SECTION B - ABSTRACTS

1. GENERAL (INCLUDING LAND USE)

Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA. [halter@dtm.cc.nih.gov].

Although remarkable advances have been made in the prevention of the major transfusion-transmitted diseases, long intervals have transpired between the first recognition of transfusion risk and the implementation of a preventive strategy. For hepatitis B virus, that interval was 30 years; for non-A, non-B/hepatitis C virus, 15 years; and for human immunodeficiency virus, West Nile virus, *Trypanosoma cruzi*, and bacteria, 3, 4, 5, and 18 years, respectively. In our existing reactive approach, there is a fundamental and inevitable delay before we can react; and thus, infections are destined to occur. The continued emergence or re-emergence of transfusion-transmitted infections calls for a new paradigm of pre-emptive pathogen reduction (PR). Two PR systems, psoralen/UV-A and riboflavin/UV-A, have shown efficacy and safety for platelets and plasma; and psoralen/UV-A technology has been successfully implemented for platelets in Europe. Pathogen reduction can eliminate or reduce the risk for any nucleic acid containing agent, including bacteria, and thus will be effective for all but prion diseases. It is possible to introduce PR for platelets and plasma now and to concentrate resources on developing PR for red cells. This will require an intellectual and financial commitment from the National Institutes of Health, the Food and Drug Administration, industry, and the blood bank establishment, just as occurred for nucleic acid testing (NAT) technology. This can be done if there is sufficient will to do it.

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. [gdimopou@jhsph.edu].

The increasing availability of genome sequences and the development of high-throughput techniques for gene expression profiling and functional characterization are transforming the study of innate immunity and other areas of insect biology. Already, functional genomic approaches have enabled a quantum advance in the characterization of mosquito immune responses to malaria parasite infection, and similar high-throughput functional genomic studies of other vector-pathogen interactions can be expected in the near future. The application of microarray-based and other expression analyses provide genome-wide transcriptional profiles that can be used to identify insect immune system components that are differentially regulated upon exposure to various classes of pathogens, including many important aetiologic agents of human and animal diseases. The role of infection-
responsive or other candidate immune genes identified through comparative genomic approaches can then be functionally characterized, either in vivo, for instance in adult mosquitoes, or in vitro using cell lines. In most insect vectors of human pathogens, germ-line transgenesis is still technically difficult and maintenance of multiple transgenic lines logistically demanding. Consequently, transient RNA interference (RNAi)-mediated gene-silencing has rapidly become the method of choice for functional characterization of candidate innate immune genes. The powerful combination of transcriptional profiling in conjunction with assays using RNAi to determine gene function, and identify regulatory pathways, together with downstream cell biological approaches to determine protein localization and interactions, will continue to provide novel insights into the role of insect innate immunity in a variety of vector-pathogen interactions. Here we review advances in functional genomics studies of innate immunity in the insect disease vectors, over the past decade, with a particular focus on the Anopheles mosquito and its responses to malaria infection.

Institute of Systematic Botany, New York Botanical Garden, New York, USA. [nbletter@yahoo.com].

Although ethnomedically and taxonomically guided searches for new medicinal plants can improve the percentage of plants found containing active compounds when compared to random sampling, ethnobotany has fulfilled little of its promise in the last few decades to deliver a bounty of new, laboratory-proven medicinal plants and compounds. It is quite difficult to test, isolate, and elucidate the structure and mechanism of compounds from the plethora of new medicinal plant uses described each year with limited laboratory time and resources and the high cost of clinical trials of new drug candidates. A new quantitative theoretical framework of mathematical formulas called "relational efficacy" is proposed that should narrow down this search for new plant-derived medicines based on the hypothesis that closely related plants used to treat closely related diseases in distantly related cultures have a higher probability of being effective because they are more likely to be independent discoveries of similar plant compounds and disease mechanisms. A prerequisite to this hypothesis, the idea that empirical testing in traditional medicine will lead to choosing similar medicinal plants and therefore the medicinal flora of two distant cultures will prove to be more similar than their general flora, is tested using resampling statistics on cross-cultural field data of the plants used by the Malinke of Mali and the Ashaninka of Peru to treat the following diseases: malaria, African sleeping sickness, Chagas’ disease, leishmaniasis, diabetes, eczema, asthma, and uterine fibroids. In this case, the similarity of the medicinal floras is found to be significantly greater than the similarity of the general floras, but only when the diseases in question are grouped into the categories of parasitic and autoimmune diseases. If the central theoretical framework of this hypothesis is shown to be true, it will allow the synthesis of medicinal plant information from around the world to pinpoint the species with the highest potential efficacy to take into the laboratory and analyze further, ultimately saving much field and laboratory time and resources.

Wellcome Unit for the History of Medicine, 45–47 Banbury Road, Oxford OX2 6PE, UK. [karen.brown@wuhmo.ox.ac.uk].

This article looks at the scientific studies and debates that surrounded the control of nagana (trypanosomosis in livestock) in Zululand, South Africa, from the late nineteenth century until the 1950s. By 1953 the disease appeared to be contained following the use of DDT to exterminate the tsetse fly that spread the infection from immune wildlife to susceptible livestock. It argues that South Africa made an important contribution to western knowledge about trypanosomosis in terms of its aetiology and possibilities for its control—a fact that has often been overlooked in the historical literature that has tended to focus on events in colonial central and east Africa. It explores Zulu conceptualizations of nagana, which influenced early researchers, the evolution of veterinary, entomological, and ecological sciences as "tools" for understanding and suppressing disease, as well as the difficulties involved in reconciling game conservation with colonial settlement. The article also shows how an animal disease contributed to the development of colonial science and encouraged the expansion of scientific networks with African colonies and beyond.

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.

The emergence of American cutaneous leishmaniasis has been associated with changes in the relationship between people and forests, leading to the view that forest ecosystems increase infection risk and subsequent proposal that deforestation could reduce re-emergence of this disease. We analyzed county-level incidence rates of the disease in Costa Rica (1996-2000) as a function of social and environmental variables relevant to transmission ecology with statistical models that incorporate breakpoints. Once social marginality was taken into account, the effect of living close to a forest on infection risk was small, and diminished exponentially above a breakpoint. Forest cover was associated with the modulation of temporal effects of El Nino Southern Oscillation (ENSO) at small spatial scales, revealing an additional complex interplay of environmental forces and disease patterns. In conclusion, social factors which previously have not been evaluated rigorously together with environmental and climatic factors appear to play a critical role that may ultimately determine disease risk.

The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including *Giardia*, *Trypanosoma* and *Trichomonas* are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.

Research and Development, American Red Cross, Rockville, Maryland 20855, USA. [dodd@usa.redcross.org].

Blood safety is a topic of continuing concern, and much effort is expended on measures to decrease the risk for transmission of infectious agents via transfusion. At the same time, emerging infections may threaten this safety. A periodic review of risk is therefore appropriate. The risk for major transfusion transmissible infections continues to decline as a result of continually strengthening interventions and because of more general improvements in public health. More attention is being paid to emerging infections, and recently donor testing has been implemented for West Nile virus and *Trypanosoma cruzi*. Within the period covered by this review, the transmission of variant Creutzfeldt-Jakob disease by transfusion has been confirmed. Our understanding of other agents is improving. In summary, the estimated risk for transfusion transmitted hepatitis viruses and retroviruses is now vanishingly small, but clinicians should be alert to the possibility of infection with emerging infectious agents, because preventive measures may not be available in all cases.

The author of this book retells several of the famous stories of discovery in the field of vector-borne and parasitic diseases through the eyes of some of the most prominent
researchers working in this field today. He goes on to connect these early stories with more recent watershed contributions as recounted through a series of interviews he references throughout the course of the book. For example, he describes the discovery of the African sleeping sickness agent, *Trypanosoma gambiense*, and the contributions in the early 1900s by Dutton, Castellani, and Bruce. He then moves on to more recent discoveries regarding immunity, antigenic variation, and the role of variable surface glycoproteins. He describes the seminal studies that were performed in this area as recounted through interviews with prominent parasitologists. Through this process, he weaves a tapestry of the new and old as it relates to the history of important tropical diseases such as African trypanosomiasis, malaria, yellow fever, HIV/AIDS, hookworm, and schistosomiasis, which continue to plague humankind.

Program in Vector-Borne Diseases, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.

A new pathogen strain can penetrate an immune host population only if it can escape immunity generated against the original strain. This model is best understood with influenza viruses, in which genetic drift creates antigenically distinct strains that can spread through host populations despite the presence of immunity against previous strains. Whether this selection model for new strains applies to complex pathogens responsible for endemic persistent infections, such as anaplasmosis, relapsing fever, and sleeping sickness, remains untested. These complex pathogens undergo rapid within-host antigenic variation by using sets of chromosomally encoded variants. Consequently, immunity is developed against a large repertoire of variants, dramatically changing the scope of genetic change needed for a new strain to evade existing immunity and establish coexisting infection, termed strain superinfection. Here, we show that the diversity in the alleles encoding antigenic variants between strains of a highly antigenically variant pathogen was equal to the diversity within strains, reflecting equivalent selection for variants to overcome immunity at the host population level as within an individual host. This diversity among strains resulted in expression of nonoverlapping variants that allowed a new strain to evade immunity and establish superinfection. Furthermore, we demonstrated that a single distinct allele allows strain superinfection. These results indicate that there is strong selective pressure to increase the diversity of the variant repertoire beyond what is needed for persistence within an individual host and provide an explanation, competition at the host population level, for the large genomic commitment to variant gene families in persistent pathogens.

Department of Entomology, North Carolina State University, Box 7634, Raleigh, North Carolina 27695, USA. [Fred.Gould@NCSU.EDU].
Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and post harvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

Global climate change is inevitable-the combustion of fossil fuels has resulted in a build-up of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g. tornadoes and hurricanes). Although these events may have direct consequences for health (e.g. injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g. endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g. the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies.

Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic,
environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID “events” (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3 percent of EIDs): the majority of these (71.8 percent) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3 percent of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socioeconomic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease “hotspots”). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.

Raytheon Company, Upper Marlboro, Maryland, USA. [satya_kalluri@raytheon.com].

Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. [chris.karp@chmcc.org].
The brunt of the human immunodeficiency virus (HIV) pandemic has been borne disproportionately by resource-poor regions of the world, where tropical infectious diseases continue to hold greatest sway. As a result, our understanding of the epidemiological, biological, and clinical interactions between HIV and tropical pathogens has lagged, compared with our understanding of the interactions between HIV and pathogens that are common in the industrialized world. Because of the current rapid expansion of HIV care in the tropics, with increasing resources being made available, an overview of the available data is timely. Tropical protozoa are discussed here; other tropical pathogens are discussed in a related mini-review in this issue of Clinical Infectious Diseases.

Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, IRD, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France, Station Biologique de la Tour du Valat, Le Sambuc, 13200 Arles, France, Section of Integrative Biology, University of Texas at Austin, TX 78712, USA, Department of Zoology, University of Otago, PO Box 56, Dunedin 9015, New Zealand. [frederic.thomas@mpl.ird.fr].

Human activities have resulted in substantial, large-scale environmental modifications, especially in the past century. Ecologists and evolutionary biologists are increasingly coming to realize that parasites and pathogens, like free-living organisms, evolve as the consequence of these anthropogenic changes. Although this area now commands the attention of a variety of researchers, a broad predictive framework is lacking, mainly because the links between human activities, the environment and parasite evolution are complex. From empirical and theoretical examples chosen in the literature, we give an overview of the ways in which humans can directly or indirectly influence the evolution of different traits in parasites (*e.g.* specificity, virulence, polymorphism). We discuss the role of direct and indirect factors as diverse as habitat fragmentation, pollution, biodiversity loss, climate change, introduction of species, use of vaccines and antibiotics, ageing of the population, etc. We also present challenging questions for further research. Understanding the links between anthropogenic changes and parasite evolution needs to become a cornerstone of public health planning, economic development and conservation biology.

Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.

A new mathematical model developed by Lythgoe *et al.* shows that the semi-predictable order of trypanosome antigenic variation can be generated by two parasite-intrinsic factors. The first is the different probabilities of antigen-gene activation that result from the different molecular mechanisms by which the genes become expressed. The second
is the density-dependent differentiation of slender to stumpy cells. The study has important implications for understanding the dynamics of antigenic variation and for modelling the consequences of therapeutic strategies directed against trypanosomes.

Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, Washington 98109-5219, USA. [peter.myler@sbri.org].

The recent publication of the complete genome sequences of *Leishmania major*, *Trypanosoma brucei* and *Trypanosoma cruzi* revealed that each genome contains 8,300-12,000 protein-coding genes, of which approximately 6,500 are common to all three genomes, and ushers in a new, post-genomic, era for trypanosomatid drug discovery. This vast amount of new information makes possible more comprehensive and accurate target identification using several new computational approaches, including identification of metabolic "choke-points", searching the parasite proteomes for orthologues of known drug targets, and identification of parasite proteins likely to interact with known drugs and drug-like small molecules. This chapter describes several databases (such as Genedb, Brenda, Kegg, Metacyc, the Therapeutic Target Database, and Chembank) and algorithms (including Pathologic, Pathway Hunter Tool, and Autodock) which have been developed to facilitate the bioinformatic analyses underlying these approaches. While target identification is only the first step in the drug development pipeline, these new approaches give rise to renewed optimism for the discovery of new drugs to combat the devastating diseases caused by these parasites. Traditionally, drug discovery against the trypanosomatids (and other organisms) has proceeded from two different starting points: screening large numbers of existing compounds for activity against whole parasites or more focused screening of compounds for activity against defined molecular targets. Most existing anti-trypanosomatids drugs were developed using the former approach, although the latter has gained much attention in the last twenty years under the rubric of "rational drug design". Until recently, one of the major bottlenecks in anti-trypanosomatid drug development has been our ability to identify good targets, since only a very small percentage of the total number of trypanosomatid genes were known. That has now changed forever, with the recent (July, 2005) publication of the "Tritryp" (*Trypanosoma brucei*, *Trypanosoma cruzi* and *Leishmania major*) genome sequences. This vast amount of information now makes possible several new approaches for target identification and ushers in a post-genomic era for trypanosomatid drug discovery.

Michigan University and Yale University. [nesse@umich.edu].

Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building
worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease – and remarkably resilient–precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.

World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland. [simarrop@who.int].

While the number of new detected cases of HAT is falling, sleeping sickness could suffer the “punishment of success,” receiving lower priority by public and private health institutions with the consequent risk of losing the capacity to maintain disease control. While waiting for new tools for sleeping sickness control, the greatest challenge for the coming years will be to increase and sustain the current control efforts using existing tools. Effective surveillance and control followed by good reporting will be crucial. Furthermore, advocacy in endemic countries should continue to be maintained in the face of decreasing cases reported; sleeping sickness should retain its high priority with health policy makers and planners. Research must be encouraged to resolve the technical issues preventing the development of a new approach to surveillance and control that could be sustained by countries themselves. Since elimination of the disease has been considered feasible, WHO will adopt the conclusions of countries where HAT is endemic, who have demonstrated that: (i) the participation of existing health systems is not only desirable but essential for surveillance and control sustainability; (ii) the development of new diagnostic tools and drugs is crucial to guarantee the effective participation of existing health structures; and (iii) the maintenance of
a specialised central structure at national level is necessary to ensure the coordination and overall technical assistance needed. In that context, WHO is ready to take up the challenge and continue to lead countries, supporting and coordinating the work of all the actors involved.

BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK. [dsteverding@hotmail.com].

The prehistory of African trypanosomiasis indicates that the disease may have been an important selective factor in the evolution of hominids. Ancient history and medieval history reveal that African trypanosomiasis affected the lives of people living in sub-Saharan African at all times. Modern history of African trypanosomiasis revolves around the identification of the causative agents and the mode of transmission of the infection, and the development of drugs for treatment and methods for control of the disease. From the recent history of sleeping sickness we can learn that the disease can be controlled but probably not be eradicated. Current history of human African trypanosomiasis has shown that the production of anti-sleeping sickness drugs is not always guaranteed, and therefore, new, better and cheaper drugs are urgently required.

Seattle Biomedical Research Institute and University of Washington, Seattle, Washington, USA., Swiss Tropical Institute, Basel, Switzerland., Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, U.K., School of Life Sciences, University of Dundee, Dundee, U.K., Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina, Sandler Center for Basic Research in Parasitic Diseases, UCSF, San Francisco, California, USA., Infectious Disease Research Institute, Seattle, Washington, USA., Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA. [ken.stuart@sbri.org].

Kinetoplastids are a group of flagellated protozoans that include the species *Trypanosoma* and *Leishmania*, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these "neglected diseases" are becoming increasingly clear, and we believe that the opportunities for developing the drugs,
diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better.

2. TSETSE BIOLOGY

(a) REARING OF TSETSE FLIES

(b) TAXONOMY, ANATOMY, PHYSIOLOGY, BIOCHEMISTRY

[See 31: 14369, 14370, 14374]

(c) DISTRIBUTION, ECOLOGY, BEHAVIOUR, POPULATION STUDIES

[See also 31: 14368, 14371, 14372, 14375, 14376, 14377, 14378, 14379]

Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories, A-2444 Seibersdorf, Austria. [a.m.m.abd-alla@iaea.org].

Several species of tsetse flies can be infected by the *Glossina pallidipes* salivary gland hypertrophy virus (GpSGHV). Infection causes salivary gland hypertrophy and also significantly reduces the fecundity of the infected flies. To better understand the molecular basis underlying the pathogenesis of this unusual virus, we sequenced and analyzed its genome. The GpSGHV genome is a double-stranded circular DNA molecule of 190,032 bp containing 160 nonoverlapping open reading frames (ORFs), which are distributed equally on both strands with a gene density of one per 1.2 kb. It has a high A+T content of 72 percent. About 3 percent of the GpSGHV genome is composed of 15 sequence repeats, distributed throughout the genome. Although sharing the same morphological features (enveloped rod-shaped nucleocapsid) as baculoviruses, nudiviruses, and nimaviruses, analysis of its genome revealed that GpSGHV differs significantly from these viruses at the level of its genes. Sequence comparisons indicated that only 23 percent of GpSGHV genes displayed moderate homologies to genes from other invertebrate viruses, principally baculoviruses and entomopoxviruses. Most strikingly, the GpSGHV genome encodes homologues to the four baculoviral *per os* infectivity factors (p74 [pif-0], pif-1, pif-2, and pif-3). The DNA polymerase encoded by GpSGHV is of type B and appears to be phylogenetically distant from all DNA polymerases encoded by large double-stranded DNA viruses. The majority of the remaining ORFs could not be assigned by sequence comparison. Furthermore, no homologues to DNA-dependent RNA polymerase subunits were detected. Taken together, these data indicate that GpSGHV is the prototype member of a novel group of insect viruses.
The advent of pyrophosphate sequencing makes large volumes of sequencing data available at a lower cost than previously possible. However, the short read lengths are difficult to assemble and the large dataset is difficult to handle. During the sequencing of a virus from the tsetse fly, Glossina pallidipes, we found the need for tools to search quickly a set of reads for near exact text matches. A set of tools is provided to search a large data set of pyrophosphate sequence reads under a "live" CD version of Linux on a standard PC that can be used by anyone without prior knowledge of Linux and without having to install a Linux setup on the computer. The tools permit short lengths of de novo assembly, checking of existing assembled sequences, selection and display of reads from the data set and gathering counts of sequences in the reads. Demonstrations are given of the use of the tools to help with checking an assembly against the fragment data set; investigating homopolymer lengths, repeat regions and polymorphisms; and resolving inserted bases caused by incomplete chain extension. The additional information contained in a pyrophosphate sequencing data set beyond a basic assembly is difficult to access due to a lack of tools. The set of simple tools presented here would allow anyone with basic computer skills and a standard PC to access this information.

Bacterial intracellular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a gram-negative obligatory intracellular and maternally transmitted α-proteobacterium that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera, Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70 percent of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.
The comparison of the inferior claspers of male genitalia of \textit{G. p. palpalis} originating in different places of its distribution area showed that the species is represented by three morphologic types (“rounded palette” type, “hammer” type and “intermediate” type) in the forest zone of Côte d’Ivoire. Nevertheless, these morphological types don’t constitute different subpopulations. Genetically, the clusters, identified as composing \textit{G. p. palpalis} species in the same geographical area (i.e. focus of Bonon, Middle-West of Côte d’Ivoire) seem to be differentiated populations. But complementary investigations are necessary to determinate effectively these reproductive units or subpopulations of \textit{G. p. palpalis}.

