uniform
prior distributions assigned to β, σ, and γ and the approximate posterior distributions
estimated by the ABC-SMC algorithm, along with the calculated approximate posterior
distribution for R0, and Figure 5 shows the fit of the model predictive epidemic curve
distributions to the empirical target distribution.
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Table 2. Descriptive statistics of the posterior distributions of the transmission coefficient β, the
average latent period (days) σ−1, the average duration of infectiousness (days) γ−1 and the basic
reproductive number R0.

Parameter Median (95% HPD) 1/Median (95% HPD)

β 3.3 (0.4, 8.9) -
σ−1 10.2 (2.1, 18.8) 0.10 (0.04, 0.31)
γ−1 3.2 (2.0, 4.4) 0.32 (0.20, 0.45)
R0 10.4 (1.1, 30.4) -
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Figure 3. Line plots showing rectal temperature for individual pigs as a function of the number of
days 15 March 2019. On each plot, the days on which pigs were showing clinical signs of ASF are
shown in black. The days on which blood samples were taken from individual pigs are marked on
each plot as inverted triangles, with shading indicating the PCR Ct value.

The approximate posterior distribution differed markedly from the prior distributions
for all variables indicating that they were well informed by the data. For this outbreak,
the median of the average latent period was 10 days (95% HPD [highest posterior density
interval]: 2 to 19 days), and the median of the average duration of infectiousness was 3 days
(95% HPD: 2 to 4 days). The estimated median for the transmission coefficient was 3.3 (95%
HPD: 0.4 to 8.9) infectious contacts per ASF-infectious pig per day. The estimated median
for R0 was 10 (95% HPD: 1.1 to 30).

The Appendices A–C provides details of the full approximate posterior distribution,
the R code used for these analyses, estimates of the cross-correlations between parameters in
the accepted particles (Figure A1), and a comparison of trajectories of repeated simulations
from the posterior distribution with the empirical data (Figure A2).
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Figure 4. Prior (dashed lines) and posterior (solid lines) distributions for (a) the transmission
coefficient β; (b) the inverse of the average latent period σ; (c) the inverse of the average duration of
infectiousness γ; (d) the basic reproductive number, R0 which was a calculated output and (being a
ratio) is presented on a logged horizontal axis.
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4. Discussion

ASF was officially announced in Vietnam in February 2019, leading to rapid detection,
stamping out of ASF-infected farms, and strict monitoring of surrounding uninfected herds.
Given the rapid spread of the virus and severe economic losses to farmers, the Department
of Animal Health in Vietnam changed the policy and allowed spot elimination (also called
“pulling the tooth”), which is the rapid detection and removal of ASF-infected animals while
the rest of the herd remains under monitoring [39]. In this context, this investigation
provides unique insight into how ASF progresses in a small-scale semi-intensive pig herd in
Vietnam and generated data amenable to modeling approaches to describe the transmission
dynamics in a type of premise frequently underreported in the literature [15].

Our modeling estimates provide useful starting points for modeling the spread of
ASF within small-scale, semi-intensive Vietnamese pig herds. The estimated value of
R0 (10; 95% HPD: 1.1 to 30) in this study is comparable to the 5 to 12 range reported
by Schulz et al. [40] in a study that summarized within-herd R0 estimates across two
observational studies [35,36]. Our median estimate of R0 is also within the 4.92 and
24.2 range estimated under experimental conditions [41]. Estimates from field observations
from an outbreak in 1977 in Ukraine [35] presented a lower range, from 6 to 9, while
an analysis of a recent outbreak in Uganda, where the farming system is likely to differ
markedly from Vietnam, was from 1.6 to 3.2 [38]. Differences in estimates of R0 across
studies arise from the properties of different virus isolates (e.g., virulence and infectivity),
the frequency of contacts between pigs within a herd (influenced by herd structure and
management), and the analytical method used [40]. A strength of this study is that empirical
data were used to simultaneously estimate β, σ, and γ using ABC methods as opposed
to the more commonly used and potentially biased technique that involves estimation of
β using a generalized linear model and then assuming a fixed value for the duration of
infectiousness, usually obtained from the literature.

