Sustainable management of *Pinus radiata* plantations
Cover photos:
Left: High pruning of radiata pine, New Zealand (P. Wilks)
Centre: A combination of radiata pine plantations, other introduced trees, native areas and farming create attractive landscapes in New Zealand; the farming is on the better soils (D. Mead)
Right: Recreation in a mature radiata pine plantation near Nelson, New Zealand (D. Mead)
Sustainable management of *Pinus radiata* plantations

by

Donald J. Mead
Contents

Sustainable management of *Pinus radiata* plantations ... i
Foreword .. xii
Acknowledgements ... xiii
Dedication .. xiv
Acronyms and abbreviations ... xv

1 Overview

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL APPROACH</td>
<td>1</td>
</tr>
<tr>
<td>HISTORICAL PERSPECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>The four phases of radiata pine plantation development</td>
<td>6</td>
</tr>
<tr>
<td>DISTRIBUTION OF RADIATA PINE PLANTATIONS</td>
<td>10</td>
</tr>
<tr>
<td>New Zealand</td>
<td>10</td>
</tr>
<tr>
<td>Chile</td>
<td>11</td>
</tr>
<tr>
<td>Australia</td>
<td>12</td>
</tr>
<tr>
<td>Spain</td>
<td>12</td>
</tr>
</tbody>
</table>

RADIATA PINE IN THE GLOBAL CONTEXT 12

2 Site requirements

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCHING SPECIES TO SITE</td>
<td>15</td>
</tr>
<tr>
<td>CLIMATIC LIMITATIONS</td>
<td>16</td>
</tr>
<tr>
<td>Natural habitat</td>
<td>16</td>
</tr>
<tr>
<td>Exotic plantation experience</td>
<td>16</td>
</tr>
<tr>
<td>Other abiotic factors</td>
<td>19</td>
</tr>
<tr>
<td>Fire</td>
<td>22</td>
</tr>
<tr>
<td>Latitude and altitude</td>
<td>23</td>
</tr>
<tr>
<td>Aspect</td>
<td>23</td>
</tr>
<tr>
<td>Potential impacts of climate change</td>
<td>24</td>
</tr>
<tr>
<td>EDAPHIC LIMITATIONS</td>
<td>24</td>
</tr>
<tr>
<td>Physical properties of soil</td>
<td>25</td>
</tr>
<tr>
<td>Nutrient stresses</td>
<td>25</td>
</tr>
<tr>
<td>Diagnosing nutrient deficiencies</td>
<td>27</td>
</tr>
<tr>
<td>Soil microbiological factors</td>
<td>29</td>
</tr>
<tr>
<td>OTHER SITE CONSIDERATIONS</td>
<td>29</td>
</tr>
<tr>
<td>Catchment hydrology</td>
<td>30</td>
</tr>
</tbody>
</table>

RADIATA PINE’S ECOLOGICAL NICHE .. 32

3 Social, economic and environmental considerations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCIO-ECONOMIC SETTING</td>
<td>35</td>
</tr>
<tr>
<td>Australia</td>
<td>35</td>
</tr>
<tr>
<td>Chile</td>
<td>36</td>
</tr>
<tr>
<td>New Zealand</td>
<td>37</td>
</tr>
<tr>
<td>South Africa</td>
<td>38</td>
</tr>
<tr>
<td>Spain</td>
<td>39</td>
</tr>
<tr>
<td>Synthesis</td>
<td>39</td>
</tr>
</tbody>
</table>

ECONOMICS OF RADIATA PINE PLANTATIONS 40

Typical discount rates and plantation forest profitability 41
SOCIAL AND ECOSYSTEM SERVICES
 Employment 44
 Biodiversity 45
 Landscape 48
 Recreation in radiata pine plantations 48
 Carbon storage 49
 Wilding spread 49
 Working with communities 50

