Previous Page Table of Contents Next Page


Mineral and antinutritional contents of forage legumes consumed by goats in Nigeria - Composantes minérales et antinutritionnelles des légumineuses utilisées par les caprins au Nigeria

A. D . Ologhobo

Department of Animal Science
University of Ibadan
Ibadan
Nigeria


Summary
Resume
Introduction
Materials and methods
Results and discussion
References


Summary

Experiments were conducted to evaluate the nutritive value of 25 forage legumes collected from 5 locations in Nigeria. Analyses carried out for macro- and micro-mineral contents of these plants showed high percentages of Mg (0.31), P (0.28), Ca (1.25), Na (0.02) and K (2.44). Overall mean levels were 23.64 ppm for Zn, 315.66 for Fe, 86.42 for Mn, 9.43 for Cu and 108.90 for Se. In all forages the concentrations of physic-acid (28.55-316.22 mg/g), physic-phosphorus (20.1792.50 mg/g), oxalates (0.540.82%) and nitrates (0.13-0.66%) were moderate to high. Saponin and hydrogen cyanide contents were inherently low or low due to a high drying temperature of the samples. Tannic acid differed considerably among the different species, being absent or low in some forages and extremely high in others. These differences may be genetic or due to cultural practices and soil composition. The nutritional implications of the results are discussed.

Resume

Des essais ont été menés pour évaluer la valeur nutritive de 25 foins de légumineuses provenant de 5 endroits différents au Nigéria. Les résultats des analyses des micro- et macro-éléments de ces plantes montrent de forts pourcentages de Mg (0,31), P (0,28), Ca (1,25), Na (0,02) et K (2,44). Les niveaux moyens (ppm) de Zn étaient de 23,64, 315,66 de Fe, 86,42 de Mn, 9,43 de Cu et 108,90 de Se. Dans tous les fourrages, les concentrations en acide phytique (28,55316,22 mg/g), de phosphore-phytique (20,1792,5 mg/g), d'oxalates (0,54-0,82 p.cent) et de nitrates (0,13-0,66 p.cent) étaient de modérées à élevées. Les concentrations en saponines et cyanides hydrogénées étaient très faibles dues à la haute température de séchage des échantillons. Les teneurs en tanin varient considérablement parmi les différentes espèces. Ces différences peuvent être d'origine génétique ou dues à des façons culturales particulières et à la composition du sol. Les implications alimentaires de ces résultats sont discutées.

Introduction

A major constraint to the use of legumes as a livestock feed is the presence of toxic and antinutritional constituents. These constituents have different but adverse effects on animal performance including loss of appetite and reductions in dry matter intake and protein digestibility. Tannins inhibit the utilization of nutrients through astringency, enzyme inhibition and reduced forage digestibility (Onwuka, 1983). Phytates chelate several mineral elements, especially Ca, Mg, Fe, Zn and Mo, and interfere with their absorption and utilization (Ologhobo, 1980). Oxalates affect Ca and Mg metabolism (Oke, 1969) and react with proteins to form complexes which have an inhibitory effect on peptic digestion (Oboh, 1986). The saponins act on the cardiovascular and nervous systems as well as on the digestive system. Large doses of legume juices containing saponins cause distention of the rumen (Gestetner et al, 1986). Cyanogenic glycosides impart a bitter taste, reduce palatability and cause toxicity. Intact plants contain little, if any, free hydrogen cyanide but this may be formed rapidly under the influence of ß-glucosidase in cells injured by freezing, drying or maceration.

There are no data on nitrate, phytate and some other antinutritional contents of perennial forage legumes in Nigeria. Some data on tannic acid are available for some perennial forage grasses and browse species (Offiong and Awah 1988; Onwuka, 1983). This paper provides information on the mineral elements and antinutritional toxic factors in some Nigerian forage legumes.

