LogoCOUNTRY COMPASS

 

Australia

Draft national approach to fuelwood collection and use in Australia

The Australian and New Zealand Environment and Conservation Council (ANZECC) is a non-statutory Ministerial Council that provides a forum for the Commonwealth, State, Territory and New Zealand governments to exchange information and develop coordinated policies in relation to national and international environment and conservation issues.

ANZECC has prepared a draft national approach to fuelwood collection and use in Australia for public consultation. The document proposes a toolkit of actions for governments to encourage a more ecologically sustainable fuelwood industry, which contributes to the protection of remnant woodland vegetation and threatened woodland species.

An electronic version can be downloaded from the following Web sites: www.ea.gov.au/anzecc or www.ea.gov.au/fuelwood . (Source: Jim Stevenson in Forest Information Update [FIU], 22 January 2001.)

For more information, please contact:
E-mail: ciu@ea.gov.au .

 

 

Chile

Arboles que producen energía

Hoy en día un 15 por ciento de la matriz de energía primaria de Chile proviene de la biomasa generada en gran parte por desechos forestales. Este volumen, sin embargo, podría aumentar considerablemente debido a las actividades de Energía Verde S.A., empresa filial de Gener.

La empresa, que se creó en 1993 con la certeza de que en Chile es posible obtener un gran porcentaje de energía proveniente de los residuos de las operaciones industriales del sector forestal (biomasa), particularmente de los aserraderos, utiliza cerca de 60 mil toneladas mensuales de desechos de madera, suministradas en gran parte por sus mismos clientes, para la producción de energía eléctrica y vapor de proceso. Dos años de trabajo se necesitaron al interior de Gener, en el área dedicada al estudio de formas alternativas de generación de energía, para crear esta empresa que ha invertido hasta la fecha alrededor de 53 millones de dólares EE.UU. y que da trabajo a 65 personas directamente y a más de 70 de manera indirecta.

Actualmente, Energía Verde S.A. comercializa 181 millones de kWh y 870 mil toneladas de vapor para procesos de la industria de la madera, celulosa y papel.

En el primer trimestre del año 2000, además, puso en servicio la primera etapa de la planta térmica Mostazal, ubicada en la VI Región, con una capacidad inicial de entrega de vapor de 25 toneladas por hora (t/h), utilizadas para producir papel corrugado por la Compañía Papelera del Pacífico. Para el próximo año, la cifra de generación de vapor de proceso alcanzaría las 45 t/h. El combustible utilizado para la caldera corresponde a los desechos de madera de un conjunto de aserraderos de mediano tamaño de la VI Región y, a futuro, se planea incorporar plantas madereras de la Región Metropolitana.

La empresa inició sus operaciones con la suscripción de contratos con industrias forestales y con la construcción de dos plantas termoeléctricas con una potencia instalada de 9,2 MW y una capacidad de entrega de vapor para secado de madera de 15 t/h. En abril de 1995, comenzó a operar la Central Constitución, ubicada en la VII Región, con contratos de suministro recíproco con Forestal Copihue y Aserraderos Arauco; mientras que en septiembre de ese mismo año entró en funcionamiento la Central Laja, en la VIII Región, en contrato con Aserraderos Mininco.

En estos compromisos suscritos por períodos de entre 15 y 20 años, se fijaron las condiciones de entrega de los residuos de madera por parte de los aserraderos y las de suministro de energía eléctrica y vapor por parte de la empresa.

En 1997, Energía Verde S.A. puso en servicio su tercera planta ubicada en la comuna de Nacimiento, al interior de la Planta de Celulosa Santa Fe, hoy propiedad de C.M.P.C. Celulosa, la cual produce hasta 60 t/h de vapor sobrecalentado que esta industria utiliza para producir energía eléctrica y para su proceso productivo. La corteza de eucaliptos de Santa Fe y la de pino proveniente de Celulosa Pacífico componen la biomasa que se utiliza como combustible.

Como particularidad, José Bertrán, gerente general de Energía Verde S.A., destaca que la planta térmica fue ´la primera en el país que utilizó como tecnología de combustión el denominado ‘lecho fluidizado’, que permite el aprovechamiento de residuos a través de una caldera que los recibe en una cama de arena calentada a 800 ó 900 °C, que permite quemar combustibles de muy bajo poder calorífico (alta humedad)ª.

Otro de los datos interesantes es que las plantas de Constitución y Laja están conectadas al Sistema Interconectado Central (SIC) y forman parte de las centrales incorporadas al Centro de Despacho Económico de Carga (CDEC-SIC), representadas en dicho organismo por Gener, la empresa matriz de Energía Verde S.A. Este hecho es fundamental para Bertrán, quien asegura que como la biomasa que aportan las empresas forestales — principalmente leña, corteza y aserrín — genera más del doble de la energía eléctrica consumida en los aserraderos, la incorporación al SIC permite comercializar los excedentes.

