Proposed Multi-disciplinary and Multi-regional Strategy for the Management of Red Palm Weevil

Scientific Consultation and High-Level Meeting on Red Palm Weevil Management
Rome, 29-31 March, 2017
This Document is prepared by the RPW Expert Team with support of FAO, CIHEAM and NEPPO Technical Officers

Shoki Al-Dobai
Crop Protection Officer, FAO-RNE
Team Leader

Expert Team Members:

RPW International Experts

Jose Romeno Faleiro
India

Michel Ferry
Spain

Polana Vidyasagar
India

Hassan Al-Ayedh
Kingdom of Saudi Arabia

Abdulrehman Al-Dawood
Kingdom of Saudi Arabia

Fajardo Moises
Canary Island, Spain

FAO

Keith Cressman
Senior Agricultural Officer, AGPM

Sarah Brunel
Capacity Development Officer, IPPC

Mona Chaya
Senior Coordinator

CIHEAM

Khaled Djelouah
Scientific Administrator

Francesco Porcelli
Associate Professor

NEPPO

National Consultants

Mohamed Kamal Abbas
Egypt

Yousef Alfehaid
Kingdom of Saudi Arabia

This Document is prepared to serve as a base for the discussion at the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management, Rome, 29-31 March, 2017
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIHEAM</td>
<td>International Centre for Advanced Mediterranean Agronomic studies</td>
</tr>
<tr>
<td>EPN</td>
<td>Entomo-pathogenic Nematodes</td>
</tr>
<tr>
<td>EPPO</td>
<td>European Plant Protection Organization</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FAO-CIO</td>
<td>FAO-Chief Information Officer Division</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communication</td>
</tr>
<tr>
<td>ISPM</td>
<td>International Standard for Phytosanitary Measures</td>
</tr>
<tr>
<td>IPPC</td>
<td>International Plant Protection Convention</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>KSA</td>
<td>Kingdom of Saudi Arabia</td>
</tr>
<tr>
<td>LIBS</td>
<td>Laser Induced Breakdown Spectroscopy</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and Evaluation</td>
</tr>
<tr>
<td>MoA</td>
<td>Ministry of Agriculture</td>
</tr>
<tr>
<td>NENA</td>
<td>Near East and North Africa</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NEPPO</td>
<td>Near East Plant Protection Organization</td>
</tr>
<tr>
<td>NPPO</td>
<td>National Plant Protection Organization</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near Infrared Spectroscopy</td>
</tr>
<tr>
<td>PRA</td>
<td>Pest Risk Analysis</td>
</tr>
<tr>
<td>QGIS</td>
<td>Quantum Geographic Information System</td>
</tr>
<tr>
<td>RBM</td>
<td>Result Based Management</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RPW</td>
<td>Red Palm Weevil</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic acid-interference</td>
</tr>
<tr>
<td>TMS</td>
<td>Trapping Management System</td>
</tr>
<tr>
<td>TCP</td>
<td>Technical Cooperation Program</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>UTF</td>
<td>Unilateral Trust Fund</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. RATIONALE</td>
<td>5</td>
</tr>
<tr>
<td>3. OBJECTIVES OF THE STRATEGY</td>
<td>8</td>
</tr>
<tr>
<td>4. COMPONENTS OF THE PROPOSED STRATEGY</td>
<td>8</td>
</tr>
<tr>
<td>A) NATIONAL COMPONENT OF THE STRATEGY</td>
<td></td>
</tr>
<tr>
<td>1. Phytosanitary (quarantine) measures</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Phytosanitary import regulations/legislations</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Phytosanitary regulations/legislations regarding the movement of palms inside an infested country</td>
<td>10</td>
</tr>
<tr>
<td>1.3. Enhancement of the phytosanitary legislation in countries</td>
<td>11</td>
</tr>
<tr>
<td>2. Early Detection</td>
<td>11</td>
</tr>
<tr>
<td>3. Surveillance and Monitoring</td>
<td>12</td>
</tr>
<tr>
<td>4. Preventive agronomic practices</td>
<td>13</td>
</tr>
<tr>
<td>5. Control Practices</td>
<td>14</td>
</tr>
<tr>
<td>5.1. Mechanical sanitation</td>
<td>14</td>
</tr>
<tr>
<td>5.2. Preventive insecticide applications (chemical/natural)</td>
<td>15</td>
</tr>
<tr>
<td>5.3. Curative insecticide treatments (chemical/natural)</td>
<td>15</td>
</tr>
<tr>
<td>5.4. Mass trapping</td>
<td>16</td>
</tr>
<tr>
<td>5.5. Biological control</td>
<td>16</td>
</tr>
<tr>
<td>5.6. Removal and disposal of highly infested palms</td>
<td>16</td>
</tr>
<tr>
<td>6. Data management/GIS/validation</td>
<td>17</td>
</tr>
<tr>
<td>7. Stakeholder participation and involvement in the RPW control programs</td>
<td>18</td>
</tr>
<tr>
<td>7.1. Farmer involvement</td>
<td>18</td>
</tr>
<tr>
<td>7.2. Role of cooperatives, NGOs and private sector</td>
<td>18</td>
</tr>
<tr>
<td>7.3. Institutional cooperation/networking</td>
<td>19</td>
</tr>
<tr>
<td>8. Capacity building, communication and extension service</td>
<td>19</td>
</tr>
<tr>
<td>9. Management and institutional set up</td>
<td>19</td>
</tr>
<tr>
<td>10. Monitoring and Evaluation</td>
<td>20</td>
</tr>
<tr>
<td>11. Research & Development</td>
<td>21</td>
</tr>
<tr>
<td>II) Result Matrix of the Action Plan</td>
<td>21</td>
</tr>
<tr>
<td>B) REGIONAL COMPONENT OF THE STRATEGY</td>
<td>27</td>
</tr>
<tr>
<td>1. Platform/program roles</td>
<td>27</td>
</tr>
<tr>
<td>2. Beneficiaries and stakeholders</td>
<td>27</td>
</tr>
<tr>
<td>3. Operation of the platform/program</td>
<td>28</td>
</tr>
<tr>
<td>4. Action plan of the platform/program</td>
<td>28</td>
</tr>
<tr>
<td>Annex 1 : List of Recent References (2006-2016)</td>
<td>32</td>
</tr>
</tbody>
</table>
1. INTRODUCTION:

Red Palm Weevil (RPW) *Rhynchophorus ferrugineus* (Olivier) (Coleoptera : Curculionidae) is a key pest of palms originating from South and South East Asian Countries that has significantly expanded its geographical and host range during the last three decades. In the Near East RPW is causing wide spread damage to date palm *Phoenix dactylifera* L., having both agricultural impacts on the palm production, which has negative repercussions on the livelihoods of farmers and environmental impacts. In North Africa, it is also present (except in Algeria) but for the moment only in few limited spots, only on the Canary Island palm *P. canariensis*. Even when these spots are located on the Mediterranean coast, they represent a serious threat for the Southern oasis.

RPW is a quarantine pest in the Near East and North Africa (NENA) countries, as well as in countries in Latin America, it is the object of emergency measures in the European Union, and is considered a quarantine pest that should be regulated in EPPO countries as it is considered of limited distribution (A2 pest)\(^1\). Weak quarantine procedures and difficulties in the early detection of RPW-infested plant materials have contributed to its rapid spread. RPW has been spreading globally and has not been effectively managed in spite of several efforts and resources provided by countries and organizations. Extensive research has also been conducted on the management of RPW.

