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Drought is one of the most frequent climate-related disasters occurring across large portions of the African
continent, often with devastating consequences for the food security of agricultural households. This study
proposes a novel method for calculating the empirical probability of having a signi ! cant proportion of the
total agricultural area affected by drought at sub-national level. First, we used the per-pixel Vegetation Health
Index (VHI) from the Advanced Very High Resolution Radiometer (AVHRR) averaged over the crop season as
main drought indicator. A phenological model based on NDVI was employed for de ! ning the start of season
(SOS) and end of the grain ! lling stage (GFS) dates. Second, the per-pixel average VHI was aggregated for
agricultural areas at sub-national level in order to obtain a drought intensity indicator. Seasonal VHI averaging
according to the phenological model proved to be a valid drought indicator for the African continent, and is
highly correlated with the drought events recorded during the period (1981 " 2009). The ! nal results express
the empirical probability of drought occurrence over both the temporal and the spatial domain, representing a
promising tool for future drought monitoring.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

Droughts can have devastating effects on water supply, crop
production, and rearing of livestock. They may lead to famine,
malnutrition, epidemics and displacement of large populations from
one area to another. The agricultural droughts across Africa of the
1980s and early 1990s have affected many countries and people and
were probably some of the most shocking famine emergencies in
recent history ( Gommes & Petrassi, 1994). The International Disaster
database of the Centre for Research on the Epidemiology of Disasters
(CRED), reports more than 0.5 million deaths and 253 million people
affected by drought events during the last 30 years (1981 " 2010) in
Africa ( EM-DAT, 2010). Table 1 summarizes the major droughts that
occurred in the continent during the last three decades.

Identi ! cation of drought prone areas and estimation of the
probability of drought occurrence are fundamental for the imple-
mentation of programmes that aim to increase food security. For risk
management programmes and for ef ! cient food-aid delivery, know-
ing the probability of drought occurrence is of basic importance.
Furthermore, drought information at administrative levels is very
important for a better interpretation of potential effects of climate
change in Africa.

Drought risk calculation at continental scale is currently limited by
the scarcity of reliable rainfall data. The coverage of operational
weather stations in most African countries shows large spatial gaps
and individual stations often provide discontinuous data. Due to those
reasons, rainfall measurements are commonly replaced by data
generated by atmospheric circulation models and/or satellite obser-
vations. Commonly used rainfall datasets for monitoring food security
are the precipitation forecasts of the European Centre for Medium-
Range Weather Forecast (ECMWF) and the rainfall estimates (RFE)
produced by the Climate Prediction Centre (CPC) of the National
Oceanic and Atmospheric Administration (NOAA). Several other
sources exist, like for example the Tropical Rainfall Measuring Mission
(TRMM), the Tropical Applications of Meteorology using SATellite
(TAMSAT) products at Reading University, and the FAO rainfall
estimates ( http://geonetwork3.fao.org/climpag/FAO-RFE.php ). How-
ever, all the mentioned rainfall estimates contain errors and show
deviations in different regions of Africa ( Dinku et al., 2007; Lim & Ho,
2000; Rojas et al., in press). At the same time, validation or better
calibration of these rainfall estimates is hindered by the scarce
availability of ground (rain gauge) measurements. This makes it
extremely dif ! cult to assess the quality or reliability of each dataset,
which can have important implications for food security applications
(Verdin et al., 2005 ).

