Defining the period of infectiousness in cattle naturally infected with foot-and-mouth disease virus.

B. M. Bankowski1, R. Howey2, N. Juleff1, D. Gibson1, C. Wright1, S. J. Cox1, P. V. Barnett1, M. E.J. Woolhouse2, B. Charleston1

EUFMD MEETING
Erice, Sicily (Italy)
14-17 October 2008

1 Institute for Animal Health, Pirbright Laboratory, Ash Rd, Woking, Surrey, GU24 0NF, UK.
2 Epidemiology Group, Centre For Infectious Diseases, Ashworth Laboratories, Kings Buildings, Mains Road, University of Edinburgh, EH9 3JF, UK.
Conclusions

- Transmission occurred between inoculated to donor animals and the incubation period to the onset of clinical signs in the donor animals varied between 2 and 8 days post challenge.

- In our model system, FMDV infected cattle have been shown to be infectious from 42.35 hours to 86.80 hours.

- Presence of lesions in oral cavity, mouth, tongue and/or snout correlate with transmission occurrence and appear to be good indicators of infectiousness.

- Airborne transmission within pen was not evident between cattle, highlighting a lesser importance of this route epidemiologically.
Objectives of the study

- Broaden our understanding on the biology of FMDV transmission in cattle.
- Quantify variability in infectiousness at different time points and establish the peak of infectiousness.
- Pin-point predictors of infectiousness.
- Provide data to improve mathematical models of the disease.
To meet the objectives

- After initial pilot study, 4 experiments carried out (16-22 cattle each).
- Extensive collection of samples for bio-bank and subsequent analysis.
- Liaison with mathematical modellers to establish period of infectiousness.
Pattern of experiments 1, 2, 3 & 4

- Inoculates challenged donors and direct contact recipients.
- Indirect contact or Indirect contact companion animal (exp 3&4).

48 hrs: In contact for 24 hrs
2 days later
4 days later
6 days later
8 days later

Monitored for 14 days post-challenge.
Sampling and analysis

Samples:
- Collected daily in the first week and every other day in the second week.
- Serum, whole blood, nasal swabs and nasal fluid, probang/oropharyngeal fluid, air samples.

Assays:
- Virus isolation in bovine thyroid (BTY) primary cell culture
- RNA extraction, RT-QPCR
- Liquid Phase Blocking ELISA (LPBE)
Incubation period (any clinical signs) in donor animals

Days post challenge

VO75
VN89
VN90
VR57
VQ05
VR56
VO76
VQ06

day
0 1 2 3 4 5 6 7 8 9 10

Incubation period
Transmission events from donor animals

<table>
<thead>
<tr>
<th></th>
<th>Days post challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO75</td>
<td>0</td>
</tr>
<tr>
<td>VN89</td>
<td></td>
</tr>
<tr>
<td>VN90</td>
<td></td>
</tr>
<tr>
<td>VR57</td>
<td></td>
</tr>
<tr>
<td>VQ05</td>
<td></td>
</tr>
<tr>
<td>VR56</td>
<td></td>
</tr>
<tr>
<td>VO76</td>
<td></td>
</tr>
<tr>
<td>VQ06</td>
<td></td>
</tr>
</tbody>
</table>

- **Incubation period**: ■ – successful transmission, □- lack of transmission

Days post challenge: 0 1 2 3 4 5 6 7 8 9 10
Challenge and transmission events in relation to the first obvious lesion in a mouth, oral cavity, nose or tongue

- day of challenge,
- transmission event,
- lack of transmission

day clinical signs first observed
Virus excretion over transmission experiments

Estimated release of airborne virus over 8hrs; * Cyclone sampler, ** Porton sampler

<table>
<thead>
<tr>
<th></th>
<th>2nd Experiment</th>
<th>3rd Experiment</th>
<th>4th Experiment</th>
<th>5th Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3*</td>
<td>4.5*/4**</td>
<td>3*</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3*</td>
<td>0</td>
<td>0</td>
<td>4*/5**</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Cyclone sampler, ** Porton sampler
Future work

- Complete analysis of the collected samples from the pilot study involving vaccinated cattle – (see poster – D. Gibson et al.,).

- Perform further studies with vaccinated cattle at different time points, to establish when they become protected and inhibit/reduce transmission of disease to naïve animals.

- Provide further data for the mathematical modellers, to further clarify the window of infectiousness in cattle and effect of prophylactic intervention.
Acknowledgements

- IAH, Pirbright
 - Epidemiology and Immunology team
 - David Paton and John Gloster
 - Animal technicians

- Funding from the Biotechnology and Biological Science Research Council (BBSRC), UK