2. RATIONALE:

Many control means based on conventional and innovative technologies are today put in place, organized into several control actions or management strategies depicted in Figure 1. However, the failure to manage RPW in most of the countries can be attributed to the lack of awareness and systematic and coordinated control actions or management strategies that involve all stakeholders, which is related to inadequate human and financial resources available to combat the pest.

\(^1\) RPW has been added to the EPPO A2 List in 2006 on the basis of a Pest Risk Analysis (PRA) performed by Spain. The full PRA and the PRA report are available at:
- https://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRAdocs_insects/04-10743%20PRA%20Rhyncho%20feruginus.doc
- https://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRAdocs_insects/04-11057%20PRAss%20RHYCFE.doc
The strategy supported with adequate resources, with systematic planning, good coordination and involvement of all stakeholders can lead to the eradication of RPW as witnessed in the Canary Islands of Spain, where the pest is eradicated since 2013 and the last foci was declared free of RPW during May, 2016. In Mauritania, quick action initiated by the Government with support of FAO to control the pest and the IPM strategy implemented with active participation of the farmers, farmer cooperatives and other stakeholders has resulted in RPW being contained in the original foci of infestation within a year of implementing the program, with a good potential for early eradication.

The needs to control the pest are directly correlated with the evolution of the RPW populations (Fig. 2). Three scenarios are then possible depending on the means made available to control the RPW, considering of course that organizing and techniques are optimum and similar for the three scenarios:

- The means are superior to the needs (blue line). This is the winning scenario: the RPW populations will decrease irreversibly and rapidly;
- The means remain more or less equal to the needs. The populations of RPW remain more or less constant. RPW can be considered under control but each year a certain percentage of palms are lost. It is difficult to speak of a tolerance threshold in the case of the RPW because the pest not only affect the production but kills the trees. The percentage of lost palms year after year can be considered acceptable in case of big plantations but not at all for the small ones.
- The means are inferior to the needs. This is the losing scenario. Populations of RPW follow an exponential growth. Necessary means to control the pest should also grow exponentially and the gap between needs and means is rising inexorably. It is a useless and lost race.

Figure 2. Three scenarios of RPW control showing the relationship between available means (solid line) and required needs (dotted line) and the results that can be expected: means are greater than the need (blue), means are equal to the need (green), means are less than the needs (red)
In addition to the above factors, there are also several biological and organizational factors hindering the success of the control strategies, such as:

Biology of the pest:
- Difficulties in early detection of infested palms due to the hidden/cryptic bionomics of the pest.
- Difficulties in implementing control treatments as the larvae life cycle takes place totally inside the palm tissue and the adults hide at the base of the leaves.

Pest management aspects:
- Late detection of infested palms because of insufficient frequency inspection activity.
- Improper assessment of the risk presented by infested palms that lead to unnecessary and costly measures of palms eradication.
- Unique morphology of the palm species that creates difficulties in implementing control practices.
- Lack of effective natural enemies under field conditions that could contribute to the reduction of the weevil population.
- Difficulties to manage a mass trapping network.
- Application of the management program in a haphazard manner.
- Difficulties in effectively managing the pest in small family gardens that represent the dominant of NENA farming system in oasis, in neglected plantations and in urban environments and in urban environments (North Africa infested spots).
- Improper transfer and disposal of severely damaged/infested palms.

Regulatory, coordination and awareness aspects:
- Illegal/unregulated movement of infested palms within the country and between countries.
- Inadequate farmer and other stakeholder involvement in the control program.
- Insufficient knowledge on the RPW socio-economic and environmental impacts and on the date palm farming systems and farmers organization.
- Unused GIS at the local and national level to have an updated knowledge of the evolution of the situation, to organize and control the activities to assess the effectiveness of the control strategy and for decision support.
- Lack of digitalized maps with the location of all the palms in the infested countries.
- Shortage of resources for implementing a comprehensive management program.
- Weak in-country cooperation and coordination between the stakeholders and also at a regional level.
- Poor implementation of phytosanitary (quarantine) measures for transfer of planting materials for new farms or gap filling in existing farm, between regions with in the country
- Inadequate protocols and certification for export /import of ornamental and exotic palms.
- Lack of public awareness on the risk associated with RPW in a broad sense.

Over the years, FAO has provided technical assistance to enhance cooperation and knowledge sharing between countries in the NENA Region, and to strengthen the capacities of the countries for the
management of RPW to reduce and prevent its spread. However, to enhance the coordination and cooperation between the countries and tackle the issue of RPW at a higher level, FAO called for a ‘Scientific Consultation and High Level Meeting’ to come up with multi-disciplinary and multi-regional strategy for management of RPW. The strategy is developed based on the participatory approach involving the RPW international experts with contribution and participation of the national experts and representatives of the plant protection regulatory authorities from the affected countries and relevant organizations.

3. OBJECTIVES OF THE STRATEGY:

The overall objective of this strategy is to support efforts/programs of countries to contain the spread and eradicate the pest. The strategy will also create a framework for cooperation and coordination of efforts at the regional and inter-regional level for supporting the integrated and sustainable management programs to control RPW; and to reduce its devastating effects on the environment and food security, and socio-economic impact on rural communities.

The specific objectives are:

- To provide technical assistance and guidance for improvement of the national RPW control programs/strategies.
- To establish a platform and mechanism for strengthening the cooperation and coordination of the countries at the regional and inter-regional level for the effective management of RPW.

4. COMPONENTS OF THE PROPOSED STRATEGY:

Based on the analysis of the current management programs of RPW in different countries and identified challenges and weaknesses, the proposed strategy has two components to effectively address the problem of RPW at the country (national program) and regional (platform/program) level.

A. NATIONAL COMPONENT OF THE STRATEGY:

The national component of the strategy aims at improving the ongoing national programs for the effective management of RPW at country level.

In the RPW infested countries, the core components of the IPM strategy involve (i) inspecting palms to detect infestations, (ii) capturing adult weevils using food baited pheromone traps, (iii) preventive and curative chemical treatments and (iv) removal/eradication of severely infested palms. It is complemented by phytosanitary (quarantine) measures to regulate the movement of planting material, capacity building and extension activities. However, the control programs currently being implemented have by and large not been successful in containing the spread or controlling the pest despite some success stories in some countries.

The failures in the control programs can be attributed to several factors, mainly related to difficulties in detecting infested palms early in the stage of attack, challenges and constraints facing application of quarantine measures and lack of awareness and commitment of farmers and other stakeholders in the control programs.
I) Action Plan for Improved National RPW-IPM Strategy:

The proposed strategy will focus on providing the member countries with technical assistance and advice to improve the components of the RPW-IPM strategy as follows.

1. Phytosanitary (quarantine) measures

The weaknesses and constrains associated with the implementation of the phytosanitary measures can be summarized as follows:

1. Lack of knowledge on the national phytosanitary legislation on RPW.
2. Insufficient staff and means in the countries to effectively implement the regulations.
3. Illegal movement/smuggling of planting material through alternate routes.
4. Interference in the imports/movement of planting material by higher officials.
5. Lack of:
 a. Availability of sources of trustful/certified palms within the countries.
 b. Enforcement of quarantine measures.
 c. Specific regulations/guidelines on phytosanitary measures to regulate the palm trade, especially for officials/enforcement authorities at the entry points.
 d. Registered nurseries.

