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Chapter 1

Presentation

Soils provide ecosystem services critical to life on Earth. The Food and Agricul-
tural Organization of the United Nations (FAO) recognizes the need to preserve
soil resources from degradation and boost healthy soils. In 2012, FAO members
established the Global Soil Partnership (GSP) as a mechanism to improve soil
governance at global, regional and national levels.

The GSP aims to promote sustainable soil management at all levels through differ-
ent means including normative tools, capacity development, international events
and field projects relying on evidence-based science. Understanding the status of
a given soil in different land uses, including its properties and functions, and relat-
ing this information to the various ecosystem services provided by them, becomes
mandatory for sustainable soil management decisions. As the availability of soil
data and information is fundamental to underpin these decisions, partners of the
GSP decided to establish a Global Soil Information System (GLOSIS) based on a
distributed model whereby the system is fed by national soil information systems.

In the process of establishing GLOSIS, a number of components are being es-
tablished, including the International Network of Soil Information Institutions
(INSII), a GSP Soil Data Policy (FAO and GSP, 2017b) and the Pillar 4 working
group. Taking advantage of this process and responding to a request for support in
addressing the Sustainable Development Goal Indicators, especially indicator 15.3
which includes the restoration of degraded soils, the GSP Plenary Assembly in 2016
instructed the Intergovernmental Technical Panel on Soils (ITPS) and the GSP
Secretariat to develop the first-ever Global Soil Organic Carbon map (GSOCmap)
following the same bottom-up approach as GLOSIS. To this end, members under
the INSII umbrella developed guidelines and technical specifications for the prepa-
ration of the GSOCmap and countries were invited to prepare their national soil
organic carbon maps according to these specifications.

Given the scientific advances in tools for mapping soil organic carbon (SOC), many
countries requested the GSP Secretariat to support them in the process of prepar-
ing national SOC maps, hence an intensive capacity development programme on
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SOC mapping has been implemented to support countries in this process. Various
regional and national training sessions were organized using an on-the-job-training
modality to ensure that national experts be trained on the state of the art digital
soil mapping techniques using their own datasets to produce reliable SOC maps.
The GSP Secretariat invited a group of experts to prepare the first edition of a
Soil Organic Carbon Mapping Cookbook (FAO, 2017) as a comprehensible reference
knowledge source to support the capacity development process.

The second edition of the cookbook provides generic methodologies and technical
steps to produce SOC maps. This edition has been updated with knowledge and
practical experiences gained during the implementation process of GSOCmap V1.0
throughout 2017. The cookbook includes step-by-step guidance for developing 1
km grids for SOC stocks, as well as for the preparation of local soil data, the com-
pilation and preprocessing of ancillary spatial data sets, upscaling methodologies,
and uncertainty assessment methods. Guidance is mainly specific to SOC data,
but as this cookbook contains generic sections on soil grid development, it can be
applicable to map various soil properties using digital soil mapping techniques.

The guidance focuses on the upscaling of national SOC stocks in order to pro-
duce the GSOCmap. Therefore, the cookbook supplements the GSP Guidelines
for Sharing National Data/Information to Compile a Global Soil Organic Carbon
(GSOC) Map (FAO and GSP, 2017a), providing technical guidelines to prepare
and evaluate spatial soil data sets in order to:

• Determine SOC stocks from local samples to a target depth of 30 cm;
• Prepare spatial covariates for upscaling; and
• Select and apply the best suitable upscaling methodology.

In terms of statistical upscaling methods, the use of conventional upscaling meth-
ods using soil maps and soil profiles is still very common, although this approach is
mostly considered empirical by soil mappers. Even though evaluations are based
on polygon soil maps, the resulting SOC maps can be rasterized to any target grid.
However, a spatially-explicit assessment of uncertainties is impossible. The use of
digital soil mapping to upscale local soil information is increasingly applied and
recommended.

This cookbook presents two approaches in detail, namely spatial modelling us-
ing either regression or data mining analysis, combined with geostatistics such as
regression-kriging. The second edition includes updates on uncertainty assessment
of the presented methods.

It is our hope that this cookbook will fulfill its mandate of easily enabling any user
to produce a digital SOC or other soil property map using soil legacy data and
modern methods of digital soil mapping with the overall aim for improved decision
making on soil management.

http://www.fao.org/3/a-bs901e.pdf
http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf


3 1.1. How to use this book

1.1 How to use this book

In the second edition of this cookbook, we want to introduce five different ap-
proaches for obtaining a SOC map, using sample data sets from the Former Yu-
goslav Republic of Macedonia (FYROM).

The first two mapping methods presented are classified as conventional upscaling
using existing soil class maps. The first method is called class-matching. In this
approach, we derive average SOC stocks per class from the soil type for which a
national map exists, or through combination with other spatial covariates (e.g. land
use category, climate type, biome, etc.). This approach is used in the absence of
spatial coordinates of the source data. The second method used is geo-matching,
where upscaling is based on averaged SOC values per mapping unit.

In addition to that, we present three digital soil mapping methods. Regression-
kriging is a hybrid model that uses both deterministic and a stochastic components
(Hengl et al., 2007). The next method is called the random forest method. Random
forest is an ensemble of regression trees based on bagging. This machine learning
algorithm uses a different combination of prediction factors to train multiple re-
gression trees (Breiman, 1996). The last method is called support vector machines.
This method applies a simple linear method to the data but in a high-dimensional
feature space non-linearly related to the input space (Karatzoglou et al., 2006).

We present this diversity of methods because there is no best mapping method
for digital soil mapping and testing, and selection has to be done for every data
scenario (Guevara et al., 2018).

This cookbook is a step-by-step manual starting with soil data preparation, pro-
ducing the map, and ending with map validation and data sharing (see Fig. 1.1).
In the different chapters, we present a continuing example using the FYROM soil
database and some environmental covariates. In every chapter, we start with the
input data, and produce the proposed output, which is usually used as input for
the following chapter. The soil data needed can be downloaded from the data
repository, and the same applies to the environmental covariates. The results ob-
tained in every chapter can also be downloaded for comparison purposes from the
result folder. Finally, all the needed code is summarized in Chapter 12 and can
be downloaded from the code folder.

The authors used the Github development environment to build this document.
We also produced an online version of the cookbook to be able to implement
minor changes/improvements to the document without reprinting. We encourage
users to follow the online version which is available on the GSP Website.

1.2 The FYROM soil database

The sample data set used for the spline function and the regression-kriging for
digital soil mapping in this cookbook has been extracted from the Macedonian Soil
Information System Database (MASIS - FAO 2015). The database contains around

https://github.com/FAO-GSP/SOC-Mapping-Cookbook/tree/master/data
https://github.com/FAO-GSP/SOC-Mapping-Cookbook/tree/master/data
https://github.com/FAO-GSP/SOC-Mapping-Cookbook/tree/master/covs
https://github.com/FAO-GSP/SOC-Mapping-Cookbook/tree/master/results
https://github.com/FAO-GSP/SOC-Mapping-Cookbook/tree/master/code
http://www.maksoil.ukim.mk/
http://www.maksoil.ukim.mk/
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Figure 1.1: Proposed graphical workflow for producing a SOC map from data
preparation to final result publishing
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4,000 soil profiles with 11,000 horizons. The MASIS was developed thanks to the
financial and technical contribution of FAO through its Technical Cooperation
Programme. Decades of archived soil research have now been transformed into an
accurate, up-to-date, and fully functioning information system, based on state-of-
the-art digital soil mapping techniques.

Soils are a precious resource in Macedonia (FYROM), but climate change and other
threats, including heavy human activities, are degrading the soils at an alarming
rate. Without a proper evidence base such as a soil information system (SIS), the
FYROM had no systematic way of making decisions to promote sustainable soil
management, or of monitoring soil condition and functions over time. Since soil
information is needed to guide sustainable soil and land management, MASIS will
technically contribute to the agricultural development of the country.

Bringing MASIS to life took just over two years and was completed in four phases.
The first phase involved compiling, evaluating and systemizing more than 100
existing hardcopy soil maps that contained information on over 80% of the coun-
try, and soil legacy data from about 15,000 soil profiles. The missing 20% was
complemented using an advanced soil survey.

The data was then used to develop a spatial geo-database within MASIS. This
led to the production of a national soil map compliant with both, European and
global standards, in phase two of the project.

The MASIS is available at the following link: http://www.maksoil.ukim.mk/.

1.3 Foreword to the first edition

The first edition of the cookbook provides step-by-step guidance for developing
1 km grids for the mapping of soil carbon stocks. It includes the preparation
of local soil data, the compilation and pre-processing of ancillary spatial data
sets, upscaling methodologies, and uncertainty assessments. Guidance within the
document is specific to soil carbon data, but also contains many generic sections
on soil grid development, as it can be relevant for the analysis other soil properties.

Therefore, this first edition is the beginning of a series of updates and extensions,
necessary to cover a larger variety of upscaling approaches. Experiences gained
throughout 2017 during the GSOCmap programme, through applications at coun-
try scale and various trainings scheduled for 2017, shall be considered in the next
editions. The section on uncertainties will also be adjusted to include more prac-
tical implementation steps.

1.4 Foreword to the second edition

This second edition has been updated with knowledge and practical experiences
gained during the implementation process of the GSOCmap V1.0 throughout 2017.

http://www.maksoil.ukim.mk/
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The cookbook includes step-by-step guidance for developing 1 km grids for SOC
stocks, as well as for the preparation of local soil data, the compilation and pre-
processing of ancillary spatial data sets, upscaling methodologies, and uncertainty
assessment methods. Guidance is mainly specific to soil organic carbon data, but
as this cookbook contains generic sections on soil grid development, it can be
applicable to map various soil properties.



Chapter 2

Soil property maps

R. Baritz

2.1 Definitions and objectives

Soil property maps represent spatial information about soil properties to a certain
depth or for soil horizons. Conventionally, soil property maps are generated as
polygon maps, with properties from typical soil profiles representing soil mapping
units. Digital Soil Mapping (DSM) allows more accurate spatial mapping of soil
properties, including the spatial quantification of the prediction error. The quality
of such predictions improves with increasing number of local observations (e.g. soil
profiles) available to build the prediction model. Whenever possible, DSM is rec-
ommended.

The development of soil property maps via DSM is spatially flexible. For different
soil properties (e.g. concentration and stocks of nutrients in the soil, carbon, heavy
metals, pH, cation exchange capacity, physical soil properties such as particle
sizes and bulk density, etc.), various depth classes and spatial resolution can be
modeled depending on project and mapping objectives and available input data.
For GSOCmap, a 1 km grid is pursued. The same methodology and input data
can also be used to produce higher resolution soil grids.

The mapping of global soil organic carbon (GSOC) stocks will be the first im-
plementation of a series of other soil property grids to be developed for GLOSIS,
based on the typical GSP country-driven system. GSOCmap will demonstrate
the capacity of countries all around the globe to compile and manage national
soil information systems and to utilize and evaluate these data following agreed
international specifications. The GSP Secretariat, FAO, and its regional offices,
as well as the Regional Soil Partnerships, are challenged together with the GSP
members, especially the members of INSII, to establish national capacity and soil
data infrastructures to enable soil property mapping.

7
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2.2 Generic mapping of soil grids: upscaling of plot-
Level measurements and estimates

The following table presents an overview of different geographic upscaling ap-
proaches, recommended to produce soil property maps, in particular, GSOCmap.

Conventional
upscaling
(Lettens et al.,
2004)

Class-matching Derive average SOC stocks per
class: soil type for which a national
map exists, or combination with
other spatial covariates (e.g. land
use category, climate type, biome,
etc.). This approach is used in the
absence of spatial coordinates of
the source data.

Geomatching Point locations with spatial
referencing are overlaid with
geographic information system
(GIS) layers of important covariates
(e.g. a soil map). Upscaling is based
on averaged SOC values per
mapping unit.

Digital soil
mapping
(Dobos, 2006)

Data mining and
geostatistics

Multiple regression, classification
tree, random forests,
regression-kriging, kriging with
external drift.

Digital soil mapping is based on the development of functions for upscaling point
data (with soil measurements) to a full spatial extent using correlated environmen-
tal covariates, for which spatial data are available.

DSM: Concept of environmental correlation that explores the quanti-
tative relationship between environmental variables and soil properties
and could be used to predict the latter with multivariate prediction
techniques.

The approaches outlined and demonstrated in this technical manual consider
the reference framework of the SCORPAN model for digital soil mapping (DSM;
McBratney et al. (2003)). In the SCORPAN reference framework a soil attribute
(e.g., SOC) can be predicted as a function of the soil forming environment, in
correspondence with soil forming factors from the Dokuchaev hypothesis and
Jenny’s soil forming equation based on climate, organisms, relief, parent material
and elapsed time of soil formation (Florinsky, 2012). The SCORPAN (Soils,
Climate, Organisms, Parent material, Age and (N) space or spatial position, see
McBratney et al. (2003)) reference framework is a empirical approach that can be
expressed as in Eq. (1):
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estimates

Sa[x;y t] = f(S[x;y t], C[x;y t], O[x;y t], R[x;y t], P[x;y t], A[x;y t]) (2.1)

where Sa is the soil attribute of interest at a specific location N (represented by
the spatial coordinates of field observations x; y) and representative for a specific
time frame (t); S is the soil or other soil properties that are correlated with Sa;
C is the climate or climatic properties of the environment; O are the organisms,
vegetation, fauna or human activity; R is topography or landscape attributes; P
is parent material or lithology; and A is the substrate age or the time factor.
To generate predictions of Sa across places where no soil data is available, N
should be explicit for the information layers representing the soil forming factors.
These predictions will be representative of the time period (t) when soil available
data was collected. Therefore, the prediction factors ideally should represent, the
conditions of the soil forming environment for the same period of time (as much as
possible) when soil available data was collected. In Eq. (1) the left side is usually
represented by the available geo-spatial soil observational data (e.g., from legacy
soil profile collections) and the right side of the equation is represented by the soil
prediction factors. These prediction factors are normally derived from four main
sources of information: a) thematic maps (i.e., soil type, rock type, land use type);
b) remote sensing (i.e., active and passive); c) climate surfaces and meteorological
data; and d) digital terrain analysis or geomorphometry. The SCORPAN reference
framework is widely used, but one critical challenge is to quantify the relative
importance of the soil forming factors (i.e., prediction factors) that could explain
the underlying soil processes controlling the spatial variability of a specific soil
attribute (i.e., SOC).





Chapter 3

Setting-up the software
environment

Y. Yigini

This cookbook focuses on SOC modeling using open source digital mapping tools.
The instructions in this chapter will guide user through installing and manually
configuring the software to be used for DSM procedures for Microsoft Windows
desktop platform. Instructions for the other platforms (e.g. Linux Flavours, Ma-
cOS) can be found through free online resources.

3.1 Use of R, RStudio and R Packages

R is a language and environment for statistical computing. It provides a wide va-
riety of statistical (e.g. linear modeling, statistical tests, time-series, classification,
clustering, etc.) and graphical methods, and is highly extensible.

3.1.1 Obtaining and installing R

Installation files and instructions can be downloaded from the Comprehensive R
Archive Network (CRAN).

1. Go to the following link https://cloud.r-project.org/index.html to download
and install R.

2. Pick an installation file for your platform.

11

https://cloud.r-project.org/index.html


Chapter 3. Setting-up the software environment 12

3.1.2 Obtaining and installing RStudio

Beginners will find it very hard to start using R because it has no Graphical User
Interface (GUI). There are some GUIs which offer some of the functionality of
R. RStudio makes R easier to use. It includes a code editor, debugging and
visualization tools. Similar steps need to be followed to install RStudio.

1. Go to https://www.rstudio.com/products/rstudio/download/ to download
and install RStudio’s open source edition.

2. On the download page, RStudio Desktop, Open Source License option should
be selected.

3. Pick an installation file for your platform.

3.1.3 Getting started with R

• R manuals: http://cran.r-project.org/manuals.html
• Contributed documentation: http://cran.r-project.org/other-docs.html
• Quick-R: http://www.statmethods.net/index.html
• Stackoverflow R community: https://stackoverflow.com/questions/tagged/r

3.2 R packages

When you download R, you get the basic R system which implements the R
language. R becomes more useful with the large collection of packages that extend
the basic functionality of it. R packages are developed by the R community.

3.2.1 Finding R packages

The primary source for R packages is CRAN’s official website, where currently
about 12,000 available packages are listed. For spatial applications, various pack-
ages are available. You can obtain information about the available packages di-
rectly on CRAN with the available.packages() function. The function returns
a matrix of details corresponding to packages currently available at one or more
repositories. An easier way to browse the list of packages is using the Task Views
link, which groups together packages related to a given topic.

3.2.2 Most used R packages for digital soil mapping

As was previously mentioned, R is extensible through packages. R packages are
collections of R functions, data, documentation and compiled code easy to share
with others. In the following Subsections, we are going to present the most used
packages related to digital soil property mapping.

https://www.rstudio.com/products/rstudio/download/
http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html
http://www.statmethods.net/index.html
https://stackoverflow.com/questions/tagged/r
https://cran.r-project.org/
https://cran.r-project.org/web/views/
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3.2.2.1 Soil science and pedometrics

aqp: Algorithms for quantitative pedology. A collection of algorithms related to
modeling of soil resources, soil classification, soil profile aggregation, and visualiza-
tion.

GSIF: Global Soil Information Facility (GSIF). Tools, functions and sample
datasets for digital soil mapping. GSIF tools (standards and functions) and
sample datasets for global soil mapping.

ithir: A collection of functions and algorithms specific to pedometrics. The pack-
age was developed by Brendan Malone at the University of Sydney.

soiltexture: The Soil Texture Wizard is a set of R functions designed to produce
texture triangles (also called texture plots, texture diagrams, texture ternary plots),
classify and transform soil textures data. These functions virtually allow to plot
any soil texture triangle (classification) into any triangle geometry (isosceles, right-
angled triangles, etc.). The set of functions is expected to be useful to people using
soil textures data from different soil texture classification or different particle size
systems. Many (> 15) texture triangles from all around the world are predefined
in the package. A simple text-based GUI is provided: soiltexture_gui().

3.2.2.2 Spatial analysis

raster: Reading, writing, manipulating, analyzing and modeling of gridded spatial
data. The package implements basic and high-level functions, processing of very
large files is supported.

rgdal: Provides bindings to Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL).

RSAGA: The package provides access to geocomputing and terrain analysis func-
tions of SAGA GIS from within R by running the command line version of System
for Automated Geoscientific Analyses (SAGA).

sf : The package provides an improvement on sp and rgdal for spatial datasets.
It is using the newly Simple Feratures (SF) standard which is widely implemented
in spatial databases (PostGIS, ESRI ArcGIS), and forms the vector data basis
for libraries such as GDAL and web standards such as GeoJSON (http://geojson.
org/).

sp: The package provides classes and methods for spatial data. The classes docu-
ment where the spatial location information resides, for 2D or 3D data.

3.2.2.3 Modelling

automap: This package performs an automatic interpolation by automatically
estimating the variogram and then calling gstat.

https://CRAN.R-project.org/package=aqp
https://CRAN.R-project.org/package=GSIF
http://ithir.r-forge.r-project.org/
https://CRAN.R-project.org/package=soiltexture
https://cran.r-project.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=RSAGA
/url%7Bhttp://www.saga-gis.org/en/index.html%7D
https://cran.r-project.org/web/packages/sf/index.html
http://geojson.org/
http://geojson.org/
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=automap
https://CRAN.R-project.org/package=gstat
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caret: Extensive range of functions for training and plotting classification and
regression models.

Cubist: Regression modeling using rules with added instance-based corrections.
Cubist models were developed by Ross Quinlan.

C5.0: C5.0 decision trees and rule-based models for pattern recognition. Another
model structure developed by Ross Quinlan.

gam: Functions for fitting and working with generalized additive models.

gstat: Variogram modeling with simple, ordinary and universal point or block
(co)kriging, sequential Gaussian or indicator (co)simulation. The package includes
variogram and variogram map plotting utility functions.

nnet: Software for feed-forward neural networks with a single hidden layer, and
for multinomial log-linear models.

3.2.2.4 Mapping and plotting

Both raster and sp have handy functions for plotting spatial data. The following
packages can be used as functional extentions.

ggplot2: Besides using the base plotting functionality, this is another useful plot-
ting package.

leaflet: Create and customize interactive maps using the Leaflet JavaScript library
and the htmlwidgets package. These maps can be used directly from the R
console, from RStudio, in Shiny apps and RMarkdown documents.

plotKML: Writes sp-class, spacetime-class, raster-class and similar spatial and
spatiotemporal objects to KML following some basic cartographic rules.

3.2.3 Packages used in this cookbook

The authors of this cookbook used a number of different R packages. All required
packages used in the cookbook can be installed using the following code and the
install.packages() function when starting a new SOC mapping project. Alter-
natively, the code for the installation of the needed packages is included at the
beginning of each Chapter.
# Install all required R packages used in the cookbook
install.packages(c("aqp", "automap", "car", "caret", "e1071",

"GSIF", "htmlwidgets", "leaflet", "mapview",
"Metrics", "openair", "plotKML", "psych",
"quantregForest", "randomForest", "raster",
"rasterVis", "reshape", "rgdal", "RSQLite",
"snow", "soiltexture", "sf", "sp"))

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=Cubist
https://CRAN.R-project.org/package=C5.0
https://CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=nnet
https://cran.r-project.org/web/packages/ggplot2/index.html
https://CRAN.R-project.org/package=leaflet
https://cran.r-project.org/web/packages/htmlwidgets/index.html
https://shiny.rstudio.com/
https://CRAN.R-project.org/package=plotKML
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3.3 R and spatial data

R has a large and growing number of spatial data packages. We recommend
taking a quick browse on R’s official website to see the spatial packages available:
http://cran.r-project.org/web/views/Spatial.html.

3.3.1 Reading shapefiles

The Environmental Systems Research Institute (ESRI) provides a shapefile for-
mat SHP which is widely used for storing vector-based spatial data (i.e., points,
lines, polygons). This example demonstrates use of raster package that provides
functions for reading and/or writing shapefiles.
library(raster)
# Load the soil map from a shapefile *.shp file
soilmap <- shapefile("MK_soilmap_simple.shp")

We may want to use these data in other GIS environments such as ArcGIS, QGIS,
SAGA GIS, etc. This means we need to export the SpatialPointsDataFrame to
an appropriate spatial data format such as a shapefile *.shp.
# For example, we can select the soil units classified as
# fluvisols according to WRB
Fluvisols <- soilmap[soilmap$WRB == "Fluvisol",]

# Save this as a new shapefile
shapefile(Fluvisols, filename = 'results/fluvisols.shp',

overwrite = TRUE)

3.3.2 Coordinate reference systems in R

We need to define the Coordinate Reference System (CRS) to be able to perform
any sort of spatial analysis in R. To clearly tell R this information we define
the CRS which describes a reference system in a way understood by the PROJ.4
projection library. Find more information at this link: http://trac.osgeo.org/proj/.

An interface to the PROJ.4 library is available in the rgdal package. An alterna-
tive to using PROJ.4 character strings, we can use the corresponding yet simpler
EPSG (European Petroleum Survey Group) code. rgdal also recognizes these
codes. If you are unsure of the PROJ.4 or EPSG code for the spatial data that
you have but know the CRS, you should consult http://spatialreference.org/ for
assistance.
# Print the CRS for the object soilmap
soilmap@proj4string

## CRS arguments:

http://cran.r-project.org/web/views/Spatial.html
http://trac.osgeo.org/proj/
http://spatialreference.org/
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## +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
## +towgs84=0,0,0

The following example shows how a spatial object from a (comma-separated values)
CSV file (*.csv) can be created. We can use the coordinates() function from
the sp package to define which columns in the data frame refer to actual spatial
coordinates. Here, the coordinates are listed in columns X and Y.
# Load the table with the soil observations site information
dat_sites <- read.csv(file = "data/site-level.csv")

# Convert from table to spatial points object
coordinates(dat_sites) <- ~ X + Y

# Check the coordinate system
dat_sites@proj4string

## CRS arguments: NA
# As the CRS is not defined, we can assign the correct CRS as we
# have information about it. In this case, it should be EPSG:4326
dat_sites@proj4string <- CRS("+init=epsg:4326")

# Check the CRS again
dat_sites@proj4string

## CRS arguments:
## +init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs
## +ellps=WGS84 +towgs84=0,0,0

3.3.3 Working with rasters

Most of the functions for handling raster data are available in the raster package.
There are functions for reading and writing raster files from and to different formats.
In DSM, we mostly work with data in table format and then rasterize this data so
that we can produce a continuous map. For doing this in R environment, we will
load raster data in a data frame. This data is a digital elevation model (DEM)
provided by the International Soil Reference and Information Centre (ISRIC) for
FYROM.
# For handling raster data, we load raster package
library(raster)

# Load DEM from the raster *.tif files
DEM <- raster("covs/DEMENV5.tif")

We may want to export this raster to a suitable format to work in a standard GIS
environment. See the help file for writing a raster ?writeRaster to get information
regarding the supported grid types that data can be exported into. Here, we
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will export our raster to ESRI ASCII (American Standard Code for Information
Interchange), as it is a common and universal raster format.

We may also want to export our DEM to KML (Keyhole Markup Language) file
(*.kml) using the KML() function. KML() is a handy function from the raster
package for exporting grids to KML format. Note that we need to re-project the
data to the World Geodetic System (WGS) WGS84 geographic. The raster re-
projection is performed using the projectRaster() function. Look at the help
file ?projectRaster for more information.

3.4 Other DSM software and tools

• GRASS GIS: Available at https://grass.osgeo.org/ (free and open source).
• SAGA GIS: Available at https://sourceforge.net/projects/saga-gis/files/

(free and open source).
• QGIS: Available at http://www.qgis.org/en/site/forusers/download.html

(free and open source).

https://grass.osgeo.org/
https://sourceforge.net/projects/saga-gis/files/
http://www.qgis.org/en/site/forusers/download.html




Chapter 4

Preparation of local soil data

G.F. Olmedo & R. Baritz

The authors of this Chapter used R packages. To run the code provided in this
Chapter, the following packages need to be installed in the R user library. If the
packages are not yet installed, the install.packages() function can be used.
# Installing packages for Chapter 'Preparation of Local Soil Data'
install.packages(c("aqp", "GSIF"))

4.1 Soil profiles and soil augers

Soil profiles are complex real-world entities. They are composed of soil layers which
form soil horizons; the soil layers have different properties and these properties are
evaluated with different methods. As we know, soil and vertical soil properties are
landscape elements and part of matter dynamics (water, nutrients, gases, habitat,
etc.). Local soil samples or soil profiles add a third dimension into the spatial
assessment of soil properties in the landscape.

Most commonly, soils are described as vertical profiles using soil pits (sometimes
also augerings, but this is less accurate). Soil profiles are described using macro-
morphological properties. These properties can be assessed in the field without
analysis by making a field inventory or land evaluation. For additional quantitative
analysis, soils are then sampled by genetic horizons or by depth class.

The sampling of soils is the basis to obtain quantitative information. Depending
on the goal of a project, sampling can be quite diverse. Sampling can follow the
description of the soil or can be conducted without, for example using a spade or
auger to generate a composite sample for a certain depth independent of the mor-
phological features such as soil horizons. Sampling locations can be representative
of a certain location, project, field, or mapped object, such as a soil type.

19
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Table 4.1: Example for site-level data table

ProfID X_coord Y_coord Year Soil_Type
P1276 7591265 4632108 2012 Complex of Chernozem …
P1277 7592027 4631664 2012 Complex of Chernozem …
P1278 7592704 4631941 2012 Complex of Chernozem …
P1279 7590817 4633115 2013 Complex of Chernozem …

4.2 Soil database

4.2.1 Type of soil database

In order to process and evaluate soil information from field assessments, soil pro-
file data and analytical information need to be stored in a database. This can
be a set of simple Microsoft Office Excel spreadsheets, or a relational or object-
oriented database management system (Baritz et al., 2008). When working in R,
SoilProfileCollections (SPC) from the R aqp package are a useful tool. Ta-
bles 4.1 and 4.2 are examples of how soil information can be stored. The advantage
of such organization is the possibility to develop relational databases which can
be easily queried. Such a systematic approach will support the organization of na-
tional soil information and will reduce errors in future modeling exercises (Baritz
et al., 2008).

Table 4.1 stores site-level data, which describe the location of the soil description
and/or sampling site: spatial coordinates, landscape attributes such as slope gra-
dient and slope form, soil class, land cover type, rock type, etc. In this table, every
row should hold a single soil profile. One column, usually the first one, should be
the soil profile’s unique identifier. Using the latter, soil information can be easily
linked from one table to another.

Table 4.2 stores information from the soil description, such as horizon name, hori-
zon thickness, organic matter content, carbonate content, soil color, laboratory
soil analysis, etc. The first column contains the soil profile’s unique identifier. It is
important to include the upper and lower limits for each soil layer; in case the sam-
pling strategy deviates from soil layers/soil horizons, the upper and lower depth of
the sampling locations should be specified if possible. This information is needed
for modeling soil properties over the soil profile.

4.2.2 Technical steps – Loading soil data from tables in R

This Chapter includes two examples for soil data preparation. As each step for the
soil data preparation is explained in detail, the given code is mixed with text. A
copy of the bare code is presented in Section 12.1 for using soil profiles data, and
for using topsoil or auger data the code can be found in Section 12.2.
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Table 4.2: Example for profile-description table

ProfID HorID top bottom SOC BLD CRF Sand Silt Clay
P1276 P1276H01 0 50 2.78 1.05 11 52 39 9
P1276 P1276H02 50 76 1.75 1.45 4 56 31 14
P1276 P1276H03 76 100 1.19 1.22 2 43 35 22
P1277 P1277H01 0 28 1.93 1.36 8 59 22 18
P1277 P1277H02 28 48 1.60 1.43 9 69 15 16
P1277 P1277H03 48 63 1.26 NA 25 65 21 13
P1277 P1277H04 63 120 0.86 NA 54 63 23 14
P1278 P1278H01 0 40 2.32 1.27 0 50 39 12
P1278 P1278H02 40 68 1.80 1.48 1 46 39 16
P1278 P1278H03 68 120 0.89 1.18 0 47 39 14

The following code shows the necessary steps for loading soil profiles data.

Step 1 - Loading soil horizons data
dat <- read.csv(file = "data/horizons.csv")

# Explore the data
str(dat)
summary(dat)

## 'data.frame': 10292 obs. of 10 variables:
## $ ProfID: Factor w/ 4118 levels "P0000","P0001",..: 1 1 1 2 2 ..
## $ HorID : Factor w/ 9914 levels "P0000H01","P0000H02",..: 1 2 ..
## $ top : int 4 23 46 2 11 0 22 63 0 3 ...
## $ bottom: int 23 46 59 11 31 22 63 90 19 10 ...
## $ SOC : num NA NA NA NA NA ...
## $ BLD : num NA NA NA NA NA NA NA NA NA NA ...
## $ CRF : num 54 62 47 66 70 57 77 87 8 4 ...
## $ SAND : int 52 59 67 45 40 52 48 43 50 48 ...
## $ SILT : num 34 31 24 39 31 33 36 42 16 35 ...
## $ CLAY : num 14 11 8 16 28 15 16 16 34 17 ...
## ProfID HorID top
## P2881 : 64 P2881H01: 64 Min. : 0.00
## P1481 : 32 P0434H02: 8 1st Qu.: 0.00
## P2096 : 32 P1286H01: 8 Median : 20.00
## P3623 : 32 P2056H01: 8 Mean : 27.48
## P2056 : 24 P2056H02: 8 3rd Qu.: 47.00
## P2142 : 24 P2056H03: 8 Max. :285.00
## (Other):10084 (Other) :10188
## bottom SOC BLD
## Min. : 1.00 Min. : 0.000 Min. :0.00
## 1st Qu.: 25.00 1st Qu.: 1.090 1st Qu.:1.40
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## Median : 45.00 Median : 1.800 Median :1.54
## Mean : 55.82 Mean : 2.603 Mean :1.55
## 3rd Qu.: 80.00 3rd Qu.: 2.940 3rd Qu.:1.66
## Max. :295.00 Max. :83.820 Max. :2.93
## NA's :831 NA's :7845
## CRF SAND SILT
## Min. : 0.0 Min. : 0.00 Min. : 0.00
## 1st Qu.: 2.0 1st Qu.: 44.00 1st Qu.:16.00
## Median : 8.0 Median : 58.00 Median :24.00
## Mean : 13.5 Mean : 57.67 Mean :25.64
## 3rd Qu.: 21.0 3rd Qu.: 72.00 3rd Qu.:33.00
## Max. :104.0 Max. :100.00 Max. :80.00
## NA's :3360 NA's :1049 NA's :920
## CLAY
## Min. : 0.00
## 1st Qu.: 7.00
## Median :14.00
## Mean :17.08
## 3rd Qu.:24.00
## Max. :83.00
## NA's :927

Step 2 - Loading site-level data
dat_sites <- read.csv(file = "data/site-level.csv")

# Explore the data
str(dat_sites)

## 'data.frame': 4118 obs. of 6 variables:
## $ X.1 : int 1 2 3 4 5 6 7 8 9 10 ...
## $ ProfID : Factor w/ 4118 levels "P0000","P0001",..: 1 2 3 ..
## $ soiltype : Factor w/ 58 levels "Albic Luvisol",..: 3 3 3 57..
## $ Land.Cover: int 25 24 25 26 26 27 27 27 22 23 ...
## $ X : num 20.8 20.8 20.8 20.8 20.8 ...
## $ Y : num 42 42 42 42 42 ...

4.3 Completeness of measurements and estimates

The GSP Guidelines for Sharing National Data/Information to Compile a Global
Soil Organic Carbon (GSOC) Map (FAO and GSP, 2017a) specify which soil pa-
rameters are needed to produce a GSOCmap. Of course, other soil properties can
be evaluated and modeled using this cookbook as well.

SOC stocks for soil horizons or targeted soil depths can be calculated using
the equations in Section 8.4.3 of the GSP Guidelines for Sharing National
Data/Information to Compile a Global Soil Organic Carbon (GSOC) Map.

http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf
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Carbon concentration, bulk density and stone content for a certain depth or
genetic horizon are needed to calculate the amount of carbon stored in that depth
interval/soil horizon. In many countries, legacy data from former surveys and
projects, as well as from various owners and data sources are compiled. Often,
measured bulk densities are either missing, only available for few soil profiles, or
are estimated. Stones in the soil profile are usually only estimated, and if augers
are used for sampling, stone content is not assessed at all. Pedo-transfer functions
(PTFs) can be used to fill data gaps (e.g. bulk density), and interpolation
approaches can be used to infer from measured depths to target depths.

4.3.1 Stones

The estimation of stoniness is difficult and time-consuming, and therefore not
carried out in many national soil inventories, or only estimated visually in the
profile. Unfortunately, if soil inventories and sampling are done with simple pits
or augers rather than standard soil pits, stones are very often not assessed.

As a proxy, it is recommended to derive national default values from well-described
soil profile pits by soil type.
# Summary of column CRF (coarse fragments) in the example data base
summary(dat$CRF)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 2.0 8.0 13.5 21.0 104.0 3360
# Convert NA's to 0
dat$CRF[is.na(dat$CRF)] <- 0

hist(dat$CRF, col = "light gray")

4.3.2 Bulk density

The amount of fine earth is one of the basic estimation parameters to estimate SOC
stocks in the mineral soil as well as in peat layers. It depends on the volume of soil
considered (depth × reference area) and the bulk density (BD). BD expresses the
soil weight per unit volume. When determining the BD, it is important to subtract
stones, if any, from the cylinder samples; if this is not done, BD is underestimated,
and the resulting SOC stocks are overestimated. Stones in the cylinders are added
to the total stone content in order to correct for the total amount of fine earth per
volume of soil in a given area.

Most of the soil profiles in national databases come from agricultural land. Very
often, BD estimates do not consider fine stones because top soils (e.g. plough layers)
seem to be free of visible stones.

