Workshop on non-chemical alternatives to replace methyl bromide as a soil fumigant

REPORT
Workshop on non-chemical alternatives to replace methyl bromide as a soil fumigant

REPORT

26–28 June 2007, Budapest, Hungary

Edited by
R. Labrada

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2008
TABLE OF CONTENTS

ABBREVIATIONS .. VII

PREFACE .. IX

INTRODUCTORY PAPERS ... 2

THE PHASING OUT OF METHYL BROMIDE .. 1

INTRODUCTION ... 1

NON-CHEMICAL ALTERNATIVES TO METHYL BROMIDE FOR SOIL-BORNE PEST CONTROL .. 3

INTRODUCTION ... 3

THE STATUS OF SOIL-BORNE PEST CONTROL AND INTEGRATED PEST MANAGEMENT (IPM) 4

AVAILABLE NON-CHEMICAL ALTERNATIVES FOR SOIL-BORNE PEST CONTROL 5

Soilless substrates .. 5

Heating and steam ... 6

Biological control agents .. 7

Resistant cultivars and grafting .. 8

Organic amendments and biofumigation .. 9

Soil solarization ... 9

Use of plant covers .. 10

COUNTRY REPORTS .. 15

NON–CHEMICAL ALTERNATIVES USED IN BULGARIA .. 17

HISTORY OF GREENHOUSES IN BULGARIA .. 17

NON-CHEMICAL ALTERNATIVES USED IN BULGARIA TO REPLACE MB AS A SOIL FUMIGANT 18

Cultural practices ... 18

Physical methods .. 18

Biological control .. 19

HYDROCULTURE IN HUNGARY ... 23

VEGETABLES PRODUCTION ... 23

ORNAMENTALS .. 24

GRAFTING AS AN ALTERNATIVE FOR VEGETABLE PRODUCTION IN HUNGARY 25

VEGETABLE PRODUCTION IN HUNGARY .. 25

GRAFTING .. 27

GROWING IN CONTAINERS IN HUNGARY .. 29

INTRODUCTION ... 29

AVAILABLE SUBSTRATES IN VEGETABLE PRODUCTION IN HUNGARY 29

Bog-peat ... 29

Low moor peat .. 30

Coconut fibres .. 30

Perlite ... 30

Fired clay granules ... 30

Sand ... 30

POTS APPLIED IN HUNGARY ... 30

Buckets ... 30

Plastic containers ... 31

Other plastic pots and boxes ... 31

Polystyrene buckets and boxes ... 32

Polyethylene sacks .. 32

BIOLOGICAL PEST CONTROL AT ARPAD-AGRAR .. 33
BIOLOGICAL AGENTS FOR THE CONTROL OF SOIL-BORNE PESTS... 99

INTRODUCTION ... 99
IMPORTANT SOIL-BORNE DISEASES IN GREENHOUSE CROPS IN HUNGARY 99
BIOLOGICAL CONTROL OF DISEASES .. 100
FEASIBILITY OF THE USE OF MICROBIOLOGICAL AGENTS .. 100
MICROBIOLOGICAL AGENTS TESTED IN HUNGARY AGAINST DIFFERENT PATHOGENS 101
CONDITIONS FOR THE APPLICATION OF BIOLOGICAL CONTROL AGENTS 103

ALTERNATIVES TO METHYL BROMIDE IN PROTECTED HORTICULTURE WITH SPECIAL
REFERENCE TO FLORICULTURE – THE IPM APPROACH .. 105

INTRODUCTION ... 105
INTEGRATED PEST MANAGEMENT (IPM) ... 106
STEAM STERILIZATION (PASTEURIZATION) ... 106
COMPOST .. 108
SOILLESS SUBSTRATES ... 110
SOLARIZATION ... 111
FUMIGANTS .. 111

INTEGRATED SOIL PEST MANAGEMENT IN PROTECTED ENVIRONMENTS 115

INTRODUCTION ... 115
The biology and host range of soil pests in protected environments 115
Root-knot nematodes .. 115
Root lesion nematodes .. 116
Foliar nematodes .. 116
Damping-off fungi .. 116
Vascular wilts .. 117
Leaf blights .. 117
Root rots .. 118
Stem rots .. 118
Anthracnose ... 118
Bacterial wilt ... 119
Weeds .. 119
Sampling for soil nematodes .. 120
Sampling for soil pathogens ... 120

