1. Introduction

In rapidly changing societies such as Kenya, it is imperative that decision makers at all levels appreciate the current and future impact of the livestock sector on public health, the environment and livelihoods. This allows decision makers to take actions now that will ensure sustainable development of the livestock sector in the coming decades – a development that benefits producers, consumers and society in general – with limited negative effects on public health and the environment.

Good quality data are essential for formulating policies and programmes that support sustainable development of the livestock sector. However, livestock stakeholders, particularly the Ministries in charge of animal and public health, often face what is referred to as “the zoonotic disease and antimicrobial resistance (AMR) information trap”. As there is little robust evidence to quantify the negative impacts of zoonotic disease and AMR on society, stakeholders find it hard to sufficiently demonstrate the returns of programmes and investments that tackle zoonoses and AMR. This in turn makes it difficult to secure resources to tackle zoonotic disease and AMR, and create the necessary partnerships between the government and the governed to address issues that cross all sectors of society.

This brief provides a snapshot of the information system on zoonotic diseases and AMR in Kenya. It then makes the case for implementing an expert elicitation protocol to assemble data on the impact of zoonoses and AMR on society. Results from implementing such a protocol can contribute to break the “zoonotic disease and AMR information trap”, thereby allowing Kenya to enter into a virtuous circle of information gathering, knowledge generation and policy reforms, which is essential to address current and emerging zoonotic and AMR issues successfully.

2. Zoonoses and anti-microbial resistance in Kenya: the evidence for decision making

Zoonotic diseases and livestock-driven AMR negatively impact society, for example through reducing the quantity and value of the produce from livestock; worsening the trade balance; decreasing labour productivity; and making households and the government use resources to treat sick animals and humans rather than for productive purposes. When zoonoses become pandemics, their impact on society escalates and can be devastating, as the experiences of highly pathogenic avian influenza in Asia and the Ebola virus epidemic in West Africa show. AMR is an emerging global threat and its toll on human society is on the increase. For example, the World Health Organization (WHO) reports that, among new cases of tuberculosis in 2014, an estimated 3.3 percent were multi-drug resistant (WHO, 2016).

Beyond the availability of human and financial resources, the capacity of livestock holders (starting with the government) to manage and contain zoonotic diseases and livestock driven AMR depends on access to good quality data and information. These allow assessment of the current and potential effects of zoonotic diseases and AMR on society, and the ability to measure the returns on investments for their containment and management. Good quality data and information should be available on:

- the incidence and prevalence of zoonotic diseases by livestock production system (e.g. intensive vs. semi-intensive vs. extensive);
- the use of antibiotics in livestock, disaggregated by animal species and production system;
• the incidence and prevalence of zoonotic diseases in humans, by category of people (e.g. farmers vs. market operators vs. consumers);
• the use of antibiotics and antimicrobial resistance in humans, by category of people;
• the reduction in the quantity and value of livestock production due to zoonoses, for example because of death and morbidity in animals; the reduction in labour productivity (zoonotic diseases can affect labourers in any sector of the economy); and the value of private and public resources used to deal with zoonoses, preventing their allocation for more productive purposes;
• the causes of zoonotic disease emergence and spread, which include inadequate vaccination coverage, inefficient biosecurity and biosafety measures, and lack of advocacy. Causes of AMR, for example for non-therapeutic usage in animals. These causes should be the target and focus of policy actions as investing resources to measure zoonoses and AMR, without information on their root causes, is of little help for decision makers;
• the feasibility – in terms of financial resources and technical competencies – of possible interventions to tackle the root causes of the emergence and spread of zoonoses and of livestock-driven AMR. This information helps identify actionable interventions and estimate their different returns, i.e. to allocate available resources to maximise the benefits for society.

In Kenya, stakeholders have identified a multitude of zoonotic diseases that affect the country including anthrax, cysticercosis, Rift Valley fever, influenza pandemics, trypanosomiasis, non-typhoid salmonellosis and others. Stakeholders also included anti-microbial resistance pathogens due to the potential transmission of AMR microbes from livestock to humans. The Ministry of Agriculture, Livestock and Fisheries and the Ministry of Public Health are in charge of formulating policies and programmes on zoonoses and AMR. They rely on data and information from multiple sources.