Mineral soil: Default values from the General Guide for Estimating Moist Bulk
Density given by United States Department of Agriculture. Soil Conservation

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074844
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074844
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Histogram of dat$CRF

dat$CRF

F
re

qu
en

cy

0 20 40 60 80 100

0
10

00
30

00
50

00

Figure 4.1: Histogram of coarse fragments values

Service (2018). If analytical BD is missing, BD can be estimated using pedo-
transfer functions (see examples listed below).

For organic soil material, BDx can be estimated as follows, considering existing
litter layers L (or Oi horizon); organic or duff layers, partially decomposed ma-
terial above the mineral soil and beneath the litter layer; fermentation horizons
F ;humus horizons H (or Oe and Oa horizons); and peat layers P , as described in
the U.S. Soil Taxonomy (United States Department of Agriculture. Soil Conser-
vation Service, 1975).

Forest floor: Default values from Barney et al. (1981) and Ottmar and Andreu
(2007):

• Pine: BDL = 0.018g · cm−3; BDF,H = 0.057g · cm−3

• Hardwood: BDL = 0.012g · cm−3

• Birch: BDF,H = 0.17g · cm−3

• Spruce: BDL = 0.051g · cm−3; BDH = 0.13g · cm−3

Peat: The range of peat BD is generally from 0.02 to 0.3t · m−3 depending on
maturity and compaction, as well as the ash content (Agus et al., 2011). total and
Agus et al. (2011) distinguish different peat decomposition types with different C
content:

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf
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• Sapric: BDP,sapric = 0.174g · cm−3 (48.90% C)

• Hemic: BDP,hemic = 0.117g · cm−3 (52.27% C)

• Fibric: BDP,fibric = 0.089g · cm−3 (53.56% C)

Example equations for PTFs to estimate BD, based on the soil organic matter
(SOM) (OM) content in percent (%):

Saini (1966):

BD = 1.62 − 0.06 ∗ OM (4.1)

Drew (1973):

BD = 1/(0.6268 + 0.0361 ∗ OM) (4.2)

Jeffrey (1970):

BD = 1.482 − 0.6786 ∗ (logOM) (4.3)

Grigal et al. (1989):

BD = 0.669 + 0.941 ∗ e(−0,06∗OM) (4.4)

Adams (1973):

BD = 100/(OM/0.244 + (100 − OM))/MBD (4.5)

Honeysett and Ratkowsky (1989):

BD = 1/(0.564 + 0.0556 ∗ OM) (4.6)

where MDB is the mineral particle density, assumed to be the specific gravity
of quartz, 2.65Mg · m−3. And OM is the SOM content, estimated as OM =
SOC · 1.724, with SOC content in percent (%).

Each method to estimate the BD presented in is derived from a specific set of
regional soils that is regionally adapted. Selection of the proper method for a
given country shall be based on existing reviews and comparisons.
# Creating a function in R to estimate BLD using the SOC
# SOC is the soil organic carbon content in percent %
estimateBD <- function(SOC, method="Saini1996"){

OM <- SOC * 1.724
if(method=="Saini1996"){BD <- 1.62 - 0.06 * OM}
if(method=="Drew1973"){BD <- 1 / (0.6268 + 0.0361 * OM)}



Chapter 4. Preparation of local soil data 26

Histogram of dat$BLD
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Figure 4.2: Histogram of bulk density values

if(method=="Jeffrey1979"){BD <- 1.482 - 0.6786 * (log(OM))}
if(method=="Grigal1989"){BD <- 0.669 + 0.941 * exp(1)^(-0.06 * OM)}
if(method=="Adams1973"){BD <- 100 / (OM /0.244 + (100 - OM)/2.65)}
if(method=="Honeyset_Ratkowsky1989"){BD <- 1/(0.564 + 0.0556 * OM)}
return(BD)

}

# Summary of BLD (bulk density) in the example data base
summary(dat$BLD)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 1.40 1.54 1.55 1.66 2.93 7845
hist(dat$BLD, col = 'light gray', breaks = 32)

Exploring SOC and bulk density values in the database is an important step for
ensuring quality of the map. Digital soil mapping framework is a data-driven
approach to modelling spatial distribution of soil properties, therefore any irreg-
ularities or errors in the input data may significantly influence modelling results.
In the current example database we can observe bulk density values as low as
0.0g · cm−3 and as high as 2.93g · cm−3. Having 0.0g · cm−3 bulk density values
is physically impossible, and the values higher than 2.0g · cm−3 are not typical for
fine earth (United States Department of Agriculture. Soil Conservation Service,
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2018) and most likely correspond to coarse fragments. The irregularities in the
data may occur due to errors in field measurement procedures, wrong unit con-
version or simply typing mistakes. In case there is doubt in the quality of the
input data, the questionable values should be thoroughly checked and, if found
erroneous, removed from the database.
# remove bad values
dat$BLD[dat$BLD == 0] <- NA
dat$BLD[dat$BLD > 2] <- NA
summary(dat$BLD)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.080 1.400 1.540 1.516 1.650 1.990 7924
# See the summary of values produced using the pedo-transfer
# function with one of the proposed methods
summary(estimateBD(dat$SOC[is.na(dat$BLD)],

method="Honeyset_Ratkowsky1989"))

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.2019 1.1625 1.3524 1.2988 1.4981 1.7730 737
# Fill NA's using the pedo-transfer function
dat$BLD[is.na(dat$BLD)] <- estimateBD(dat$SOC[is.na(dat$BLD)],

method="Honeyset_Ratkowsky1989")

# Explore the results
hist(dat$BLD, col = 'light gray', breaks = 32)
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4.3.3 Soil carbon analysis

Rosell et al. (2001) have closely reviewed the different SOC and SOM estimation
procedures, and have also drawn some conclusions about the sources of errors.
Determination of SOC from dry combustion methods is least susceptible to errors.

• Dry combustion by Loss on Ignition (LOI): SOC is re-calculated ap-
plying a conversion factor. It is commonly assumed, that organic matter
contains an average of 58% organic carbon (so-called Van Bemmelen factor
1.724; for non-organic horizons: SOC = SOM/1.724). For organic horizons,
conversion factor ranges from 1.9 to 2.5 (Nelson and Sommers, 1982). The
inorganic carbon is not resolved, since typically, temperatures between 400°C
and 550°C are used.

• Wet oxidation: Since wet oxidation is applied without additional (external)
heating, low temperatures of around 120°C (internal heat) are typical. Thus,
the oxidation of carbon is incomplete, and a so-called oxidation factor needs
to be applied. With external heating, the C-recovery of the method becomes
improved, up to complete recovery. No correction of the mineral carbon is
needed. Wet oxidation should typically only be applied to samples with <5%
organic matter.

Usually, an average of 76% organic carbon is recovered, leading to a standard
oxidation factor of 1.33 (Lettens et al., 2005).

4.3.4 Carbonates

In case the total organic carbon is determined with temperatures higher than
600°C to 800°C, the proportion of mineral soil in CaCO3 has to be subtracted in
order to derive the amount of organic carbon (inorganic carbon is also oxidized).
The pH value gives the first indication whether the sample has to be analyzed for
inorganic carbon or not.

It is crucial to report in the metadata whether national SOC values refer to total
C or if the inorganic component has been considered.

4.3.5 Depth

The standard depth for GSOCmap is 0 cm to 30 cm (FAO and GSP, 2017a).
Subdivisions are possible depending on the available data, by genetic horizons or
depth classes. The following depths are additionally considered for GSOCmap
(optional):

• Forest floor: Thickness (cm) subdivision in horizons depending on national
soil inventory method (e.g. for forest floors organic layers L, F, H).

• Peat: From 30cm to 100cm, depending on national data.
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4.4 Soil depth estimate

4.4.1 Completeness of depth estimate

Soil properties are commonly collected from field inventories (see Table 4.2) or from
sampling and analyzing horizons and/or fixed depths. Since a fixed target depth
of 30 cm is required for GSOC (other depth classes will be recommended in the
future, following the GSP Guidelines for Sharing National Data/Information to
Compile a Global Soil Organic Carbon (GSOC) Map, data holders are confronted
with the following options:

• Option 1: Soil sampling has already considered this depth, data can be
directly used for upscaling (see Chapter 6).

• Option 2: Horizons or layers/depth classes are sampled but aggregation is
needed over the 0cm to 30cm.

• Option 3: The target depth (0cm to 30cm) was not completely covered by
sampling, e.g. only the A horizon or a topsoil layer (e.g. 0cm to 20cm) has
been sampled.

For both Options 2 and Option 3, the transformation is needed, using e.g. equal-
area splines. In the case of Option 2, the use of equal-area splines was first
proposed by Ponce Hernandes et al. (1986), and later tested against real data
(Bishop et al., 1999). This technique is based on fitting continuous depth functions
for modeling the variability of soil properties with depth. Thus, it is possible to
convert soil profiles to standard depths, but also to fill gaps. The equal-area spline
function consists of a series of local quadratic polynomials that join at so-called
knots, located at the horizon boundaries, whereby the mean value of each horizon
is maintained by the spline fit. They are called equal-area splines because the area
to the left of the fitted spline curve is equal to the area to the right of the curve.

In case of Option 3, additional information on the vertical distribution of carbon
in the soils is required for accurate recalculation from the sampling depth to target
depth, e.g. as was shown by Bernoux et al. (1998).

4.4.2 Technical steps - Equal-area splines using R

In R environment, the easiest way to apply equal-area splines is using the function
GSIF::mpspline from the R package GSIF ((Hengl, 2016), see Section 3.2.2.1).
For illustration, a sample dataset has been used (see Chapter 5). This function
requires data stored as SoilProfileCollection (SPC) using package aqp. Nev-
ertheless, data in any local soil database or in tables like the ones proposed before
(see Tables 4.1, 4.2) can be transformed to an SPC.

The function GSIF::mpspline has several arguments. One of the arguments is
the lambda value mentioned before. The proposed default value is 0.1. Another
argument for this function is the target standard depths. The function produces
spline-estimated values at these depths. However, this function also produces
spline-estimated values at 1cm increments.

http://www.fao.org/3/a-bp164e.pdf
http://www.fao.org/3/a-bp164e.pdf
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Figure 4.3: An equal-area quadratic spline from Ponce-Hernandez et al. (1986)
(Cited by Bishop et al., 1999)

The following technical steps require R and the named packages.

Step 1 - Promote data table to SPC
# Load aqp package
library(aqp)

# Promote to SoilProfileCollection
# The SoilProfileCollection is a object class in R designed to
# handle soil profiles
depths(dat) <- ProfID ~ top + bottom

## Warning: converting IDs from factor to character

Step 2 - Add site-level data and coordinates
# Merge the soil horizons information with the site-level
# information from dat_sites
site(dat) <- dat_sites

# Set spatial coordinates
coordinates(dat) <- ~ X + Y

# A summary of our SoilProfileCollection
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dat

## Object of class SoilProfileCollection
## Number of profiles: 4118
## Depth range: 5-295 cm
##
## Horizon attributes:
## ProfID HorID top bottom SOC BLD CRF SAND SILT CLAY
## 1 P0000 P0000H01 4 23 NA NA 54 52 34 14
## 2 P0000 P0000H02 23 46 NA NA 62 59 31 11
## 3 P0000 P0000H03 46 59 NA NA 47 67 24 8
## 4 P0001 P0001H01 2 11 NA NA 66 45 39 16
## 5 P0001 P0001H02 11 31 NA NA 70 40 31 28
## 6 P0002 P0002H01 0 22 NA NA 57 52 33 15
##
## Sampling site attributes:
## ProfID X.1 soiltype Land.Cover
## 1 P0000 1 Cambisol 25
## 2 P0001 2 Cambisol 24
## 3 P0002 3 Cambisol 25
## 4 P0003 4 Rendzic Leptosols 26
## 5 P0004 5 Rendzic Leptosols 26
## 6 P0005 6 Complex of Rendzic Leptosol and Leptosol 27
##
## Spatial Data:
## min max
## X 20.46434 23.01039
## Y 40.68543 42.35932
## [1] NA

Step 3 - Run mass preserving splines for all the needed properties
library(GSIF)

# Estimate 0 cm - 30 cm standard horizons
# using mass preserving splines
try(SOC <- mpspline(dat, 'SOC', d = t(c(0,30))))
try(BLD <- mpspline(dat, 'BLD', d = t(c(0,30))))
try(CRFVOL <- mpspline(dat, 'CRF', d = t(c(0,30))))

Step 4 - Convert back to table
# Prepare final data frame
dat <- data.frame(id = dat@site$ProfID,

Y = dat@sp@coords[,2],
X = dat@sp@coords[,1],
SOC = SOC$var.std[,1],
BLD = BLD$var.std[,1],
CRFVOL = CRFVOL$var.std[,1])
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dat <- dat[complete.cases(dat),]

# Take a look at the results
head(dat)

## id Y X SOC BLD CRFVOL
## 4 P0003 42.02828 20.81819 26.380000 0.3233484 8.000000
## 5 P0004 42.02747 20.81464 24.561667 0.5009572 6.305316
## 7 P0006 42.02885 20.82757 19.940000 0.4039854 14.000000
## 8 P0007 42.02279 20.83165 6.149114 0.8622553 18.633590
## 9 P0008 42.05014 20.82036 3.940352 1.0663034 31.875748
## 10 P0009 42.02047 20.93529 3.258545 1.1550169 21.714059

Step 5 - Estimate the soil organic carbon stock using the virtual horizons

Finally, the estimation of the soil organic carbon stock (OCS) can be done using
the GSIF package.
library(GSIF)

# Estimate organic carbon stock (OCS)
# SOC must be in g/kg
# BLD in kg/m3
# CRF in percentage %
OCSKGM <- OCSKGM(ORCDRC = dat$SOC, BLD = dat$BLD*1000,

CRFVOL = dat$CRFVOL, HSIZE = 30)

dat$OCSKGM <- OCSKGM
dat$meaERROR <- attr(OCSKGM,"measurementError")
dat <- dat[dat$OCSKGM>0,]

summary(dat)

## id Y X SOC
## P0003 : 1 Min. :40.69 Min. :20.46 Min. : 0.080
## P0004 : 1 1st Qu.:41.19 1st Qu.:21.35 1st Qu.: 1.750
## P0006 : 1 Median :41.42 Median :21.49 Median : 2.603
## P0007 : 1 Mean :41.49 Mean :21.66 Mean : 3.538
## P0008 : 1 3rd Qu.:41.83 3rd Qu.:22.14 3rd Qu.: 4.089
## P0009 : 1 Max. :42.36 Max. :23.01 Max. :86.510
## (Other):3881
## BLD CRFVOL OCSKGM
## Min. :0.05446 Min. : 0.00000 Min. :0.01125
## 1st Qu.:1.09049 1st Qu.: 0.00516 1st Qu.:0.65176
## Median :1.27492 Median : 5.01506 Median :0.88367
## Mean :1.24341 Mean :11.02309 Mean :0.96478
## 3rd Qu.:1.43550 3rd Qu.:17.66989 3rd Qu.:1.17771
## Max. :3.64210 Max. :93.95013 Max. :6.66450
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##
## meaERROR
## Min. : 0.175
## 1st Qu.: 2.640
## Median : 3.480
## Mean : 3.367
## 3rd Qu.: 4.130
## Max. :10.700
##

Soil organic carbon tends to have a log-normal distribution with a right-skew, and
transforming the original values to its natural logarithm would generate a normal
distribution of SOC values. Here we will test:

1. If the log-transformation of the response variable (SOC) tends to normality;
and

2. If this transformation increases the simple correlation of SOC and its predic-
tion factors.

# Generate a new column with the transformed OCSKGM to its natural
# logarithm
dat$OCSKGMlog <- log(dat$OCSKGM)

# Plot the next two plots as one
par(mfrow=c(1,2))
plot(density(dat$OCSKGM),

main='Original values')

plot(density(dat$OCSKGMlog),
main='Log-transformed values')

par(mfrow=c(1,1))

# We can save our processed data as a *.csv table
write.csv(dat, "data/dataproc.csv", row.names = FALSE)



Chapter 4. Preparation of local soil data 34

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Original values

N = 3887   Bandwidth = 0.06763

D
en

si
ty

−4 −2 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

Log−transformed values

N = 3887   Bandwidth = 0.07608

D
en

si
ty

Figure 4.4: Statistical distribution of original values vs. log-transformed values for
OCS



Chapter 5

Preparation of spatial
covariates

R. Baritz & Y. Yigini

The authors of this Chapter used R packages. To run the code provided in this
Chapter, the following package need to be installed in the R user library. If the
package is not yet installed, the install.packages() function can be used.
# Installing package for Chapter 'Preparation of Spatial Covariates'
install.packages("raster")

The example covariates from this Chapter were prepared by ISRIC. The access
and use limitations are presented in Section 5.6. A small subset of these covariates,
comprising most of the soil forming factors, will be used for the code examples.
This subset is presented in the following table.

5.1 DEM-derived covariates

This Section gives a short overview on available DEM source data sets. Currently,
two global level 30m DEMs are freely available: the Shuttle Radar Topographic
Mission (SRTM) and the ASTER Global Digital Elevation Model (GDEM). They
provide topographic data at the global scale, which are freely available for users.
Both DEMs were compared by Wong et al. (2014). Comparison against high-
resolution topographic data of Light Detection and Ranging (LiDAR) in a moun-
tainous tropical montane landscape showed that the SRTM (90 m) produced better
topographic data in comparison with ASTER GDEM.

• Recommended for national level applications: ASTER GDEM/SRTM with
30 m resolution.

35
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Table 5.1: Code and name of example covariates provided with the cookbook

CODE ATTRIBUTE_TITLE
DEMENV5 Land surface elevation
SLPMRG5 Terrain slope
VBFMRG5 Multiresolution Index of Valley Bottom Flatness (MRVBF)
VDPMRG5 Valley depth
TWIMRG5 SAGA Wetness Index
TMDMOD3 Mean annual LST (daytime) MODIS
TMNMOD3 Mean annual LST (nighttime) MODIS
PRSCHE3 Total annual precipitation at 1 km
B04CHE3 Temperature seasonality at 1 km
B07CHE3 Temperature Annual Range at 1 km
B13CHE3 Precipitation of wettest month [mm]
B14CHE3 Precipitation of driest month [mm] at 1 km
LCEE10 ESA land cover map 2010

• Recommended for global level applications: SRTM with 90 m resolution,
resampled to 1 km.

In both cases, noise and artefacts need to be filtered out. ASTER GDEM seems
to contain more large artifacts (e.g. peaks), particularly in flat terrain, which are
very difficult to remove through filtering.
library(raster)

# Load DEM from raster *.tif file
DEM <- raster("covs/DEMENV5.tif")
plot(DEM)

Tip for GRASS GIS or GDAL: Use mdenoise module/utility to remove
noise while preserving sharp features like ridges, lines, and valleys.

SRTM contains many gaps (pixels with no data). These gaps could be filled using
splines. SAGA GIS has a module called Close Gaps with Splines and other similar
tools for doing this.

5.2 Parent material

Parent material has a crucial impact on soil formation, soil geochemistry, and
soil physics. Parent material, if not specifically mapped by soil mappers and
included in soil maps, is usually available from geological maps. These maps
focus on rock formation, mineral components, and age, and often lack younger
surface sediments (even in quaternary maps). Parent material/rock types classified
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Figure 5.1: SRTM 90 m resampled to 1 km for FYROM

by soil mappers considers more strongly geochemistry and rock structure. Its
geochemistry has an essential impact on the soil chemistry, e.g. cation exchange
capacity, base saturation, and nutrient stock. The rock structure determines the
ability to disintegrate, which has an impact on soil physical properties, like texture,
skeleton content, permeability, and soil thickness.

National parent material and geological maps may be used. Other available
datasets and data portals are given on the ISRIC WorldGrids website that can
be accessed at this link: http://worldgrids.org/doku.php.

• OneGeology: The world geological maps are now being integrated via the
OneGeology project which aims at producing a consistent geological map
of the world in approximate scale 1:1M (Jackson, 2007); link: http://www.
onegeology.org/.

• USGS: United States Geological Survey (USGS) as several data portals,
e.g. that allow browsing of the International Surface Geology (split into South
Asia, South America, Iran, Gulf of Mexico, Former Soviet Union, Europe,
Caribbean, Bangladesh, Asia Pacific, Arctic, Arabian Peninsula, Africa and
Afghanistan); link: https://mrdata.usgs.gov/geology/world/.

• GLiM: Hartmann and Moosdorf (2012) have assembled a global, purely
lithological database called GLiM (Global Lithological Map). GLiM consists
of over 1.25 million digital polygons that are classified into three levels (a
total of 42 rock-type classes); link: https://www.geo.uni-hamburg.de/en/
geologie/forschung/geochemie/glim.html).

• USGS and ESRI: Both jointly released in 2014 a Global Ecological Land
Units map at 250 m resolution. This also includes world layer of rock types.

http://worldgrids.org/doku.php
http://worldgrids.org/doku.php
http://www.onegeology.org/
http://www.onegeology.org/
https://mrdata.usgs.gov/geology/world/
https://www.geo.uni-hamburg.de/en/geologie/forschung/geochemie/glim.html
https://www.geo.uni-hamburg.de/en/geologie/forschung/geochemie/glim.html
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Figure 5.2: Soil map of FYROM

This data can be downloaded from the USGS site; link: (http://rmgsc.cr.
usgs.gov/outgoing/ecosystems/Global/).

5.3 Soil maps

Soil maps play a crucial role for upscaling soil property data from point locations.
They can be the spatial layer for conventional upscaling, they can also serve as
a covariate in DSM. Predicted soil property maps have lower quality in areas
where the covariates such as relief, geology, and climate do not correlate well with
the dependent variable, here SOC stocks. This is especially true for soils under
groundwater or stagnic water influence. This information is well-represented in
soil maps.

5.3.1 Global HWSD soil property maps

FAO, ISRIC, the International Institute for Applied Systems Analysis (IIASA), the
Institute of Soil Science, Chinese Academy of Sciences (ISS CAS), and the Joint
Research Center of the European Commision (JRC) together produced a gridded 1
km soil class map (HWSD). Global HWSD-derived soil property maps can be down-
loaded as GeoTIFF files at the following link http://worldgrids.org/doku.php/wiki:
layers#harmonized_world_soil_database_images_5_km (see Section 5.6).
# Load the soil map from a shapefile *.shp file
soilmap <- shapefile("MK_soilmap_simple.shp")

# Plot the DEM together with the soil types
plot(DEM)
lines(soilmap)

http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/
http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/
http://worldgrids.org/doku.php/wiki:layers#harmonized_world_soil_database_images_5_km
http://worldgrids.org/doku.php/wiki:layers#harmonized_world_soil_database_images_5_km
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Figure 5.3: Rasterized soil map of FYROM from DEM raster layer

Digitized small-scale national soil maps are the most important spatial
layer for soil property mapping. The higher their resolution, the better
soil maps contribute to high-quality soil property maps - considering
that the map should cover the target area/full country coverage.

5.3.2 Technical steps - Rasterizing a vector layer in R

# The Symbol attribute from the vector layer will be used for the
# rasterization process. It has to be a factor
soilmap@data$Symbol <- as.factor(soilmap@data$Symbol)

# Save the levels names in a character vector
Symbol.levels <- levels(soilmap$Symbol)

# The rasterization process needs a layer with the target grid
# system: spatial extent and cell size
# The DEM raster layer could be used for this
soilmap.r <- rasterize(x = soilmap, y = DEM, field = "Symbol")

plot(soilmap.r, col=rainbow(21))
legend("bottomright",legend = Symbol.levels, fill=rainbow(21),

cex=0.5)



Chapter 5. Preparation of spatial covariates 40

5.4 Land cover and land use

Besides soil, geology, and climate, land use and/or land cover data are unarguably
vital data for any statistical effort to map soil properties. There are many of various
sources of data on the land cover including global and continental products, such
as GlobCover, GeoCover, GlobeLand30, CORINE Land Cover.

For further reading and other global data sources not listed below, see the in-
formation following this link: http://worldgrids.org/doku.php/wiki:land_cover_
and_land_use.
# Load the landcover from the raster *.tif file
landcover <- raster("covs/LCEE10.tif")

# Land cover is a categorical covariate, this has to be made
# explicit using function as.factor()
landcover <- as.factor(landcover)

5.4.1 GlobCover (Global)

GlobCover is a European Space Agency (ESA) initiative which began in 2005
in partnership with JRC, FAO, the European Environmental Agency (EEA), the
United Nations Environment Programme (UNEP), the Global Observation for For-
est Cover and Land Dynamics (GOFC-GOLD), and the International Geosphere-
Biosphere Programme (IGBP).

The aim of the project was to develop a service capable of delivering global com-
posites and land cover maps using as input observations from the 300 m MERIS
sensor onboard the ENVISAT satellite mission. ESA makes available the land
cover maps, which cover 2 periods: December 2004 - June 2006 and January -
December 2009.

The classification module of the GlobCover processing chain consists in transform-
ing the MERIS-FR multispectral mosaics produced by the pre-processing modules
into a meaningful global land cover map. The global land cover map has been
produced in an automatic and global way and is associated with a legend defined
and documented using the UN Land Cover Classification System (LCCS). The
GlobCover 2009 land cover map is delivered as one global land cover map covering
the entire Earth. Its legend, which counts 22 land cover classes, has been designed
to be consistent at the global scale and therefore, it is determined by the level of
information that is available and that makes sense at this scale (Bontemps et al.,
2011).

The GlobCover data are available here http://due.esrin.esa.int/page_globcover.
php.

http://worldgrids.org/doku.php/wiki:land_cover_and_land_use
http://worldgrids.org/doku.php/wiki:land_cover_and_land_use
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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5.4.2 Landsat GeoCover (Global)

The Landsat GeoCover collection of global imagery was merged into mosaics by
the Earth Satellite Company (now MDA Federal). The result was a series of
tiled imagery that is easier to wield than individual scenes, especially since they
cover larger areas than the originals. The great detail in these mosaic scenes,
however, makes them large in storage size, so the Mr.Sid file format, which includes
compression operations, was chosen for output. While GeoCover itself is available
in three epochs of 1975, 1990 and 2000, only the latter two epochs were made into
mosaics.

The GeoCover Landsat mosaics are delivered in a Universal Transverse Mercator
(UTM) / World Geodetic System 1984 (WGS84) projection. The mosaics extend
north-south over 5 degrees of latitude and span east-west for the full width of
the UTM zone. For mosaics below 60 degrees north latitude, the width of the
mosaic is the standard UTM zone width of 6 degrees of longitude. For mosaics
above 60 degrees of latitude, the UTM zone is widened to 12 degrees, centered on
the standard even-numbered UTM meridians. To insure overlap between adjacent
UTM zones, each mosaic extends for at least 50 kilometers to the east and west,
and 1 kilometer to the north and south. The pixel size is 14.25 meters (V 2000).

The Landsat GeoCover data are available here ftp://ftp.glcf.umd.edu/glcf/
Mosaic_Landsat/ (FTP Access).

5.4.3 GlobeLand30 (Global)

GlobeLand30, the Earth’s first global land cover dataset at 30 m resolution for the
years 2000 and 2010, was recently released and made publicly available by China.
The National Geomatics Center of China under the Global Land Cover Mapping
at Finer Resolution project has recently generated a global land cover map named
GlobeLand30. The dataset covers two timestamps of 2000 and 2010, primarily
acquired from Landsat TM and ETM+ sensors, which were then coupled/checked
with some local products.

The GlobaLand30 data are publicly available for non-commercial purposes here
http://www.globallandcover.com/GLC30Download/index.aspx.

5.4.4 CORINE land cover (Europe only)

The pan-European component is coordinated by EEA and produces satellite image
mosaics, land cover/land use information in the CORINE Land Cover data, and
the high-resolution layers.

The CORINE Land Cover is provided for the years 1990, 2000, 2006 and 2012. This
vector-based dataset includes 44 land cover and land use classes. The time-series
also includes a land-change layer, highlighting changes in land cover and land-use.
The high-resolution layers are raster-based datasets (100 m, 250 m) which provide

ftp://ftp.glcf.umd.edu/glcf/Mosaic_Landsat/
ftp://ftp.glcf.umd.edu/glcf/Mosaic_Landsat/
http://www.globallandcover.com/GLC30Download/index.aspx
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information about different land cover characteristics and is complementary to
land-cover mapping (e.g. CORINE) datasets.

The CORINE Land Cover data are available here http://www.eea.europa.eu/
data-and-maps/data.

5.5 Climate

5.5.1 WorldClim V1.4 and V2 (Global)

WorldClim is a set of global climate layers (gridded climate data) with a spatial
resolution of about 1 km2 (10 minutes, 5 minutes, 2.5 minutes are also available).
These data can be used for mapping and spatial modeling. The current version is
Version 1.4. and a preview of Version 2 is available for testing at http://worldclim.
org/. The data can be downloaded as generic grids or in ESRI grid format.

The WorldClim data layers were generated by interpolation of average monthly
climate data from weather stations on a 30 arc-second resolution grid. In V1.4,
variables included are monthly total precipitation, and monthly mean, minimum
and maximum temperatures, and 19 derived bioclimatic variables. The WorldClim
precipitation data were obtained from a network of 1,473 stations, mean tempera-
ture from 24,542 stations, and minimum and maximum temperatures from 14,835
stations (Hijmans et al., 2005).

The Bioclimatic parameters are: annual mean temperature, mean diurnal range,
iso-thermality, temperature seasonality, max temperature of warmest month, min-
imum temperature of coldest month, temperature annual range , mean tempera-
ture of wettest quarter, mean temperature of driest quarter, mean temperature
of warmest quarter, mean temperature of coldest quarter, annual precipitation,
precipitation of wettest month, precipitation of driest month, precipitation sea-
sonality (coefficient of variation), precipitation of wettest quarter, precipitation of
driest quarter, precipitation of warmest quarter, precipitation of coldest quarter.

WorldClim Climate Data are available at: www.worldclim.org (WorldClim 1.4
(current conditions) by www.worldclim.org; Hijmans et al. (2005). Is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License).
# Load the climate covariates from the raster *.tif files
files <- list.files(path = "covs/", pattern = "CHE3.tif",

full.names = TRUE)

# Stack all the files in one RasterStack
climate <- stack(files)

# Plot the first two layers
plot(climate[[1:2]])

http://www.eea.europa.eu/data-and-maps/data
http://www.eea.europa.eu/data-and-maps/data
http://worldclim.org/
http://worldclim.org/
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Figure 5.4: Two different temperature layers included in the climate covariates

5.5.2 Gridded agro-meteorological data in Europe (Europe)

CGMS database contains meteorological parameters from weather stations inter-
polated on a 25×25 km grid. Meteorological data are available on a daily basis
from 1975 to the last calendar year completed, covering the EU member states,
and neighboring European countries.

The following parameters are available at 1-day time resolution:

• Maximum air temperature (°C)
• Minimum air temperature (°C)
• Mean air temperature (°C)
• Mean daily wind speed at 10m (m/s)
• Mean daily vapor pressure (hPa)
• Sum of precipitation (mm/day)
• Potential evaporation from a free water surface (mm/day)
• Potential evapotranspiration from a crop canopy (mm/day)
• Potential evaporation from a moist bare soil surface (mm/day)
• Total global radiation (KJ/m2/day)
• Snow depth

Data is accessible at the following link: http://agri4cast.jrc.ec.europa.eu/
DataPortal/Index.aspx.

http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
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5.6 GSOCMap - Data repository (ISRIC, 2017)

ISRIC World Soil Information has established a data repository which contains
raster layers of various biophysical earth surface properties for each territory in
the world. These layers can be used as covariates in any DSM exercise.

5.6.1 Covariates and empty mask

The territories and their boundaries are obtained from the Global Administrative
Unit Layers (GAUL) dataset. Each folder contains three subfolders:

• Covs: GIS layers of various biophysical earth surface properties.
• Mask: One empty grid file of the territory with territory boundary according

to GAUL This grid to be used for the final delivery.
• Soilgrids: All SoilGrids250m soil class and property layers as available

through www.soilgrids.org. Layers are aggregated to 1 km.

5.6.2 Data specifications

The data is provided as follows:

• File format: GeoTIFF
• Coordinate system: WGS84, latitude-longitude in decimal degrees
• Spatial resolution: 1 km

5.6.3 Data access

The data can be accessed at the following links:

ftp.isric.org/ (username: gsp, password: gspisric) or ftp://85.214.253.67/ (user-
name: gsp, password: gspisric)

LICENCE and ACKNOWLEDGEMENT

The GIS layers can be freely used under the condition that proper
credit should be given to the original data source in each publication or
product derived from these layers. Licences, data sources, data citations
are indicated the data description table.

5.7 Extending the soil property table for spatial statis-
tics

The upscaling procedures (see Chapter 6) depend on the rationale that the accumu-
lation of local soil carbon stocks (and also other properties) depend on parameters

ftp://85.214.253.67/
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for which spatial data are available, such as climate, soil type, parent material,
slope, management. This information (Covariates) must be collected first. Details
are provided above. The properties contained in the covariates can be extracted
for each georeferenced sample site and added to the soil property table (Tab. 4.1).
This table is used for training and validation of the statistical model for predicting
the SOC stocks which subsequently can be applied to the full spatial extent.

5.8 Preparation of a soil property table for spatial
statistics

The upscaling procedures (see Chapter 6) depend on the rationale, that the accu-
mulation of local soil carbon concentrations and stocks (and also other properties)
depends on influential parameters for which spatial data are available, such as cli-
mate, soil type, parent material, slope, management. Any parameter in the table
of local soil properties, for which a spatial layer is available, may be included in
the final table. Other covariates will be added in Section 5.9.

In case this table is prepared for different depths, 0 cm - 10 cm, 10 cm
- 30 cm, and if the host institution intends to develop different spatial
models for different depths (e.g. separate spatial prediction model for
litter and mineral soil 0 cm - 30cm), then the separate grids have to be
added.

5.9 Technical steps - Overlay covariates and soil
points data

Step 1 - Load soil sample data and covariates
# Load the processed data
# This table was prepared in the previous Chapter
dat <- read.csv("data/dat_train.csv")

# Read covariates from raster *.tif files
files <- list.files(path = "covs", pattern = "tif$",

full.names = TRUE)

covs <- stack(files)

Step 2 - Adding raster soilmap to the raster stack
# soilmap.r is the rasterization of the soil map and was obtained
# in a previous step
covs <- stack(covs, soilmap.r)
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Figure 5.5: FYROM soil covariates

# Correct the name for layer 14
names(covs)[14] <- "soilmap"

Finally, we will mask the covariates with a mask developed using the country limits.
Next, we will export all the covariates as *.RData file. This will allow us to load
this file in the following Chapters of this cookbook.
# Mask the covariates with the country mask from the data repository
mask <- raster("data/mask.tif")
covs <- mask(x = covs, mask = mask)

# Export all the covariates
save(covs, file = "covariates.RData")

plot(covs)

Step 3 - Overlay covariates and point data

In order to carry out DSM in terms of examining the statistical significance of
environmental predictors for explaining the spatial variation of SOC, we should
link both sets of data together and extract the values of the covariates at the
locations of the soil point data.



