fao.gif (5805 bytes)

Canavalia brasiliensis Mart. ex Benth.

Photo1.jpg (1333 bytes)


Author: Marie Schloen, Michael Peters and Rainer Schultze-Kraft

Taxonomy and synonyms

Canavalia brasiliensis belongs to the subtribe Diocleinae, tribe Phaseoleae in the subfamily Papilionoideae, family Leguminosae (Fabaceae).

Canavalia amazonica Piper, C. caribaea Urb., C. fendleri Piper, C. leptophylla, C. mexicana Piper, C. panamensis Piper, C. paraguayensis Piper, C. prolifica Piper ex Ricker and some others

Common names and cultivars

Common names are Brazilian jackbean and, locally, Feijão bravo do Ceará (Brazil). No commercial cultivars are known.


Canavalia brasiliensis is a weakly perennial, prostrate to twining herbaceous legume. Leaves are trifoliolate, leaflets ovate with acute apex, 12-15 cm long and 8-10 cm wide, almost glabrous. Inflorescences are axillary racemes, 20-26 cm long, with purple flowers, 2-2.5 cm long. Pods are glabrous, 12-20 cm long and approx. 1 cm wide, of brown to dark-brown color, dehiscent with an average of 12 seeds. Seeds are light-brown to brown, approx. 11 mm long and 8 mm wide, with a black hilum, 6 mm long. 1000-seed weight is 590-730 g. There is a high level of hardseededness and consequently dormancy. The number of chromosomes found in C. brasiliensis is 2n = 22 (Alves et al., 1989).

Geographic distribution and adaptation

Canavalia brasiliensis is a New World species with a very wide natural distribution that extends from north of the Tropic of Cancer in Sinaloa, Mexico, to 27° S in NE Argentina. There are three major distribution centres in (a) Central America, Mexico and the Caribbean, (b) Paraguay, NE Argentina and S Brazil, and (c) NE Brazil (Sauer, 1964).

Seed germination of C. brasiliensis was shown to be tolerant to salinity up to a NaCl concentration of 200 mM (Cruz et al., 1995). The adaptation of adult plants to high salt contents is not conclusive; however there are indications that C. brasiliensis uses high salt concentrations in the tissue to increase the osmotic potential and thereby achieve a higher salt tolerance (Vidal et al., 2000).

C. brasiliensis is tolerant to drought. For example in the Brazilian Cerrado it can be cultivated successfully as green manure during the dry season. It survives the 5-month dry period (May-September) even in very dry years and is very productive under more favourable conditions (Burle et al., 1999). Moreover it regrows quickly at the onset of the rains and as a result can suppress weeds (Carvalho et al., 2000).

C. brasiliensis grows well on a wide range of soils, from very acid (pH 4.3) to alkaline (pH 8.0) and is adapted to low fertility conditions (Espíndola et al., 1997; Peters et al., 2002). Root growth and biomass production are affected by soil compaction, though less than in the case of the jackbean (C. ensiformis) (Alvarenga et al., 1997).

Seed treatment before sowing

Scarification of seeds before sowing is necessary to break hardseededness and to subsequently obtain an even establishment. With 75 minutes sulphuric acid or 30 minutes hot water (80 °C) treatment, germination rates of 80% and 50%, respectively, can be achieved (Cruz et al., 1995).

Land preparation and sowing

C. brasiliensis is sown in rows 40-50 cm apart and with 20 cm distance between plants in the row, equivalent to 50 kg seed/ha. For seed production, seeds are sown in rows 1 m apart and 20 cm between-plant distance, equivalent to 20-30 kg/ha of seed. Seed is sown at a depth of 2-5 cm (Burle et al., 1999; Peters et al., 2002).

Agronomic performance

Canavalia brasiliensis has not yet received the wide attention of the jackbean (C. ensiformis); all studies reported in the literature were done in Latin America.
C. brasiliensis establishes quickly though not as rapidly as C. ensiformis. It develops a dense and extensive root system with many fine roots. It extends roots deeper than C. ensiformis and rapidly reaches the subsoil ensuring an enhanced uptake of ground water and nutrients (Burle et al., 1992; Alvarenga et al., 1995).
As a green manure, average dry matter (DM) production is 5000 to 7000 kg/ha/year, with extremes ranging from 1700 to 14,200 kg/ha/year (Lathwell, 1990; Alvarenga et al., 1995; Amabile et al., 1996; Carvalho et al., 2000; Piccolo, 2002). Compared to C. ensiformis, productivity of C. brasiliensis is lower but more stable and less affected by adverse environmental factors (Amabile et al., 1996).