Materials and methods

Samples of 25 forage legume eaten by goats were collected at 5 sites in Nigeria. Samples were mowed with a scythe at various heights above the ground, chopped and wilted in the field. Grab samples of the wilted forage were taken, oven-dried at 70°C for 48 hr. cooled and milled in a Christy-Norris grinder. Ground samples of about 500 g were sealed in cellophane bags and stored at 4°C until required for analysis.

Contents of Mg, Zn, Cu. Fe and Mn were determined using the Parkin-Elmer atomic absorption spectrophotometer. A flame photometer was used for Na, K and Ca: P and Se were determined by standard methods (AOAC, 1975). All of tannin (Burns, 1963; Dalby and Shuman, 1978), saponin (Walls et al, 1952; Segal et al, 1966), phytin - as physic acid and phytin-phosphorus (Young and Greaves, 1940) -oxalate (AOAC, 1975), hydrocyanic acid (Wood, 1965; Tewe, 1980) and nitrate (Jackson, 1958) were determined by standard methods. Determinations were made on a dry weight basis.

Results and discussion

Macro- and micro-elements

The mean P content was 0.25 ± 0.02%. All the legumes for which P was determined contained more than the 0.15% recommended for livestock. The highest level (0.42%) occurred in Indigofera hirsuta and Teramus labialis. The Ca content ranged from 0.40% to 1.57% with a mean value of 1.03 ± 0.06%. These values compare favourably with other Nigerian results (Onwuka, 1983; Agishi, 1985; Ifut, 1987). All the forage legumes contained more than 1.6 g/kg DM, the level generally recommended for non-lactating goats (NRC, 1981). Results obtained for Mg are lower than those found elsewhere in Nigeria (Offiong and Awah, 1988). This could result from the season in which the forage legumes were collected coupled with the fact that most soils in southern Nigeria are predominantly acidic. Ratios of Ca/P were higher than the recommended range of 1 to 2 (NRC, 1981) in most of the samples except for Cajanus cajan and Crotolaria retusa.

Mean values of Na and Cl were 0.05% and 0.02%. Based on the dietary values of 0.5% recommended for goats (NRC, 1981), Na was deficient in all the legumes. Levels of K were high in Calopogonium mucunoides (2.55%), Crotolaria retusa (2.85%), Desmodium scorpiurus (2.44%), Stylosanthes bojeri (2.56%), Stylosanthes guyanensis (2.70%) and Teramus labialis (2.10%). The levels of K in all the forages with the exception of Cajanus cajan (0.72%), Centrosema plumieri (0.30%), Centrosema pubescens (0.25%), Clitoria ternatea (0.70%), Dolichos lablab (0.78%) and Peuraria phaseoloides (0.65%) were above the 0.80% recommended for lactating goats (NRC, 1981). The K levels in Centrosema plumieri and Centrosema pubescens were lower than the maintenance requirement of 0.5% for non-lactating goats (NRC, 1981).

A mean value of 240.3 ± 39.64 ppm was obtained for Fe, the range being 60-633 ppm. Most legumes contained less than the 350 ppm recommended for goats (NRC, 1981). The level of 45 ppm of Zn recommended for goats (Mba, 1981) was not found in any of the samples. The mean for Mn was 90.92 ± 6.52 ppm in the range 43 to 146 ppm. Only 12 legumes had Mn values above the recommended 90 ppm (NRC, 1981). The mean value for Cu was 7.79 ± 0.63 ppm and the range 3.5 to 14.5 ppm. Based on the 10 ppm recommended for goats (Mba, 1981), the Cu levels in all legumes except Centrosema plumieri (14.5 ppm), Centrosema pubescens (14.0 ppm), Desmodium ramosissimum (10.5 ppm), Indigofera hirsute (10.5 ppm), Indigofera retroflexa (10.2 ppm) and Peuraria phaseoloides (14.0 ppm) were below the recommended value.