On the other hand, vegetation abundance and development
information, which is strongly related to rainfall, can also be used for
drought assessment. Field studies and airborne scanner experiments
(Tucker, 1979) demonstrated that the spectral re " ectance properties of
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vegetation canopies, and in particular combinations of the red and near
infrared re " ectance (so called #vegetation indices $or VI), are very useful
for monitoring green vegetation. Among the different VIs based on these
two spectral channels, is the NDVI (Normalized Difference Vegetation
Index), proposed by Deering (1978) , which is the most popular
indicator for studying vegetation health and crop production ( MacDo-
nald & Hall, 1980; Sellers, 1985 ). Research in vegetation monitoring has
shown that NDVI is closely related to the LAI (leaf area index) and to the
photosynthetic activity of green vegetation. NDVI is an indirect measure
of primary productivity through its quasi-linear relation with the fAPAR
(Fraction of Absorbed Photosynthetically Active Radiation) ( Los, 1998;
Prince, 1990). NDVI is affected by some well known limitations as for
example effects of soil humidity and surface anisotropy. Composite
products used in most applications tend to limit these effects but they
cannot be ignored completely. As a consequence NDVI values may
slightly vary due to soil humidity and depending on the particular
anisotropy of the target as well as on the angular geometry of
illumination and observation at the time of the measurements. This is
particularly relevant for AVHRR derived data since the orbit of the NOAA
platforms tended to drift in time and the 25 years time series is
composed by data from several different sensors ( Tucker et al., 2005).

At present, several time series of satellite derived vegetation
indices at the global scale and with a high temporal frequency are
freely available. These include MODIS (Moderate Resolution Imaging
Spectroradiometer), SPOT (Satellite Pour l©Observation de la Terre)
VEGETATION, and AVHRR (Advanced Very High Resolution Radiom-
eter). Although the spatial resolution is relatively low, AVHRR has the
longest time series and also offers the advantage of a thermal channel.
The AVHRR sensor was" own on different NOAA satellites since 1979.
A large number of derived products exist, which continue to be
updated until present. The main objective of this study is to evaluate
the probability of agricultural drought occurrence for the African
continent without depending on the scarcity and low quality of
rainfall data sets. For that purpose we use vegetation indices derived
from AVHRR data. Final probabilities are derived by aggregating
results at the sub-national administrative level.

2. Materials and methods

2.1. Data

The main data used for this study are existing long term time series
of NOAA AVHRR data. Two series made available by different research
groups were combined in this work:

1) The Vegetation Health Index (VHI) produced by the Center for
Satellite Applications and Research (STAR) of the National
Environmental Satellite, Data and Information Service (NESDIS).
This data set consists of weekly VHI images at 16 km resolution for
the period 1981 (week 35) " 2010 (week 11). 1 http://www.star.
nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php

2) The Normalized Difference Vegetation Index (NDVI) dataset from
the NASA Global Inventory Monitoring and Modeling Systems
(GIMMS) Group at the Laboratory for Terrestrial Physics ( Tucker
et al., 2005). This dataset consists of 15-day maximum-value
composites at 8 km resolution. We used the data from July 1981 to
December 2006 for the African window. http://glcf.umd.edu/data/
gimms/

Two additional spatial data sources were used for aggregating the
VHI over space: a crop mask and administrative regions boundaries.
The crop mask was constructed by using both the crop zones
developed by FAO in the 90s, and the Global Land Cover (GLC2000)
(Bartholom" & Belward, 2005 ). The administrative regions were
obtained from the Global Administrative Unit Layers (GAUL)
database. GAUL is an initiative implemented by FAO funded by the
European Commission http://www.foodsec.org/tools_gaul.htm . It
aims at providing the most reliable spatial information on adminis-
trative units for all the countries in the world. Here we used the ! rst
sub-national administrative units (level 1) in order to have a
homogeneous reference layer at the continental scale. This implies

1 From week 36 of 1994 to week 3 of 1995 data are not present due to sensor
problems.

Table 1
Major droughts ocurred in the African Continent during the period 1980 " 2010.

Region 1980" 89 1990" 99 2000" 09

Northern Africa In Morocco, agricultural output recorded losses
in 1992, 1995 and 1997 due to drought. In 1997,
Algeria©s cereal harvest decreased sharply as a
result of severe drought ( UNEP, 2002).