3. TSETSE CONTROL (INCLUDING ENVIRONMENTAL SIDE EFFECTS)

[See also 31: 14342, 14344, 14350, 14351]

Entomology Division, ARC-Ondersterpoort Veterinary Institute, Onderstepoort, South Africa. [karinkgreen@yahoo.com].

The attractiveness of various colours, colour combinations and sizes of sticky traps of the 3-dimensional trap (3DT), cross-shaped target (XT), rectangular screen (RT) and monopanels were evaluated for their efficacy to capture \textit{Glossina austeni} Newstead and \textit{G. brevipalpis} Newstead in north-eastern KwaZulu-Natal, South Africa. The 3-dimensional shapes of the XT and 3DT in light blue (l.blue) and white were significantly (ca. 3.1-6.9 times) better than the RT for \textit{G. austeni}. On bicoloured XTs, \textit{G. austeni} landed preferentially on electric blue (e.blue) (58 percent) and black (63 percent) surfaces when used with white; while for \textit{G. brevipalpis}, significantly more landed on e.blue (60-66 percent) surfaces when used with l.blue, black or white surfaces. Increased trap size increased the catches of \textit{G. brevipalpis} females and both sexes of \textit{G. austeni} significantly. Temoocid and polybutene sticky materials were equally effective and remained durable for 2-3 weeks. The glossy shine of trap surfaces did not have any significant effect on the attraction and landing responses of the two species. The overall trap efficiency of the e.blue/l.blue XT was 23 percent for \textit{G. brevipalpis} and 28 percent for \textit{G. austeni}, and that of the e.blue/black XT was 16 percent for \textit{G. brevipalpis} and 51 percent for \textit{G. austeni}. Larger monopanels, painted e.blue/black on both sides, increased the catches of \textit{G. austeni} females significantly by up to four times.
compared to the standard e.blue/black XT. This monopanel would be recommended for use as a simple and cost effective survey tool for both species in South Africa.

National Institute for Medical Research, Mwanza Centre, P.O. Box 1462, Mwanza, Tanzania. [kinunghi_cmos@hotmail.com].

A study was undertaken to investigate knowledge, attitudes and practices about sleeping sickness (human African trypanosomiasis) among communities living in and around Serengeti National Park (SENAPA). Structured questionnaires were administered to a total of 1490 consenting participants. Of the respondents, 924 (62 percent) knew sleeping sickness, and 807 (87.3 percent) knew the right place to seek healthcare. Of 924 who knew sleeping sickness, 386 (42 percent) said the disease was present in the areas they live. Most respondents (85.4 percent) knew that sleeping sickness infections were acquired in the bush and forest. The most common (69.3 percent) sources of information about sleeping sickness were relatives and friends. Symptoms of sleeping sickness mentioned included abnormal sleep (45.2 percent), fever (35.3 percent), body malaise (14.5 percent), headache (7.6 percent) and lymph node enlargement (6.1 percent). Of 1490 people interviewed 90.4 percent knew tsetse flies and 89.8 percent had been bitten by tsetse flies. The majority (86.6 percent) of the respondents knew that sleeping sickness is transmitted through a tsetse bite. Activities that exposed people to tsetse bites included working in tsetse infested bushes/forests, grazing livestock in tsetse infested areas and hunting game animals. In conclusion, communities living in and around SENAPA were knowledgeable about tsetse and sleeping sickness. The communities can thus understand and support community based tsetse and sleeping sickness control programmes to ensure success.

4. **EPIDEMIOLOGY: VECTOR-HOST AND VECTOR-PARASITE INTERACTIONS**

[See also 31: 14353, 14404]

National Centre for Tropical Medicine and International Health, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain.

The aim of this study was to predict the distribution and movement of populations of the tsetse fly, *Glossina palpalis palpalis* (Diptera: Glossinidae), in the wet and dry seasons and to analyze the impact of the use of mono-pyramidal traps on fly populations in the Kogo
focus in 2004 and 2005. Three Glossina species are present in Kogo: Glossina palpalis palpalis, the major HAT vector in West-Central Africa, Glossina caliginea, and Glossina tabaniformis. The apparent density (AD) of G. p. palpalis clearly fell from 1.23 tsetse/trap/day in July 2004 to 0.27 in December 2005. A significant reduction in the mean AD for this species was noted between seasons and years. The diversity of Glossina species was relatively low at all the sampling points; G. p. palpalis clearly predominated over the other species and significantly dropped as a consequence of control activities. The predictive models generated for the seasonal AD showed notable differences not only in the density but in the distribution of the G. p. palpalis population between the rainy and dry season. The mono-pyramidal traps have proven to be an effective instrument for reducing the density of the tsetse fly populations, although given that the Kogo trypanosomiasis focus extends from the southern Equatorial Guinea to northern Gabon, interventions need to be planned on a larger scale, involving both countries, to guarantee the long-term success of control.

Centre de Résonance Magnétique des Systems Biologiques, UMR5536, CNRS, Université Segalen de Bordeaux 2, Bordeaux 33076. [bringaud@rmsb.u-bordeaux2.fr].

The procyclic form of Trypanosoma brucei is a parasitic protozoan that normally dwells in the midgut of its insect vector. In vitro, this parasite prefers D-glucose to L-proline as a carbon source, although this amino acid is the main carbon source available in its natural habitat. Here we investigate how L-proline is metabolized in glucose-rich and glucose-depleted conditions. Analysis of the excreted end products of 13C-enriched L-proline metabolism showed that the amino acid is converted into succinate or L-alanine depending on the presence or the absence of D-glucose, respectively. The fact that the pathway of L-proline metabolism was truncated in glucose-rich conditions was confirmed by the analysis of 13 separate RNAi-harbouring or knockout cell lines affecting different steps of this pathway. For instance, RNA interference studies revealed the loss of succinate dehydrogenase activity to be conditionally lethal, only in the absence of D-glucose, confirming that in glucose-depleted conditions, L-proline needs to be converted beyond succinate. In addition, depletion of the F0/F1-ATP synthase activity by RNA interference led to cell death in glucose-depleted medium, but not in glucose-rich conditions. This implies that, in the presence of D-glucose, the importance of the F0/F1-ATP synthase is diminished and ATP is produced by substrate level phosphorylation. We conclude that, trypanosomes develop an elaborate adaptation of their energy production pathways in response to carbon source availability.

Sphingolipids and their metabolites have been thought crucial for cell growth and cell cycle progression, membrane and protein trafficking, signal transduction, and formation of lipid rafts; however, recent studies in trypanosomes point to the dispensability of sphingolipids in some of these processes. In this study, we explore the requirements for de novo sphingolipid biosynthesis in the insect life cycle stage of the African trypanosome Trypanosoma brucei by inhibiting the enzyme serine palmitoyltransferase (SPT2) by using RNA interference or treatment with a potent SPT2 inhibitor myriocin. Mass spectrometry revealed that upon SPT2 inhibition, the parasites contained substantially reduced levels of inositolphosphorylceramide. Although phosphatidylcholine and cholesterol levels were increased to compensate for this loss, the cells were ultimately not viable. The most striking result of sphingolipid reduction in procyclic T. brucei was aberrant cytokinesis, characterized by incomplete cleavage-furrow formation, delayed kinetoplast segregation and emergence of cells with abnormal DNA content. Organelle replication continued despite sphingolipid depletion, indicating that sphingolipids act as second messengers regulating cellular proliferation and completion of cytokinesis. Distention of the mitochondrial membrane, formation of multilamellar structures within the mitochondrion and near the nucleus, accumulation of lipid bodies and, less commonly, disruption of the Golgi complex were observed after prolonged sphingolipid depletion. These findings suggest that some aspects of vesicular trafficking may be compromised. However, flagellar membrane targeting and the association of the flagellar membrane protein calflagin with detergent-resistant membranes were not affected, indicating that the vesicular trafficking defects were mild. Our studies indicate that sphingolipid biosynthesis is vital for cell cycle progression and cell survival, but not essential for the normal trafficking of flagellar membrane-associated proteins or lipid raft formation in procyclic T. brucei.

School of Biological Sciences University of Bristol, Bristol BS8 1UG, UK. [w.gibson@bris.ac.uk].

Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP) or Red Fluorescent Protein (RFP). Co-infection of flies with red and green fluorescent parental
trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial) DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. The strategy of using production of yellow hybrids to indicate mating in trypanosomes provides a robust and unequivocal system for analysis of genetic exchange. Mating occurred with high frequency in these experimental crosses, limited only by the ability of both parental trypanosomes to invade the salivary glands. Yellow hybrids appeared as soon as trypanosomes invaded the salivary glands, implicating the short, unattached epimastigote as the sexual stage. The recovery of diploid, triploid and tetraploid hybrids in these crosses was surprising as genetic markers appeared to have been inherited according to Mendelian rules. As the polyploid hybrids could have been produced from fusion of unreduced gametes, there is no fundamental conflict with a model of genetic exchange involving meiosis.

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, USA.

The parasite *Trypanosoma brucei rhodesiense* and its insect vector *Glossina morsitans morsitans* were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6-8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a trypanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favoured the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of *Glossina* milk gland protein (*GmmMgp*), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30 percent relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26 percent with immunogenic
parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite-host coevolution, and disease prevalence are discussed.

Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

The prevalence of trypanosome infections in tsetse flies in the Chiawa area of Lower Zambezi in Zambia, with endemic trypanosomosis, was determined by a polymerase chain reaction (PCR) method that allowed the detection of trypanosome DNA and determination of the type of animal host fed on by the tsetse fly Glossina pallidipes, using tsetse-derived DNA extracts as templates. Ninety G. pallidipes (82 females and 8 males; 18.3 percent) of the 492 flies captured by baited biconical traps tested positive for the presence of Trypanosoma brucei species genomic DNA. Of the 90 T. brucei-positive flies, 47 (52.2 percent) also tested positive for vertebrate mitochondrial DNA. Sequence analysis of the vertebrate mitochondrial DNA amplicons established that they originated from 8 different vertebrate species, namely, human (Homo sapiens), African elephant (Loxodonta cyclotis), African buffalo (Syncerus caffer), waterbuck (Kobus ellipsiprymnus), roan antelope (Hippotragus equinus), greater kudu (Tragelaphus strepsiceros), warthog (Phacochoerus africanus), and goat (Capra hircus). Furthermore, to investigate the prevalence of trypanosome infections in domestic goats in the same area where trypanosomes had been detected in tsetse flies, a total of 86 goats were randomly selected from six different herds. Among the selected goats, 36 (41.9 percent) were found to be positive for T. brucei species. This combined detection method would be an ideal approach not only for mass screening for infection prevalence in tsetse populations, but also for the prediction of natural reservoirs in areas endemic for trypanosomosis.

Centre for Infectious Diseases, The University of Edinburgh, Edinburgh, EH25 9RG, UK.

Cyclic nucleotide signalling through cyclic adenosine monophosphate (cAMP) is thought to play an important role in the transformation of the long slender (dividing) form to the short-stumpy (arrested) form in the mammalian bloodstream but the role of cyclic nucleotides in the tsetse-based part of the trypanosome life cycle is unknown. In a series of in vivo experiments, it was found that cyclic guanosine monophosphate (cGMP) but not cAMP could induce significantly higher rates of midgut infection in tsetse. Continuous feeding of either cGMP or cAMP to tsetse had no effect on rates of maturation of established midgut infections suggesting that these two parts of the life cycle in tsetse are not linked.
Tsetse and Trypanosomiasis Information

Tsetse & Trypanosomiasis Research Institute, P. O. Box 1026, Tanga, Tanzania.

We investigated the dynamics of Glossina species and their role in the transmission of trypanosomiasis in the sleeping sickness endemic Serengeti ecosystem, northwestern Tanzania. The study investigated Glossina species composition, trap density, trypanosome infection rates, and the diversity of trypanosomes infecting the species. Tsetse were trapped using monopyramidal traps in the mornings between 06:00 to 11:00 and transported to the veterinary laboratory in Serengeti National Park where they were sorted into species and sex, and dissected microscopically to determine trypanosome infection rates. Age estimation of dissected flies was also conducted concurrently. Tsetse samples positive for trypanosomes were subjected to PCR to determine the identity of the detected trypanosomes. Out of 2,519 tsetse trapped, 1,522 (60.42 percent) were G. swynnertoni, 993 (39.42 percent) were G. pallidipes, three (0.12 percent) were G. m. morsitans, and one (0.04 percent) was G. brevipalpis. The trap density for G. swynnertoni was between 1.40 and 14.17 while that of G. pallidipes was between 0.23 and 9.70. Out of 677 dissected G. swynnertoni, 63 flies (9.3 percent) were infected, of which 62 (98.4 percent) were females. A total of 199 G. pallidipes was also dissected but none was infected. There was no significant difference between the apparent densities of G. swynnertoni compared to that of G. pallidipes (t = 1.42, p = 0.18). Molecular characterization of the 63 infected G. swynnertoni midguts showed that 19 (30.2 percent) were trypanosomes associated with suid animals while nine (14.3 percent) were trypanosomes associated with bovid animals and five samples (7.9 percent) had T. brucei s.l genomic DNA. Thirty (47.6 percent) tsetse samples could not be identified. Subsequent PCR to differentiate between T. b. brucei and T. b. rhodesiense showed that all five samples that contained the T. brucei s.l genomic DNA were positive for the SRA molecular marker indicating that they were T. b. rhodesiense. These results indicate that G. swynnertoni plays a major role in the transmission of trypanosomiasis in the area and that deliberate and sustainable control measures should be initiated and scaled up.

Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon, and Institute for Parasitology and Tropical Veterinary Medicine, Free University of Berlin, Berlin, Germany.

Ten years after the large-scale tsetse control campaigns in the important cattle rearing areas of the Faro and Deo Division of the Adamaoua Plateau in Cameroon, the seasonal distribution and abundance of tsetse flies (Glossina spp.) were determined. During a period of
12 consecutive months (January-December 2005), the tsetse population was monitored along
four trap transects consisting of a total of 32 traps and two flyround transects traversing the
study area, which comprised the tsetse-infested valley, a buffer zone and the supposedly
tsetse-free plateau. Throughout the study period, a total of 2,195 *Glossina morsitans*
submorsitans and 23 *Glossina tachinoides* were captured in the traps and 1007 *G. m.*
submorsitans (78.8 percent male flies) were captured along the flyround transects. All *G.*
tachinoides and almost all *G. m. submorsitans* were captured in the valley. Five *G. m.*
submorsitans were captured in traps located in the buffer zone, whereas no flies were
captured in traps located on the plateau. The index of apparent abundance (IAA) of *G. m.*
submorsitans was substantially higher in the areas close to game reserves. In the remaining
part of the valley, where wildlife is scarce and cattle are present during transhumance (dry
season), the IAA of tsetse was substantially lower. In this part of the valley, the abundance of
tsetse seemed to be associated with the presence of cattle, with the highest IAA during
transhumance when cattle are present and the lowest apparent abundance during the rainy
season when cattle have moved to the plateau. It is concluded that the distribution of tsetse in
a large part of the valley undergoes substantial seasonal changes depending on the presence
or absence of cattle. The repercussions of those findings for the control of tsetse in the valley
and the probability of reinvasion of the plateau are discussed.

Understanding the relationship between the gender of insects and their ability to act as
vectors of insect-borne diseases (IBDs) could provide clues as to the origin of the intimate
interplay among insect, pathogen and vertebrate hosts. The vector activity of several species
of blood-feeding insects is linked to adult females. Interestingly, the only known exception is
the transmission of canine and human thelaziosis by a male Dipteran fly. This biological
difference raises the question as to whether the parasitic behaviour of male and female insects
transmitting IBDs is an expression of a co-evolution of vectors and pathogens.

14378. Simo, G., Njiokou, F., Mbida Mbida, J. A., Njitouchuang, G. R., Herder, S.,
Asonganyi, T. & Cuny, G., 2008. Tsetse fly host preference from sleeping
sickness foci in Cameroon: epidemiological implications. *Infection, Genetics and

To determine the tsetse fly host preferences in two sleeping sickness foci of southern
Cameroon, four entomological surveys (two in each focus) were carried out. For the whole
study, 4,929 tsetse flies were caught: 3,933 (79.8 percent) *Glossina palpalis palpalis*, 626
(12.7 percent) *Glossina pallicera pallicera*, 276 (5.6 percent) *Glossina nigrofusca* and 94 (1.9
percent) *Glossina caliginea*. One hundred and thirty-eight blood meals were collected and the
origin of 118 (85.5 percent) meals was successfully identified: 38.4 percent from man, 23.9 percent from pig, 20.3 percent from sitatunga (Tragelaphus spekeii), 2.2 percent from sheep and 0.7 percent from golden cat (Profilis aurata). The number of Glossina palpalis palpalis with man blood meals is more important in the Human African Trypanosomiasis (HAT) focus showing endemic evolution (Campo) than in the focus (Bipindi) presenting a flare up of the disease. The consideration of both results of the prevalence of Trypanosoma brucei gambiense in vertebrate hosts and those of the tsetse fly host preferences indicates a wild animal reservoir of Gambian sleeping sickness and three transmission cycles (human, domestic and wild animals' cycles) in southern Cameroon HAT foci.

Natural Resources Institute, University of Greenwich, Chatham, U.K. [s.torr@greenwich.ac.uk].

In sub-Saharan Africa, tsetse (Glossina spp.) transmit species of Trypanosoma which threaten 45-50 million cattle with trypanosomiasis. These livestock are subject to various herding practices which may affect biting rates on individual cattle and hence the probability of infection. In Zimbabwe, studies were made of the effect of herd size and composition on individual biting rates by capturing tsetse as they approached and departed from groups of one to 12 cattle. Flies were captured using a ring of electrocuting nets and bloodmeals were analysed using DNA markers to identify which individual cattle were bitten. Increasing the size of a herd from one to 12 adults increased the mean number of tsetse visiting the herd four-fold and the mean feeding probability from 54 percent to 71 percent; the increased probability with larger herds was probably a result of fewer flies per host, which, in turn, reduced the hosts’ defensive behaviour. For adults and juveniles in groups of four to eight cattle, > 89 percent of bloodmeals were from the adults, even when these comprised just 13 percent of the herd. For groups comprising two oxen, four cows/heifers and two calves, a grouping that reflects the typical composition of communal herds in Zimbabwe, approximately 80 percent of bloodmeals were from the oxen. Simple models of entomological inoculation rates suggest that cattle herding practices may reduce individual trypanosomiasis risk by up to 90 percent. These results have several epidemiological and practical implications. First, the gregarious nature of hosts needs to be considered in estimating entomological inoculation rates. Secondly, heterogeneities in biting rates on different cattle may help to explain why disease prevalence is frequently lower in younger/smaller cattle. Thirdly, the cost and effectiveness of tsetse control using insecticide-treated cattle may be improved by treating older/larger hosts within a herd. In general, the patterns observed with tsetse appear to apply to other genera of cattle-feeding Diptera (Stomoxys, Anopheles, Tabanidae) and thus may be important for the development of strategies for controlling other diseases affecting livestock.
5. HUMAN TRYPANOSOMIASIS

(a) SURVEILLANCE

[See also 31: 14345, 14348, 14359]

Centre International de Recherche Développement sur l'Élevage en zone Subhumide (CIRDES), Institut de Recherche pour le Développement (IRD) UMR 177, Bobo-Dioulasso, Burkina Faso.

The objective of this article is to review the geography and history of sleeping sickness (Human African trypanosomiasis; HAT) over the past 100 years in West Africa, to identify priority areas for sleeping sickness surveillance and areas where HAT no longer seems active. The history and geography of HAT were summarized based on a review of old reports and recent publications and on recent results obtained from medical surveys conducted in West Africa up to 2006. Active HAT foci seem to have moved from the North to the South. Endemic HAT presently appears to be limited to areas where annual rainfall exceeds 1,200 mm, although the reasons for this remain unknown. There has also been a shift towards the south of the isohyets and of the northern distribution limit of tsetse. Currently, the most severely affected countries are Guinea and Ivory Coast, whereas the northern countries seem less affected. However, many parts of West Africa still lack information on HAT and remain to be investigated. Of particular interest are the consequences of the recent political crisis in Ivory Coast and the resulting massive population movements, given the possible consequences on HAT in neighbouring countries.

Trypanosomiasis Unit, Tropical Medicine Research Institute, Khartoum, Sudan. [intisar62@yahoo.com].