INTEGRATED MANAGEMENT OF STRAWBERRY SOIL PESTS UNDER MOVEABLE POLY-TUNNELS 124
INTEGRATED MANAGEMENT OF TOMATO SOIL PESTS UNDER MOVEABLE POLY-TUNNELS 127
INTEGRATED MANAGEMENT OF GLASSHOUSE SOIL PESTS .. 129
CONCLUSION .. 130

TECHNICAL MEETING ON NON-CHEMICAL ALTERNATIVES FOR SOIL-BORNE PEST
CONTROL .. 133

LIST OF PARTICIPANTS ... 135

TABLE 1: MAIN TARGET PESTS FOR THE CONTROL BY METHYL BROMID 2
TABLE 2: MAIN MICROORGANISMS USED FOR BIOLOGICAL CONTROL IN SOIL 7
TABLE 3: POST-ACTIVITY OF BIOAct WG AGAINST Meloidogyne arenaria Neal in Cucumbers 22
TABLE 4: PEPPER PLANTS GRAFTED VS. OWN-ROOTED ... 27
TABLE 5: TOMATO PLANTS GRAFTED VS. OWN-ROOTED ... 27
TABLE 6 WATERMELON GRAFTED VS. OWN-ROOTED ... 28
TABLE 7: MIXED SUBSTRATE USED IN HUNGARY ... 31
TABLE 8: FFS CONCLUSIONS ...39
TABLE 9: THE EFFICACY OF PREVENTIVE APPLICATION OF CHEMICAL AND BIOLOGICAL TREATMENTS IN GREENHOUSE CUCUMBER GROWN AS A FOURTH CROP ON RE-USED ROCKWOOL SLABS (AUTUMN CULTIVATION) .. 44
TABLE 10: COMMERCIAL AVAILABLE BIOCONTROL AGENTS IN POLAND ... 46
TABLE 11: COMMERCIAL AVAILABLE NATURAL PLANT PROTECTION PRODUCTS IN POLAND 47
TABLE 12: EFFECTIVENESS OF CHITOSAN IN THE CONTROL OF F. OXYSPORUM F.SP. DIANTHI TEN WEEKS AFTER PLANNING .. 48
TABLE 13: THE MOST IMPORTANT NEMATODE GROUPS IN DUTCH ARABLE FARMING AND FIELD PRODUCTION OF VEGETABLES ... 54
TABLE 14: PPO-AGV NEMATODE SCHEME FOR GREEN MANURE CROPS .. 55
TABLE 15: VALUES FOR OPTIMAL WATER QUALITY FOR OPEN AND CLOSED HYDROPONICS SYSTEMS 63
TABLE 16: INFLUENCE OF BIOSOLARIZATION (B+S) ON WEEDS, ROOT-KNOT NEMATODES AND PEPPER PRODUCTION IN MURCIA (SPAIN) ... 83
TABLE 17: USE OF VEGETABLES GRAFTING IN SELECTED COUNTRIES ... 88
TABLE 18: THE GRAFTING PROCESS DURATION FOR CONDITIONS IN SOUTHEAST SPAIN (IN DAYS) 90
TABLE 19: REGISTERED MICROBIOLOGICAL ACTIVE INGREDIENTS AGAINST PLANT PATHOGENS ACCORDING TO ANNEX I OF 91/414/EEC COUNCIL DIRECTIVE ... 102
TABLE 20: REGISTERED BIOLOGICAL AGENTS FOR SOIL-BORNE PEST CONTROL IN HUNGARY 102
TABLE 21: USE OF TRICHODERMA SPP. IN PEPPER, 1987 .. 104
TABLE 22: THE MAIN COMPONENTS OF INTEGRATED PEST MANAGEMENT .. 107
TABLE 23: THE COMPOSTING PROCESS .. 109
TABLE 24: HEALTH AND NUTRITION MANAGEMENT OF CHRYSANTHEMUM PRODUCTION WITH COMPOST ... 109
TABLE 25: COMPARISON OF TRADITIONAL ROSE PRODUCTION IN GROUND BEDS WITH PRODUCTION IN RICE-HULL SUBSTRATE .. 111
TABLE 26: OPTIMUM CONDITIONS FOR RAPID BUILD-UP OF NEMATODE POPULATIONS 122
TABLE 27: OPTIMAL CONDITIONS FOR RAPID BUILD-UP OF SOIL PATHOGENS 123
TABLE 28: SEED TREATMENTS .. 129