Our estimate of R0 is high and comparable to that of measles in human populations [42].
Thus, the pursuit of solutions based on vaccine development must also consider well-
planned vaccine deployment to achieve high levels of coverage. In the absence of a vaccine,
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our results suggest that herd managers should regard all animals as potentially infectious
in an ASF outbreak—not just those showing clinical signs. The time series plots of the rectal
temperatures as a function of outbreak day, in combination with the results of PCR testing
(Figure 3), show that pigs became PCR-positive and shed the virus before the onset of
pyrexia and presumably clinical signs. These results agree with the findings of de Carvalho
Ferreira et al. [41] in a study investigating the transmission rate of ASF under laboratory
conditions. The application of strict biosecurity measures focused on minimizing the
transference of infected body tissues and fomites from infected to uninfected animals [4]
should be prioritized to reduce the within- and between-herd spread of ASF. Enforcement
of strict biosecurity measures to mitigate ASF in smallholder premises requires close
monitoring, as it may result in increasing trading and consumption of infected animals [43],
magnifying the outbreak effects [44].

Thái Bình province is one of the most densely pig-populated areas in Vietnam per
square kilometer, where the average number of pigs per farm is low (8 or less) [39]. The farm
in our study could be considered typical of this province. A limitation of this investigation
is that the parameters were estimated based on the disease dynamics observed in a single
farm and do not capture the variability in breeds, herd size, infrastructure, management,
and biosecurity across the Vietnamese swine sector. Moreover, the small population size
resulted in large uncertainty (i.e., wide 95% HPD) in the parameters reported.

We envisage two potential uses of the results presented. The first is at the individual
farm level, in the situation when a herd manager may be concerned that ASF was introduced
via (for example) shared, contaminated equipment. In this situation, a herd advisor could
use our estimates of β, σ, and γ and the number of pigs at risk to determine the number
of pigs expected to be showing clinical signs at a given number of days following the
estimated incursion date. Sample size calculations, with or without adjustment to account
for less than perfect sensitivity of clinical examination, could then be used to determine
the appropriate number of pigs to examine to be 95% (or 99% confident) that at least one
animal will be detected with disease [45]. A modification of this approach would be to
calculate the expected duration of an outbreak if a herd in question was infected. If no
deaths were encountered for the duration of the expected outbreak period, one could be
confident that the herd was, in fact, ASF-free. A second use of the results of this study
would be a modification of the equation-based within-herd spread components of stochastic
agent-based and hybrid simulation models, such as the Australian Animal Disease (AADIS)
model [46], to allow it to simulate the spread of ASF among domestic pigs, in addition to
foot-and-mouth disease for which it was originally designed.

5. Conclusions

The result of this study provides evidence that outbreaks of ASF in smallholder farms
can be severe, leading to high mortality in a short period of time. In the absence of an effec-
tive vaccine or treatment for ASF, herd managers should contain their animals, monitor for
clinical signs, report suspected outbreaks to authorities promptly, and undertake appropriate
management of farm waste and deceased animal carcasses. The transmission parameters
estimated provide quantitative insight into the epidemiology of ASF in the smallholder
sector, which is frequently afflicted by ASF outbreaks but remains poorly understood.
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Appendix A. Approximate Posterior Distribution and R Code

The full approximate posterior distribution and R code used for these analyses are
provided here: https://doi.org/10.26188/12646541.
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Appendix C. Repeated Simulations from the Posterior Distribution Versus
Empirical Data

The set of trajectories presented in Figure 5 in the main paper represents an asymptotic
estimator of the posterior. A feature of ABC-SMC for such stochastic models is that repeated
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simulation of retained parameter values from the approximate posterior distribution can
generate simulated trajectories that fall outside the range specified by the tolerance. The
following figure presents 2000 re-simulated trajectories of particles sampled from the
posterior in comparison with the empirical data. Of these trajectories, 19.6% met the
tolerance criterion at the 20th step of the implemented ABC-SMC algorithm for the peak
of the epidemic curve being captured within ±1 case, 13.3% met the tolerance criterion of
the peak being captured ± 2 days, while 1.1% met the tolerance criterion of an epidemic
curve residual sum of ≤29 cases. Although the observed realization fell within the 95%
credible interval, the median simulated curve is much flatter, peaking earlier and lower. We
consider this because the observed curve had an unusual shape for an SEIR model, with a
long latent phase, then a very sudden peak and decline.
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