Sin embargo, en los últimos años estas operaciones de generación de energía eléctrica y vapor a partir de desechos de madera han sido complementadas con la búsqueda de otras alternativas para agregar valor a los residuos de la industria forestal. Por esta razón, en 1998, se inició la construcción de la planta de secado y densificación de aserrín más grande del país (ubicada en la planta de Laja), que tiene una capacidad proyectada de producción de 40 mil toneladas al año de briquetas y pellets.

Asimismo, el año pasado se inició en Constitución la producción de compost — una mezcla de aserrín, corteza degradada y cenizas — provenientes del proceso de combustión de los residuos de madera, y que posee importantes ventajas en comparación con la tradicional tierra de hoja.

Las actividades emprendidas por la empresa también han abarcado una fuente de combustión tradicional utilizada en el sur del país como es la leña, a través de un convenio suscrito en 1999 con Conaf Región del Bío-Bío, y que persigue la comercialización de leña certificada, es decir, obtenida de planes de manejo sostenible del bosque nativo. La importancia del acuerdo radica en que por esta vía los pequeños propietarios acceden a alternativas formales de venta.

Para Bertrán estos proyectos ´registrarán un importante crecimiento en los próximos años, considerando el aumento significativo de la disponibilidad de madera aserrable, el consiguiente incremento en el tamaño promedio de los aserraderos y el acceso a tecnología cada vez más eficiente para el aprovechamiento energético de la biomasa, tomando en cuenta los incentivos que tiene el realizar proyectos de energía renovable en los países desarrollados.ª

El tema, según opina el ejecutivo, será una variable relevante para la definición de proyectos industriales por su connotación ambiental y por el valor agregado que puede aportar a la industria forestal, lo que podría influir en la localización de instalaciones y las características y tamaño de los equipos de generación de energía.

Bosques energéticos

Entre los desafíos que se prevén a futuro en el aprovechamiento de biomasa y generación de energía, Bertrán destaca la posibilidad de plantar bosques destinados sólo a la producción de energía — el denominado bosque energético — como los que existen en los países nórdicos, pero afirma que aún no se ha desarrollado un trabajo concreto de Energía Verde S.A. en ese sentido.

Según el ejecutivo, la promoción de un marco institucional que estimule la producción y el uso racional de la bioenergía en Chile es un tema pendiente en esta área. Aprovechando la experiencia que tienen en la materia, la empresa está preparando un documento que explique la potencialidad de la bioenergía en el país y las grandes posibilidades de generación, a partir del aprovechamiento de residuos forestales.

El trabajo persigue un gran objetivo de fondo, como es el de aumentar la proporción de energía proveniente de la biomasa forestal y que hoy representa alrededor de un 15 por ciento de la matriz de energía primaria de Chile. La idea final es contar con otra fuente propia de abastecimiento de energía como lo es, en la actualidad, la energía hidroeléctrica. (Fuente: Lignum, agosto/septiembre 2000.)

 

Fiji

Regional Biomass Assessment Project

The South Pacific Applied Geoscience Commission (SOPAC), a regional organization based in Suva, Fiji Islands, is the implementing agency for a Regional Biomass Assessment Project scheduled to commence in June 2001.

Project activities will include:

• preparing training materials in biomass resource assessment;
• training country participants in biomass resource assessment and policy formulation regarding biomass resource management;
• conducting assessment of the biomass resources in participating Pacific Island Countries (PIC);
• compiling a report on the biomass resource assessment for each country;
• compiling an inventory of biomass technologies appropriate to the participating countries; and
• formulating a Sustainable Management Plan for the biomass resources for each participating country.

For more information, please contact:
Anare Matakiviti, Energy Adviser, Energy Unit, SOPAC Secretariat, Private Mail Bag, GPO Suva, Fiji.
Fax: +679 370 040;
e-mail: anare@sopac.org

 

Germany

German biomass electricity production is set to increase after a draft standards-setting law this week moved a step closer to finalization. Officials claim that the sector’s long-term potential is as large as one fifth of national power supply.

The draft biomass ordinance will help to implement last year’s renewable energy law by creating legal definitions and standards so that producers can claim premium rates of A0.09-0.10 (DM 0.17-0.20 = approx. US$0.08-0.09) per kilowatt-hour.

Nearly a year after it was first proposed by the environment ministry, official approval by the economics ministry means the ordinance is now cleared for a second parliamentary reading. It should take effect before the end of the year, according to officials.

The ordinance sets out technical and environmental standards and requirements for biomass power production, including limits on the use of wood contaminated by toxic materials and exclusions of certain materials. Peat burning, for example, will not qualify for financial support under the renewable energy law, the environment ministry stresses.

The main biomass fuels likely to be used for power generation in the short term are wood chips and waste from the forestry and wood-processing industries. Large quantities are currently landfilled or exported and very little is used to generate electricity. Environment minister Jürgen Trittin yesterday claimed that the ordinance would help lift biomass power production sufficiently to save 5-10 million tonnes of carbon dioxide emissions annually by 2010. (Source: ENDS Daily/Ecofys, 9 March 2001.)