Use of C. brasiliensis is mainly as green manure, and for fallow and erosion control. In view of its ample and deep root system, the species can contribute to amelioration of soil structure, to stabilisation of erosion prone areas and to nutrient cycling.
Because of the medium decomposition and N mineralization rates of the biomass, the nutrient release synchronizes well with the nutrient demand of annual crops such as maize and rice, when the green manure biomass is incorporated before sowing of the succeeding crop (Burle et al., 1999; Cobo et al., 2002a). As a result, N recovery is higher than for most other green manure plants and can reach N recovery rates of mineral N fertilizer (Lathwell, 1990; Demetrio et al., 1998).
In Central America, C. brasiliensis is also used to improve the value of stubble grazing during the dry season. In poor regions of NE Brazil, seed is used as food in times of low food availability (Oliveira et al., 1994).

Diseases and pests

No diseases or pests of economic importance are reported. However, C. brasiliensis is a host plant for the white fly (Peters et al., 2002).

Forage quality

There is little information on herbage quality of C. brasiliensis. According to a study of Cobo et al. (2002b), the biomass at the flowering stage contains 44.5% C; 3.71% N; 33.5% ADF; 44.1% NDF; 10.6% hemicellulose; 6.52% lignin; 8.42% polyphenols; in vitro dry matter digestibility is 69.6%. In that study, C/N ratio was 12 while other authors report a C/N ratio of up to 16 (Demetrio et al., 1998; Carvalho et al., 2000). Mineral content is similar to other tropical forage legumes, with the exception of the high Ca content (1.5%) in C. brasiliensis (Alvarenga et al., 1995; Cobo et al., 2002b). Though no concrete data were presented, tannins and saponins are reported to be medium; contents of flavonoids and flavans are low (Pessanha et al., 1995). As cut forage, it was well accepted by goats and sheep in Nicaragua (Caballero et al., 1995).
Seeds contain 31.9% (Gomes et al., 1988) to 41.6% (Mayworm et al., 1998) crude protein, 52.3% carbohydrates, 12.3% crude fibre, 2.8% ash and 1.2% oil (Gomes et al., 1988, Mayworm et al., 1998). About 35% of total nitrogen is non-protein nitrogen, with the toxic amino acid canavanin contributing the major part (Gomes et al., 1988). The main storage protein is analogous to the canavalin found in C. ensiformis (Barcellos et al., 1993). Limiting amino acids are methionin, cystein and tryptophan (Gomes et al., 1988; Oliveira et al., 1994).
Besides the low concentration of sulphur containing amino acids, nutritional quality of seeds is further reduced by antinutritional compounds. These include trypsin inhibitors, concanavalin Br, canavanin and canatoxin. The lectin concanavalin Br forms about 20% of total protein. It has a similar amino acid sequence to lectin ConA found in C. ensiformis, but has a higher reactivity; it led to higher biological reactions in trials with rats. The lectin itself is indigestible and is reduced through legation with carbohydrates; also their digestibility. Through inhibition of digestive enzymes and attachment to glycolipids and glycoproteins of the mucus membrane of the digestive tract, it affects digestibility in general, including protein digestibility. Moreover, the lectin affects the immune system, protein metabolism and hormone regulation. The toxic effects of Con Br have also been tried for use against insect pests (Isidro et al., 2001). The concentration of the toxic amino acid canavanin in the seed is about 5% of DM. The mechanism of its antinutritional effect is not yet clear; however it is assumed that canavanin acts as an anti-metabolite to arginin. The protein canatoxin is often mentioned in literature, but it is only toxic when injected and not through oral consumption; hence it cannot be considered a really anti-nutritional factor (Gomes et al., 1988; Barcellos et al., 1993; Oliveira et al., 1994; Carlini and Udedibie, 1997; Sanz-Aparicio et al., 1997; Grangeiro et. al., 1997; Udedibie, 2001; Ramos et al., 2002).
In a feeding trial with rats, untreated seed led to a pronounced reduction of intake, protein digestibility and protein utilization; bodyweight was reduced and protein deficiency and direct effects of canavanin resulted in hypertrophy of inner organs (Oliveira et al., 1994).
To inactivate the antinutritional compounds, seeds need to be broken, soaked in water for 48 hours and subsequently cooked for one hour (Carlini and Udedibie, 1997; Udedibie, 2001).

