Gastropods are torted, asymmetrical molluscs, usually with a spirally coiled shell. Their soft body is divided into 4 main regions: the head, which normally protrudes anteriorly from the shell; the foot, a muscular ventral organ with a flattened base used for locomotion (creeping or burrowing); the visceral mass, which fills dorsally the spire of the shell, and contains most organ systems; the mantle, a collar-like tegument which lines and secretes the shell, and forms a mantle cavity normally provided with respiratory gills in aquatic species. The noteworthy asymmetry of the internal anatomy of gastropods results from a twisting through 180° called the “torsion”, which occurs in the first few hours of larval development. Part of the paired organs of the visceral mass cease developing, and the animal begins to be asymmetrical. This internal asymmetry persists in the adult, even when a subsequent detorsion occurs.
The majority of the gastropods produce a single coiled shell, and many have a conical or calcareous "trapdoor", the operculum, that seals the opening of the shell. In some species, the shell may appear as a simple conical or cap-shaped plate, or even may be absent.

Gastropods are usually divided into 4 main subclasses: Prosobranchia, with an anterior mantle cavity and 1 or 2 gills in front of the heart; Opisthobranchia, with a right-sided or posterior mantle cavity and a single gill behind the heart, or without gills; Pulmonata, the mantle cavity of which is modified into a primitive lung; Gymnomorpha, always devoid of shell and mantle cavity. As the majority of marine-shelled gastropods belong to the Prosobranchia, this group also contains most of the species of interest to fisheries in the Western Central Pacific.

The shell of prosobranch gastropods typically consists of a spirally coiled tube increasing in diameter with growth, and an opening only at the ventral growing end, called the aperture. The axis of the shell whorls or columella may be hollow, forming at the base of the shell an opening, the umbilicus. The base of shell is formed by the largest spiral turn or body whorl, while the other whorls, which are closer to the summit or apex, constitute the spire. The continuous line where 2 adjacent whorls join is known as the suture. The aperture may have a simple, ovate outline, or can be deformed anteriorly by a siphonal canal. Its margin close to the columella forms the inner lip, while the opposite margin constitutes the outer lip; the latter sometimes shows a notch or posterior canal. Apart from growth marks left by the growing lip, the surface of the shell may be smooth, but usually it is sculptured. Sculptural elements are either spiral (following the curve of the whorls), or axial (transverse to the whorls and roughly parallel to the coiling axis).

The majority of prosobranchs are carnivores, herbivores or scavengers, using the radula, a cuticular ribbon carrying rows of teeth, to take in food. Sexes are generally separate, although a few species may be hermaphrodites. In primitive prosobranchs fertilization is external; in species with internal fertilization eggs may be enclosed in protective layers of gelatinous mucus or corneous capsules before they are deposited.

According to the species, embryos may hatch as free-swimming planktonic larvae (accounting for dispersion over large areas by marine currents), or as crawling young (after metamorphosis).

The malacological fauna of the Western Central Pacific is doubtless the largest in the world, but no reliable estimate of the gastropod diversity is presently available. However, a recent evaluation of the nearby Japanese fauna may give an idea of the rich biodiversity in the area. Japanese gastropods comprise more than 6,600 marine and brackish-water species allocated to 238 families, compared to a total of 23,000 species in the world. For the present contribution, 249 species belonging to 42 families have been selected, mainly on the basis of size, abundance, distribution, and commercial interest. Only those species that are known to be used as food are included in this guide, but in view of the paucity of detailed information on fisheries in many places, other species may be added in the future, as new information will become available. The author had the opportunity to gather a considerable amount of information on gastropod species exploited in the central and northern Philippines during a workshop in support of the present field guide which was held in October 1995 in the Philippines, organized by FAO, MSI (Marine Science Institute, University of the Philippines), and ICLARM (International Centre for Living Aquatic Resources Management).

In the Western Central Pacific, a large diversity of species is traditionally collected by coastal populations for human consumption. Nowadays, although the shell trade is getting more and more important, many shellfish are collected by fishermen for personal consumption or sold as food on local markets before the empty shell is resold to collectors or to the shellcraft industry. Fishing effort in the past has concentrated on a limited number of gastropod species, which constitute only a small fraction of the total harvest when bivalve shellfish are included. However, some larger gastropods, such as predators, are consequently rather scarce and cannot tolerate an intensive fishery. An increasing number of species tends now to be exploited and aquaculture of some species has been successfully attempted in order to counteract the effects of overexploitation or pollution, or to diversify fishery activities, especially in the oceanic islands of the tropical Pacific.