ENVIRONMENTAL STANDARDS 50

TRENDS 51

4 Pests and diseases 53
 MAJOR INSECT PESTS 53
 Sirex wood wasp 53
 Bark beetles 55
 Pine shoot moth 56
 Aphids and adelgids 56
 Other localized insect problems 58
 MAJOR DISEASES 58
 Dothistroma needle blight 58
 Sphaeropsis sapinea 60
 Pine pitch canker 61
 Other localized diseases 62

ANIMAL AND OTHER PESTS 63

PROSPECTS 63

5 Growth characteristics, wood properties and end-use 67
 RADIATA PINE GROWTH 67
 Growth habit 67
 Shoot development 68
 Growth stages 70
 Growth patterns 71
 Seasonal growth 72
 Longer-term patterns 72
 Productivity rating systems 74
 Stocking and stand density 74
 Crown growth 76
 Branch development 77
 Inter-tree competition and mortality 77
 WOOD PROPERTIES AND END-USE 78
 Cambial activity and differentiation 78
 Corewood properties 79
 Heartwood compared with sapwood 80
 Basic density 80
 Tracheids 81
 Grain orientation and spiral grain 82
 Compression wood 83
 Knots and their link to grading systems 83
 Clearwood 85
 Log size and sweep 85
 Other defects 85
 Pulpwood and reconstituted products 86
OVERVIEW OF RADIATA PINE END USE

6 Radiata pine tree-breeding
IMPROVEMENT OBJECTIVES
BIOLOGICAL BACKGROUND
THE QUANTITATIVE GENETIC APPROACH
IMPROVEMENT OPTIONS
Provenance selection
Mass selection
Advanced breeding strategies
Incorporation of desired traits
Other recent developments
DOMESTICATION PROGRESS

7 Producing planting stock
THE SYSTEMS APPROACH AND SETTING OBJECTIVES
Optimum planting stock
SEED HANDLING
BARE-ROOTED PLANTING STOCK PRODUCTION
Seedbed preparation
Seed-sowing
Conditioning
Soil and nutrient management
Mycorrhizae
Irrigation
Control of nursery weeds, diseases and pests
VEGETATIVE PROPAGATION TECHNIQUES
CONTAINER PLANTS
PACKAGING AND TRANSPORT OF PLANTING STOCK
SYNTHESIS AND TRENDS

8 Establishment and early tending
ESTABLISHMENT PLANNING
THE BIOLOGICAL LIMITS TO EARLY GROWTH
SITE PREPARATION PRINCIPLES
RADIATA PINE SITE PREPARATION METHODS
Hand tool methods
Mechanical techniques
Fire
Chemicals
Other weed-control methods
PLANTING
Survival and replacements
DIRECT SEEDING AND NATURAL REGENERATION
FERTILIZER AT ESTABLISHMENT
FIRST ROTATION FEATURES
LATER ROTATION FEATURES
SYNTHESIS AND TRENDS
12 Conclusions 205

LESSONS FROM THE RADIATA PINE EXPERIENCE 205

- Growth characteristics 205
- Species niche 205
- Radiata pine forests and societal values and needs 206
- Radiata pine's wood uses 206
- Tree-breeding and silviculture 207
- Sustainability 208
- Uncertainties 209

THE FUTURE OF RADIATA PINE FORESTS 209

Glossary 211

References 215

List of Boxes

- 1.1 Early recognition of radiata pine’s commercial potential 8
- 2.1 Radiata pine plantations reduce landslides 30
- 2.2 Longer-term effects of radiata pine plantations on stream flow 32
- 3.1 The new concept of using declining discount rates in forestry evaluations 41
- 4.1 The impact of parasites and hyperparasites on the control of the pine shoot moth, *Rhyacionia buoliana* 57
- 4.2 Pine pitch canker: a growing threat? 61
- 5.1 The effects of radiata pine wood density and stiffness on structural timber grades 82
- 6.1 The changing breeding goals for radiata pine: an example from Australasia 93
- 6.2 Structure of the joint New Zealand plus New South Wales radiata pine breeding programme 100
- 8.1 Managing available moisture for optimum growth of radiata pine in South Australia 134
- 9.1 Effect of silviculture on a fertile farm site in New Zealand 150
- 10.1 Second rotation radiata pine decline in South Australia reversed 185
- 11.1 Catchment diagnosis and design planning in New Zealand hill country 203
List of Figures