Specific regulations and measures (clear inspection and treatment protocols) should be developed within the phytosanitary legislation related to requirements for import as well as the movement of palms inside the countries.

Import and movement of plant material inside the country is the main pathway of introduction and spread of RPW. Prevention of the introduction of planting material, as a phytosanitary measure is the main approach that should be taken against the RPW for the countries where the pest is absent or of limited distribution.

The International Plant Protection Organization (IPPC) will play an important role in improving the phytosanitary aspects of the national RPW programs. The IPPC is the phytosanitary standard setting organization recognized by the World Trade Organization, with 183 Contracting Parties, including all NENA countries. At the NENA region, the Near East Plant Protection Organization (NEPPO) is in charge of the regional collaboration, coordination in area of plant protection and development of the regional phytosanitary standards and strategies to monitor and control the trans-boundary plant pests.

1.1. Phytosanitary import regulations/legislations

Due to the cryptic biology of RPW, importation of palms plants should be strictly regulated. The importation of date palm offshoots and ornamental palms of more than 6 cm base diameter should be banned from infested countries. Date palm from in vitro propagation should be imported in test-tubes. Acclimatization should be done at the imported country level.

However, if a country takes the risk to import date palm offshoots or ornamental palms of more than 6 cm base diameter from an infested country, import should be authorized from free-pest areas only if the limits of these areas can be established and controlled with all necessary guarantees precisely established
(50 km distance from the infested areas, traceability of all the palms in this area, absence of palms introduction for the last 3 years, no infested palms and no captures in traps for the last 3 years).

If a country accept to take the risk to import palms from free-pest areas of infested countries, importers should be registered, certified and mapped (GIS system) by National Plant Protection Organization (NPPO). They should ensure traceability and the control of the imported palms during three years. The palms should be maintained in RPW-proof quarantine facilities during one year. Bi-annual inspection should be conducted by NPPO officials.

Guidelines and procedures should be developed for strengthening quarantine inspection at borders and plant protection services within the country (including manual on identification of palms species).

1.2. Phytosanitary regulations/legislations regarding the movement of palms inside an infested country

To avoid any further potential spread of RPW, movement of palms trees should be regulated within the whole country as up-to-date, precise and controllable limits of the infested areas are not usually available. Regulations should be elaborated and implemented to assure the RPW containment.

Total ban of date palm offshoots or ornamental palms movement, except palms of less than 6 cm base diameter (from tissue culture concerning date palm) constitutes the best solution as long as the RPW is not eradicated. Nevertheless, it is not always possible to adopt such drastic measure when exists a strong demand for new palms plantations.

Movement of palms in and from free-pest area could be authorized in the same conditions as the ones proposed for importing palms. Movement of palms in and from infested area should be totally forbidden excepted if they are previously inspected, treated before transport and maintained in RPW-proof certified nurseries at least for one year. The traceability of these palms should be established during three years.

Nurseries should be registered, certified and controlled by an official institution to ensure their compliance with a certification scheme (variety authentication and free from pests including RPW).

Appropriate protocols for the palms inspection, treatments before transport to the certified nursery and for the implementation of RPW-proof certified nurseries should be developed.

In case of detection, the National Plant Protection Organization (NPPO) should delimit the infested area (at least 100 meters around the infested tree or trap that has captured a weevil), define the containment area, a buffer zone area and trace back the related plant material. These areas should be mapped and NPPO with the collaboration of the farmers, the extension agents and all concerned administrations and stakeholders should implement the appropriate measures to contain and eradicate/suppress RPW such as:

i) information of all the farmers and date palms owners in the delimited zone and adopt in collaboration with the other Ministry of Agriculture services as well as all concerned stakeholders all the measures that would facilitate the involvement of the farmers and of the palm owners in the control of the pest;

ii) frequent inspection – at least monthly - of all the palms in the infested area;
iii) implementation of a pheromone mass trapping or, at least, monitoring trapping system in the infested area;
iv) intensified survey programme in an area of at least 10 km around the infestation and to trace back the related plant material in case of a new outbreak;
v) immediate destruction or, where appropriate, treatment/mechanical sanitation of the infested palms;
vi) measures to prevent any spread of RPW during the destruction or sanitation actions by application of chemical treatments in the immediate vicinity;
vii) stop movement of nursery stock from the infested area;
viii) all these activities must be registered in a GIS and analyze weekly to control their right implementation and to assess their efficiency and the evolution of the situation.

1.3. Enhancement of the implementation of the phytosanitary legislation in countries

Enforcement of the phytosanitary regulations should be supported by:

• Training of plant quarantine staff and other law enforcement authorities.
• Development of manuals and procedures on RPW specific quarantine regulations and measures, inspection measures at borders and plant protection services within the country (including manual on identification of palms species).
• Raising awareness on RPW phytosanitary legislation and measures among all the stakeholders.
• Develop guidelines for countries to establish certified and registered nurseries that would be entitled to trade RPW free palms within the countries to avoid the illegal trade and movement of the palms.
• Support the establishment of tissue culture laboratories for the production and supply of RPW free planting material.
• Strengthen the coordination and engagement of all stakeholders (farmers/farmer cooperatives, NGOs, MoA officials, other law enforcement agencies etc.).

2. Early Detection

In absence of reliable early detection tools, visual inspection is the only available effective technique, if properly and frequently applied. Visual inspection could be improved by adopting the following.

• Develop a harmonized technical protocol for visual inspection in a simple and easy to understand languages of the farmer and other support staff/stakeholders.
• Improve farmer/stakeholders involvement, especially for this activity, in the framework of the general policy and program to involve the farmers in the RPW control program.
• Enforce clean cultivation especially related to offshoot management and frond pruning to facilitate visual inspection.
• Register the inspection activity, as all the other activities for its control and analysis in the GIS of the RPW control program.
Visual inspection concerns mainly the offshoots and the trunk basis of the date palms, when on the Canary palms is focused on the crown of more than 2-3 meters high due to the fact that most infestation of this species occurs in the crown.

The pheromone traps constitute a very useful tool to complete the visual inspection and as a tool to alert on the needs to increase inspections when traps capture RPW.

To increase the overall efficiency and speed of detection, there is a need for further testing and refinement of pipeline detection technologies, to develop a quick, reliable, cost effective, and easy to handle early detection device for RPW.

Using sniffer dogs to detect RPW infested date palms is possible, because the infestation start mainly in the offshoots and the basis of the trunk up to 2 m from the ground. Dog-assisted detection could suit well also at nurseries, ports of entry and/or quarantine facilities.

Other sophisticated detection techniques are currently available with only limited/experimental use.

Acoustic systems have seen limited use because they require skilled operators. Simpler, lower-cost automated systems are being developed to increase the capability of early detection efforts. Also, field studies are being conducted to reduce interference from high wind that may induce leaf-rustling noise pulses difficult to distinguish from other insects’ sounds.

Near infrared detection could allow to detect early infestation but field experimentation of sensors must be implemented, especially if the purpose is to use this technique with drones or planes. Infestation in Canary palms takes place at the canopy level where physiological disturbance could probably be easier to detect than with date palms that are usually attacked at the level of the offshoots or the trunk base.