FIGURES

FIGURE 1: CONSUMPTION OF MB IN HUNGARY, 1991–2003 .. 1
FIGURE 2: PRE-PLANTING MB USE IN CROPS, 1995–98 ... 2
FIGURE 3: GLASS GREENHOUSE AREA IN BULGARIA 1964–2004 ... 17
FIGURE 4: PLASTIC GREENHOUSES IN BULGARIA ... 18
FIGURE 5: DIAGRAM OF THE TREATED PLOTS IN DKA APPLYING BOTH METHODS STARTING FROM 1999 TO THE PRESENT .. 20
FIGURE 6: ACTION OF BIOPRODUCT BIOACT WG COMPARED WITH VYDATE 10G 21
FIGURE 7: OUTDOOR VEGETABLE PRODUCTION IN HUNGARY, 2003–06 .. 25
FIGURE 8: GREENHOUSE (GLASS + PLASTIC) VEGETABLE PRODUCTION IN HUNGARY, 2003–06 25
FIGURE 9: VEGETABLES PRODUCTION IN HUNGARY IN THE OPEN FIELD, 2003–06 26
FIGURE 10: VEGETABLES PRODUCTION IN HUNGARY IN GLASS AND PLASTIC GREENHOUSES 26
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITC</td>
<td>Allyl Isothiocyanates</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-Forming Units</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FFS</td>
<td>Farmers Field School</td>
</tr>
<tr>
<td>FOL</td>
<td>Fusarium oxysporum f.sp lycopersici</td>
</tr>
<tr>
<td>FOM</td>
<td>Fusarium oxysporum f.sp melonis</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated Crop Management</td>
</tr>
<tr>
<td>INIA</td>
<td>Instituto Nacional de Investigaciones Agrarias</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>MAPA</td>
<td>Agriculture, Fisheries and Food</td>
</tr>
<tr>
<td>MB</td>
<td>Methyl Bromide</td>
</tr>
<tr>
<td>MBTOC</td>
<td>Methyl Bromide Technical Option Committee</td>
</tr>
<tr>
<td>MITC</td>
<td>Methyl Isothiocyanates</td>
</tr>
<tr>
<td>MMA</td>
<td>Ministries of the Environment</td>
</tr>
<tr>
<td>MNSV</td>
<td>Melon Necrotic Spot Virus</td>
</tr>
<tr>
<td>MYCPP</td>
<td>Multy Year Crop Protection Plan</td>
</tr>
<tr>
<td>NCS</td>
<td>Nematode Control Strategy</td>
</tr>
<tr>
<td>NFT</td>
<td>Nutrient Flow Technique</td>
</tr>
<tr>
<td>PCN</td>
<td>Potato cyst nematode</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene (PE)</td>
</tr>
<tr>
<td>PPO–AGV</td>
<td>Applied Plant Research</td>
</tr>
<tr>
<td>TOT</td>
<td>Training of Trainers</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile fatty acids</td>
</tr>
</tbody>
</table>
Preface

Soil-borne pests are a major constraint to the production of various economically important crops, especially vegetables and ornamentals. Soil disinfection is a normal practice to combat several soil-borne plant pathogens, weeds and arthropods pests, and is currently implemented before planting to avoid any damage to the crops once they are planted.

Methyl bromide (MB) has been the main agent used for the control of soil-borne pests worldwide. However, the discovery of its ozone-depleting effect has prompted the parties of the Montreal Protocol to agree on a phase-out of its use and production. All country signatories to the Protocol have been identifying and validating new alternatives to replace MB. Significant progress has been made in this area: indeed, the Methyl Bromide Technical Option Committee (MBTOC) has asserted that every single crop can be produced successfully without its use.