The Directorate of Veterinary Services in the Ministry of Agriculture, Livestock and Fisheries has access to two data reporting forms. These are the sanitary report form and the zero report form that local authorities use to transmit information on animal diseases to the central government, including type of disease, location, numbers of animals affected (see Appendix 1 for content of reporting forms). The zero report is for immediate reporting, while the sanitary report is monthly. The latter also includes information on the number of humans affected by the reported zoonosis. However, as not all zoonoses in animals are notifiable – for example bovine tuberculosis, brucellosis and salmonellosis – many are not reported. The lack of consistency in the gathered information makes it thus challenging for the Ministry to estimate the incidence and prevalence of zoonotic diseases with accuracy. In addition, when information on zoonoses is available, it is not necessarily accurate. For example, Njeru et al., (2016, p.2160) notes that “clinical management of illnesses is often done empirically, resulting in inaccurate treatment of patients and routine underreporting of diseases”. Ducrotoy contends that brucellosis is under-reported in both animals and humans (Ducrotoy et al., 2015).

The Ministry of Health sources data and information on zoonotic diseases in humans largely from the Integrated District Surveillance and Reporting System (IDRS), which includes both an event-based reporting system and a periodic routine reporting system. Through IDRS local authorities gather and report information on any zoonosis in humans (see Appendix 2) and, as such, this system is comprehensive. However, on several occasions financial and human constraints prevent local officers from duly reporting on all zoonoses, which reduces the information base for the Ministry of Health. One of the reasons is that some zoonoses, while badly affecting livestock, do not rank among the most important diseases for human beings.
As to AMR, there is neither a system for regularly reporting use of antibiotics in animals nor any national surveillance system in place to assess the burden of AMR countrywide, as also highlighted in the 2017 (draft) National Policy on Prevention and Containment of Antimicrobial Resistance. Yet data from sentinel studies suggest that AMR is an issue of concern in Kenya.

Finally, even when data on the prevalence and incidence of zoonotic diseases were available, including both in animals and humans, there is no integrated information system in place that estimates their impact on society, such as on livestock production and labour productivity. For example, data are not easily available to assess the quantity and value of milk production lost due to brucellosis, or on the financial resources households and the government allocates to deal with outbreaks of Rift Valley fever.

Given the current information system, the Kenyan ministries in charge of livestock and public health are not in a position to generate accurate estimates of the incidence and prevalence of zoonoses and livestock-driven AMR or demonstrate the returns of programmes and investments for their management and control. This prevents the ministries from creating the necessary partnership between the government and citizens to effectively address issues that interweave public and private dimensions. The government, therefore, faces what is here defined as the “zoonotic disease and AMR information trap”.

3. An expert elicitation protocol for assembling information on zoonoses and AMR

When there is insufficient or unreliable data, or when data is either too costly or physically impossible to gather, expert elicitations are a promising tool to obtain good quality information. They are a scientific consensus methodology to get experts’ judgements on the distribution of the variables and parameters of interest, including those whose value is either unknown or uncertain. An important feature of expert elicitation is that experts not only provide information on the unmeasured, but can also suggest values that differ from those in the scientific literature or from official statistics (the official knowns), for example if they believe some causal linkages are underestimated or some issues underreported. The public sector, but more frequently private parties, have used expert elicitations for a multitude of purposes, such as to investigate the nature and extent of climate change; the cost and performance of alternative energy technologies; and the health impact of air pollution (Morgan, 2014). The World Health Organization has used an expert elicitation to estimate the global burden of foodborne diseases (WHO, 2015).