Experimentation for the creation of a portable laser induced breakdown spectroscopy based technology must go on. Such equipment would be an interesting handy tool in the early detection of RPW on ground. Furthermore, high frequency radar and X-ray technology experiments have some promises based on preliminary experiments. Experiments with proteomics strategies are also promising for the development of future kits.

3. Surveillance and Monitoring
Surveillance and monitoring is vital in making a timely decision for managing RPW, should an infested palm be detected or an adult weevil is recorded in monitoring traps. Surveillance services also help to evaluate the effectiveness of control actions and declaration of pest free area. Surveillance and monitoring is carried out through systematic visual inspection of palms and by using pheromone traps. This program could be improved by adopting the following:

3.1. Visual inspection:
Frequency should be:
- Non-Infested area : Quarterly
- Infested Area : Bimonthly
3.2. Trapping

Food baited bucket pheromone (ferrugineol) traps are widely used to capture adult RPW population that attract both male and females. These traps are very effective indicators of the presence and spatial spread of the pest if well serviced, in the absence of any equivalent and cost effective technology.

Trapping efficiency can be maintained through the following:
- At least Biweekly servicing (renewal of food bait and water).
- Trap Density
 - Non-Infested area: Need based after risk assessment
 - Infested Area: 1-2 traps / ha
- A clear protocol for the surveillance and monitoring based on the International Standard for Phytosanitary Measures (ISPM 6) should be developed, including clear time-bound survey plan, guidance for surveyors, inputs and human and financial resources needed for the program.
- Attention should be given to palm nurseries, mainly for ornamental (P. canariensis) for instance.
- Enhance awareness, communication and participation of the farmers/stakeholders in the monitoring program and reporting incidence of pest.
- Develop and implement a mobile application and GIS aided monitoring system for efficient mapping, data collection, analysis and management of the surveillance and monitoring program.
- Immediate deployment of an intensive control program around 10 km radius from the newly detected infested palm/trap capturing weevils based on the information campaigns, farmers and all concerned stakeholders involvement and on the core RPW-IPM components of visual inspection of every palm, trapping, preventive treatment, quick curative mechanical treatments and quick eradication of severely infested palms.

4. Preventive agronomic practices

Several agronomic practices influence the incidence and build of RPW in the field and also the efficiency of visual inspection and other treatments. In this context, the following practices need to be adopted/studied to reduce the risk of infestation and facilitate management of the pest:

i) Offshoot management: Young date palms in the susceptible age group of less than 15-20 years often have a large number of offshoots that makes visual inspection of such palms to detect infestation extremely difficult. Regular leaves/offshoots pruning and also offshoots removal constitute an indispensable practice. Preventive soaking insecticide treatment of the offshoots and the trunk immediately after these operations is required to kill and to repeal the RPW attracted by the volatiles produced by the wounds. Furthermore, removal of offshoots without treating the wound with insecticide on the mother palm often results in gravid female weevils getting attracted to these sites for egg laying, resulting in a new infestation.

ii) Frond pruning: Wounds caused on the palm after frond shaving that are not treated with a repelling insecticide to neutralize the palm volatiles emitted, could also result in infestation by attracting female weevils to such odors. In some countries it is therefore recommended to carry out frond shaving during the winter when weevil activity is low.
iii) Irrigation method adopted: Open flood irrigation particularly in plantations where the water touches the collar region of the stem is known to attract RPW. Using controlled drip irrigation instead of open flood irrigation is therefore recommended. In homestead or landscape gardens, date palm stems should be insulated with polythene sheets at the base to prevent the splashing of water from sprinklers and other irrigation systems.

iv) Role of fertilizers in the management of RPW: Very little is known about the relationship between the RPW infestation and the application of macro (NPK) and micro nutrients (Zn,Si,Fe, Mn,Mg, soluble silica etc.). Some very preliminary results indicate that palms fertilized with diatomaceous earth could offer better resistance to infestation by RPW.

v) Palm density (spacing) in the field: Closely spaced palms, especially in the traditional grooves with limited penetration of sunlight, offers a suitable micro-climate for RPW, probably due to enhanced in-groove humidity. Adopting a higher spacing of at least 8x8m could be useful.

vi) Varietal selection: Host plant resistance is not exploited for the management of RPW. Farmers cultivate certain traditionally established date palm varieties and RPW is known to have a differential preference for palm varieties in the field. National research institutions should carry out studies to identify the factors of resistance and incorporate these in the traditionally cultivated varieties.

5. Control Practices

RPW management in the field revolves mainly on the following control measures. All control operations should be supported by GIS based data collection and management system.

5.1. Mechanical sanitation

Palms that are not too deeply infested (terminal bud not infested when infestation starts by the canopy leaves bases, trunk not too deeply damaged by the larvae when infestation starts from the offshoots, aerial roots or petiole remains) can be sanitized either by insecticide injection or by mechanical sanitation. The purpose of mechanical sanitation is to eliminate the tissues where the larvae are, as well as to locate and destroy all the cocoons and adults. For tall ornamental palms (infestation is located in the canopy leaf bases), a precise and efficient protocol should be developed. For date palms, mechanical sanitation is practiced for many years, very simply with hand tools. When the detected symptom of infestation is the drying of leaves or offshoot, it is sometimes sufficient to remove and destroy the offshoot to sanitize the palm. When the larvae has passed from the offshoots to the trunk or when the infestation has started from the petiole remains, infested area must be eliminated with a sharp tool till reaching the healthy tissue. The infested tissue, if cut into small pieces does not need further treatment (the eggs and the larvae will die quickly in drying tissue). This simple mechanical sanitation presents two great advantages: it can easily be done by the farmer itself and no infested tissues are moved outside the infested area that avoids any risk of adult RPW spread. Furthermore, in case of slight and superficial damage, the tissue is removed from the palm and destroyed. Thereafter the wounded palm tissue is sprayed with a repellent insecticide or clay or gypsum paste to avoid attraction of females.
As, in some places, very complex protocol have often been recommended regarding the issue of wasted infested tissues, it would be perhaps desirable that very simple experimentation be implemented to demonstrate the absence of risk presented by larvae or eggs present in wastes cut into small pieces. Some new technologies have been proposed to sanitize infested palms but they don’t seem to present any advantage compared with the existing techniques.

5.2. Preventive insecticide applications (chemical/natural)

Preventive insecticide applications are currently either carried out through chemical or natural origin products. They have two purposes: (i) to kill the adults hidden at the bases of the leaves; and (ii) to protect the palms by killing adult female weevils and early stages of the pest.

Preventive insecticide applications must be applied either as by showering/soaking targeted zones of the palms or by injection (only for ornamental palms). To ensure the efficiency of the preventive insecticide treatments and minimize hazards on human health and the environment the following points should be respected:

- Preventive insecticide treatments should be applied only on the palms of the delimited infested area and during a limited period of time established according to the evolution of the traps captures.
- A range of insecticides should be tested and registered against RPW for each country.
- The dose and frequency of treatment for each registered pesticide against RPW to ensure proper use in the field operations.
- The following measures should be considered while taking up preventive insecticide applications.
 - In case of showers/soaking the pesticide solution should be targeted to the base of the leaves of the crown (ornamental palms of more than 2 meters) and inner leaf whorls, trunk up to 2 meters and offshoots (date palms and small ornamental palms).
 - For ornamental palms the option of attaching pipes to deliver showers of pesticides to the crown leaf bases requires periodic shifting.
 - For ornamental palms treatments by injection should not be considered as a routine technique as they create permanent wounds. They should be applied only for limited number of times and only in the frame work of program conceived and apply to obtain quick eradication of the pest. For date palm, injection should not be applied as for the moment no official data are available on the issue of insecticide residue content in the dates after injection.
- Pesticide residue studies should be done in palm tissues and especially in dates before registering any new pesticide for use in control program.