47 5.9. Technical steps - Overlay covariates and soil points data

Note that the stacking of rasters can only be possible if they are in the same resolu-
tion and extent. If they are not, raster package resample and projectRaster()
functions are for harmonizing all your different raster layers. With the stacked
rasters of environmental covariates, we can now perform the intersection and ex-
traction.
# Upgrade points data frame to SpatialPointsDataFrame
coordinates(dat) <- ~ X + Y

# Extract values from covariates to the soil points
dat <- extract(x = covs, y = dat, sp = TRUE)

# LCEE10 and soilmap are categorical variables
dat@data$LCEE10 <- as.factor(dat@data$LCEE10)
dat@data$soilmap <- as.factor(dat@data$soilmap)

levels(soilmap) <- Symbol.levels

summary(dat@data)

## id SOC BLD
## P0003 : 1 Min. : 0.080 Min. :0.05353
## P0007 : 1 1st Qu.: 1.772 1st Qu.:1.27881
## P0008 : 1 Median : 2.620 Median :1.39605
## P0009 : 1 Mean : 3.579 Mean :1.37990
## P0010 : 1 3rd Qu.: 4.090 3rd Qu.:1.47619
## P0011 : 1 Max. :86.510 Max. :2.89888
## (Other):2910
## CRFVOL OCSKGM meaERROR
## Min. : 0.00000 Min. :0.03524 Min. :0.172
## 1st Qu.: 0.01195 1st Qu.:0.70410 1st Qu.:3.160
## Median : 5.00000 Median :0.99674 Median :3.830
## Mean :10.91665 Mean :1.15062 Mean :3.717
## 3rd Qu.:17.19974 3rd Qu.:1.40756 3rd Qu.:4.260
## Max. :93.95013 Max. :7.43023 Max. :8.620
##
## OCSKGMlog B04CHE3 B07CHE3
## Min. :-3.345652 Min. :547.2 Min. :37.60
## 1st Qu.:-0.350842 1st Qu.:759.8 1st Qu.:43.74
## Median :-0.003263 Median :763.9 Median :44.06
## Mean :-0.008980 Mean :759.3 Mean :43.88
## 3rd Qu.: 0.341860 3rd Qu.:774.8 3rd Qu.:44.54
## Max. : 2.005557 Max. :802.9 Max. :45.39
##
## B13CHE3 B14CHE3 DEMENV5 LCEE10
## Min. : 45.71 Min. :22.26 Min. : 45.0 1 :1967
## 1st Qu.: 60.01 1st Qu.:27.70 1st Qu.: 395.5 2 : 698
## Median : 71.19 Median :30.11 Median : 594.0 3 : 94
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## Mean : 74.26 Mean :32.31 Mean : 655.8 4 : 156
## 3rd Qu.: 78.79 3rd Qu.:35.61 3rd Qu.: 814.2 NA's: 1
## Max. :167.31 Max. :60.32 Max. :2375.0
##
## PRSCHE3 SLPMRG5 TMDMOD3
## Min. : 430.4 Min. : 0.000 Min. :280.0
## 1st Qu.: 529.9 1st Qu.: 0.000 1st Qu.:291.0
## Median : 565.4 Median : 4.000 Median :293.0
## Mean : 604.6 Mean : 8.553 Mean :292.3
## 3rd Qu.: 651.3 3rd Qu.:13.000 3rd Qu.:294.0
## Max. :1211.9 Max. :61.000 Max. :297.0
##
## TMNMOD3 TWIMRG5 VBFMRG5
## Min. :270.0 Min. : 56.00 Min. : 0.0
## 1st Qu.:279.0 1st Qu.: 79.00 1st Qu.: 0.0
## Median :280.0 Median : 94.00 Median : 70.5
## Mean :279.7 Mean : 91.12 Mean :173.6
## 3rd Qu.:281.0 3rd Qu.:102.00 3rd Qu.:390.0
## Max. :284.0 Max. :139.00 Max. :498.0
##
## VDPMRG5 soilmap
## Min. :-5869 9 :857
## 1st Qu.: 3571 3 :425
## Median : 5702 12 :217
## Mean : 5370 10 :211
## 3rd Qu.: 7024 14 :205
## Max. :14104 (Other):982
## NA's : 19

After the extraction, it is useful to check if there are not available/missing values,
so-called NA values, both in the target variable and covariates. In these cases, these
data should be excluded. A quick way to assess if there are missing or NA values
in the data is to use the complete.cases() function.

After removing the NA values, now there do not appear to be any missing data
as indicated by the integer(0) output above. It means we have zero rows with
missing information.

The last step involves exporting a table which is our regression matrix including
the soil data and the values of the environmental covariates in the position of the
point samples.

The summary of the dat data.frame shows one point with NA values for most of
the covariates, and 22 points with NA values in the soilmap layer. The regression
matrix should not contain NA values. There are two options to proceed:

• Option 1: In some cases, these NA values are from points with bad position
data. Therefore, the points area outside the study area. In this case, the
solution is to correct the coordinates or eliminate the points. This is the case
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for the two points with NA values for most of the covariates.

• Option 2: Another case is when a covariate is incomplete and does not cover
all the area. This could produce many NA values. There are two different
solutions, either to eliminate the covariate or to eliminate the point data.
This is the case for the soilmap layer and the 30 points.

**Step 4 - Convert result to data.frame and save as a *.csv table**
dat <- as.data.frame(dat)

# The points with NA values have to be removed
dat <- dat[complete.cases(dat),]

# Export as a *.csv table
write.csv(dat, "data/MKD_RegMatrix.csv", row.names = FALSE)





Chapter 6

Mapping methods

R. Baritz, M. Guevara, V.L. Mulder, G.F. Olmedo, C. Thine, R.R. Vargas, Y.
Yigini

In this Chapter, we want to introduce five different approaches for obtaining the
SOC map for FYROM. The first two methods presented in Section 6.1 are classified
as conventional upscaling and the presented methods in the Sections 6.2, 6.3, and
6.4 are approaches from DSM.

The first method is class-matching. In this approach, we derive average SOC stocks
per class either from the soil type for which a national map exists, or through the
combination with other spatial covariates such as land use category, climate type,
biome, etc. This approach is used in the absence of spatial coordinates of the
source data. The second conventional upscaling method is geo-matching, were
upscaling is based on averaged SOC values per mapping unit.

Furthermore, we present three methods from DSM. Regression-kriging (RK) is a
hybrid model with both, a deterministic and a stochastic component (Hengl et al.,
2007). Next method is called random forest (RF). This one is an ensemble of
regression trees based on bagging. This machine learning algorithm uses a different
combination of prediction factors to train multiple regression trees (Breiman, 1996).
The last method is called support vector machines (SVM). This method applies
a simple linear method to the data but in a high-dimensional feature space, non-
linearly related to the input space (Karatzoglou et al., 2006). We present this
diversity of methods because there is no best mapping method for DSM, and testing
and selection has to be done for every data scenario (Guevara et al., 2018).

The authors of this Chapter used R packages. To run the code provided in this
Chapter, the following packages need to be installed in the R user library. If the
packages are not yet installed, the install.packages() function can be used.
# Installing packages for Chapter 'Mapping Methods'
install.packages(c("sp", "car", "automap",

"randomForest", "caret", "Metrics",

51
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"quantregForest", "snow", "reshape",
"e1071"))

6.1 Conventional upscaling using soil maps

R. Baritz, V.L. Mulder

6.1.1 Overview

The two conventional upscaling methods in the context of SOC mapping, are de-
scribed by Lettens et al. (2004). Details about weighted averaging can be found
in Hiederer (2013). Different conventional upscaling approaches were applied in
many countries e.g. by Krasilnikov et al. (2013) (Mexico), Greve et al. (2007) (Den-
mark), Kolli et al. (2009) (Estonia), Arrouays et al. (2001) (France), and Bhatti
et al. (2002) (Canada). Because the structure of soil map databases differs between
countries (e.g. definition of the soil mapping unit, stratification, soil associations,
dominating and co-dominating soils, typical and estimate soil properties for dif-
ferent depths), it is difficult to define a generic methodology for the use of these
maps for mapping soil property information.

However, the essential principle which is commonly used, is to combine soil prop-
erty data from local observations with soil maps via class-matching and geo-
matching.

6.1.2 Diversity of national soil legacy data sets

In order to develop a representative and large national soil database, very often,
data from different sources (e.g. soil surveys or projects in different parts of the
country at different times) are combined. The following case of Belgium demon-
strates, how available legacy databases could be combined. Three different sources
are used to compile an overview of national SOC stocks:

• Data source 1: Soil profile database with 13,000 points of genetic horizons;
for each site, there is information about the soil series, map coordinates,
and land use class; for each horizon, there is information about depth and
thickness, textural fractions and class, volume percentage of rock fragments;
analytically, there is the organic carbon content and inorganic carbon con-
tent.

• Data source 2: Forest soil data base which includes ectorganic horizons.
According to their national definition, the term ectorganic designates the
surface horizons with an organic matter content of at least 30%, thus, it
includes both the litter layer and the organic soil layers. For the calculation
of SOC stocks for the ectorganic layer, no fixed-depth was used, instead, the
measured thickness of the organic layers and litter layers was applied.
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• Data source 3: 15,000 soil surface samples were used (upper 20 cm of
mineral soil); carbon measurements are available per depth class.

From all data sources, SOC stocks for peat soils were calculated separately.

6.1.3 Technical steps - Class-matching

Step 1 - Data preparation

1. Separate the database for forests, peat, and other land uses. If only horizons
are provided, derive or estimate average depth of horizons per soil type, and
add upper and lower depth.

2. Check the completeness of parameters per depth using the solum depth to
code empty cells.

3. Correct the organic carbon in case total carbon was determined (total carbon
minus inorganic carbon concentration).

4. Correct the Walkley and Black method for incomplete oxidation (using the
correction factor of 1.32 for the quantification of the organic carbon content
in the soil samples) (Walkley and Black, 1934).

5. If BD measured is lacking, select proper PTFs and estimate BD. Publica-
tions about the choice of the best suited PTF for specific physio-geographic
conditions are available.

6. If the stone content is missing, investigate using other data sources or liter-
ature, to which a correction for stones should be applied.

7. If possible, derive the standard average stone content for different
soils/horizons/depths, or used published soil profiles, as a simple correction
factor.

8. Calculate SOC stocks for all mineral and peat soils over 0 cm - 30 cm, and
optionally for forest organic layers, and peat between >30 cm and <100 cm.

Step 2 - Preparatory GIS operations

1. Prepare the covariates.
2. Identify the properties of covariates for each point observation using geo-

matching.
3. For mapping using geo-matching of all points: Extract the covariate

information to all georeferenced sample sites. The SOC values from all points
within the unit are then averaged. It is assumed that the points represent
the real variability of soil types within the units.

Step 3 - Mapping using class-matching of points in agreement with
classes

Through class-matching, only those points or profiles are attributed to a soil or
landscape unit if both the soil and the land use class are the same. Class-matching
thus can be performed regardless of the profile location. Before averaging, a
weighing factor can be introduced according to the area proportions of dominant,
co-dominant and associated soils. Each profile needs to be matched to its soil
type/landscape type, and the SOC value averaged.
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1. Determine a soil or landscape unit (e.g. national soil legend stratified by
climate area and mainland cover type such as forest, grassland, cropland).

2. Calculate average SOC stocks from all soils which match the soil/landscape
unit.

3. Present the soil/landscape map with SOC stocks, do not classify SOC stocks
(tons/hectare) into groups (e.g. < 50, 50 - 100, > 100).

Note: Pre-classified SOC maps cannot be integrated into a global
GSOCmap legend.

6.1.4 Technical steps - Geo-matching

Because of its importance, geo-matching as a mapping method is described in
more detail. It is neccessary to first prepare the working environment with the
pre-processed input data. The following Section presents different geo-matching
procedures.

1. Setting up software and working environment.
2. Geo-matching SOC with WRB soil map (step-by-step, using the soil Map of

FYROM and the demonstration data presented above).
3. Geo-matching SOC with other environmental variables: land use.
4. Finally, the development of landscape Units (Lettens et al., 2004) is outlined.

This example was developed for QGIS and focusses on SOC mapping using vector
data. QGIS 2.18 with GRASS 7.05 will be used. For more information, see also
the following links:

• https://gis.stackexchange.com
• http://www.qgis.org/
• http://www.qgisforum.org/

Step 1 - Setting up a QGIS project

1. Install QGIS and supporting software; download the software at http://www.
qgis.org/en/site/forusers/download.html (select correct version for Windows,
MacOS or Linux, 32 or 64 bit).

2. Create a work folder, e.g. D:\GSOC\practical_matching. Copy the folder
with the FYROM demonstration data into this folder.

3. Start QGIS Desktop with GRASS. Figure 6.1 shows the start screen of QGIS
Desktop. In the upper left panel, there is the Browser Panel, which lists
the geodata used for this example. In the bottom left, the layer information
is given in the Layers Panel for the layers displayed on the right.

4. Load the FYROM soil map. Right-click the file in the Browser panel and
add the map to your project.

5. Display the soil classes. Right-click on the file in the Layers Panel and select
Properties. Go to the Style and change from Single Symbol to Categorized as
shown in Figure 6.2. Select the column WRB and press the icon Classify and
change the colors if you want. Next, apply the change and finish by clicking
the OK-Button.

https://gis.stackexchange.com
http://www.qgis.org/
http://www.qgisforum.org/
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
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Figure 6.1: QGIS Desktop with the Browser Panel, the Layers Panel and the
display of layers

Figure 6.2: Changing layer properties for the FYROM soil map
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Figure 6.3: Project properties and projection settings

6. Ensure the correct projection for this project. Go to select Project, Project
Properties, CRS. In this case, you automatically use the local projection for
FYROM. The EPSG code is 3909 which corresponds to MGI 1901/Balkans
Zone 7 as shown in Figure 6.3).

7. Save the project in the created folder. Load and display the pre-processed
SOC point data. If a shapefile already exists, this is done the same way as
described in Step 4. If you have the data as a text file, you need to create
a vector layer out of that file. Go to Layer, Add Layer, Add Delimited Text
Layer. Select the correct file and proper CRS projection. The layer should
be added to your Layers Panel and displayed on top of the soil map.

Step 2A - Geo-matching SOC with WRB soil map

In Step 2 you will make a SOC map, based on the FYROM soil map and the
SOC values at the sampled points, following three steps. First you extract the
soil map information for the point data, then you obtain the mean and standard
deviation of the SOC stocks per soil class, based on the point data, and last you
assign these values to the corresponding soil map units. The steps are described
in detail below.

1. Extract the soil map information to the soil profile data by Join Attributes
by Location. Select Vector, Data Management Tools, and Join Attributes by
Location. Here, the target vector layers are the soil point data, and the join
vector layer is the FYROM soil map. The geometric predicate is intersects.
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Figure 6.4: Join attributes by location

Figure 6.4 shows how to specify within the joined table to keep only matching
records. Save the joined layer as a new file.

2. Check the newly generated file, open the attribute table. The new file is
added to the Layers Panel. Right-click on the file and open the attribute
table. The information from the FYROM soil map is now added to the soil
point data.

3. Most likely, the SOC values in the table are not numeric and thus statistics
cannot be calculated. Check the data format, right-click on the file in the
Layers Panel and check the type name of the SOC field under the tab
Fields. If they are not integer then change the format.

4. Change of the data format: Open the attribute table and start editing (the
pencil symbol in the upper left corner of your table). Open the field calculator
and follow these instructions as shown in Figure 6.5):

a. Checkbox: Create a new field
b. Output field name: Specify the name of your field
c. Output field type: Decimal Number (real)
d. Output field length: 10, precision: 3
e. Expression: to_real(“SOC”), the to_real function can be found under Con-

versions and the SOC field is found under Fields and Values

5. After calculating the field, save the edits and leave the editing mode prior to
closing the table. If changes are not saved, the added field will be lost.

6. Calculate the median SOC stock per soil type. Go to the tab Vector and
select Group Stats. Select the layer from the spatial join you made in Step 2.
Add the field SOC and median to the box with Values and the field WRB to
the Rows. Make sure the box with Use only selected features is not checked.
Now calculate the statistics. A table will be given in the left pane (see Figure
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Figure 6.5: Example field calculator

6.6). Save this file as *.csv and repeat the same for the standard deviation.

7. Join the mean and standard deviation of SOC to the soil map. First, add the
files generated during Step 6 to the Layers Panel. In the Layers Panel,
right-click on the FYROM soil map. Go to Properties, select Joins and add
a new join for both the median and standard deviation of SOC. The Join
and Target Field are both WRB.

8. Display the SOC maps. Go to the layer properties of the FYROM soil map.
Go to Style and change the legend to a graduated legend. In the column,
you indicate the assigned SOC values. Probably this is not a integer number
and so you have to convert this number again to a numeric values. You
can do this with the box next to the box as depicted in Figure 6.7. Change
the number of classes to e.g. 10 classes, change the mode of the legend and
change the color scheme if you want and apply the settings. Now you have
a map with the median SOC stocks per WRB soil class.

9. In order to generate a proper layout, go to Project and select New Print
Composer (see Figure 6.8):

a. Add map using Layout and Add Map. Define a square on the canvas and the
selected map will be displayed.

b. Similarly, title, scale bar, legend and a north arrow can be added. Specific
properties can be changed in the box Item properties.
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Figure 6.6: Calculate group statistics

Figure 6.7: Change the legend style to display the SOC values
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Figure 6.8: Example of the Map composer

c. When the map is finished, it can be exported as an image or *.pdf file.

10. Repeat the Steps 2 to 8 but now for the standard deviation of the SOC
stocks.

11. Save the file as a new shapefile *.shp. Go to Layers Panel, Save As and
select ESRI SHP format and make sure that you define the symbology export
Feature Symbology. Now, a shapefile is generated, with both the median and
standard deviation SOC stock per soil type. Redundant fields can be removed
after the new file is created.

Step 2B - Geo-matching SOC with other environmental variables: Land
use

1. Start a new project and add the soil point data and FYROM soil map layers
from the Browser Panel.

2. Add the land use raster file to the Layers Panel. This is a raster file
with 1 km resolution and projected in lat-long degrees (WGS84). For more
information about this product see the online information from worldgrids:
http://worldgrids.org/doku.php/wiki:glcesa3.

3. Change the projection to the MGI 1901/Balkans Zone 7. Go to Raster,
Projections, Warp and select the proper projection and a suitable file name,
e.g. LU_projected_1km. Tick the checkbox for the resampling method and
choose Near. This is the nearest neighbor and most suitable for a transfor-
mation of categorical data, such as land use (see Figure 6.9).

4. In order to geo-match the soil point data with land use data, the raster file
needs to be converted into a vector file. Go to Raster, Conversions, and
select Polygonize. Set a proper output filename, e.g. LU_polygon_1km, and
check the tickbox for Fieldname.

http://worldgrids.org/doku.php/wiki:glcesa3
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Figure 6.9: Change the projection of a raster file
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5. Change the legend style into categories (Step 1-5). Now, the steps from the
previous Section need to be repeated, using the land use polygon map instead
of using the FYROM soil map.

6. Join attributes by location using the soil point data and the polygon land
use map.

7. Calculate the median and standard deviation of SOC by using the Group
Statistics for SOC and the land use classes and save the files as CSV file.

8. Add the generated CSV files to the Layers Panel.
9. Join the files with the land use polygon map, generated in Steps 3 and 4.
10. Change the classes in the legend and inspect the histogram with the median

SOC values. Try to find a proper definition of the class boundaries (Steps 2
to 8).

Step 2C - Joining landscape units and soil mapping units to support
class- and geo-matching (optional)

In this Section, it is outlined how SOC stocks can be mapped following the method
outlined by Lettens et al. (2004). The general idea is that the landscape is stratified
into more or less homogenous units and subsequently, the SOC stocks are obtained
following the procedure outlined earlier in this practical. Lettens et al. (2004)
outlines a method to stratify the landscape into homogeneous strata with respect
to land use and soil type, as was explained earlier. In order to obtain such strata,
the soil map and the land use map need to be combined. This can be done using
various types of software, e.g. ArcMap, GRASS, QGIS or R.

When using the GIS software, the only thing that needs to be done, is intersecting
the vector files and dissolving the newly created polygon features. Depending
on the software and the quality of your shapefile, you may experience problems
with the geometry of your shapefile. Generally, ArcMap and GRASS correct the
geometry when the shapefile is loaded, while QGIS does not do this automatically.
There are various ways to correct the geometry, however, correcting the geometry
falls outside the scope of this training. Therefore, we give some hints on how to
correct your geometry prior to using the functions Intersect and Dissolve.

1. Change the land use raster map to 5 km resolution: Right-click the
Lu_project_1km file, select Save as. Change the resolution to 5000 meters.
Scroll down, check the Pyramids box, and change the resampling method to
Nearest Neighbour.

2. Convert the raster map to a polygon map and add the file to the Layers
Panel.

3. Check the validity of the soil map and land use map. Go to Vector, Geometry
Tools, and select Check Validity. Below you find the instructions in case you
have no problems with your geometry.

4. Intersect the soil map and the land use map. In ArcGIS and QGIS you can
use Intersection function following Vector, Geoprocessing Tools (in GRASS
you have to use the function Overlay from the Vector menu).

5. Dissolve the newly generated polygons vie Vector, Geoprocessing Tools, select
Dissolve.

6. Next, this layer can be used to continue with the class-matching or geo-
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matching procedures.

How to correct your geometry When encountering problems?

• Run the v_clean tool from GRASS within QGIS. Open the Processing Tool-
box, GRASS GIS 5 Commands, Vector, and select v.clean.

• Install the plugin Processing LWGEOM Provider. Go to the plugins
menu and search for the plugin and install it. You can find the newly installed
tool in the Processing Toolbox by typing the name in the Search function.

• Manually correct the error nodes of the vector features.

6.1.5 Technical steps - Geo-matching SOC with WRB soil map
in R

G.F. Olmedo

Geo-matching can also be done in R. We will provide a example code following
the steps from Section 6.1.4 - Step 2A, using the WRB soil map.

Step 1 - Load the soil data and soil map

Load the shapefile including the soil map. Then load the points, and promote
the points to spatialPointsDataFrame using the coordinates() function. Make
sure both are in the same coordinate system. In case they are not, you can use
spTransform() to reproject one of the layers.
library(raster)
# Load the soil map from a shapefile *.shp file
soilmap <- shapefile("MK_soilmap_simple.shp")

library(sp)
# Load soil data
dat <- read.csv("data/dataproc.csv")

# Promote to SpatialPointsDataFrame
coordinates(dat) <- ~ X + Y

# Set the CRS for the soil samples. As if the same we will copy the
# CRS from the soilmap object
dat@proj4string <- soilmap@proj4string

class(dat)

## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"
# We can plot the soil map units with ths soil samples data over
plot(soilmap, lwd=0.3)
points(dat, col="red", cex=0.2)
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Figure 6.10: Soil map units and soil samples (in red) for the geo-matching exercise

Step 2 - Geo-matching

Now, use the over() function to estimate the mean value of the OCSKGM field
for every map unit.
soilmap$OCSKGM <- over(soilmap, dat[,"OCSKGM"], fun=mean)[,1]

Step 3 - Rasterize and export the results as geotiff

Finally, convert the layer to raster, to comply with the deliverables specifications.
pred <- rasterize(soilmap, DEM, "OCSKGM")

plot(pred)

writeRaster(pred, "results/MKD_OCSKGM_GM.tif",
overwrite=TRUE)
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Figure 6.11: SOC prediction map for FYROM using geo-matching
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6.2 Regression-Kriging

G.F. Olmedo & Y. Yigini

6.2.1 Overview

Regression-kriging is a spatial interpolation technique that combines a regression
of the dependent variable (target variable) on predictors (i.e. the environmental
covariates) with kriging of the prediction residuals. In other words, RK is a hybrid
method that combines either a simple or a multiple-linear regression model with
ordinary kriging of the prediction residuals.

A multiple regression analysis models the relationship of multiple predictor vari-
ables and one dependent variable, i.e. it models the deterministic trend between
the target variable and environmental covariates. The modeled relationship be-
tween predictors and target are summarized in the regression equation, which can
then be applied to a different data set in which the target values are unknown but
the predictor variables are known. The regression equation predicts the value of
the dependent variable using a linear function of the independent variables.

In this Section, we review the RK method for DSM. First, the deterministic part of
the trend is modeled using a regression model. Next, the prediction residuals are
kriged. In the regression phase of a RK technique, there is a continuous random
variable called the dependent variable (target) Y , which is in our case SOC, and a
number of independent variables x1, x2, . . . , xp which are selected covariates. Our
purpose is to predict the value of the dependent variable using a linear function of
the independent variables. The values of the independent variables (environmental
covariates) are known quantities to be used for prediction.

6.2.2 Assumptions

Standard linear regression models with standard estimation techniques make a
number of assumptions about the predictor variables, the response variables, and
their relationship. One must review the assumptions made when using the model.

• Linearity: The mean value of Y for each specific combination of the X’s is
a linear function of the X’s. In practice this assumption can virtually never
be confirmed; fortunately, multiple regression procedures are not greatly
affected by minor deviations from this assumption. If curvature in the
relationships is evident, one may consider either transforming the variables
or explicitly allowing for nonlinear components.

• Normality Assumption: It is assumed in multiple regression that the
residuals (predicted minus observed values) are distributed normally (i.e.,
follow the normal distribution). Again, even though most tests (specifically
the F-test) are quite robust with regard to violations of this assumption,
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it is always a good idea, before drawing final conclusions, to review the
distributions of the major variables of interest. You can produce histograms
of the residuals as well as normal probability plots, in order to inspect the
distribution of the residual values.

• Collinearity: There is not perfect collinearity in any combination of the
X’s. A higher degree of collinearity, or overlap, among independent vari-
ables, can cause problems in multiple linear regression models. Collinearity
(also multicollinearity) is a phenomenon in which two or more predictors
in a multiple regression models are highly correlated. Collinearity causes
increase in variances and relatedly increases inaccuracy.

• Distribution of the Errors: The error term is normally distributed with
a mean of zero and constant variance.\

• Homoscedasticity: The variance of the error term is constant for all combi-
nations of X’s. The term homoscedasticity means same scatter. Its antonym
is heteroscedasticity which means different scatter.

6.2.3 Pre-processing of covariates

Before using the selected predictors, multicollinearity assumption must be re-
viewed. As an assumption, there is not perfect collinearity in any combination of
the X’s. A higher degree of collinearity, or overlap, among independent variables,
can cause problems in multiple linear regression models. The multicollinearity of
a number of variables can be assessed using Variance Inflation Factor (VIF).

In R, the function vif() from caret package can estimate the VIF . There are sev-
eral rules of thumb to establish when there is a serious multi-collinearity (e.g. when
the VIF square root is over 2). The principal component analysis (PCA) can be
used to overcome multicollinearity issues.

Principal components analysis can cope with data containing large numbers of
covariates that are highly collinear which is the common case in environmental
predictors. Often the principal components with higher variances are selected
as regressors. However, for the purpose of predicting the outcome, the principal
components with low variances may also be important, in some cases even more
important.

6.2.4 The terminology

• Dependent variable Y : which is to be predicted from a given set of pre-
dictors (e.g. SOC content).

• Independent variables X’s (Predictors): which influence or explain
the dependent variable (Covariates: environmental covariates, DEM derived



Chapter 6. Mapping methods 68

Figure 6.12: Linear regression model

covariates, soil maps, land cover maps, climate maps). The data sources for
the environmental predictors are provided in Chapter 5.

• Coefficients β: Values, computed by the multiple regression tool, reflect
the relationship and strength of each independent variable to the dependent
variable.

• Residuals ε: The portion of the dependent variable that cannot be ex-
plained by the model; the model under/over predictions.

Before we proceed with the regression analysis, it is advisable to inspect the his-
togram of the dependent/target variable, in order to see if it needs to be trans-
formed before fitting the regression model. The data for the selected soil property
is normal when the frequency distribution of the values follow a bell-shaped curve
(Gaussian Distribution) which is symmetric around its mean. Normality tests may
be used to assess normality. If a normality test indicates that data are not nor-
mally distributed, it may be necessary to transform the data to meet the normality
assumption.

Both, the normality tests and data transformations can be easily performed using
any commercial or open source statistical tool (R, SPSS, MINITAB…).

The main steps for regression kriging (RK) are shown in the Figure 6.13.

1. The first step is to prepare a map showing the spatial distribution of the
sample locations and the corresponding soil property information, e.g. soil
organic matter and environmental properties. The first can be achieved as
outlined in Section [Overlay covariates and spatial data]. The overlaying
operation can be performed in R, ArcGIS, SAGA GIS or QGIS.

2. The essential part of multiple regression analysis is to build a regression
model by using the environmental predictors. After extracting the values
of explanatory maps and target variables into the single table, we can now
start fitting multiple regression model using the table that contains data
from dependent variable and predictors.

3. In particular cases, stepwise multiple linear regression (MLR) can be used
to eliminate insignificant predictors. The stepwise MLR usually selects pre-
dictors that have the strongest linear correlations with the target variable,
which reflect the highest predictive capacity.

4. Kriging of the residuals (prediction errors): In RK, the regression model
detrends the data, produces the residuals which we need to krige and to be
added to the regression model predictions.
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Figure 6.13: Workflow for regression-kriging

6.2.5 Interpret the Key Results of Multiple Regression

Regression analysis generates an equation to describe the statistical relationship
between one or more predictor variables and the response variable. The R-squared,
p-values and coefficients that appear in the output for linear regression analysis
must also be reviewed. Before accepting the result of a linear regression it is
important to evaluate its suitability at explaining the data. One of the many ways
to do this is to visually examine the residuals. If the model is appropriate, then
the residual errors should be random and normally distributed.

R-squared

R-sqared (R2) is the percentage of variation in the response that is explained by
the model. The higher the R2 value is, the better the model fits your data. R2

ranges between 0% and 100%. R2 usually increases when additional predictors are
added in the model.

p-value

To determine whether the association between the dependent and each predictor
in the model is statistically significant, compare the p-value for the term to your
significance level to assess the null hypothesis. Usually, a significance level of 0.05
works well.

• p-value ≤ significance level: The relationship is statistically significant.
If the p-value is less than or equal to the significance level, we can conclude
that there is a statistically significant relationship between the dependent
variable and the predictor.
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• p-value > significance level: The relationship is not statistically signifi-
cant. If the p-value is greater than the significance level, you cannot conclude
that there is a statistically significant relationship between the dependent
variable and the predictor. You may want to refit the model without the
predictor.

Residuals

We can plot the residuals which can help us determine whether the model is ade-
quate and meets the assumptions of the analysis. If the model is appropriate, then
the residual errors should be random and normally distributed. We can plot residu-
als versus fits to verify the assumption that the residuals are randomly distributed
and have constant variance. Ideally, the points should fall randomly around zero,
with no recognizable patterns in the points.

The diagnostic plots for the model should be evaluated to confirm if all the as-
sumptions of linear regression are met. After the abovementioned assumptions are
validated, we can proceed with making the prediction map using the model with
significant predictors.

6.2.6 Using the results of a regression analysis to make predic-
tions

The purpose of a regression analysis, of course, is to develop a model that can
be used to make the prediction of a dependent variable. The derived regression
equation is to be used to create the prediction map for the dependent variable.

Raster calculation can be easily performed using raster package in R
or ArcGIS using the Raster Calculator tool (is called Map Algebra
in the prior versions).

6.2.7 Technical steps - Regression-kriging

Requirements

The following computational steps from the previous Chapters are required to
implement RK in R:

1. Setting-up the software environment.
2. Obtaining and installing RStudio.
3. Installing and loading the required R packages.
4. Preparation of local soil property data.
5. Preparation of spatial covariates (DEM-derived covariates, land cover/land

use, climate, parent material).

Step 1 - Setting working space and initial steps

One of the first steps should be setting our working directory. If you read/write
files from/to disk, this takes place in the working directory. If we do not set the
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working directory, we could easily write files to an undesirable file location. The
following example shows how to set the working directory in R to our folder which
contains data for the study area (point data, covariates).

Note that we must use the forward slash / or double backslash \\ in R! Single
backslash \ will not work. Now we can check if the working directory has been
correctly set by using the getwd() function:
getwd()

Step 2 - Data preparation

Point dataset

We previously prepared the point dataset in 4 chapter. We will be using this data
file (.csv) in this section.

Environmental predictors (covariates)

In the Chapter 5, we presented and prepared several global and continental
datasets. In addition to these datasets, numerous covariate layers have been
prepared by ISRIC for the GSOCmap project. These are GIS raster layers of
various biophysical earth surface properties for each country in the world. Some
of these layers will be used as predictors in this Section. Please download the
covariates for your own study area from GSOCmap Data Repository as explained
in Section 5.6.

In Section 5.9, a table with the points values after data preparation and the values
of our spatial predictors was prepared. This step involves loading this table.

Now we will import our point dataset using read.csv() function. The easiest
way to create a data frame is to read in data from a file. This is done using the
function read.csv(), which works with comma delimited files. Data can be read
in from other file formats as well, using different functions, but read.csv() is the
most commonly used approach. R is very flexible in how it reads in data from text
files (read.table(), read.csv(), read.csv2(), read.delim(), read.delim2()).
Please type ?read.table() for help.
# Load data
dat <- read.csv("data/MKD_RegMatrix.csv")

dat$LCEE10 <- as.factor(dat$LCEE10)
dat$soilmap <- as.factor(dat$soilmap)

# Explore the data structure
str(dat)

## 'data.frame': 2897 obs. of 23 variables:
## $ id : Factor w/ 2897 levels "P0003","P0007",..: 1 2 3 4..
## $ Y : num 42 42 42.1 42 42 ...
## $ X : num 20.8 20.8 20.8 20.9 20.9 ...
## $ SOC : num 26.38 6.15 3.94 3.26 2.29 ...
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## $ BLD : num 0.73 1.17 1.3 1.34 1.41 ...
## $ CRFVOL : num 8 18.6 31.9 21.7 14.5 ...
## $ OCSKGM : num 5.32 1.75 1.04 1.03 0.83 ...
## $ meaERROR : num 2.16 2.85 2.65 3.16 3.63 2.83 2.94 2.49 2.77..
## $ OCSKGMlog: num 1.6712 0.5591 0.0429 0.0286 -0.1862 ...
## $ B04CHE3 : num 574 553 693 743 744 ...
## $ B07CHE3 : num 38.5 37.8 42.1 43.7 43.7 ...
## $ B13CHE3 : num 111.6 125 99.8 118.1 121 ...
## $ B14CHE3 : num 59.2 60.3 42.4 39.9 38.7 ...
## $ DEMENV5 : int 2327 2207 1243 1120 1098 1492 1413 1809 1731..
## $ LCEE10 : Factor w/ 4 levels "1","2","3","4": 1 3 2 1 2 2 2..
## $ PRSCHE3 : num 998 1053 780 839 844 ...
## $ SLPMRG5 : int 13 36 6 25 30 24 15 17 20 43 ...
## $ TMDMOD3 : int 282 280 285 288 289 287 286 286 287 286 ...
## $ TMNMOD3 : int 272 270 277 279 279 277 277 273 274 273 ...
## $ TWIMRG5 : int 61 62 81 66 65 72 68 67 65 59 ...
## $ VBFMRG5 : int 0 0 14 0 0 0 0 0 0 0 ...
## $ VDPMRG5 : int 311 823 10048 1963 -173 -400 -9 -692 -1139 2..
## $ soilmap : Factor w/ 20 levels "1","2","3","4",..: 6 14 14 3..

Since we will be working with spatial data we need to define the coordinates for
the imported data. Using the coordinates() function from the sp package we
can define the columns in the data frame to refer to spatial coordinates. Here the
coordinates are listed in columns X and Y.
library(sp)

# Promote to SpatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)

## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"

SpatialPointsDataFrame structure is essentially the same as a data frame, except
that additional spatial elements have been added or partitioned into slots. Some
important ones being the bounding box (sort of like the spatial extent of the data),
and the coordinate reference system proj4string(), which we need to define for
the sample dataset. To define the CRS, we must know where our data are from,
and what was the corresponding CRS used when recording the spatial information
in the field. For this data set, the CRS used was WGS84 (EPSG:4326).

To clearly tell R this information we define the CRS which describes a reference
system in a way understood by the PROJ.4 projection library. An interface to
the PROJ.4 library is available in the rgdal package. As an alternative to using
PROJ.4 character strings, we can use the corresponding yet simpler EPSG code.
rgdal also recognizes these codes. If you are unsure of the PROJ.4 or EPSG

http://trac.osgeo.org/proj/


73 6.2. Regression-Kriging

code for the spatial data that you have but know the CRS, you should consult
http://spatialreference.org/ for assistance.

CRS: Please note that, when working with spatial data, it is very
important that the CRS of the point data and covariates are the same.