GLOSSARY OF TECHNICAL TERMS

Anterior - direction into which the head points when the animal is active; in a spiral shell, the part of the aperture which is farthest from the apex.

Aperture - opening of shell, situated at the last formed margin and providing an outlet for the head-foot mass.

Apex - the first-formed end of the shell, generally pointed.

Apical - pertaining to the apex.

Axial - parallel to the coiling axis of the shell.
Base - lower part of shell, anterior to the level of periphery of body whorl.
Biconical - resembling 2 cones placed base to base.
Body whorl - the largest, last whorl of the spiral in a coiled shell.
Callus - thick secondary deposit of lime, generally shiny and porcellaneous.
Cancellate - with axial (or concentric) and spiral (or radial) components that intersect to form a latticed pattern.
Columella - coiling axis of shell, forming the anterior part of inner lip.
Concentric - parallel to lines of growth (in a cone-shaped shell).
Corneous - horny.
Coronate - with tubercles or nodules at the shoulder of whorls.
Crenulate - with the edge regularly notched or scalloped.
Denticulate - finely toothed.
Foot - mobile and extensible muscular organ, ventrally situated, with a flattened base used for locomotion.
Fusiform - Spindle-shaped, tapering at both ends.
Gill - respiratory organ of aquatic gastropods, housed in the mantle cavity. In most prosobranchs, the gill is composed of 1 row of numerous, flexible leaflets disposed along a main axis; gills of the most primitive prosobranchs have 2 rows of leaflets, and may be 1 (Lottiidae, Neritidae, Phenacolipadidae, Trochidae, Turbinidae) or 2 in number (Fissurellidae, Haliotidae).
Growth marks - approximately axial (or concentric) lines left by the growing margin of aperture, superimposed on the outer sculpture of shell.
Hermaphrodite - with both male and female sex organs.
Inner lip - margin of the aperture closer to the coiling axis (in a spiral shell).
Keel - prominent angular ridge.
Lenticular - shaped like a biconvex lens.
Lira (pl. lirae) - fine linear elevations on the shell surface or within the outer lip.
Lirate - with lirae.
Mantle - fleshy tegument which lines and secretes the shell.
Mantle cavity - cavity enclosed by the mantle, housing the gills.
Multispiral - with numerous coils.
Nacreous - pearly, often with multi-coloured hues, as in mother-of-pearl.
Nucleus - the first-formed part of the operculum.
Operculum - horny or calcareous part attached to the foot; it seals the aperture when the animal withdraws into the shell.
Outer lip - margin of the aperture opposite to the inner lip (in a spiral shell).
Paucispiral - with relatively few coils.
Periostracum - layer of horny material, covering outside of shell.
Periphery - part of a whorl farthest from the coiling axis of the shell.
Porcelaneous - with translucent, porcelain-like appearance.
Posterior - direction opposite to that into which the head points in the active animal.
Posterior canal (or sinus) - notch or tube at or close to the posterior end of aperture.
Pustulose - with small tubercles.
Radial - diverging from the apex like the spokes of a wheel (in a cone-shaped shell).
Radula - the main feeding organ, consisting of a ciliated ribbon with transverse rows of horny teeth.
Sculpture - relief pattern developed on the outer surface of the shell.
Shoulder - distinct spiral angulation of a whorl.
Siphonal canal - trough-like or tubular extension of aperture anteriorly, for enclosure of a fleshy siphon.
Spiral - parallel to the curve of whorls, in a coiled shell.
Spire - all the whorls of a shell (excluding the last, or body whorl).
Suture - spiral line or groove of shell surface where adjacent whorls meet.

Turbinate - with a broad conical spire and a convex base.

Umbilicus - opening at base of shell made around the coiling axis when columnella is hollow.

Varix (pl. varices) - axial rib-like thickening of the outer surface of shell, representing a previous growth halt during which the outer lip of aperture thickened.