1.1 The plantation cycle, with major operations related to the planting stock production, establishment, stand tending and clearfelling of the crop 2
1.2 The Mt Peel radiata pine in Canterbury, New Zealand, planted in 1859 as a three-year-old seedling 3
1.3 Natural radiata pine stand at Monterey, California 5
1.4 Phases in the development of radiata pine plantation forestry 6
2.1 The interaction of factors affecting the choice of tree species 15
2.3 Drought deaths in a radiata pine stand in the Blackwood region of Western Australia 17
2.2 Radiata pine relative growth rate in relation to rainfall and soil depth 17
2.4 Severe defoliation due to abnormal climatic events in New Zealand causing physiological drought 18
2.5 Windthrow in a radiata pine stand the Nelson region of New Zealand 20
2.6 Stand edge windthrow following logging, which could have been avoided by careful planning 21
2.7 Sun-scald on radiata pine, Western Australia 21
2.8 Fire damage to young stand of radiata pine 22
2.9 Boron deficiency can cause repeated dieback 27
3.1 The New Zealand falcon (*Falco novaeseelandiae*) in a radiata pine plantation forest in Canterbury, New Zealand 45
3.2 Copihue, the Chilean national flower, growing in a radiata pine plantation forest in the BioBio region 46
3.3 A native forest remnant in radiata pine plantation forest in New Zealand 47
3.4 Recreation in mature radiata pine plantation forest near Auckland, New Zealand 48
4.1 The effects of the pine shoot moth, *Rhyaciona buoliana* 56
4.2 The effects of *Dothistroma* in radiata pine is usually most noticeable in the lower crown 59
4.3 *Sphaeropsis sapinea* (syn. *Diplodia pinea*) often results in leader dieback 60
4.4 Stem fluting caused by infection of pruned branches by *Neonectria fuckeliana* 62
5.1 Radiata pine shoot showing annual polycyclic growth pattern 67
5.2 Epicormic shoots forming on a pruned radiata pine tree, where the stem needles (short shoots) have not been removed 69
5.3 Generalized (not to scale) relationship between stocking, age (years) and growth 75
5.4 The effects of pruning and thinning on latewood percentage in South Africa 81
5.5 The relationship of branch index to structural grades 84
5.6 The impact of log small-end diameter and sweep on sawing recovery 86
5.7 Large radiata pine logs arriving at the mill 87
5.8 Radiata pine bark is widely used in horticulture 88
6.1 The use of selected clonal varieties can simultaneously improve both acoustic velocity (i.e. wood stiffness) and growth rate 96
6.2 Provenance differences: the bark on Monterey trees is thicker and more fissured than that on trees from Guadalupe Island 97
6.3 The hierarchy of populations 99
6.4 Control-pollinated seed orchards at Amberley, New Zealand

7.1 The effects of spacing within the nursery bed and seedling diameters at lifting, on volume index (D²H) at the end of the first growing season after planting

7.2 Bare-rooted radiata plants are grown in long raised beds

7.3 Cuttings of radiata pine from stool beds set directly into beds and protected by plastic covers

7.4 One-year-old cuttings with a good diameter stem and a vigorous root system with mycorrhizae

7.5 Somatic embryogenesis plants in a misted greenhouse in Chile before being on-grown

7.6 Typical flowchart of growing clones of radiata pine, starting from control-pollinated seed, through laboratory multiplication and storage to nursery

7.7 Container grown radiata pine employing air-pruning of roots

7.8 Bare-rooted stock lifted and placed horizontally into boxes

7.9 Trimming the roots to 10 cm length

8.1 Factors affecting the stand at the end of the establishment period

8.2 Growth responses to silvicultural treatments

8.3 Site preparation in South Australia using towed rollers. The resulting mulch assists with moisture conservation, conserves nutrients and makes planting easier.