The phasing out of MB provides an opportunity for farmers to be more innovative in their approach to pest management. Understanding the biology and host range of the economically important pests that pose risks to a given crop is an important element in the development of a new approach for soil pest control.

At present, there are several chemical fumigants already in use, but some new non-chemical alternatives have also been identified, most of them providing good soil-borne pest control if properly combined and integrated. These alternatives are more environmentally friendly than the routine use of other chemical fumigants, and their success will largely depend on regular pest monitoring and the use of all possible resources to reduce and prevent the incidence and effects of a given disease or pest.

In understanding the need for the development of environmentally viable approaches to soil pest management, FAO and the United Nations Environment Programme (UNEP) decided, jointly with the authorities of the Ministry of Environment in Hungary, to organize a Subregional Technical Workshop with the participation of several specialists from Bulgaria, Hungary and Poland, as well as from other parts of Europe. The Workshop, held in Budapest, 26–28 June 2007, aimed to exchange information and experiences on the non-chemical alternatives already validated in each of the above-mentioned countries and discuss possible ways of their future use in the countries.

The present document compiles most of the information presented and discussed at the Workshop, which may also be useful to scientists, extension workers and farmers in other regions of the world.

Maria Kadlecikova
Regional Representative
for Europe and Central Asia
Budapest, FAO
INTRODUCTORY PAPERS
The phasing out of methyl bromide

Robert Toth
National Ozone Focal Point
Ministry of Environment and Water, Budapest
tothr@mail.kvvm.hu

Summary
The historical consumption of MB is described as well as the efforts to identify and validate new alternatives for soil-borne pest control, such as the use of floating beds and substrates such as rockwool; the use of the fumigants such as dazomet, metasodium, Nemathorin 10 G and Vydate 10 G (Oxamil); growing of resistant cultivars or grafting on resistant rootstocks, and the use of preparations based on microorganisms for biological control of soil-borne pest.

Introduction
MB has been used in Hungary since 1982 for soil fumigation only, in different vegetables under greenhouse and in the open field. Figure 1 clearly shows the use of the fumigant from 1998 to 2003. Figure 2 indicates that the main uses of MB have always been as a soil fumigant in vegetables, tobacco and other minor crops. Table 1 shows the main target pests for MB application, which were mainly soil diseases, including damping-off, nematodes and Gryllotalpa gryllotalpa, among others.

It is clear that once Hungary started to comply with the initial convention and the Montreal Protocol, the use of the fumigant was reduced year after year. Hungary signed the Vienna Convention in 1988, became a signatory of the Montreal Protocol in 1989, and later signed the amendments of London (1993), Copenhagen (1994), Montreal (1999) and Beijing (2002).

Figure 1: Consumption of MB in Hungary, 1991–2003
Hungary initiated a programme for identifying and validating new alternatives to replace the use of MB in different crops. As a result of this work, there are currently several alternatives already implemented and largely used by farmers: hydroponics, the use of floating beds and various substrates other than soil, e.g. rockwool; the use of other fumigants that are non-aggressive with the ozone layer, such as dazomet, metam sodium, Nemathorin 10 G and Vydate 10 G (Oxamil); growing of resistant cultivars or grafting on resistant rootstocks; and the use of preparations based on microorganisms for biological control of soil-borne pests.

Figure 2: Pre-planting MB use in crops, 1995–98

Table 1: Main target pests for the control by methyl bromid

<table>
<thead>
<tr>
<th>Crops</th>
<th>Pests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables:</td>
<td>Meloidogyne spp. (6 sp.)</td>
</tr>
<tr>
<td>sweet pepper</td>
<td>Fusarium oxisporum</td>
</tr>
<tr>
<td>(paprika)</td>
<td>Sclerotinia spp.</td>
</tr>
<tr>
<td>tomatoes</td>
<td>Bothrytis spp.</td>
</tr>
<tr>
<td>cucumber</td>
<td></td>
</tr>
<tr>
<td>Tobacco seedling</td>
<td>Pythium debarianum</td>
</tr>
<tr>
<td></td>
<td>Fusarium sp.</td>
</tr>
<tr>
<td></td>
<td>Gryllotalpa gryllotalpa</td>
</tr>
<tr>
<td></td>
<td>Thrips tabaci</td>
</tr>
</tbody>
</table>