The most recent drought in Tunisia and Algeria
(from 1999-2002) appears to be the worst since the
mid-15th century. That©s according to researchers
who recently analysed tree-ring records from the
region (http://environmentalresearchweb.org/cws.
article/news/35673).

West Africa The Sahel was hit by a severe drought in the
early-mid 1980©s (Brooks, 2004). The worst
drought in the Sahel during this period occurred
during the year 1984 affecting most Sahel
countries ( Gommes & Petrassi, 1994).

Eastern Africa The lowlands of Ethiopia and the main
productive areas of Kenya have been affected by
the 1984 drought ( Gommes & Petrassi, 1994). In
Ethiopia, the 1984 drought caused the deaths of
about 1 million people, 1.5 million head of
livestock perished, and 8.7 million were affected
in all. In 1987, more than 5.2 million people in
Ethiopia, 1 million in Eritrea and 200 000 in
Somalia were severely affected ( Drought
Monitoring Center, 2000 ).

Rainfall records indicate that, in some parts of the
sub-region, the drought in 2000 was worse than
that experienced in 1984 ( Drought Monitoring
Center, 2000).

Southern Africa In 1982/83 much of Southern Africa was severely
affected ( Drought Monitoring Center, 2000 ).

Most of the Southern Africa countries were
severely affected by the 1991/92 drought, which
was the most severe after the 1982/83 drought
(Gommes & Petrassi, 1994). The drought of
1991/92 was the severest on record, causing a
54% reduction in cereal harvest and exposing
more than 17 million people to risk of starvation
(Calliham et al., 1994; UNEP, 2002).
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that according to the different political organizations of each country,
the size of individual units is highly variable.

2.2. Methodology

2.2.1. Vegetation Health Index (VHI)
For drought assessment we selected the Vegetation Health Index

(VHI) developed by Kogan (1995, 1997) , who has successfully applied
it for numerous case studies in many different environmental
conditions around the globe, including Asia ( Kogan et al., 2005;
Ramesh et al., 2003), Africa ( Unganai & Kogan, 1998) , Europe ( Kogan,
1986), North America ( Kogan, 1995; Salazar et al., 2007) and South
America ( Seiler et al., 2007). VHI is a composite index joining the
Vegetation Condition Index (VCI) and the Temperature Condition
Index (TCI).

The VCI (Kogan, 1994) is derived from the Normalized Difference
Vegetation Index (NDVI). It is a scaling of the NDVI between its
maximum and minimum value, and can be expressed as:

VCIi = 100* NDVI i " NDVImin! " = NDVImax " NDVImin! " !1"

where NDVI i is the smoothed weekly NDVI, and NDVI max and NDVImin

are absolute maximum and minimum NDVI, respectively, calculated for
each pixel and week during the period 1981 " 2010 of the smoothed
NDVI. VCI was designed to separate the weather related component of
NDVI from ecological factors ( Kogan, 1994). In general the VCI captures
rainfall dynamics better than NDVI particularly in geographically
heterogeneous areas. The VCI not only re" ects the spatial and temporal
vegetation variability but also allows quantifying the impact of weather
on vegetation ( Kogan, 1994; Unganai & Kogan, 1998).

The TCI algorithm is similar to VCI, but relates to the brightness
temperature T estimated from the thermal infrared band of AVHRR
(channel 4). Kogan (1995) proposed this index to remove the effects
of cloud contamination in the satellite assessment of vegetation
condition due to the fact that the AVHRR channel 4 is less sensitive to
water vapor in the atmosphere compared with the visible light
channels. High temperatures in the middle of the season indicate
unfavorable or drought conditions while low temperature indicates
mostly favorable conditions ( Kogan, 1995). The expression conse-
quently is:

TCIi = 100* T max " Ti! " = Tmax " Tmin! " ! 2"

VHI is expressed as:

VHIi = w 1*VCIi + w 2*TCIi ; !3"

It is the additive combination of VCI and TCI for week i. In some
studies different weights (w1 and w2) are assigned to VCI and TCI. For
example, Unganai and Kogan (1998) determined the weights based
on the correlation between VCI and TCI with corn yield anomalies. In
near normal conditions, vegetation is more sensitive to moisture
during canopy formation (leaf appearance) and to temperature
during " owering. Since moisture and temperature contribution
during the crop cycle is currently not known, we assume that the
share of weekly VCI and TCI is equal (w 1 =w 2 =0.5).