IDENTIFICATION NOTE

An illustrated key to families comprising the species treated in this guide can be found on the following pages. After a family is determined by using this key, the user should turn to the descriptive accounts of families and species. Each section on a family includes, beside a diagnosis of the family, a key to the species treated here. Furthermore, there are detailed accounts for the most important species given, and abbreviated accounts for species of secondary interest.

KEY TO FAMILIES

Remarks on key characters: features used in this key only apply for species included in the present contribution; they do not consider a few exceptions within the families, the inclusion of which would make the key too complex for general use.

1a. Shell reduced, internal or nearly so, permanently covered by the mantle Figure A
1b. Shell well developed, exposed, although it may be temporarily covered by mantle lobes which are withdrawn when touched ... → 2

2a. Shell permanently cemented to a substrate, loosely or irregularly coiled and generally twisted, resembling the calcareous tube of a polychaete worm Figure B
2b. Shell not permanently cemented to a substrate, tightly coiled or not coiled and conical, cap-shaped or slipper-shaped, but never resembling a worm tube → 3

3a. Shell ear-shaped or conical and not coiled, with a marginal indentation or slit anteriorly, or with one to several holes in addition to the aperture Figure C
3b. Shell not of these shapes, or without holes, anterior indentation or slit, apart from the aperture .. → 4

4a. Shell cap-shaped, slipper-shaped or conical, without obvious coiling; spire, if visible, not prominent ... Figure D
4b. Shell not of these shapes, conspicuously coiled ... → 5

5a. Outer lip of the aperture with a distinct notch anteriorly Figure E
5b. Outer lip of the aperture without an anterior notch → 6

6a. Aperture stretching along the whole shell length; spire concealed under body whorl, or reduced and not protruding ... Figure F
6b. Aperture not stretching along the whole shell length, or spire not concealed under body whorl, more or less developed and protruding .. → 7

7a. Shell without an anterior siphonal canal .. → 8
7b. Shell with an anterior siphonal canal ... → 10

8a. Interior of shell pearly ... Figure G
8b. Interior of shell not pearly ... → 9

9a. Length of the shell much smaller than the width ... Figure H
9b. Length of the shell about equal to the width, or decidedly larger Figure I
10a. Outer sculpture with axial varices Figure J
10b. Outer sculpture without axial varices → 11

11a. Columella with strong spiral folds Figure K
11b. Columella without strong spiral folds (low threads or grooves may be present) → 12

12a. Siphonal canal relatively long Figure L
12b. Siphonal canal relatively short → 13

13a. Spire short .. → 14
13b. Spire well developed → 15

14a. Shell shape globular .. Figure M
14b. Shell shape elongate-ovate to conical Figure N

15a. Spire much longer than the aperture Figure O
15b. Spire not much longer than the aperture Figure P

Note: the following figures contain all the families included in this contribution, plus those quoted as similar to the treated families. These similar families are marked with an asterisk (*).

Figure A:
Aplysiidae: shell nearly internal, reduced, thin and membranous, not conspicuously coiled nor strongly concave on the right side. Animal somewhat resembling a crouching hare in shape, with 2 ear-like processes on the head. Body with a smooth skin. Foot strong, with 2 very broad lateral expansions, often forming swimming lobes.

Dolabelidae: shell nearly internal, reduced, well calcified, spirally coiled, conspicuously concave on the right side. Animal resembling a crouching cat in shape, with 2 ear-like processes on the head. Body with a rough skin. Foot long, with 2 outgrowths embracing the body laterally.

Figure B:
Siliquariidae: shell tubular, loosely to irregularly coiled in the later stages, with a row of tiny holes or a slit along one side. Aperture without siphonal canal. Operculum horny, conical, multispiral, with bristles around the edges of the coils.

Vermetidae: shell irregularly coiled or even disjunct, resembling a worm tube but composed of 3 layers. Aperture without siphonal canal. Operculum horny, spiral, sometimes absent.
Figure C:
*Fissurellidae: shell conical, with a hole at the apex, or a marginal notch or groove. Interior with a horseshoe-shaped muscle scar. No operculum.

