CCAFS – MOT: A decision support tool for geographic optimisation of agricultural mitigation options
(ongoing work)

Dali Nayak, Jon Hillier, Diana Feliciano & Sylvia Vetter
University of Aberdeen
Rome 12.10.2014
Low emissions agriculture: Supporting agricultural development that GHG emissions or sequesters carbon.
What it does

- Estimate GHG emissions for different land use systems according to management types;
- Rank the most effective mitigation options;
- Estimate the mitigation potential of different options.

What it does not do

- Estimate life cycle assessment of GHG emissions;
- Scale emissions up to total area, total livestock;
- Estimate GHG emissions in different microclimates;
-
Main objective of CCAFS-MOT

- User friendly
- Little time required
- It widely used
- Quick user vs expert user
- General overview of key emission sources
- Tool to help providing advice for policy makers
- Accommodates regional differences
GHG emissions: main input variables are flexible

- Region, climate, soil characteristics
- **Ecosystem:** upland (34 crops + other), rice, grassland
- **Current management practices:** user can choose which practices they are using (e.g. fertiliser application rate, tillage practices).
Mitigation options and potential

- No tillage
- Reduced tillage
- Cover crop
- Balance N
- Organic manure addition
- Balance N, Best fertilizer production technology
- Timing of N application (Synchronizing N application)
- Baseline N, Best fertilizer production technology
- Polymer-coated fertilizers
- Nitrification inhibitor
- Compost application
- Straw addition / Residue return (50%)
Empirical models to estimate GHG emissions

<table>
<thead>
<tr>
<th>Land use</th>
<th>Parameters</th>
<th>Empirical models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>Mineral fertiliser application</td>
<td>Yan et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Water regime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compost application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manure application</td>
<td></td>
</tr>
<tr>
<td>Upland crops and grassland</td>
<td>Organic fertiliser application</td>
<td>Stehfest and Bouwman (2006)</td>
</tr>
<tr>
<td></td>
<td>Mineral fertiliser application</td>
<td>Stehfest and Bouwman (2006)</td>
</tr>
<tr>
<td></td>
<td>Organic amendments</td>
<td>Smith et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>Mineral fertiliser production</td>
<td>China - Zhang et al. (2013)</td>
</tr>
<tr>
<td>Livestock systems</td>
<td>Enteric fermentation</td>
<td>Herrera et al. 2013</td>
</tr>
</tbody>
</table>
Mitigation practices

- Mitigation practices: 12 practices + agroforestry (3 systems included).
- Balanced mineral nitrogen (N) application
- Nitrification inhibitor/Polymer-coated fertiliser
- Timing of mineral nitrogen application
- Best fertiliser production technology (Europe)
- Reduced tillage/No tillage
- Straw addition/Residue incorporation
- Cover crops
- Manure addition
- Compost application
- Agroforestry
Brentrup & Palliere (2010)

<table>
<thead>
<tr>
<th>N application rate (kg N/ha)</th>
<th>N removal (kg N/ha)</th>
<th>NUE (%)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>-</td>
<td>Soil mining 1</td>
</tr>
<tr>
<td>48</td>
<td>56</td>
<td>116</td>
<td>Risk of soil mining 2</td>
</tr>
<tr>
<td>96</td>
<td>92</td>
<td>96</td>
<td>Balanced in- and outputs 3</td>
</tr>
<tr>
<td>144</td>
<td>126</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>151</td>
<td>69</td>
<td>Risk of high N losses 4</td>
</tr>
<tr>
<td>240</td>
<td>166</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Soil mining = N removal exceeds N input -> declining soil fertility and yield = unsustainable
(2) Risk of soil mining = additional N requirement for roots and straw is not met by N input
(3) Balanced in- and outputs = N fertilizer input meets total crop demand (grain, straw, roots)
(4) Risk of high N losses = N fertilizer input exceeds total crop demand -> increased risk of leaching

• Nitrogen Use Efficiency (NUE)=
Kg N removed with harvest / Kg of mineral fertilizer N applied * 100.
How does it look like?
Questions/feedback

• Are you familiar with the mitigation options suggested?
• Would you like to see more information than what is currently presented? What is missing?
• What is the difference from other tools?
• Other suggestions...
Acknowledgements

• This work was undertaken as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is a strategic partnership of CGIAR and Future Earth. This research was carried out with funding by the European Union (EU) and with technical support from the International Fund for Agricultural Development (IFAD). The views expressed in the document cannot be taken to reflect the official opinions of CGIAR, Future Earth, or donors.
Many thanks!!!!