2.2.2. Agricultural crop mask
In order to assess agricultural drought we created an agricultural

crop mask for the African continent, using the FAO GIEWS main crop
zones and the GLC2000 land cover map. We ! rst took the total extent
of the FAO main crop zones for the following annual crops: pulses,
sorghum, wheat, millet, teff, maize, niebe, yams, rice and barley. The
zones are rather coarse and often overlapping. We therefore used the
more detailed GLC2000 to re ! ne the mask by excluding bare soils and
forest. Instead of using directly the GLC2000 agricultural classes we
preferred an exclusion approach. The main reason for this is that the

GLC2000 forest and bare soil classes have shown a higher accuracy
than the agricultural classes ( Mayaux et al., 2004 ).The combination of
the described steps resulted in a single crop mask for Africa.

2.2.3. Determination of the optimal VHI integration period for agricultural
areas (temporal aggregation)

VHI can detect drought conditions at any time of the year. For
agriculture, however, we are only interested in the period most
sensitive for crop growth (vegetative stage, " owering and grain ! lling)
(Doorenbos & Kassam, 1979). In this study we decided to use the same
period (i.e. weeks) for all pixels within individual administrative units.
Moreover, we do not shift this period between different years.

To determine the most sensitive period we ! rst derived the start of
season (SOS) and end of season (EOS) from the GIMMS NDVI time
series. For this we used the 50%-threshold method of White et al. (1997)
and implemented it in the same way as Vrieling et al. (2008) . In short, for
each pixel we ! rst determine per year the maximum NDVI value and the
preceding minimum NDVI value. SOS is the moment between
maximum and minimum when NDVI reaches the average between
maximum and minimum (i.e. 50% threshold). EOS is the moment after
maximum when the NDVI-curve again reaches the same level ( Fig. 1).
For consistency in the multi-year analysis and within administrative
units, the SOS and EOS-values were averaged for all years and all pixels
within a unit. A double season was only retained for those units where at
least 50% of the pixels allow for a good separation between two seasons
(i.e. two clear minima and maxima).

A modi ! cation was done subsequently to the EOS ( Fig. 1). The
developmental stages at which crop plants are more sensitive to
water de ! cit are the vegetative stage, the " owering and the grain
! lling ( Doorenbos & Kassam, 1979). Restrictive water supply during
these stages may affect productivity more severely than during other
periods (establishment or ripening). The retrieved SOS generally
coincides with the start of the crop development stage, approximately
25" 30 days after crop planting according to our knowledge of African
agriculture. This fact is due to the seasonal lag of NDVI response with
respect to rainfall and varies for vegetation type in tropical Africa, i.e.
1" 3 weeks in Equatorial rainforest, 2 " 6 weeks in the wet savanna and
about 6" 9 weeks in the dry savanna ( Shinoda, 1995). Traditional
rainfed farmers in Africa generally use the onset of the rainy season for
crop planting. Normal planting time in Southern Africa is October "
November, in the Sahel June" July, and in Eastern Africa, where double
seasons are found, February" June. For EOS, the modeled values
include the ripening stage that is less sensitive to water stress. To
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Fig. 1. Sample NDVI pro! le showing the period of analysis de ! ned by the start of the
season (SOS) and the end of the grain ! lling stage (EGF). The EGF is de! ned by the end of
the season (EOS) minus 6 weeks (42 days). The crop cycle is divided into 5 development
stages: E: establishment, CD: crop development, F: " owering, Y: yield formation or grain
! lling and R: ripening stage. Where CD, F and Y are the most sensitive to water de ! cit.
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adjust the period of analysis to the most sensitive water stress stages
of the crop, we subtracted 6 weeks from EOS. In this way we identify
an end date at the end of the yield formation or grain ! lling stage
instead of using the harvesting time (EGF = EOS ! 6 weeks) ( Fig. 1).