Toxic and antinutritional factors

Phytin content ranged from 89.2 mg/g in Cajanus cajan to 316.4 mg/g in Vigna marina. The corresponding phytin-phosphorus ranged from 24.8 to 92.5 mg/g with an overall mean of 61.25 ± 3.51 mg/g. These values compare with those reported elsewhere for leafy vegetables (Taylor, 1979) and for cowpea and limabean (Ologhobo, 1980) where phytin is the major phosphorus store.

Mean tannin content was 5.05 ± 0.75% in the range 0.00% to 10.72%. The wide variation in tannin contents suggests considerable differences in the nutritional quality of the different species. The level of tannin which adversely affects digestibility in sheep and cattle is between 2% and 5% (Diagayete and Huss, 1981). Goats are known to have a threshold capacity of about 9% dietary tannin (Nastis and Malachek, 1981). With the exception of Dolichos lablab (10.13%), Indigofera hirsuta (10.43%), Indigofera suffrutiscosa (9. 35%), Stylosanthes gracilis (10.72%) and Tefrosia vogelli (10.03%), it would appear that most of the forage legumes analysed in this study contained tannin at levels tolerable to goats.

Saponin levels were low, as found in other studies (Gestetner et al, 1966). From the levels obtained in this study, it is not likely that the saponin content of forages will affect their nutritional potentials to any significant extent.

Oxalate contents were similar in all samples. Values ranged between 0.52 mg/100 g and 0.82 mg/100 g, with a mean of 0.67 ± 0.02 mg/100 g. Oxalates affect Ca and Mg metabolism (Onwuka, 1983) but ruminants, unlike monogastric animals, can consume considerable amounts of high-oxalate plants without adverse effects, due principally to microbial decomposition in the rumen (Oke, 1969).

Hydrocyanic acid contents were low due to the high drying temperature employed during sample preparation (Ologhobo and Fetuga, 1984). Iodine and protein deficiency syndromes might be the sole etiological factors in a number of endocrine and neurological anomalies observed during cyanide toxicity in animals (Tewe, 1980).

Nitrate values ranged from 0.13% in Centrosema pubescens to 0.51% in Dolichos lablab with an overall mean of 0.32 ± 0.02%. On a compararative basis the nitrate contents were high in Crotolaria retusa, Crotolaria spectabilis, Dolichos lablab and Teramus labialis. Contents in Centrosema pubescens, Clitoria ternatia, Tefrosia vogelli and Vigna unguiculata were low. The low nitrate contents seem to augur well for animal nutrition, since a high concentration of nitrate is known to be toxic. Nitrate LD50 is about 45 g/100 kg body weight when given to cattle and 25 g/100 kg when given to goats (Crawford et al, 1966). A recent study (Apata, 1987) has established that nitrate per se may not be toxic to animals but may be reduced by rumen bacteria to nitrite which then causes poisoning through combination with haemoglobin to form a brown pigment, methaemoglobin, which is incapable of transporting oxygen to body tissues. The nitrite is further reduced to ammonia to be utilised by the ruminant.

It is not likely that the nitrate levels obtained in this study are high enough to produce adverse effects on animal performance. The validity of this statement needs to be verified by appropriate feeding trials to investigate the actual levels of antinutritional factors that are toxic, the fate of the absorbed substances and their cumulative effects on the animal. For the animal to fulfill its potentialities, the effects of factors which not only reduce dry matter intake and digestibility but also decrease nutrient utilization and cause metabolic disorders should be reduced or eliminated.

These investigations have demonstrated the considerable variability among plants in their contents of antinutritional factors. This may be of potential importance for breeding studies in selecting for improved forage legumes with zero antinutritional content and high nutrient quality.

References

Agishi E C. 1985. Forage resources of Nigerian rangelands. In: I F Adu, O A Osinowo, B B A Taiwo and W S Alhassan (eds.), Small ruminant production in Nigeria. National Animal Production Research Institute, Shika-Zaria, Nigeria.