A survey was conducted in a low-endemic and in a non-endemic area of Sudan to evaluate the specificity and efficiency of different serological antibody detection techniques for Trypanosoma brucei gambiense. Comparisons were made of the card agglutination test for trypanosomiasis (CATT) on diluted blood, on diluted plasma and on eluates from blood dried on filter paper, the LATEX test on diluted plasma and an ELISA on diluted plasma and filter paper. The specificities of all the serological tests were not significantly different from CATT on diluted blood (99.5 percent). The specificity of CATT on diluted blood was similar (99.3 percent). The highest sensitivities (100 percent) were observed with CATT on diluted
blood and with CATT and LATEX on diluted plasma. CATT on diluted blood was more cost-efficient than the classic test, CATT on whole blood.

Centre for Infectious Diseases, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh, EH9 3JT, UK. [Eric.Fevre@ed.ac.uk].

Zoonotic sleeping sickness, or HAT (Human African Trypanosomiasis), caused by infection with *Trypanosoma brucei rhodesiense*, is an under-reported and neglected tropical disease. Previous assessments of the disease burden expressed as Disability-Adjusted Life Years (DALYs) for this infection have not distinguished *T. b. rhodesiense* from infection with the related, but clinically distinct *Trypanosoma brucei gambiense* form. *T. b. rhodesiense* occurs focally, and it is important to assess the burden at the scale at which resource-allocation decisions are made. The burden of *T. b. rhodesiense* was estimated during an outbreak of HAT in Serere, Uganda. We identified the unique characteristics affecting the burden of *rhodesiense* HAT such as age, severity, level of under-reporting and duration of hospitalisation, and use field data and empirical estimates of these to model the burden imposed by this and other important diseases in this study population. While we modelled DALYs using standard methods, we also modelled uncertainty of our parameter estimates through a simulation approach. We distinguish between early and late stage HAT morbidity, and used disability weightings appropriate for the *T. b. rhodesiense* form of HAT. We also use a model of under-reporting of HAT to estimate the contribution of un-reported mortality to the overall disease burden in this community, and estimate the cost-effectiveness of hospital-based HAT control. The results showed that under-reporting accounts for 93 percent of the DALY estimate of *rhodesiense* HAT. The ratio of reported malaria cases to reported HAT cases in the same health unit was 133:1, however, the ratio of DALYs was 3:1. The age productive function curve had a close correspondence with the HAT case distribution, and HAT cases occupied more patient admission time in Serere during 1999 than all other infectious diseases other than malaria. The DALY estimate for HAT in Serere shows that the burden is much greater than might be expected from its relative incidence. Hospital based control in this setting appears to be highly cost-effective, highlighting the value of increasing coverage of therapy and reducing under-reporting. The results demonstrate the utility of calculating DALYs for neglected diseases at the local decision making level, and emphasize the importance of improved reporting systems for acquiring a better understanding of the burden of neglected zoonotic diseases.

Programmed National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of Congo; Institute of Tropical Medicine,
The control of *Trypanosoma brucei gambiense* human African trypanosomiasis (HAT) is compromised by low sensitivity of the routinely used parasitologic confirmation tests. More sensitive alternatives, such as mini-anion exchange centrifugation technique (mAECT) or capillary tube centrifugation (CTC), are more expensive. We used formal decision analysis to assess the cost-effectiveness of alternative HAT confirmation algorithms in terms of cost per life saved. The effectiveness of the standard method, a combination of lymph node puncture (LNP), fresh blood examination (FBE), and thick blood film (TBF), was 36.8 percent; the LNP-FBE-CTC-mAECT sequence reached almost 80 percent. The cost per person examined ranged from Euro 1.56 for LNP-FBE-TBF to Euro 2.99 for LNP-TBF-CTC-mAECT-CATT (card agglutination test for trypanosomiasis) titration. LNP-TBF-CTC-mAECT was the most cost-effective in terms of cost per life saved. HAT confirmation algorithms that incorporate concentration techniques are more effective and efficient than the algorithms that are currently and routinely used by several *T. b. gambiense* control programmes.

School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.

We describe two spatially distinct foci of human African trypanosomiasis in eastern Uganda. The Tororo and Soroti foci of *Trypanosoma brucei rhodesiense* infection were genetically distinct as characterized by six microsatellite and one minisatellite polymorphic markers and were characterized by differences in disease progression and host-immune response. In particular, infections with the Tororo genotype exhibited an increased frequency of progression to and severity of the meningoencephalitic stage and higher plasma interferon (IFN)-gamma concentration, compared with those with the Soroti genotype. We propose that the magnitude of the systemic IFN-gamma response determines the time at which infected individuals develop central nervous system infection and that this is consistent with the recently described role of IFN-gamma in facilitating blood-brain barrier transmigration of trypanosomes in an experimental model of infection. The identification of trypanosome isolates with differing disease progression phenotypes provides the first field-based genetic evidence for virulence variants in *T. brucei rhodesiense*.

Université d’Abobo-Adjamé, Abidjan, Côte d’Ivoire, Institut Pierre Richet, Bouaké, Abidjan, Côte d’Ivoire.[zg_david@yahoo.fr].
Human African Trypanosomosis or sleeping sickness represents a problem of public health in Africa. In Côte d’Ivoire, Human African Trypanosomosis occurs in more or less active focuses located in the forest zone, among which the Bonon one shows a worrying situation. During two seasonal periods (rainy season in November 2000, dry season in January 2001), *Glossina* specimens were collected by the means of Vavoua traps within 320 geo-referenced sites selected in different biotopes (places of activities, water supplying places, habitation places, access ways, hamlets) used by sick persons. *Glossina palpalis palpalis* was the only species of *Glossina* observed in the captures, irrespective of the biotope. The species was the most abundant in the access ways (8.5 flies/trap/day) and showed the lowest densities in places of habitation (1.4 flies/trap/day) located mainly in the town. With each of the biotypes *Glossina palpalis palpalis* could become infected with trypanosomes as evidenced by the high proportion of young patterns (34.29 percent to 45.33 percent) observed in these biotopes. However, the places for supplying water and for other activities seemed to be transmission areas of the sleeping sickness in the focus of Bonon.

(b) PATHOLOGY AND IMMUNOLOGY

[See also 31: 14348, 14354]

Department of Morphological and Biomedical Sciences, Faculty of Medicine, Strada Le Grazie 8, University of Verona, Verona, Italy.

[marina.bentivoglio@univr.it].

Novel findings on the effects of inflammatory molecules on neuronal circuits, and on molecular interactions between immunity and sleep, in health and disease, shed light on the pathogenesis of disorders of past (encephalitis lethargica) and present concern (human African trypanosomiasis and narcolepsy), which share alterations in sleep-wakefulness transitions. Although these three disorders differ in etiology, synaptic interactions with immune-response-derived molecules could play a pathogenetic role. Knowledge obtained on neural-immune interplay during senescence also has implications for age-related sleep dysregulation, which is common in the elderly population. Altogether, the data indicate that cell groups implicated in the regulation of sleep and wakefulness, circadian timing, and their interactions could be sensitive to synaptic effects of immune molecules.

Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK.

[francesco.checchi@lshtm.ac.uk].

75
The durations of untreated stage 1 (early stage, haemo-lymphatic) and stage 2 (late stage, meningo-encephalitic) human African trypanosomiasis (sleeping sickness) due to *Trypanosoma brucei gambiense* are poorly quantified, but key to predicting the impact of screening on transmission. Here, we outline a method to estimate these parameters. We first model the duration of stage 1 through survival analysis of untreated serological suspects detected during Médecins Sans Frontières interventions in Uganda and Sudan. We then deduce the duration of stage 2 based on the stage 1 to stage 2 ratio observed during active case detection in villages within the same sites. Survival in stage 1 appears to decay exponentially (daily rate = 0.0019; mean stage 1 duration = 526 days [95 percent CI 357 to 833]), possibly explaining past reports of abnormally long duration. Assuming epidemiological equilibrium, we estimate a similar duration of stage 2 (500 days [95 percent CI 345 to 769]), for a total of nearly three years in the absence of treatment. In conclusion robust estimates of these basic epidemiological parameters are essential to formulating a quantitative understanding of sleeping sickness dynamics, and will facilitate the evaluation of different possible control strategies.

The objectives of this study were to detail clinical and polysomnographic characteristics in patients affected with *Trypanosoma brucei gambiense* (*T. b. g.*.) human African trypanosomiasis (HAT) at different stages of evolution and to measure and compare cerebrospinal fluid (CSF) levels of hypocretin-1 with narcoleptic patients and neurologic controls. Twenty-five untreated patients affected with *T. b. g.*. HAT were included. The patients were evaluated using a standardized clinical evaluation and a specific interview on sleep complaints. Diagnosis of stages I and II and intermediate stage was performed by CSF cell count and/or presence of trypanosomes: four patients were classified as stage II, 13 stage I, and eight "intermediate" stage. Seventeen untreated patients completed continuous 24-hour polysomnography. We measured CSF levels of hypocretin-1 in all patients at different stages and evolutions, and we compared the results with 26 patients with narcolepsy-cataplexy and 53 neurologic controls. CSF hypocretin-1 levels were significantly higher in *T. b. g.* HAT (423.2 +/- 119.7 pg/mL) than in narcoleptic patients (40.16 +/- 60.18 pg/mL) but lower than in neurologic controls (517.32 +/- 194.5 pg/mL). One stage I patient had undetectable hypocretin levels and 1 stage II patient showed intermediate levels, both patients (out of three patients) reporting excessive daytime sleepiness but without evidence for an association with narcolepsy. No differences were found in CSF hypocretin levels between patients with HAT stages; however, the presence of major sleep-wake cycle disruptions was significantly associated with lower CSF hypocretin-1 level with a same tendency for the number of sleep-onset rapid eye movement periods. The present investigation is not in favour of a unique implication of the hypocretin system in *T. b. g.* HAT. However, we propose that dysfunction of the hypothalamic hypocretin region may participate in sleep disturbances observed in African trypanosomiasis.
Human Trypanosomiasis is a rare occurrence in India. In the cases reported so far the disease causative species have been the species infective to animals viz., Trypanosoma lewisi and Trypanosoma evansi. These animal species usually non pathogenic in humans can acquire the desired virulence and emerge as human pathogens causing serious disease, in the right combination of environmental, host related and organism related factors. We report here a case of trypanosomiasis caused by the rodent parasite T. lewisi in a two months old infant in urban Mumbai. Under the fastly changing enivronmental scenario there is an urgent need to be prepared for the emerging zoonoses. Any unusual disease occurrence in a given geographical area acquires a special significance in this context and should be reported to assess its public health importance and be prepared to deal with the consequent challenges posed, if any.

One of the most difficult issues in the management of patients with human African trypanosomiasis (HAT) is the reliable distinction between early-stage disease and late-stage disease where the trypanosomes have traversed the blood-brain barrier to enter the central nervous system (CNS). Currently, there is no universal consensus for the cerebrospinal fluid (CSF) findings that define late-stage HAT and provide the rationale for treatment with toxic drugs for CNS disease. Whilst some clinicians use the WHO CSF criteria, others use alternative findings to define late-stage disease. Novel analyses in CSF of patients are urgently required for more accurate diagnostic staging.

African trypanosomes (prototype: Trypanosoma brucei) are protozoan flagellates that infect a wide range of different mammals. In humans, these parasites have to counteract innate immunity because human serum possesses efficient trypanolytic activity. Resistance to this activity has arisen in two T. brucei subspecies, termed T. b. rhodesiense and T. b.
gambiense, allowing them to infect humans where they cause sleeping sickness in East and West Africa respectively. The study of the mechanism by which T. b. rhodesiense escapes lysis by human serum led to the identification of the trypanolytic factor, which turned out to be an ionic pore-forming apolipoprotein associated with some HDL particles.

(c) TREATMENT

[See also 31: 14359, 14360, 14534]

Travel and Migration Medicine Unit, Geneva University Hospital, and Médecins Sans Frontières, Swiss Section, 1202 Geneva, Switzerland. [francois.chappuis@hcuge.ch].

No abstract available.

Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA., UK. [francesco.checchi@lshtm.ac.uk].

No abstract available.

Epicentre, Paris, France.

We report on the efficacy and safety outcomes from a prospective case series of 31 late-stage T. b. gambiense sleeping sickness (Human African Trypanosomiasis, HAT) patients treated with a combination of nifurtimox and efavirenz (N+E) in Yumbe, northwest Uganda in 2002-2003, following on a previously reported terminated trial in nearby Omugo, in which 17 patients received the combination under the same conditions. Eligible sequential late-stage patients received 400 mg/kg/day efavirenz (Ornidyl, Sanofi-Aventis) for seven days plus 15 mg/kg/day (20 mg for children <15 years old) nifurtimox (Lampit, Bayer AG) for ten days. Efficacy (primary outcome) was monitored for 24 months post discharge. Clinical and laboratory adverse events (secondary outcome) were monitored during treatment. All 31 patients were discharged alive, but two died post-discharge of non-HAT and non-treatment causes, and one was lost to follow-up. Efficacy ranged from 90.3 percent to 100.0 percent according to analysis approach. Five patients experienced major
adverse events during treatment, and neutropenia was common (9/31 patients). Combined with the previous group of 17 trial patients, this case series yields a group of 48 patients treated with N+E, among whom no deaths judged to be treatment- or HAT-related, no treatment terminations and no relapses have been noted, a very favourable outcome in the context of late-stage disease. N+E could be the most promising combination regimen available for sleeping sickness, and deserves further evaluation.

Epicentre, Paris, France. [gpriotto@epicentre.msf.org].

Human African trypanosomiasis caused by *Trypanosoma brucei gambiense* is a fatal disease. Current treatment options for patients with second-stage disease are either highly toxic or impracticable in field conditions. We compared the efficacy and safety of the nifurtimox-eflornithine drug combination with the standard eflornithine regimen for the treatment of second-stage disease. A randomized, open-label, active-control, phase III clinical trial comparing two arms was conducted at the Sleeping Sickness Treatment Center, which was run by Médecins Sans Frontières, in Nkayi, Bouenza Province, Republic of Congo. Patients were screened for inclusion and randomly assigned to receive eflornithine alone (400 mg/kg/day given intravenously every 6 h for 14 days) or eflornithine (400 mg/kg/day given intravenously every 12 h for 7 days) plus nifurtimox (15 mg/kg/day given orally every 8 h for 10 days). Patients were observed for 18 months. The study's outcomes were cure and adverse events attributable to treatment. A total of 103 patients with second-stage disease were enrolled. Cure rates were 94.1 percent for the eflornithine group and 96.2 percent for the nifurtimox-eflornithine group. Drug reactions were frequent in both arms, and severe reactions affected 25.5 percent of patients in the eflornithine group and 9.6 percent of those in the nifurtimox-eflornithine group, resulting in 2 and 1 treatment suspensions, respectively. There was 1 death in the eflornithine arm and no deaths in the nifurtimox-eflornithine arm. The nifurtimox-eflornithine combination appears to be a promising first-line therapy for second-stage sleeping sickness. If our findings are corroborated by ongoing findings from additional sites (a multicenter extension of this study), the new nifurtimox-eflornithine combination therapy will mark a major and multifaceted advance over current therapies.

Epicentre, 75011 Paris, France.

To assess the safety and effectiveness of eflornithine as first line treatment for human African trypanosomiasis, 1,055 adults and children newly diagnosed with second stage disease in a 16 month period were studied in Ibba, southern Sudan. The main outcome measures used were deaths, severe drug reactions, and cure at 24 months. All patients
received eflornithine for 14 days (400 mg/kg/day in adults and 600 mg/kg/day in a subgroup of 96 children). Overall, 2,824 drug reactions (2.7 per patient) occurred during hospital stay, 1,219 (43.2 percent) after the first week. Severe reactions affected 138 (13.1 percent) patients (mainly seizures, fever, diarrhoea, and bacterial infections), leading to 15 deaths. Risk factors for severe reactions included cerebrospinal fluid leucocyte counts > or =100x10^9/l (adults: odds ratio 2.6, 95 percent confidence interval 1.5 to 4.6), seizures (adults: 5.9, 2.0 to 13.3), and stupor (children: 9.3, 2.5 to 34.2). Children receiving higher doses did not experience increased toxicity. Follow-up data were obtained for 924 (87.6 percent) patients at any follow-up but for only 533 (50.5 percent) at 24 months. Of 924 cases followed, 16 (1.7 percent) died during treatment, 70 (7.6 percent) relapsed, 15 (1.6 percent) died of disease, 403 (43.6 percent) were confirmed cured, and 420 (45.5 percent) were probably cured. The probability of event free survival at 24 months was 0.88 (0.86 to 0.91). Most (65.8 percent, 52/79) relapses and disease related deaths occurred after 12 months. Risk factors for relapse included being male (incidence rate ratio 2.42, 1.47 to 3.97) and cerebrospinal fluid leucocytosis: 20-99x10^9/l (2.35, 1.36 to 4.06); > or =100x10^9/l (1.87, 1.07 to 3.27). Higher doses did not yield better effectiveness among children (0.87 v 0.85, P=0.981). In conclusion, eflornithine shows acceptable safety and effectiveness as a first line treatment for human African trypanosomiasis. Relapses did occur more than 12 months after treatment. Higher doses in children were well tolerated but showed no advantage in effectiveness.

Institute of Tropical Medicine, Antwerp, Belgium.

To compare the cost-effectiveness of eflornithine and melarsoprol in the treatment of human African trypanosomiasis, we used data from a Médecins Sans Frontières treatment project in Caxito, Angola to do a formal cost-effectiveness analysis, comparing the efficiency of an eflornithine-based approach with melarsoprol. Endpoints calculated were: cost per death avoided; incremental cost per additional life saved; cost per years of life lost (YLL) averted; incremental cost per YLL averted. Sensitivity analysis was done for all parameters for which uncertainty existed over the plausible range. We did an analysis with and without cost of trypanocidal drugs included. Effectiveness was 95.6 percent for melarsoprol and 98.7 percent for eflornithine. Cost/patient was US$ 504.6 for melarsoprol and US$ 552.3 for eflornithine, cost per life saved was US$ 527.5 for melarsoprol and US$ 559.8 for eflornithine without cost of trypanocidal drugs but it increases to US$ 600.4 and US$ 844.6 per patient saved and US$ 627.6 and US$ 856.1 per life saved when cost of trypanocidal drugs are included. Incremental cost-effectiveness ratio is US$ 1,596 per additional life saved and US$ 58 per additional life year saved in the baseline scenario without cost of trypanocidal drugs but it increases to US$ 8,169 per additional life saved and US$ 299 per additional life year saved if costs of trypanocidal drugs are included. In conclusion, eflornithine saves more lives than melarsoprol, but melarsoprol is slightly more cost-effective. Switching from melarsoprol to eflornithine can be considered as a cost-effective option according to the WHO choice criteria.
6. ANIMAL TRYPANOSOMIASIS

(a) SURVEY AND DISTRIBUTION

Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA. [gene@vims.edu].

Of 2,122 marine fishes representing 36 species collected in the north-eastern Pacific Ocean in the vicinity of Newport, Oregon from 1971 to 1973, 541 individuals (25.5 percent) representing 8 species (22.2 percent) were infected with haemoflagellates. Four morphologically distinct trypanosomes and 3 distinct trypanoplasts were found in fishes collected offshore, but no haemoflagellates were observed in fishes from Yaquina Bay estuary. Trypanosoma pacifica was found in English sole Parophrys vetulus, Pacific sanddab Citharichthys sordidus, and slender sole Lyopsetta exilis, and survived in 5 other species after intraperitoneal injection. Trypanosoma gargantua was found in big skate Raja binocularata, and the leech Orientobdella confluens was able to transmit the trypanosome in experimental conditions. Trypanosoma khani n. sp. occurred in P. vetulus, petrale sole Eopsetta jordani, and Dover sole Microstomus pacificus. Trypanosoma murmanense was found in L. exilis collected from a depth of 200 metres, but not in L. exilis collected from 80 metres. Trypanoplasma beckeri parasitized the cabezon Scorpaenichthys marmoratus. Trypanoplasma boboloni n. sp. was found in E. jordani, L. exilis, and P. vetulus, and survived in two other species after intraperitoneal injection. A distinct, but unnamed trypanoplasm, was found in P. vetulus.

Department of Parasitology, Kasetsart University, Bangkok, Thailand.