Main attributes and shortcomings

Published information on C. brasiliensis is scarce. However it is a species of high agronomic potential, mainly for soil conservation and amelioration. Its main characteristics include drought tolerance and adaptation to a wide range of soil pH and low fertility soils. The quality of foliage is largely unknown but may be limited by antinutritive factors. C. brasiliensis is a host plant for white fly.


Alvarenga, R.C.; Costa, L.M. da; Moura Filho, W.; Regazzi, A.J. (1995): Características de alguns adubos verdes de interesse para a conservação e recuperação de solos. Pesquisa Agropecuária Brasileira 30(2): 175-185.

Alvarenga, R.C.; Costa, L.M. da; Moura Filho, W.; Regazzi, A.J. (1997): Produção de matéria seca e absorção de nutrientes por leguminosas, em resposta à compactação do solo. Revista Ceres 44(254): 421-431.

Alves, M. A. O.; Custódio, A. V. de Carvalho (1989): Citogenética de leguminosas coletadas no estado do Ceará. Revista Brasileira de Genética 12(1): 81-92.

Amabile, R.F.; Carvalho, A.M.; Duarte, J.B.; Fancelli, A.L. (1996): Efeito de épocas de semeadura na fisiologia e produção de fitomassa de leguminosas nos cerrados da região do Matogrosso de Goiás. Scientia Agricola, Piracicaba 53(2/3): 296-303.

Barcellos, G.B.S.; Almeida, L.M.; Moreira, R.A.; Cavada, B.S.; Oliveira, J.T.A. de; Carlini, C.R. (1993): Canatoxin-, concanavalin A- and canavalin-cross-reactive materials during maturation of Canavalia brasiliensis (Mart.) seeds. Planta 189: 397-402.

Burle, M.L.; Suhet, A.R.; Pereira, J.; Resck, D.V.S.; Peres, J.R.K.; Cravo, M.S.; Bowen, W.T.; Bouldin, D.R.; Lathwell, D.J. (1992): Legume green manures. Dry season survival and the effect on succeeding maize crops. Soil Managment CRSP Bulletin 92(04): 35 pp.

Burle, M.L.; Lathwell, D.J.; Suhet, A.R.; Bouldin, D.R.; Bowen, W.T.; Resck, D.V.S. (1999): Legume survival during the dry season and its effect on the succeeding maize yield in acid savannah tropical soils. Tropical Agriculture (Trinidad) 76(4): 217-221.

Caballero, Z. del C.; Zamora, I. del C.; Sauceda, M.S. (1995): Caracterización y evaluación preliminary de diez leguminosas natives con potencial forrajero. Thesis no. 70, Escuela de Agricultura y Ganadería de Estelí, Estelí, Nicaragua.

Carlini, C.R. and Udedibie, A.B. (1997): Comparative Effects of Processing Methods on Hemagglutinating and Antitryptic Activities of Canavalia ensiformis and Canavalia braziliensis Seeds. Journal of Agricultural and Food Chemistry 45: 4372-4377.

Carvalho, A.M. de; Sodré Filho, J. (2000): Uso de adubos verdes como cobertura do solo. Boletim de Pesquisa - Embrapa Cerrados 11: 20 pp.
Cobo, J.G.; Barrios, E.; Kass, D.C.L.; Thomas, R. (2002a): Nitrogen mineralization and crop uptake from surface-applied leaves of green manure species on a tropical volcanic-ash soil. Biology and Fertility of Soils 36: 87-92.

Cobo, J.G.; Barrios, E.; Kass, D.C.L.; Thomas, R. (2002b): Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant and Soil 240: 331-342.