5.3. Curative insecticide treatments (chemical/natural)

- All relevant points mentioned under 5.1 should be applied.
• Need to develop a protocol for the rationale use of curative insecticide applications especially with regard to stem injection.
• Existing protocols of different countries should be reviewed and validated by specialists/experts in the field.
• Natural pesticides should be tested after details on the composition of the product are known.

5.4. Mass trapping

RPW pheromone traps capture only part of the weevil population in the field. Recently black colored traps have been reported to record superior weevil captures, while with regard to trap design, the dome shaped trap records significantly higher captures as compared to the traditional bucket trap. The synthetic kairomone (ethyl acetate) when added as a component to the RPW food baited pheromone trap is known to enhance weevil captures. Periodic replacement of the food bait and water, limits the need of increasing the number of pheromone traps in the field, besides significantly increasing the cost of an area-wide mass trapping program. In some countries mass trapping could be taken up by lead/trained farmers. Numbering of every pheromone trap in the field is essential for systematic data collection and processing. This could be realized by geo-referencing the traps and use of the Radio Frequency Identification (RFID).

Service-less trapping options based on ‘attract and kill’ and use of a dry trap based on ‘electro-magnetic radiation’ have been found promising in Saudi Arabia as an additional component of the RPW-IPM mass trapping program. Further evaluation of attract and kill technology and the dry trap using electro-magnetic technology should be considered where ever it is not yet tested.

5.5. Biological control

For the moment, no biological control solutions have been successful when applied at a significant field scale and for a long period of time. For the preventive treatment of ornamental palms in urban environment where this type of solutions have been strongly encouraged, these solutions have been abandoned after few years because of the cost and the difficulty of application that represent implementing the treatment several times per year.

In general, the delivery systems for biological control agents (such as entomopathogenic fungi) should be tested under laboratory and field conditions. Experiments to harden these biological agents to resist arid environmental areas are an essential factor for their success in the field.

5.6. Removal and disposal of highly infested palms

The measures adopted to process the severely infested palms are very variable. In some places, infested palms are cut and totally shredded. The last operation requires the use of huge machines that are available only in few places where the infested palms have to be transported. Shredding machine generate a very high temperature to kill all the stages of the insect (egg – larva – cocoon – adult). Such protocol that is very heavy, complex to be applied safely (to avoid RPW spreading) and expensive has been adopted only in few places. For some years, it has been proposed that the procedure to be adopted should be based on a risk analysis approach. Better knowledge of the RPW biology during these last years has
allowed establishing a very important point to take into consideration in the risk analysis which is that the larvae are not *xylophagous* and die very quickly in drying tissue. As in some places, very complex protocol has often been recommended regarding the issue of infested tissues removed from the palm, where it would be perhaps desirable that a very simple experimentation be implemented to confirm the absence of risk presented by larvae or eggs present in these palm tissues that are cut in small pieces.

In ornamental palms, the risk analysis approach has led to distinguish between the infested and non-infested parts of the infested palms. In case of the former (infested palm parts), specific protocols of intervention have to be adopted. For the later (non-infested palm parts) different types of protocols are adopted depend on the equipment available and the local conditions. Such approach based on risk analysis and taking into consideration the local conditions remain to be developed for date palms. Very simple protocol that can be managed at the farm level with very simple equipment has to be proposed.

It is recommended to assess and dispose such palms at the site itself by exploring the possibility of onsite hand small pieces chopping, incineration with mobile incinerator, mechanical shredding with small/mobile shredders. Removal and the disposal of infested palms’ procedures should be further refined and developed.

6. Data management/GIS/validation

A turnkey solution for a data collection system is desirable that consists of (a) geo-referencing palm trees using Google Earth Engine and remote sensing, (b) use of mobile phones for data entry and transmission and (c) use of GIS for data management and analysis. A custom app should be developed for Android and iOS smart phones that would allow users to record geo-referenced data at the field location on a standard form. Ideally, users should use their own smart phone in order to avoid the procurement, distribution and management of unique devices. The app would use the GSM mobile data service (GPRS) to transmit the data from the field to a centralized national RPW office in real time. A specific procedure would be developed to allow automatic importing of field data into a custom GIS that contains a spatial database at RPW offices. The GIS would be used for the management and analysis of field and smart trap data in order to prepare maps, tables, charts and reports, and take necessary management decisions. Open-source, non-proprietary software such as PostgreSQL/PostGIS database and QGIS are suggested for the spatial database and GIS respectively. In this way, annual license fees are avoided, the GIS is platform independent (it can operate on Windows, Mac, Linux), and a large pool of available developers and expertise can be utilized to customize the GIS to RPW requirements. The primary base map for the GIS should be a geo-referenced map of palm trees (output from item (a) above). This base map in combination with regularly updated and historical field data can be utilized to assess the current situation of RPW, monitor its incidence and geographical spread, act as an early warning system, make well-informed decisions, and research historical trends in order to better manage RPW.

Automated data flow and a GIS will permit to elaborate various types of maps, tables and graphs at different time periods and spatial resolutions according to the type of requested information.

These analytical tools are indispensable for an effective multi-regional programme/strategy to combat RPW at all levels.
It is proposed that FAO Headquarters takes the lead in this topic, learning lessons and adopting the experience from the Canary Islands system. A training program for different categories of the users of the tools (mobile apps, GIS, software) should be developed.

Periodic validation of the control program based on weevil captures in traps, infestation reports and GIS generated spatial and temporal models is essential for effective management of the pest, besides judicious use of men and material.

7. Stakeholder participation and involvement in the RPW control programs

7.1. Farmer involvement

In most of the RPW infested countries, the farmers/stakeholders are not or very little involved in the RPW control programs. In many countries, all the activities are implemented by Governmental agencies. These programs are very costly and have not succeeded to eradicate the pest or even to avoid its spread. In some countries, the activities of the authorities are limited to supply the farmers with some insecticide.

The advantage of involving the farmers in the control program is considerable as they present in the farm and can assist in detecting infested palms in early stage of attack, an action that constitutes the key to control and eradicate the pest. Furthermore, all or most of the activities of an RPW control program could be perfectly realized by them at a very low cost if they are well trained.

The strategy will assist the countries to develop a clear-cut policy on farmers/stakeholder participation and engagement in RPW-IPM programs. Pilot projects to experiment and demonstrate the feasibility to involve farmers/stakeholders should be implemented. The encouragement of the farmer participation in the IPM program should be supported by:

- Implementing urgent studies, first, to dispose of a better knowledge of the socio-economic consequences of the RPW problem and of the farming systems in the infested areas, and, secondly, to propose adapted solutions to facilitate the farmers involvement.