Herpetosoma is a homogenous subgenus of several dozen named species that are often described as morphologically indistinguishable T. lewisi-like parasites. These trypanosomes normally infect rodents and utilize fleas as vectors. Although this trypanosome subgenus is considered non-pathogenic to normal hosts, some of them are on rare occasion reported in association with human disease. Recently, a T. lewisi-like infection was detected in a sick Thai infant, thus the objective of this study was to investigate the prevalence of T. lewisi infections among different rodents indigenous to Thailand in order to identify possible sources of human cases. Blood was collected from a total of 276 rodents trapped from urban and rural areas of three Thai provinces between 2006 and 2007. These samples were processed for DNA isolation and tested with a PCR assay universal for the genus Trypanosoma, followed by internal transcribed spacer 1 (ITS-1) sequence analysis to identify infections in positive samples. Herpetosoma known as T. lewisi-like trypanosomes were present among Rattus (14.3 percent) and Bandicota (18.0 percent) rodent species and
salivarian trypanosomes closely related to *T. evansi* were detected in *Leopoldamys* (20 percent) and *Rattus* (2.0 percent) species. *Herpetosoma* were prevalent among rodents associated with both human and sylvatic habitats, while three of the four salivaria-positive rodents were from a forest biotope. A *Herpetosoma* ITS-1 sequence amplified from one of these samples was 97.9 percent identical to that reported for *T. lewisi* in an experimentally infected rat and 96.4 percent identical to the sequence amplified from blood from a Thai infant. Habitats where rodents were collected significantly affect rodent infection, at least for *T. lewisi*, suggesting that the degree of anthropization may influence the transmission of *Trypanosoma* spp. These results suggest that multiple *Herpetosoma* species or strains are enzootic to Thailand, and that *Rattus* and *Bandicota* species are possible sources of human exposure to these parasites.

Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.

In the Philippines, insufficient consideration has been given to the implementation of systematic control measures against major abortion-associated infectious agents in livestock. To elucidate the epidemiology of abortion-causing infectious agents in livestock, the prevalence of four abortifacient agents was assessed. Initially, a total of 96 cattle including 17 cows with history of abortion were examined in a herd in Luzon at the request of the farm owner. Six (35.3 percent) of the 17 aborting cows were found to be serologically positive for *Neospora caninum* whereas the seroprevalence in non-aborting cows was 15.9 percent (10/63). Four of the 6 serologically positive aborting cows were also RT-PCR-positive for bovine viral diarrhoea virus (BVDV). Two (12.5 percent) of the 16 bulls examined were also found to be infected with BVDV, suggesting a putative risk factor of transmission via semen. Based on sequence analysis, the isolates detected belong to BVDV type 1b group. Furthermore, an epidemiological survey of abortifacient infectious agents was conducted with various species of livestock from herds located in Luzon. Out of the 105 water buffalo samples collected, 4 (3.8 percent) were indicated positive to *N. caninum*, 2 (1.9 percent) to *Toxoplasma gondii* and 2 (1.9 percent) to *Trypanosoma evansi*. The overall seroprevalence of *N. caninum* in goat and sheep were 23.6 percent (21/89) and 26.3 percent (10/38), respectively. BVDV was not detected in these herds. The findings of this exploratory study indicate a relationship between infection and bovine abortion and that a larger study is required to statistically confirm this relationship.

Boise State University, Biology, 1910 University Drive, Boise, Idaho 83725, USA.

Except for a few studies in the eastern United States, little has been published on haemoparasites in owls. We surveyed the blood parasites of 108 Northern Saw-whet owls (Aegolius acadicus) and 24 Flammulated owls (Otus flammeolus) in Idaho during autumn migration in 1999 and 2000. We also surveyed 15 Flammulated owls (FLOW) during breeding season in Utah from 2000. Leucocytozoon ziemanni, Haemoproteus syrnii, Haemoproteus noctuae, and Trypanosoma avium were identified. The overall prevalence of infection was 53 percent (78/147) and for the combined species, prevalences of Haemoproteus, Leucocytozoon, and Trypanosoma species were 20 percent, 39 percent, and 4 percent, respectively. Northern Saw-whet owls (NSWO) had an overall prevalence of 51 percent (55/108), with prevalences of 6 percent, 47 percent, and 4 percent by haemoparasite genus, respectively. Flammulated owls had an overall prevalence of 59 percent (23/39), with prevalences of 56 percent, 18 percent, and 5 percent by genus, respectively. This study provides baseline haematozoa information for two boreal owl species.

Cross-sectional studies were conducted in tsetse and non-tsetse-controlled areas of the Southern Nation Nationalities and Peoples Regional State (SNNPRS) of Ethiopia to determine the prevalence of bovine trypanosomosis as well as drug sensitivity tests on Trypanosoma congolense in both naturally and experimentally infected cattle and mice, respectively. A total trypanosome prevalence of 4.8 percent (95 percent CI: 1.8-7.5) and 20.4 percent (95 percent CI: 14-26.8) were recorded in the tsetse-controlled study area of Humbo district and the non-tsetse-controlled area of Mareka district, respectively, indicated statistically significant difference between the two areas (P<0.001). The mean PCV value for Humbo and Mareka was 26.2 (95 percent CI: 25.7-26.7) and 22.7 (95 percent CI: 22.1-23.3), respectively, which were also statistically significant (P<0.001). The prophylactic activity of isometamidium chloride (ISMM) was observed in Humbo on nine naturally positive zebu cattle. Breakthrough infections were recorded in (6/9) 66.7 percent of the cases in less than 5 weeks. A qualitative assay on mice was conducted on two T. congolense isolates obtained from the breakthrough cases with ranges of doses of ISMM and diminazene diaceturate (DA). Thereafter the mice were followed for relapse infection. ISMM at doses 0.5-4 mg/kg body weight (bw) and DA at doses of 3.5-28 mg/kg bw failed completely to cure T. congolense infections in any of the mice. A quantitative assay on mice was conducted on four T. congolense isolates obtained from Mareka. The four isolates were pooled into two pools (Pool-1 and Pool-2) for the quantitative assay on mice. The pooled isolates were tested with the same trypanocidal drugs and ranges of doses as it was used for the qualitative assay on mice. The minimum curative dose (MCD) of ISMM that cleared T. congolense infected mice...
was 4 and 2mg/kg bw for Pool-1 and Pool-2, respectively, whereas MCD of DA was 28 and 14 mg/kg bw. in Pool-1 and Pool-2, respectively. Although cloned populations were not used to prove whether the observed resistance was at the individual level or not, the results show that there is resistance to both ISMM and DA; failure of the "sanative pair".

Faculty of Veterinary Science, University of Liverpool, Leahurst, Neston, CH64 7TE, UK. [ginap@liv.ac.uk]

The Gambia has an increasing population of *Equidae* largely used for agriculture and transportation. A review of cases at The Gambian Horse and Donkey Trust (GHDT) indicated that a common reason for presentation is a poorly defined medical condition often attributed to trypanosomosis. There are few reports describing the prevalence or the range of clinical signs associated with infection with different species of trypanosomes in horses and donkeys, but given the importance of these animals, the role of trypanosomosis requires investigation. In total 241 animals from the Central River Division in The Gambia (183 horses and 58 donkeys) were screened using Whole Genome Amplification (WGA) followed by trypanosome species identification using the polymerase chain reaction (PCR). The results indicated overall trypanosome prevalence of 91 percent; with an infection rate of 31 percent for *Trypanosoma congolense*, 87 percent for *Trypanosoma vivax* and 18 percent for *Trypanosoma brucei* sp. Multiple species were present in 43 percent of infections. Microscopy had a good specificity (100 percent) and positive predictive value (100 percent) for trypanosome detection, but the sensitivity (20 percent) and negative predictive value (10.5 percent) were low relative to PCR-based diagnosis. Infection with *T. congolense* showed the greatest negative effect on packed cell volume (PCV), while infection with *T. brucei* sp also had a significant, although lesser, negative effect on PCV. In addition, cases positive by microscopy were associated with significantly lower PCV. However, concurrent infection with *T. vivax* appeared to cause less effect on PCV, compared to animals infected with *T. congolense* alone. In conclusion, the prevalence of Trypanosomosis was high in both horses and donkeys. Infection with *T. congolense* appeared to have the greatest clinical significance, while *T. vivax* infection may be of limited clinical significance in this population. Indeed, there is evidence of *T. vivax* co-infection ameliorating the pathology caused by *T. congolense*. WGA and PCR allowed a more comprehensive analysis of field infections with the detection of infections below the threshold of microscopy, and provided indications of interactions between parasite species that would otherwise remain undetected. The study raises important questions about the epidemiology of trypanosome infection in relation to disease that require a full scale longitudinal analysis.

Between 2001 and 2003, we screened blood smears of 156 Oregon spotted frogs (*Rana pretiosa*) from three populations in central Oregon for blood parasites. A *Lankesterella* sp. and a *Trypanosoma* sp. were detected in 31 percent and 35 percent of the frogs, respectively. Parasite loads were generally light, with *Lankesterella* sporozoites in 1-2 percent of erythrocytes, and extracellular trypanosomes were seen at rates of about one parasite per 200 fields of view at 1,000x. Little work has been published on haemoparasites of ranids in the western USA in the past 30 years. Because of the recent taxonomic division of the *Rana pretiosa* complex, this may be the first published report of blood parasites for *R. pretiosa sensu stricto*. Both parasites reported here differed in morphologic features and morphometric comparisons from previous descriptions of anuran haemoparasites. Much work remains to sort out the taxonomy of haemoparasites among western USA ranids and to determine the ecological significance of these parasites; both tasks are important steps in understanding and managing these, and related, sensitive and threatened species.

(b) PATHOLOGY AND IMMUNOLOGY

[See also 31: 14400]

Veterinary Research Institute, 59, Jalan Sultan Azlan Shah, 3400, Ipoh, Perak, Java.

This paper reports an outbreak of trypanosomiasis due to *Trypanosoma evansi* in Java deer (*Cervus timorensis*) on a government deer farm in Lenggong, Perak. Seventeen adult female Java deer were found dead within a week. Symptoms of dullness, inappetence, anaemia, anorexia, respiratory distress and recumbency were seen prior to death in the infected Java deer. Beside trypanosomiasis, other parasitic infections such as theileriosis, helminthiasis and ectoparasite infestation were also recorded. Post mortem results showed generalized anaemia in most animals with isolated cases of jaundice. There was no significant finding with respect to bacteriological and viral investigations.

Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brasil.
The biology, epidemiology, pathogenesis, diagnostic techniques, and history of the introduction of *Trypanosoma (Duttonella) vivax* in the New World are reviewed. The two main immunological responses of trypanosome-infected animals - antibody production and immunodepression - are discussed in the context of how these responses play a role in disease tolerance or susceptibility. Isolation and purification of *T. vivax* are briefly discussed. The recent reports of bovine trypanosomiasis diagnosed in cattle on farms located in the Pantanal region of the states of Mato Grosso do Sul and Mato Grosso, Brazil, are also discussed.

(c) TRYPANOTOLERANCE

[See also 31: 14416]

Radboud University Medical Center, Medical Parasitology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.

In Africa, the protozoan parasite of the genus *Trypanosoma* causes animal (AAT) and human African trypanosomiasis (HAT). These diseases are responsible for considerable mortality and economic losses, and until now the drugs commonly used have often been very toxic and expensive, with no vaccine available. A range of clinical presentations, from chronic to acute symptoms, is observed in both AAT and HAT. Host, parasite, and environmental factors are likely to be involved in this clinical variability. In AAT, some West African cattle (*N'Dama, Bos taurus*) have the ability to better control the disease development (and therefore to remain productive) than other taurine breeds (*Zebu, Bos indicus*). This phenomenon is called trypanotolerance and seems to have major genetic components. In humans, tolerance/resistance to the disease is suspected, however, this needs confirmation. This review focuses on recent advances made in the field of host genetics in African trypanosomiasis in animals (mouse and bovine) and humans. The perspectives for the development of new control strategies and their applications as well as a better understanding of the physiopathology of the disease are discussed.

(d) TREATMENT

[See 31: 14402]

7. EXPERIMENTAL TRYPANOSOMIASIS

(a) DIAGNOSTICS

[See also 31: 14381, 14383, 14399, 14400]
CSIRO Livestock Industries, Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia.

A TaqMan PCR assay was developed for the detection of *Trypanosoma evansi*. The assay targets the internal transcribed spacer 1 (ITS-1) region of rRNA. The ITS-1 region of eleven strains of *T. evansi* from widely separated geographical regions was sequenced and alignments compared. Primers and probe for the test were designed from these sequence data. The assay was tested using blood from infected rats and was found to be sensitive, detecting less than one genomic equivalent of *T. evansi*. The assay has been tested against 10 different species of trypanosomes found in native animals in Australia and did not detect any of these trypanosome species. Time course experiments using rats infected with *T. evansi* were performed to compare the TaqMan assay with the haematocrit centrifugation test (HCT) and the mouse inoculation (MI) assay. The assay was more sensitive than the HCT but not as sensitive as the MI. The TaqMan assay has the ability to rapidly detect *T. evansi* and determine the number of organisms present in a blood sample from an infected animal. This is the first time a TaqMan assay has been developed for the detection of *T. evansi*.

(b) PATHOLOGY AND IMMUNOLOGY

[See also 31: 14342, 14349, 14356, 14388, 14496]

Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. [fbrombac@uctgh1.uct.ac.za].

African trypanosomiasis encompasses diseases caused by pathogenic trypanosomes, infecting both humans and animals. In the present article, we dissected the possible role of members of the interleukin (IL)-12 family during infection with *Trypanosoma brucei brucei* and *Trypanosoma evansi* in mice. IL-12p35(-/-), IL-12p40(-/-), and IL-12p35(-/-)/p40(-/-) mice were susceptible to both pathogens, as was demonstrated by the increased mortality among these mice, compared with wild-type C57BL/6 mice. The different IL-12p70(-/-) mouse strains showed similar mortality kinetics, suggesting that IL-12p70/- but not the IL-12p80 homodimer or IL-23/- plays a crucial role in survival. Although there were similar plasma levels of immunoglobulin (Ig) M and IgG2a in IL-12-deficient mice and wild-type mice, interferon (IFN)- gamma production, especially during early infection, was severely impaired in all IL-12p70(-/-) mouse strains, demonstrating an IL-12p70-dependent mechanism for IFN- gamma production. Because IFN- gamma receptor-deficient mice (IFN-gamma R(-/-)) were also highly susceptible to both *Trypanosoma* species, IL-12p70-dependent IFN- gamma production seems to be the important mechanism involved in resistance against both pathogens.
Uncontrolled inflammation is a major cause of tissue injury/pathogenicity often resulting in death of a host infected with African trypanosomes. Thus, comparing the immune response in hosts that develop different degrees of disease severity represents a promising approach to discover processes contributing to trypanosomiasis control. It is known that limitation of pathogenicity requires a transition in the course of infection, from an IFN-gamma-dependent response resulting in the development of classically activated myeloid cells (M1), to a counterbalancing IL-10-dependent response associated with alternatively activated myeloid cells (M2). Herein, mechanisms and downstream effectors by which M2 contribute to lower the pathogenicity and the associated susceptibility to African trypanosomiasis have been explored. Gene expression analysis in IL-10 knockout and wild-type mice, that are susceptible and relatively resistant to Trypanosoma congolense infection, respectively, revealed a number of IL-10-inducible genes expressed by M2, including Sepp1 coding for selenoprotein P. Functional analyses confirm that selenoprotein P contributes to limit disease severity through anti-oxidant activity. Indeed, Sepp1 knockout mice, but not Sepp1(Delta)(240-361) mice retaining the anti-oxidant motif but lacking the selenium transporter domain of selenoprotein P, exhibited increased tissue injury that associated with increased production of reactive oxygen species and increased apoptosis in the liver immune cells, reduced parasite clearance capacity of myeloid cells, and decreased survival. These data validate M2-associated molecules as functioning in reducing the impact of parasite infection on the host.

The unicellular parasite Trypanosoma brucei rapidly removes host-derived immunoglobulin (Ig) from its cell surface, which is dominated by a single type of glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG). We have
determined the mechanism of antibody clearance and found that Ig-VSG immune complexes are passively sorted to the posterior cell pole, where they are endocytosed. The backward movement of immune complexes requires forward cellular motility but is independent of endocytosis and of actin function. We suggest that the hydrodynamic flow acting on swimming trypanosomes causes directional movement of Ig-VSG immune complexes in the plane of the plasma membrane, that is, immunoglobulins attached to VSG function as molecular sails. Protein sorting by hydrodynamic forces helps to protect trypanosomes against complement-mediated immune destruction in culture and possibly in infected mammals but likewise may be of functional significance at the surface of other cell types such as epithelial cells lining blood vessels.

Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.

Cape buffalo are reservoir hosts of African trypanosomes. They rapidly suppress population growth of the highly antigenically variable extracellular haemoprotozoa and subsequently maintain a cryptic infection. Here we use in vitro cultures of trypanosomes cloned from Cape buffalo blood during cryptic infection, as well as related and unrelated trypanosomes, to identify anti-trypanosome components present in cryptic-phase infection serum. Trypanosome clone-specific complement-dependent trypanolytic IgM and IgG arose after appearance of target trypanosomes during cryptic infection. Serum collected late in the cryptic phase of infection contained complement-independent growth-inhibitory IgG which varied in activity among target trypanosomes. Removal of protein A/G-binding IgG from the serum restored its capacity to support trypanosome growth in vitro. Recovered growth-inhibitory IgG reacted with the variable surface glycoprotein (VSG) of parasites most affected by it, and reacted with trypanosome common antigens, notably the endosome-restricted tomato lectin-binding glycoproteins (TL-antigens). The inclusion of purified TL-antigens in culture medium did not affect the trypanosome growth-inhibitory activity of immune Cape buffalo serum. In addition, hyperimmune rabbit IgG against TL-antigens showed little or no binding to intact trypanosomes and did not affect trypanosome growth in vitro although it did react strongly with TL-antigens and trypanosome endosomes. We conclude that antibodies, particularly clone-specific (putatively VSG-specific) antibodies are responsible for the anti-trypanosome activity of cryptic phase infection serum consistent with a dominant role in parasite control in Cape buffalo.

Human African trypanosomiasis is characterised by an important clinical diversity. Although *Trypanosoma brucei gambiense* field stocks isolated from patients in the same focus did not exhibit apparent genetic variability, they showed marked differences in terms of virulence (capacity to multiply inside a host) and pathogenicity (ability of producing mortality) in experimental murine infections. Two strains exhibiting opposite pathogenic and virulence properties in mouse were further investigated through their host-parasite interactions. *In vitro*, parasite bloodstream forms or soluble factors (or secretome) from both strains induced macrophage arginase as a function of their virulence. Arginase expression, a hallmark of macrophage alternative activation pathway, favours trypanosome bloodstream forms development. Moreover, a comparative proteomic study of the trypanosome stocks' secretomes evidenced both a differential expression of common molecules and the existence of stock specific molecules. This highlighted the potential involvement of the differential expression of the same genome in the diverse infectious properties of trypanosomes.

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

The infection of carp and other cyprinid fish with *Trypanosoma danilewskyi* was reported to cause significant morbidity and mortality in aquaculture. Tubulin is a component of parasite excretory/secretory (ES) products recognized by antibodies present in the serum of recovered hosts. To assess the role of parasite tubulin in the induction of a protective immune response in the goldfish, recombinant *T. danilewskyi* beta-tubulin was produced in *Escherichia coli* and used to immunize goldfish against challenge with live parasites. Affinity purified rabbit anti-recombinant tubulin IgG bound to both surface and internal structures of trypanosomes, and when added to parasite cultures caused a dose-dependent inhibition of their growth *in vitro*. Immunization of goldfish i.p. with either 40 µg or 80 µg of endotoxin-free beta-tubulin+Freund's complete adjuvant (FCA) caused a significant decrease in parasitaemia during the establishment phase of the infection (days 3 and 7) and increased the time required to reach the maximal mean number of parasites compared to non-immunized sham-injected control fish. The serum from immune fish contained antibodies that recognized trypanosomes as determined by confocal immunofluorescence microscopy and specific antibodies that recognized recombinant tubulin as measured by ELISA. Thus, the immunization of goldfish with recombinant parasite beta-tubulin conferred partial antibody-mediated protection against a challenge infection with live trypanosomes. This is a first report that parasite tubulin is immunogenic in poikilothermic vertebrates.
A marker-assisted introgression (MAI) experiment was conducted to transfer trypanotolerance quantitative trait loci (QTL) from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. The objective was to assess the effect of three previously identified chromosomal regions on mouse chromosomes 1 (MMU1), 5 (MMU5) and 17 (MMU17) in different genetic backgrounds on the survival pattern following infection with *Trypanosoma congolense*. An exploratory data analysis revealed a biphasic pattern of time to death, with highly distinct early and late mortality phases. In this paper, we present survival analysis methods that account for the biphasic mortality pattern and results of reanalyzing the data from the MAI experiment. The analysis with a Weibull mixture model confirmed the biphasic pattern of time to death. Mortality phase, an unobserved variable, appears to be an important factor influencing survival time and is modelled as a binary outcome variable using logistic regression analysis. Accounting for this biphasic pattern in the analysis reveals that a previously observed sex effect on average survival is rather an effect on proportion of mice in the two mortality phases. The C57BL/6 (donor) QTL alleles on MMU1 and MMU17 act dominantly in the late mortality phase while the A/J (recipient) QTL allele on MMU17 acts dominantly in the early mortality phase. From this study, we found clear evidence for a biphasic survival pattern and provided models for its analysis. These models can also be used when studying defence mechanisms against other pathogens. Finally, these approaches provide further information on the nature of gene actions.