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

## CRS arguments:
## +init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs
## +ellps=WGS84 +towgs84=0,0,0

Now we will import the covariates. When the covariate layers are in common
resolution and extent, rather than working with individual rasters it is better to
stack them all into a single R object. In this example, we use 13 covariates from
the GSOCmap Data Repository and a rasterized version of the soil type map. The
rasterization of vectorial data was covered in Technical Steps - Rasterizing a vector
layer in R. The file containing all the covariates was prepared at the end of Chapter
5.
load(file = "covariates.RData")

names(covs)

## [1] "B04CHE3" "B07CHE3" "B13CHE3" "B14CHE3" "DEMENV5" "LCEE10"
## [7] "PRSCHE3" "SLPMRG5" "TMDMOD3" "TMNMOD3" "TWIMRG5" "VBFMRG5"
## [13] "VDPMRG5" "soilmap"

Step 3 - Fitting the MLR model

It would be better to progress with a data frame of just the data and covariates
required for the modeling. In this case, we will subset the columns SOC, the
covariates and the spatial coordinates (X and Y).
datdf <- dat@data

datdf <- datdf[, c("OCSKGM", names(covs))]

Let’s fit a linear model with all available covariates.
# Fit a multiple linear regression model between the log-transformed
# values of OCS and the top 20 covariates
model.MLR <- lm(log(OCSKGM) ~ ., data = datdf)

From the summary of our fitted model (model.MLR) above, it seems only a few
of the covariates are significant in describing the spatial variation of the target
variable. To determine the most predictive model we can run a stepwise regression
using the step() function. With this function, we can also specify the mode of
stepwise search, can be one of both, backward, or foreward.

http://spatialreference.org/
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# Stepwise variable selection
model.MLR.step <- step(model.MLR, direction="both")

Comparing the summary of both the full and stepwise linear models, there is very
little difference between the models such as the R2. Both models explain about
23% of variation of the target variable. Obviously, the full model is more complex
as it has more parameters than the step model.
# Summary and ANOVA of the new model using stepwise covariates
# selection
summary(model.MLR.step)
anova(model.MLR.step)

##
## Call:
## lm(formula = log(OCSKGM) ~ B04CHE3 + B07CHE3 + B13CHE3 + DEMENV5 +
## LCEE10 + PRSCHE3 + SLPMRG5 + TMDMOD3 + TMNMOD3 + VBFMRG5 +
## VDPMRG5 + soilmap, data = datdf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3625 -0.2637 0.0368 0.3111 1.8859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.166e+00 4.343e+00 2.111 0.03489 *
## B04CHE3 -5.877e-03 1.099e-03 -5.347 9.64e-08 ***
## B07CHE3 1.110e-01 3.460e-02 3.209 0.00135 **
## B13CHE3 -4.361e-03 1.640e-03 -2.659 0.00788 **
## DEMENV5 -1.882e-04 8.926e-05 -2.108 0.03508 *
## LCEE102 9.745e-02 3.369e-02 2.893 0.00385 **
## LCEE103 1.399e-01 5.490e-02 2.548 0.01088 *
## LCEE104 -3.612e-02 4.360e-02 -0.829 0.40741
## PRSCHE3 9.174e-04 3.139e-04 2.923 0.00350 **
## SLPMRG5 -2.440e-03 1.508e-03 -1.619 0.10559
## TMDMOD3 -5.584e-02 7.612e-03 -7.336 2.86e-13 ***
## TMNMOD3 2.467e-02 1.291e-02 1.911 0.05611 .
## VBFMRG5 4.941e-04 9.867e-05 5.008 5.84e-07 ***
## VDPMRG5 -2.696e-05 4.360e-06 -6.185 7.11e-10 ***
## soilmap2 -3.848e-01 4.885e-01 -0.788 0.43090
## soilmap3 -2.094e-01 4.825e-01 -0.434 0.66429
## soilmap4 -1.955e-01 4.886e-01 -0.400 0.68919
## soilmap5 -6.323e-02 5.202e-01 -0.122 0.90327
## soilmap6 2.087e-01 4.841e-01 0.431 0.66649
## soilmap7 1.459e-01 4.857e-01 0.300 0.76398
## soilmap8 -1.875e-01 4.848e-01 -0.387 0.69904
## soilmap9 -3.278e-01 4.817e-01 -0.681 0.49617
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## soilmap10 -1.001e-01 4.833e-01 -0.207 0.83590
## soilmap11 -3.587e-01 4.874e-01 -0.736 0.46188
## soilmap12 -2.135e-01 4.822e-01 -0.443 0.65797
## soilmap13 3.091e-01 5.563e-01 0.556 0.57855
## soilmap14 -2.224e-01 4.828e-01 -0.461 0.64506
## soilmap15 -1.905e-01 4.876e-01 -0.391 0.69600
## soilmap16 -3.482e-01 4.831e-01 -0.721 0.47112
## soilmap17 -1.478e-01 4.838e-01 -0.306 0.75996
## soilmap18 -8.714e-02 4.830e-01 -0.180 0.85684
## soilmap19 -5.491e-01 5.082e-01 -1.080 0.28002
## soilmap20 -3.123e-01 4.846e-01 -0.644 0.51934
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4806 on 2864 degrees of freedom
## Multiple R-squared: 0.2472, Adjusted R-squared: 0.2388
## F-statistic: 29.38 on 32 and 2864 DF, p-value: < 2.2e-16
##
## Analysis of Variance Table
##
## Response: log(OCSKGM)
## Df Sum Sq Mean Sq F value Pr(>F)
## B04CHE3 1 111.35 111.347 482.0082 < 2.2e-16 ***
## B07CHE3 1 2.33 2.335 10.1060 0.001494 **
## B13CHE3 1 1.64 1.642 7.1059 0.007726 **
## DEMENV5 1 5.07 5.067 21.9339 2.953e-06 ***
## LCEE10 3 17.22 5.740 24.8497 7.201e-16 ***
## PRSCHE3 1 4.91 4.910 21.2530 4.201e-06 ***
## SLPMRG5 1 1.97 1.971 8.5305 0.003520 **
## TMDMOD3 1 3.75 3.749 16.2300 5.756e-05 ***
## TMNMOD3 1 0.60 0.602 2.6081 0.106428
## VBFMRG5 1 12.75 12.750 55.1943 1.433e-13 ***
## VDPMRG5 1 10.80 10.797 46.7375 9.880e-12 ***
## soilmap 19 44.83 2.359 10.2135 < 2.2e-16 ***
## Residuals 2864 661.60 0.231
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In those two models above, we used all available points. It is important to test the
performance of a model based upon an external validation.
# Graphical diagnosis of the regression analysis
par(mfrow=c(2,2))
plot(model.MLR.step)

## Warning: not plotting observations with leverage one:
## 340
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## Warning: not plotting observations with leverage one:
## 340
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par(mfrow=c(1,1))

# Collinearity test using variance inflation factors
library(car)
vif(model.MLR.step)

## GVIF Df GVIF^(1/(2*Df))
## B04CHE3 17.352988 1 4.165692
## B07CHE3 17.580993 1 4.192969
## B13CHE3 14.463943 1 3.803149
## DEMENV5 14.325207 1 3.784866
## LCEE10 3.349841 3 1.223219
## PRSCHE3 20.323563 1 4.508166
## SLPMRG5 3.201225 1 1.789197
## TMDMOD3 6.724708 1 2.593204
## TMNMOD3 6.172634 1 2.484479
## VBFMRG5 4.182605 1 2.045142
## VDPMRG5 1.933334 1 1.390444
## soilmap 16.784795 19 1.077047
# Problematic covariates should have sqrt (VIF) > 2
sqrt(vif(model.MLR.step))

## GVIF Df GVIF^(1/(2*Df))
## B04CHE3 4.165692 1.000000 2.041003
## B07CHE3 4.192969 1.000000 2.047674
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## B13CHE3 3.803149 1.000000 1.950166
## DEMENV5 3.784866 1.000000 1.945473
## LCEE10 1.830257 1.732051 1.105992
## PRSCHE3 4.508166 1.000000 2.123244
## SLPMRG5 1.789197 1.000000 1.337609
## TMDMOD3 2.593204 1.000000 1.610343
## TMNMOD3 2.484479 1.000000 1.576223
## VBFMRG5 2.045142 1.000000 1.430085
## VDPMRG5 1.390444 1.000000 1.179171
## soilmap 4.096925 4.358899 1.037809

Colinear: Temperature seasonality at 1 km (B04CHE3) and Temperature Annual
Range [°C] at 1 km (B07CHE3).
# Removing B07CHE3 from the stepwise model
model.MLR.step <- update(model.MLR.step, . ~ . - B07CHE3)

# Test the vif again
sqrt(vif(model.MLR.step))

## GVIF Df GVIF^(1/(2*Df))
## B04CHE3 2.268418 1.000000 1.506127
## B13CHE3 3.624615 1.000000 1.903842
## DEMENV5 3.645817 1.000000 1.909402
## LCEE10 1.818077 1.732051 1.104762
## PRSCHE3 4.460815 1.000000 2.112064
## SLPMRG5 1.783090 1.000000 1.335324
## TMDMOD3 2.572322 1.000000 1.603846
## TMNMOD3 2.299838 1.000000 1.516522
## VBFMRG5 2.015123 1.000000 1.419550
## VDPMRG5 1.387165 1.000000 1.177780
## soilmap 3.840284 4.358899 1.036043
# Summary of the new model using stepwise covariates selection
summary(model.MLR.step)

##
## Call:
## lm(formula = log(OCSKGM) ~ B04CHE3 + B13CHE3 + DEMENV5 + LCEE10 +
## PRSCHE3 + SLPMRG5 + TMDMOD3 + TMNMOD3 + VBFMRG5 + VDPMRG5 +
## soilmap, data = datdf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3857 -0.2662 0.0390 0.3096 1.9418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.536e+01 3.896e+00 3.943 8.23e-05 ***



Chapter 6. Mapping methods 78

## B04CHE3 -2.919e-03 5.994e-04 -4.869 1.18e-06 ***
## B13CHE3 -5.955e-03 1.566e-03 -3.804 0.000146 ***
## DEMENV5 -2.651e-04 8.612e-05 -3.079 0.002099 **
## LCEE102 1.006e-01 3.373e-02 2.983 0.002879 **
## LCEE103 1.250e-01 5.479e-02 2.281 0.022598 *
## LCEE104 -2.756e-02 4.358e-02 -0.632 0.527224
## PRSCHE3 1.063e-03 3.111e-04 3.417 0.000642 ***
## SLPMRG5 -2.041e-03 1.505e-03 -1.356 0.175085
## TMDMOD3 -5.275e-02 7.563e-03 -6.974 3.80e-12 ***
## TMNMOD3 8.998e-03 1.197e-02 0.752 0.452305
## VBFMRG5 4.401e-04 9.738e-05 4.519 6.47e-06 ***
## VDPMRG5 -2.792e-05 4.357e-06 -6.410 1.70e-10 ***
## soilmap2 -4.166e-01 4.892e-01 -0.852 0.394494
## soilmap3 -1.925e-01 4.832e-01 -0.398 0.690372
## soilmap4 -1.959e-01 4.894e-01 -0.400 0.688957
## soilmap5 -6.440e-02 5.211e-01 -0.124 0.901641
## soilmap6 2.098e-01 4.849e-01 0.433 0.665224
## soilmap7 1.337e-01 4.865e-01 0.275 0.783490
## soilmap8 -1.838e-01 4.856e-01 -0.379 0.705074
## soilmap9 -3.376e-01 4.825e-01 -0.700 0.484097
## soilmap10 -9.951e-02 4.841e-01 -0.206 0.837162
## soilmap11 -3.570e-01 4.882e-01 -0.731 0.464661
## soilmap12 -2.104e-01 4.830e-01 -0.436 0.663172
## soilmap13 2.675e-01 5.570e-01 0.480 0.631148
## soilmap14 -2.312e-01 4.836e-01 -0.478 0.632615
## soilmap15 -1.733e-01 4.883e-01 -0.355 0.722668
## soilmap16 -3.620e-01 4.839e-01 -0.748 0.454464
## soilmap17 -1.564e-01 4.846e-01 -0.323 0.746854
## soilmap18 -6.759e-02 4.837e-01 -0.140 0.888886
## soilmap19 -5.479e-01 5.090e-01 -1.076 0.281873
## soilmap20 -3.061e-01 4.853e-01 -0.631 0.528351
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4814 on 2865 degrees of freedom
## Multiple R-squared: 0.2445, Adjusted R-squared: 0.2363
## F-statistic: 29.9 on 31 and 2865 DF, p-value: < 2.2e-16
# Outlier test using the Bonferroni test
outlierTest(model.MLR.step)

## rstudent unadjusted p-value Bonferonni p
## 1967 -7.114604 1.4122e-12 4.0897e-09
## 705 -6.795188 1.3108e-11 3.7959e-08
## 1154 -6.045856 1.6789e-09 4.8621e-06
## 1395 -5.112379 3.3907e-07 9.8194e-04
## 709 -5.078342 4.0515e-07 1.1733e-03
## 1229 -4.842237 1.3520e-06 3.9155e-03
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## 1136 -4.468410 8.1860e-06 2.3707e-02

Step 4 - Prediction and residual kriging

Now we can make the predictions and plot the map. We can use either our DSM
data table for covariate values or covs object for making our prediction. Using
stack avoids the step of arranging all covariates into a table format. If multiple
rasters are being used, it is necessary to have them arranged as a rasterStack
object. This is useful as it also ensures all the rasters are of the same extent and
resolution. Here we can use the raster predict function such as below using the
covStack raster stack as we created in the Step 3.
# Project point data
dat <- spTransform(dat, CRS("+init=epsg:6204"))

# Project covariates to VN-2000 UTM 48N
covs <- projectRaster(covs, crs = CRS("+init=epsg:6204"),

method='ngb')

covs$LCEE10 <- as.factor(covs$LCEE10)
covs$soilmap <- as.factor(covs$soilmap)

# Promote covariates to spatial grid dataframe.
# Takes some time and a lot of memory!
covs.sp <- as(covs, "SpatialGridDataFrame")
covs.sp$LCEE10 <- as.factor(covs.sp$LCEE10)
covs.sp$soilmap <- as.factor(covs.sp$soilmap)

## Checking if any bins have less than 5 points, merging bins when necessary...
##
## Selected:
## model psill range
## 1 Nug 0.16735323 0.000
## 2 Sph 0.06746394 6646.127
##
## Tested models, best first:
## Tested.models kappa SSerror
## 1 Sph 0 3.964233e-07
## 25 Ste 10 4.182590e-07
## 24 Ste 5 4.266696e-07
## 23 Ste 2 4.501717e-07
## 22 Ste 1.9 4.519816e-07
## 21 Ste 1.8 4.539405e-07
## 20 Ste 1.7 4.560649e-07
## 19 Ste 1.6 4.583753e-07
## 18 Ste 1.5 4.608930e-07
## 17 Ste 1.4 4.636455e-07
## 16 Ste 1.3 4.666616e-07
## 3 Gau 0 4.680499e-07
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## 15 Ste 1.2 4.699776e-07
## 14 Ste 1.1 4.736337e-07
## 13 Ste 1 4.776785e-07
## 12 Ste 0.9 4.821684e-07
## 11 Ste 0.8 4.871689e-07
## 10 Ste 0.7 4.927610e-07
## 9 Ste 0.6 4.990387e-07
## 2 Exp 0 5.061150e-07
## 8 Ste 0.5 5.061153e-07
## 7 Ste 0.4 5.141265e-07
## 6 Ste 0.3 5.232363e-07
## 5 Ste 0.2 5.336428e-07
## 4 Ste 0.05 1.148336e-06
## [using universal kriging]
# RK model
library(automap)

# Run regression-kriging prediction.
# This step can take hours!
OCS.krige <- autoKrige(formula =

as.formula(model.MLR.step$call$formula),
input_data = dat,
new_data = covs.sp,
verbose = TRUE,
block = c(1000, 1000))

OCS.krige

# Convert prediction and standard deviation to rasters
# and back-tansform the vlaues
RKprediction <- exp(raster(OCS.krige$krige_output[1]))
RKpredsd <- exp(raster(OCS.krige$krige_output[3]))

plot(RKprediction)

plot(RKpredsd)

# Save results as *.tif files
writeRaster(RKprediction, filename = "results/MKD_OCSKGM_RK.tif",

overwrite = TRUE)

writeRaster(RKpredsd, filename = "results/MKD_OCSKGM_RKpredsd.tif",
overwrite = TRUE)

# Save the model
saveRDS(model.MLR.step, file="results/RKmodel.Rds")
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Figure 6.14: SOC prediction of FYROM using a regression kriging model
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Figure 6.15: Standard deviation map of the regression-kriging model



Chapter 6. Mapping methods 82

6.2.8 Technical steps - Cross-validation of regression-kriging
models

Cross-validation is introduced in Section 7.4.3. In RK models, n-fold cross-
validation and leave-one-out cross-validation can be run using the krige.cv()
included in gstat R package. In this example, we will apply 10 fold cross-
validation to our RK model.
# autoKrige.cv() does not removes the duplicated points
# We have to do it manually before running the cross-validation
dat = dat[which(!duplicated(dat@coords)), ]

OCS.krige.cv <- autoKrige.cv(formula =
as.formula(model.MLR.step$call$formula),
input_data = dat, nfold = 10)

summary(OCS.krige.cv)

## [,1]
## mean_error 0.003371
## me_mean -0.2795
## MAE 0.3351
## MSE 0.2079
## MSNE NaN
## cor_obspred 0.5624
## cor_predres -0.04639
## RMSE 0.4559
## RMSE_sd 0.8276
## URMSE 0.4559
## iqr 0.5299
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6.3 Data mining: random forest

M. Guevara, C. Thine, G.F. Olmedo & R.R. Vargas

6.3.1 Overview

Data mining uses different forms of statistics, such as machine learning, to explore
data matrices for a particular situation, from specific information sources, and
with a specific objective. Data mining is used in DSM frameworks to generate
spatial and temporal predictions of soil properties or classes in places where no
information is available.

Under a data mining-based DSM framework, the exploration of statistical relation-
ships (linear and non-linear) between soil observational data and soil environmen-
tal predictors is generally performed by the means of machine learning. Machine
learning methods represent a branch of statistics that can be used to automatically
extract information from available data, including the non-linear and hidden rela-
tionships of high dimensional spaces or hyper-volumes of information when high
performance or distributed computing resources are available. Machine learning
methods do not rely on statistical assumptions about the spatial structure of soil
variability or the empirical relationship of soil available data and its environmental
predictors. Therefore machine learning methods are also suitable for digital soil
mapping under limited and sparse scenarios of data availability, although in prac-
tice the statistical performance of machine learning (or any statistical method) is
reduced by a low representativeness of a soil property or class in the statistical
space given available data. Machine learning methods can be used for (supervised
and unsupervised) regression (e.g., predicting soil organic carbon) or classifica-
tion (e.g., predicting soil type classes) on digital soil mapping. Machine learning
methods can be roughly divided into four main groups: linear-based (e.g., MLR),
kernel-based (e.g., kernel weighted nearest neighbors or SVM), probabilistic-based
(e.g., Bayesian statistics) and tree-based (e.g., classification and regression trees).

Random forest is a tree-based machine learning algorithm that is popular in DSM
because it has proven to be efficient mapping soil properties across a wide range
of data scenarios and scales of soil variability. RF can be implemented using open
source platforms and this Chapter is devoted to provide a reproducible example
of this machine learning algorithm applied to SOC mapping across FYROM.

6.3.2 Random forest

Random forest is a decision-tree-based machine learning method used in DSM
for uncovering the statistical relationship between a dependent variable (e.g., soil
property) and its predictors. Decision-tree-based models (also known as classifiers)
are literally like trees (e.g., with stem, many branches, and leaves). The leaves are
the prediction outcomes (final decisions) that flow from higher levels based on
decision rules through the stem and the branches (Breiman et al., 1984). The
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Figure 6.16: Schematical representation of data splitting to generate the random
subsets used to train regression trees within a random forest model (ensemble of
regression trees)

decision tree model recursively splits the data into final uniform groups (classes)
or unique values based on a set of rules (e.g., based on probability values and
hypothesis testing). In random forest, there are many decision trees and each tree
recursively splits randomly selected sub-samples from the data (see Figure 6.16).
The name for RF originates from the fact that the original data is first randomly
split into sub-samples, and many decision trees (or forest) are used to model the
sub-samples.

Random forest has been tested by many researchers on DSM (Poggio et al. (2013);
Rad et al. (2014), and references therein). For SOC mapping (which for large areas
usually rely on sparse datasets), it holds a lot of promises when compared to other
prediction models, because it is practically free of assumptions. RF has shown
accuracy of spatial predictions and, given the random selection of subsets and
prediction factors, reduce potential over-fitting and data noise (Wiesmeier et al.,
2011). Over-fitting and data noise are important uncertainty sources across high
dimensionally spaces used to represent the soil forming environment. Thus, the
advent of open-source platforms and freely downloadable ancillary data (e.g. http:
//worldgrids.org/) to represent the soil forming environment makes of RF and
other such models increasingly appealing for DSM.

To predict continuous data (such as carbon density), RF generates an averaged
ensemble of regression trees based on bagging, which is the statistical term for
the random selection of subsets and predictors to generate each regression tree.
Bagging is a bootstrapping aggregation technique where each sample is different
from the original data set but resembles it in distribution and variability (Breiman,
2001, 1996). Each tree contributes to weight the statistical relationship between a
dependent variable (e.g. soil property) and its prediction factors (e.g., terrain at-
tributes, remote sensing, climate layers and/or legacy maps). Each tree (generated
using a different subset of available data and random combinations of the predic-
tion factors) is internally evaluated by an out-of-bag cross validation form which
allows assessing the relative importance of the available prediction factors. Thus,
higher weight is given to the most accurate trees (which use the most informative
prediction factors). The final prediction of new data is the weighted average of all
generated trees.

http://worldgrids.org/
http://worldgrids.org/
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This method has been used to generate accurate predictions of SOC from the plot
to the global scale and also in a country-specific basis (Hengl et al., 2014; Hengl T.,
2017; Bonfatti et al., 2016; Guevara et al., 2018). RF can be implemented for DSM
using open source code (e.g., R package randomForest, see Breiman, 2017) and
public sources of environmental information.

The objective of this Chapter is to demonstrate a reproducible framework for the
implementation of the RF algorithm applied for SOC predictive mapping, including
the uncertainty of model estimates and using open source platforms for statistical
computing.

6.3.3 Conceptual model and data preparation

To use RF for digital soil organic carbon mapping the SCORPAN (Soils, Climate,
Organisms, Relief, Parent material, Age and N space) conceptual model (McBrat-
ney et al., 2003; Florinsky, 2012) will have take the following form:

SOCx,y t ∼ randomForest(Ex,y t)

where soil organic carbon estimates (SOC) for a specific site (x, y) and for a specific
period of time (t) can be modeled as a Random forest (randomForest) function of
the soil forming environment ( Ex, y t), which is represented by the SOC prediction
factors (e.g., terrain attributes, remote sensing, climate layers and/or legacy maps).

To feed the right side of the equation, SOCx,y t is usually represented in a tabular
form or a geospatial object (e.g., shapefile) with three fundamental columns. Two
columns represent the spatial coordinates x and y (e.g. latitude and longitude)
that are used to extract the values of the prediction factors for the representative
locations of the SOC estimates. SOC estimates are represented in a third column
(see previous Chapters of this book dealing with the transformation of soil carbon
density to mass units). The left side of the equation is generally represented
by gridded (raster) files, so all available sources of information should be first
harmonized into a common pixel size and coordinate reference system.

6.3.4 Software

For the RF implementation, we will use the platform for statistical computing R.
This open source object-oriented software relies on specific-contributor libraries.
There are several libraries for the implementation of the RF algorithm in R as
well as several variants of the method that can be used to solve DSM problems.

In this Section, we will show the use of Random forest using the randomForest,
the quantregForest, the raster and the caret R packages. The quantile regres-
sion forest (quantregForest; Meinshausen, 2006) has two main advantages. First,
it can be used to extract the variance of all the trees generated by RF, not just the
mean (as in the original randomForest package), and therefore we can calculate
the dispersion of the full conditional distribution of SOC as a function of the pre-
diction factors, which given available data, represent the RF model uncertainty.
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Second, the quantile regression forest approach can also run in parallel using all
available computational resources, in a way that we can predict and estimate the
uncertainty of predictions at reasonable time frames whit large datasets.

6.3.5 Tunning random forest model parameters

Two important parameters of RF are mtry and ntree. The mtry parameter controls
the number of prediction factors that are randomly used on each tree, while the
ntree parameter controls the number of trees generated by RF. These two param-
eters can be selected by the means of cross-validation to maximize the prediction
capacity of RF.

We will use the caret package to select the most appropriate values for these
parameters using 10-fold cross-validation (Kuhn et al., 2017). Tunning the main
parameters of RF (or any other model) can be time-consuming in computational
terms because implies the need to run and internally validate an independent
model for each possible combination of parameter values. Thus, tunning the RF
parameters would be relevant, given available data, to achieve the best possible
accuracy of predictions.

6.3.6 Technical steps - Random forest

We will use the FYSOM dataset for this exercise (see previous Chapters of this book
dealing with data preparation). The first dataset contains in a tabular form the
OCSKGM values and the values of the prediction factors for the same locations
(e.g., x, y, OCSKGM, covariate1, covariate2 etc.) while the second database is
represented by a stack of raster files containing prediction factors across all the
area of interest at the spatial resolution of 0.0083º (approx. 1 km). Import the
datasets and load in R all our libraries of interest.

Step 1 - Data preparation

In the Chapter 5, we presented and prepared several global and continental
datasets. In addition to these datasets, numerous covariate layers have been
prepared by ISRIC for the GSOCmap project. These are GIS raster layers of
various biophysical earth surface properties for each country in the world. Some
of these layers will be used as predictors in this Section. Please download the
covariates for your own study area from GSOCmap Data Repository as explained
in Section 5.6.

In Section 5.9, a table with the points values after data preparation and the values
of our spatial predictors was prepared. This step involves loading this table.

Now we will import our point dataset using read.csv() function. The easiest
way to create a data frame is to read in data from a file. This is done using the
function read.csv(), which works with comma delimited files. Data can be read
in from other file formats as well, using different functions, but read.csv() is the
most commonly used approach. R is very flexible in how it reads in data from text
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files (read.table(), read.csv(), read.csv2(), read.delim(), read.delim2()).
Please type ?read.table() for help.
# Load data
dat <- read.csv("data/MKD_RegMatrix.csv")

dat$LCEE10 <- as.factor(dat$LCEE10)
dat$soilmap <- as.factor(dat$soilmap)

# Explore the data structure
str(dat)

## 'data.frame': 2897 obs. of 23 variables:
## $ id : Factor w/ 2897 levels "P0003","P0007",..: 1 2 3 4..
## $ Y : num 42 42 42.1 42 42 ...
## $ X : num 20.8 20.8 20.8 20.9 20.9 ...
## $ SOC : num 26.38 6.15 3.94 3.26 2.29 ...
## $ BLD : num 0.73 1.17 1.3 1.34 1.41 ...
## $ CRFVOL : num 8 18.6 31.9 21.7 14.5 ...
## $ OCSKGM : num 5.32 1.75 1.04 1.03 0.83 ...
## $ meaERROR : num 2.16 2.85 2.65 3.16 3.63 2.83 2.94 2.49 2.77..
## $ OCSKGMlog: num 1.6712 0.5591 0.0429 0.0286 -0.1862 ...
## $ B04CHE3 : num 574 553 693 743 744 ...
## $ B07CHE3 : num 38.5 37.8 42.1 43.7 43.7 ...
## $ B13CHE3 : num 111.6 125 99.8 118.1 121 ...
## $ B14CHE3 : num 59.2 60.3 42.4 39.9 38.7 ...
## $ DEMENV5 : int 2327 2207 1243 1120 1098 1492 1413 1809 1731..
## $ LCEE10 : Factor w/ 4 levels "1","2","3","4": 1 3 2 1 2 2 2..
## $ PRSCHE3 : num 998 1053 780 839 844 ...
## $ SLPMRG5 : int 13 36 6 25 30 24 15 17 20 43 ...
## $ TMDMOD3 : int 282 280 285 288 289 287 286 286 287 286 ...
## $ TMNMOD3 : int 272 270 277 279 279 277 277 273 274 273 ...
## $ TWIMRG5 : int 61 62 81 66 65 72 68 67 65 59 ...
## $ VBFMRG5 : int 0 0 14 0 0 0 0 0 0 0 ...
## $ VDPMRG5 : int 311 823 10048 1963 -173 -400 -9 -692 -1139 2..
## $ soilmap : Factor w/ 20 levels "1","2","3","4",..: 6 14 14 3..

Since we will be working with spatial data we need to define the coordinates for
the imported data. Using the coordinates() function from the sp package we
can define the columns in the data frame to refer to spatial coordinates. Here the
coordinates are listed in columns X and Y.
library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)
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## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"

SpatialPointsDataFrame structure is essentially the same as a data frame, except
that additional spatial elements have been added or partitioned into slots. Some
important ones being the bounding box (sort of like the spatial extent of the data),
and the coordinate reference system proj4string(), which we need to define for
the sample dataset. To define the CRS, we must know where our data are from,
and what was the corresponding CRS used when recording the spatial information
in the field. For this data set, the CRS used was WGS84 (EPSG:4326).

To clearly tell R this information we define the CRS which describes a reference
system in a way understood by the PROJ.4 projection library. An interface to
the PROJ.4 library is available in the rgdal package. As an alternative to using
PROJ.4 character strings, we can use the corresponding yet simpler EPSG code.
rgdal also recognizes these codes. If you are unsure of the PROJ.4 or EPSG
code for the spatial data that you have but know the CRS, you should consult
http://spatialreference.org/ for assistance.

CRS: Please note that, when working with spatial data, it is very
important that the CRS of the point data and covariates are the same.

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

## CRS arguments:
## +init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs
## +ellps=WGS84 +towgs84=0,0,0

Now we will import the covariates. When the covariate layers are in common
resolution and extent, rather than working with individual rasters it is better to
stack them all into a single R object. In this example, we use 13 covariates from
the GSOCmap Data Repository and a rasterized version of the soil type map. The
rasterization of vectorial data was covered in Technical Steps - Rasterizing a vector
layer in R. The file containing all the covariates was prepared at the end of Chapter
5.
load(file = "covariates.RData")

names(covs)

## [1] "B04CHE3" "B07CHE3" "B13CHE3" "B14CHE3" "DEMENV5" "LCEE10"
## [7] "PRSCHE3" "SLPMRG5" "TMDMOD3" "TMNMOD3" "TWIMRG5" "VBFMRG5"
## [13] "VDPMRG5" "soilmap"

Random forest does not have assumptions about the statistical distribution of the
response variable, but it is a good practice prior to model building to analyze
the statistical distribution of the response variable (e.g., if is normal or not) and
its relationships with the prediction factors. Soil organic carbon tends to have a

http://trac.osgeo.org/proj/
http://spatialreference.org/
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log-normal distribution with a right-skew, and transforming the original values to
its natural logarithm would generate a normal distribution of soil organic carbon
values.

For further analysis, we will use the dataset transformed to its natural logarithm
(OCSKGMlog) because this transformation, given this dataset, increases the cor-
relation of the response variable and the covariate space.

Keep in mind that selecting the most appropriate prediction factors is required to
generate an interpretable model and high accuracy of prediction in places where no
information is available. Variable selection ideally should incorporate expert soil
knowledge about the study area and statistical criteria (e.g., just to use the best-
correlated predictors). Multivariate analysis (e.g., principal component analysis)
is a widely used approach to identify informative predictors. Here we use this
combination of prediction factors to be consistent with other Chapters of this book
and because they were previously selected for this exercise using expert knowledge
about the spatial variability of soil organic carbon.

Now, we will build a working hypothesis from our conceptual model, using all the
continuous prediction factors for OCSKGMlog:

OCSKGMlog ~ randomForest B04CHE3 + B07CHE3 + B13CHE3 + B14CHE3 +
DEMENV5 + LCEE10 + PRSCHE3 + SLPMRG5 + TMDMOD3 + TMNMOD3
+ TWIMRG5 + VBFMRG5 + VDPMRG5
# For its use on R we need to define a model formula
fm = as.formula(paste("log(OCSKGM) ~", paste0(names(covs[[-14]]),

collapse = "+")))

This is the R syntax to define a model formula required for the model structure,
where soil organic carbon transformed to its natural logarithm (OCSKGMlog)
can be predicted as a function of the available prediction factors, each explained
in Chapter 5 of this book, e.g., B04CHE3, B07CHE3, B13CHE3, B14CHE3,
DEMENV5 , LCEE10, PRSCHE3, SLPMRG5, TMDMOD3, TMNMOD3,
TWIMRG5, VBFMRG5, VDPMRG5.

Note that the variable soil map is categorical, so is not included in the correlation
analysis. In fact, although soil type polygon maps are in theory powerful predictors
for OCSKGM we will not use this map for this exercise, because not all categories
in the map are represented by available OCSKGM estimates, therefore this map
requires a generalization of soil type units in function of the classes represented by
the sites of OCSKGM estimates, which is beyond the scope of this Chapter.

Ideally, the number of observations across all the categories of soil type or any other
factorial variable should be balanced. Another alternative to using an unbalanced
categorical map is by generating dummy variables, where each category in the map
becomes an independent binomial predictor variable (e.g., only 0 and 1 values) as
is explained in the following Chapter. The risk of doing so rely upon the potential
underestimation of the spatial variability of the target variable under each category
with a low density of available data.
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Step 2 - Tuning parameters

Now we will use the cross-validation strategy implemented in the train function
of the caret package (Kuhn et al., 2017), which default is 10-fold. The result of
this function includes information to select the best mtry parameter and to decide
the appropriate number of trees. The out-of-bag RMSE will be used to select the
optimal mtry model. To analyze the ntree parameter we will plot the number
of trees against the out-of-bag RMSE, an optimal ntree can be selected with the
number of trees when these relationships stabilizes at the minimum possible RMSE
(in the y axis). Reduncing the number of trees will reduce the computational
demand, which is specially important when dealing with large databases. In the
presence of multidimensional and highly correlated prediction factors, avoiding an
excessive number of trees will also reduce the risk of model overfitting.
library(randomForest)
library(caret)

# Default 10-fold cross-validation
ctrl <- trainControl(method = "cv", savePred=T)

# Search for the best mtry parameter
rfmodel <- train(fm, data=dat@data, method = "rf", trControl = ctrl,

importance=TRUE)

# This is a very useful function to compare and test different
# prediction algorithms.
# Type names(getModelInfo()) to see all the
# possibilitites implemented on this function.

The object derived from the train function can be used to generate predictions of
OCSKGMlog at the spatial resolution of the prediction factors. Before generating
predictions, we will plot the most important predictors sorted in decreasing order
of importance. From the variable importance plot, MSE represent an informative
measure for variable selection. It is the increase in error (mean squared error, MSE)
of predictions which was estimated with out-of-bag-cross validation as a result of
prediction factor being permuted with values randomly shuffled. This is one of the
strategies that RF uses to reduce overfitting.
# Variable importance plot, compare with the correlation matrix
# Select the best prediction factors and repeat
varImpPlot(rfmodel[11][[1]])

# Check if the error stabilizes
plot(rfmodel[11][[1]])

Random forest users are encouraged to compare and test the prediction capacity
of different combinations of prediction factors in order to reduce the complexity of
the model and the statistical redundancy of environmental information on further
applications of predicted OCSKGM maps (e.g., quantifying the carbon dynamics).
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Figure 6.17: Model Decreasing Error and Node Purity for the RF model
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Figure 6.19: SOC prediction map for FYROM using a random forest model

The resulting map of our RF model needs to be validated using the indepen-
dent dataset to complement the results of the cross-validation (e.g., RMSE and
explained variance) derived using the train function and to have a more comprehen-
sive interpretation of accuracy and bias. Note how the RMSE and the explained
variance derived from the independent validations are slightly lower than the values
obtained using cross-validation.
# Make a prediction across all FYROM
# Note that the units are still in log
pred <- predict(covs, rfmodel)

## Warning in .local(object, ...): not sure if the correct factor
## levels are used here
# Back transform predictions log transformed
pred <- exp(pred)

# Save the result as a tiff file
writeRaster(pred, filename = "results/MKD_OCSKGM_rf.tif",

overwrite=TRUE)

plot(pred)
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6.3.7 Technical steps - Using quantile regression forest to esti-
mate uncertainty

Ideally, a digital soil map should include a spatial explicit metric of uncertainty.
The uncertainty can be roughly divided into four main components, uncertainty in
soil data, uncertainty in soil covariates, uncertainty in the model and uncertainty in
variations of available data. Here, we show an approach to estimate the sensitivity
of the model to available data and the uncertainty of the model. The first two are
beyond of the aim of this Chapter. For the third and fourth we will generate a
reproducible example.