The Africa Sustainable Livestock 2050 initiative (ASL2050), under the guidance of a National Steering Committee comprising representatives of the Ministry of Agriculture, Livestock and Fisheries, the Ministry of Environment and Natural Resources and the Ministry of Health, has developed an expert elicitation protocol to assemble quantitative information on zoonoses and AMR in Kenya. As the Kenyan livestock sector is heterogeneous, it was agreed to start designing and testing the protocol for two different livestock types, four zoonoses and AMR. The two livestock types are cattle and poultry, while the four zoonoses are bovine tuberculosis and brucellosis for cattle; and salmonellosis and highly pathogenic avian influenza (HPAI) for poultry (see Box 1 and Box 2). These were selected because of their relevance not only for Kenya but also for other ASL2050 countries implementing the protocol, including Burkina Faso, Egypt, Ethiopia, Nigeria and Uganda, which in the medium-term will facilitate cross-learning. While Kenya has not experienced any outbreaks of avian influenza, questions on HPAI are relevant when they elicit information on the risk factors that might favor emergence and spread of the disease.
Box 1. Cattle production systems, bovine tuberculosis and brucellosis

The beef industry is the largest contributor to agricultural GDP in Kenya, at around 35 percent. It is an important contributor to value added and employment especially in the Arid and Semi-Arid Lands (ASALs), where beef production from pasture is the main economic activity. Dairy cattle production in Kenya is, after beef production, the second largest contributor to the agricultural GDP. The dairy sector is a major source of employment in rural areas, with small-scale farms being pervasive and producing about 80 percent of the total milk in the country.

Brucellosis is a highly infectious, chronic disease in livestock and humans caused by *Brucella* bacteria. The major clinical signs in cattle are repetitive abortions, and the main symptoms in humans are a profuse undulant fever with muscle and bone pain. The disease can be detected through cell staining, serological tests or bacterial culture. Brucellosis transmission from cattle to humans is usually from ingesting unpasteurised dairy products or raw meat, and direct contact with infected blood or other secretions. Animal to animal transmission is usually from direct contact with infected bodily secretions. The economic consequences of brucellosis are a significant reduction in livestock productivity due to decreased milk production because of appetite loss, loss of young, as well as the impact of severe trade restrictions imposed on affected farms and countries.

Bovine tuberculosis (bTB) is a chronic infectious disease in animals and humans caused by *Mycobacterium bovis* (*M. bovis*) of the *M. tuberculosis* complex. It is widely distributed throughout the developing world. In humans, tuberculosis caused by *M. tuberculosis* as well as by *M. bovis* has become increasingly important due to its association with HIV/AIDS. Symptoms in humans include fever, weight loss, night sweats, and in the most common form of pulmonary tuberculosis, coughing and blood-stained sputum. In animals the clinical signs are coughing, dyspnea, gastrointestinal problems, bone deformation, and emaciation. Diagnostic methods include direct staining of tissue, sputum or other secretions, bacterial culturing, or DNA amplification by PCR. The intradermal tuberculin test is the main diagnostic tool used in control programmes of bovine TB. The principal route of human infection with *M. bovis* is by ingestion of contaminated products such as infected milk. The economic impacts of bTB in humans result from treatment costs while in livestock economic impacts are related to production losses, e.g. reduced milk yield, weight loss, impaired draught power; and the cost of surveillance and control programs, e.g. complete or partial condemnation of carcasses, animal culls, and trade restrictions.

Box 2. Poultry production systems, salmonellosis and highly pathogenic avian influenza

Poultry contributes 8 percent to agricultural value added. The sector is highly heterogeneous, comprising of a large number of small-scale free range and backyard indigenous chicken producers; a good number of small scale commercial layers and broiler farms; and a few industrial integrated layer and broiler farms.

Avian influenza viruses are highly contagious, extremely variable viruses that are widespread in water birds. Wild birds in aquatic habitats are thought to be their natural reservoir hosts, but domesticated poultry are readily infected. Highly pathogenic avian influenza (HPAI) viruses, by definition, cause severe illness in chickens and turkeys, killing up to 100% of the flock. Common clinical signs can range from decreased feed and water intake, to other nonspecific systemic, respiratory and/or neurological signs including depression, edema and cyanosis of
the unfeathered skin, diarrhea, ecchymoses on the shanks and feet, and coughing, but no signs are pathognomonic. Sometimes the first sign of infection is sudden death. Human infections with HPAI virus are rare, usually occurring after prolonged close contact with infected poultry, but can result in severe illness, pneumonia, respiratory failure and death. A combination of virus isolation, serological tests, and direct antigen detection is used to diagnose HPAI infection in flocks. HPAI can spread rapidly between flocks, devastating the sector and resulting in severe trade restrictions.