The western blot analysis for identification of immunogenic proteins in whole cell lysate (WCL) antigens (Ags) prepared from the *Trypanosoma evansi* of buffalo, horse and cattle origins using hyperimmune sera (HIS) showed 11 immunogenic proteins and naturally *T. evansi* infected immune sera (IS) of horse detected 19 immunogenic proteins. HIS and IS of horse recognized five common immunogenic proteins of relative molecular weight (M(r)) ranges 61-64, 44-47, 33-34, 25-26 and 14-16 kilo Dalton (kDa). HIS rose against WCL Ags of *T. evansi* of buffalo origin and immune sera of horse cross reacted with WCL Ags of *T. evansi* of different host origin. It can be concluded that in comparison to HIS, IS of horse could able to detect more numbers of immunogenic proteins and five common immunogenic proteins in WCL Ags of *T. evansi* of different hosts origin. The evidence of higher reactivity of IS in comparison to HIS against *T. evansi* is being reported for the first time.

Departamento de Medicina Veterinária, Centro Politecnico, UNICENTRO. Rua Simeao Camargo Varela de Sa, 03, Guarapuava, PR, 85040-080, Brasil. [krlemos@yahoo.com.br].

An histochemical and immunohistochemical study was carried out to evaluate the mechanisms of immune response of horses experimentally infected by *Trypanosoma evansi*. For this purpose the HE histochemical stain and the avidin biotin peroxidase method were used. To determine the presence and immunoreactivity of immune cells we used anti-major histocompatibility complex II antibodies. Cellular infiltration phenotype was characterized with the aid of anti-CD3 antibody for T lymphocytes and by anti-BLA 36 antibodies for B lymphocytes. Macrophages were marked with an antibody against myeloid/histoyocytes antigen (clone Mac387). Lesions in the CNS of experimentally infected horses were those of a wide spread non suppurative encephalomyelitis and meningomyelitis. The severity of lesions varied in different parts of the nervous system, reflecting an irregular distribution of inflammatory vascular changes. Lymphoid perivascular cuffs and meningeal infiltrations were of predominantly composed of T and B cells. The parasite, *T. evansi*, was not identified in these horses’ tissues.

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA. [mansfield@bact.wisc.edu].

The variant surface glycoprotein (VSG) coat of African trypanosomes exhibits immunobiological functions distinct from its prominent role as a variant surface antigen. In order to address questions regarding immune stealth effects of VSG switch-variant coats, and the innate immune system activating effects of shed VSG substituents, several groups have genetically modified the ability of trypanosomes to express or release VSG during infection of the mammalian host. The role of mosaic surface coats expressed by VSG switch-variants (VSG double-expressors) in escaping early immune detection, and the role of VSG glycosylphosphatidylinositol (GPI) anchor substituents in regulating host immunity have been revealed, respectively, by stable co-expression of an exogenous VSG gene in trypanosomes expressing an endogenous VSG gene, and by knocking out the genetic locus for GPI-phospholipase C (PLC) that releases VSG from the membrane. Both approaches to genetic modification of African trypanosomes have suggested interesting and unexpected immunobiological effects associated with surface coat molecules.

Karolinska Institutet, Department of Neuroscience, S-171 77 Stockholm, Sweden.

Subspecies of the extracellular parasite, *Trypanosoma brucei*, which are spread by the tsetse fly in sub-Saharan Africa, cause in humans Sleeping Sickness. In experimental rodent models the parasite can at a certain stage of disease pass through the blood-brain barrier across or between the endothelial cells and the vessel basement membranes. The laminin composition of the basement membranes determines whether they are permissive to parasite penetration. One cytokine, interferon-gamma, plays an important role in regulating the trypanosome trafficking into the brain. Treatment strategies aim at developing drugs that can impede penetration of trypanosomes into the brain and/or that can eliminate trypanosomes once they are inside the brain parenchyma, but have lower toxicity than the ones presently in use.

Department of Veterinary Clinical Biochemistry, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.

Mice infected with *Trypanosoma congolense* developed a severe anaemia 1 week after infection, which persisted till treatment with diminazene aceturate when the packed cell volume (PCV) recovered to pre-infection levels. This was accompanied by a marked increase in the plasma levels of the acute phase proteins (APP), serum amyloid P-component (SAP) and haptoglobin (Hp). The initial peak levels of Hp and SAP were attained 7 and 12 days post-infection (DPI), respectively. Thereafter SAP levels decreased significantly to near pre-infection levels, but later increased even after treatment to give a second peak 34 DPI after which there was a decline till the study was terminated. The Hp levels on the other hand decreased to an intermediate level after the initial peak increasing to a second peak 22 DPI. Thereafter Hp decreased significantly following diminazene aceturate treatment to reach pre-infection levels within 5 days post-treatment. This indicates that *T. congolense*-infected mice develop severe anaemia accompanied by an acute phase response leading to an increase in SAP and Hp but that following treatment divergent responses occurred indicating differences in the pathways for stimulation of the APP. Haptoglobin was shown to be an earlier indicator of infection and a better marker in monitoring the response to treatment.

Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan. [nisimura@vet.osakafu-u.ac.jp].
The immune response of a host infected with *Trypanosoma brucei* is modulated by trypomastigotes. We examined the changes in cytokine production in *T. brucei gambiense* (Wellcome strain; WS) infected rats and the influence on production of interleukin (IL)-12 by macrophages. The blood concentration of interferon-gamma, tumour necrosis factor-alpha, and IL-10 increased beginning the second day after infection. However, an increase in IL-12p40 was not observed until 4 days after infection. When spleen macrophages and Kupffer cells harvested from uninfected rats and HS-P cells (a rat macrophage-like cell line) were cocultured with WS, IL-12p40 production did not change. When HS-P cells were cultured with WS, transport of nuclear factor-kappaB into the nucleus increased. Levels of macrophage colony-stimulating factor (M-CSF) and granulocyte macrophage colony-stimulating factor mRNA in the spleens and livers of WS-infected rats were high in comparison with uninfected rats, suggesting that the WS promotes macrophage proliferation. The level of IL-12p40 mRNA in HS-P cells cocultured with WS increased in response to transfection with a small interfering RNA against M-CSF or addition of anti-M-CSF antibody. These results suggest that the WS inhibits IL-12p40 mRNA production by promoting production of macrophage colony-stimulating factor by macrophages.

Laboratory of Infectious Diseases Control, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan. [nisimura@vet.osakafu-u.ac.jp].

Feeding polyamine-deficient chow (PDC) to rats decreases blood polyamines, increases the activity of ornithine decarboxylase as an index of polyamine production, and increases resistance to *Trypanosoma brucei gambiense* (Wellcome strain) (WS) infection. In this study, we investigated the influence on cytokine and nitric oxide (NO) production of feeding PDC to rats infected with WS. At 4 days postinfection with WS, serum concentration of interleukin (IL)-12, tumour necrosis factor-alpha, interferon-gamma, IL-10, and NO increased in PDC-fed rats; however, IL-12 concentration in normal chow (NC)-fed rats did not increase. In spleen cells cocultured with WS, levels of IL-12 and inducible NO synthase (NOS) mRNA expression were higher in PDC-fed rats than in NC-fed rats. Proliferation of WS in coculture with spleen cells from PDC-fed rats was inhibited, but inhibition of WS proliferation was not observed when an NOS inhibitor was added into the culture media. Ornithine decarboxylase (ODC) activity increased in NC-fed rats after WS infection, but decreased in PDC-fed rats. These results show that feeding WS-infected rats PDC influences the production of cytokines such as IL-12 and the regulation of NO and polyamine production, and also leads to an increase in resistance against WS.

A strategy was developed to isolate nanobodies, cameldid-derived single-domain antibody fragments, against the parasite infectome without a priori knowledge of the antigens nor having access to the purified antigens. From a dromedary, infected with *T. evansi*, we cloned a pool of nanobodies and selected after phage display 16 different nanobodies specific for a single antigen, i.e. variant surface glycoprotein of *T. evansi*. Moreover 14 nanobodies were isolated by panning on different total parasite lysates. Thus, this anti-infectome experiment generated nanobodies, monospecific for one *Trypanosoma* species, whereas others were pan-reactive to various *Trypanosoma* species. Several nanobodies could label specifically the coat of a set of *Trypanozoon* species. The recognized target(s) are present in GPI-linked membrane fractions of bloodstream- and fly-form parasites. Due to the omnipresence of these targets on different parasite species and forms, these antibody fragments are a valuable source for validation of novel, not yet identified targets to design new diagnostics and therapeutics.

Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.

Human African trypanosomiasis (HAT) is transmitted by tsetse flies and, if untreated, is fatal. Treatment depends on infection stage, and early diagnosis is crucial for effective disease management. The systemic host biochemical changes induced by HAT that enable biomarker discovery or relate to therapeutic outcome are largely unknown. We have characterized the multivariate temporal responses of mice to *Trypanosoma brucei brucei* infection, using (1)H nuclear magnetic resonance (NMR) spectroscopic metabolic phenotyping of urine and plasma. Marked alterations in plasma metabolic profiles were detected already 1 day postinfection. Elevated plasma concentrations of lactate, branched chain amino acids, and acetylglycoprotein fragments were noted. *T. brucei brucei*-infected mice also had an imbalance of plasma alanine and valine, consistent with differential gluconeogenesis (parasite)-ketogenesis (host) pathway counterflux, involving stimulated host glycolysis, ketogenesis, and enhanced lipid oxidation in the host. Histopathologic evidence of *T. brucei brucei*-induced extramedullary hepatic haemopoiesis, renal interstitial nephritis, and a provoked inflammatory response was also noted. Metabolic disturbance of gut microbiotal activity was associated with infection, as indicated by changes in the urinary concentrations of the microbial co-metabolites, including hippurate. Concluding, parasite infection results in multiple systemic biochemical effects in the host and disturbance of the symbiotic gut microbial metabolic interactions. Investigation of these transgenomic metabolic alterations may underpin the development of new diagnostic criteria and metrics of therapeutic efficacy.
African trypanosomes are single-cell, extra-cellular blood parasites causing profound immunosuppression. Susceptible BALB/c mice infected s.c. into a footpad with 10(4) *Trypanosoma congolense* die with fulminating parasitaemia within 10 days. We injected BALB/c mice 2 days before such an infection with different doses of a depleting mAb specific for CD25, a surface marker of regulatory T cells (Tregs). Pretreatment with a low, optimal dose of anti-CD25 resulted in a dramatic effect, in that the infected mice did not develop parasitaemia, as well as eliminated all parasites and showed no signs of disease. Their spleens showed a 100 percent reduction of CD4(+)CD25(high) T cells and overall a 70 percent reduction of CD4(+)CD25(+)Foxp3(+) T cells 7 days postinfection. The protective effect of treatment with an optimal dose of anti-CD25 could be reversed by administration of L-N6-(1-imminoethyl) lysine, a specific inhibitor of inducible NO synthase or administration of anti-CD8 Ab. Analysis of the cytokine patterns and cell surface marker in infected mice pretreated with anti-CD25 Abs pointed to a potential NKT cell response. We then conducted infections in CD1d(-/-) mice. From our observations, we conclude that CD4(+)CD25(high)Foxp3(+) Tregs prevent, in normal infected susceptible mice, an early protective response mediated by CD8(+) NKT cell-dependent activation of macrophages to kill parasites by production of NO. Our results also indicate that different populations of NKT cells have protective or suppressive effects. Our observations lead us to propose a hypothesis of cross-regulation of NKT cells and Tregs in trypanosome infections.
trypanocides effectively cleared the parasites from the blood of the infected treated dogs. However, the infection subsequently relapsed at day 42 PI in one of the dogs in the DA treated group which later died at day 70 PI. Relapse infection was not recorded with the PMI treated groups although two dogs died in the PMI treated group II (treatment at days 14, 17, 19, 27, 29, and 31 PI) without showing relapsed parasitaemia. The packed cell volume (PCV), red blood cell (RBC) count, and haemoglobin (Hb) level which decreased significantly following infection, were reversed by the trypanocidal treatment. The reversal in the red cell values was faster in the PMI treated groups than in the DA treated group. The serum alkaline phosphate (SAP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels increased following infection and drug administration. The increase in the enzyme levels was greater in the DA treated groups than PMI treated groups. It was thus concluded that PMI given at 4 mg/kg i/m at days 14, 16, 18, 20, 22, 24, and 26 PI constituted a safe and efficient trypanocide and exhibited a superior trypanocidal action than DA in *T. brucei brucei* infected dogs.

Department of Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden. [ndemamin@yahoo.co.uk].

The effect of treatment on relapses of *Trypanosoma brucei* (*T. b.*) *brucei* infections in mice in relation to passage of the parasites across the blood-brain barrier (BBB) as visualized by immunohistochemistry was studied. Three daily intraperitoneal injections of 20mg/kg suramin starting at 15 days post-infection (p.i.), when trypanosomes had begun to traverse the BBB, were curative, but not when starting at 21 days p.i. when parasite brain invasion was more pronounced. Relapses occurred in all mice after one or two daily injections of suramin starting at 15 days p.i., but they were delayed when treatment was supplemented with minocycline, which impedes penetration of *T. b. brucei* into the brain. This study supports the notion that suramin may be effective even when minor parasite neuroinvasion has appeared in African trypanosomiasis and it shows that minocycline can affect relapses of the disease.

Department of Pharmaceutical Sciences, Alma Mater Studiorum, Bologna University, Via Belmeloro 6, I-40126 Bologna, Italy. [marialaura.bolognesi@unibo.it].

Taking advantage of the structural features of natural products showing anti-trypanosomatid activity, we designed and synthesized a small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives. The library was obtained following a parallel approach and using readily available synthons. All the derivatives showed inhibitory activity toward either *Trypanosoma* or *Leishmania* species, with 8, 10, and
16 being the most active compounds against *Trypanosoma brucei rhodesiense, Leishmania donovani*, and *Trypanosoma cruzi* cells (IC(50)=50nM, IC(50)=0.28µM, and IC(50)=1.26µM, respectively).

Centre for Parasitology and Infectious Diseases, Biomedical Sciences Research Institute, School of Environment and Life Sciences, University of Salford, The Crescent Salford, Lancs. M5 4WT, UK.

Dipartimento di Scienze Farmaceutiche, Universita di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy.

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.

Glycolysis is essential to the parasitic protozoan *Trypanosoma brucei*. The first step in this metabolic pathway is mediated by hexokinase, an enzyme that transfers the gamma-phosphate of ATP to a hexose. The *T. brucei* genome (TREU927/4 GUTat10.1) encodes two hexokinases (*TbHK1* and *TbHK2*) that are 98 percent identical at the amino acid level. Our previous efforts have revealed that *TbHK2* is an important regulator of *TbHK1* in procyclic form parasites. Here, we have found through RNAi that *TbHK1* is essential to the bloodstream form parasite. Silencing the gene for 4 days reduces cellular hexokinase approximately 60 percent and leads to parasite death. Additionally, we have found that the recombinant enzyme is inhibited by lonidamine (IC(50)=850 µM), an anti-cancer drug that targets tumour hexokinases. This agent also inhibits HK activity from whole parasite lysate (IC(50)=965 µM). Last, lonidamine is toxic to cultured bloodstream form parasites (LD(50)=50 µM) and procyclic form parasites (LD(50)=180 µM). Interestingly, overexpression of *TbHK1* protects PF parasites from lonidamine. These studies provide genetic evidence that *TbHK1* is a valid therapeutic target while identifying a potential molecular target of the anti-trypanosomal agent lonidamine.

Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.

Malaria, sleeping sickness, Chagas' disease, Aleppo boil, and AIDS are among the tropical diseases causing millions of infections and cases of deaths per year because only inefficient chemotherapy is available. Since the targeting of the enzymes of the polyamine pathway may provide novel therapy options, we aimed to inhibit the deoxyhypusine hydroxylase, which is an important step in the biosynthesis of the eukaryotic initiation factor 5A. In order to identify new lead compounds, piperidines were produced and biologically evaluated. The 3,5-diethyl piperidone-3,5-dicarboxylates 11 and 13 substituted with 4-nitrophenyl rings in the 2 and 6 positions were found to be active against *Trypanosoma brucei brucei* and *Plasmodium falciparum* combined with low cytotoxicity against macrophages. The corresponding monocarboxylates are only highly active against the *T. brucei brucei*. The piperidine oximether 53 demonstrated the highest plasmodicidal activity. Moreover, compounds 11 and 53 were also able to inhibit replication of HIV-1.

Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA.

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA. [galina.i.lepesheva@vanderbilt.edu].

Human African trypanosomiasis (HAT) is caused by the protozoan parasite *Trypanosoma brucei*. The cysteine proteases of *T. brucei* have been shown to be crucial for parasite replication and represent an attractive point for therapeutic intervention. Herein we describe the synthesis of a series of thiosemicarbazones and their activity against the trypanosomal cathepsins *Tb*catB and rhodesain, as well as human cathepsins L and B. The activity of these compounds was determined against cultured *T. brucei*, and specificity was assessed with a panel of four mammalian cell lines.

To evaluate in vitro the antiprotozoal and cytotoxic activities of a methanol extract from 45 medicinal plants collected in Sankuru (Democratic Republic of Congo) against Trypanosoma brucei brucei, Trypanosoma cruzi and the chloroquine-sensitive Ghanaian strain of Plasmodium falciparum, and MRC-5 cell lines respectively, extracts were obtained by maceration of each plant part used with 80 percent methanol for 24h. The mixture was filtered and evaporated in vacuo to give corresponding dried extract. The activity against Trypanosoma brucei brucei and Trypanosoma cruzi was tested in 96-well tissue plates each containing 10 µmol of aqueous plant extract dilutions (100 to 0.01 µg/ml) with 10 µmol of the parasite suspension cultured in Hirumi medium supplemented with 10 percent foetal calf serum and a solution of 2 percent penicillin/streptomycin (2 percent P/S) After 4 days incubation with Almar blue solution, fluorescence was measured at 500 nm emission and 530 nm excitation and results expressed as percentage reduction in parasite compared to control wells. The antiplasmodial activity was assessed in vitro against the chloroquine-sensitive Ghanaian strain of Plasmodium falciparum cultured in RPMI-1640 medium by the lactate dehydrogenase assay in the presence of plant extracts (50 to 0.01 µg/ml). Cell-lines MRC-5 were cultured in MEM medium supplemented with 20mM l-glutamine, 16.5mM Na₂HCO₃, 5 percent foetal calf serum and 2 percent P/S solution. After 4h incubation, cell proliferation/viability was spectrophotometrically assessed at 540 nm after addition of MTT. In each assay, the IC50 value for each sample was derived by the drug concentration-response curves. The extracts from Alchornea cordifolia leaves, Momordica charantia whole plant, Omphalocarpum glomerata root bark and Piptadia africanum stem bark showed good antiprotozoal activity against Trypanosoma brucei brucei with IC50 values from 0.7 to 7 µg/ml. Only Piptadenia africanaum extract showed a pronounced antiprotozoal activity against Trypanosoma cruzi (IC50=4.0 +/- 0.6 µg/ml). The extracts from Alchornea cordifolia, Polyalthia suavelens stem bark, Sapium cornutum stem bark and Triclisia giletii stem bark exhibited a pronounced antiplasmodial activity against P. falciparum Ghanaian strain with IC50 values ranging from 0.5 to 3.0 µg/ml. Piptadenia africanaum extract was the most cytotoxic sample (IC50=0.25 µg/ml) with poor selectivity against all selected protozoa (SI<10) while other active extracts did not show a significant cytotoxic effect against MCR-5 cell-lines with good selectivity according to the case. These active plant extracts are selected for extensive studies leading to the isolation of active constituents.
Kinetoplastid parasites are responsible for the potentially fatal diseases leishmaniasis, African sleeping sickness and Chagas’ disease. The current treatments for these diseases are far from ideal and new compounds are needed as antiparasitic drug candidates. Tubulin is the accepted target for treatments against cancer and helminths, suggesting that kinetoplastid tubulin is also a suitable target for antiprotozoal compounds. Selective lead compounds against kinetoplastid tubulin have been identified that could represent a starting point for the development of new drug candidates against these parasites.

Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Institute of Pharmacy, Free University of Brussels (ULB), C.P. 205/09, Bd du Triomphe, 1050 Brussels, Belgium.

School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK; Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.

The glycolytic pathway has been considered a potential drug target against the parasitic protozoan species of *Trypanosoma* and *Leishmania*. We report the design and the synthesis of inhibitors targeted against *Trypanosoma brucei* phosphofructokinase (PFK) and *Leishmania mexicana* pyruvate kinase (PyK). Stepwise library synthesis and inhibitor design from a rational starting point identified furanose sugar amino amides as a novel class of inhibitors for both enzymes with IC(50) values of 23µM and 26µM against PFK and PyK, respectively. Trypanocidal activity also showed potency in the low micromolar range and confirms these inhibitors as promising candidates for the development towards the design of anti-trypanosomal drugs.

Department of Pharmaceutical Chemistry, University of Athens, Athens, Greece.

To develop functionalized adamantanes for treating African trypanosomiasis, we report on the synthesis of new 1-alkyl-2-aminoadamantanes 1a- i, 1-alkyltricyclo [3.3.1.1
(3,7)-decan-2-guanylyrazones 2a–g, and their congeneric thiosemicarbazones 3a, b. The potency of these compounds against *Trypanosoma brucei* was compared to that of amantadine and rimantadine and found to be substantially higher. The most active analogues, 1c, 1d, 2c, 2g, and 3b, illustrate the synergistic effect of the lipophilic character of the C1 side chain and the C2 functionality on trypanocidal activity.

Centre for Synthesis and Chemical Biology, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.

A series of 75 guanidine and 2-aminoimidazoline analogue molecules were assayed *in vitro* against *Trypanosoma brucei rhodesiense* STIB900 and *Plasmodium falciparum* K1. The dicationic diphenyl compounds exhibited the best activities with IC 50 values against *T. b. rhodesiense* and *P. falciparum* in the nanomolar range. Five compounds (7b, 9a, 9b, 10b, and 14b) cured 100 percent of treated mice upon ip administration at 20 mg/kg in the difficult to cure *T. b. rhodesiense* STIB900 mouse model. Overall, the compounds that bear the 2-aminoimidazoline cations benefit from better safety profiles than the guanidine counterparts. The observation of a correlation between DNA binding affinity at AT sites and trypanocidal activity for three series of compounds supported the view of a mechanism of antitrypanosomal action due in part to the formation of a DNA complex. No correlation between antiplasmodial activity and *in vitro* inhibition of ferriprotoporphyrin IX biomineralization was observed, suggesting that additional mechanism of action is likely to be involved.

Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Japan. [nshuaibu@yahoo.com].

The antitrypanosomal activity of methanolic extracts of *Anogeissus leiocarpus* and *Terminalia avicennoides* was evaluated *in vitro* against four strains of *Trypanosoma* species with minimum inhibitory concentration (MIC) value range of 12.5-50 mg/ml. Successive fractionations of the two plant extracts in water, butanol and ethyl acetate gave a range of activity (MIC, 20 to >/=50 µg/ml). Activity-guided and chromatographic analysis of butanolic fractions on Sephadex LH-20 column followed by high-performance liquid chromatography, nuclear magnetic resonance analysis and both ultraviolet and thin layer chromatography revealed hydrolysable tannins with a range of activity (MIC, 7.5-27.5 µg/ml or 14-91 µM). Effect of the compounds on fibroblasts did not reveal serious toxicity at moderate concentration but is concentration dependent.
Designed, synthetic heterocyclic diamidines have excellent activity against eukaryotic parasites that cause diseases such as sleeping sickness and *Leishmania* and adversely affect millions of people each year. The most active compounds bind specifically and strongly in the DNA minor groove at AT sequences. The compounds enter parasite cells rapidly and appear first in the kinetoplast that contains the mitochondrial DNA of the parasite. With time the compounds are also generally seen in the cell nucleus but are not significantly observed in the cytoplasm. The kinetoplast decays over time and disappears from the mitochondria of treated cells. At this point the compounds begin to be observed in other regions of the cell, such as the acidocalcisomes. The cells typically die in 24-48h after treatment. Active compounds appear to selectively target extended AT sequences and induce changes in kinetoplast DNA minicircles that cause a synergistic destruction of the catenated kinetoplast DNA network and cell death.

8. TRYPANOSOME RESEARCH

(a) CULTIVATION

Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.

Procyclic *Trypanosoma brucei* cells were synchronized with 0.2 mM hydroxyurea. The cells did not arrest at the G(1)/S boundary but proceeded through one round of replication and arrested near the end of S phase. The mitochondrial genome (kinetoplast DNA network) replicated, forming two progeny networks, but the repair of minicircle gaps was inhibited.

(b) TAXONOMY; CHARACTERISATION OF ISOLATES

[See also 31: 14384, 14398, 14399, 14402, 14404]

School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK. [emily.adams@bristol.ac.uk].
Trypanosomes are the causative agents of many diseases of medical and veterinary importance, including sleeping sickness and nagana in Africa, and Chagas’ disease in South America. Accurate identification of trypanosome species is essential, as some species are morphologically indistinguishable, yet differ greatly in their pathogenicity. A range of molecular tools has been developed for identification of species and strains of trypanosomes. PCR, using primer sets designed to amplify a specific DNA fragment from each trypanosome species, is frequently used. More recently, generic systems have been developed that can potentially recognize all trypanosome species, such as amplification of the internal transcribed spacer and fluorescent fragment length barcoding, both of which use interspecies size variation in PCR fragments amplified from the ribosomal RNA locus. Loop-mediated isothermal amplification is a promising technique and is able to detect trypanosomes in blood, serum and cerebrospinal fluid. The advantages of these techniques for high-throughput and sensitive molecular identification will be discussed.

School of Biological Sciences, University of Bristol, Bristol BS8 1UG, U.K., School of Biological Sciences, University of Exeter, Exeter EX4 4PS, U.K., Tsetse and Trypanosomiasis Research Institute, P.O. Box 1026, Tanga, Tanzania.

We report on the development of two generic, PCR-based methods, which replace the multiple species-specific PCR tests used previously to identify the trypanosome species carried by individual tsetse flies. The first method is based on interspecies size variation in the PCR product of the ITS-1 region of the ribosomal RNA (rRNA) locus. In the second approach, length variation of multiple fragments within the 18S and 28S rRNA genes is assayed by PCR amplification with fluorescent primers; products are subsequently sized accurately and rapidly by the use of an automated DNA sequencer. Both methods were used to identify samples collected during large-scale field studies of trypanosome-infected tsetse in Tanzania in the National Parks of Tarangire and Serengeti, and the coastal forest reserve of Msibugwe. The fluctuations of trypanosome prevalence over time and two different field seasons are discussed. As well as facilitating the identification of trypanosome species with increased speed, precision and sensitivity, these generic systems have enabled us to identify two new species of trypanosome.

Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa Rene Rachou/FIOCRUZ, Brazil, Universidade Federal do Piauí, Lab. Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinamica, Instituto Oswaldo
The first proteomic analysis of *Trypanosoma cruzi* resistance to benznidazole (BZ) is presented. The differential proteome of *T. cruzi* with selected *in vivo* resistance to benznidazole (BZR and clone 27R), its susceptible pairs (BZS and clone 9S), and a pair from a population with benznidazole- *in vitro*-induced resistance (17LER) and the susceptible pair 17WTS were analyzed by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS) for protein identification. Out of 137 spots analyzed through MS, 110 were identified as 56 distinct proteins. Out of the 56 distinct proteins, 36 were present in resistant, 9 in susceptible, and 11 in both phenotypes. Among the proteins identified in resistant samples, 5 were found in Cl 27R and in BZR (calpain-like cysteine peptidase, hypothetical protein conserved 26 kDa, putative peptidase, peroxiredoxin and tyrosine amino transferase) and 4 in Cl 27R and 17LER (cyclophilin A, glutamate dehydrogenase, iron superoxide dismutase and nucleoside diphosphate kinase). As for the proteins identified in benznidazole-susceptible samples, PGF-2a was found in BZS and 17WTS. A functional category analysis showed that the proteins involved with transcription and protein destination were overexpressed for the benznidazole-resistant phenotype. Thus, the present study provides large-scale, protein-related information for investigation of the mechanism of *T. cruzi* resistance to benznidazole.

Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand.

This study was focused on genetic diversity of *Trypanosoma evansi* which is a widely distributed haemoflagellate of veterinary importance that infects a variety of larger mammals including horses, mules, camels, buffalo, cattle and deer. The genetic diversity of *T. evansi* of beef cattle LAM 19 was accomplished by using phylogenetic analysis based on internal transcribed spacer region (ITS). Blood samples were collected from naturally infected beef cattle LAM 19 and parasitaemia was raised by mouse inoculation. The parasites were collected and isolated by using DE 52 DEAE cellulose anion exchange column prior to DNA extraction. Upon PCR amplification of ITS region, the product of 1,300 bp in size was obtained. The ITS nucleotide sequences were analyzed and revealed that it could demonstrate the genetic diversity of *T. evansi* of beef cattle LAM19. Based on the ITS tree, beef cattle LAM 19 *T. evansi* were categorized into two main groups where the genetic diversity occurred within Group 1. The data could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.

The protozoan *Trypanosoma evansi* is described as presenting high morphological and genetic similarities among the isolates despite its biological heterogeneity and wide geographical distribution. PCR amplification of the internal transcribed spacers of the ribosomal gene in combination with the coding region of the 5.8S ribosomal subunit further submitted to restriction enzymes digestion were carried out in DNAs extracted from 41 *T. evansi* strains isolated from horses, dogs, coatis and capybaras from two distinct regions of the Brazilian Pantanal. We also used one *T. evansi* isolate from Africa, one from Asia and one isolate of *T. b. brucei* from Africa. Analysis of the RFLP profiles yielded a unique "riboprinting" that does not vary intraspecifically. These results provide insights on the ribosomal gene organization of *T. evansi* and showed that ITS analysis by RFLP show high genetic similarity of this locus among isolates of this protozoan parasite.

Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.

Trypanosoma brucei is a kinetoplastid flagellate, the agent of human sleeping sickness and ruminant nagana in Africa. Kinetoplastid flagellates contain their eponym kinetoplast DNA (kDNA), consisting of two types of interlocked circular DNA molecules: scores of maxicircles and thousands of minicircles. Maxicircles have typical mitochondrial genes, most of which are translatable only after RNA editing. Minicircles encode guide RNAs, required for decrypting the maxicircle transcripts. The life cycle of *T. brucei* involves a bloodstream stage (BS) in vertebrates and a procyclic stage (PS) in the tsetse fly vector. Partial [dyskinetoplastidy (Dk)] or total [akinetoplastidy (Ak)] loss of kDNA locks the trypanosome in the BS form. Transmission between vertebrates becomes mechanical without PS and tsetse mediation, allowing the parasite to spread outside the African tsetse belt. *Trypanosoma equiperdum* and *Trypanosoma evansi* are agents of dourine and surra, diseases of horses, camels, and water buffaloes. We have characterized representative strains of *T. equiperdum* and *T. evansi* by numerous molecular and classical parasitological approaches. We show that both species are actually strains of *T. brucei*, which lost part (Dk) or all (Ak) of their kDNA. These trypanosomes are not monophyletic clades and do not qualify for species status. They should be considered two subspecies, respectively *T. brucei equiperdum* and *T. brucei evansi*, which spontaneously arose recently. Dk/Ak trypanosomes may potentially emerge repeatedly from *T. brucei*.

Cameroon using the standard mouse test and molecular tools. *Acta Tropica*, 106 (2) 115-118.

Université de Dschang, Faculté d’Agronomie et des Sciences Agricoles, BP 96, Dschang, Cameroon.

From May to November 2005, a study was carried out to assess the occurrence of trypanocidal drug resistance (DR) in trypanosomes of naturally infected cattle of the Adamaoua region of Cameroon. Two distinct polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) procedures were used together with an allele specific-PCR (AS-PCR) and the standardized single-dose mouse test. Using the mouse test, 3 of the 13 *Trypanosoma brucei* isolates and all 14 tested *Trypanosoma congolense* isolates were resistant to ISM. However, only 11 of the 25 *T. congolense* isolates were diagnosed as resistant to ISM using the MboII-PCR-RFLP. Resistance to DA was identified in one of the 13 *T. brucei* isolates and all 11 *T. congolense* isolates which were tested with the mouse test. Using the AS-PCR or BclI-PCR-RFLP, three of the 13 *T. brucei* isolates and all 25 *T. congolense* isolates respectively were found resistant. The data presented in this study prove that DR is widespread in the Adamaoua Department of Cameroon. The problem appears to be more serious in *T. congolense* than in *T. brucei*. Appropriate measures need to be taken in order to control bovine trypanosomosis in this area.

National Livestock Health Research Institute, Tororo, Uganda.

To assess the application of allele-specific PCR (AS-PCR) as a fast, cheap and reliable method for detecting mutant *Tb*AT1 associated with melarsoprol relapse in *Trypanosoma brucei gambiense* isolates from northwest Uganda, 105 trypanosome isolates were analysed using SfaN1 restriction fragment length polymorphism (RFLP) and AS-PCR, the former used as the gold standard. Sensitivity, specificity, positive and negative predictive values of AS-PCR as well as agreement between the tests were determined. Eleven trypanosome isolates had mutant *Tb*AT1 while 94 exhibited the wild-type *Tb*AT1 genes. There was a highly significant agreement between SfaN1 RFLP and AS-PCR with kappa and intra-class correlation values of 1.0. The sensitivity and specificity of AS-PCR were both 100 percent, while the positive and negative predictive values were found to be equal to 1.0. Cost and time analyses were performed and AS-PCR was 4.3 times cheaper than SfaN1 RFLP, in addition to the less time required for its execution. It was concluded that AS-PCR should be the test of choice for screening for mutant *Tb*AT1 in the ever-increasing numbers of field trypanosome isolates.

School of Nursing, Murdoch University, Mandurah, Western Australia, Australia.

Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique that rapidly amplifies target DNA under isothermal conditions. In the present study, a LAMP test was designed from the serum resistance-associated (SRA) gene of *Trypanosoma brucei rhodesiense*, the cause of the acute form of African sleeping sickness, and used to detect parasite DNA from processed and heat-treated infected blood samples. The SRA gene is specific to *T. b. rhodesiense* and has been shown to confer resistance to lysis by normal human serum. The assay was performed at 62°C for 1 h, using six primers that recognised eight targets. The template was varying concentrations of trypanosome DNA and supernatant from heat-treated infected blood samples. The resulting amplicons were detected using SYTO-9 fluorescence dye in a real-time thermocycler, visual observation after the addition of SYBR Green I, and gel electrophoresis. DNA amplification was detected within 35 min. The SRA LAMP test had an unequivocal detection limit of one pg of purified DNA (equivalent to 10 trypanosomes/ml) and 0.1 pg (1 trypanosome/ml) using heat-treated buffy coat, while the detection limit for conventional SRA PCR was approximately 1,000 trypanosomes/ml. The expected LAMP amplicon was confirmed through restriction enzyme RsaI digestion, identical melt curves, and sequence analysis. The reproducibility of the SRA LAMP assay using a water bath and a heat-processed template, and the ease of results readout show great potential for the diagnosis of *T. b. rhodesiense* in endemic regions.

School of Nursing - Peel Campus, Murdoch University, Carleton Place, 15-17 Mandurah, WA 6210, Australia. [z.njiru@murdoch.edu.au].

Control of human African trypanosomiasis (HAT) is dependent on accurate diagnosis and treatment of infected patients. However, sensitivities of tests in routine use are unsatisfactory, due to the characteristically low parasitaemias in naturally infected individuals. We have identified a conserved sequence in the repetitive insertion mobile element (RIME) of the sub-genus *Trypanozoon* and used it to design primers for a highly specific loop-mediated isothermal amplification (LAMP) test. The test was used to analyse *Trypanozoon* isolates and clinical samples from HAT patients. The RIME LAMP assay was performed at 62°C using real-time PCR and a water bath. DNA amplification was detectable within 25min. All positive samples detected by gel electrophoresis or in real-time using SYTO-9 fluorescence dye could also be detected visually by addition of SYBR Green I to the product. The amplicon was unequivocally confirmed through restriction enzyme NdeI digestion, analysis of melt curves and sequencing. The analytical sensitivity of the RIME LAMP assay was equivalent to 0.001 trypanosomes/ml while that of classical PCR tests ranged from 0.1 to 1,000 trypanosomes/ml. LAMP detected all 75 *Trypanozoon* isolates while TBR1 and two primers (specific for sub-genus *Trypanozoon*) showed a sensitivity of
86.9 percent. The SRA gene PCR detected 21 out of 40 *Trypanosoma brucei rhodesiense* isolates while *Trypanosoma gambiense*-specific glycoprotein primers (TgsGP) detected 11 out of 13 *T. b. gambiense* isolates. Using clinical samples, the LAMP test detected parasite DNA in 18 out of 20 samples which included using supernatant prepared from boiled blood, CSF and direct native serum. The sensitivity and reproducibility of the LAMP assay coupled with the ability to detect the results visually without the need for sophisticated equipment indicate that the technique has strong potential for detection of HAT in clinical settings. Since the LAMP test shows a high tolerance to different biological substances, determination of the appropriate protocols for processing the template to make it a user-friendly technique, prior to large scale evaluation, is needed.

(c) LIFE CYCLE, MORPHOLOGY, BIOCHEMISTRY AND MOLECULAR STUDIES

Parasitology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China.

Paraflagellar rod proteins required for cell motility are unique among the kinetoplastids and their heteropolymers provide the building block of the flagellum. We investigated the existence of the paraflagellar rod protein 2 (PFR2) gene in *Trypanosoma evansi* by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed based on the open reading frame of the PFR2 gene of *Trypanosoma brucei*. The PFR2 gene was cloned and the PFR2-encoded protein was expressed in bacteria. The expressed His-tag protein was purified using nickel affinity chromatography and confirmed by gel electrophoresis and Western blotting. The nucleotide sequence of the PFR2 gene of *T. evansi* showed 100 percent identity with the sequence of the PFR2 gene of *T. brucei* and 83.4 percent and 76.6 percent similarity with that of *Trypanosoma cruzi* and *Leishmania mexicana*, respectively. The conserved domain among various PFR2 genes present in kinetoplastids could be used as a target for the development of vaccines against multiple *Trypanosoma* species.

Trypanosome Cell Biology Unit, Pasteur Institute and Centre National de la Recherche Scientifique, 75015 Paris, France, Dynamique et Regulation des Géomes, Muséum National d'Histoire Naturelle, Institut National de la Santé et de la Recherche Médicale and Centre National de la Recherche Scientifique, 75005 Paris, France.
Intraflagellar transport (IFT) is the bidirectional movement of protein complexes required for cilia and flagella formation. We investigated IFT by analyzing nine conventional IFT genes and five novel putative IFT genes (PIFT) in *Trypanosoma brucei* that maintain its existing flagellum while assembling a new flagellum. Immunostaining against IFT172 or expression of tagged IFT20 or green fluorescent protein GFP::IFT52 revealed the presence of IFT proteins along the axoneme and at the basal body and probasal body regions of both old and new flagella. IFT particles were detected by electron microscopy and exhibited a strict localization to axonemal microtubules 3-4 and 7-8, suggesting the existence of specific IFT tracks. Rapid (>3 μm/s) bidirectional intraflagellar movement of GFP::IFT52 was observed in old and new flagella. RNA interference silencing demonstrated that all individual IFT and PIFT genes are essential for new flagellum construction but the old flagellum remained present. Inhibition of IFTB proteins completely blocked axoneme construction. Absence of IFTA proteins (IFT122 and IFT140) led to formation of short flagella filled with IFT172, indicative of defects in retrograde transport. Two PIFT proteins turned out to be required for retrograde transport and three for anterograde transport. Finally, flagellum membrane elongation continues despite the absence of axonemal microtubules in all IFT/PIFT mutant.