Step 1 - Split the data in into training and testing subsets

To analyze the sensitivity of the model to available data we need to randomly split
the data several times (e.g., 10 or more, is possible until the variance stabilizes) in
training and testing subsets. A model generation and prediction are made on each
split, in a way that the dispersion of the predicted values at the pixel level will
represent the uncertainty and the sensitivity of the model to variations in available
data.

This process increases computational demand and memory since it will repeat n
times (10 in this example) the model and the prediction using each time a different
random combination of data for training and testing the models. As larger the
sample and the number of realizations the more robust our validation strategy. For
this example, we will use only 10 realizations and random splits of 25% of available
data.
library(Metrics)

# Generate an empty dataframe
validation <- data.frame(rmse=numeric(), r2=numeric())

# Sensitivity to the dataset
# Start a loop with 10 model realizations
for (i in 1:10){
# We will build 10 models using random samples of 25%
smp_size <- floor(0.25 * nrow(dat))
train_ind <- sample(seq_len(nrow(dat)), size = smp_size)
train <- dat[train_ind, ]
test <- dat[-train_ind, ]
modn <- train(fm, data=train@data, method = "rf",

trControl = ctrl)
pred <- stack(pred, predict(covs, modn))
test$pred <- extract(pred[[i+1]], test)
# Store the results in a dataframe
validation[i, 1] <- rmse(test$OCSKGMlog, test$pred)
validation[i, 2] <- cor(test$OCSKGMlog, test$pred)^2

}
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Figure 6.20: Sensitivity based on 10 realizations using 25% samples

Step 2 - Build a sensitivity map
# The sensitivity map is the dispersion of all individual models
sensitivity <- calc(pred[[-1]], sd)

plot(sensitivity, col=rev(topo.colors(10)),
main='Sensitivity based on 10 realizations using 25% samples')

The RMSE and the explained variance of the models is stored in the object valida-
tion (type summary(validation)). The standard deviation of all the ten predic-
tions allows generating a map of model sensitivity to available data.
# Sensitivity of validation metrics
summary(validation)

## rmse r2
## Min. :0.4736 Min. :0.2317
## 1st Qu.:0.4761 1st Qu.:0.2385
## Median :0.4787 Median :0.2435
## Mean :0.4790 Mean :0.2454
## 3rd Qu.:0.4804 3rd Qu.:0.2535
## Max. :0.4910 Max. :0.2611

Step 3 - Analyze the sensitivity of the map
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Figure 6.21: OCSKGM prediction based on 75% of data

# Plot of the map based on 75% of data and the sensitivity to data
# variations
prediction75 <- exp(pred[[1]])

plot(prediction75, main='OCSKGM prediction based on 75% of data',
col=rev(topo.colors(10)))

Step 4 - Estimate the full conditional distribution of OCSKGMlog

Finally, we will estimate the model uncertainty, represented by the full conditional
distribution of the response variable (OCSKGMlog) as a function of the selected
prediction factors using the quantile regression forest package quantregForest of
R. This approach has proven to be efficient for DSM across large areas (Vaysse
and Lagacherie, 2017).
# Use quantile regression forest to estimate the full conditional
# distribution of OCSKGMlog, note that we are using the mtry
# parameter that was selected by the train function of the caret
# package, assuming that the 75% of data previously used well
# resembles the statistical distribution of the entire data
# population. Otherwise, repeat the train function with all
# available data (using the object dat that instead of train)
# to select mtry.
library(quantregForest)
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model <- quantregForest(y=dat@data$OCSKGMlog, x=dat@data[,8:20],
ntree=500, keep.inbag=TRUE,
mtry = as.numeric(rfmodel$bestTune))

Step 5 - Estimate the probability distribution function for each pixel

This method will calculate a probability distribution function for each pixel and
therefore can be time-consuming. Therefore we will run it using parallel computing.
Note that the code to run in parallel this analysis can also be passed to the previous
predictions (predict function). The result will be a map of the standard deviation
of the distribution calculated for each pixel, which represents the extreme values
that a prediction can take for a specific site (e.g., pixel) given available data and
predictors. Note that this analysis is performed using all available data and a
second map of OCSKGM is created.
library(snow)

# Estimate model uncertainty at the pixel level using parallel
# computing
# Define number of cores to use
beginCluster()

## 8 cores detected, using 7
# Estimate model uncertainty
unc <- clusterR(covs, predict, args=list(model=model,what=sd))

# OCSKGMlog prediction based in all available data
mean <- clusterR(covs, predict,

args=list(model=model, what=mean))

# The total uncertainty is the sum of sensitivity and model
# uncertainty
unc <- unc + sensitivity

# Express the uncertainty in percent % (divide by the mean)
Total_unc_Percent <- exp(unc)/exp(mean)
endCluster()

Our final prediction uses all available data, while the total uncertainty (in percent)
is represented by the sum of the quantile regression forest standard deviation
and the sensitivity map from the previous Section. The total uncertainty is then
divided by the prediction to obtain a percent map, which is easier to interpret.
# Plot both maps (the predicted OCSKGM and associated uncertainty)
plot(exp(mean), main='OCSKGM based in all data')

plot(Total_unc_Percent, zlim=c(0, 5), main='Total uncertainty')

Step 6 - Save the results as raster format
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Figure 6.22: OCSKGM quantregForest prediction
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Figure 6.23: Total uncertainty
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Finally, the predicted OCSKGM and the total uncertainty can be saved in the
working directory in a generic (*.tif) raster format.
# Save the resulting maps in separated *.tif files
writeRaster(exp(mean), file='results/MKD_OCSKGM_quantrf.tif',

overwrite=TRUE)
writeRaster(Total_unc_Percent, file='results/MKD_OCSKGM_rf_unc.tif',

overwrite=TRUE)

We have created two maps in the working directory, one represents the predicted
OCSKGM and the second one its uncertainty, which is the sum of the model
sensitivity to data variations and the full conditional distribution of the response
variable as a function of available prediction factors. The following Chapters of
this book will show you how to prepare a stock report based on this soil carbon
digital soil maps.
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6.4 Data mining: support vector machines

G.F. Olmedo & M. Guevara

6.4.1 Overview

Support vector machines is a kernel-based machine learning technique suitable for
mapping SOC. SVM use decision surfaces (defined by a kernel function) to map
non-linear relationships across a high-dimension induced feature space (Cortes and
Vapnik, 1995). SVM is widely used to perform classification and regression analysis
on DSM.

According to Pedregosa et al. (2011) the advantages of SVM are:

• Effective in high dimensional spaces.
• Still effective in cases where the number of dimensions is greater than the

number of samples.
• Uses a subset of training points in the decision function (called support

vectors), so it is also memory efficient.
• Versatile: different Kernel functions can be specified for the decision func-

tion. Common kernels are provided, but it is also possible to specify custom
kernels.

And the disadvantages of SVM include:

• If the number of features is much greater than the number of samples, avoid
over-fitting in choosing Kernel functions and regularization term is crucial.

• SVM do not directly provide probability estimates, these are calculated using
an expensive five-fold cross-validation.

In DSM, the problems usually involve working in high dimensional spaces (were
the dimensions are the covariates) with a limited number of samples. SVM is
a technique mostly used in classification problems, but it can be used to solve
regression problems, such as modeling the continuous variability of SOC using
environmental covariates. When SVM is used to solve a regression problem, it is
called support vector regression.

Support vector regression applies a simple linear method to the data but in a high-
dimensional feature space non-linearly related to the input space. It creates n
hyperplanes through the n-dimensional spectral-space and each hyperplanes sep-
arates numerical data based on a Kernel function (e.g., Gaussian). SVM uses
parameters such as gamma, cost and epsilon. These parameters are used to define
the shape of the hyperplane, including the margin from the closest point to the
hyperplane that divides data with the largest possible margin and defines the tol-
erance to errors on each single training. Linear models are fitted to the support
vectors and used for prediction purposes. The support vectors are the points which
fall within each hyperplane (Guevara et al., 2018).
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In the example below, we will use the implementation of SVM in the R package
e1071 (Meyer et al., 2017). The package e1071 offers an interface to the award-
winning C++ implementation by Chih-Chung Chang and Chih-Jen Lin, libsvm
(current version: 2.6). For further implementation details on libsvm, see Chang
and Lin (2001).

SVM: This approach is a broad research area and for a better un-
derstanding of the mathematical background we can recommend the
following books: Vapnik (2013), Friedman et al. (2001), and James
et al. (2013).

6.4.2 Technical steps - Fitting an SVM model to predict the
SOC

Step 1 - Setting working space and initial steps

One of the first steps should be setting our working directory. If you read/write
files from/to disk, this takes place in the working directory. If we do not set the
working directory, we could easily write files to an undesirable file location. The
following example shows how to set the working directory in R to our folder which
contains data for the study area (point data, covariates).

Note that we must use the forward slash / or double backslash \\ in R! Single
backslash \ will not work. Now we can check if the working directory has been
correctly set by using the getwd() function:
getwd()

Step 2 - Data preparation

In the Chapter 5, we presented and prepared several global and continental
datasets. In addition to these datasets, numerous covariate layers have been
prepared by ISRIC for the GSOCmap project. These are GIS raster layers of
various biophysical earth surface properties for each country in the world. Some
of these layers will be used as predictors in this Section. Please download the
covariates for your own study area from GSOCmap Data Repository as explained
in Section 5.6.

In Section 5.9, a table with the points values after data preparation and the values
of our spatial predictors was prepared. This step involves loading this table.

Now we will import our point dataset using read.csv() function. The easiest
way to create a data frame is to read in data from a file. This is done using the
function read.csv(), which works with comma delimited files. Data can be read
in from other file formats as well, using different functions, but read.csv() is the
most commonly used approach. R is very flexible in how it reads in data from text
files (read.table(), read.csv(), read.csv2(), read.delim(), read.delim2()).
Please type ?read.table() for help.
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# Load data
dat <- read.csv("data/MKD_RegMatrix.csv")

dat$LCEE10 <- as.factor(dat$LCEE10)
dat$soilmap <- as.factor(dat$soilmap)

# Explore the data structure
str(dat)

## 'data.frame': 2897 obs. of 23 variables:
## $ id : Factor w/ 2897 levels "P0003","P0007",..: 1 2 3 4..
## $ Y : num 42 42 42.1 42 42 ...
## $ X : num 20.8 20.8 20.8 20.9 20.9 ...
## $ SOC : num 26.38 6.15 3.94 3.26 2.29 ...
## $ BLD : num 0.73 1.17 1.3 1.34 1.41 ...
## $ CRFVOL : num 8 18.6 31.9 21.7 14.5 ...
## $ OCSKGM : num 5.32 1.75 1.04 1.03 0.83 ...
## $ meaERROR : num 2.16 2.85 2.65 3.16 3.63 2.83 2.94 2.49 2.77..
## $ OCSKGMlog: num 1.6712 0.5591 0.0429 0.0286 -0.1862 ...
## $ B04CHE3 : num 574 553 693 743 744 ...
## $ B07CHE3 : num 38.5 37.8 42.1 43.7 43.7 ...
## $ B13CHE3 : num 111.6 125 99.8 118.1 121 ...
## $ B14CHE3 : num 59.2 60.3 42.4 39.9 38.7 ...
## $ DEMENV5 : int 2327 2207 1243 1120 1098 1492 1413 1809 1731..
## $ LCEE10 : Factor w/ 4 levels "1","2","3","4": 1 3 2 1 2 2 2..
## $ PRSCHE3 : num 998 1053 780 839 844 ...
## $ SLPMRG5 : int 13 36 6 25 30 24 15 17 20 43 ...
## $ TMDMOD3 : int 282 280 285 288 289 287 286 286 287 286 ...
## $ TMNMOD3 : int 272 270 277 279 279 277 277 273 274 273 ...
## $ TWIMRG5 : int 61 62 81 66 65 72 68 67 65 59 ...
## $ VBFMRG5 : int 0 0 14 0 0 0 0 0 0 0 ...
## $ VDPMRG5 : int 311 823 10048 1963 -173 -400 -9 -692 -1139 2..
## $ soilmap : Factor w/ 20 levels "1","2","3","4",..: 6 14 14 3..

Since we will be working with spatial data we need to define the coordinates for
the imported data. Using the coordinates() function from the sp package we
can define the columns in the data frame to refer to spatial coordinates. Here the
coordinates are listed in columns X and Y.
library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)

## [1] "SpatialPointsDataFrame"
## attr(,"package")
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## [1] "sp"

SpatialPointsDataFrame structure is essentially the same as a data frame, except
that additional spatial elements have been added or partitioned into slots. Some
important ones being the bounding box (sort of like the spatial extent of the data),
and the coordinate reference system proj4string(), which we need to define for
the sample dataset. To define the CRS, we must know where our data are from,
and what was the corresponding CRS used when recording the spatial information
in the field. For this data set, the CRS used was WGS84 (EPSG:4326).

To clearly tell R this information we define the CRS which describes a reference
system in a way understood by the PROJ.4 projection library. An interface to
the PROJ.4 library is available in the rgdal package. As an alternative to using
PROJ.4 character strings, we can use the corresponding yet simpler EPSG code.
rgdal also recognizes these codes. If you are unsure of the PROJ.4 or EPSG
code for the spatial data that you have but know the CRS, you should consult
http://spatialreference.org/ for assistance.

CRS: Please note that, when working with spatial data, it is very
important that the CRS of the point data and covariates are the same.

# Now, we will define our CRS
dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

## CRS arguments:
## +init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs
## +ellps=WGS84 +towgs84=0,0,0

Now we will import the covariates. When the covariate layers are in common
resolution and extent, rather than working with individual rasters it is better to
stack them all into a single R object. In this example, we use 13 covariates from
the GSOCmap Data Repository and a rasterized version of the soil type map. The
rasterization of vectorial data was covered in Technical Steps - Rasterizing a vector
layer in R. The file containing all the covariates was prepared at the end of Chapter
5.
load(file = "covariates.RData")

names(covs)

## [1] "B04CHE3" "B07CHE3" "B13CHE3" "B14CHE3" "DEMENV5" "LCEE10"
## [7] "PRSCHE3" "SLPMRG5" "TMDMOD3" "TMNMOD3" "TWIMRG5" "VBFMRG5"
## [13] "VDPMRG5" "soilmap"

Step 3 - Variable selection using correlation analysis
# Plot the names of the covariates
names(dat@data)

## [1] "id" "SOC" "BLD" "CRFVOL" "OCSKGM"

http://trac.osgeo.org/proj/
http://spatialreference.org/
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## [6] "meaERROR" "OCSKGMlog" "B04CHE3" "B07CHE3" "B13CHE3"
## [11] "B14CHE3" "DEMENV5" "LCEE10" "PRSCHE3" "SLPMRG5"
## [16] "TMDMOD3" "TMNMOD3" "TWIMRG5" "VBFMRG5" "VDPMRG5"
## [21] "soilmap"

For the variable selection we will use cor() function. x must be a table including
only the column with the response variable, and y must be a table including only
the covariates. Besides, remember dat@data in the data.frame included in the
SpatialPointsDataFrame. For y, columns 1 to 7 are out, because they are not
covariates. At the same time, correlation analysis cannot be applied to categorical
covariates, this means that columns 13 and 21 have to be removed too.
selectedCovs <- cor(x = as.matrix(dat@data[,5]),

y = as.matrix(dat@data[,-c(1:7,13,21)]))

# Print correlation results
selectedCovs

## B04CHE3 B07CHE3 B13CHE3 B14CHE3 DEMENV5
## [1,] -0.4199537 -0.3926615 0.330696 0.3481847 0.3926275
## PRSCHE3 SLPMRG5 TMDMOD3 TMNMOD3 TWIMRG5
## [1,] 0.3948779 0.2593964 -0.4077552 -0.2963631 -0.2525764
## VBFMRG5 VDPMRG5
## [1,] -0.1156285 -0.3001934

Now we used the correlation results to select the top five covariates.
library(reshape)

x <- subset(melt(selectedCovs), value != 1 | value != NA)
x <- x[with(x, order(-abs(x$value))),]

idx <- as.character(x$X2[1:5])

dat2 <- dat[c('OCSKGM', idx)]
names(dat2)

## [1] "OCSKGM" "B04CHE3" "TMDMOD3" "PRSCHE3" "B07CHE3" "DEMENV5"
COV <- covs[[idx]]

# Selected covariates
names(COV)

## [1] "B04CHE3" "TMDMOD3" "PRSCHE3" "B07CHE3" "DEMENV5"

Step 4 - Categorical variables in svm models

According to Hsu et al. (2003), SVM requires each variable to be represented by
a vector of real numbers. This means that factor variables, like covs$LCEE10 and
covs$soilmaphas to be converted into numeric data. In statistics, this kind of
variables are called Boolean indicators or dummy variables.
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Dummy variables take a value of 0 or 1 indicating the presence or absence of a
specific value/category in our factor covariate, i.e. if we have five categories like in
covs$LCEE10, we will have five dummy variables indicating the presence/absence
of every category. For converting our covariates to dummies we will have to create
a new function that returns the dummy raster stack dummyRaster from the factor
version of the raster layer.
dummyRaster <- function(rast){

rast <- as.factor(rast)
result <- list()
for(i in 1:length(levels(rast)[[1]][[1]])){
result[[i]] <- rast == levels(rast)[[1]][[1]][i]
names(result[[i]]) <- paste0(names(rast),

levels(rast)[[1]][[1]][i])
}
return(stack(result))

}

We can use the function we just created to convert our categorical covariates to
dummies and then stack all the layers together.
# Convert soilmap from factor to dummy
soilmap_dummy <- dummyRaster(covs$soilmap)

# Convert LCEE10 from factor to dummy
LCEE10_dummy <- dummyRaster(covs$LCEE10)

# Stack the 5 COV layers with the 2 dummies
COV <- stack(COV, soilmap_dummy, LCEE10_dummy)

# Print the final layer names
names(COV)

## [1] "B04CHE3" "TMDMOD3" "PRSCHE3" "B07CHE3" "DEMENV5"
## [6] "soilmap1" "soilmap2" "soilmap3" "soilmap4" "soilmap5"
## [11] "soilmap6" "soilmap7" "soilmap8" "soilmap9" "soilmap10"
## [16] "soilmap11" "soilmap12" "soilmap13" "soilmap14" "soilmap15"
## [21] "soilmap16" "soilmap17" "soilmap18" "soilmap19" "soilmap20"
## [26] "LCEE101" "LCEE102" "LCEE103" "LCEE104"

We have to convert the columns with categorical variables in the soil sam-
ples data.frame to dummies as well. For doing this we can use function
model.matrix(). After this, we use cbind() to merge the resulting data.frame.
# Convert soilmap column to dummy, the result is a matrix
# To have one column per category we have to add -1 to the formula
dat_soilmap_dummy <- model.matrix(~soilmap -1, data = dat@data)

# Convert the matrix to a data.frame
dat_soilmap_dummy <- as.data.frame(dat_soilmap_dummy)
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# Convert LCEE10 column to dummy, the result is a matrix
# To have one column per category we have to add -1 to the formula
dat_LCEE10_dummy <- model.matrix(~LCEE10 -1, data = dat@data)

# Convert the matrix to a data.frame
dat_LCEE10_dummy <- as.data.frame(dat_LCEE10_dummy)

dat@data <- cbind(dat@data, dat_LCEE10_dummy, dat_soilmap_dummy)

names(dat@data)

## [1] "id" "SOC" "BLD" "CRFVOL" "OCSKGM"
## [6] "meaERROR" "OCSKGMlog" "B04CHE3" "B07CHE3" "B13CHE3"
## [11] "B14CHE3" "DEMENV5" "LCEE10" "PRSCHE3" "SLPMRG5"
## [16] "TMDMOD3" "TMNMOD3" "TWIMRG5" "VBFMRG5" "VDPMRG5"
## [21] "soilmap" "LCEE101" "LCEE102" "LCEE103" "LCEE104"
## [26] "soilmap1" "soilmap2" "soilmap3" "soilmap4" "soilmap5"
## [31] "soilmap6" "soilmap7" "soilmap8" "soilmap9" "soilmap10"
## [36] "soilmap11" "soilmap12" "soilmap13" "soilmap14" "soilmap15"
## [41] "soilmap16" "soilmap17" "soilmap18" "soilmap19" "soilmap20"

Step 5 - Fitting a SVM model

To improve the model performance, the parameters of the SVM can be tuned. In
this example, we will show how to tune two parameters using a grid search for
hyperparameter optimization using the function tune().

The first parameter is epsilon which is the insensitive-loss function. The larger
epsilon is, the larger errors in the solution are not penalized. The default value for
epsilon is 0.1, and we will try 11 different values from 0.05 to 0.12 in 0.1 increments.
The second parameter is the cost which is the cost of constraints violation – it is the
‘C’-constant of the regularization term in the Lagrange formulation. The default
value for this parameter is 1, and we will try values from 1 to 20 in 5 increments.
The value of cost helps us to avoid overfitting. This is a heavy and time consuming
computational step since we will try a extensive number of different models in order
to find the best parameters for our svm model.
library(e1071)
library(caret)

# Test different values of epsilon and cost
tuneResult <- tune(svm, OCSKGM ~., data = dat@data[,c("OCSKGM",

names(COV))],
ranges = list(epsilon = seq(0.1,0.2,0.02),

cost = c(5,7,15,20)))

We can plot the performance of the different models. When the region is darker,
the RMSE is closer to zero.
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Figure 6.24: Performance of the different SVM models in the parameter tuning
procedure

plot(tuneResult)

Step 6 - Select the model with the best combination of epsilon and cost

The best model is the one with the lowest mean squared error derived by
cross-validation. The parameters for the cross-validation can be defined in the
tune.control() function. By default, it uses cross-validation using 10 folds.
# Choose the model with the best combination of epsilon and cost
tunedModel <- tuneResult$best.model

print(tunedModel)

##
## Call:
## best.tune(method = svm, train.x = OCSKGM ~ ., data = dat@data[,
## c("OCSKGM", names(COV))], ranges = list(epsilon = seq(0.1,
## 0.2, 0.02), cost = c(5, 7, 15, 20)))
##
##
## Parameters:
## SVM-Type: eps-regression
## SVM-Kernel: radial
## cost: 5
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Figure 6.25: SOC prediction map for FYROM using a support vector machines
model

## gamma: 0.03448276
## epsilon: 0.18
##
##
## Number of Support Vectors: 2269

Step 7 - Predict the OCS using the model
# Use the model to predict the SOC in the covariates space
OCSsvm <- predict(COV, tunedModel)

# Save the result
writeRaster(OCSsvm, filename = "results/MKD_OCSKGM_svm.tif",

overwrite=TRUE)

plot(OCSsvm)

Finally, we can evaluate the contribution of each covariate to the model (Guyon
and Elisseeff, 2003).
# Variable importance in svm
# Code by: stackoverflow.com/questions/34781495
# Weight vectors
w <- t(tunedModel$coefs) %*% tunedModel$SV

# Weight
w <- apply(w, 2, function(v){sqrt(sum(v^2))})
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w <- sort(w, decreasing = T)

print(w)

## B04CHE3 soilmap6 soilmap1 TMDMOD3 soilmap7
## 6.650091e+01 4.459588e+01 4.049159e+01 3.977178e+01 3.936900e+01
## DEMENV5 PRSCHE3 B07CHE3 LCEE103 soilmap2
## 3.819996e+01 3.292821e+01 3.070414e+01 2.617433e+01 2.533165e+01
## soilmap19 LCEE104 soilmap16 soilmap15 soilmap5
## 2.496078e+01 1.586710e+01 1.417374e+01 1.320801e+01 1.310662e+01
## LCEE101 LCEE102 soilmap4 soilmap20 soilmap9
## 1.275787e+01 1.164549e+01 9.054775e+00 8.099845e+00 6.515014e+00
## soilmap10 soilmap3 soilmap17 soilmap12 soilmap8
## 5.924336e+00 5.376030e+00 4.714280e+00 3.752816e+00 2.717136e+00
## soilmap18 soilmap11 soilmap14 soilmap13
## 7.811897e-01 5.746777e-01 1.297461e-01 8.137935e-14

SVM is a powerful technique which represent another welcome possibility to gen-
erate reliable and interpretable SOC predictions across different scales of data
availability, including country-specific SOC maps.



Chapter 7

Validation

B. Kempen, D.J. Brus & G.B.M. Heuvelink

The authors of this Chapter used R packages. To run the code provided in this
Chapter, the following packages need to be installed in the R user library. If the
packages are not yet installed, the install.packages() function can be used.
# Installing packages for Chapter 'Validation'
install.packages(c("sp", "raster", "caret"))

7.1 What is validation?

No map is perfect. All maps, including soil maps, are representations of reality
that are often based on an underlying model. This means that there will always be
a deviation between the phenomenon depicted on the map and the phenomenon
observed in the real world, i.e. each map will contain errors. The magnitude of the
errors determines the quality of the map. If a map matches reality well (the error
is small), the quality or accuracy of the map is high. On the other hand, if a map
does not match reality well, map accuracy is low.

Soil maps are used for many purposes. For example to report on (changes in) SOC
stocks, as input in agro-environmental models, to determine land use suitability
or for decision- and policy-making. It is therefore, important that the quality of a
map is determined and quantified. This is achieved through (statistical) validation.

Validation is defined here as an activity in which the soil map predictions are
compared with observed values. From this comparison, the map quality can be
quantified and summarized using map quality measures. These measures indicate
how accurate the map is on average for the mapping area, i.e. what is the expected
error at a randomly selected location in the mapping area. This means that map
quality measures obtained through validation are global measures: each quality
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measure gives one value for the entire map. Note that this is different from re-
sults obtained through uncertainty assessment. Such assessment provides local,
location-specific (i.e. for each individual grid cell) estimates of map quality as we
saw in the previous Sections. Another important difference between validation and
uncertainty assessment is that validation can be done using a model-free approach.
Uncertainty assessment takes a model-based approach by defining a geostatistical
model of the soil property of interest and deriving an interpolated map and the
associated uncertainty from that, or by constructing a geostatistical model of the
error in an existing map. The approach yields a complete probabilistic character-
ization of the map uncertainty, but such characterization is only valid under the
assumptions made; for instance, the stationarity assumptions required for kriging.
Validation, when done properly as explained hereafter, does not assume a geosta-
tistical model of the error, and hence is model- or assumption-free. This is an
important property of validation since we do not want to question the objectivity
and validity of the validation results.

We distinguish internal and external map accuracy. Statistical methods typically
produce direct estimates of map quality, for instance, the kriging variance or the
coefficient of determination R2 of a linear regression model. These we refer to as
internal accuracy measures since these rely on model assumptions and are com-
puted from data that are used for model calibration. Preferably, validation is done
with an independent dataset not used in map making. Using such dataset gives
the external map accuracy. One will often see that the external accuracy is poorer
than the internal accuracy.

In Section 7.2 we will present the most common accuracy measures used to quantify
map quality of quantitative (continuous) soil maps and qualitative (categorical) soil
maps. In Section 7.4 we will introduce three commonly used validation methods
and show how to estimate the map quality measures from a sample. This Chapter
is largely based on Brus et al. (2011). For details, please refer to this paper.

7.2 Map quality measures

7.2.1 Quality measures for quantitative soil maps

All map quality measures considered here are computed from the prediction error.
For quantitative soil maps of continuous soil properties (e.g. organic carbon content,
pH, clay content) the prediction error is defined as the difference between the
predicted value at a location and the true value at that location (which is the
value that would be observed or measured by a preferably errorless measurement
instrument) (Brus et al., 2011):

e(s) = Ẑ(s) − Z(s) (7.1)

where Ẑ(s) is the predicted soil property at validation location s, and Z(s) is
the true value of the soil property at that location. We consider six map quality
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measures that are computed from the prediction error here: the mean error, the
mean absolute error, the mean squared error and root mean squared error, the
model efficiency, and the mean squared deviation ratio.

Before we introduce the map quality measures and show how to estimate these,
it is important to understand the difference between the population and a sample
taken from the population. The population is the set of all locations in a mapping
area. For digital soil maps, this is the set of all pixels or grid cells of a map. A
sample is a subset of locations, selected in some way from the set of all locations
in the mapping area. With validation we want to assess the map accuracy for the
entire population, i.e. for the map as a whole; we are not interested in the accuracy
at the sample of locations only. For instance, we would like to know the prediction
error averaged over all locations of a map and not merely the average prediction
error at a sample of locations. Map quality measures are, therefore, defined as
population means. Because we cannot afford to determine the prediction error at
each location (grid cell) of the mapping area to calculate the population means,
we have to take a sample of a limited number of locations in the mapping area.
This sample is then used to estimate the population means. It is important to
realize that we are uncertain about the population means because we estimate it
from a sample. Ideally, this uncertainty is quantified and reported together with
the estimated map quality measures.

In this Section, we will introduce the definitions of the map quality measures. In
the next Section, we show how we can estimate these measures from a sample.

Mean error

The mean error (ME) measures bias in the predictions. The ME is defined as the
population mean (spatial mean) of the prediction errors:

ME = e = 1
N

N∑
i=1

e(si) (7.2)

where i indicates the location, i = 1, 2, . . . N , and N is the total number of locations
or grid cells/pixels in the mapping area. The mean error should be (close to) zero,
which means that predictions are unbiased meaning that there is no systematic
over- or under-prediction of the soil property of interest.

Mean absolute error and (root) mean squared error

The mean absolute error (MAE) and mean squared error (MSE) are measures
of map accuracy and indicate the magnitude of error we make on average. The
MAE is defined by the population mean of the absolute errors:

MAE = |e| = 1
N

N∑
i=1

e(si) (7.3)

and the MSE by the population mean of the squared errors:
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MSE = e2 = 1
N

N∑
i=1

e2(si) (7.4)

Many authors report the root mean squared error (RMSE) instead of the MSE,
which is computed by taking the square root of the MSE. The RMSE can be a
more appealing quality measure since it has the same unit of measurement as the
mapped property and can, therefore, more easily be compared to it. If the squared
error distribution is strongly skewed, for instance when several very large errors
are present, then this can severely inflate the (R)MSE. In such case, the (root)
median squared error is a more robust statistic for the average error (Kempen
et al., 2012).

Brus et al. (2011) argue that instead of using a single summary statistic (the mean)
to quantify map quality measures, one should preferably express quality measures
for quantitative soil maps through cumulative distribution functions (CDFs). Such
functions provide a full description of the quality measures from which various
parameters can be reported, such as the mean, median or percentiles. Furthermore,
they argue that it can be of interest to define CDFs or its parameters for sub-areas,
for instance, geomorphic units, soil or land cover classes. Brus et al. (2011) give
examples of estimating CDFs for validation of digital soil maps.

Amount of variance explained

The model efficiency, or Amount of Variance Explained (AV E) (Angelini et al.,
2016, Samuel-Rosa et al. (2015)), quantifies the fraction of the variation in the
data that is explained by the prediction model. It measures the improvement of
the model prediction over using the mean of the data set as predictor and is defined
as follows (Krause et al., 2005):

AV E = 1 −
∑N

i=1(Ẑ(si) − Z(si))2∑N
i=1(Z(si) − Z)2

(7.5)

where Z is the population mean of soil property Z. The quantity in the numerator
is the sum of the squared prediction errors (for each location the prediction error is
computed and squared; the squared prediction errors are summed over all locations
in the area). In linear regression, this quantity is known as the residual sum
of squares (RSS). The quantity in the denominator is also a sum of squared
prediction errors, but here the mean of the area is used as a predictor. In linear
regression, this quantity is known as the total sum of squares (TSS). Note that
if we would divide the quantity in the denominator by the number of locations in
the mapping area N we would obtain the population variance (spatial variance) of
the soil property Z.

If the numerator and denominator are equal, meaning the AV E is zero, then the
model predictions are no improvement over using the mean of the data set as a
predictor for any location in the mapping area. An AV E value larger than zero
(RSS smaller than TSS) means that the model predictions are an improvement
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over using the mean as a predictor (this is what we hope for). In case the AV E is
negative, then the mean of the data set is a better predictor than the prediction
model.

Mean squared deviation ratio

Finally, we introduce the mean squared deviation ratio (MSDR) as a map qual-
ity measure (Kempen et al., 2010; Lark, 2000; Voltz and Webster, 1990; Webster
and Oliver, 2007). Contrary to the quality measures discussed so far, the MSDR
assesses how well the prediction model estimates the prediction uncertainty (ex-
pressed as the prediction error variance). The MSDR is defined as:

MSDR = 1
N

N∑
i=1

(Ẑ(si) − Z(si))2

σ2(si)
(7.6)

where σ2(si) is the prediction error variance at location si, i = 1, 2, . . . N . The
numerator is the squared error at location si. The fraction represents the squared
Zscore. In case of kriging, the prediction error variance is the kriging variance. In
case of linear regression, the prediction error variance is the prediction variance of
the linear regression predictions that can be obtained by the statistical software
R by running the predict function with argument se.fit = TRUE. This function
returns for each prediction location the standard error of the predicted value as
well as the residual standard deviation (the residual.scale value). By squaring both
values and then summing these, the prediction error variance is obtained. If the
prediction model estimates the error variance well, then the MSDR should be
close to one. A value smaller than one suggests that the prediction error variance
overestimates the variance; a value larger than one suggests that the prediction
error variance underestimates the variance.

Lark (2000) notes that outliers in the prediction data will influence the squared
Zscore and suggests to use the median squared Zscore instead of the mean since it
is a more robust estimator. A median squared Zscore equal to 0.455 suggests that
the prediction model estimates the prediction uncertainty well.

7.2.2 Quality measures for qualitative soil maps

Like the quality measures for quantitative soil maps, the quality measures for
qualitative or categorical soil maps (e.g. soil classes) are defined for the population,
i.e. all locations in the mapping area. The basis for map quality assessment of
qualitative maps is the error matrix (Brus et al., 2011; Lark, 1995). This matrix
is constructed by tabulating the observed and predicted class for all locations in
the mapping area in a two-way contingency table. The population error matrix is
a square matrix of order U , with U being the number of soil classes observed and
mapped. The columns of the matrix correspond to observed soil classes and the
rows of predicted soil classes (the map units).N is the total number of locations
of the mapping area. Elements Nij are the number of locations mapped as class i
with observed class j. The row margins Ni+ are the locations mapped as class i,
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and column margins N+j the locations for which the observed soil class is j. Note
that the elements of the population error matrix can also be interpreted as surface
areas. In that case element Nij is the surface area mapped as class i with observed
class j.

From the population error matrix, several quality measures can be summarized,
though it is strongly recommended that the error matrix is included in a valida-
tion assessment. Brus et al. (2011) follow the suggestion by Stehman (1997) that
quality measures for categorical maps should be directly interpretable in terms of
the probability of a misclassification and therefore recommend the use of three
map quality measures: the overall purity, the map unit purity, and class represen-
tation. We follow this recommendation here. Note that the map unit purity often
is referred to as user’s accuracy, and class representation as producer’s accuracy
(Stehman, 1997; Adhikari et al., 2014). Lark (1995) however, questions the appro-
priateness of these terms since both quality measures can be important for users
as well as producers. He proposes to use map unit purity and class representation
instead, which is adopted by Brus et al. (2011) and followed here.

A fourth frequently used group of quality measures are Kappa indices, which ad-
just the overall purity measure for hypothetical chance agreement (Stehman, 1997).
How this chance agreement is defined differs between the various indices. Some
authors, however, conclude that Kappa indices are difficult to interpret, not infor-
mative, misleading and/or flawed and suggest to abandon their use (Pontius Jr
and Millones, 2011). These authors argue that Kappa indices attempt to com-
pare accuracy to a baseline of randomness, but randomness is not a reasonable
alternative for map construction. We, therefore, do not consider kappa here.

The overall purity is the fraction of locations for which the mapped soil class equals
the observed soil class and is defined as (Brus et al., 2011):

ρ =
U∑

i=1
Nuu/N (7.7)

which is the sum of the principal diagonal of the error matrix divided by the total
number of locations in the mapping area. The overall purity can be interpreted as
the areal proportion of the mapping area that is correctly classified.