Salmonellosis is a foodborne zoonotic disease caused by *Salmonella* bacteria. It is transmitted both from animals to humans and vice versa. The symptoms in humans include acute abdominal pain, diarrhoea, nausea, fever, and sometimes vomiting. When present, clinical signs in animals are similar – diarrhoea, fever and vomiting – but infection in animals is often asymptomatic. Diagnosis is based on clinical signs and isolation of the pathogen from the faeces, blood or tissues of affected animals or humans. Transmission from animals to humans is usually through contaminated food products of animal origin such as meat and eggs, or contaminated plant material such as lettuce. The socioeconomic impacts both in livestock (mainly in young stock) and in humans arise from losses in productivity due to sickness. Other economic impacts include public sector costs resulting from the investigation of cases, and healthcare costs.

The ASL2050 Expert Elicitation Protocol comprises five sections: bovine tuberculosis, brucellosis, highly pathogenic avian influenza, salmonellosis and AMR. Each zoonotic disease section includes questions for animals and humans as follows:

For cattle and poultry, questions are asked for each zoonosis on the:

- number of animal cases;
- number of animal deaths;
- number of salvage slaughtered;
- number of animal culls;
- percentage of underreporting in number of cases in animals;
- percentage of underreporting in number of deaths in animals.

An important feature is that questions are asked by the different cattle and poultry production systems, as defined by stakeholders, including intensive, semi-intensive and extensive for dairy; intensive, semi-intensive, extensive and feedlots for beef; and intensive (broilers and layers), semi-intensive and free range for poultry. Getting information by production system helps illuminate where major issues reside, i.e. where to focus policy attention.

For human beings, questions are asked for each zoonosis on the:

- number of human cases;
- number of human deaths;
- number of working days lost per household per case;
- average age of person affected;
- percentage of females affected out of total number of cases;
- household expenditure per case;
- government expenditure per case;
- percentage of underreporting in number of cases in humans;
- percentage of underreporting in number of deaths in humans.
Questions are asked by category of people: livestock keepers; middlemen i.e. all intermediaries working along the value chain, such as traders or labourers in processing plants; and consumers. Again, information by category of people helps narrow down the policy focus.

Finally, the Expert Elicitation Protocol includes a section on livestock-driven AMR. Questions are asked on the:

- proportion of cattle and poultry farms using antibiotics, by production system;
- trends on use of antibiotics in cattle and poultry farms, by production system;
- trends in antimicrobial resistance in humans;
- expert’s concerns on antimicrobial resistance in humans.

While asking questions is straightforward, the successful implementation of an expert elicitation depends on a number of factors. Important ones are the selection of experts; the introduction of the purpose of the protocol to the experts, who should well understand they are supposed to provide their opinion and not to report the dominant narrative or official statistics, unless of course they conform to their personal view; and the way questions are formulated. In addition, it is important to interpret results from protocol implementation keeping in mind official statistics and available scientific evidence, and in consultation with stakeholders. Indeed, it is only when done well that expert elicitation provides a valuable contribution to informed decision-making.

4. Conclusions

Livestock stakeholders in Kenya, including the government, find it challenging to design and implement zoonotic disease and AMR-related policies because of gaps in available evidence. There is neither systematic information on the incidence and prevalence of zoonotic diseases in animals and humans, nor on the use of antibiotics in animals and on antimicrobial resistance in humans. Additionally, there is no dataset to quantify the returns of investments for containing and managing zoonoses and AMR, such as measured by increases in animal and labour productivity.