African trypanosomes are the causative agent of sleeping sickness. The therapeutics used to control and treat the disease are very ineffective and thus, the development of improved drugs is urgently needed. Recently, new strategies for the design of novel trypanocidals have been put forward. Among them are techniques that rely on parasite-specific RNA aptamers. One approach involves the aptamer-directed transport of lytic compounds to the lysosome of the parasite. The aptamer has been termed 2-16 RNA and here we report the optimization of the RNA for its applications in vivo. To convert aptamer 2-16 into a serum-stable reagent 2'-deoxy-2'-F- and/or 2'-deoxy-2'-NH(2)-uridine- and cytidine-substituted RNAs were generated. While 2'-NH(2)-dC/dU-modified RNAs were RNase-resistant, they were functionally inactive. By contrast, 2'-F-dC/dU-substituted 2-16 RNA retained its ability to bind to live trypanosomes (K(d)=45 nM) and was routed to the lysosome identically to unmodified RNA. 2'-F-dC/dU-substituted 2-16 RNA is thermostable (T(m)=75 degrees C) and has a serum half-life of 3.4 days. Furthermore, aptamer 2-16 was site-specifically PEGylated to increase its serum retention time. Conjugation with PEG polymers < or = 10 kDa only marginally impacted the binding characteristics of the RNA, while the addition of higher molecular mass PEG molecules resulted in non-functional aptamers. Together, the data provide optimized conjugation chemistries for the large-scale production of substituted aptamer 2-16 preparations with improved in vivo functionality.

RNA editing in *Trypanosoma brucei* is posttranscriptional uridylate removal/addition, generally at vast numbers of pre-mRNA sites, but to date, only single editing cycles have been examined *in vitro*. We here demonstrate achieving sequential cycles of U deletion *in vitro*, with editing products confirmed by sequence analysis. Notably, the subsequent editing cycle is much more efficient and occurs far more rapidly than single editing cycles; plus, it has different recognition requirements. This indicates that the editing complex acts in a concerted manner and does not dissociate from the RNA substrate between these cycles. Furthermore, the multicycle substrate exhibits editing that is unexpected from a strictly 3′-to-5′ progression, reminiscent of the unexpected editing that has been shown to occur frequently in *T. brucei* mRNAs edited *in vivo*. This unexpected editing is most likely due to alternate mRNA:guide RNA (gRNA) alignment forming a hyphenated anchor; its having only a 2-bp proximal duplex helps explain the prevalence of unexpected editing *in vivo*. Such unexpected editing was not previously reported *in vitro*, presumably because the common use of artificially tight mRNA:gRNA base pairing precludes alternate alignments. The multicycle editing and unexpected editing presented in this paper bring *in vitro* reactions closer to reproducing the *in vivo* editing process.

Albert Einstein College of Medicine, Bronx, NY, USA. [almo@aecom.yu.edu].

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, two from mouse, two from the pathogen *Toxoplasma gondii*, one from *Trypanosoma brucei*, the parasite responsible for African sleeping sickness, and two from the principal mosquito vector of malaria in Africa, *Anopheles gambiae*. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.

RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of *Trypanosoma brucei*, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that *Tb*REL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD) simulations are employed to investigate the dynamics of *Tb*REL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between *Tb*REL1 and the ATP substrate are investigated and discussed in the context of *Tb*REL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosynthetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite *Trypanosoma brucei* through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream form *T. brucei* did not inhibit growth in normal medium, but profoundly retarded growth in pyrimidine-depleted media or in the presence of the known pyrimidine uptake antagonist 5-fluorouracil (5-FU). These results have significant implications for the development of therapeutics to combat *T. brucei* infection. Specifically, a combination therapy including a *T. brucei*-specific DHODH inhibitor plus 5-FU may prove to be an effective therapeutic strategy. We also show that this trypanosomal enzyme is
inhibited by known inhibitors of bacterial Class 1A DHODH, in distinction to the sensitivity of DHODH from human and other higher eukaryotes. This selectivity is supported by the crystal structure of the *T. brucei* enzyme, which is reported here at a resolution of 1.95 Å. Additional research, guided by the crystal structure described herein, is needed to identify potent inhibitors of *T. brucei* DHODH.

Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. [kaija.autio@oulu.fi].

Laboratory for Organic Chemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

Department of Microbiology and Molecular Genetics, UMDNJ-NJ Medical School, International Center for Public Health, Newark, USA.

RNA interference (RNAi) is a cellular mechanism that is often exploited as a technique for quelling the expression of a specific gene. RNAi studies are carried out in *vivo*, making this a powerful means for the study of protein function in situ. Several trypanosomatids, including those organisms responsible for human and animal diseases, naturally possess the machinery necessary for RNAi manipulations. This allows for the use of RNAi in unravelling many of the pressing questions regarding the parasite's unique biology. The completion of the *Trypanosoma brucei* genome sequence, coupled with several powerful genetic tools, has resulted in widespread utilization of RNAi in this organism. The key steps for RNAi-based reduction of gene expression, including parasite cell culture, DNA transfection, RNAi expression, and experimental execution, are discussed with a focus on procyclic forms of *Trypanosoma brucei*.
The vector-borne, protistan parasite *Trypanosoma brucei* is the only known eukaryote with a multifunctional RNA polymerase I that, in addition to ribosomal genes, transcribes genes encoding the parasite's major cell surface proteins—the variant surface glycoprotein (VSG) and procyclin. In the mammalian bloodstream, antigenic variation of the VSG coat is the parasite's means to evade the immune response, while procyclin is necessary for effective establishment of trypanosome infection in the fly. Moreover, the exceptionally high efficiency of mono-allelic VSG expression is essential to bloodstream trypanosomes since its silencing caused rapid cell-cycle arrest *in vitro* and clearance of parasites from infected mice.

Here we describe a novel protein complex that recognizes class I promoters and is indispensable for class I transcription; it consists of a dynein light chain and six polypeptides that are conserved only among trypanosomatid parasites. In accordance with an essential transcriptional function of the complex, silencing the expression of a key subunit was lethal to bloodstream trypanosomes and specifically affected the abundance of rRNA and VSG mRNA. The complex was dubbed class I transcription factor A.
identify likely polytopic membrane proteins, providing quality control for the experimentally
defined plasma membrane subproteome. We show that the application of multiple high-
resolution proteomic techniques to an enriched organelle fraction is a valuable approach for
the characterisation of relatively intractable membrane proteomes. We present here the most
complete analysis of a protozoan plasma membrane proteome to date and show the presence
of a large number of integral membrane proteins, including 11 nucleoside/nucleobase
transporters, 15 ion pumps and channels and a large number of adenylate cyclases hitherto
listed as putative proteins.

14472. Cabrera, N., Hernandez-Alcantara, G., Mendoza-Hernandez, G., Gomez-Puyou,
A. & Perez-Montfort, R., 2008. Key residues of loop 3 in the interaction with the
interface residue at position 14 in triosephosphate isomerase from Trypanosoma

Departamento de Bioquimica, Instituto de Fisiologia Celular, Universidad
Nacional Autonoma de Mexico, Apartado Postal 70242, 04510 Mexico DF,
Mexico.

of heterohexameric trypanosome hexokinases reveals that hexokinase 2 is a
regulable enzyme. Journal of Biological Chemistry. Published online April 3,
2008

Department of Genetics and Biochemistry, Clemson University, Clemson, SC
29634-0318, USA.

an ATP binding domain influence sugar binding in a trypanosome hexokinase.
Biochemical and Biophysical Research Communications, 365 (3): 420-425.

Department of Genetics and Biochemistry, Clemson University, Clemson, SC
29634, USA.

Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey
Medical School, 225 Warren St., Newark, NJ 07103, USA.

14476. Davila, A. M., Mendes, P. N., Wagner, G., Tschoeke, D. A., Cuadrat, R. R.,
Liberman, F., Matos, L., Satake, T., Ocana, K. A., Triana, O., Cruz, S. M.,
Juca, H. C., Cury, J. C., Silva, F. N., Geronimo, G. A., Ruiz, M., Ruback, E.,
Silva, F. P., Jr., Probst, C. M., Grisard, E. C., Krieger, M. A., Goldenberg, S.,
ProtozoaDB: dynamic visualization and exploration of protozoan genomes.
Nucleic Acids Research, 36 (Database issue): D547-552.
ProtozoaDB (http://www.biowebdb.org/protozoadb) is being developed to initially host both genomics and post-genomics data from Plasmodium falciparum, Entamoeba histolytica, Trypanosoma brucei, T. cruzi and Leishmania major, but will hopefully host other protozoan species as more genomes are sequenced. It is based on the Genomics Unified Schema and offers a modern Web-based interface for user-friendly data visualization and exploration. This database is not intended to duplicate other similar efforts such as GeneDB, PlasmoDB, TcruziDB or even TDRtargets, but to be complementary by providing further analyses with emphasis on distant similarities (HMM-based) and phylogeny-based annotations including orthology analysis. ProtozoaDB will be progressively linked to the above-mentioned databases, focusing in performing a multi-source dynamic combination of information through advanced interoperable Web tools such as Web services. Also, to provide Web services will allow third-party software to retrieve and use data from ProtozoaDB in automated pipelines (workflows) or other interoperable Web technologies, promoting better information reuse and integration. We also expect ProtozoaDB to catalyze the development of local and regional bioinformatics capabilities (research and training), and therefore promote/enhance scientific advancement in developing countries.

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Goteborg University, SE-405 30 Goteborg, Sweden.

Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.

Institute for Research in Biomedicine and Combinatorial Chemistry Unit, Barcelona Science Park, University of Barcelona, Josep Samitier 1, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, Marti i Franques 1, 08028-Barcelona, Spain, and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010-Barcelona, Spain. [mroyo@pcb.ub.es].
The solid-phase combinatorial synthesis of a new library with potential inhibitory activity against the cytoplasmic lysyl-tRNA synthetase (LysRS) isoform of *Trypanosoma brucei* is described. The library has been specifically designed to mimic the lysyl adenylate complex. The design was carried out by dividing the complex into four modular parts. Proline derivatives (cis-gamma-amino-L-proline or trans-gamma-hydroxy-L-proline) were chosen as central scaffolds. After primary screening, three compounds of the library caused *in vitro* inhibition of the tRNA aminoacylation reaction in the low micromolar range.

Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.

Developmental events in the life-cycle of the sleeping sickness parasite comprise integrated changes in cell morphology, metabolism, gene expression and signalling pathways. In each case these processes differ from the eukaryotic norm. In the past three years, understanding of these developmental processes has progressed from a description of the cytological events of differentiation to a discovery of its underlying molecular controls. With an expanding set of reagents for the identification of distinct parasite life-cycle stages in the tsetse, trypanosome differentiation is being studied from the molecular to the organismal and population level. Interestingly, the new molecular discoveries provide insights into the biology of the parasite in the field.

Department of Pathology, University of Cambridge, Cambridge, UK.

Trypanosomatids are protozoan parasites, of interest due to both their disease burden and deeply divergent position within the eukaryotic lineage. The African trypanosome, *Trypanosoma brucei*, has emerged as a very amenable model system, with a considerable toolbox of methods available, including inducible overexpression, RNA interference, and a completed genome. Here we describe some of the special considerations that need to be addressed when studying trypanosome gene function, and in particular small GTPases; we provide protocols for transfection, RNA interference, overexpression and basic transport assays, in addition to an overview of available vectors, cell lines, and strategies.

Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.

Laboratory of Bacterial, Parasitic and Unconventional Agents, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda MD 20892, USA.

Endonuclease G is a mitochondrial protein implicated in DNA fragmentation during apoptosis in cell types ranging from fungi to mammals. Features of programmed cell death have been reported in a number of single-celled organisms, including the human trypanosomatid parasites *Leishmania* and *Trypanosoma*. However, the protozoan cell death pathways and the effector molecules involved in such processes remain to be identified. In this report, we describe the pro-apoptotic function of endonuclease G in trypanosomatid parasites. Similar to metazoans, trypanosome endoG showed intrinsic nuclease activity, is localized in mitochondria and is released from this organelle when cell death is triggered. Overexpression of endoG strongly promoted apoptotic cell death under oxidant or differentiation-related stress in *Leishmania* and, conversely, loss of endoG expression conferred robust resistance to oxidant-induced cell death in *T. brucei*. These data demonstrate the conservation of the pro-apoptotic endonuclease activity of endoG in these evolutionarily ancient eukaryotic organisms. Furthermore, nuclear DNA degradation by endoG upon release from mitochondria might represent a caspase-independent cell death mechanism in trypanosomatid parasites as genes encoding caspase-like proteins have not been identified in their genomes.

London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT and Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland, UK.

Genetic diversity in fungi and mammals is generated through mitotic double-strand break-repair (DSBR), typically involving homologous recombination (HR) or non-homologous end joining (NHEJ). Microhomology-mediated joining appears to serve a subsidiary function. The African trypanosome, a divergent protozoan parasite, relies upon rearrangement of subtelomeric variant surface glycoprotein (VSG) genes to achieve antigenic variation. Evidence suggests an absence of NHEJ but chromosomal repair remains largely unexplored. We used a system based on I-SceI meganuclease and monitored temporally constrained DSBR at a specific chromosomal site in bloodstream form *Trypanosoma brucei*. In response to the lesion, adjacent single-stranded DNA was generated; the homologous strand-exchange factor, Rad51, accumulated into foci; a G(2)M checkpoint was activated and >50 percent of cells displayed successful repair. Quantitative analysis of DSBR pathways employed indicated that inter-chromosomal HR dominated. HR displayed a strong preference for the allelic template but also the capacity to interact with homologous sequence on
heterologous chromosomes. Intra-chromosomal joining was predominantly, and possibly exclusively, microhomology mediated, a situation unique among organisms examined to date. These DSBR pathways available to *T. brucei* likely underlie patterns of antigenic variation and the evolution of the vast VSG gene family.

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute of Parasitology, Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, U.K. [penglund@jhmi.edu]

Trypanosoma brucei use microsomal elongases for *de novo* synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty acids are required for efficient respiration but the exact relationship remains unclear. In procyclic form trypanosomes, we also found that RNAi depletion of the mitochondrial acyl carrier protein, an important component of the fatty acid synthesis machinery, significantly reduces cytochrome-mediated respiration. This reduction was explained by RNAi-mediated inhibition of respiratory complexes II, III and IV, but not complex I. Other effects of RNAi, such as changes in mitochondrial morphology and alterations in membrane potential, raised the possibility of a change in mitochondrial membrane composition. Using mass spectrometry, we observed a decrease in total and mitochondrial phosphatidylinositol and mitochondrial phosphatidylethanolamine. Thus, we conclude that the mitochondrial synthase produces fatty acids needed for maintaining local phospholipid levels that are required for activity of respiratory complexes and preservation of mitochondrial morphology and function.

Vrije Universiteit, Biocentrum Amsterdam, De Boelelaan 1085, Amsterdam, The Netherlands.

Isoenzymes of phosphoglycerate kinase in *Trypanosoma brucei* are differentially expressed in its two main life stages. This study addresses how the organism manages to make sufficient amounts of the isoenzyme with the correct localization, which processes (transcription, splicing, and RNA degradation) control the levels of mRNAs, and how the organism regulates the switch in isoform expression. For this, we combined new quantitative
measurements of phosphoglycerate kinase mRNA abundance, RNA precursor stability, trans splicing, and ribosome loading with published data and made a kinetic computer model. For the analysis of regulation we extended regulation analysis. Although phosphoglycerate kinase mRNAs are present at surprisingly low concentrations (e.g. 12 molecules per cell), its protein is highly abundant. Substantial control of mRNA and protein levels was exerted by both mRNA synthesis and degradation, whereas splicing and precursor degradation had little control on mRNA and protein concentrations. Yet regulation of mRNA levels does not occur by transcription, but by adjusting mRNA degradation. The contribution of splicing to regulation is negligible, as for all cases where splicing is faster than RNA precursor degradation.

14487. Hartley, C. L. & McCulloch, R., 2008. Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Molecular Microbiology, 68 (5): 1237-1251.

Antigenic variation in Trypanosoma brucei has selected for the evolution of a massive archive of silent Variant Surface Glycoprotein (VSG) genes, which are activated by recombination into specialized expression sites. Such VSG switching can occur at rates substantially higher than background mutation and is dependent on homologous recombination, a core DNA repair reaction. A key regulator of homologous recombination is BRCA2, a protein that binds RAD51, the enzyme responsible for DNA strand exchange. Here, we show that T. brucei BRCA2 has undergone a recent, striking expansion in the number of BRC repeats, a sequence element that mediates interaction with RAD51. T. brucei BRCA2 mutants are shown to be significantly impaired in antigenic variation and display genome instability. By generating BRCA2 variants with reduced BRC repeat numbers, we show that the BRC expansion is crucial in determining the efficiency of T. brucei homologous recombination and RAD51 localization. Remarkably, however, this appears not to be a major determinant of the activation of at least some VSG genes.

Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.

Biology Centre, Institute of Parasitology, Czech Academy of Sciences, eske Budjovice (Budweis), Czech Republic.

Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.

Most trypanosomatid genes are transcribed into polycistronic precursor RNAs that are processed into monocistronic mRNAs possessing a 39-nucleotide spliced leader (SL) at their 5'-ends and polyadenylation at their 3'-ends. We show here that precursor RNA derived from a luciferase gene integrated in reverse orientation at the rDNA locus of Trypanosoma brucei is processed into three major SL-containing RNAs in bloodstream cells and a single SL-containing RNA in procyclic RNAs. This difference in trans RNA splicing between bloodstream and procyclic cells is independent of the 5'- and 3'-UTRs flanking the luciferase coding region. Thus, bloodstream cells can recognize some sequences in precursor RNA as a SL addition site that procyclic cells do not. These alternative SL addition sites may be aberrant or they might be utilized to expand the number of gene products from individual genes. Future experiments on endogenous genes will be necessary to examine the latter possibility.

Research Unit for Tropical Diseases; de Duve Institute; Brussels, Belgium.

Protozoan Kinetoplastida, a group that comprises the pathogenic Trypanosoma brucei, compartmentalize several metabolic systems such as the major part of the glycolytic pathway, in multiple peroxisome-like organelles, designated glycosomes. Trypanosomes have a complicated life cycle, involving two major, distinct stages living in the mammalian bloodstream and several stages inhabiting different body parts of the tsetse fly. Previous studies on non-differentiating trypanosomes have shown that the metabolism and enzymatic contents of glycosomes in bloodstream-form and cultured procyclic cells, representative of the stage living in the insect's midgut, differ considerably. In this study, the morphology of glycosomes and their position relative to the lysosome were followed, as were the levels of some glycosomal enzymes and markers for other subcellular compartments, during the differentiation from bloodstream-form to procyclic trypanosomes. Our studies revealed a small tendency of glycosomes to associate with the lysosome when a population of long-slim bloodstream forms differentiated into short-stumpy forms which are pre-adapted to live in the fly. The same phenomenon was observed during the short-stumpy to procyclic transformation, but then the process was fast and many more glycosomes were associated with the dramatically enlarged degradation organelle. The observations suggested an efficient glycosome turnover involving autophagy. Changes observed in the levels of marker enzymes are consistent with the notion that, during differentiation, glycosomes with enzymatic contents specific for the old life-cycle stage are degraded and new glycosomes with different contents are synthesized, causing that the metabolic repertoire of trypanosomes is, at each stage, optimally adapted to the environmental conditions encountered.

Different proteins are required in widely different quantities to build a living cell. In most organisms, transcription control makes a major contribution to differential expression. This is not the case in trypanosomatids where most genes are transcribed at an equivalent rate within large polycistronic clusters. Thus, trypanosomatids must use post-transcriptional control mechanisms to balance gene expression requirements. Here, the evidence for translational selection, the enrichment of “favoured” codons in more highly expressed genes, is explored. A set of highly expressed, tandem-repeated genes display codon bias in *Trypanosoma cruzi*, *Trypanosoma brucei* and *Leishmania major*. The tRNA complement reveals forty-five of the sixty-one possible anticodons indicating widespread use of “wobble” tRNAs. Consistent with translational selection, cognate tRNA genes for favoured codons are over-represented. Importantly, codon usage (Codon Adaptation Index) correlates with predicted and observed expression level. In addition, relative codon bias is broadly conserved among syntenic genes from different trypanosomatids. Synonymous codon bias is correlated with tRNA gene copy number and with protein expression level in trypanosomatids. Taken together, the results suggest that translational selection is the dominant mechanism underlying the control of differential protein expression in these organisms. The findings reveal how trypanosomatids may compensate for a paucity of canonical Pol II promoters and subsequent widespread constitutive RNA polymerase II transcription.