8.4 Mounding and ripping provide an excellent cultivated planting site, concentrate nutrients and reduce weed competition.

8.5 Windrows made using a backhoe with a root-rake attachment. Note that there is some soil disturbance.

8.6 The heaping of slash, and then burning the heaps, clears the site but runs the risk of nutrient loss and creating uneven growth in the compartment.

8.7 Container-planted seedling, illustrating the regeneration of new roots four months after planting. Note that part of the foliage had been deliberately buried.

8.8 Trees replaced in gaps seldom keep up with those planted earlier. The large trees are three years old.

8.9 Hauler logging leaves a clean site but redistributes nutrients.

9.1 The rise of green crowns results in the development of bark-encased knots after branches die

9.2 Mechanized thinning in South Australia

9.3 Stands of radiata pine with too high a height-diameter ratio can have stability problems

9.4 Ladder high pruning of radiata pine in New Zealand

9.5 Christmas trees trimmed to create dense, conical crowns

9.6 Long crowns left after pruning in Chile avoid suppression of the pruned trees by non-pruned trees

9.7 Phosphate fertilizer response on a deficient site: a site with fertilizer (left) and without (right)

10.1 Tree growth is determined by the most limiting factor and some of these factors can be manipulated by forest managers

10.2 The effect of slash burning (top) compared with slash retention (bottom) on radiata pine at age four years on sands in Western Australia
10.3 Overview of site assessment, level of monitoring in relation to harvesting impacts and the need for nutrient amendments 187
11.1 Pasture production under radiata pine trees, as influenced by final crop stocking, stand arrangement and site 192
11.2 Contour soil bund to collect runoff in a low-rainfall area in Chile 194
11.3 Radiata pine in Chile, at age 5 years, planted in twin rows spaced 7 m apart. The ripping rows follow the contour to encourage water infiltration 195
11.4 The effects of windbreak porosity on windflow at different distances from the windbreak for porous, single-row and multiple-row conifers and for a solid barrier 197
11.5 Representation of a two-row shelterbelt layout, with supplementary species to windward 198
11.6 A porous two-row radiata pine and deodar cedar shelterbelt that has been side-trimmed and in which every second radiata pine tree has been high-pruned 198
11.7 A radiata pine shelterbelt designed to catch snow 199
12.1 Radiata pine logs on their way to the wood-using industry 207
12.2 Radiata pine, other introduced trees, native areas and farming create an attractive landscape 209
List of Tables

1.1 Timeline for the domestication of radiata pine and the development of silviculture

1.2 Estimated radiata pine plantation areas and the average annual change in area over the last five years, together with major uses by country

1.3 Percentage of stands for radiata pine by tending schedules and age class for the whole of New Zealand and for the Central North Island Region (CNI) in 2011

1.4 Growth rates, typical rotation lengths and areas of selected species used in large-scale plantations in selected countries

2.1 General climate profiles for radiata pine and Pinus taeda developed for models used to select regions to grow these species

2.2 Nutrient deficiency symptoms in radiata pine, marginal foliage nutrient concentrations and the confidence in these levels

3.1 Characteristics of the main countries with radiata pine plantations

3.2 Economic comparison of forest plantations of various species in selected countries

3.3 Ecosystem services provided by radiata pine plantation forests and associated agroforestry systems

5.1 The influence of stocking on tree size, green crown height, height-to-diameter ratio and stiffness (MoE) for the outer wood: results from a 17 year-old radiata pine Nelder spacing trial in New Zealand

