BEFS Module 2 - Techno-economic analysis on the production of biofuels

Rommert Schram & Oscar Kibazohi
Bioenergy and Food Security Project
Module 2: Key questions

Now that we have seen which areas have potential....

- Can biofuels be produced profitable in Tanzania?

- Can biofuels be profitable with smallholders participation?
Module 2 - Steps

No biofuel production in Tanzania today

- Is the country capable to produce biofuels?

If yes...

- At what production cost?

 Based on:

 - feedstock choice
 - feedstock production set up
 - Industrial biofuel conversion technology level
 - Industrial biofuel conversion set up
 - Co-products income
Feedstock

<table>
<thead>
<tr>
<th>Biofuel</th>
<th>Feedstock</th>
<th>Production options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>Sugarcane, Molasses, Cassava</td>
<td>Outgrower only or Estate only or Mix outgrower/Estate</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>Jatropha, Oil palm</td>
<td></td>
</tr>
</tbody>
</table>
Industrial biofuel production technology level

- **Recommended “entry point” level**
 - Biodiesel
 - Ethanol

- **Level 1**
 - Conventional proven technologies

- **Level 2**
 - Hybrid of both conventional technologies with new improved which are more efficient

- **Level 3**
 - Advanced technologies that may not be commercially available yet
Industrial biofuel conversion set up

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Production Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand alone facilities (i.e. ethanol only)</td>
<td>Million liters per year</td>
</tr>
<tr>
<td>Integrated facilities (i.e. sugar and ethanol production at same site)</td>
<td></td>
</tr>
</tbody>
</table>
Biofuel production cost scenarios

The scenarios considered the following:
1. Raw material supplied by outgrowers
2. Raw material supplied from estates
3. Raw material supplied both outgrowers & estates
4. Biofuel production capacity & industrial configuration
Biofuel production cost scenarios

- Example – Ethanol from Sugarcane scenarios

<table>
<thead>
<tr>
<th>Who provides Feedstock?</th>
<th>How is industrial operation?</th>
<th>What is production scale?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgrower</td>
<td>Annexed sugar/ethanol</td>
<td>Scenario 1: 61 mil liter</td>
</tr>
<tr>
<td>SUGAR CANE</td>
<td>Ethanol only</td>
<td>Scenario 2: 79 mil liter</td>
</tr>
<tr>
<td>Combined Outgrower:Estate</td>
<td></td>
<td>Scenario 3: 52 mil liter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scenario 4: 14.8 mil liter</td>
</tr>
</tbody>
</table>
Biofuel production cost scenarios

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Feedstock Origin</th>
<th>Industrial Configuration</th>
<th>Numbers of Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar cane</td>
<td>Outgrowers/ Estate/Mix</td>
<td>Stand alone/integrated facility; technology level; capacity; by-products processing</td>
<td>4</td>
</tr>
<tr>
<td>Molasses</td>
<td>Existing sugar factories</td>
<td>Stand alone/integrated facility; technology level; capacity; by-products processing</td>
<td>2</td>
</tr>
<tr>
<td>Cassava (fresh and dried)</td>
<td>Outgrowers/ Estate/Mix</td>
<td>Stand alone; technology level; capacity; by-products processing</td>
<td>3</td>
</tr>
<tr>
<td>Oil palm</td>
<td>Outgrowers</td>
<td>Stand alone; technology level; capacity; by-products processing</td>
<td>1</td>
</tr>
<tr>
<td>Jatropha</td>
<td>Outgrowers/ Estate/Mix</td>
<td>Integrated; technology level; capacity; by-products processing</td>
<td>3</td>
</tr>
</tbody>
</table>
Results – Biofuel production costs

Under recommended technology and no co-product credits

<table>
<thead>
<tr>
<th>Biofuel</th>
<th>Production Cost in Tanzania (USD/litre)</th>
<th>Other Biofuel Production Costs in the World (USD/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol from sugar cane</td>
<td>0.49-0.68</td>
<td>Brazil / Colombia: 0.27 - 0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>India: 0.48 - 0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EU: 0.76 - 0.78*</td>
</tr>
<tr>
<td>Ethanol from molasses</td>
<td>0.62-0.74</td>
<td>Brazil, India Thailand & South Africa < 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA: 0.60 – 0.70</td>
</tr>
<tr>
<td>Ethanol from cassava</td>
<td>0.37-0.47</td>
<td>Thailand and Vietnam: 0.34 - 0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brazil: 0.45 -0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>China and India: 0.60 - 0.65</td>
</tr>
<tr>
<td>Biodiesel from oil palm</td>
<td>0.83</td>
<td>Malaysia: 0.38 – 0.69</td>
</tr>
<tr>
<td>Biodiesel from Jatropha</td>
<td>0.74- 0.96</td>
<td>India: 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zambia: 0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mozambique: 0.78</td>
</tr>
</tbody>
</table>

* may include use of sugar from beets
Module 2 - Techno-economic analysis

Information on **biofuel production cost** can help:

- Assess competitiveness of domestic biofuel production with fossil fuels
- Assess competitiveness of domestic biofuel production on international market
- Identify needs for sector support
Assessing competitiveness of ethanol on the national market USD per litre

*Based on average ethanol production cost in Tanzania
Tanzanian ethanol delivered at Rotterdam port USD per barrel

Policy implications

Biofuel industry in Tanzania needs to be supported in order to reduce cost and make it competitive. This call for policy and strategies in the following areas:

Co-product market development for byproducts from biofuel industries
- Electricity from co-products
- Organic fertilisers
- Increase in yield
- Research into better varieties of crops
- Improved farming technology/services/infrastructure
- Promote block farming and institutional support to smallholder farmers
Policy implications

• Promote block farming and institutional support to smallholder farmers

Human capital

• Development of human capital e.g.
 – Support technology research in universities
 – Initiate and support special training programme in biofuel technology in universities locally and abroad
 – Initiate and support biofuel research and technology development in the country

Policy interventions

• Introduce a blending mandate to stimulate the Biofuels industry
• Fiscal incentives for producers and consumers (i.e. VAT)
• Special incentives/support for integrating outgrowers
Training / capacity building

Why training / capacity building

- The tools that have been developed under the BEFS project can assist the Government in their Biofuel Policy Development
- FAO will not be in a position to continue providing expertise on these tools
- The knowledge on these tools needs to be vested in Tanzania
- The Government can access the knowledge on the BEFS tools through the Universities / Research Institutes and consultants that have been trained under the BEFS project
Training / capacity building

Organisations trained
- University of Dar es Salaam (College of Engineering and Technology)
- Tanzania Investment Center
- Ministry of Agriculture Food Security and Cooperatives
- Ministry of Energy and Minerals

Two levels of training
- BIOTA (Bioenergy Techno-Economic analysis for Africa)
 - Accessible for non technical people
- PENTA (Process engineering for environment and techno-economic analysis)
 - Specifically for chemical engineers
THANK YOU!

www.fao.org/bioenergy/foodsecurity/befs
BEFS Analysis building blocks

Module 1
Where: Biomass Potential

Module 3
Outlook: Agriculture markets outlook

Module 2
How: Biofuel supply chain production costs

Module 5
Vulnerability: Household level food security

Module 4
Macroeconomy: Economy wide impacts

Supporting government in national biofuel policy development