For each pixel and individual year, the weekly VHI values between
the mean SOS and EGF were averaged to obtain a representative value
of VHI for the drought-sensitive part of the crop season (temporal
aggregation). This method takes into account the cumulativ e
development of drought over a period of time. At pixel level the VHI
average was only calculated if at least 75% of the crop season values
were present. Otherwise, the pixel was treated as #missing data $. In
practice the only pixels with missing data are those in seasons with
incomplete VHI data (1981/82 and 1994/95).

2.2.4. Geographic VHI aggregation
The temporal VHI aggregation was ! rst carried out at pixel level

(16#16 km) to identify drought prone areas across the whole African
continent. In a second stage, in order to directly identify the
administrative units affected by agricultural drought, we determined
which percentage of the unit©s agricultural area experienced VHI values
below 35 during the crop season. This threshold was introduced by
Kogan (1995) to identify drought conditions. He obtained this threshold
correlating the VCI with different crop yields and diverse ecological

conditions and found a logarithmic ! t between VCI and crop yield with
an r-square of 0.79.

Within each administrative unit, the analysis was limited to
agricultural areas based on the crop mask described in Section 2.2.2.
Only pixels covered at least for 25% by the crop mask were considered.
A weighted average (with weights based on percentage covered by
crop mask) was calculated for each administrative region. Regions
were excluded in case less than 10 valid pixels were present, i.e. pixels
having both a valid average VHI value and are covered for at least 25%
by agriculture ( Genovese et al., 2001).

The ! nal results were aggregated at sub-national administrative
level because this allows easy comparison with existing agricultural
production statistics. For some countries (like Burundi, Rwanda, and
Uganda) the administrative units are rather small and comprise a
limited number of pixels, thus sometimes not allowing for effective
VHI aggregation. In these cases however, we preferred to apply the
existing administrative borders instead of creating arti ! cial units. The
results of the temporal and spatial VHI aggregation are 29 (1981 "
2009) annual maps showing the percentage of agricultural area
affected by drought for each administrative unit.

2.2.5. Probability mapping
In order to compute the probability of drought affecting signi ! cant

portions of the agricultural area of each administrative unit, we

GIS extraction
Administrative regions (GAUL) 

Phenological-model 
(Average SOS and GFS) 

Input data Process and tools Intermediate and final out puts

VHI (1981-2010) 
Weekly data 

16 km resolution

29 crop season maps with the percentage of agriculture area 
at Sub-national level affected by drought 

VHI < 35

PERIOD OF ANALYSIS 30 years (1981-2010) 

Agricultural crop mask 
(FAO crop zones x GLC2000) 

Empirical probability to have 
more than 30% or  50% of 

agriculture area at Sub-national 
level affected by drought

29 VHI crop season 
average images 

GIMMS NDVI 
(1981-2006)
15-day data 

8 km resolution

Fig. 2. Methodological " ow-chart.
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introduced two minimum arbitrary thresholds, one of 30% and
another of 50%. In practice, when over 30% of the total agricultural
area of an administrative unit is affected by drought, we assume that a

large number of agriculture households experience its consequences.
When more than 50% of agricultural area is affected by drought, we
can assume to be confronted with an extreme drought event with

SOS
EGF

A B C

Fig. 3. (A) Agricultural crop mask considering the main FAO crop zones and masking out the forest using GLC2000 for the following annual crops: pulses, sorghum, wheat, millet,
maize, niebe, teff, yams, rice and barley. (B) The start of crop development stage by administrative unit (C) end of the grain ! lling stage by administrative unit. In maps B and C a
monthly color scale was used only for graphic representation, operationally a weekly time step is used.