6.1 Estimated heritabilities (h^2) for a range of radiata pine traits

6.2 Selected provenance differences in radiata pine

6.3 Improvement ratings for growth and form for different seedlots, New Zealand

7.1 Plant types and their key characteristics available for planting Pinus radiata

7.2 Specifications for bare-root radiata pine seedlings and cuttings*

7.3 Mean nutrient content in open-grown seedlings, at lifting

7.4 Characteristics of cuttings compared with seedlings of Pinus radiata

8.1 Steps in the establishment planning process

8.2 Fine root density of radiata pine and weeds in young stands growing in a sandy soil, South Australia

8.3 Site preparation methods commonly used in radiata pine plantations

9.1 The current range of typical radiata pine thinning schedules in non-pruned stands

9.2 Current typical pruning schedules with radiata pine

9.3 Typical fertilizer types and rates used in radiata pine plantations

10.1 Factors increasing radiata pine productivity, classified by response type and translated to gain at the end of a rotation

10.2 Typical nutrient balance sheets for selected contrasting sites and harvesting practices, New Zealand
Foreword

Growing societal demand for forest products and services require an increase in efforts to establish new forests. Where appropriate, intensively managed forest plantations can supply local and global markets with wood while contributing significantly to rural and industrial development. One of the most successful forest plantation species is *Pinus radiata* – radiata pine.

FAO recognizes the need to back up any significant tree-planting with a deep understanding of all aspects of the species being planted. In 1960, FAO published a major review of radiata pine, written by C.W. Scott, which presented the state of knowledge at that time. After more than 50 years, FAO is pleased to present a comprehensive update of knowledge on radiata pine. While this new publication, by Dr Donald Mead, covers many aspects of the species – its discovery and domestication, site requirements, limitations, wood properties and end-uses, and its social and environmental roles – its focus is on the principles and practices of growing radiata pine sustainably. It also looks ahead to emerging challenges facing plantation forest management, such as the effects of climate change, new diseases and other threats, and how to manage plantation forests to meet changing product needs and societal demands. Thus, this book is relevant and helpful for growers of other tree species, and should also provide valuable insights to forestry students and a wide range of other people interested in forestry.

Globally, there are just over 4 million ha of radiata pine plantations, mainly in Australia, Chile, New Zealand and Spain, making this species the most widely planted introduced conifer. As a plantation species, radiata pine has been a spectacular success, becoming the basis of strong wood-using industries in those countries and producing about 60 million cubic metres of wood per year. Even so, radiata pine provides only slightly more than four percent of the output of all planted forests.

Dr Mead, a New Zealander, has been involved in forestry research and teaching about radiata pine for more than 50 years. He wanted FAO to publish this review of radiata pine management as a means to ensuring its wide dissemination. For FAO, this publication is a way of educating professionals and others on the importance of long-term sustainable plantation forest management based on a profound knowledge of the biology, silviculture and use of a species. I congratulate Dr Mead for this outstanding contribution to global knowledge on plantation forest management and recommend the work to the global forestry community.

Eduardo Rojas-Briales
Assistant Director-General
FAO Forestry Department
Acknowledgements

This book has endured a long gestation. My sincere thanks go to the many people who provided information over the years. In particular, I thank Peter Lavery and Gonzalo Paredes, who were instrumental in providing the impetus for this book in the early years. Gonzalo supported the writing of this book until his health prevented him from being actively involved in the last few months.

I also sincerely thank Alvaro Sotomayor, Rowland Burdon, Euan Mason, Lisa Langer, Mike Carson, Eric Appleton, Robin Trewin, Piers Maclaren, Jose Prado, Tat Smith and Philip West, all of whom reviewed parts of this book. Rowland Burdon actively cooperated by providing background information on radiata pine history and status; he has been involved with a book on the domestication of the species. Jim Carle provided insightful comments on the entire book based on his wide experience with FAO and as a forest manager. Walter Kollert is also thanked for his support after Jim Carle retired. Rosamund Arthur assisted by reading the manuscript from a non-forester’s viewpoint. I thank the editorial staff at FAO – Giulia Muir, Alastair Sarre and Patricia Tendi – and designer Roberto Cenciarelli for their excellent work.