The ministries in charge of animal and public health face what has been referred here to as “the zoonotic disease and AMR information trap”: they do not have information on zoonoses and AMR to make the case for getting resources for their control and management and to engage stakeholders in this endeavour. However, given the anticipated growth of livestock in Kenya – and the expected novel interactions between animals, humans and wild animals – the importance of assembling information on zoonotic diseases and AMR to start designing effective policies and programmes cannot be overstated. The government should prepare now to deal with emerging public health challenges to ensure that possible outbreak and spread of zoonotic diseases and AMR do not cripple the development of the entire country, as the avian influenza and Ebola crises serve to warn us. The implementation of an expert elicitation protocol on zoonoses and AMR, if well done, represents a first step in this direction.

January 2018. The production of this document has been coordinated by Stephen Gikonyo (FAO) and Ana Felis (FAO) under the guidance of the Members of the ASL2050 Kenya Steering Committee and in consultation with national livestock stakeholders.
References

Appendix 1. Content of reporting forms on animal diseases

<table>
<thead>
<tr>
<th>Republic of Kenya - Directorate of Veterinary Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Report Form</td>
</tr>
<tr>
<td>County</td>
</tr>
<tr>
<td>Sub-county</td>
</tr>
<tr>
<td>Location/ward</td>
</tr>
<tr>
<td>Sub location</td>
</tr>
<tr>
<td>Location coordinates</td>
</tr>
<tr>
<td>Locality (crush/abattoir/village/market)</td>
</tr>
<tr>
<td>Date of visit</td>
</tr>
<tr>
<td>Date of visit</td>
</tr>
<tr>
<td>Disease/conditions</td>
</tr>
<tr>
<td>Nature of diagnosis (clinical/lab/pm)</td>
</tr>
<tr>
<td>Test used (if laboratory)</td>
</tr>
<tr>
<td>Species</td>
</tr>
<tr>
<td>No. at risk</td>
</tr>
<tr>
<td>No. sick</td>
</tr>
<tr>
<td>Deaths</td>
</tr>
<tr>
<td>Slaughtered</td>
</tr>
<tr>
<td>Destroyed</td>
</tr>
</tbody>
</table>
Production system (intensive, extensive, mixed)

If zoonoses no. of human beings affected

Disease control measure undertaken

No. of animals vaccinated

<table>
<thead>
<tr>
<th>Organisation (GOK, private)</th>
<th>Organisation (GOK, private)</th>
</tr>
</thead>
</table>

Rift Valley fever
Any abortion/neonatal mortalities/fever/hemorrhage in herd?

Rinderpest, peste de petits ruminants, foot and mouth disease:
any stomatitis (mouth lesions)/enteritis (diarrhoea)?

Avian influenza
Any high mortality/inappetence/respiratory signs/wattles-combs swollen/skin hemorrhages?

Appendix 2. List of human diseases, including symptoms, reported by local authorities

Abortion; anaemia; arthritis, joint pains etc.; asthma; autism; bilharzia; brucellosis; burns; cardiovascular conditions; central nervous system conditions; cerebral palsy; chicken pox; cholera; chromosomal abnormalities (e.g. Downs, Edwards syndromes, etc); confirmed malaria (only positive cases); congenital anomalies; deaths due to road traffic injuries; dental disorders; diabetes; diarrhoea; disease of puerperium and childbirth; disease of the skin; dog bites; dracunculosis (guinea worm); dysentery (bloody diarrhoea); ear infections/conditions; epilepsy; eye infections; fevers; fistula (birth related); hepatitis; hypertension; intestinal worms; jiggers infestation; kalazar (leishmaniasis); malaria in pregnancy; malnutrition; measles; meningococcal meningitis; mental disorders; mumps; muscular skeletal conditions; neonatal tetanus; neoplasms; newly diagnosed HIV; other diseases of respiratory system; other bites; other central nervous system conditions; other convulsive disorders; other eye conditions; other meningitis; other injuries; overweight (bmi >25); physical disability; plague; pneumonia; poisoning; poliomyelitis (afp); referrals from community unit; referrals to community unit; rickets; road traffic injuries; sexual violence; sexually transmitted infections; snake bites; suspected malaria; tetanus; tonsillitis; trypanosomiasis; tuberculosis; typhoid fever; upper respiratory tract infections; urinary tract infection; violence related injuries; viral haemorrhagic fever; yellow fever cases.