Gene order along the genome sequence of the human parasite *Trypanosoma brucei* provides evidence for a 0.5 Mb duplication, comprising the 3’ regions of chromosomes 4 and 8. Here, the principal aim was to examine the contribution made by this duplication event to the *T. brucei* genome sequence, emphasising the consequences for gene content and the evolutionary change subsequently experienced by paralogous gene copies. The duplicated region may be browsed online at http://www.genedb.org/genedb/tryp/48dup_image.jsp. Comparisons of trypanosomatid genomes demonstrated widespread gene loss from each duplicon, but also showed that 47 percent of duplicated genes were retained on both chromosomes as paralogous loci. Secreted and surface-expressed genes were over-represented among retained paralogs, reflecting a bias towards important factors at the host-parasite interface, and consistent with a dosage-balance hypothesis. Genetic divergence in both coding and regulatory regions of retained paralogs was bimodal, with a deficit in moderately divergent paralogs; in particular, non-coding sequences were either conserved or entirely remodelled. The conserved paralogs included examples of remarkable sequence
conservation, but also considerable divergence of both coding and regulatory regions. Sequence divergence typically displayed strong negative selection; but several features, such as asymmetric evolutionary rates, positively-selected codons and other non-neutral substitutions, suggested that divergence of some paralogs was driven by functional change. The absence of orthologues to retained paralogues in *T. congolense* indicated that the duplication event was specific to *T. brucei*. The duplication of this chromosomal region doubled the dosage of many genes. Rather than creating “more of the same”, these results show that paralogs were structurally modified according to various evolutionary trajectories. The retention of paralogs, and subsequent elaboration of both their primary structures and regulatory regions, strongly suggests that this duplication was a seminal development, stimulating functional innovation and fundamentally altering the genetic repertoire of *T. brucei* relative to other trypanosomatids.

Department of Medicine/Biochemistry, University of Fribourg, Chemin du Musee 5, CH-1700, Switzerland.

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.

Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis in human and domestic animals, adapt in various environments during their digenetic life cycle. In this study, we found that Hsp90 is crucial for the survival of this parasite. Inhibition of Hsp90 activity by geldanamycin (GA) reduced cell growth and increased the level of Hsp90. Both the bloodstream and procyclic forms of *T. brucei* showed a several-fold greater sensitivity than the mammalian cells to GA and also to 17-AAG, a less toxic derivative of GA, suggesting that Hsp90 could be a potential chemotherapeutic target for African trypanosomiasis. *T. brucei* Hsp90 interacts with the protein phosphatase 5 (PP5) *in vivo*. Under normal growth conditions, *T. brucei* PP5 (TbPP5) and Hsp90 are primarily localized in the cytosol. However, with increase in growth temperature and GA treatment, these proteins translocate to the nucleus. Overproduction of TbPP5 by genetic manipulation reduced the growth inhibitory effect of GA, while knockdown of TbPP5 reduced cell growth more in the presence of GA, as compared to parental control. Depletion of TbPP5, however, did not prevent the induction of Hsp90 protein level during GA treatment. Together, these results suggest that TbPP5 positively regulates the function of Hsp90 to maintain cellular homeostasis during proteotoxic stresses in *T. brucei*.

Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK. [jones@bio.tu-darmstadt.de].

The cell surface of African trypanosomes is covered by a densely packed monolayer of a single protein, the variant surface glycoprotein (VSG). The VSG protects the trypanosome cell surface from effector molecules of the host immune system and is the mediator of antigenic variation. The sequence divergence between VSGs that is necessary for antigenic variation can only occur within the constraints imposed by the structural features necessary to form the monolayer barrier. Here, the structures of the two domains that together comprise the C-terminal di-domain of VSG ILTat1.24 have been determined. The first domain has a structure similar to the single C-terminal domain of VSG MITat1.2 and provides proof of structural conservation in VSG C-terminal domains complementing the conservation of structure present in the N-terminal domain. The second domain, although based on the same fold, is a minimized version missing several structural features. The structure of the second domain contains the C-terminal residue that in the native VSG is attached to a glycosylphosphatidylinositol (GPI) anchor that retains the VSG on the external face of the plasma membrane. The solution structures of this domain and a VSG GPI glycan have been combined to produce the first structure-based model of a GPI-anchored protein. The model suggests that the core glycan of the GPI anchor lies in a groove on the surface of the domain and that there is a close association between the GPI glycan and protein. More widely, the GPI glycan may be an integral part of the structure of other GPI-anchored proteins.

Department of Biomolecular Chemistry, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA. [landfear@ohsu.edu].

Kinetoplastid protozoa express hundreds of membrane transport proteins that allow them to take up nutrients, establish ion gradients, efflux metabolites, translocate compounds from one intracellular compartment to another, and take up or export drugs. The combination of molecular cloning, genetic approaches, and the completed genome projects for *Trypanosoma brucei*, *Leishmania major*, and *Trypanosoma cruzi* have allowed detailed functional analysis of various transporters and predictions about the likely functions of others. Thus many opportunities exist to define the biological and pharmacological properties of parasite transporters whose genes were often difficult to identify in the pregenomic era. A subset of these transporters that are essential for parasite viability could serve as targets for
novel drug therapies by identifying compounds that interfere with their uptake functions. Other permeases provide routes for uptake of selectively cytotoxic compounds and can thus be useful for delivery of drugs. Drug resistance may develop in strains where such drug uptake transporters are nonfunctional or in parasites that over-express other permeases that export a drug. A summary of recent work on *Leishmania* transporters for glucose and for purines is provided as an example of permeases that are being studied in molecular detail.

Department of Pathology and Laboratory Medicine, University of North Carolina, 2102C McGavran/Greenberg Hall, Chapel Hill, NC 27599, USA.

Human African trypanosomiasis (HAT) is a fatal tropical disease caused by infection with protozoans of the species *Trypanosoma brucei gambiense* and *T. b. rhodesiense*. An oral prodrug, DB289, is a promising new therapy undergoing phase III clinical trials for early-stage HAT. DB289 is metabolically converted to the active trypanocidal diamidine DB75 [2,5-bis(4-amidinophenyl)furan]. We previously determined that DB75 inhibits yeast mitochondrial function. The purpose of this study was to investigate if DB75 targets the mitochondrion of *T. b. brucei* bloodstream forms. DB75 rapidly accumulates within the mitochondria of living trypanosomes, as indicated by the fluorescent colocalization of DB75 with a mitochondrion-specific dye. Fluorescence-activated cell sorting analysis of rhodamine 123-stained living trypanosomes shows that DB75 and other trypanocidal diamidines (pentamidine and diminazene) collapse the mitochondrial membrane potential. DB75 inhibits ATP hydrolysis within *T. brucei* mitochondria and appears to inhibit the oligomycin-sensitive F 1 F 0-ATPase and perhaps other ATPases. DB75 is most likely not an inhibitor of electron transport within trypanosome mitochondria, since DB75 fails to inhibit mitochondrial respiration when glycerol-3-phosphate is used as the respiratory substrate. However, DB75 inhibits whole-cell respiration (50 percent inhibitory concentration, 20 microM) at drug concentrations and incubation durations that also result in the dissipation of the mitochondrial membrane potential. Taken together, these findings suggest that the mitochondrion is a target of the trypanocidal action of DB75.

Biological Chemistry Department, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential *Tb*MP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately
linear range. We examined control extracts and RNA interference (RNAi) extracts prepared soon after TbMP42 was depleted (when primary effects should be most evident) and three days later (when precedent shows secondary effects can become prominent). This analysis shows TbMP42 is critical for cleavage of editing substrates by both the U-deletional and U-insertional endonucleases. However, on simple substrates that assess cleavage independent of editing features, TbMP42 is similarly required only for the U-deletional endonuclease, indicating TbMP42 affects the two editing endonucleases differently. Supplementing RNAi extract with recombinant TbMP42 partly restores these cleavage activities. Notably, we find that all the other editing steps (the 3'-U-exonuclease [3'-U-exo] and ligation steps of U-deletion and the terminal-U-transferase [TUTase] and ligation steps of U-insertion) remain at control levels upon RNAi induction, and hence are not dependent on TbMP42. This contrasts with an earlier report that TbMP42 is a 3'-U-exo that may act in U-deletion and additionally is critical for the TUTase and/or ligation steps of U-insertion, observations our data suggest reflect indirect effects of TbMP42 depletion. Thus, trypanosomes require TbMP42 for both endonucleolytic cleavage steps of RNA editing, but not for any of the subsequent steps of the editing cycles.

Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA.

ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologues have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homologue from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms.

Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Natural Sciences, University of South Bohemia, ceske Budejovice (Budweis), Czech Republic.

Innsbruck Biocenter, Division of Genomics and RNomics, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020, Innsbruck, Austria.

Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

Some inroads have been made into characterizing histone variants and post translational modifications of histones in *Trypanosoma brucei*. Histone variant H2BV lysine 129 is homologous to *Saccharomyces cerevisiae* H2B lysine 123, whose ubiquitination is required for methylation of H3 lysines 4 and 79. We show that *T. brucei* H2BV K129 is not ubiquitinated, but trimethylation of H3 K4 and K76, homologs of H3 K4 and K79 in yeast, was enriched in nucleosomes containing H2BV. Mutation of H2BV K129 to alanine or arginine did not disrupt H3 K4 or K76 methylation. These data suggest that H3 K4 and K76 methylation in trypanosomes is regulated by a novel mechanism, possibly involving the replacement of H2B with H2BV in the nucleosome.

The Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.

Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA.
Tsetse and Trypanosomiasis Information

Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine & Public Health, Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA.

The lysosomal/endosomal system of African trypanosomes is developmentally regulated and is important in the pathogenesis associated with infection of the mammalian bloodstream. Long considered to be a target for drug development, the internal pH of the lysosome has been variously reported to range from <5.0 to >6.0. We have refined a flow cytometric technique using a pH-sensitive probe that specifically targets the lysosome, tomato lectin:Oregon Green 488 conjugate. The probe is delivered to the lysosome with fidelity, where it is shielded against external pH. Measurement of fluorescent output in the presence and absence of lysomotropic agent (NH(4)Cl) then allows precise titration of steady state lysosomal pH (4.84+/-0.23). Using bafilomycin A1 to inhibit acidification we demonstrate that this method is responsive to pharmacological perturbation of lysosomal physiology. This work should facilitate future studies of the lysosomal function in African trypanosomes, as well as other parasitic protozoa.

Université Victor Segalen Bordeaux 2, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, CNRS, UMR-5234, 33076 Bordeaux, France.

Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for *Trypanosoma congolense*. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to *T. congolense*. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCbc1 to TcoCbc5 and TcoCbc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBS7 to TcoCBS13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCbc1 to TcoCbc5 and the TcoCBS7 to TcoCBS13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCbc1 and TcoCbc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCbc1 behaved as an endopeptidase. TcoCbc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBS12 did not automature *in vitro*, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. *In vivo* inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor)
demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for *T. congolense* diagnosis.

Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

Dipartimento di Biochimica e Biologia Molecolare, Universita di Ferrara, Italy.

6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho-d-erythronate (4PE) and 4-phospho-d-erythronohydroxamate are two of the strongest inhibitors of the *Trypanosoma brucei* enzyme. Binding of the substrate 6-phospho-d-gluconate (6PG), the inhibitors 5-phospho-d-ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho-d-gluconate dehydrogenase from *T. brucei* was studied using isothermal titration calorimetry. Binding of the substrate (K(d) = 5 microm) and its analogues (K(d) =1.3 microm and K(d) = 2.8 microm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the K(d) value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of
the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state.

Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.

School of Biochemistry and Immunology, Trinity College Dublin, Ireland. [denolan@tcd.ie].

Vesicle traffic to and from the surface is highly polarized in African trypanosomes. Actin is required for polarized endocytic traffic in bloodstream forms of African trypanosomes but its role in other pathways has remained equivocal. A combination of metabolic pulse chase labelling and surface biotinylation during the chase period along with the use of conditional RNA interference was employed to demonstrate that substantial loss of actin had no effect on the export of newly synthesized proteins to the surface of bloodstream and procyclic forms of *Trypanosoma brucei*. These results indicated that this trafficking pathway to the surface operates as normal even when actin levels are significantly lower than normal and endocytic activity is abolished. Taken together the data support the view that the secretory and endocytic pathways are not obligatorily coupled.

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.

The editing of trypanosome mitochondrial mRNAs produces transcripts necessary for mitochondrial functions including electron transport and oxidative phosphorylation. Precursor-mRNAs are often extensively edited by specific uridine insertion or deletion that is directed by small guide RNAs (gRNAs). Recently, it has been shown that cytochrome c oxidase subunit III (COXIII) mRNAs can be alternatively edited to encode a novel mitochondrial membrane protein composed of a unique hydrophilic N-terminal sequence of unknown function and the C-terminal hydrophobic segment of COXIII. To extend the analysis of alternative editing in *Trypanosoma brucei* we have constructed libraries with over 1100 full-length mitochondrial cDNAs and the sequences of over 1200 gRNA genes. Using this data, we show that alternative editing of COXIII, ATPase subunit 6 (A6), and NADH dehydrogenase subunits 7, 8 and 9 (ND7, 8, 9) mRNAs can produce novel open reading
frames (ORFs). Several gRNAs potentially responsible for the alternative editing of these mRNAs were also identified. These findings show that alternative editing of mitochondrial mRNAs is common in *T. brucei* and expands the diversity of mitochondrial proteins in these organisms.

Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.

Faculty of Biology, Department of Botany, University of Athens, Panepistimiopolis, Athens 15781, Greece; Department of Biochemistry, Hellenic Pasteur Institute, 127 Vassilissis Sophias, 115 21 Athens, Greece.

Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA.

Department of Microbiology, Immunology, and Molecular Genetics, University of California, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA. [kenthill@mednet.ucla.edu].

African trypanosomes, i.e. *Trypanosoma brucei* and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. *Trypanosoma brucei* is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the *T. brucei* flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the *T. brucei* flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes,
making \textit{T. brucei} an important model system. The \textit{T. brucei} flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in \textit{T. brucei} in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the \textit{T. brucei} flagellum.

Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, UK.

Zentrum fur Molekulare Biologie (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.

Department of Epidemiology & Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA.

Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

The limited repertoire of drug-resistance markers imposes a serious obstacle to genetic manipulation of \textit{Trypanosoma brucei}. Here we describe experiments with a fusion protein that allows positive selection for genome integration followed by CRE recombinase-mediated excision of the marker cassette that can be selected by ganciclovir, although the excision event is so efficient that selection is not strictly necessary. We describe two variants of the tetracycline-inducible pLEW100-based CRE-expression vector that reduced its toxicity when stably integrated into the genome, and we demonstrate that transient transfection of circular pLEW100-CRE is highly efficient at catalyzing marker excision. We used this approach to delete the last two enzymes of the pyrimidine synthesis pathway, creating a cell line that is
resistant to fluoroorotic acid, which would allow the same enzymes (PYR6-5) to be used as
an alternative negative selectable marker.

production in isolated mitochondria of procyclic Trypanosoma brucei. Methods in

Department of Biology, University of Fribourg, Switzerland.

This paper describes a luciferase-based protocol to measure adenosine triphosphate
(ATP) production in isolated mitochondria of Trypanosoma brucei. The assay represents an
excellent method to characterize the functionality of isolated mitochondria. Comparing the
ATP production induced by substrates for oxidative phosphorylation to the one induced by
substrates for substrate-level phosphorylation allows conclusions regarding the integrity of
the outer and inner mitochondrial membranes. Furthermore, the assay is a valuable tool for
characterization of RNA interference cell lines suspected to affect mitochondrial functions.

14524. Schneider, A., Bursac, D. & Lithgow, T., 2008. The direct route: a simplified
pathway for protein import into the mitochondrion of trypanosomes. Trends in Cell

Department of Biology, Cell and Developmental Biology, University of
Fribourg, Chemin du Musee 10, CH-1700 Fribourg, Switzerland.
[andre.schneider@unifr.ch].

Trypanosoma brucei is a unicellular eukaryote that causes the deadly human African
trypanosomiasis (“sleeping sickness”) in humans. The parasite has a complicated lifestyle, it
developmentally changes aspects of its mitochondrial function as it alternates from forms in
the tsetse fly to forms adapted for life in the human bloodstream. The single mitochondrion
found in each trypanosome has to be duplicated precisely in each round of the cell cycle in
order for parasites to replicate, and this depends on the import of proteins from the cytosol.
Here we review what is known about the mitochondrial protein import pathway in T. brucei,
how it compares with the process in humans, and how the distinguishing features seen in T.
brucei and humans promise new understanding of the mitochondrial protein import process in
all eukaryotes.

mitochondria from procyclic Trypanosoma brucei. Methods in Molecular Biology,

Department of Biology, University of Fribourg, Switzerland.

The mitochondrion of the parasitic protozoan Trypanosoma brucei shows a number of
unique features, many of which represent highly interesting research topics. Studies of these
subjects require the purification of mitochondrial fractions. Here, we describe and discuss the
two most commonly used methods to isolate mitochondria from insect stage T. brucei. In the
first protocol, the cells are lysed under hypotonic conditions, and mitoplast vesicles are
isolated on Percoll gradients; in the second method, lysis occurs isotonically by N2 cavitation, and the mitochondrial vesicles are isolated by Nycodenz gradient centrifugation.

Division of Clinical Pharmacology, Department of Medicine and of Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. [jrscocca@jhmi.edu].

Trypanosoma and *Leishmania*, protozoans that cause major human diseases, have a topologically intricate mitochondrial DNA (kinetoplast or kDNA) in the form of a network of thousands of interlocked circles. This unusual system provides a useful reporter for studying topoisomerase functions *in vivo*. We now find that these organisms have three type IA topoisomerases, one of which is phylogenetically distinctive and which we designate topoisomerase IA(mt). In *Trypanosoma brucei* topoisomerase IA(mt) immunolocalizes within the mitochondrion close to the kDNA disk in patterns that vary with the cell cycle. When expression of TOPIA(mt) is silenced by RNAi there is a striking accumulation of kDNA late theta structure replication intermediates, with subsequent loss of kDNA networks and halt in cell growth. This essential enzyme provides clear molecular evidence for the obligatory role of a type IA enzyme in the resolution of late theta structures *in vivo*. With no close orthologue in humans it also offers a target for the rational development of selectively toxic new antiprotozoal therapies.

Laboratory of Molecular Parasitology, The Rockefeller University, New York, USA.

Department of Microbial Pathogenesis and Immune Response, 1005 D.B. Todd Jr. Boulevard, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.

Tsetse and Trypanosomiasis Information

College of Life Sciences, University of Dundee, Dundee, Angus DD1 5EH, UK. [m.a.j.ferguson@dundee.ac.uk].

Seattle Biomedical Research Institute, Seattle, Washington 98109, USA

The Mina & Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

Hormone Research Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium.

Label-free semi-quantitative differential three-dimensional liquid chromatography coupled to mass spectrometry (3D-LC-MS/MS) was used to compare the glycosomal and mitochondrial proteomes of the bloodstream- and insect-form of Trypanosoma brucei. The abundance of glycosomal marker proteins identified in the two life-cycle stages corresponded well with the relative importance of biochemical pathways present in the glycosomes of the two stages and the peptide spectral count ratios of selected enzymes were in good agreement with published data about their enzymatic specific activities. This approach proved extremely useful for the generation of large scale proteomics data for the comparison of different life-cycle stages. Several proteins involved in oxidative stress protection, sugar-nucleotide synthesis, purine salvage, nucleotide-monophosphate formation and purine-nucleotide cycle were identified as glycosomal proteins.

Department of Medical Biochemistry and Biophysics, Umea University, SE-901 87 Umea, Sweden.

African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters.
The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that *T. brucei* also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant *T. brucei* AK (*TbAK*) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). *TbAK* differed from the AK of the related intracellular parasite *Leishmania donovani* by having a high affinity to adenosine ($K_m = 0.04-0.08$ microm depending on phosphate) and by being negatively regulated by adenosine ($K_i = 8-14$ microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the *L. donovani* enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in *T. brucei*, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogues such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.

School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK. [s.r.wilkinson@qmul.ac.uk].

Nifurtimox and benznidazole are the front-line drugs used to treat Chagas’ disease, the most important parasitic infection in the Americas. These agents function as prodrugs and must be activated within the parasite to have trypanocidal effects. Despite >40 years of research, the mechanism(s) of action and resistance have remained elusive. Here, we report that in trypanosomes, both drugs are activated by a NADH-dependent, mitochondrially localized, bacterial-like, type I nitroreductase (NTR), and that down-regulation of this explains how resistance may emerge. Loss of a single copy of this gene in *Trypanosoma cruzi*, either through in vitro drug selection or by targeted gene deletion, is sufficient to cause significant cross-resistance to a wide range of nitroheterocyclic drugs. In *Trypanosoma brucei*, loss of a single NTR allele confers similar cross-resistance without affecting growth rate or the ability to establish an infection. This potential for drug resistance by a simple mechanism has important implications, because nifurtimox is currently undergoing phase III clinical trials against African trypanosomiasis.

Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA.

Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice (Budweis), Czech Republic; Seattle Biomedical Research Institute, Seattle, USA.

Seattle Biomedical Research Institute, Seattle, WA 98109., USA.
[ken.stuart@sbri.org].