Figure 6.1
Chart of the progress of Hurricane Mitch and flooded areas

- Flooded Villages
- Department boundaries
- Flooded areas (radar sat)
- Flooded areas (extrapolated)
FIGURE 6.2
Simplified categories for land use in Honduras

FIGURE 6.3
Parcels for impact assessment
FIGURE 6.4
Starting window for assembling elements for the conceptual model

<table>
<thead>
<tr>
<th>PARCELS</th>
<th>INTENSITY</th>
<th>AREA</th>
<th>REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>Moderate rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>High rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivo</td>
<td>Torrential rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasto</td>
<td>Flood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 6.5
Building up parcel definitions by selecting elements for each Department
FIGURE 7.1
Average annual rainfall for Honduras (from CINDI/USGS)

Country Outlines

PRECIPITATION

- 0 - 100 mm
- 100 - 200
- 200 - 400
- 400 - 600
- 600 - 1 000
- 1 000 - 1 400
- 1 400 - 2 000
- 2 000 - 2 800
- 2 800 - 4 000
- 4 000 - 5 600
- 5 600 - 8 000
- 8 000 - 10 000
- 10 000 - 12 000
FIGURE 7.2
Rainfall associated with Hurrican Mitch (from NOAA/EarthSat)

Department borders
RAIN FALL
- Moderate rain
- High rain
- Torrential rain
Figure 8.1
Percentage loss values following Hurricane Mitch, Honduras, October 1998

Figure 8.2
Estimated distribution of value density across Honduras at the time of Hurricane Mitch
FIGURE 8.3
Distribution of damage impact in monetary terms per unit area (US$/ha) in the aftermath of Hurricane Mitch in Honduras, October 1998
1. Africover: Specifications for geometry and cartography, 2000 (E)
2. Terrestrial Carbon Observation: The Ottawa assessment of requirements, status and next steps, 2002 (E)
4. Organic agriculture: Environment and food security, 2003 (E and S)
5. Terrestrial Carbon Observation: The Frascati report on in situ carbon data and information, 2002 (E)
6. The Clean Development Mechanism: Implications for energy and sustainable agriculture and rural development projects, 2003 (E)*
7. The application of a spatial regression model to the analysis and mapping of poverty, 2003 (E)
8. Land Cover Classification System (LCCS), version 2, 2005 (E)
9. Coastal GTOS. Strategic design and phase 1 implementation plan, 2005 (E)
10. Frost Protection: fundamentals, practice and economics- Volume I and II + CD, 2005 (E and S**)
11. Mapping biophysical factors that influence agricultural production and rural vulnerability, 2007 (E)
12. Rapid Agricultural Disaster Assessment Routine (RADAR), 2008 (E)

Availability: January 2008

Ar Arabic F French Multil Multilingual
C Chinese P Portuguese * Out of print
E English S Spanish ** In preparation

The FAO Technical Papers are available through the authorized FAO Sales Agents or directly from:

Sales and Marketing Group - FAO
Viale delle Terme di Caracalla
00153 Rome - Italy

Printed on ecological paper
The Rapid Agricultural Disaster Assessment Routine (RADAR) is based on the idea that a disaster is the "product" of extreme factors and a vulnerable agricultural system. This book proposes to move from empirical assessments of disaster impact on agriculture towards model-based approaches. Once an event strikes a region, the user of the procedure should rapidly collect all available georeferenced and quantitative data on the event and the region. Subsequently, a Disaster Information Management System that integrates physical models, knowledge-bases, databases and GIS can be used to assess the short- and long-term agricultural impact of the event. The output of the analyses is the geographical distribution of the intensity of the event, which is then used to compute the integrated impact on agriculture produced by the disaster. In the medium- to long-term accumulated information and in-depth analysis should provide a significant contribution towards disaster preparedness and minimization of potential risks through early warning strategies and preparation of development plans that incorporate resilience to such disasters.