Figure D:
*Crepidulidae: shell cap-shaped to conical, with a central to posterior apex. Interior with a calcareous septum projecting from the apical region. No operculum.
*Phenacolepadidae: shell conical, thin and whitish, with a posteriorly recurved apex. Interior with a horseshoe-shaped muscle scar. No operculum.
Siphonariidae: shell conical, with a weak marginal lobe on the right side. Interior with a ring-like muscle scar, interrupted on the right side where there is a shallow radial groove. No operculum.
Figure E:
Strombidae: shell thick and solid, with a relatively large body whorl. Aperture with a well-marked siphonal canal. A distinct notch along the anterior margin of the outer lip. Operculum corneous, claw-like.

Figure F:
Cypraeidae: shell ovate or oblong, spire concealed under body whorl. Surface highly polished, smooth. Aperture long and narrow, channeled at both ends. Both lips with teeth. No operculum.
Ovulidae: shell globular to spindle-shaped, with more or less expanded extremities. Spire concealed under body whorl. Surface often smooth, porcellaneous. Aperture very long, channeled at both ends. Inner lip smooth. No operculum.
*Triviidae: shell ovate or oblong, usually small sized. Spire concealed under body whorl. Surface strongly sculptured. Aperture long and narrow, channeled at both ends. Apertural teeth on both lips, continued over the lateral and dorsal sides of shell. No operculum.

Figure G:
Trochidae: shell conical to globose, often with a flattened base. Aperture without a siphonal canal, nacreous within. Operculum corneous, nearly circular.
Turbinidae: shell thick, turbinate to conical. Outer sculpture often spiral to nodular. Aperture rounded, without a siphonal canal, nacreous within. Operculum strongly calcified.
Architectonicidae: shell wider than long, with a large, rather flat base. Umbilicus broadly open, within which can be seen the inverted larval shell. A nodular spiral rib bordering the umbilicus. Aperture without a siphonal canal. Operculum corneous, with a tubercle internally.

Xenophoridae: shell low-conical, with a broad, flattened concave base. Periphery with a lobed flange, hollow radial spines, or cemented foreign bodies. Aperture without a siphonal canal. Operculum corneous.

Littorinidae: shell ovate-conical, without an umbilicus. Aperture rounded, without a siphonal canal. Operculum corneous, with relatively few spiral coils.

Melampidae: shell with a rather short, conical spire and large body whorl. Aperture often narrowed by folds and other constrictions. No siphonal canal. Operculum absent.

Naticidae: shell globular to ovate-conical. Outer surface smooth or with reduced sculpture. Aperture large, semicircular. Siphonal canal absent. Umbilicus open or closed, sometimes with an internal rib. Operculum corneous or calcified.

Neritidae: shell globose, with a relatively low spire and a very large, rounded body whorl. Aperture semicircular, without a siphonal canal. Inner lip protruding as a septum that narrows the aperture. Inner walls of the spire resorbed. Operculum calcified, with a projecting peg.

*Neritopsidae: shell globose, with a rather low spire and a large, rounded body whorl. Aperture subcircular, without a siphonal canal. Inner lip moderately thickened, strongly concave. Inner walls of the spire not resorbed. Operculum calcified, with a subquadrate process.

Turritellidae: shell elongate, sharply conical, with numerous whorls and a small aperture. Whorls sculptured with spiral ribs or keels. Siphonal canal absent. Operculum corneous, rounded.
Figure J:

Bursidae: shell ovate, often slightly dorsoventrally compressed, with 2 strong axial varices per whorl. Periostracum obsolete. Aperture with a short siphonal canal and a distinct posterior canal. Operculum corneous.

Muricidae: shell variably shaped, generally with a raised spire and strong sculpture with axial varices, spines, tubercles or blade-like processes. Periostracum absent. Aperture with a well-marked siphonal canal. Operculum corneous.

Ranellidae: shell ovate-fusiform, with a strong sculpture and axial varices. Periostracum frequently well developed and hairy. Aperture with a siphonal canal. Operculum corneous.

Turbinellidae: shell thick and heavy, biconical to fusiform, often nodulose to spinose on shoulder. Periostracum conspicuous. Siphonal canal present. Inner lip with strong folds. Operculum corneous.

Volutidae: shell variable in shape, often glossy and brightly coloured. Aperture long, with a short siphonal canal. Inner lip with strong folds, weaker posteriorly. Operculum horny, often absent.

Fasciolariidae: shell fusiform, with a well-developed siphonal canal. Columella often with a few low basal threads. Operculum corneous. Soft parts brilliant scarlet.

