References

References

References

References

References

Filmalter, J.D., Dagorn, L. & Bach, P. 2010. Summary of PATs deployed on pelagic sharks in the western Indian Ocean under the MADE project. IOTC-2010-WPEB-09. 3 pp.

References

References

Inter-American Tropical Tuna Commission (IATTC). 2008. 9th Stock Assessment Review Meeting, La Jolla, CA.

Inter-American Tropical Tuna Commission (IATTC). 2010. 10th Stock Assessment Review Meeting, La Jolla, CA. La Jolla, USA.

References

Moreno, G. 2008. *Tuna behaviour around drifting fish aggregating devices as assessed by active acoustic and fisher's knowledge*. AZTI Tecnalia, Universidad del País Vasco, Universidad de Las Palmas de Gran Canaria. (PhD thesis)

References

References

Sharples, P.B., Brogan, D. & Williams, P.G. 2000. A preliminary summary of (i) species identification problems, (ii) discarding practices and (iii) the life status of billfish taken in longline fisheries of the western and central Pacific Ocean, according to information collected by observers and logbook data. 13th Meeting of the Standing Committee on Tuna and Billfish, July 2000. SCTB13 Working Papers, BBRG-15.

Sokimi, W. 2008. Development of subsurface FADs in the Pacific Islands region, including deployment of two subsurface FADs in New Caledonia. SPC Fisheries Newsletter, 126: 40–44.

References

Taquet, M. 2004. The aggregative behaviour of the dolphinfish (Coryphaena hippurus) around floating objects. Océanologie biologique, Université Paris 6. (PhD thesis)

COMPARISON OF VARIABLES FROM OBSERVER PROGRAMMES

TABLE A1.1

Trip data

<table>
<thead>
<tr>
<th></th>
<th>IATTC</th>
<th>FFA</th>
<th>Spain</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Number</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Vessel Number</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Vessel Name</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Observer Name</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Flag</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Depart Date</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Arrive Date</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Capacity</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Depart Port</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Arrive Port</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Net Length</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Net Depth</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Net Mesh Size</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Safety Panel Type</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Safety Panel Length</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Safety Panel Depth</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Safety Panel Mesh Size</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Number Speedboais</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Bow Thruster present</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Aircraft present</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Sonar present</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Ring Stripper present</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Number of Screws</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
TABLE A1.2

Sets data

<table>
<thead>
<tr>
<th></th>
<th>IATTC/Nat. Programs</th>
<th>WCPFC</th>
<th>ICCAT/IOTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>All types of sets:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Number</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Set Type</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Set Date</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LetGo time</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RingsUp time</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Endset time</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Strong Currents present</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malfunction information</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Well loading data</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Begin/end pursing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin/end brailing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuna catch of set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tuna discards of set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cumulative tuna catch</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuna estimation before the set</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sonar tuna readings</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Net depth at rings up</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Reason a set is not made</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE A1.3

Effort data

<table>
<thead>
<tr>
<th></th>
<th>IATTC</th>
<th>FFA</th>
<th>Spain</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel mode (in port, search, run, drift)</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Observer on duty</td>
<td>⬤</td>
<td>?</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Position during the day</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Marine mammal sighting information</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Crew search activity</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Vessel speed</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Environmental (SST, Wind speed)</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Environmental (Cloud cover, Visibility)</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter/plane assistance</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Cue to set</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Distance to cue</td>
<td>⬤</td>
<td>?</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>UTC time</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Helicopter take-off/landing times</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Transhipment activities</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Code group fishing activity</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
</tbody>
</table>
TABLE A1.4
Capture and bycatch

<table>
<thead>
<tr>
<th></th>
<th>IATTC</th>
<th>FFA</th>
<th>Spain</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuna tonnage caught and loaded by spp. and size</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Reason for tuna discard</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Bycatch by spp. And number</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Billfish, shark, turtles: identification characteristic</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-tuna spp. Siza measurements</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Utilization of bycatch (discarded, treated as catch, etc)</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag information (turtles, tuna, fish)</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen collection</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuna size measurements</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Other fauna size measurements (fish, turtles, cetaceans)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

TABLE A1.5
Floating objects

<table>
<thead>
<tr>
<th></th>
<th>IATTC</th>
<th>FFA</th>
<th>Spain</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object number</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Object Count</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Number</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date and Time</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Position</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object origin</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Object type</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Object disposition (eg. Left in water, removed)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Locate method</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Object soak time</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanging net information</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bait information</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle presence</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Turtle Entanglement</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Other spp. Presence</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Size and depth of the object</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water clarity</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of object covered in flora</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components making up the object</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location equipment attached</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Transmission capabilities of location equipment</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
Bycatch and non-tuna catch in the tropical tuna purse seine fisheries of the world

This report provides a review of our knowledge of the bycatches, defined as discarded dead, from the tropical tuna purse seine fisheries of the world. The major fishing grounds involved (eastern and western Pacific, eastern Atlantic, and western Indian Oceans) share the gear, the ways of fishing, and the structure of the pelagic communities. Because of that, the species taken in association with tuna schools tend to be the same in all regions.

After describing the gear and fishing operations, it discusses the reasons why bycatches happen, and explores the options to mitigate them.

The types of sets used to capture tunas and the detection methods used to locate the schools are a major factor to determine which are the catches and the bycatches. The main bycatches are tunas, sharks and rays, pelagic bony fishes, billfishes, and sea turtles. The total discards amount to one to five percent of the total tonnage captured, and tunas of the species targeted amount to over 90-95 percent of those bycatches. The silky shark is the most common shark species by far, followed by the oceanic whitetip sharks. Marlins and sailfishes are also taken but in reduced numbers. Olive ridley sea turtles are the most common turtle captured, but the majority of them are released alive and unharmed. Rainbow runners, mahi-mahis, wahoos and amberjack yellowtail are the major pelagic bony fishes taken with the tunas. They are being retained in increasing numbers for utilization.

Besides discussing problems of estimation, the report presents most of the ideas proposed or in different stages of testing, to mitigate those bycatches, including ways to avoid the captures, or to release the individuals from the net or from the deck.

Finally, the known or potential ecological impacts of the rapidly increasing fishery on fish aggregating devices (FADs) are reviewed, emphasizing some of the uncertainties that still prevail.