- Strengthening extension programs, activities, knowledge sharing mechanisms, communications, farmers’ organizations etc. for farmers/stakeholders.

- Improving the policies towards incentives to have a positive impact on a better marketing and incomes to farmers.

7.2. Role of cooperatives, NGOs and private sector

Government agencies working with RPW-IPM programs should establish defined linkages and coordination mechanism with cooperatives, NGOs and private sector to make the program more meaningful and effective. Involvement of oasis program in the RPW program in concerned countries is also recommended.
7.3. Institutional cooperation / networking

The national strategies should include a mechanism for strengthening the cooperation among institutions at the national level. Strong engagement and involvement of the law enforcement authorities and other stakeholder organizations is crucial for effective implementation of the phytosanitary measures and limiting the spread and risk of RPW.

8. Capacity building, communication and extension service

The RPW-IPM national strategies should include a capacity building programs, tailor made for different categories of stakeholders (farmers/workers and other stakeholders) involved in the implementation of IPM of RPW. The program should be enhanced by introduction of participatory approach (Farmers Field School) and demonstration fields for farmers and farm workers to empower them updated knowledge and field practices. One of the capacity building components should be the use of social media and mobile applications for knowledge and experience sharing. Periodic exchange of personnel to study and be exposed to on-going RPW-IPM program at the national level is vital for updating the knowledge and experience of the technical staff and farmers.

The regional RPW platform/program will assist the countries in developing a capacity building programs and user friendly training materials with authentic, updated information in different languages to serve the needs of different categories of personnel and stakeholders.

One of the important components of the IPM program is the communication and extension service/program. Communication officers and extension agencies should be actively involved during the entire program to facilitate dissemination of information among all the stakeholders through different mass media. Use of social media to expedite transmission of information is essential to ensure the quick and wider outreach to all stakeholders and audience.

Different propagation tools and materials, such as short video messages, posters, bags and other gifts with easy and short messages to attract the attention and raise the awareness of different category of the public.

Extension agencies in each country or region can adopt some village or group of farmers and implement the RPW control program in its totality and showcase the benefits to other farmers. Such farms may be called model farms free of RPW where some field days could be organized to educate and demonstrate the technology to other farmer groups and regions.

9. Management and institutional set up

The national RPW control programs in most of the countries are operated by or under the supervision of the NPPOs of the Ministry of Agriculture (MoA). In some countries there are standalone centers/programs mandated to control RPW under MoA, while in other countries the responsibility of controlling RPW is implemented by different institutions under the supervision of different ministries with very weak coordination. It is also observed that palms for ornamental gardening that often harbor
the pest come under the overall mandate of the municipality. Furthermore, in most of the countries, palms owners and farmers are not involved or very little in RPW control programs.

These factors result in the weak management of the pest. The Governmental administrative and bureaucratic set up also often impedes the smooth functioning and timely implementation of the national RPW control program. In most of the countries the implementation of the national program is challenging due to the shortage of both human and financial resources, while in some countries the control program is either partially or fully outsourced to private companies with weak monitoring, evaluation and supervision.

Furthermore, the national RPW control programs have almost no linkages with research institutions/universities working on RPW as a result of which the research output usually does not address the practical needs in the field.

For efficient functioning and operation of the national RPW control programs the concerned Governments should make provisions to address the above gaps in the management and institutional set up and develop a framework for coordination between the national RPW control program and other relevant Governmental and non-Governmental institutions and farmers groups.

10. Monitoring and Evaluation

Currently most of the national RPW-IPM Programs lack the component of the Monitoring and Evaluation (M&E). This has an adverse impact on the success of the programs, sustaining the positive results achieved and judicious use of resources.

The national strategies should be based on the Strategic Planning/Results Based Management approaches supported by a logical framework with clear key performance indicators and targets and M&E mechanism.

Monitoring is the systematic collection and analysis of information to track progress against set plans and targets, and check compliance to established standards. It helps identify trends and patterns, adapt strategies and inform decisions for the management of the program.

Evaluation involves identifying and reflecting upon the effects of what has been done, and judging the success. The findings of the evaluation will allow program managers, beneficiaries, partners, donors and other program stakeholders to learn from the experience and improve future interventions.

Monitoring and evaluation forms the basis for clear and accurate reporting on the results achieved by the national programs. Thereby, information reporting becomes an opportunity for critical analysis and organizational learning, informing decision-making and impact assessment of the programs. It is vital to involve key stakeholders as much as possible in the evaluation process.

In the context of the national RPW-IPM programs, it is recommended that a midterm and annual evaluation is carried out.
11. Research & Development

Recent references on RPW research are presented in Annex-1. The IPM national program should establish good cooperation with the research institutions and technology developers for sharing the information about the most recent results of research and innovations developed.

Different methods and technologies for the detection, surveillance and management of the RPW have been introduced in the recent years by the researchers and technology developers that have to be further evaluated and tested for their feasibility to be used in the field, as quick, user friendly and cost effective technologies.

The national RPW programs should include a component for testing and validation of recent innovative techniques and methods management of the RPW including trapping techniques, preventive and curative chemical treatments, quarantine protocols etc. that would facilitate the work and improve the effectiveness of the program.