Ficidae: shell thin, pear-shaped, drawn out anteriorly into a long, tapered and gracefully curved siphonal canal. Operculum absent.

Turridae: shell generally fusiform, with a high spire. Siphonal canal well marked. A characteristic notch along the posterior part of the outer lip, reflected in the growth lines. Operculum corneous.
Figure M:

Tonnidae: shell thin, globose, with a short spire and very inflated body whorl. Sculpture only spiral. Siphonal canal short. Operculum absent.

Figure N:
Conidae: shell cone-shaped, with a low spire and a well-developed body whorl tapering towards the narrow anterior end. Aperture very long, with a short siphonal canal. Operculum corneous, quite small.

Olividae: shell elongate-ovate, with a short spire, a large body whorl and channeled sutures. Surface smooth, highly polished. Aperture elongate, with a short siphonal canal. Inner lip calloused, with oblique grooves anteriorly. Operculum absent.

Figure O:
Cerithiidae: shell sharply conical, with a high, many-whorled spire and rather small aperture. Sculpture variable. Aperture with a siphonal canal. Outer lip somewhat expanded. Operculum ovate, corneous, with a few spiral coils.

Potamididae: shell high-conical, with many spire whorls. Sculpture generally coarse. Aperture relatively small, with a short siphonal canal. Outer lip often flaring. Operculum rounded, corneous, with many spiral coils.

Terebridae: shell elongate, with a high, many-whorled spire and relatively small aperture. Surface smooth or with a low sculpture. Siphonal canal short and wide. Inner lip with a twisted columella. Operculum corneous.
Buccinidae: shell with a fairly high spire and large body whorl. Outer surface smooth or with sculpture, without axial varices. Siphonal canal rather short. Operculum corneous.

*Coralliophilidae: shell variably shaped, ovate with a conical spire to globose. Outer surface white, smoothish to strongly sculptured, but without axial varices. Siphonal canal well marked. Operculum, when present, corneous.

Melongenidae: shell pear-shaped to fusiform, nodular to spiny on the shoulder. Aperture anteriorly narrowing into an open siphonal canal. Columella smooth. Operculum corneous.

Muricidae (Rapaninae): shell with a raised spire and often strong sculpture, with spines, tubercles or spiral ribs, but without axial varices. Siphonal canal rather short. Operculum corneous, with a lateral nucleus.

LIST OF FAMILIES AND SPECIES OF INTEREST TO FISHERIES OCCURRING IN THE AREA

The symbol \(/c36 \) is given when species accounts are included.

HALIOTIDAE
- \(Haliotis asinina \) Linnaeus, 1758
- \(Haliotis glabra \) Gmelin, 1791
- \(Haliotis ovina \) Gmelin, 1791
- \(Haliotis planata \) Sowerby, 1833
- \(Haliotis varia \) Linnaeus, 1758

LOTTIIDAE
- \(Patelloida saccharina \) (Linnaeus, 1758)
- \(Patelloida striata \) (Quoy and Gaimard, 1834)

PATELLIDAE
- \(Cellana rota \) (Gmelin, 1791)
- \(Cellana testudinaria \) (Linnaeus, 1758)
- \(Patella flexuosa \) Quoy and Gaimard, 1834

TROCHIDAE
- \(Monodonta labio \) (Linnaeus, 1758)
- \(Tectus fenestraus \) (Gmelin, 1791)
- \(Tectus pyramis \) (Born, 1778)
- \(Trochus conus \) Gmelin, 1791
- \(Trochus hanleyanus \) Reeve, 1842
- \(Trochus maculatus \) Linnaeus, 1758
- \(Trochus niloticus \) Linnaeus, 1758
- \(Umbonium costatum \) (Kiener, 1838)
- \(Umbonium vestiarium \) (Linnaeus, 1758)

TURBINIDAE
- \(Astrallium calcar \) (Linnaeus, 1758)
- \(Turbo argyrostomus \) Linnaeus, 1758
- \(Turbo bruneus \) Röding, 1798
- \(Turbo chrysostomus \) Linnaeus, 1758
- \(Turbo cinereus \) Born, 1778
- \(Turbo coronatus \) Gmelin, 1791
- \(Turbo crassus \) Wood, 1828
- \(Turbo marmoratus \) Linnaeus, 1758
- \(Turbo petholatus \) Linnaeus, 1758
- \(Turbo setosus \) Gmelin, 1791