Percentage of the agriculture areas with VHI 
below 35

35                  50             85
Low High

Vegetation Health Index (VHI)

A B

Fig. 4. (A) Average VHI image for the crop season 1983/84 (B) percentage of agricultural area affected by drought (VHI b35) based on (A). The average crop season VHI shows the
temporal impact of drought while the percentage of affected agricultural area explains the spatial dimension of the drought.

347O. Rojas et al. / Remote Sensing of Environment 115 (2011) 343±352



F
ig

.5
.

P
er

ce
nt

ag
e

of
ag

ric
ul

tu
ra

la
re

a
af

fe
ct

ed
by

dr
ou

gh
t

du
rin

g
th

e
!

rs
t

cr
op

se
as

on
(V

H
Ib

35
)

fr
om

19
82

to
20

10
(s

ea
so

ns
19

94
/9

5
an

d
20

09
/1

0
ar

e
in

co
m

pl
et

e)
.

348 O. Rojas et al. / Remote Sensing of Environment 115 (2011) 343±352



serious impact on regional food security. We assume that the
occurrence of a certain percentage of area affected by drought in
year #t$is independent on climate in other years. If P is the probability
of a drought event, the number n of years that the event happens in a
period of N years follows a binomial distribution ( Evans et al., 2000); P
is estimated by P!=n/N and a con ! dence interval for P is: ( Stuart &
Ord, 1991; von Storch & Zwiers, 1999 )

P" ÃP# 2

!!!!!!!!!!!!!!!!!!!!!!!!
ÃP 1! ÃP=N
"#

!4"

Fig. 2summarizes the data analysis steps in a methodological " ow-
chart.

3. Results

3.1. Crop mask, SOS and EGF

Fig. 3shows (A) the crop mask developed for this study; (B) the start
of the crop development stage (that coincides with the start of the
season of the phenological model, SOS) and (C) the end of the grain
! lling stage. In general the phenological model better re " ects crop
phenology of the relatively homogeneous crop areas in places with a
short rainy season like the Sahel, than of the more complex crop
associations in areas with a longer rainy season such as Eastern
(Ethiopia and Southern Sudan) and Southern Africa (Mozambique and
Madagascar). On the other hand, the phenological model detected the
climate pattern differences in South Africa between the Western Cape
crops (wheat and barley), which are cultivated from May to November
and the crops in the Eastern part of South Africa (e.g. maize, sorghum,

millet %) which grow from October to May. Both SOS and EGF have also
been calculated for areas that have a clearly de ! ned second crop season
(Eastern Africa and some countries in the Guinea Gulf).

3.2. Average VHI for the crop season and percentage of agriculture area
affected by drought

Fig. 4 shows an example of the transformation of VHI averaged
during the crop season 1983/1984 at pixel level into the percentage of
agricultural areas affected by drought (VHI below 35) at sub-national
level. Averaging the VHI during the crop season shows the drought
persistence during the cropping season. In addition, by calculating the
percentage of drought-affected agricultural area, we analyzed the
spatial impact of the drought at sub-national level for each crop
season during the study period. The temporal and spatial aggregations
give a good estimate of the drought intensity during the most water
stress sensitive stages for crops. Fig. 5 presents the percentage of
agricultural area affected by drought for each crop season from 1982/
83 to 2009/10. All the major drought events suffered by the African
continent and reported in Table 1 can easily be identi ! ed at different
geographic scales in Figs. 5 and 6. For example the droughts that hit
the Sahel during the 1980s are clearly observable, and the worst
drought that occurred during the year 1984 was well indenti ! ed
(Gommes & Petrassi, 1994). This drought affected most Sahel
countries, as well as the lowlands of Ethiopia and the main maize
productive areas of Kenya. It was one of the most extensive droughts
in the Sahel which reached well into Eastern Africa. Another
impressive drought well detected by the proposed methodology
occurred in Southern Africa during the cropping season 1991/92.
Gommes and Petrassi (1994) mention that most of the Southern