AOAC 1975. Official methods of analysis (12th edition). Association of Official Analytical Chemists, Washington DC, USA.

Apata D F. 1987. Metabolism of nitrate and nitrite in sheep. Nigerian Journal of Science 20: 38-44.

Burns R E. 1963. Methods of tannin analysis for forage crop evaluation. Technical Bulletin No. 32 (N. S.). Georgia Agricultural Experiment Station, Athens, USA.

Crawford R F. Kennedy W K and Davidson K L. 1966. Factors influencing the toxicity of forages that contain nitrate when fed to cattle. Cornell Veterinarian 56: 5-10.

Dalby A and Shuman A C. 1978. Temperature-induced errors in the colorimetric determination of tannins. Analytical Biochemistry 85: 325-327.

Diagayete M and Huss W. 1981. Tannin contents of African pasture plants: Effects on analytical data and in vitro digestibility. Animal Research and Development 15: 79-90.

Gestetner B. Birk Y. Bondi A and Tencer Y. 1966. A method for the determination of sapogenin and saponin contents in soybeans. Phytochemistry 5: 803-806.

Ifut O J. 1987. The nutritional value of Gliricida sepium, Panicum maximum and peels of Manihot spp. fed to West African Dwarf goats. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Jackson M L. 1958. Soil chemistry analysis. Prentice-Hall, Englewood Cliffs, USA.

Mba A U. 1981. The mineral nutrition of goats in Nigeria. In: Nutrition et systèmes d'alimentation de la chèvre. Institut National de la Recherche Agronomique/Institut Technique de l'Elevage Ovin et Caprin, Paris, France.

Nastis A S and Malachek J C. 1981. Digestion and utilization of nutrients in oak browse by goats. Journal of Animal Science 52: 283-288.

NRC 1981. Nutrient requirements of goats: Angora, dairy and meat goats in temperate and tropical countries. Nutrient Requirements of Domestic Animals No. 15. National Research Council, Washington DC, USA.

Oboh S O. 1986. Biochemical composition and utilization of sweet potato (Ipomoea batatas) in ruminant rations. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Offiong C A and Awah A A. 1988. The mineral and tannin contents of some browses consumed by goats. Paper presented at the 13th Annual Conference of the Nigerian Society for Animal Production, University of Calabar, 20-24 March, 1988.

Oke O L. 1969. Oxalic acid in plants and in nutrition. World Review of Nutrition and Dietetics 10: 263-303.

Ologhobo A D. 1980. Biochemical and nutritional studies of cowpea and limabean with particular reference to some inherent antinutritional components. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Ologhobo A D and Fetuga B L. 1984. The cyanogenic glycoside contents of raw and processed limabean varieties. Food Chemistry 13: 117-128.

Onwuka C F. 1983. Nutritional evaluation of some Nigerian browse plants in the humid tropics. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Segal R. Mansour M and Zaitschek A. 1966. Effect of ester groups on the haemolytic action of some saponins and sapogenins. Biochemical Pharmacology 15: 1411-1416.

Taylor O A. 1979. Influence of age and nitrogen fertilization on the nutritive value of some Nigerian leafy vegetables. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Tewe O O. 1980. Implications of cyanide toxicity on the growth and reproductive performance of rats and pigs. Ph.D. Thesis. University of Ibadan, Ibadan, Nigeria.

Walls M E, Kratzer F W. Rothman E S and Eddy C R. 1952. Steroidal sapogenins. I. Extraction, isolation and identification. Journal of Biological Chemistry 198: 533-543.

Wood T. 1965. The cyanogenic glucoside content of cassava and cassava products. Journal of the Science of Food and Agriculture 17: 85-90.

Young S M and Greaves J E. 1940. Influence of variety and treatment on physic acid content of wheat. Food Research 5: 103-105.

EDITORS' NOTE

Tables containing the full analytical data can be obtained on request from the author.


Previous Page Top of Page Next Page