Financial support for this project was provided by the New Zealand Forestry Corporation, the University of Canterbury and Lincoln University, the latter two by way of study leave.
Dedication

This book is dedicated to Dr Gonzalo Paredes Veloso, who died at Valdivia, Chile, in October 2012. Gonzalo was a forest engineer who did his PhD in forest economics at Corvallis, Oregon, United States of America, from 1984 to 1986. He was Dean of the Faculty of Forestry and Natural Resources, Universidad Austral de Chile in Valdivia, for two periods of his career, and for a time he was the Vice Chancellor of Finance and Administrative Support. He was a major leader in the development of the Chilean radiata pine simulator and actively supported forestry research in Chile. Between 1997 and 2000 he was director of Instituto Forestal, the Chilean government forest research organization.

Gonzalo, an academic leader and a critical thinker, was a strong supporter of this book project. He was a dedicated family man and a good friend to many, including the author.
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>boron</td>
</tr>
<tr>
<td>BA</td>
<td>basal area</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>Ca</td>
<td>calcium</td>
</tr>
<tr>
<td>CAI</td>
<td>current annual increment</td>
</tr>
<tr>
<td>CO²</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation (Australia)</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>dbh</td>
<td>diameter at breast height</td>
</tr>
<tr>
<td>DCF</td>
<td>discounted cash flow</td>
</tr>
<tr>
<td>DDC</td>
<td>diameter of the defect core in the centre of a pruned log</td>
</tr>
<tr>
<td>DOO</td>
<td>diameter over occlusion</td>
</tr>
<tr>
<td>DOS</td>
<td>maximum stem diameter over branch stubs after pruning</td>
</tr>
<tr>
<td>DRIS</td>
<td>Diagnosis and Recommendation Integrated System</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
</tr>
<tr>
<td>FRI</td>
<td>Forest Research Institute (New Zealand), now Scion</td>
</tr>
<tr>
<td>FSC</td>
<td>Forest Stewardship Council</td>
</tr>
<tr>
<td>G</td>
<td>genetic gain</td>
</tr>
<tr>
<td>H</td>
<td>tree height</td>
</tr>
<tr>
<td>H²</td>
<td>broad-sense heritability</td>
</tr>
<tr>
<td>INFOR</td>
<td>Instituto Forestal (Chile)</td>
</tr>
<tr>
<td>IRR</td>
<td>internal rate of return</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LEV</td>
<td>land expectation value</td>
</tr>
<tr>
<td>LiDAR</td>
<td>light detection and ranging</td>
</tr>
<tr>
<td>LSW</td>
<td>log sweep</td>
</tr>
<tr>
<td>MAI</td>
<td>mean annual increment since establishment</td>
</tr>
<tr>
<td>Mg</td>
<td>magnesium</td>
</tr>
<tr>
<td>Mn</td>
<td>manganese</td>
</tr>
<tr>
<td>MoE</td>
<td>modulus of elasticity</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>n</td>
<td>stocking</td>
</tr>
<tr>
<td>NPW</td>
<td>net present worth</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>PEFC</td>
<td>Programme for the Endorsement of Forest Certification</td>
</tr>
<tr>
<td>PMAI</td>
<td>periodic mean annual increment</td>
</tr>
<tr>
<td>RD</td>
<td>relative density</td>
</tr>
<tr>
<td>REDD+</td>
<td>reducing emissions from deforestation and forest degradation</td>
</tr>
<tr>
<td>S</td>
<td>sulphur</td>
</tr>
<tr>
<td>SI</td>
<td>site index</td>
</tr>
<tr>
<td>V</td>
<td>variance</td>
</tr>
<tr>
<td>Zn</td>
<td>zinc</td>
</tr>
</tbody>
</table>