Cruz, M.S.D.; Perez Urria, E.; Martin, L.; Avalos, A.; Vicente, C. (1995): Factors affecting germination of Canavalia brasiliensis, Leucaena leucocephala, Clitoria ternatea and Calopogonium mucunoides seeds. Seed Science and Technology 23(2): 447-454.

Demetrio, R.; Guerra, J.G.M.; Santos, G. de A.; Almeida, D.L. de; Polli, H. de; Camargo, F.A. de O. (1998): Absorção de nitrogênio do solo pelo milho influenciada pela adição de diferentes resíduos de culturas. Pesquisa Agropecuária Brasileira 33(4): 481-486.

Espíndola, J.A.A.; Guerra, J.G.M.; Almeida, D.L. de (1997): Adubação verde: Estratégia para uma agricultura sustentável. Embrapa CNPAB, Documentos 42, 20 pp. www.cnpab.embrapa.br/servicos/download/doc042

Gomes, J.C.; Epstein, M.; Maffia, L.M.; Sant' Anna, R. (1988): Composição química de sementes do feijão-bravo e de seu isolado protéico. Arquivos de Biología e Tecnología 31(3): 443-459.

Grangeiro, T.B.; Schriefer, A.; Calvete, J.J.; Raida, M.; Urbanke, C.; Barral-Netto, M.; Cavada, B.S. (1997): Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. European Journal of Biochemistry 248(1): 43-48.

Isidro, R.; Montenegro de Sales, F.J.; Cavada, B.S.; Grangeiro, T.B.; Moreira, R.A. (2001): Acão de lectina de sementes de Canavalia brasiliensis Mart. sobre o comportamento da saúva do nordeste (Atta opaciceps Borgmeier, 1939). Revista de la Facultad de Agronomía, Universidad Central de Venezuela 27: 77-86.

Lathwell, D.J. (1990): Legume Green Manures, Principles for Management based on recent research. TropSoils Bulletin 90(01), Raleigh, NC. 30 p..

Mayworm, M.A.S.; Serra do Nascimento, A.; Salatino, A. (1998): Seeds of species from the caatinga: proteins, oils and fatty acid contents. Revista Brasileira de Botânica 21(3): 299-303.

Oliveira, J.T.A.; Vasconcelos, I.M.; Gondim, M.J.L.; Cavada, B.S.; Moreira, R.A.; Santos, C.F.; Moreira, L.I.M. (1994): Canavalia brasiliensis seeds. Protein quality and nutritional implications of dietary lectin. Journal of the Science of Food and Agriculture 64 (4): 417-424.

Pessanha, G.G.; Carvalho, M.G. de; Brazo Filho, R.; Costa, A.S.V. da (1995): Identificação de substancias secundarias presentes em leguminosas utilizadas como adubo verde. Revista Ceres 42(244): 584-598.

Peters, M; Franco, L.H.; Schmidt, A.; Hincapié, B. (2002): Especies forrajeras multipropósito: opciones para productores de Centroamérica. Centro Internacional de Agricultura Tropical (CIAT), Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ), Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Cali, Colombia 114 p. (CIAT publication no. 333).

Piccolo, G.A. (2002): Aptitud de leguminosas tropicales para ser utilizadas como cubiertas verdes (Misiones, Argentina). Instituto Nacional de Tecnología Agropecuaria (INTA), EE Agropecuaria Cerro Azul, Argentina. www.inta.gov.ar/cerroazul/investiga/suelos_anuales/apt_legum.htm

Ramos, V.R.; Cavada, B.S.; Mazard, A.-M.; Rouge, P. (2002): Interaction of Diocleinae lectins with glycoproteins based in surface plasmon resonance. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 97(2): 275-279.

Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. (1997): The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from concanavalin A. Federation of European Biochemical Societies Letters 405(1): 114-118.

Sauer, J. (1964): Revision of Canavalia. Brittonia 16: 106-181.

Udedibie, A.B. (2001): Semillas de Canavalia ensiformis en dietas avícolas. Resultados recientes de investigaciones en Nigeria. Revista Cubana de Ciencia Avícola 25: 89–99.

Vidal, M. de F.; Romero, R. E.; Oliveira, T. S. de (2000): Imobilização de nutrientes e produção de matéria seca em condições de salinidade e sodicidade crescentes no solo.
Revista Ceres 47(272): 363-373.