Fig. 6. Area affected by drought (VHI b35) at different scales of analysis: (A) Continental: the major drought occurred in 1991 (48% of agricultural area affected) followed by the 1982
drought (28%). (B) Regional: Western Africa affected from 1982 to 1998; all regions seriously affected by the drought in 1991 and Eastern Africa most affected during the 2000s.
(C) National: Comparison of area affected in three countries: Morocco, Mozambique and Kenya. (D) Sub-national: Comparison of area affected by drought at the sub-national level in
Kenya.
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Africa countries were severely affected by the 1991/92 drought, which
was the most severe after the 1982/83 event, the latter having been
the worst since the 1920s. Other examples of detected events relate to
several North African countries which experienced serious drought
events during the 90s such as Morocco (1992, 1995 and 1997) and
Algeria (1997). For the analyzed period (1981 " 2009) the 1991/92
drought is clearly the largest drought that the Africa continent has
suffered, affecting Southern Africa, part of Western Africa, and part of
Eastern Africa ( Fig. 5).

Fig. 6 shows the percentage of area affected by drought using
different scales of analysis: continental, regional (we use the regions
proposed by the Africa Environment Outlook http://www.unep.org/
dewa/Africa/publications/aeo-1/009.htm ), national (Morocco,
Mozambique and Kenya) and sub-national (Kenya). The analysis
done at different scales proves the " exibility of the methodological
approach proposed in this paper, allowing international institutions
interested in drought monitoring an easier understanding of the
relative importance of local droughts. Knowing the extension and
intensity of a drought a continental scale could facilitate the targeting
of donor resources among drought-affected countries in Africa. In a

country level the method provides a way of quickly assessing the
magnitude of the current drought as compared with historical records
(as can be seen for example in Fig. 6C, 1995 was clearly the worst
drought in Morocco over the last 30 years). Finally, the sub-national
level analysis shows the impact of localized drought on the national
production and helps planning food-aid intervention measures by
integration with other socioeconomic factors (population, livelihood,
etc.) for the region affected.

3.3. Empirical probabilities at sub-national level

Fig. 7 shows the probabilities of exceeding the thresholds of 30%
and 50% of the total agricultural area affected by drought. These
thresholds can be modi ! ed depending on the objective of the study.
For instance in an agricultural insurance scheme when ! xing the
insurance premium, the area affected could be correlated with the
anticipated economic losses following the drought. For food security
projects, the thresholds could be related with the number of people
affected and the number of rations needed to overcome the food-gap.

B2

A1 B1

A2

Probability in % of 
having 30%(A) or 
50% (B) of agric. 

areas with VHI<35

Fig. 7. Probability of occurrence of having more than 30% (A) or more than 50 % (B) of the agricultural area affected by drought by administrative unit (1) during the ! rst crop season
(2) during the second crop season.
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Extreme agrometeorological events are at the same time rare (low
statistical frequency) and characterized by high intensity ( Gommes,
1999). The extended droughts of 1984 and 1991/92 that occurred in
the Sahel and Southern Africa, were exceptional because they were
intense and involved large clusters of administrative units at the same
time, representing extraordinary events at the continental level.
However the situation changes when the analysis is focused on the
agricultural area affected by drought at sub-national level because
from this perspective, all droughts are relevant and important. For
instance several local #hot spots $ were identi ! ed with empirical
probabilities above 35% (3.5 times every 10 years) to have at least 30%
of agriculture affected ( Fig. 7-A1): Tensift and Centre in Morroco,
Brakna in Mauritania, North Darfur in Sudan, Semenawi Keih Bahri in
Eritrea, Coast and Eastern in Kenya, Manyara, Tanga, Arusha and
Kilimanjaro in Tanzania, Juba Hoose, Juba Dhexe and Shabelle Hoose
in Somalia, Kaabong and Kiruhura in Uganda, Southern in Sierra
Leone, Gbarpolu in Liberia and Otjozondjupa in Namibia.