II) Result Matrix of the Action Plan

<table>
<thead>
<tr>
<th>Output 1</th>
<th>Indicators</th>
<th>Targets</th>
<th>Time frame</th>
<th>Regional Platform/FAO-CIHEAM expected contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1.1. Review of the national phytosanitary system in relation to RPW control</td>
<td>Phytosanitary systems reviewed</td>
<td>Strength/gaps of the system are identified and communicated to FAO</td>
<td>July 2017</td>
<td>Support in the review and assessment of the systems</td>
</tr>
<tr>
<td>Activity 1.2. Review/update/develop clear regulations for import requirements as well as phytosanitary measures to regulate the movement of palms within the country</td>
<td>Number of regulations are reviewed/updated/developed</td>
<td>Report on the regulations reviewed/developed with their drafts reported to FAO</td>
<td>September 2017</td>
<td>FAO/IPPC could help in review/develop the regulations based on the ISPMs</td>
</tr>
<tr>
<td>Activity 1.3. Develop clear inspection and treatment protocols/guidelines for offshoots and</td>
<td>Number of protocols/guidelines developed</td>
<td>Report on the protocols/guidelines developed with their drafts reported to FAO</td>
<td>September 2017</td>
<td>The Regional Platform could help in developing of the protocols/guidelines</td>
</tr>
<tr>
<td>Activity 1.4.</td>
<td>Number of guidelines for establishing commercial date palm nurseries and registration and certification system put in place</td>
<td>Country reports of the developed guidelines and registration and certification system put in place submitted to the FAO</td>
<td>January 2018</td>
<td>The Regional Platform could help in developing of guidelines and registration and certification systems</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Activity 1.5.</td>
<td>Number of facilities for production of tissue culture palms established in the countries</td>
<td>Reports from the countries about the progress in establishing the tissue culture facilities</td>
<td>Continuous activity</td>
<td></td>
</tr>
<tr>
<td>Activity 1.6.</td>
<td>Mechanism for strengthening the coordination and engagement of all law enforcement agencies is developed</td>
<td>The national RPW-IPM program is supported by clear mechanism for engagement all law enforcement agencies and other stakeholders</td>
<td>End of December 2017</td>
<td></td>
</tr>
<tr>
<td>Output 2</td>
<td>Early detection, surveillance and monitoring capabilities improved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 2.1.</td>
<td>Number of technical protocols for visual inspection developed by the countries</td>
<td>At least 3 protocols are developed by each country and submitted to regional platform for review.</td>
<td>September 2017</td>
<td>The Regional Platform could help in developing technical protocols for visual inspection</td>
</tr>
<tr>
<td>Activity 2.2.</td>
<td>New advanced technologies</td>
<td>Report on the new technologies</td>
<td>Continuous activity</td>
<td></td>
</tr>
<tr>
<td>Assessment and test new advanced technologies being developed for early detection</td>
<td>tested/adopted by the countries</td>
<td>tested/adopted submitted by the countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Activity 2.3. Develop a clear protocol/program for the surveillance and monitoring based on the International Standard for Phytosanitary Measures (ISPM 6), including guidance for surveyors and inputs/resources needed.</td>
<td>National surveillance and monitoring program developed by the countries</td>
<td>Report on the surveillance and monitoring program developed based on the ISPM6</td>
<td>October 2017</td>
<td>FAO/IPPC could help in review/developing the surveillance and monitoring programs</td>
</tr>
<tr>
<td>Activity 2.4. Deploy a mobile application and GIS aided monitoring system for efficient mapping, data collection, analysis and management of the surveillance and monitoring program.</td>
<td>The mobile application and GIS is developed by FAO and made available to the countries</td>
<td>The mobile application and GIS is operational and used by member countries</td>
<td>March 2018</td>
<td>Secretariat of the Platform with support of FAO-CIO will assist in developing the system and make it available for the countries</td>
</tr>
<tr>
<td>Output 3</td>
<td>Preventive and control measures improved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 3.1. Prepare national guidelines for adopting good agronomic practices (palm density in the field, irrigation, crop and field sanitation etc.) for the management of RPW</td>
<td>Number of national guidelines for adopting good agronomic practices to control RPW developed</td>
<td>Report on guidelines for adopting good agronomic practices to control RPW submitted by member countries</td>
<td>October 2017</td>
<td>The Regional Platform could assist member countries</td>
</tr>
<tr>
<td>Activity 3.2 Standardize national guidelines for preventive (sprays/showers/steam injection) and curative (chemical & mechanical)</td>
<td>Number of guidelines for preventive (sprays/showers/steam injection) and curative (chemical & mechanical)</td>
<td>Report developed on guidelines for preventive (sprays/showers/steam injection) and curative (chemical & mechanical)</td>
<td>October 2017</td>
<td>The Regional Platform could assist member countries</td>
</tr>
<tr>
<td>Activity 3.3</td>
<td>Develop a list of registered pesticides for RPW that have undergone the national registration process</td>
<td>List of registered pesticides for RPW that have undergone the national registration process developed in each country</td>
<td>Annual reports on the list of registered pesticides for RPW that have undergone the national registration process</td>
<td></td>
</tr>
<tr>
<td>Activity 3.4</td>
<td>Identify national laboratories/agencies to carry out and authenticate pesticide residue analysis in date and other palms</td>
<td>National laboratories/agencies to carry out and authenticate pesticide residue analysis in date and other palms identified</td>
<td>Report on national laboratories/agencies and results of pesticide residue analysis in date and other palms submitted by member countries</td>
<td></td>
</tr>
<tr>
<td>Activity 3.5</td>
<td>Develop and standardize RPW pheromone trapping protocols with respect to trap design, trap density and servicing</td>
<td>Current status of RPW pheromone trapping protocols standardized</td>
<td>Report on the RPW pheromone trapping protocols submitted by countries</td>
<td></td>
</tr>
<tr>
<td>Activity 3.6</td>
<td>Test new RPW pheromone trapping technologies, including smart traps, georeferencing the traps, use of the Radio Frequency Identification (RFID), and serviceless options including ‘attract & kill’ and electromagnetic traps</td>
<td>New RPW pheromone trapping technologies tested</td>
<td>Report on the new RPW pheromone trapping technologies tested is submitted by the countries</td>
<td></td>
</tr>
<tr>
<td>Activity 3.7</td>
<td>Develop and adopt a simple protocol for proper and safe removal of infested</td>
<td>A protocol for proper and safe removal of infested</td>
<td>Report on the protocol for proper and safe removal of infested</td>
<td></td>
</tr>
</tbody>
</table>

Table Note:
- **Activity 3.3**
- **Activity 3.4**
- **Activity 3.5**
- **Activity 3.6**
- **Activity 3.7**

Date and Validation:
- **Activity 3.3:** February, 2018
- **Activity 3.4:** Continuous activity
- **Activity 3.5:** October, 2017
- **Activity 3.6:** Continuous activity
- **Activity 3.7:** December, 2017
<table>
<thead>
<tr>
<th>proper and safe removal of infested palms that can be managed at the farm level with simple equipment</th>
<th>palms developed using simple techniques developed member countries</th>
<th>removal of infested palms submitted by member countries</th>
</tr>
</thead>
</table>

Output 4	**RPW-IPM program institutional capacity, planning and implementation enhanced**

Activity 4.1.
Develop and adopt a ‘participatory approach’ plan for enhancing participation and engagement of the farmers/stakeholders in the national RPW-IPM programs

A plan for enhancing participation and engagement of the farmers/stakeholder s in the national RPW-IPM programs developed by each country

Report on the participatory approach’ plan in the national RPW-IPM programs received from each country

October, 2017

Activity 4.2.
Establish a coordination, communication and networking mechanism with other national stakeholders (Governmental agencies, research & academic institutions, cooperatives, NGOs and private sector)

Coordination, communication and networking mechanism with other national stakeholders developed

Report on the coordination, communication and networking mechanism with other national stakeholders submitted by member countries

October, 2017

Activity 4.3.
Develop a national capacity building program tailor made for the personnel working in the RPW-IPM program, farmers, law enforcement agencies and other stakeholders

A national tailor made capacity building program by member countries under the national RPW-IPM program developed

Capacity building programs are developed by member countries under their national program

Continuous activity

Activity 4.4.
Develop user friendly training and awareness raising

User friendly training and awareness raising

Need based user friendly training and awareness

Continuous activity
<table>
<thead>
<tr>
<th>Activity 4.5. Develop pilot projects for the area-wide management of RPW that could be implemented in a farmer-participatory mode for oases communities utilizing the ‘Farmer Field Schools’ approach</th>
<th>Number of pilot projects for the area-wide management of RPW in farmer participatory mode developed by the countries</th>
<th>Report on pilot projects for the area-wide management of RPW implemented by the countries</th>
<th>Continuous activity</th>
<th>The Regional Platform could assist member countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 4.6. Improve the RPW-IPM program planning and implementation by adopting a result based management approach (RBM) including efficient monitoring & evaluation with adequate allocation of resources and means</td>
<td>Number of RPW-IPM programs developed/reviewed based on RBM approach</td>
<td>The national IPM strategies are developed based on RBM with M&E plans and reported to FAO</td>
<td>May, 2018</td>
<td>The Regional Platform could assist member countries in the review/development of the programs based on RBM</td>
</tr>
</tbody>
</table>
B. REGIONAL COMPONENT OF THE STRATEGY

The regional component of the strategy aims at creating an enabling environment for cooperation and coordination for improvement of the RPW management strategy at the regional and inter-regional level.