Alternatively, an indicator approach can be used to compute the overall purity.
A validation site gets a 1 if the observed soil class is correctly predicted and a
0 otherwise. The overall purity is then computed by taking the average of the
indicators.

Map unit purity

The map unit purity is calculated from the row marginals of the error matrix. It
is the fraction of validation locations with mapped class u for which the observed
class is also u. The map unit purity for class u is defined as (Brus et al., 2011):
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ρu = Nuu

Nu+
(7.8)

The map unit purity can be interpreted as the proportion of the area of the map
unit that is correctly classified. The complement of ρu, 1 − ρu, is referred to as
the error of commission for mapped class u.

Class representation

The class representation is calculated from the column marginals of the error ma-
trix. It is the fraction of validation locations with observed class u for which the
mapped class is u. The class representation for class u is defined as (Brus et al.,
2011):

ru = Nuu

N+u
(7.9)

The class representation can be interpreted as the proportion of the area where in
reality class u occurs that is also mapped as class u. The complement of ru, 1−ru,
is referred to as the error of omission for mapped class u.

7.2.3 Estimating the map quality measures and associated un-
certainty

In validation, we estimate the population means of the map quality measures from
a sample taken from a limited number of locations in the mapping area. After
all, we cannot afford to sample all locations, i.e. each grid cell of our soil map.
Because the map quality measures are estimates, we are uncertain about these:
we infer the quality measures from only a limited number of observations taken
from the population. We do not know the true population means. The estimation
uncertainty can be quantified with the sampling variance. From the variance, the
lower and upper boundary of a confidence interval, typically the 95%, can be
computed using basic statistical theory:

CI = (x̂ − 1.96x
σ√
n

; x̂ + 1.96x
σ√
n

) (7.10)

where x is the estimated map quality measure, for instance, the ME, MSE or
overall purity, σ is the estimated standard deviation of the map quality measure
and n is the validation sample size.

Quantified information about the uncertainty associated to map quality measures
is useful and required for statistical testing. For instance, if one wants to test if
one mapping method performs better than the other method one needs quantified
information about uncertainty. Because we are uncertain about the estimated
quality measures, an observed difference in map quality between two methods
does not necessarily mean that one method is better than the others, even when
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Figure 7.1: Scatterplot of predicted versus observed SOM content for Rwanda (left)
and spatial bubble plot of cross-validation error for SOM (right) (Kempen et al.,
2015). The black line in the scatter plot represents the 1:1 line of prediction versus
observed, the blue line represents the regression between observed and predicted
values

there is a substantial difference. The difference might be attributed to chance
because we infer the quality measures from a limited sample from the population.
With statistical hypothesis testing, we can calculate how large the probability is
that observed difference is caused by chance. Based on the outcome we can accept
or reject the hypothesis that there is no difference between the performance of two
mapping methods (this would be the null hypothesis for statistical testing) for a
given significance level, usually 0.05.

7.3 Graphical map quality measures

In addition to quantifying map accuracy statistically, one can also present vali-
dation results obtained from a sample graphically. This can be done by creating
scatter plots of predicted against observed values and spatial bubble plots of vali-
dation errors.

Figure 7.1 shows an example of a scatterplot and bubble plot. Both plots can be
easily made with R (R Core Team, 2017). Use the function plot(x,y) to generate
a scatter plot. The 1:1 line (black line in Figure 7.1) can be added to the plot with
the command abline(0, 1). The spatial bubble plot can be generated with the
bubble() function of the sp package (Pebesma and Bivand, 2005).

7.4 Validation methods and statistical inference

Following Brus et al. (2011), we introduce and discuss three common validation
methods: additional probability sampling, data-splitting and cross-validation, and
show how to estimate the map quality measures introduced in the previous Section
from a sample.
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With additional probability sampling, an independent dataset is collected from
the sampling population (all grid cells of a digital soil map) for the purpose of
validation. This dataset is used in addition to a dataset that is used to calibrate a
prediction model. Such dataset is often a legacy dataset collected with a purposive
sampling design.

Data-splitting and cross-validation are applied in situations where one has only
one data set available for prediction model calibration and validation. This can
be a dataset collected with probability sampling, but in practice this typically is
a legacy dataset collected with some purposive sampling design.

We warn here that if one uses data-splitting or cross-validation with a dataset
collected with purposive sampling, then this has severe implications on the validity
and interpretation of the estimated map quality measures as we will explain below

7.4.1 Additional probability sampling

The most appropriate approach for validation is by additional probability sampling.
This means that an independent validation dataset is collected in the field on basis
of a probability sampling design. Validation based on probability sampling ensures
one obtains unbiased and valid estimates of the map quality measures (Brus et al.,
2011; Stehman, 1999).

Additional probability sampling has several advantages compared to data-
splitting and cross-validation using non-probability sample data. These are:

• No model is needed for estimating map quality estimates. We can apply
design-based estimation, meaning that model-free unbiased and valid esti-
mates of the map quality measures can be obtained;

• Discussions on the validity of the estimated map quality are avoided;

• Model-free, valid estimates of the variance of the map quality measures can
be obtained that allows for hypothesis testing, e.g. for comparison of model
performance.

Disadvantages can be extra costs involved in collecting an additional sample or
terrain conditions that make it difficult to access all locations in the mapping area.

Probability sampling is random sampling such that:

• All locations in the mapping area have a probability larger than 0 of being
selected;

• The inclusion probabilities are known but need not be equal.

It should be noted that random sampling is often used for arbitrary or haphaz-
ard sampling. Such sampling is not probability sampling because the inclusion
probabilities are not known. Design-based, model-free estimation of map quality
measures is not possible in this case. All probability samples are random samples
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but not all random samples are probability samples. The term probability sam-
pling should therefore only be used for random sampling with known inclusion
probabilities.

There are many different probability sampling designs: simple, stratified, sys-
tematic, two-stage, clustered random sampling. We will not give an exhaustive
overview here of all these designs. A good resource is De Gruijter et al. (2006).
For reasons of simplicity, we focus here on simple random sampling.

Simple random sampling: In simple random sampling, no restrictions are im-
posed on the random selection of sampling sites except that the sample size is fixed
and chosen prior to sampling (De Gruijter et al., 2006). All sampling locations are
selected with equal probability and independently from each other.

This can, for instance, be done as follows (De Gruijter et al., 2006):

1. Determine the minimum and maximum X and Y coordinates of the mapping
area (the bounding box).

2. Generate two independent random coordinates X and Y from a uniform
probability distribution on the interval (xmin, xmax) and (ymin, ymax)

3. Check if the selected sampling site falls within the mapping area. Accept the
sampling site if it does; discard the sampling site if it does not.

4. Repeat steps 2 and 3 until the n locations have been selected.

If a sampling location cannot be visited because of inaccessibility for instance,
then this location should be discarded and be replaced by a location chosen from
a reserve list. Always the location at the top of the list should be selected for this
purpose; not an arbitrarily chosen location from the list such as the closest one. It
is not allowed to shift an inaccessible sampling location to a location nearby that
can be accessed. Irregularity, clustering and open spaces characterize the simple
random sampling design (De Gruijter et al., 2006).

Estimation of quantitative map quality measures: For each validation lo-
cation we compute the error, e(si), the absolute error, |e|(si), or squared error,
e2(si). The spatial mean of the mapping area for map quality measure x is then
estimated by:

e(si) = Ẑ(si) − Z(si) (7.11)

|e|(si) = |Ẑ(si) − Z(si)| (7.12)

e2(si) = (Ẑ(si) − Z(si))2 (7.13)

x̂ = 1
N

N∑
i=1

x(si) (7.14)
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where i indicates the validation location, i = 1, 2, . . . , n, n the validation sample
size, and xsi the estimated population mean of map quality measure x at location
si. x is the prediction error in case of the ME, absolute error in case of the
MAE, squared prediction error in case of the MSE. Note that the estimator
is the unweighted sample mean. This unweighted mean is an unbiased estimator
because all sampling locations were selected with equal probability.

The MSDR is estimated by:

M̂SDR = 1
N

n∑
i=1

(Ẑ(si) − Z(si))2

σ2(si)
(7.15)

and the AV E by:

ÂV E = 1 −
∑n

i=1(Ẑ(si) − Z(si))2∑n
i=1(Z(si) − Ẑ)2

(7.16)

where Ẑ is the mean of the target soil property estimated from the validation
sample.

One should be careful when assessing the proportion of variance explained by com-
puting the R2 from a linear regression of the predicted value on the observed value
(Krause et al., 2005), as is often done in practice. The R2 quantifies the dispersion
around the regression line; not around the 1:1 line in which we are interested in
validation. So it does not directly compare the predicted with observed value as
does the AV E; i.e. it is not based on the prediction error. A high R2-value, there-
fore, does not automatically mean a high AV E. For instance, in case of strongly
biased predictions the R2 can be high but the AV E will be low. The blue line
in Figure 7.1 is the regression line that one obtains when regression the observed
value of the predicted value. This line slightly differs from the 1:1 line. In this
example, the R2 of the regression is 0.42 while the AV E is 0.40. The uncertainty
associated to the estimated map quality measures is quantified with the sampling
variance, which for the ME, MAE and MSE is estimated by:

V ar(x̂) = 1
n(n − 1)

n∑
i=1

(x(si) − x̂) (7.17)

and the 95% confidence interval (CI) of x is given by:

CI95 = x̂ ± 1.96x
√

V ar(x̂) (7.18)

We should warn here that the calculation of the CI is based on the assumption
that the estimated map quality measure means have a normal distribution (the
central limit theorem). For the squared errors this assumption can be unrealistic,
especially for small sample sizes.
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Figure 7.2: Sample error matrix

Estimation of qualitative map quality measures: For validation of quali-
tative soil maps, a sample error matrix is constructed from the validation data
(Figure 7.2). n is the total number of validation locations in the sample. Element
nij of the matrix corresponds to the number of validation locations that have
been predicted as class i, i = 1, 2, . . . U and belong to class j, j = 1, 2, . . . U (Lark,
1995). The matrix summarizes correct predictions and incorrect predictions within
the validation data.

From the sample error matrix the overall purity, map unit purity and class repre-
sentation are estimated by:

ρ̂ =
U∑

i=1
nuu/n (7.19)

ρ̂u = nuu

nu+
(7.20)

r̂u = nuu

n+u
(7.21)

Alternatively, the overall purity can be estimated by defining a purity indicator
variable for each validation location that takes value 1 if the mapped soil class
equals the observed soil class at that location, and 0 else. The overall purity is
then estimated by:

ρ̂ = 1
n

n∑
i=1

∂(si) (7.22)

where δ(si) is the indicator variable at validation location si. The variance of the
estimated overall purity is estimated by:

V ar(ρ̂) = 1
n(n − 1)

n∑
i=1

(∂(si) − ρ̂)2 (7.23)

Alternatively, the variance is estimated by:
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Figure 7.3: Sample error matrix for a hypothetical soil class map

V ar(ρ̂) = ρ̂(1 − ρ̂)
n − 1)

(7.24)

which is the variance of a binomial probability distribution. The 95% confidence
interval of ρ̂ is given by:

CI95 = ρ̂ ± 1.96x
√

V ar(ρ̂) (7.25)

We warn that the CI as calculated here is a rough approximation which only holds
when n× ρ̂ and n×(1− ρ̂) are large (5 as a rule of thumb). Otherwise, the binomial
distribution should be used to compute the CI. Figure 7.3 shows a hypothetical
example of a sample error matrix for soil class map. For this example, the overall
purity is estimated by:

ρ̂ = (19 + 33 + 25 + 42 + 19)
240

= 0.575 (7.26)

meaning that for an estimated 57.5% of the mapping area the mapped soil class is
equal to the true soil class.

Table 7.1 gives the map unit purities and class representations for this example.
The map unit purity of the Gleysol is 0.581, meaning that at 58.1% of the validation
locations for which a Gleysol is predicted, a Gleysol is observed. Assuming the
validation data were collected by simple random sampling, we could conclude that
for 58.1% of the area mapped as Gleysol we would find a Gleysol in the field.
The class representation of the Gleysol is 0.463, meaning that for 46.3% of the
validation locations classified as Gleysol, we map a Gleysol. The majority of the
Gleysol locations is thus mapped as a different soil class. Again, assuming the
validation data were collected by probability sampling, we would estimate that
22.5% ( 54

240 × 100%) of our mapping area is covered by Gleysols. We map Gleysols
for 17.9% of the area ( 43

240 × 100%). It can happen that a soil class has a high map
unit purity and a low-class representation. This means that if we map a Gleysol
we will likely find a Gleysol there, but that a large extent of the true Gleysol area
is not mapped as such.
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Table 7.1: Map unit purity and class representation statistics for an hypothetical
example

unit map.unit.purity class.representation
Anthrosol 0.679 0.633
Cambisol 0.508 0.516
Gleysol 0.508 0.463
Luvisol 0.592 0.700
Podzol 0.576 0.594

7.4.2 Data-splitting

In data-splitting, the sample data set is split into two subsets. One subset is used
to calibrate the prediction model. The other subset is used for validation. A
frequently used splitting criterion is 70 - 30, where 70% of the sample data are
used for calibration and 30% for validation. The choice of a splitting criterion,
however, is arbitrary and it is not evident how to split a data set in such a way
that unbiased and valid estimates of the map accuracy can be obtained. For sparse
data sets, data-splitting can be inefficient since the information in the data set is
not fully exploited for both calibration and validation.

It is important to note here that a random subsample of (legacy) data that are
collected with a purposive (non-probability) design, is not a probability sample of
the study area. This means that design-based estimation of map quality measures
is not possible.

Thus, we will not obtain model-free, unbiased and valid estimates of the quality
measures from non-probability sample validation data. In a case study, Knotters
and Brus (2013) showed that model-based predictions of producer’s accuracies
from two models differed strongly, indicating that with the model-based approach
the validation results strongly depend on model assumptions.

In most studies, however, spatial correlation is not accounted for when estimating
map quality measures using the estimators presented above in Section 7.4.1 as
simple random sampling from non-probability sample data. In such case, the qual-
ity measures cannot be considered unbiased and valid estimates of the population
means of the map quality measures. In addition, the estimated variance of the
map quality measures is not valid and statistical testing of mapping methods to
assess which method gives the most accurate predictions cannot be done.

In other words, if the simple random sampling estimators are used to estimate
map quality measures then these are only valid for the validation data points. The
map quality measures do not give a valid estimate of the quality of the map as
a whole (the population). For instance, the overall purity cannot be interpreted
as an areal proportion of correctly mapped soil classes, only as the proportion
of the validation data points for which the soil class is correctly predicted. 70 -
30, where 70% of the sample data are used for calibration and 30% for validation.
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The choice of a splitting criterion, however, is arbitrary and it is not evident how
to split a data set in such a way that unbiased and valid estimates of the map
accuracy can be obtained. For sparse data sets, data-splitting can be inefficient
since the information in the data set is not fully exploited for both calibration and
validation.

It is important to note here that a random subsample of (legacy) data that are
collected with a purposive (non-probability) design, is not a probability sample of
the study area. This means that design-based estimation of map quality measures
is not possible.

If a validation (sub)sample is a non-probability sample of the mapping area, then
we must account for possible spatial autocorrelation of the prediction errors when
estimating the map quality measures. One can imagine that when two validation
locations are close together and the prediction errors are correlated that there is
less information in these two locations (there is information redundancy because of
autocorrelation) than in two isolated locations. This information redundancy has
to be accounted for when estimating map quality measures and implies that we
have to rely on model-based estimation: a model for the spatially autocorrelated
prediction error has to be assumed. Thus, we will not obtain model-free, unbiased
and valid estimates of the quality measures from non-probability sample validation
data. In a case study, Knotters and Brus (2013) showed that model-based predic-
tions of producer’s accuracies from two models differed strongly, indicating that
with the model-based approach the validation results strongly depend on model
assumptions.

7.4.3 Cross-validation

In K-fold cross-validation, the dataset is split into K roughly equal sets. One of
these sets is set aside for validation. The model is then calibrated using the data
from the K-1 sets and used to predict the target variable for the data points set
aside. From this prediction, the prediction error is calculated. This procedure is
repeated K times, each time setting a different set aside for validation. In this
way, we obtain K estimates of the prediction error: one for each validation sample
site. In this way, all data are used for validation and model calibration. It is thus
much more efficient than data-splitting.

K is typically chosen as 5 or 10 or as N the number of data points. The latter
is referred to as leave-one-out cross-validation in which only one validation site is
set aside in each iteration. The model is then calibrated with N -1 observations.
Some repeat K-fold cross-validation a number of times and average the results to
obtain a more robust estimate of the map quality measures.

Note that the problem of spatially correlated errors remains when data are non-
probability sample data. Cross-validation using a non-probability sampling dataset
suffers from the same drawbacks with respect to unbiasedness and validity of the
estimates of the map quality measures as data-splitting. The estimates cannot
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be interpreted as being valid for the mapping area, but only for the validation
locations.

In R, the caret package (Kuhn, 2016) offers functionality for data-splitting and
cross-validation.

7.5 Technical steps - Validation

G.F. Olmedo

Step 1 - Prediction error

First, we will load the validation dataset. This dataset was measured at the same
time as the modeling dataset. After data preparation in Chapter 4, we used the
code in Section 7.6 to split the database: 75% of the points were used in the models
from Chapter 6 and now we will use the remaining 25% of the points to test those
results.
library(sp)

dat <- read.csv("data/dat_test.csv")

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

Now, we will load the predicted layers from Chapter 6, extract the predicted value
for every point and then, estimate the prediction error.
library(raster)

OCSKGM_GM <- raster("results/MKD_OCSKGM_GM.tif")
OCSKGM_RK <- raster("results/MKD_OCSKGM_RK.tif")
OCSKGM_rf <- raster("results/MKD_OCSKGM_rf.tif")
OCSKGM_svm <- raster("results/MKD_OCSKGM_svm.tif")

dat <- extract(x = OCSKGM_GM, y = dat, sp = TRUE)
dat <- extract(x = OCSKGM_RK, y = dat, sp = TRUE)
dat <- extract(x = OCSKGM_rf, y = dat, sp = TRUE)
dat <- extract(x = OCSKGM_svm, y = dat, sp = TRUE)

dat$PE_GM <- dat$MKD_OCSKGM_GM - dat$OCSKGM
dat$PE_RK <- dat$MKD_OCSKGM_RK - dat$OCSKGM
dat$PE_rf <- dat$MKD_OCSKGM_rf - dat$OCSKGM
dat$PE_svm <- dat$MKD_OCSKGM_svm - dat$OCSKGM
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Table 7.2: Summary of prediction errors for three different mapping methods

GM RK randomForest svm
Min. -4.38 -4.09 -4.25 -4.77
1st Qu. -0.39 -0.31 -0.29 -0.25
Median -0.08 0.00 0.02 0.03
Mean -0.15 -0.08 -0.08 -0.03
3rd Qu. 0.17 0.23 0.24 0.32
Max. 1.74 2.01 2.22 1.78
NA’s 40.00 10.00 12.00 12.00

# Save the validation results
write.csv(dat, "results/validation.csv", row.names = F)

Step 2 - Estimating the map quality measures

In this Section, we present the code needed to estimate the map quality measures
for quantitative soil maps.
# Mean Error
ME_GM <- mean(dat$PE_GM, na.rm=TRUE)
ME_RK <- mean(dat$PE_RK, na.rm=TRUE)
ME_rf <- mean(dat$PE_rf, na.rm=TRUE)
ME_svm <- mean(dat$PE_svm, na.rm=TRUE)

# Mean Absolute Error (MAE)
MAE_GM <- mean(abs(dat$PE_GM), na.rm=TRUE)
MAE_RK <- mean(abs(dat$PE_RK), na.rm=TRUE)
MAE_rf <- mean(abs(dat$PE_rf), na.rm=TRUE)
MAE_svm <- mean(abs(dat$PE_svm), na.rm=TRUE)

# Mean Squared Error (MSE)
MSE_GM <- mean(dat$PE_GM^2, na.rm=TRUE)
MSE_RK <- mean(dat$PE_RK^2, na.rm=TRUE)
MSE_rf <- mean(dat$PE_rf^2, na.rm=TRUE)
MSE_svm <- mean(dat$PE_svm^2, na.rm=TRUE)

# Root Mean Squared Error (RMSE)
RMSE_GM <- sqrt(sum(dat$PE_GM^2, na.rm=TRUE) / length(dat$PE_GM))
RMSE_RK <- sqrt(sum(dat$PE_RK^2, na.rm=TRUE) / length(dat$PE_RK))
RMSE_rf <- sqrt(sum(dat$PE_rf^2, na.rm=TRUE) / length(dat$PE_rf))
RMSE_svm <- sqrt(sum(dat$PE_svm^2, na.rm=TRUE) / length(dat$PE_svm))

# Amount of Variance Explained (AVE)
AVE_GM <- 1 - sum(dat$PE_GM^2, na.rm=TRUE) /
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Table 7.3: Summary of map quality measures for three different mapping methods

GM RK randomForest svm
ME -0.147 -0.077 -0.081 -0.027
MAE 0.422 0.359 0.368 0.391
MSE 0.399 0.293 0.312 0.333
RMSE 0.619 0.538 0.555 0.573
AVE 0.177 0.377 0.338 0.293

sum( (dat$OCSKGM - mean(dat$OCSKGM, na.rm = TRUE))^2,
na.rm = TRUE)

AVE_RK <- 1 - sum(dat$PE_RK^2, na.rm=TRUE) /
sum( (dat$OCSKGM - mean(dat$OCSKGM, na.rm = TRUE))^2,

na.rm = TRUE)

AVE_rf <- 1 - sum(dat$PE_rf^2, na.rm=TRUE) /
sum( (dat$OCSKGM - mean(dat$OCSKGM, na.rm = TRUE))^2,

na.rm = TRUE)

AVE_svm <- 1 - sum(dat$PE_svm^2, na.rm=TRUE) /
sum( (dat$OCSKGM - mean(dat$OCSKGM, na.rm = TRUE))^2,

na.rm = TRUE)

Step 3 - Graphical map quality measures

In this Section, we will apply the proposed graphical quality measures to the results
of Chapter 6.
# Two plots in one plot
par(mfrow=c(2,2))

# Scatter plot
plot(dat$MKD_OCSKGM_GM, dat$OCSKGM, main="GM", xlab="predicted",

ylab='observed')

# 1:1 line in black
abline(0,1, lty=2, col='black')

# Regression line between predicted and observed in blue
abline(lm(dat$OCSKGM ~ dat$MKD_OCSKGM_GM), col = 'blue', lty=2)

# Scatter plot
plot(dat$MKD_OCSKGM_RK, dat$OCSKGM, main="RK", xlab="predicted",

ylab='observed')
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# 1:1 line in black
abline(0,1, lty=2, col='black')

# Regression line between predicted and observed in blue
abline(lm(dat$OCSKGM ~ dat$MKD_OCSKGM_RK), col = 'blue', lty=2)

# Scatter plot
plot(dat$MKD_OCSKGM_rf, dat$OCSKGM, main="rf", xlab="predicted",

ylab='observed')

# 1:1 line in black
abline(0,1, lty=2, col='black')

# Regression line between predicted and observed in blue
abline(lm(dat$OCSKGM ~ dat$MKD_OCSKGM_rf), col = 'blue', lty=2)

# Scatter plot
plot(dat$MKD_OCSKGM_svm, dat$OCSKGM, main="svm", xlab="predicted",

ylab='observed')

# 1:1 line in black
abline(0,1, lty=2, col='black')

# Regression line between predicted and observed in blue
abline(lm(dat$OCSKGM ~ dat$MKD_OCSKGM_svm), col = 'blue', lty=2)

par(mfrow=c(1,1))

# Spatial bubbles for prediction errors
bubble(dat[!is.na(dat$PE_GM),], "PE_GM", pch = 21,

col=c('red', 'green'))

# Spatial bubbles for prediction errors
bubble(dat[!is.na(dat$PE_RK),], "PE_RK", pch = 21,

col=c('red', 'green'))

# Spatial bubbles for prediction errors
bubble(dat[!is.na(dat$PE_rf),], "PE_rf", pch = 21,

col=c('red', 'green'))

# Spatial bubbles for prediction errors
bubble(dat[!is.na(dat$PE_svm),], "PE_svm", pch = 21,

col=c('red', 'green'))
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Figure 7.4: Scatter plots of predicted against observed values
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Figure 7.8: Spatial bubble of the prediction errors for SVM

7.6 Technical steps - Data-splitting

As explained before, many times for running validation analysis, we split the data
before fitting the models. In this Section, we present the code needed to achieve
this using caret package.
library(caret)

dat <- read.csv("data/dataproc.csv")

train.ind <- createDataPartition(1:nrow(dat), p = .75, list = FALSE)
train <- dat[ train.ind,]
test <- dat[-train.ind,]

plot(density (log(train$OCSKGM)), col='red', main="")
lines(density(log(test$OCSKGM)), col='blue')
legend('topright', legend=c("train", "test"),

col=c("red", "blue"), lty=1, cex=1.5)

write.csv(train, file="data/dat_train.csv", row.names = FALSE)
write.csv(test, file="data/dat_test.csv", row.names = FALSE)
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Chapter 8

Model evaluation in digital soil
mapping

M. Guevara & G.F. Olmedo

There are no best methods for statistical modeling and different evaluation strate-
gies should be considered in order to identify, realistically, the overall modeling
accuracy (Ho and Pepyne, 2002; Qiao et al., 2015; Guevara et al., 2018; Nussbaum
et al., 2018). This Section is devoted to describe quantitative methods for model
evaluation applied to SOC mapping across FYROM.

Our objective is to provide a model evaluation example based on a vector of ob-
served SOC and a vector of modeled SOC estimates derived from the geomatching
approach (GM) and the three different statistical methods describes in Chapter 6:
multiple linear regression-kriging (RK) (see Section 6.2), random forests (RF) (see
Section 6.3), and support vector machines (SVM) (see Section 6.4)). The model
evaluation methods presented here were adapted from the original work of Carslaw
and Ropkins (2012) for air quality assessments and their R package openair.

We found in this package a very useful set of functions for model evaluation met-
rics that are suitable (and we highly recommend) for comparing digital soil maps
derived from different prediction algorithms. We will first analyze the simple corre-
lation and major differences of generated SOC maps by the three different methods.
Then for further analysis we will prepare a data frame containing the observed and
modeled vectors as well as the method column. Ideally the observed vector should
be derived from a completely independent SOC dataset, as explained in the pre-
vious Chapter. The cross-validation strategy and the repeated random split for
training and testing the models are other two alternatives when no independent
dataset is available for validation purposes. However, we do not recommend to use
the same training dataset for performing the following analysis, since the resulting
best method could be the one that overfits the most.

The authors of this Chapter used R packages. To run the code provided in this
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Chapter, the following packages need to be installed in the R user library. If the
packages are not yet installed, the install.packages() function can be used.
# Installing packages for Chapter 'Model Evaluation in
# Digital Soil Mapping'
install.packages(c("raster", "psych", "rasterVis",

"mapview", "openair"))

8.1 Technical steps - Model correlations and spatial
differences

Step 1 - Harmonize the predicted maps to the same spatial resolution

We will import the predicted maps and harmonize them in to the same regular
grid (1 × 1 km of spatial resolution).
library(raster)

GM<-raster('results/MKD_OCSKGM_GM.tif')
RK<-raster('results/MKD_OCSKGM_RK.tif')
RF<-raster('results/MKD_OCSKGM_rf.tif')
SVM<-raster('results/MKD_OCSKGM_svm.tif')

# Note that RK has a different reference system
RK <- projectRaster(RK, SVM)
models <- stack(GM, RK, RF, SVM)

Step 2 - Compare the statistical distribution and correlation between
the models

Then we will plot the statistical distribution and the correlation between the three
different methods (RK, RF, SVM).
library(psych)

pairs.panels(na.omit(as.data.frame(models)),
# Correlation method
method = "pearson",
hist.col = "#00AFBB",
# Show density plots
density = TRUE,
# Show correlation ellipses
ellipses = TRUE
)

Here we found that the higher Pearson correlation coefficient (r value) between
predicted values was between RK and SVM (0.86). We also found that the statis-
tical distribution of predicted values is quite similar between the four methods and
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Figure 8.1: Comparision of DSM model correlations (GM, RK, RF, SVM) and
statical distributions

that the higher discrepancies were found between the GM map and the statistical
models.

We can in addition overlap the probability distribution functions for the four dif-
ferent methods to verify that their predictions are similar across the full data
distribution of values.
library(rasterVis)

densityplot(models)

Step 3 - Identify spatial differences between the models using the stan-
dard deviation

Lets now take a look at the spatial differences. This step will allow to identify the
geographical areas within the prediction domain where model predictions more
agreee and disagree. To spatially compare model predictions we will estimate the
standard deviation and the differences between the four SOC maps.
library(mapview)

SD <- calc(models , sd)

mapview(SD)
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Figure 8.2: Density plot of the prediction for three DSM models

The mapview command will plot the standard deviation map in a .html file. Note
roughly how the hotspots (yellow to red colors) of higher variance of predictions
tend to be higher towards the west of the country, whereas models tend to agree in
their predictions across the east side of the country. Note also that the variability
although noisy, it shows a general pattern, (e.g., from east to west), suggesting that
model agreement could be associated with specific land surface characteristics.

Now we will analyze specific differences between the three models (RK - RF, RK
- SVM, RF - SVM, GM - RF, GM - SVM, GM - RK).
library(raster)
library(rasterVis)

GMRK <- calc(models[[c(1,2)]], diff)
GMRF <- calc(models[[c(1,3)]], diff)
GMSVM <- calc(models[[c(1,4)]], diff)
RKRF <- calc(models[[c(2,3)]], diff)
RKSVM <- calc(models[[c(2,4)]], diff)
RFSVM <- calc(models[[c(3,4)]], diff)

preds <- stack(GMRK, GMRF, GMSVM, RKRF, RKSVM, RFSVM)
names(preds) <- c('GMvsRK', 'GMvsRF', 'GMvsSVM','RKvsRF','RKvsSVM','RFvsSVM')

X <- raster::cellStats(preds, mean)
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levelplot(preds - X, at=seq(-0.5,0.5, length.out=10),
par.settings = RdBuTheme)

Note how the spatial differences of the predicted SOC values have similar patterns,
but the difference between RK and RF seems to be less sharp than the differences
of SVM with the other two methods. Note that we use the levelplot() function
to generate a better visualization (from red-to-white-to-blue) of the main effects
of differences (e.g., if they are positive or negative), but we could also use the
mapview() function to analyze these maps in a more interactive fashion. The
variance of predictions derived from different models can be used as a proxy of
model uncertainty and provides valuable information to consider in further appli-
cations of SOC maps (e.g., modeling crop production or quantifying SOC stocks).
Note also the interesting differences between the GM map and the three statistical
predictions.

8.2 Technical steps - Model evaluation

Step 1 - Data preparation

To compare the performance of the four models, we will compare the observed
values used and the predicted values for the the validation points. We have to load
the validation dataset and the prediction result of the four validation datasets.
The table containing these values was prepared in Section 7.5.
dat <- read.csv("results/validation.csv")

We will prepare a new table from this data that we are going to use for model
evaluation purposes. The new table should have the observed value, the predicted
value and the model.
# Prepare 4 new data.frame with the observed, predicted and the model
modGM <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_GM,

model = "GM")

modRK <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_RK,
model = "RK")

modRF <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_rf,
model = "RF")

modSVM <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_svm,
model = "SVM")

# Merge the 3 data.frames into one
modData <- rbind(modGM, modRK, modRF, modSVM)

summary(modData)
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## obs mod model
## Min. :0.0111 Min. :0.01125 GM :970
## 1st Qu.:0.6681 1st Qu.:0.78701 RK :970
## Median :0.9518 Median :0.94685 RF :970
## Mean :1.1076 Mean :1.02087 SVM:970
## 3rd Qu.:1.3744 3rd Qu.:1.14829
## Max. :6.1827 Max. :3.41975
## NA's :74

Step 2 - Calculate statistical evaluation metrics

Now we will use the modStats() function to calculate common numerical model
evaluation statistics which are described and mathematically defined in the ope-
nair package manual (Carslaw, 2015, Ch. 27, pp. 231-233). These include:

• n, the number of complete pairs of data;
• FAC2, fraction of predictions within a factor of two;
• MB, the mean bias;
• MGE, the mean gross error;
• NMB, the normalized mean bias;
• NMGE, the normalized mean gross error;
• RMSE, the root mean squared error;
• r, the Pearson correlation coefficient;
• COE, the Coefficient of Efficiency based on Legates and McCabe (1999),

Legates and McCabe (2013). A perfect model has a COE = 1. A value of
COE = 0 or negative implies no prediction capacity;

• IOA, the Index of Agreement based on Willmott et al. (2012), which spans
between -1 and 1, with values approaching +1 representing better model
performance.

A perfect model would have a FAC2, r, COE and IOA ~ 1.0, while all the others
~ 0.

However, digital soil mappers should have in mind that there is no such thing as
a perfect model on digital SOC mapping for large areas, especially if we deal with
sparse data from legacy soil profile or pit observations usually collected over long
periods of time. Depending on the situation, some performance measures might be
more appropriate than others. Hence, there is not a single best measure, and it is
necessary to use a combination of the performance measures for model evaluation
purposes (Chang and Hanna, 2004).
library(openair)

modsts <- modStats(modData,obs = "obs", mod = "mod", type = "model")

From our SOC mapping example across FYROM, GP had the highest eror and
bias while the three statistical models generate similar results. The FAC2 is over
to 0.8 in all cases, being RK the one closer to 1. MB and NMB suggest that
all the models tent to underestimate SOC because they are negative. SVM tend
to underestimate SOC values less than RK and RF. The MGE, NMGE, and
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Table 8.1: Summary of different model evaluation statistics for the three models
compared

model FAC2 MB MGE NMB NMGE RMSE r COE IOA
GM 0.80 -0.15 0.42 -0.13 0.38 0.63 0.46 0.12 0.56
RK 0.89 -0.08 0.36 -0.07 0.32 0.54 0.63 0.25 0.63
RF 0.88 -0.08 0.37 -0.07 0.33 0.56 0.59 0.23 0.62
SVM 0.86 -0.03 0.39 -0.02 0.35 0.58 0.53 0.19 0.59

RMSE suggest however that SVM is generating the larger error rate and by the
values of r, COE and IOA, we could say that given available SOC data across
FYROM, the RK method improves the predictive capacity of RF and SVM.

These conclusion can be verified by plotting a Taylor Diagram (see Figure 8.3),
which summarizes multiple aspects of model performance, such as the agreement
and variance between observed and predicted values (Taylor, 2001). Recent reports
show that the integration of simple validation metrics (e.g., the RMSE correlation
ratio) allows to extract information about modeling performance that could not be
obtained by analyzing the validation metrics independently, such as the agreement
between explained variance and bias (Guevara et al., 2018; Nussbaum et al., 2018).
Taylor Diagrams interpteration rely on the relationships between explained vari-
ance and bias (from observed and modeled data). Note from our Taylor Diagram
that GM is more distant that the other implemented approaches. Also, the RK
method is closer to the observed value, followed by RF. Although, no significant
difference was evident between the three implemented algorithms.
TaylorDiagram(modData, obs = "obs", mod = "mod", group = "model",

cols = c("green", "yellow", "red","blue"),
cor.col='brown', rms.col='black')

However, we need also to check that the effectiveness of RK remains across all
the full distribution of SOC observed values. For doing this, we can plot the
conditional quantiles to verify the higher prediction capacity of RK (see Figure
8.4).
conditionalQuantile(modData,obs = "obs", mod = "mod", type = "model")

The blue line shows the results for a perfect model. In this case, the observations
cover a range from 0 to 6kg ·m−2. Interestingly, the maximum predicted value is in
all cases less than 3kg ·m−2, which is consistent with the MB and NMB previous
results. The red line shows the median value of the predictions. Note that the
median of predictions across the larger SOC values seems to have more variability
across SVM and RK compared with RF, which tends to be conservative across
the third quantile of data distribution. The shading shows the predicted quantile
intervals (i.e., the 25/75th and the 10/90th). A perfect model (blue line) would
have a very narrow spread (Carslaw and Ropkins, 2012). The histograms show
the counts of observed (gray) and predicted values (blue). While RF shows more
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conservative results across the higher SOC values (e.g., over the 4th), SVM had
the lowest model performance based on these metrics. SVM was also the method
showing higher spatial differences compared to RF and RK.