4. Discussion and conclusions

In general the developed methodology proved useful to identify
major historical droughts over the observed period (1981 " 2009), as
well as for identifying the impact of these events on agricultural areas
over the whole African continent. Furthermore it was possible to
geographically identify the administrative areas exposed to high risk of
drought. These results should be analyzed considering socioeconomic
factors, such as population increase and livelihood strategies, to have a
more comprehensive assessment of the vulnerability of local popula-
tions to these droughts. For instance, the rapid population growth in
Africa, which has placed extreme pressure on scarce land resources, and
a lack of access to the assets is increasing the vulnerability of many
regions to drought. In these areas, where smallholder livelihoods are
undiversi ! ed and are dominated by subsistence-oriented food crop
production, even a moderate drought that will cause a decline in
harvests can be devastating for household food security.

It is also evident that per-pixel analysis of drought indicators is
only useful for the detection of major (historical) droughts if the
temporal integration is coupled with spatial aggregation. In this case
we looked speci ! cally at agricultural drought, but depending on the
drought impact on other land use categories (forest, pastoralist areas,
protected areas, etc.) the same methodological approach could be
applied with minor adaptations.

The results shown in Figs. 5 and 7, provide a powerful tool for early
warning and agricultural monitoring systems to quickly identify
drought-sensitive areas at a continental or regional level, and to re ! ne
the analysis locally by analyzing drought indicators at pixel level or
using more precise local data. Rainfall-based indices can be used for
these areas if good quality records are available, otherwise the
drought probability maps could be helpful in identifying new
locations for rainfall stations for drought monitoring. For early
warning and agricultural monitoring the proposed methodological
approach could be adjusted to be run on a continuous basis. The SOS
date could be calculated in real time (varying from year to year) and
the VHI would be averaged weekly until reaching the EGF date. Every
week during the crop season the percentage of area affected by
drought could be calculated. In this way, the percentage of area
affected by drought (e.g. 30%) could be linked to a temporal condition
in order to establish the best date for issuing a drought warning (i.e.
when at least 50% of the length of the crop cycle is reached). As a
con! rmation of this approach it can be observed that the results of the
! rst crop season 2009/10 for East Africa, are in line with the drought
warnings included in several early warning reports for the same area
(Famine Early Warning System (FEWS-NET) http://www.fews.net/
docs/Publications/kenya_09_2009_ ! nal.pdf , Monitoring Agricultural
ResourceS (MARS), http://mars.jrc.ec.europa.eu/mars/content/
download/1452/8205/ ! le/EA_Kenya_July_2009.pdf).

For the areas with a second crop season, the second season generally
shows a higher probability to suffer from drought. In East Africa this is in
line with the fact that the second crop season (approx. October-January)
is normally the shorter one, corresponding to shorter and more erratic
rainfall than during the ! rst crop season (approx. April " September).

The method presented in this study could be used in a more
detailed way by looking at speci ! c areas or countries and using
detailed information on annual crop cycles instead of modeling the
average crop cycle. At regional or country level, instead of GAUL level
1 aggregation, the pixel level product ( Fig. 4A) could be used as such
or aggregated by any other administrative or thematic zoning used for
food security monitoring.

Finally, climate change is likely to increase the risk of droughts in
many parts of the continent, with declining and more erratic rainfall
resulting in lower aggregate production and more unpredictable
harvests in Africa ( Boko et al., 2007). The ! nal drought probability
represents a preliminary input for more detailed climate change
analysis and prediction. The areas with high drought probability
should be closely monitored and should have special contingency
plans to reduce drought impact. Although in this study some
geographic dynamics of drought events is apparent, i.e. concentrated
in the Sahel during the 80s and in Southern Africa during the 90s, the
period of analysis is too short to relate this to climate change.
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