Safety practices related to small fishing vessel stability
Cover photo:
Fishing port of Beruwala, Sri Lanka. FAO/A. Gudmundsson.
Safety practices related to small fishing vessel stability

by

Ari Gudmundsson
Fishery Industry Officer (Vessels)
Fishing Technology Service
Fish Products and Industry Division
FAO, Rome
The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to:
Chief
Electronic Publishing Policy and Support Branch
Communication Division
FAO
Viale delle Terme di Caracalla, 00153 Rome, Italy
or by e-mail to:
copyright@fao.org

© FAO 2009
Preparation of this document

This document was prepared in the Fisheries and Aquaculture Department Fish Products and Industry Division of the Food and Agriculture Organization of the United Nations (FAO) by Ari Gudmundsson, Fishery Industry Officer (Vessels), Fishing Technology Service.

This document draws on experience from FAO, the author and the outcome of an FAO course on fishing vessel stability held in Sri Lanka under the FishCode Custom Training Courses (CTC) Project funded by the Government of Iceland. The course was held in collaboration with the Iceland-based United Nations University’s Fisheries Training Programme (UNU/FTP) where a draft of this document was used as reference material.

Some illustrations used in this publication were originally prepared by other institutions and their names appear below, whereas others were drafted by Magda Morales. FAO is thankful to the following institutions whose information and illustrations were helpful in the preparation of this publication:

- National Fishing Industry Training Committee, Australia
- Icelandic Maritime Administration
- Norwegian Maritime Directorate
- United States Coast Guard
- Canadian Coast Guard
- Bay of Bengal Programme Inter-Governmental Organisation

The author also wishes to thank John Fitzpatrick, former Director a.i., FAO Fishery Industry Division, for his advice related to the preparation of this publication and Daniel Davy, FAO Consultant Naval Architect, for his assistance in its editing.
Abstract

This document introduces some basic principles on the stability of small fishing vessels and provides simple guidance on what fishing vessel crews can do to maintain adequate stability for their vessels. It is not intended to be a complete course on fishing vessel stability.

The publication is aimed at fishers and their families, fishing vessel owners, boatbuilders, competent authorities and others who are interested in the safety of fishing vessels and fishers. It may also serve as a guide for those concerned with training in matters of safety of fishing vessels. It is recommended to translate and adapt the content for each target audience, in order to be consistent with the local weather conditions, types of vessels, fishing gear being used, etc.

Gudmundsson, A.
Safety practices related to small fishing vessel stability.
Contents

Preparation of this document iii
Abstract iv

1. Introduction 1

2. Definitions 3
 Displacement 3
 Draught 3
 Freeboard 3
 Light ship weight 4
 Deadweight 4
 Displacement mass 4
 List 5
 Heel 5
 Loll 5
 Gravity 6
 Centre of gravity 6
 Buoyancy 7
 Centre of buoyancy 7
 Transverse stability 8
 Metacentre 8
 Why a fishing vessel remains upright 9
 Equilibrium 10
 Metacentric height 10
 Unstable equilibrium 10
 Neutral equilibrium 10
 Stiff and tender vessels 11
 Suspended weight 12
 Free surface effect 13
 Watertight and weathertight integrity 15
 Built-in buoyancy for undecked vessels 16
 Righting lever 17
 Stability curves (GZ curves) 19
Dynamic stability 21
Changes in the stability curve during the voyage 22

3. Precautions 23
Enclosed superstructures and means of closing 23
Securing of heavy material 24
Stowage of the catch 24
Effects of fishing gear on stability 25
Free surface effects 26
Freeboard 26
Following and quartering seas 27
Crossing sand bars and beach landings 28
Icing 30
Determining stability of small vessels with rolling period tests 31

4. Alterations to vessels 33
5. Stability criteria for small fishing vessels 35

6. Stability documentation 37
Stability notice 37
Hydrostatic curves 38
Cross curves 38
Operating conditions 39
Stability curve 40

7. References 43
Annex 1 Examples of symbols used in stability documentation 45
Annex 2 Terms and symbols 47
Annex 3 Test on fishing vessel stability 49
Annex 4 Documentation consulted 53
1. Introduction

Stability is one of the most important factors in every fishing vessel’s overall safety. Without reducing the importance of life-saving equipment, every possible means should be used to prevent the capsizing of a vessel. The vessel itself is the best survival craft.

Stability is the ability of a vessel to return to its upright position after being heeled by an external force, such as the wind, a wave or the strain from its fishing gear. It is determined by the characteristics of the vessel, such as hull form and weight distribution and how the vessel is operated. The stability of a fishing vessel is not a constant condition; it undergoes continuous changes during each voyage and through the vessel’s life. An originally stable fishing vessel may become unstable because of changes in weather, because of the way it is loaded and operated, or if the vessel’s layout or equipment is changed.

It is stressed however, that whereas this document is not intended to be a complete training course, it does provide an insight to the stability of small fishing vessels. Thus it can be of use to competent authorities responsible for setting stability criteria, framing stability booklets and defining acceptable means to carry out stability tests. It would also be of use to boatbuilders during the construction of new vessels and following refitting or alterations to existing vessels. In addition, the contents could provide the basis for course material in relation to fishing vessel stability for the training of fishing vessel inspectors and in the training of fishers with particular reference to operational safety.

Furthermore, fishing vessel owners and potential owners making use of this document will have a better understanding on the importance of stability in relation to the design and operation of fishing vessels and would be of assistance in completing contractual arrangements for new construction, refitting and possible alterations to existing vessels. It would also be a useful reference to an owner when preparing operational safety procedures to be followed by the crew whether at sea or in harbour.

Finally, but by no means least, individual fishers, groups of fishers and their families will have a better understanding of the various factors that can affect the stability of a fishing vessel when preparing for sea, during fishing operations and when discharging the catch at sea or in harbour. The chapter on precautions may be of particular interest to many small-scale fishers, especially the section on crossing sand bars and beach landing; the latter often witnessed by the families of fishers.