We conclude, for this specific example, that RK showed the best performance
based on the implemented evaluation metrics. Therefore RK is a suitable method
predicting SOC values across FYROM, although other methods generate similar
results, we propose that, given available data, RK could be also easier to interpret,
because it provides the means to identify the main effects and coefficients of the
relationships across the covariate space and the response variable. Beyond model
evaluation, the spatial combination of different modeling approaches (e.g., by the
means of the ensemble learning theory) should also be considered in order to max-
imize the accuracy of results. Regardless the statistical space, the users should be
aware that different plausible predictions or conventional SOC maps provide com-
plementary information. From a pedological point of view the GM is apprapiate
for the accurate delinetion of soil units and the continuos use of different modeling
approaches will enhance our capacity to describe the functional variability with
higher spatial detail and accuracy within each soil type unit.

Finally, we want to highlight that integrating different statistical methods and
visualization tools, such as those provided by the openair package in R (Carslaw
and Ropkins, 2012) will enhance our capacity to identify the best modeling ap-
proaches and a combination of SOC prediction factors given a specific dataset.
Model evaluation benefits our understanding of the circumstances why each mod-
eling approach will generate different results, which is a first step towards reducing
uncertainty while increasing the spatial resolution and accuracy of predictions, the
eternal problem for DSM.



Chapter 9

Uncertainty

G.B.M. Heuvelink

Soil mapping involves making predictions at locations where no soil measurements
were taken. This inevitably leads to prediction errors because soil spatial variation
is complex and cannot be modeled perfectly. It also implies that we are uncertain
about the true soil class or true soil property at prediction locations. We only
have the predictions, which differ from the true values in an unpredictable way,
and hence we are uncertain about the true value. In fact, we may even be uncertain
about the soil at the measurement locations because no measurement method is
perfect and uncertainty also arises from measurement errors.

This Chapter describes how uncertainty may be characterized by probability distri-
butions. It also explains how the parameters of these distributions may be derived,
leading to quantification of uncertainty. We will see that this can become quite
complex, because soil properties vary in space and are often cross-correlated, which
the uncertainty model must take into account. A further complication is that there
are many different sources of uncertainty. In some cases, it may be too difficult
to arrive at a spatially explicit characterization of uncertainty, and in such case,
statistical validation may be used to derive summary measures of the accuracy of
soil maps. We begin this Chapter with a description of uncertainty sources.

9.1 Sources of uncertainty

Consider a case in which soil samples were taken from a large number of measure-
ment locations in a study area, taken to the laboratory and analyzed for various soil
properties. Let us further assume that the measurement locations were indicated
on a topographic map and that the soil was also classified at each measurement
location. Next, the soil property and soil type observations were used to create
maps of soil properties and soil type using DSM techniques. These techniques not
only make use of the soil observations but also benefit from maps of environmental
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variables that are correlated with the soil, and hence help explain the soil spatial
variation. Which sources of uncertainty contribute to uncertainty about the final
soil maps? We distinguish four main categories.

9.1.1 Attribute uncertainty of soil measurements

Soil measurements suffer from measurement errors in the field and laboratory.
Perhaps the soil was not sampled at the right depth, perhaps the organic layer
was not removed completely before collecting soil material, or perhaps by accident
bags were interchanged or numbered wrongly. Field estimates of soil type and
soil properties are also not error-free, especially when estimation is difficult, such
as estimation of SOC content or texture. Field estimates may also be subjective
because soil scientists may be trained differently and so there may be systematic
differences between their field estimates of soil properties. Similarly, it is also not
uncommon for soil scientists to disagree about the soil type when classifying a soil
in the field.

Laboratory analysis adds error too. Soil samples may not be perfectly mixed
prior to taking a much smaller subsample that is actually measured; instruments
have limited precision and may have systematic errors, climate conditions in the
lab vary, and there can be differences between procedures used by laboratory
personnel. Differences between laboratories are even bigger and may be of the
same order of magnitude as the soil variation itself. It is strongly advised to
always take sufficient duplicates and randomize the order in which soil samples
are analyzed in the laboratory. This allows quantifying the combined field and
laboratory measurement errors.

9.1.2 Positional uncertainty of soil measurements

When collecting soil data in the field we would generally note the geographic coordi-
nates of the measurement locations. Nowadays this is easy with GPS instruments
and depending on the device, modest to high positional accuracy can be achieved.
But it may still be too large to be negligible. For instance, consider the case where
the soil data are used to train a DSM model that predicts soil properties from
covariates. Let these covariates be available at high spatial resolution and have
substantial fine-scale spatial variation. Then it is clear that positional uncertainty
in the soil measurements may link these measurements to the wrong covariates,
which will weaken the strength of the relationship between the soil variable and
covariates and deteriorate the quality of the final soil map.

Many soil legacy data suffer from large positional uncertainty. Locations may
only be traced from vague descriptions such as near village A or east of the road
from B to C. In such case, researchers should consider whether using such data for
calibration of a DSM model and for spatial prediction using the calibrated DSM
model is wise. It may do more harm than good. This depends on the specific DSM
model used and the degree of spatial variation of the covariates. It also depends
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on the degree of spatial variation of the soil property itself. If it has negligible fine-
scale spatial variation and hence has similar values at the registered and actual
geographic location, then little harm is done. For instance, in the Sahara desert
many soil properties will show little spatial variation over distances of hundreds or
perhaps thousands of meters, so in such case, poor geographic positional accuracy
will not seriously affect DSM predictions.

9.1.3 Uncertainty in covariates

Maps of covariates that are used in DSM can also suffer from errors and uncertain-
ties. For instance, a DEM is a major source of geomorphological covariates but
DEMs are only approximations of the real elevation. DEM errors will propagate
and cause uncertainty in geomorphological properties such as slope, aspect and
topographic wetness index. As a result, the DSM model must be trained on co-
variate data that are merely approximations of the intended covariates, which will
generally lead to weakened relationships and larger DSM prediction errors. Land
cover is another example; soil properties may be strongly influenced by land cover,
but such relationship may come out quite weak if the DSM model is trained with
a land cover map that represents land cover wrongly for a large part of the study
area.

Covariates also come in a specific spatial resolution which may be quite coarse in
specific cases. In order to use the covariate in a fine-scale DSM model, the coarse-
scale grid cell value will be copied to all fine-scale grid cells contained in it, but
clearly, fine-scale spatial variation implies that uncertainties will be introduced. A
possible solution might be to smooth the coarse-scale covariate prior to entering it
to DSM calibration but clearly, this will not remedy all problems.

Uncertainty in covariates leads to weaker DSM models, but this weakening is not
hidden to the developer because the deterioration of predictive power is implicitly
included in the DSM model. For instance, the amount of variance explained by a
DSM model that uses the true land cover as measured on sampling sites may be
much higher than that of a model that uses a land cover map. Users may then be
tempted to calibrate the DSM model with the true land cover data, but if they next
apply that model using the land cover map to predict the soil at non-measurement
locations they would systematically underestimate the uncertainty of the resulting
map.

9.1.4 Uncertainty in models predicting soil properties from co-
variates and soil point data

Even if the soil point data and covariate data were error-free, the resulting DSM
predictions would still deviate from the true soil properties. This is because the
DSM model itself also introduces uncertainties. Models are merely simplified rep-
resentations of the real world. The real world is too complex and approximations
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are needed. For instance, even though we know that physical, chemical and bio-
logical processes determine the soil as given by the state equation of soil formation
soil = f(cl, o, r, p, t), the function f is too complex to be fully understood and
implemented in a computer model. Instead, we use crude approximations such as
multiple linear regression and machine-learning algorithms. These empirical mod-
els have the additional burden that extrapolation beyond conditions represented by
the calibration data is difficult and risky. For extrapolation purposes, it is advised
to use DSM models that better represent the mechanisms behind soil formation,
but again it is practically impossible to build mechanistic models that represent
the real world perfectly. This is not only because we may not understand all pro-
cesses and their interactions well, but also because dynamic mechanistic models
need much information, such as the initial state, boundary conditions, and driving
forces. Such detailed information is generally lacking.

Model uncertainty is generally subdivided into model parameter uncertainty and
model structural uncertainty. The first can be reduced by using models with fewer
parameters or by using a larger calibration data set. The latter can be reduced by
using a more complex model, but this will only work if there are enough data to
calibrate such model. Thus, in general, a compromise has to be sought by choosing
a level of model complexity that matches the amount of information available.

9.2 Uncertainty and spatial data quality

Research into spatial accuracy in geographic information science has listed five
main elements of spatial data quality:

• Lineage;
• Positional accuracy;
• Attribute accuracy;
• Logical consistency; and
• Completeness.

We have already discussed positional and attribute accuracy. Lineage refers to
documenting the original sources for the data and the processing steps. This
is strongly related to the principle of reproducible research. Logical consistency
addresses whether there are any contradictory relationships in the database. For
instance, it checks whether all data have the same geographic projection and that
measurement units are consistent. Completeness refers to whether there are any
missing data. For instance, covariate maps must cover the entire study area if they
are to be used as explanatory variables in a DSM model. Soil profile data need
not capture all relevant soil properties and tend to have fewer soil measurements
at greater depths.

In summary, there are many sources of uncertainty that affect the quality of DSM
products. This Section has reviewed these sources but was purposely descriptive.
The next Section selects a few major uncertainty sources and works out quantita-
tively how these cause uncertainty in the resulting soil map. Perhaps it is useful to
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mention that focussing attention on errors and uncertainties may give the wrong
impression that soil maps are generally inaccurate and of poor quality. This is
not the message that we wish to convey here. But producers and users of soil
maps should be aware of the sources of uncertainty and should ideally identify
how these uncertainties affect the final product. Thus, quantification of the uncer-
tainty in DSM maps, be it through explicit modeling or independent validation is
important.

9.3 Quantifying prediction uncertainty

Uncertainties in soil measurements, covariates and DSM models propagate to re-
sulting soil maps. The uncertainty propagation can fairly easily be traced provided
that the uncertainty sources are characterized adequately. The most appropriate
way of doing that is by making use of statistics and probability distributions. This
Section also takes that approach and starts by providing a brief overview of prob-
ability distributions and how these may be used to represent uncertainty. Next, it
analyses how the four sources of uncertainty distinguished in Section 9.1 lead to
uncertainty in soil maps produced using DSM.

9.3.1 Uncertainty characterised by probability distributions

If we are uncertain about the value of a soil property at some location and depth
this means that we cannot identify one single, true value for that soil property
(Goovaerts, 2001; Heuvelink, 2014). Instead, we may be able to provide a list of all
possible values for it and attach a probability to each. In other words, we represent
the true but unknown soil property by a probability distribution.

For instance, suppose that we estimate the sand content of a soil sample in the
field as 35%, while recognizing that a field estimate is quite crude and that the true
sand content may very well be less or more than the estimated 35%. We might be
confident that the estimation error is unlikely to be greater than 8%, and hence it
would be reasonable to represent the sand content by a normal distribution with
a mean of 35% and a standard deviation of 4%. For the normal distribution, 95%
of the probability mass lies within two standard deviations from the mean, so we
would claim that there is a 5% probability that the sand content is smaller than
27% or greater than 43%.

In the example above we had chosen the normal distribution because it is the
most common probability distribution but we might as well have used a differ-
ent distribution, such as the uniform or lognormal distribution. Indeed many soil
properties, such as soil nutrient concentrations are better described by lognormal
distributions, because values below zero cannot occur and because very high pos-
itive values (i.e., outliers) are not unlikely. For instance, we may estimate the
organic carbon concentration (OC) of a soil sample as 1.2% and identify with it
an asymmetric 95% credibility interval ranging from 0.8% to 2.5%. In general,
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Figure 9.1: Scatter plots of 500 paired soil property values drawn from a two-
dimensional normal distribution

statistical modeling is easier if the variables under study can be described by nor-
mal distributions. This explains why we usually apply a transformation to skewed
variables prior to statistical modeling. For instance, when building a DSM model
of OC, it may be wise to develop such model for the logarithm of OC and do a
back-transform on the DSM predictions.

There are many different soil properties that in addition vary in space and possibly
time. Thus, the characterization of uncertainty about soil properties needs to be
extended and include cross- and space-time correlations. It is beyond the scope of
this Chapter to explain this in detail, for this we refer to standard textbooks such
as Goovaerts (1997) and Webster and Oliver (2007). If we assume a joint normal
distribution, then a vector of soil properties (be it different soil properties or the
same soil property at multiple locations, depths or times) Z is fully characterized
by the vector of means m and variance-covariance matrix C.

Figure 9.1 shows three examples of 500 paired soil property values that were simu-
lated from different bivariate normal distributions. The left panel shows an uncor-
related case with equal standard deviations for both properties. The centre and
right panels show a case where soil property 2 has a greater standard deviation
than soil property 1. The difference between these two cases is that the centre
panel has a zero correlation between the two soil properties while it is positive in
the right panel.

9.3.2 Propagation of model uncertainty

Now that we have clarified how uncertainty in soil properties may be characterized
by probability distributions, let us consider what these distributions look like in
DSM and how these are influenced by the uncertainty sources described in Section
9.1. We begin with uncertainty source 4, uncertainty in DSM models. We noted
before that uncertainty in DSM models may be separated in model parameter
and model structural uncertainty. A typical example of this is a multiple linear
regression model:
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Z(s) = β0 + β1 · X1(s) + β2 · X2(s) + ε(s) (9.1)

Note that here for simplicity we assumed two environmental covariates X1 and X2
while in practice we are likely to use many more. Parameter uncertainty of this
model occurs because the parameters β0 , β1 and β2 are merely estimated using
calibration data. Under the assumptions made by the linear regression model,
these estimation errors are normally distributed and have zero mean, while their
standard deviations and cross-correlations can also be computed (Snedecor and
Cochran, 1989, Section 17.5). The standard deviations become smaller as the
size of the calibration dataset increases. Both the standard deviations and cross-
correlations are standard output of statistical software packages. Thus, we could
sample from the joint distribution of the parameter estimation errors in a similar
way as displayed in Figure 9.1.

The model structural uncertainty associated with the multiple linear regression
model Eq. 9.1 is represented by the stochastic residual ε. It too is normally dis-
tributed and has zero mean, while its standard deviation depends on the (spatial)
variation of the soil property Z and the strength of the relationship between Z and
the covariates X1 and X2. If the covariates explain a great deal of the variation of
the soil property then the standard deviation of the residual will be much smaller
than that of the soil property, as expressed by the goodness-of-fit characteristic
R2, also termed Amount of Variance Explained (AVE) (see Section 7.4.1). It will
be close to 1 in case of a strong linear relationship between soil property and co-
variates. In that case, the standard deviation of the stochastic residual will be
much smaller than that of the soil property, because a large part of the variation
is explained by the model. If the covariates bear no linear relationship with the
soil property (i.e., R2 = 0), the stochastic residual will have the same standard
deviation as the soil property.

Since the joint probability distributions of the parameter estimation errors and
the stochastic residual can analytically be computed and are routinely provided by
statistical software, it is not difficult to analyse how these uncertainties propagate
through the DSM model Eq. 9.1. This can be done analytically, because Eq. 9.1
is linear in the stochastic arguments (note that the covariates are treated known
and deterministic). If we predict the soil property Z at a prediction location s0
using the calibrated regression model as:

Ẑ(s0) = β̂0 + β̂1 · X1(s0) + β̂2 · X2(s0) (9.2)

then the prediction error will be normally distributed with zero mean and variance
(i.e., the square of the standard deviation) given by:
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V ar(Ẑ(s0)) − Z(s0)) = V ar(β̂0) + V ar(β̂1) · X1(s0)2 + V ar(β̂2) · X2(s0)2+

2Cov(β̂0, β̂1) · X1(s0) + 2Cov(β̂0, β̂2) · X2(s0)+

2Cov(β̂1, β̂2) · X1(s0) · X2(s0) + V ar(ε(s0))
(9.3)

This is a complicated expression but all entries are known and hence it can be
easily calculated.

In many DSM applications, an additional step will be included that makes use
of the fact that the stochastic residual ε in Eq. 9.1 is spatially autocorrelated, as
characterized by a semivariogram. If this is the case the residual spatial correlation
can be exploited by incorporating a kriging step (Hengl et al., 2004). Kriging has
been explained in Chapter 6, where it was also explained that the uncertainty in
the predictions is quantified by the kriging variance. We will not repeat the theory
here, but simply note that the kriging variance computes the prediction error
variance just as was done in Eq. 9.3, but that in case of kriging the V ar(ε(s0)))
term in Eq. 9.3 is replaced by a smaller term, because kriging benefits from
residual spatial correlation. In fact, in case of a pure nugget variogram, the kriging
variance would be identical to Eq. 9.3, because in such case there is no spatial
autocorrelation that one can benefit from. Note also that here we refer to kriging
with external drift because we included a non-constant mean (i.e., covariates X1
and X2). If no covariates were included Eq. 9.3 would simplify dramatically leaving
only uncertainty in the estimated (constant) mean and the stochastic residual.
This might then be compared with the ordinary kriging variance.

So far we considered uncertainty in DSM models that are linear in the covariates
and that represent the model structural uncertainty by an additive stochastic term.
This was relatively easy because tracing how uncertainty in model parameters and
model structure propagate to the model output could be done analytically. How-
ever, using linear models also poses serious restrictions. The relationship between
soil properties and covariates are typically not linear but much more complex. This
has led to the development and use of complex non-linear DSM models, such as
regression trees, artificial neural networks, support vector machines and random
forests approaches, all summarised under the term machine learning (e.g., Hengl
et al., 2015a). These more complex models typically yield more accurate soil pre-
dictions but quantification of the associated uncertainty is more difficult. In most
cases, one resorts to validation and cross-validation statistics that summarise the
prediction accuracy over the entire study area. How this is done will be explained
in detail in Section 9.3.3. Such summary validation measures are very valuable but
are no substitute for spatially explicit uncertainties such as the kriging variance
and the prediction error variance presented in Eq. 9.3. Research into quantifica-
tion of location-specific uncertainties when using machine learning algorithms is
therefore important. However, it is beyond the scope of this Chapter to review this
area of ongoing research. One particular approach makes use of quantile regres-
sion forests. We refer to Meinshausen (2006) for a general text and to Vaysse and
Lagacherie (2017) for a DSM application of this promising, albeit computationally



151 9.3. Quantifying prediction uncertainty

challenging approach.

9.3.3 Propagation of attribute, positional and covariate uncer-
tainty

In Section 9.1 we noted that next to uncertainties in model parameters and model
structure there may also be uncertainties in the attribute values and positions of
the soil point data and in the covariates. These sources of uncertainty will also
affect the outcome of DSM model predictions.

Uncertainties in soil attribute values effectively mean that the DSM model is cal-
ibrated with error-contaminated observations of the dependent variable. Let us
consider the multiple linear regression model Eq. 9.1 again. True values of the
dependent variable Z (i.e., the target soil property, such as pH, clay content or
total nitrogen concentration) are no longer for calibration of this model. Instead,
we must make do with measurements Y of Z:

Y (si) = Z(si) + δ(si), i = 1 . . . n (9.4)

where n is the number of measurement locations and δ(si) is a random variable
representing measurement error. It is custom to assume that all δ(si) are normally
distributed, have zero mean and are mutually independent, although these assump-
tions are not strictly necessary. Their standard deviations may vary between cases
and depend on the accuracy and precision of the measurement method. For in-
stance, field estimates tend to be more uncertain than laboratory measurements
and so the corresponding measurement errors will have a larger standard deviation.
The consequence of the presence of measurement errors is that the estimates of the
model parameters will be more uncertain. This is no surprise because the calibra-
tion data are of poorer quality. The prediction error variance will be greater too,
for the same reason. If spatial correlation of the model residual ε is included and an
extension to kriging with external drift is made, uncertainty due to measurement
errors is further increased because the conditioning of predictions to observations
cannot benefit as much as when the observations were error-free. For mathemati-
cal details we refer to Cressie (1993). Finally, we should also note that if different
observations have different degrees of measurement error, then this will influence
the weights that each measurement gets in calibration and prediction. Measure-
ments with larger measurement errors get smaller weights. This is automatically
incorporated in multiple linear regression and kriging with external drift, but how
this can be incorporated in machine-learning approaches is less clear.

Positional uncertainty of soil point observations will also deteriorate the quality
of the predictions of calibrated DSM models. However, it is difficult to predict
how much the prediction accuracy is affected. It largely depends on the degree
of fine-scale spatial variation of the soil property and covariates. For instance,
if both the soil property of interest and the covariates are spatially smooth and
hardly change over distances within the range of spatial displacement due to po-
sitional uncertainty, then little damage is afflicted by positional uncertainty. But
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otherwise much harm can be done because the soil observations will be paired
with covariate values from displaced locations that can be very different. So far,
this interesting and important topic has received only little attention in the DSM
literature. Grimm and Behrens (2010) and Nelson et al. (2011) are two examples
of studies that assessed the effect of positional error on the accuracy of digital soil
maps.

Finally, there are also uncertainties in covariates that affect the accuracy of DSM
predictions. In fact, these uncertainties are already incorporated in the model
structural uncertainty discussed before, because offering covariates that are poor
approximations of the true soil forming factors will explain little of the spatial
variation and lead to low goodness-of-fit statistics. From a statistical point of view,
the covariates used in Eq. 9.1 need not be the true soil forming factors but could as
well be proxies of those. This does not harm the theory and quantification of the
prediction error variance such as through Eq. 9.3 in the multiple linear regression
case or using the kriging variance in a KED approach remain perfectly valid. This
does not mean that digital soil mappers should not look for the most accurate and
informative covariates because clearly weak covariates lead to poor predictions of
the soil (Samuel-Rosa et al., 2015).
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Data sharing

T. Hengl, L. Poggio, E. Ribeiro & B. Kempen

This Chapter reviews possibilities and good practices of exchanging produced soil
data. Once the analysis, spatial prediction and quality control have been all com-
pleted, it is useful to follow some minimum steps and export and prepare the data
for distribution so that its potential users can easily access it, use it, and make
a correct interpretation of data. We consider geo-publishing options for soil data
either based on using third-party web services or by using one’s own installation
of the software. We put a clear focus on using the Open Source software solu-
tions: GDAL, GeoServer, Leaflet, OpenLayers and R, and public domain data
and metadata standards.

The authors have more than 15 years of experience in producing, publishing and
sharing soil maps and have been involved in large soil mapping projects where data
volumes often exceed standard desktop GIS capacities. For information on specific
software please refer to the provided links. Even more information on using GDAL
and similar GIS tools through a command line can be found via the Global Soil
Information Facilities (GSIF) tutorials of ISRIC at http://gsif.isric.org. The text
is illustrated with example scripts of the statistical software R in combination with
GDAL.

The authors of this Chapter used R packages. To run the code provided in this
Chapter, the following packages need to be installed in the R user library. If the
packages are not yet installed, the install.packages() function can be used.
# Installing packages for Chapter 'Data Sharing'
install.packages(c("soiltexture", "rgdal", "plotKML",

"sf", "RSQLite", "leaflet",
"htmlwidgets", "GSIF", "raster"))
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10.1 Export formats

10.1.1 Type of soil data and their formatting

Before we start reviewing soil data formats, it is useful to understand which types of
soil variables, soil maps, and soil DBs are most commonly generated and used, and
what are their specific advantages and limitations. Soil science works with many
variables common to ecology and/or physical geography (e.g. soil temperature),
but it also works with several variables specific to soil science only. Some soil
factor-type variables specific to soil science only are for example:

• Soil taxa or soil classes (this includes taxonomic systems and connected di-
agnostic soil properties and horizons);

• Soil texture-class systems;
• Soil color classification systems e.g. Munsell color codes;
• Soil drainage classes (hydrological classifications); and
• Soil diagnostic horizons.

Consider for example the following soil texture data:
library(soiltexture)

tex <- data.frame(
CLAY = c(05,60,15,05,25,05,25,45,65,75,13,47),
SILT = c(05,08,15,25,55,85,65,45,15,15,17,43),
SAND = c(90,32,70,70,20,10,10,10,20,10,70,10)

)

TT.plot(class.sys = "USDA.TT", tri.data = tex, main = "",
cex.axis=.7, cex.lab=.7)

The way soil texture data is displayed and texture classes (SaLo, Lo, Sa, etc.) used
in a texture triangle is specific to soil science. The way this data is formatted and
presented can be, likewise, specific to soil science only.

Most of the soil data is in fact spatial. Spatial implies that spatial (and temporal)
reference is attached to each measured/estimated value, i.e. it is location specific.
Spatio-temporal references typically include for example:

• Geographic location in local or geographic coordinates (ideally longitude and
latitude in the WGS84 coordinate system);

• Depth interval expressed in cm from land surface (upper and lower depth);
• Support size or referent soil volume (or voxel) i.e. the horizontal sampling

area multiplied by the thickness of the sampling block;
• Temporal reference i.e. begin and end date/time of the period of measure-

ments/estimations.

Spatial data formats are used to represent spatial objects. This can be (Bivand
et al., 2013; Neteler and Mitasova, 2013):
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Figure 10.1: Soil texture triangle plot as an example of soil science specific data
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Figure 10.2: Some frequently required soil variables (sorted by number of studies)
based on the study by Keller et al. (2014). This list is probably country/project
specific but illustrates the differences considering the interest in soil data

• Points (2D or 3D): Used to represent sampling locations, soil horizons, soil
profiles, etc.

• Lines (2D): Used to represent soil transects, streams, administrative bound-
aries, etc.

• Polygons (2D): Used to represent soil mapping units and/or geomorpholog-
ical units, landforms, administrative areas, farms, plot trials, etc.

• Grids or rasters (2D or 2.5D): Used to represent soil spatial predictions
(spatially complete) of soil properties and classes, etc.

• 3D grids or Voxels: Used to represent soil spatial predictions (spatially
complete) of soil properties in 3D.

It is also important to be able to distinguish between sampled or predicted soil
data:

• Sampled soil Data: Soil samples (usually points or transects) are spatially
incomplete. They are used to generate spatial predictions.

• Predicted soil data: Spatial predictions of soil variables (soil maps) are
spatially complete. They are used for decision making and further modeling,
i.e. they are used to construct a Soil Information System (SIS).

A collection of spatially exhaustive soil grids of various soil properties (physical
and chemical soil properties, soil water, soil classification, etc.) make a SIS. SIS
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are often complemented with soil sample data and serve both data formats. A SIS
should preferably be a database (DB), so that users can access and query data
using some standard DB languages (e.g. SQL). Steps to export soil data into a DB
format are explained in later Sections.

10.1.2 General GIS data formats: vector, raster, table

All soil data we produce through soil mapping can be in principle distributed using
one of the two basic GIS formats of data:

• Vector format: This format is often more suitable for exporting point, line,
and polygon (areal) data.

• Raster or gridded format: This format is often more suitable for export-
ing spatial predictions of soil variables.

Data in vector format can be converted to raster (see e.g. rasterize() function
in the raster R package ) and vice versa, raster data can be converted to vector
formats. For example, rasters can be converted to polygons (see e.g. rast2vect()
function in the plotKML R package ). If the conversion is done carefully and
if all the relations between scale and pixel size have been considered (see Hengl,
2006, for more details), then information loss due to conversion from raster to
vector and vice versa should be minimal.

Both vector and raster GIS data can also be converted to tabular data formats.
By converting a GIS layer to a table, spatial geometry and spatial relations will
be stripped off, so that only limited spatial analysis operations can be applied. To
convert raster layers to tabular data, consider using the SpatialPixelsDataFrame
class in the sp package and/or the RasterLayer class from the raster package in
combination with the rgdal package (Bivand et al., 2013).
library(rgdal)
library(plotKML)

?readGDAL
spnad83 <- readGDAL(system.file("pictures/erdas_spnad83.tif",

package = "rgdal")[1])
spnad83.tbl <- as.data.frame(spnad83)
str(spnad83.tbl)

In this example, as.data.frame() is a function converting a raster object to a
table. Note that the output table now contains coordinates for each cell (center of
the grid node), which is in fact memory inefficient as coordinates are provided for
each row in the table.

Likewise, to convert a vector layer to tabular formats one can use the Simple Fea-
tures (SF) functionality of the sf package . The SF standard is widely implemented
in spatial databases (PostGIS, ESRI ArcGIS) and forms the vector data basis for li-
braries such as GDAL and web standards such as GeoJSON (http://geojson.org/).
To convert for example spatial polygons layer to a tabular format we would use:

http://geojson.org/
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library(sf)
library(plotKML)

data(eberg_zones)
class(eberg_zones)
eberg_zones.tbl <- as(eberg_zones, "sf")
str(eberg_zones.tbl)

Note that using spatial layers in simple tabular formats can be cumbersome be-
cause many spatial relationships and properties are likely lost (although these can
be assigned reversibly). In addition, the size of tabular objects is much bigger
than if we use data in the original GIS data formats, especially if those formats
support compression. On the other hand, having data in tabular format can be
often the only way to exchange the data from spatial to non-spatial databases
or from software without any data communication bridge. Also, tabular data is
human-readable which means that it can be opened in text editors, spreadsheet
programs or similar.

10.1.3 Recommended GIS data exchange formats

As a general recommendation producers of soil data should primarily look at using
the following data formats for exchanging soil data (points, polygons, and rasters):

• GPKG: An open format (*.gpkg file) for geospatial information. Platform-
independent, portable, self-describing, compact format for transferring
geospatial information.

• GeoTIFF (for rasters): A *.tiff or *.tif (image) file that allows em-
bedding spatial reference information, metadata and color legends. It also
supports internal compression algorithms and hierarchical indexing.

Both formats can be read easily in R or similar data processing software. Vectors
are also commonly exported and shared in ESRI shapefile format (as *.shp file).
The advantage of GPKG format versus somewhat more common ESRI shapefile
format is that *.gpkg files are basically a portable database (SQLite container)
so that the user does not have to import the whole data into a program but also
fetch parts of data by using SQL queries and it can handle vector and raster data
in it. The following example demonstrates how to create a *.gpkg file and how to
query it:
library(RSQLite)

data(eberg)
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
writeOGR(eberg, "eberg.gpkg", "eberg", "GPKG")

con <- dbConnect(RSQLite::SQLite(), dbname = "eberg.gpkg")
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df <- dbGetQuery(con, 'select "soiltype" from eberg')

summary(as.factor(df$soiltype))

dbGetQuery(con,
'select * from gpkg_spatial_ref_sys')[3,"description"]

Note that the RSQLite package is a generic package for connecting to SQLite
DBs. This means that *.gpkg files can be accessed and updated in its native
storage format without intermediate format translations. Just putting a *.gpkg
file on a server with read and execute access allows users to connect and fetch
data.

Alternatively, it is also a good idea to store point data in a non-spatial format such
as simple tables. For example, in comma-separated file format (CSV) as a *.csv
file. A fast way to publish and share tabular data is to use Google Fusion Tables™.
Google Fusion Tables™ have an API that allows accessing and using tabular data
through various programming platforms. The limitation of using Google Fusion
tables™ is, however, data size (currently about 1 GB per user) and similar data
volume limits, so this platform should be only used as an intermediate solution for
smaller data sets.

GeoTIFF format is highly recommended for sharing raster data for the following
reasons:

• It is GDAL’s default data format and much functionality for subsetting,
reprojecting, reading and writing GeoTIFFs already exists (see GDAL utils).

• It supports internal compression via creation options (e.g. COM-
PRESS=DEFLATE).

• Extensive overlay, subset, index, translate functionality is available via
GDAL and other open source software. Basically, GeoTIFF functions as a
raster DB.

Consider for, example the gdallocationinfo() function which allows spatial
queries following some indexing system such as row and column number:
spnad83.file = system.file("pictures/erdas_spnad83.tif",

package = "rgdal")[1]
system(paste0('gdallocationinfo ', spnad83.file, ' 100 100'))

Such type of overlay operations, thanks to GDAL (Warmerdam, 2008), are ex-
tremely fast and efficient. Likewise, gdalwarp() function can be used subset
rasters based on spatial extent or grid index. Rasters can be imported to GeoServer
and shared through Web Coverage Service (see Section 10.2) or similar likewise
function as a spatial raster DB.

As a general recommendation, and to avoid large file sizes, we recommend, how-
ever, that you always use integers inside GeoTIFF formats because floating point
formats can lead to up to more than four times larger sizes (without any gains in
accuracy). This might mean you have to multiply the values of the soil property
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Figure 10.3: Displaying point dataset eberg (used in the previous example) in
Google Fusion Tables.
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of interest by 10 or 100, in order not to lose accuracy (e.g. multiply pH values by
10 before exporting your raster in GeoTIFF format).

10.2 Web services: serving soil data using web tech-
nology

10.2.1 Third-party services

If you are a data producer but with limited technical capacity and/or financial
resources, then publishing geo-data through a third-party service could be very
well that the easiest and most professional solution for you. Some commonly used
commercial web services to share geo-data are:

• Google MyMaps (https://www.google.com/mymaps)
• ArcGIS Online (https://www.arcgis.com/home/)
• MapBox (https://www.mapbox.com/)
• CARTO (https://carto.com/)

All these have limitations and primarily suitable for sharing vector type data only.
Their free functionality is very limited so before you start uploading any larger
data sets, please check the size limits based on your account. Upgrading your
license will allow you to increase storage and functionality so that even with few
hundred dollars per year you could have a robust solution for sharing your data
with thousands of users.

Soil data producers can also contact ISRIC, as World Data Centre for Soils, to
request support for hosting and/or distributing their soil data in case they lack
the technical capacity to do so themselves while adhering to the data sharing
agreement and license set by the data producer.

10.2.2 GeoServer (web serving and web processing)

GeoServer (http://geoserver.org/) is an open source software solution for serving
raster or vector data. It includes the majority of the Open Geospatial Consortium
(OGC) service standards: the Web Map Service, Web Coverage Service and Web
Processing Service (Youngblood, 2013). Installation and maintenance of GeoServer
is however not trivial and requires specialized technical staff. Web services can also
entail significant costs depending on the amount of web-processing and web-traffic.
For every medium to large size organization, it is probably a better idea to use
the out-of-box solution for GeoServer which is the GeoNode (http://geonode.org/).
GeoNode also includes a web-interface and user-management system so that new
layers can be uploaded to GeoServer through a web-form type interface.

The very important functionality of GeoServer are the OGC standard services
such as the Web Coverage Service (WCS) and the Web Feature Service (WFS).
WCS means that not only data views are available to users, but WCS can also do

https://www.google.com/mymaps
https://www.arcgis.com/home/
https://www.mapbox.com/
https://carto.com/
http://geoserver.org/
http://geonode.org/
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Figure 10.4: SoilGrids (Hengl et al. 2017) WCS opened in QGIS

data translation, aggregation or resampling, overlay etc. Consider for example the
SoilGrids WCS (which can also be opened in QGIS or similar software supporting
WCS). Users can direct this WCS and request only a subset of data for some
area, aggregated to some preferred resolution/pixel size by using gdal_translate or
similar. This means that, in few steps, users can download a subset of data on
GeoServer in a preferred format without a need to download the whole dataset.

10.2.3 Visualizing data using Leaflet and/or Google Earth

A quick way to visualize produced soil maps and then share them to users without
GIS capacities is to use leaflet package in R. Leaflet is basically a stand-alone web-
page that contains all information (including some popular Web Mapping Services)
so that users can visually explore patterns without having to install and use any
desktop GIS. Consider the following example:
library(leaflet)
library(htmlwidgets)
library(GSIF)
library(raster)

demo(meuse, echo=FALSE)
omm <- autopredict(meuse["om"], meuse.grid[c("dist","soil","ffreq")],

method="ranger", auto.plot=FALSE, rvgm=NULL)
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Figure 10.5: Sampled locations and produced predictions visualized using Leaflet
package

meuse.ll <- reproject(meuse["om"])

# Reprojecting to +proj=longlat +datum=WGS84
m = leaflet() %>% addTiles() %>%

addRasterImage(raster(omm$predicted["om"]),
colors = SAGA_pal[[1]][4:20]) %>%
addCircles(lng = meuse.ll@coords[,1],
lat = meuse.ll@coords[,2],
color = c('black'), radius=meuse.ll$om)

saveWidget(m, file="organicmater_predicted.html")

Note that the whole data set including styling and legends is basically available
through a single *.html file (organicmater_predicted.html). Anyone opening
that HTML format file in their browsers will get an interactive web-map that
contains both samples and spatial predictions.