NERITIDAE
- \(Nerita albicilla \) Linnaeus, 1758
- \(Nerita chameleo \) Linnaeus, 1758
- \(Nerita costata \) Gmelin, 1791
- \(Nerita picea \) Récluz, 1841
- \(Nerita planospira \) Anton, 1839
- \(Nerita plicata \) Linnaeus, 1758
- \(Nerita polita \) Linnaeus, 1758
- \(Nerita squamulata \) Le Guillou, 1841
- \(Nerita undata \) Linnaeus, 1758
- \(Neritina turrita \) (Gmelin, 1791)
- \(Neritodryas subsulcata \) (Sowerby, 1836)
LITTORINIDAE
- Littoraria scabra (Linnaeus, 1758)
- Nodilittorina pyramidalis (Quoy and Gaimard, 1833)
- Tectarius coronatus Valenciennes, 1832
- Tectarius grandinatus (Gmelin, 1791)
- Tectarius pagodus (Linnaeus, 1758)

CERITHIIDAE
- Cerithium coralium Kiener, 1841
- Cerithium echinatum Lamarck, 1822
- Cerithium nodulosum Bruguère, 1792
- Clypeomorpha batillariaeformis Habe and Kosuge, 1966
- Pseudovertagus aluco (Linnaeus, 1758)
- Rhinoclavis aspera (Linnaeus, 1758)
- Rhinoclavis fasciata (Bruguère, 1792)
- Rhinoclavis sinensis (Gmelin, 1791)
- Rhinoclavis vertagus (Linnaeus, 1758)

POTAMIDIDAE
- Cerithidea cingulata (Gmelin, 1791)
- Cerithidea obtusa (Lamarck, 1822)
- Cerithidea quadrata Sowerby, 1866
- Telescopium telescopium (Linnaeus, 1758)
- Terebralia palustris (Linnaeus, 1767)
- Terebralia salcata (Born, 1778)

TURRITELLIDAE
- Turritella duplicata (Linnaeus, 1758)
- Turritella terebra (Linnaeus, 1758)

VERMETIDAE
- Dendropoma maximum (Sowerby, 1825)
- Serpulorbis colubrinus (Röding, 1798)
- Serpulorbis medusea (Pilsbry, 1891)

STROMBIDAE
- Lambis chiragra chiragra (Linnaeus, 1758)
- Lambis crocata (Link, 1807)
- Lambis lambis (Linnaeus, 1758)
- Lambis millepeda (Linnaeus, 1758)
- Lambis scorpius (Linnaeus, 1758)
- Lambis truncata (Humphrey, 1786)
- Strombus aurisidianae Linnaeus, 1767
- Strombus bulla (Röding, 1798)
- Strombus canarium Linnaeus, 1758
- Strombus dentatus Linnaeus, 1758
- Strombus epidromis Linnaeus, 1758
- Strombus gibberulus Linnaeus, 1758
- Strombus labiatus (Röding, 1798)
- Strombus latissimus Linnaeus, 1758
- Strombus lentiginosus Linnaeus, 1758
- Strombus luhuanus Linnaeus, 1758
- Strombus marginatus Linnaeus, 1758
- Strombus mutabilis Swainson, 1821
- Strombus sinuatus Humphrey, 1786
- Strombus urceus Linnaeus, 1758
- Strombus variabilis Swainson, 1820
Tibia fusus (Linnaeus, 1758)
Terebellum terebellum (Linnaeus, 1758)

XENOPHORIDAE
Xenophora solaris (Linnaeus, 1764)