For the purpose of strengthening the cooperation and coordination at the regional and inter-regional level for the effective management of RPW a regional RPW platform/program should be established with support of FAO and CIHEAM to support and coordinate the implementation of the regional component of the strategy. The platform/program could be based at the FAO. IPPC and NEPPO will technically contribute to the work of the platform/program.

1. Platform/program roles:

- To strengthen the cooperation and coordination between member countries in early warning, information and knowledge sharing for effective management of RPW.
- Assist in developing programs, guidelines and protocols for prevention, early detection, rapid intervention and management of the RPW and support the countries for their implementation.
- Assist in developing approaches, strategies, methods, training tools to increase the involvement of the farmers in the RPW management.
- Provide ad hoc capacity building programs and technical assistance to the national RPW management programs.
- Support the member countries in preparing and implementing Monitoring and Evaluation (M&E) plans.
- Develop GIS spatial database for data management and analysis with a mobile application for data collection and transmission that could be adopted by each country.
- Support the countries in developing of harmonized phytosanitary measures and contingency planning approaches to eradicate RPW or to contain its spread.
- Assist in building the human and institutional capacity of the national programs of member states.
- Support and coordinate joint activities at regional level (joint surveys and management programs) and inter-regional level to foster cooperation and exchange of field experience among RPW national schemes/projects.
- Promote environmentally safer RPW management tactics to minimize the risks of control operations on human health and environment.
- Support studies on generating data on pesticide residues in fruits (dates, coconut etc.) and provide and share information on permissible limits for different classes of pesticides.
- Support the research and development programs for promotion and validation of the innovative, safe and cost-effective technologies.
- Establish a repository of experts on RPW.
- Develop programs for resource mobilization to support the operation of the platform.

2. Beneficiaries and stakeholders:

The regional platform/program will provide direct technical support to member countries to improve the planning, monitoring and evaluation of their RPW-IPM programs. The platform will also support the countries in the implementation of the national programs through technical assistance and advice, and
capacity building programs. Furthermore, the platform will also strengthen regional cooperation, knowledge and experience sharing on the management of RPW and related issues.

The platform will be open for partnership and cooperation with other stakeholders including farmer cooperatives, NGOs, private companies, research institutions etc. for promoting the national RPW-IPM strategies, and developing and validating of advanced management technologies.

3. Operation of the platform/program:

- The Secretariat of the platform/program should be established and provided by FAO.
- Member countries should identify a national focal point for the coordination, communication and for representing the country in the regional platform/program.
- A trust fund account should be created by FAO for the financial contribution of the member countries and organizations to support the establishment, operation and activities of the platform/program.
- The platform/program should conduct an annual meeting of the member countries to;
 - Assess yearly development of the RPW situation and the efficiency of the programs at the regional level.
 - Develop the annual program for the platform based on national and regional priorities.

4. Action plan of the platform/program:

<table>
<thead>
<tr>
<th>Output 1</th>
<th>Time frame</th>
<th>Responsibility</th>
<th>Estimated Budget USD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>One Time Cost</td>
</tr>
<tr>
<td>Activity 1.1. Establishment and endorsement of the regional RPW platform/program by the member countries</td>
<td>By end of June 2017</td>
<td>FAO, CIHEAM, NEPPO and Member countries</td>
<td></td>
</tr>
<tr>
<td>Activity 1.2. Nomination of the Secretary of the regional RPW platform/program and establishing of the platform secretariat</td>
<td>By end of June 2017</td>
<td>FAO, CIHEAM and NEPPO</td>
<td></td>
</tr>
<tr>
<td>Activity 1.3. Nomination of national focal point and identification of the countries’</td>
<td>By end of July 2017</td>
<td>Member countries</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
<td>Timeframe</td>
<td>Partners</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Activity 1.4.</td>
<td>Prepare the statutes of the regional RPW platform/program</td>
<td>By end of July 2017</td>
<td>FAO, CIHEAM and NEPPO</td>
</tr>
<tr>
<td>Activity 1.5.</td>
<td>Create a trust fund account for the platform/program</td>
<td>By end of July 2017</td>
<td>FAO and CIHEAM</td>
</tr>
<tr>
<td>Activity 1.6.</td>
<td>The first meeting of the regional RPW platform/program to agree on the statutes, confirm the countries contribution and develop the annual program.</td>
<td>By end of October 2017</td>
<td>FAO, CIHEAM, NEPPO, Member countries</td>
</tr>
</tbody>
</table>

Output 2: The regional RPW platform/program is fully operational

Activity 2.1.	Develop the three year strategic framework for the platform/program, and annual work plan program with clear performance indicators and targets.	By end of December 2017	Secretariat of the Platform and national focal points of member countries - Clearance of FAO, CIHEAM and member countries
Activity 2.2.	Assist member countries in planning, implementing and validating of RPW national control programs	Continuous activity	Secretariat of the Platform with support of specialized experts
Activity 2.3.	Establish a RPW network with a data base for sharing information and knowledge.	By end of March 2018	Secretariat of the Platform with support of specialized FAO Divisions and CIHEAM
Activity 2.4.	Develop and implement a methodology based on Within one year of establishment of the platform/program		Secretariat of the Platform with support of FAO-CIO
Google Earth, remote sensing and other technologies to geo-reference the location of palm tree plantations as the basis for mapping and monitoring infestations in a GIS.
- Develop a mobile application for data collection and transmission.
- Develop a GIS with a spatial database for data management and analysis.

<p>| Activity 2.5. Provide the countries with the technical assistance needed and capacity building programs | Continuous activity | Secretariat of the Platform with support of specialized experts and institutes | 150,000 |
| Activity 2.6. Prepare proposals for resource mobilization and follow up with donor agencies for funding | Continuous activity | Secretariat of the Platform with support of specialized experts | 50,000 |
| Activity 2.7. Facilitate the coordination and communication with national, regional and international research institutions for validating and testing new technologies of RPW management. | Continuous activity | Secretariat of the Platform | 50,000 |
| Activity 2.8. Assist the countries in preparing the technical resources on RPW management (regulations, guidelines and protocols) | Continuous activity | Secretariat of the Platform with support of specialized experts, FAO Divisions and external institutes | 50,000 |</p>
<table>
<thead>
<tr>
<th>Activity 2.9.</th>
<th>Develop and support implementation of a Monitoring & Evaluation plan for the evaluation of the national RPW programs</th>
<th>Annual activity</th>
<th>Secretariat of the Platform</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 2.10.</td>
<td>Conduct annual meeting of the platform</td>
<td>Annual activity</td>
<td>Secretariat of the Platform</td>
<td>50,000</td>
</tr>
<tr>
<td>Activity 2.11.</td>
<td>Publish the annual report on the development of the RPW situation in member countries</td>
<td>Annual activity</td>
<td>Secretariat of the Platform</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Total estimated budget without salaries of staff

| | 250,000 | 315,000 |
List of recent references on RPW (2006-2016)

Cristofaro, M. 2013. Laboratory and Field Assessments for the Feasibility of an Integrated SIT Project for the Control of the Red Palm Weevil in Italy. Presented at the International Conference on Research and Management Strategies for Red Palm Weevil, organized by King Abdullah University of Science and Technology, Jeddah from 16-18, March, 2013.