An alternative to using Leaflet is to put all data, including documents and mul-
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timedia, about your project in a Keyhole Markup Language (KML) format. As
*.kml file the data is available for viewing in Google Earth (Hengl et al., 2015b).
KML is very rich in what it can incorporate: textual data, photographs, docu-
ments, animations, videos, etc. In fact, probably whole projects can be put into a
single *.kml file so that the users only need to open it in Google Earth and then
explore interactively. Note that *.kml files with ground overlays will be gener-
ated by GeoServer by default, although further customization is up to the data
producer.

10.3 Preparing soil data for distribution

10.3.1 Metadata

One important thing to consider prior to data distribution is construction of meta-
data (explanation of data, how was it produced and what are the exact technical
specifications). There are several metadata standards that can be used to prepare
metadata. More recently, complete and consistent metadata is a requirement by
many government agencies and organizations. There are now several public meta-
data validators that run all possible consistency and completeness checks before
the metadata (and data) can be accepted.

Typical metadata should (at least) contain:

• Detailed description of the variables available in the data;
• Data license and terms of use (URL);
• Explanation of measurement methods and units used;
• Mention of the reference support size including referent depth intervals to

which the soil data refers to (e.g. 0 cm – 30 cm depth interval);
• Mention of the referent time period in which the calibration data was col-

lected;
• Link to literature (report, book or scientific article) where the data produc-

tion is explained in detail. Using a published and peer-reviewed scientific ar-
ticle as the main reference for data is a good practice since it also shows that
the data production process has been evaluated by independent researchers;
and

• Project homepage, i.e. URL containing more information and especially up-
to-date contacts where users can find original data producers and request
support.

Metadata (including color legends) can be also directly embedded into the Geo-
TIFF *.tif file by using the gdal_edit command available in GDAL. The following
example shows how to add a simple explanation of the data and a URL to find
more info about the GeoTIFF in R:
data("eberg_grid")

gridded(eberg_grid) = ~ x+y
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proj4string(eberg_grid) <- CRS("+init=epsg:31467")
writeGDAL(eberg_grid["DEMSRT6"], "eberg_DEM.tif",

options="COMPRESS=DEFLATE")
?eberg

system(paste0('gdal_edit.py
-mo \"DESCRIPTION=elevation values from the SRTM DEM\"
-mo \"DOWNLOAD_URL=http://geomorphometry.org/content/ebergotzen\"
eberg_DEM.tif'))
system('gdalinfo eberg_DEM.tif')

Similarly, all necessary metadata can be added into GeoTIFF so that future users
have all information at one place, i.e. inside the data file.

10.3.2 Exporting data: final tips

As we have shown previously, if you export soil data into either GPKG and/or
GeoTIFF format, these data can be accessed using DB operations. In fact, by
exporting the data to GPKG and GeoTIFFs, you have created a soil spatial DB or
a soil information system. This does not necessarily mean that its targeted users
will be able to find all information without problems and/or questions. How usable
and how popular a data set is, is a function of many aspects, not only data quality.
You could create maps of perfect quality but have no users at all. |The following
instructions should be definitively considered, as a way to boost the usability of
your data are.

1. Make a landing page for your data that includes:

a. Simple access/download instructions;
b. Screenshots of your data in action (people prefer visual explanations with

examples);
c. Links to key documents explaining how the data was produced; and
d. Workflows explaining how to request support (who to contact and how).

2. Make data accessible from multiple systems, e.g, both via WCS, FTP and
through a mirror site. This might be inefficient considering there will be
multiple copies of the same data, but sometimes it quadruples data usage.

3. Explain the data formats used to share data, and point to tutorials that
explain how to access and use data to both beginners and advanced users.

4. Consider installing and using a version control system (or simply use GitHub
or similar repository) so that the users can track back versions of data.

5. Consider closely following principles of reproducible research (all processing
steps, inputs, and outputs accessible). This tutorial comes with R code that
is available via GitHub so that everyone should be able to reproduce the
examples shown in the text.
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10.4 Export formats

The produced results need to be exported in formats that can be easily read by
a variety of GIS software. Two widely used formats for raster data are GeoTIFF
and KML.

• GeoTIFF: A public domain metadata standard which allows georeferencing
information to be embedded within a *.tiff file. The potential additional
information includes map projection, coordinate systems, ellipsoids, datums,
and everything else necessary to establish the exact spatial reference for the
file.

• KML: Keyhole Markup Language is an XML notation for expressing geo-
graphic annotation and visualization within internet-based, two-dimensional
maps and three-dimensional Earth browsers. KML became an international
standard of the OGC in 2008.

Raster data in GeoTIFF format need a defined geographic projection. Each coun-
try has its own national system (or systems). In order to construct a mosaic of
national datasets, a common projection has to be defined and national data need to
be re-projected in the common projection. Data projections can be managed using
open source tools such as GIS software, GDAL tools suite (http://www.gdal.org/)
and various packages of the R software (https://www.r-project.org/). Projections
can be defined according to different standards. A common way is the EPSG
database. EPSG Geodetic Parameter Dataset is a collection of definitions of co-
ordinate reference systems and coordinate transformations which may be global,
regional, national or local application. A numeric code is assigned to each of the
most common projections, making easier to refer to them and to switch between
them. One of the most common global projections is WGS84 (EPSG 4336), used
for maps and by the GPS satellite navigation system.

Each file should be accompanied by a set list of metadata. Geospatial metadata
is a type of metadata that is applicable to objects that have an explicit or implicit
geographic extent. While using GeoTIFF files it is possible to define a metadata
field in which information can be recorded. Metadata can be edited with most GIS
software and directly with GDAL tools (http://www.gdal.org/gdal_edit.html).

Tips for GDAL: gdalwarp -t_srs ‘xxx’ input.tif output.tif
where t_srs is the target spatial reference set, i.e. the coordi-
nate systems that can be passed are anything supported by the
GRSpatialReference.SetFromUserInput() call, which includes
EPSG PCS and GCSes (i.e. EPSG:4326), PROJ.4 declarations or
the name of a *.prj file containing well known text. For further
information see the link: http://www.gdal.org/gdalwarp.html.

http://www.gdal.org/
https://www.r-project.org/
http://www.gdal.org/gdal_edit.html
http://www.gdal.org/gdalwarp.html
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Technical overview and the
checklist

V.L. Mulder

11.1 Point dataset

• Did you remove non-georeferenced observations from your dataset?
• Did you check for outliers or any unusual values for the measured SOC, pH,

BD, stoniness/gravel content, and min/max definitions of your soil horizons?
• Is there spatial correlation in your SOC values, as observed from the vari-

ogram?
• Did you check the probability distribution and applied a transformation in

case the samples were not normally distributed?
• Be aware whether you are going to predict SOC or SOM values!

11.2 Covariates

• Did you choose and apply the proper projection, one that is suitable for your
country and is suitable for spatial statistics?

• Do all the covariates have a resolution of 1 km and did you use either nearest
neighbor resampling for the categorical variables and IDW/cubic spline for
continuous data?

• Did you correctly set the NoData values as not available data, i.e. not a
standard assigned values such as -9999, 256, etc. or NAvalue.

• Did you check for outliers or any unusual values, especially in your DEM
layer(s)?

167
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• Did you set any categorical dataset as factor instead of being numeric or
integer?

11.3 Statistical inference

• Did you choose a proper model which is capable to model the variability
in your SOC point data best (multiple regression or data mining with or
without interpolation of the residuals using kriging)?

• Did you make sure that the random forest did not over fit your data?
• Did you apply a validation scheme, e.g. k-fold cross-validation or an indepen-

dent validation if so report the R2 and RMSE as accuracy measures?
• Do the model summaries make sense, i.e. did most important predictor vari-

ables and model fit?
• Is there spatial structure left in your residuals, if so make sure you interpolate

the model residuals using kriging?

11.4 Spatial interpolation

• Did you obtain an exhaustive map or are there still gaps? If so, check if your
raster has the correct factor values, if the model was calibrated on fewer
classes than the extrapolation may not work for those pixels?

• Do the patterns make sense or is there a covariate that causes an unrealistic
pattern, based on expert judgment. If so, consider removing this covariate?

• In case you did kriging, do not forget to look at the kriging variance. This
is a very important indicator of the accuracy. Otherwise, consider modeling
the 90% confidence intervals of the predictions!

• Do not forget to back-transform your predicted values!

11.5 Calculation of stocks

• If you might want to calculate stocks per land use type, management type
or by municipality, make sure you give an informed number, i.e. an estimate
plus an estimate of the uncertainty!

11.6 Evaluation of output and quality assessment

• Report the model calibration and validation statistics!
• Report some map quality measures!
• Evaluate to which extent the model and map is either underestimating or

overestimating SOC/SOM!
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• Describe the spatial patterns and relate them to the landscape characteris-
tics!
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Compendium of the code
examples

G.F. Olmedo

This technical manual gives relatively simple step-by-step guidance on DSM. Guid-
ance is mainly on mapping and modelling of soil organic carbon, but also contains
generic sections on soil grid development that can be used to map various soil
properties. The document follows the typical DSM work-flow and provides users
a complete soil property mapping solution from the ground up (see Fig. 1.1).

The authors have demonstrated the methods in the previous Chapters using a
dataset extracted from the Macedonian Soil Information System (MASIS). In this
Chapter we present a compendium of the technical steps presented in the practical
chapters.

With the help of these examples, the user should be able to produce a soil property
map starting from ground data to the validation of the map. There are also op-
tional work-flow steps depending on the nature of the input data. The framework
presented in this manual is aiming to help users preparing a soil property predic-
tion map includes soil data preparation, preparation of environmental covariates,
overlaying soil data and covariates, fitting a model for the spatial interpolation
and validation:

1. Soil data preparation

• Option A: Data preparation - Soil profiles (Code 12.1)
• Option B: Data preparation - Topsoil or auger samples (Code 12.2)
• [optional] Data preparation - Merging topsoil or auger samples and soil pro-

files (Code 12.3)
• [optional] Split the soil data in test and validations datasets (Code 12.4)

2. Covariates preparation

• [optional] Rasterizing a vector layer in R (Code 12.5)

171
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• Overlay covariates and soil points data (Code 12.6)

3. Spatial interpolation model

• Option A: Fitting a regression-kriging model to predict the SOC stock
(Code 12.7)

• Option B: Fitting a random forest model to predict the SOC stock (Code
12.9)

• Option C: Fitting a support vector machines model to predict the SOC
stock (Code 12.11)

4. Validation

• Quality measures for quantitative data (Code 12.12)
• [optional] Graphical quality measures for quantitative data (Code 12.13)
• [optional] Cross-validation for regression-kriging models (Code 12.8)
• [optional] Validation of random forest using quantile regression trees (Code

12.10)

5. Model evaluation

• Model evaluation (Code 12.14)
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12.1 Data preparation for soil profiles

The extended and discussed version of the following code is presented in Chapter
4, by G.F. Olmedo & R. Baritz.
dat <- read.csv(file = "data/horizons.csv")

# Explore the data
str(dat)
summary(dat)

dat_sites <- read.csv(file = "data/site-level.csv")

# Explore the data
str(dat_sites)

# summary of column CRF (Coarse Fragments) in the example data base
summary(dat$CRF)

# Convert NA's to 0
dat$CRF[is.na(dat$CRF)] <- 0

hist(dat$CRF)

# Creating a function in R to estimate BLD using the SOC
# SOC is the soil organic carbon content in \%
estimateBD <- function(SOC, method="Saini1996"){

OM <- SOC * 1.724
if(method=="Saini1996"){BD <- 1.62 - 0.06 * OM}
if(method=="Drew1973"){BD <- 1 / (0.6268 + 0.0361 * OM)}
if(method=="Jeffrey1979"){BD <- 1.482 - 0.6786 * (log(OM))}
if(method=="Grigal1989"){BD <- 0.669 + 0.941 * exp(1)^(-0.06 * OM)}
if(method=="Adams1973"){BD <- 100 / (OM /0.244 + (100 - OM)/2.65)}
if(method=="Honeyset_Ratkowsky1989"){BD <- 1/(0.564 + 0.0556 * OM)}
return(BD)

}

# summary of BLD (bulk density) in the example data base
summary(dat$BLD)

# See the summary of values produced using the pedo-transfer
# function with one of the proposed methods.
summary(estimateBD(dat$SOC[is.na(dat$BLD)], m

ethod="Honeyset_Ratkowsky1989"))

# Fill NA's using the pedotransfer function:
dat$BLD[is.na(dat$BLD)] <- estimateBD(dat$SOC[is.na(dat$BLD)],



Chapter 12. Compendium of the code examples 174

method="Grigal1989")

# explore the results
boxplot(dat$BLD)

# Load aqp package
library(aqp)

# Promote to SoilProfileCollection
# The SoilProfileCollection is a object class in R designed to
# handle soil profiles
depths(dat) <- ProfID ~ top + bottom

# Merge the soil horizons information with the site-level
# information from dat_sites
site(dat) <- dat_sites

# Set spatial coordinates
coordinates(dat) <- ~ X + Y

# A summary of our SoilProfileCollection
dat

library(GSIF)

## Estimate 0-30 standard horizon usin mass preserving splines
try(SOC <- mpspline(dat, 'SOC', d = t(c(0,30))))
try(BLD <- mpspline(dat, 'BLD', d = t(c(0,30))))
try(CRFVOL <- mpspline(dat, 'CRF', d = t(c(0,30))))

## Prepare final data frame
dat <- data.frame(id = dat@site$ProfID,

Y = dat@sp@coords[,2],
X = dat@sp@coords[,1],
SOC = SOC$var.std[,1],
BLD = BLD$var.std[,1],
CRFVOL = CRFVOL$var.std[,1])

dat <- dat[complete.cases(dat),]

## Take a look to the results
head(dat)

# Estimate Organic Carbon Stock
# SOC must be in g/kg
# BLD in kg/m3
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# CRF in percentage
OCSKGM <- OCSKGM(ORCDRC = dat$SOC, BLD = dat$BLD*1000,

CRFVOL = dat$CRFVOL, HSIZE = 30)

dat$OCSKGM <- OCSKGM
dat$meaERROR <- attr(OCSKGM,"measurementError")
dat <- dat[dat$OCSKGM>0,]
summary(dat)

## We can save our processed data as a table
write.csv(dat, "data/dataproc.csv")
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12.2 Data preparation for topsoil or auger samples

The extended and discussed version of the following code is presented in Chapter
4, by G.F. Olmedo & R. Baritz.
dat <- read.csv(file = "data/auger.csv")

# Explore the data
str(dat)
summary(dat)

# Creating a function in R to estimate BLD using the SOC
# SOC is the soil organic carbon content in \%
estimateBD <- function(SOC, method="Saini1996"){

OM <- SOC * 1.724
if(method=="Saini1996"){BD <- 1.62 - 0.06 * OM}
if(method=="Drew1973"){BD <- 1 / (0.6268 + 0.0361 * OM)}
if(method=="Jeffrey1979"){BD <- 1.482 - 0.6786 * (log(OM))}
if(method=="Grigal1989"){BD <- 0.669 + 0.941 * exp(1)^(-0.06 * OM)}
if(method=="Adams1973"){BD <- 100 / (OM /0.244 + (100 - OM)/2.65)}
if(method=="Honeyset_Ratkowsky1989"){BD <- 1/(0.564 + 0.0556 * OM)}
return(BD)

}

# See the summary of values produced using the pedo-transfer
# function with one of the proposed methods.
summary(estimateBD(dat$SOC, method="Honeyset_Ratkowsky1989"))

# Estimate BLD using the pedotransfer function:
dat$BLD <- estimateBD(dat$SOC, method="Grigal1989")

# explore the results
boxplot(dat$BLD)

# Remove points with NA's values
dat <- dat[complete.cases(dat),]

## Take a look to the results
head(dat)

library(GSIF)
# Estimate Organic Carbon Stock
# SOC must be in g/kg
# BLD in kg/m3
# CRF in percentage
OCSKGM <- OCSKGM(ORCDRC = dat$SOC, BLD = dat$BLD*1000, CRFVOL = 0,

HSIZE = 30)
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dat$OCSKGM <- OCSKGM
dat$meaERROR <- attr(OCSKGM,"measurementError")
dat <- dat[dat$OCSKGM>0,]
summary(dat)

## We can save our processed data as a table
write.csv(dat, "data/dataproc.csv")
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12.3 Merging topsoil or auger samples and soil pro-
files databases

profiles <- read.csv("data/dataproc_profiles.csv")
topsoils <- read.csv("data/dataproc.csv")

# column names could be different, but the units and order has
# to be the same! Because we are going to add the rows from 1
# table to the other table.

topsoils <- topsoils[, c("ID", "X", "Y", "SOC", "BLD",
"OCSKGM", "meaERROR")]

profiles <- profiles[, c("id", "X", "Y", "SOC", "BLD",
"OCSKGM", "meaERROR")]

names(profiles) <- names(topsoils)
dat <- rbind(topsoils, profiles)

write.csv(dat, "data/dataproc_all.csv", row.names = F)
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12.4 Data-splitting

The extended and discussed version of the following code is presented in Chapter
7, by B. Kempen, D.J. Brus & G.B.M. Heuvelink, with code contributions from
G.F. Olmedo.
library(caret)

dat <- read.csv("data/dataproc.csv")

train.ind <- createDataPartition(1:nrow(dat), p = .75, list = FALSE)
train <- dat[ train.ind,]
test <- dat[-train.ind,]

plot(density (log(train$OCSKGM)), col='red',
main='Statistical distribution of train and test datasets')

lines(density(log(test$OCSKGM)), col='blue')
legend('topright', legend=c("train", "test"),

col=c("red", "blue"), lty=1, cex=1.5)

write.csv(train, file="data/dat_train.csv", row.names = FALSE)
write.csv(test, file="data/dat_test.csv", row.names = FALSE)
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12.5 Rasterizing a vector layer in R

The extended and discussed version of the following code is presented in Chapter
5, by R. Baritz & Y. Yigini.
library (raster)
soilmap <- shapefile("MK_soilmap_simple.shp")
DEM <- raster("covs/DEMENV5.tif")

# the "Symbol" attribute from the vector layer will be used for the
# rasterization process. It has to be a factor
soilmap@data$Symbol <- as.factor(soilmap@data$Symbol)

#save the levels names in a character vector
Symbol.levels <- levels(soilmap$Symbol)

# The rasterization process needs a layer with the target grd
# system: spatial extent and cell size.
soilmap.r <- rasterize(x = soilmap, y = DEM, field = "Symbol")
# The DEM raster layer could be used for this.

plot(soilmap.r, col=rainbow(21))
legend("bottomright",legend = Symbol.levels, fill=rainbow(21),

cex=0.5)
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12.6 Overlay covariates and soil points data

The extended and discussed version of the following code is presented in Chapter
5, by R. Baritz & Y. Yigini.
# Load the processed data. This table was prepared in the previous
# chapter.
dat <- read.csv("data/dataproc.csv")

files <- list.files(path = "covs", pattern = "tif$",
full.names = TRUE)

covs <- stack(files)

#covs <- stack(covs, soilmap.r)

# correct the name for layer 14
#names(covs)[14] <- "soilmap"

library (raster)

#mask the covariates with the country mask from the data repository
mask <- raster("data/mask.tif")

covs <- mask(x = covs, mask = mask)

# export all the covariates
save(covs, file = "covariates.RData")

plot(covs)

#upgrade points data frame to SpatialPointsDataFrame
coordinates(dat) <- ~ X + Y

# extract values from covariates to the soil points
dat <- extract(x = covs, y = dat, sp = TRUE)

# LCEE10 and soilmap are categorical variables
dat@data$LCEE10 <- as.factor(dat@data$LCEE10)

#dat@data$soilmap <- as.factor(dat@data$soilmap)
#levels(soilmap) <- Symbol.levels

summary(dat@data)

dat <- as.data.frame(dat)
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# The points with NA values has to be removed
dat <- dat[complete.cases(dat),]

# export as a csv table
write.csv(dat, "data/MKD_RegMatrix.csv", row.names = FALSE)
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12.7 Fitting a regression-kriging model to predict the
SOC stock

The extended and discussed version of the following code is presented in Section
6.2, by G.F. Olmedo & Y. Yigini.
# load data
dat <- read.csv("data/MKD_RegMatrix.csv")

# explore the data structure
str(dat)

library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

library(raster)

load(file = "covariates.RData")

names(covs)

# print the names of the 14 layers:
names(covs)

datdf <- dat@data

datdf <- datdf[, c("OCSKGM", names(covs))]

# Fit a multiple linear regression model between the log transformed
# values of OCS and the top 20 covariates
model.MLR <- lm(log(OCSKGM) ~ ., data = datdf)

# stepwise variable selection
model.MLR.step <- step(model.MLR, direction="both")

# summary and anova of the new model using stepwise covariates
# selection
summary(model.MLR.step)
anova(model.MLR.step)
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# graphical diagnosis of the regression analysis
par(mfrow=c(2,2))
plot(model.MLR.step)
par(mfrow=c(1,1))

# collinearity test using variance inflation factors
library(car)
vif(model.MLR.step)

# problematic covariates should have sqrt(VIF) > 2
sqrt(vif(model.MLR.step))

# Removing B07CHE3 from the stepwise model:
model.MLR.step <- update(model.MLR.step, . ~ . - DEMSRE3a - PX3WCL3a)

# Test the vif again:
sqrt(vif(model.MLR.step))

## summary of the new model using stepwise covariates selection
summary(model.MLR.step)

# outlier test using the Bonferroni test
outlierTest(model.MLR.step)

# Project point data.
dat <- spTransform(dat, CRS("+init=epsg:32648"))

# project covariates to VN-2000 UTM 48N
covs <- projectRaster(covs, crs = CRS("+init=epsg:32648"),

method='ngb')

# Promote covariates to spatial grid dataframe. Takes some time and
# a lot of memory!
covs.sp <- as(covs, "SpatialGridDataFrame")

# RK model
library(automap)

# Run regression kriging prediction. This step can take hours...!
OCS.krige <- autoKrige(formula =

as.formula(model.MLR.step$call$formula),
input_data = dat,
new_data = covs.sp,
verbose = TRUE,
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block = c(1000, 1000))

OCS.krige

# Convert prediction and standard deviation to rasters
# And back-tansform the vlaues
RKprediction <- exp(raster(OCS.krige$krige_output[1]))
RKpredsd <- exp(raster(OCS.krige$krige_output[3]))

plot(RKprediction)

## Save results as tif files
writeRaster(RKprediction, filename = "results/MKD_OCSKGM_RK.tif",

overwrite = TRUE)

writeRaster(RKpredsd, filename = "results/MKD_OCSKGM_RKpredsd.tif",
overwrite = TRUE)

# save the model
saveRDS(model.MLR.step, file="results/RKmodel.Rds")

12.8 Cross-validation of regression-kriging models

The extended and discussed version of the following code is presented in Section
6.2, by G.F. Olmedo & Y. Yigini.
# autoKrige.cv() does not removes the duplicated points
# we have to do it manually before running the cross-validation
dat = dat[which(!duplicated(dat@coords)), ]

OCS.krige.cv <- autoKrige.cv(formula =
as.formula(model.MLR.step$call$formula),

input_data = dat, nfold = 10)

summary(OCS.krige.cv)
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12.9 Fitting a random forest model to predict the
SOC stock

The extended and discussed version of the following code is presented in Section
6.3, by M. Guevara, C. Thine, G.F. Olmedo & R.R. Vargas.
dat <- read.csv("data/MKD_RegMatrix.csv")

dat$LCEE10 <- as.factor(dat$LCEE10)
#dat$soilmap <- as.factor(dat$soilmap)

# explore the data structure
str(dat)

library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

load(file = "covariates.RData")

names(covs)

# For its use on R we need to define a model formula

fm = as.formula(paste("log(OCSKGM) ~", paste0(names(covs[[-14]]),
collapse = "+")))

library(randomForest)
library(caret)

# Default 10-fold cross-validation
ctrl <- trainControl(method = "cv", savePred=T)
# Search for the best mtry parameter
rfmodel <- train(fm, data=dat@data, method = "rf", trControl = ctrl,

importance=TRUE)
# This is a very useful function to compare and test different
# prediction algorithms type names(getModelInfo()) to see all the
# possibilitites implemented on this function
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# Variable importance plot, compare with the correlation matrix
# Select the best prediction factors and repeat
varImpPlot(rfmodel[11][[1]])

# Check if the error stabilizes
plot(rfmodel[11][[1]])

#Make a prediction across all Macedonia
#Note that the units are still in log
pred <- predict(covs, rfmodel)

# Back transform predictions log transformed
pred <- exp(pred)

# Save the result as a tiff file
writeRaster(pred, filename = "results/MKD_OCSKGM_rf.tif",

overwrite=TRUE)

plot(pred)
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12.10 Using quantile regression forest to estimate un-
certainty

The extended and discussed version of the following code is presented in Section
6.3, by M. Guevara, C. Thine, G.F. Olmedo & R.R. Vargas.
library(Metrics)

#Generate an empty dataframe
validation <- data.frame(rmse=numeric(), r2=numeric())
#Sensitivity to the dataset
#Start a loop with 10 model realizations
for (i in 1:10){
# We will build 10 models using random samples of 25%
smp_size <- floor(0.25 * nrow(dat))
train_ind <- sample(seq_len(nrow(dat)), size = smp_size)
train <- dat[train_ind, ]
test <- dat[-train_ind, ]
modn <- train(fm, data=train@data, method = "rf", trControl = ctrl)
pred <- stack(pred, predict(covs, modn))
test$pred <- extract(pred[[i+1]], test)
# Store the results in a dataframe
validation[i, 1] <- rmse(log(test$OCSKGM), test$pred)
validation[i, 2] <- cor(log(test$OCSKGM), test$pred)^2

}

#The sensitivity map is the dispersion of all individual models
sensitivity <- calc(pred[[-1]], sd)

plot(sensitivity, col=rev(topo.colors(10)),
main='Sensitivity based on 10 realizations using 25% samples')

#Sensitivity of validation metrics
summary(validation)

# Plot of the map based on 75% of data and the sensitivity to data
# variations
prediction75 <- exp(pred[[1]])

plot(prediction75, main='OCSKGM prediction based on 75% of data',
col=rev(topo.colors(10)))

# Use quantile regression forest to estimate the full conditional
# distribution of OCSKGMlog, note that we are using the mtry
# parameter that was selected by the train funtion of the caret
# package, assuming that the 75% of data previously used well
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# resembles the statistical distribution of the entire data
# population. Otherwise repeat the train function with all available
#data (using the object dat that instead of train) to select mtry.

library(quantregForest)

model <- quantregForest(y=log(dat@data$OCSKGM), x=dat@data[,8:20], ntree=500,
keep.inbag=TRUE,
mtry = as.numeric(modn$bestTune))

library(snow)
# Estimate model uncertainty at the pixel level using parallel
# computing
beginCluster() #define number of cores to use
# Estimate model uncertainty
unc <- clusterR(covs, predict, args=list(model=model,what=sd))
# OCSKGMlog prediction based in all available data
mean <- clusterR(covs, predict,

args=list(model=model, what=mean))
# The total uncertainty is the sum of sensitivity and model
# uncertainty
unc <- unc + sensitivity
# Express the uncertainty in percent (divide by the mean)
Total_unc_Percent <- exp(unc)/exp(mean)
endCluster()

# Plot both maps (the predicted OCSKGM + its associated uncertainty)
plot(exp(mean), main='OCSKGM based in all data',

col=rev(topo.colors(10)))

plot(Total_unc_Percent, col=rev(heat.colors(100)), zlim=c(0, 5),
main='Total uncertainty')

#Save the resulting maps in separated *.tif files
writeRaster(exp(mean), file='rfOCSKGMprediction.tif',

overwrite=TRUE)
writeRaster(Total_unc_Percent, file='rfOCSKGMtotalUncertPercent.tif',

overwrite=TRUE)
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12.11 Fitting a support vector machines model to pre-
dict the SOC stock

The extended and discussed version of the following code is presented in Section
6.4, by G.F. Olmedo & M. Guevara.
# load data
dat <- read.csv("data/MKD_RegMatrix.csv")

dat$LCEE10 <- as.factor(dat$LCEE10)
# dat$soilmap <- as.factor(dat$soilmap)

# explore the data structure
str(dat)

library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

class(dat)

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

dat@proj4string

load(file = "covariates.RData")

names(covs)

# plot the names of the covariates
names(dat@data)

# variable selection using correlation analysis
selectedCovs <- cor(x = as.matrix(dat@data[,5]),

y = as.matrix(dat@data[,-c(1:7,13,21)]))

# print correlation results
selectedCovs

library(reshape)
x <- subset(melt(selectedCovs), value != 1 | value != NA)
x <- x[with(x, order(-abs(x$value))),]

idx <- as.character(x$X2[1:5])

dat2 <- dat[c('OCSKGM', idx)]
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names(dat2)

COV <- covs[[idx]]

# Selected covariates
names(COV)

# Categorical variables in svm models
dummyRaster <- function(rast){

rast <- as.factor(rast)
result <- list()
for(i in 1:length(levels(rast)[[1]][[1]])){
result[[i]] <- rast == levels(rast)[[1]][[1]][i]
names(result[[i]]) <- paste0(names(rast),

levels(rast)[[1]][[1]][i])
}
return(stack(result))

}

# convert soilmap from factor to dummy
# soilmap_dummy <- dummyRaster(covs$soilmap)

# convert LCEE10 from factor to dummy
LCEE10_dummy <- dummyRaster(covs$LCEE10)

# Stack the 5 COV layers with the 2 dummies
COV <- stack(COV, LCEE10_dummy)
# COV <- stack(COV, soilmap_dummy, LCEE10_dummy)

# print the final layer names
names(COV)

# convert soilmap column to dummy, the result is a matrix
# to have one column per category we had to add -1 to the formula
# dat_soilmap_dummy <- model.matrix(~soilmap -1, data = dat@data)
# convert the matrix to a data.frame
# dat_soilmap_dummy <- as.data.frame(dat_soilmap_dummy)

# convert LCEE10 column to dummy, the result is a matrix
# to have one column per category we had to add -1 to the formula
dat_LCEE10_dummy <- model.matrix(~LCEE10 -1, data = dat@data)
# convert the matrix to a data.frame
dat_LCEE10_dummy <- as.data.frame(dat_LCEE10_dummy)
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dat@data <- cbind(dat@data, dat_LCEE10_dummy)
# dat@data <- cbind(dat@data, dat_LCEE10_dummy, dat_soilmap_dummy)

names(dat@data)

# Fitting a svm model and parameter tuning
library(e1071)
library(caret)

# Test different values of epsilon and cost
tuneResult <- tune(svm, OCSKGM ~., data = dat@data[,c("OCSKGM",

names(COV))],
ranges = list(epsilon = seq(0.1,0.2,0.02),

cost = c(5,7,15,20)))

plot(tuneResult)

# Choose the model with the best combination of epsilon and cost
tunedModel <- tuneResult$best.model

print(tunedModel)

# Use the model to predict the SOC in the covariates space
OCSsvm <- predict(COV, tunedModel)

# Save the result
writeRaster(OCSsvm, filename = "results/MKD_OCSKGM_svm.tif",

overwrite=TRUE)

plot(OCSsvm)

# Variable importance in svm. Code by:
# stackoverflow.com/questions/34781495

w <- t(tunedModel$coefs) %*% tunedModel$SV # weight vectors
w <- apply(w, 2, function(v){sqrt(sum(v^2))}) # weight

w <- sort(w, decreasing = T)
print(w)
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12.12 Validation

The extended and discussed version of the following code is presented in Chapter
7, by B. Kempen, D.J. Brus & G.B.M. Heuvelink, with code contributions from
G.F. Olmedo.
dat <- read.csv("data/dat_test.csv")

library(sp)

# Promote to spatialPointsDataFrame
coordinates(dat) <- ~ X + Y

dat@proj4string <- CRS(projargs = "+init=epsg:4326")

library(raster)

OCSKGM_rf <- raster("results/MKD_OCSKGM_rf.tif")

dat <- extract(x = OCSKGM_rf, y = dat, sp = TRUE)

# prediction error
dat$PE_rf <- dat$MKD_OCSKGM_rf - dat$OCSKGM

# Mean Error
ME_rf <- mean(dat$PE_rf, na.rm=TRUE)

# Mean Absolute Error (MAE)
MAE_rf <- mean(abs(dat$PE_rf), na.rm=TRUE)

# Mean Squared Error (MSE)
MSE_rf <- mean(dat$PE_rf^2, na.rm=TRUE)

# Root Mean Squared Error (RMSE)
RMSE_rf <- sqrt(sum(dat$PE_rf^2, na.rm=TRUE) / length(dat$PE_rf))

# Amount of Variance Explained (AVE)
AVE_rf <- 1 - sum(dat$PE_rf^2, na.rm=TRUE) /
sum( (dat$OCSKGM - mean(dat$OCSKGM, na.rm = TRUE))^2,

na.rm = TRUE)
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12.13 Graphical map quality measures

The extended and discussed version of the following code is presented in Chapter
7, by B. Kempen, D.J. Brus & G.B.M. Heuvelink, with code contributions from
G.F. Olmedo.
# scatter plot
plot(dat$MKD_OCSKGM_rf, dat$OCSKGM, main="rf", xlab="predicted",

ylab='observed')
# 1:1 line in black
abline(0,1, lty=2, col='black')
# regression line between predicted and observed in blue
abline(lm(dat$OCSKGM ~ dat$MKD_OCSKGM_rf), col = 'blue', lty=2)

# spatial bubbles for prediction errors
bubble(dat[!is.na(dat$PE_rf),], "PE_rf", pch = 21,

col=c('red', 'green'))



195 12.14. Model evaluation

12.14 Model evaluation

The extended and discussed version of the following code is presented in Chapter
8, by M. Guevara and G.F. Olmedo.
library(raster)
RF<-raster('results/MKD_OCSKGM_rf.tif')
RK<-raster('results/MKD_OCSKGM_RK.tif')
SVM<-raster('results/MKD_OCSKGM_svm.tif')
#Note that RK has a different reference system
RK <- projectRaster(RK, SVM)
models <- stack(RK, RF, SVM)

library(psych)
pairs.panels(na.omit(as.data.frame(models)),

method = "pearson", # correlation method
hist.col = "#00AFBB",
density = TRUE, # show density plots
ellipses = TRUE # show correlation ellipses

)

library(rasterVis)
densityplot(models)

SD <- calc(models , sd)
library(mapview)
mapview(SD)

RKRF <- calc(models[[c(1,2)]], diff)
RKSVM <- calc(models[[c(1,3)]], diff)
RFSVM <- calc(models[[c(2,3)]], diff)
preds <- stack(RKRF, RKSVM, RFSVM)
names(preds) <- c('RKvsRF','RKvsSVM','RFvsSVM')
X <- cellStats(preds, mean)
levelplot(preds - X, at=seq(-0.5,0.5, length.out=10),

par.settings = RdBuTheme)

dat <- read.csv("results/validation.csv")

# prepare 3 new data.frame with the observed, predicted and the model
modRK <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_RK,

model = "RK")

modRF <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_rf,
model = "RF")
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modSVM <- data.frame(obs = dat$OCSKGM, mod = dat$MKD_OCSKGM_svm,
model = "SVM")

# merge the 3 data.frames into one
modData <- rbind(modRK, modRF, modSVM)

summary(modData)

#Load the openair library
library(openair)

modsts <- modStats(modData,obs = "obs", mod = "mod", type = "model")

modsts

TaylorDiagram(modData, obs = "obs", mod = "mod", group = "model",
cols = c("orange", "red","blue"), cor.col='brown',
rms.col='black')

conditionalQuantile(modData,obs = "obs", mod = "mod", type = "model")
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