CYPRAEIDAE
Cypraea annulus Linnaeus, 1758
Cypraea arabica Linnaeus, 1758
Cypraea argus Linnaeus, 1758
Cypraea bouteiri Burgess and Arnette, 1981
Cypraea caputserpentis Linnaeus, 1758
Cypraea carneola Linnaeus, 1758
Cypraea caurica Linnaeus, 1758
Cypraea depressa Gray, 1824
Cypraea eglantina Duclos, 1833
Cypraea erosa Linnaeus, 1758
Cypraea isabella Linnaeus, 1758
Cypraea leviathan (Schilder and Schilder, 1937)
Cypraea lynx Linnaeus, 1758
Cypraea maculifera Schilder, 1932
Cypraea mappa Linnaeus, 1758
Cypraea mauritiana Linnaeus, 1758
Cypraea moneta Linnaeus, 1758
Cypraea obvelata Lamarck, 1810
Cypraea onyx Linnaeus, 1758
Cypraea schilderorum Iredale, 1939
Cypraea scura Gmelin, 1791
Cypraea talpa Linnaeus, 1758
Cypraea tigris Linnaeus, 1758
Cypraea ventriculus Lamarck, 1810
Cypraea vitellus Linnaeus, 1758

OVULIDAE
Ovula ovum (Linnaeus, 1758)
Volva volva (Linnaeus, 1758)

NATICIDAE
Natica euzona Récluz, 1844
Natica guatteriana Récluz, 1844
Natica lineata (Röding, 1798)
Natica stellata Hedley, 1913
Natica tigrina (Röding, 1798)
Natica vitellus (Linnaeus, 1758)
Neverita albumen (Linnaeus, 1758)
Neverita peselephanti (Link, 1807)
Polinices didyma (Röding, 1798)
Polinices mammilla (Linnaeus, 1758)
Polinices melanostomus (Gmelin, 1791)
Polinices sebae (Récluz, 1844)

TONNIDAE
Malea pomum (Linnaeus, 1758)
Tonno allium (Dillwyn, 1817)
Tonno canaliculata (Linnaeus, 1758)
Tonno dolium (Linnaeus, 1758)
Tonno olearium (Linnaeus, 1758)
Tonno perdis (Linnaeus, 1758)
Tonno sulcosa (Born, 1778)
Tonno tessellata (Lamarck, 1816)
FICIDAE
- Ficus gracilis (Sowerby, 1825)
- Ficus subintermedia (Orbigny, 1852)

CASSIDAE
- Cassis cornuta (Linnaeus, 1758)
- Cypraecassis rafa (Linnaeus, 1758)
- Phalium areola (Linnaeus, 1758)
- Phalium bandatum (Perry, 1811)
- Phalium glaucum (Linnaeus, 1758)

RANELLIDAE
- Charonia tritonis tritonis (Linnaeus, 1758)
- Cymatium aquatile (Reeve, 1844)
- Cymatium intermedium (Pease, 1869)
- Cymatium lotorium (Linnaeus, 1758)
- Cymatium muricinum (Röding, 1798)
- Cymatium nicobaricum (Röding, 1798)
- Cymatium pileare (Linnaeus, 1758)
- Cymatium pyrum (Linnaeus, 1758)

PERSONIDAE
- Distorsio anus (Linnaeus, 1758)
- Distorsio reticularis (Linnaeus, 1758)

BURSIDAE
- Bufonaria crumena (Lamarck, 1816)
- Bufonaria rana (Linnaeus, 1758)
- Bursa bufonia (Gmelin, 1791)
- Tutufa bubo (Linnaeus, 1758)
- Tutufa rubeta (Linnaeus, 1758)

MURICIDAE
- Chicoreus brunneus (Link, 1807)
- Chicoreus ramosus (Linnaeus, 1758)
- Chicoreus torrefactus (Sowerby, 1841)
- Haustellum haustellum (Linnaeus, 1758)
- Hexaplex cichoreum (Gmelin, 1791)
- Murex pecten Lightfoot, 1786
- Murex ternispina Lamarck, 1822
- Murex trapa Röding, 1798
- Murex tribulus Linnaeus, 1758

Subfamily Rapaninae
- Cymia lacera (Born, 1778)
- Nassa francolina (Bruguière, 1789)
- Nassa serta (Bruguière, 1789)
- Purpura panama (Röding, 1798)
- Purpura persica (Linnaeus, 1758)
- Rapana rapiformis (Born, 1778)
- Thais aculeata (Deshayes and Milne Edwards, 1844)
- Thais alouina (Röding, 1798)
- Thais armigera (Link, 1807)
- Thais bufo (Lamarck, 1822)
- Thais tuberosa Röding, 1798
- Vexilla vexillum (Gmelin, 1791)
BUCCINIDAE

- *Babylonia areolata* (Link, 1807)
- *Babylonia lutos* (Lamarck, 1822)
- *Cantharus undosus* (Linnaeus, 1758)

COLUMBELLIDAE

- *Pyrene scripta* (Lamarck, 1822)

NASSARIIDAE

- *Nassarius arcularius* (Linnaeus, 1758)
- *Nassarius coronatus* (Bruguière, 1789)
- *Nassarius crematus* (Hinds, 1844)
- *Nassarius dorsatus* (Röding, 1798)
- *Nassarius glans* (Linnaeus, 1758)

MELONGENIDAE

- *Pugilina cochlidium* (Linnaeus, 1758)
- *Pugilina colosseus* (Lamarck, 1816)
- *Pugilina ternetiana* (Gmelin, 1791)
- *Volema myristica* (Röding, 1798)

FASCIOLARIIDAE

- *Fusinus colus* (Linnaeus, 1758)
- *Fusinus nicobaricus* (Röding, 1798)
- *Latriolagen smaragdula* (Linnaeus, 1758)
- *Latriurus polygonus* (Gmelin, 1791)
- *Pleuroplaca filamentos* (Röding, 1798)
- *Pleuroplaca trapezium* (Linnaeus, 1758)

COLUBRARIIDAE

- *Colubraria muricata* (Lightfoot, 1786)

VOLUTIDAE

- *Cymbiola vespertilio* (Linnaeus, 1758)
- *Melo amphora* (Lightfoot, 1786)
- *Melo melo* (Lightfoot, 1786)

HARPIDAE

- *Harpa articularis* Lamarck, 1822
- *Harpa harpa* (Linnaeus, 1758)
- *Harpa major* Röding, 1798

TURBINELLIIDAE

- *Vasum ceramicum* (Linnaeus, 1758)
- *Vasum turbinellus* (Linnaeus, 1758)

OLIVIDAE

- *Oliva annulata* (Gmelin, 1791)
- *Oliva caerulea* (Röding, 1798)
- *Oliva miniacea* (Röding, 1798)
- *Oliva oliva* (Linnaeus, 1758)
- *Oliva reticulata* (Röding, 1798)
- *Oliva tricolor* Lamarck, 1811
- *Oliva vidua* (Röding, 1798)

MITRIDAE

- *Mitra eremitarum* Röding, 1798
- *Mitra mitra* (Linnaeus, 1758)
- *Mitra stictica* (Link, 1807)
COSTELLARIIDAE
- Vexillum rugosum (Gmelin, 1791)
- Vexillum vulpeculum (Linnaeus, 1758)

CONIDAE
- Conus betulinus Linnaeus, 1758
- Conus coronatus Gmelin, 1791
- Conus flavidus Lamarck, 1810
- Conus generulis Linnaeus, 1767
- Conus leopardus (Röding, 1798)
- Conus litteratus Linnaeus, 1758
- Conus lividus Hwass, 1792
- Conus marmoreus Linnaeus, 1758
- Conus quercinus Lightfoot, 1786
- Conus radiatus Gmelin, 1791
- Conus suratensis Hwass, 1792
- Conus tessulatus Born, 1778
- Conus textile Linnaeus, 1758

TURRIDAE
- Lophiotoma indica (Röding, 1798)
- Turricula javana (Linnaeus, 1758)
- Turris babylonia (Linnaeus, 1758)

TEREBRIDAE
- Hastula hectica (Linnaeus, 1758)
- Terebra areolata (Link, 1807)
- Terebra maculata (Linnaeus, 1758)
- Terebra subulata (Linnaeus, 1767)

ARCHITECTONICIDAE
- Architectonica maxima (Philippi, 1849)
- Architectonica perspectiva (Linnaeus, 1758)

DOLABELLIDAE
- Dolabella auricularia (Lightfoot, 1786)

MELAMPIDAE
- Ellobium aurisjudae (Linnaeus, 1758)
- Ellobium aurismidae (Linnaeus, 1758)
- Pythia scarabaeus (Linnaeus, 1758)

SIPHONARIIDAE
- Siphonaria javanica (Lamarck, 1819)
- Siphonaria laciniosa (Linnaeus, 1758)
- Siphonaria sirius Pilsbry, 1894
References