 

Guatemala

In February 2001, a small group of masons from the United States and Canada flew to the western highlands of Guatemala (at their own expense and with no monetary compensation) to hand-build 100 efficient wood-burning brick cooking stoves for 100 indigenous Mayan families.

Their mission was to replace a number of what are known as three-stone fires, with hand-built masonry cooking stoves. The three-stone has a fire in the middle of three stones set as a triangle, with a metal cooking plate (often the lid from a 55-gallon drum) laid over the top. These three-stone fires are commonly located within a dwelling, providing heat as well.

The problem with this method, which is the sole source of cooking and warmth for thousands of Mayan families, is that there is no way of properly venting the wood smoke. Thus, unfortunately, it is also the source of chronic respiratory illnesses. In the extreme, because it is traditionally the woman’s job to tend the fire and do the cooking, women are more exposed to wood smoke, often damaging their eyes, which can even lead to blindness by the age of 40.

By the end of this year’s mission, 100 estufas had been built in El Rincon by North American volunteers, Mayan masons hired locally and with the assistance of the estufa recipients. Virtually every resident in El Rincon who needed a cooking stove received one.

The Guatemala Stove Project/Masons on a Mission are also funding the building of a further 50 cooking stoves in three very remote hamlets in the higher elevations well away from Xela. These will be built with materials provided by the volunteers, and built by the same Maya masons who were hired and trained to work with them in El Rincon.

Another mission is planned for February 2002, to Quetzaltenango (Xela). Volunteers are welcome.

For more information, please contact:
J. Patrick Manley, Masons on a Mission, 15 Nelson Ridge South, Washington, Maine 04574, USA.
E-mail: jpmanley@midcoast.com;
www.midcoast.com/masonsonamission/
; or
Tom Clarke, The Guatemala Stove Project, RR #4 Perth, Ontario K7H 3C6, Canada.
E-mail: clarke@perth.igs.net;
www.guatemalastoveproject.org/


 

Guinée-bissau

Le projet Utilisation rationnelle du patrimoine forestier (GCP/GBS/022/EC), financé par la Communauté européenne dans le cadre de la Programme de Cooperation FAO/Gouvernements, a terminé en mai 2000 depuis trois ans.

À long terme, le projet visait la rationalisation et la professionnalisation de la filière du bois d’énergie. À court terme, il devait permettre la transformation de 80 pour cent du charbon de bois dans des fours de carbonisation à haut rendement, en respectant le Code éthique du charbonnier et en utilisant certains produits ligneux.

Diverses actions ont été entreprises par le projet. Il s’agit notamment de la formation des cadres aux techniques améliorées de carbonisation (utilisation du four MATI), à l’approche participative et à l’animation rurale, ainsi qu’à l’exploitation forestière et la gestion des forêts communautaires.

Les techniques améliorées de carbonisation ont été diffusées parmi les groupes cibles. La stratégie de vulgarisation adoptée par le projet a été celle de l’approche participative visant, à moyen terme, une réelle implication de ces groupes et l’autogestion des villages. Cette stratégie a connu trois phases: la vulgarisation du four MATI et du Code éthique du charbonnier; la mise en œuvre de l’aménagement forestier; et l’organisation communautaire.

Une étude détaillée de la filière du bois d’énergie a été réalisée, ce qui a permis de définir une stratégie concrète en ce qui concerne son organisation et sa gestion. La Proposition technique d’organisation de la filière due bois d’énergie qui a été élaborée prévoit divers aspects législatifs, réglementaires et de taxation forestière.

Une banque de données a été constituée, à partir d’un système de statistique simple et informatisé, pour évaluer la demande de produits forestiers.

Le projet a posé les bases pour le développement des volets concernant la législation et la taxation forestières, l’aménagement et la gestion des ressources forestières, ainsi que l’organisation de la filière du bois d’énergie. Il a également mis en évidence l’urgence et la nécessité de développer ces aspects dans leur intégralité.

Les recommandations concernant ces trois volets sont étroitement liées et interdépendantes. D’une part, la gestion des ressources doit reposer sur une base juridique solide et s’inscrire dans l’organisation de la filière du bois d’énergie. D’autre part, cette organisation passe par l’établissement de mesures juridiques et fiscales, ainsi que par la mise en place de mesures relatives à la production. Enfin, le développement des actions d’organisation de la filière et de gestion des ressources repose sue la législation et la taxation forestières.

Eu égard à la complexité de la problématique et aux faiblesses nationales dans les domaines technique, institutionnel, financier et logistique, il est recommandé de poursuivre l’assistance pour une utilisation rationnelle du patrimoine forestier.

Pour plus de détails, veuillez contacter:
M. Daniele Salvini, Chargé de projets dans les pays,
Bureau régional pour l’Afrique, PO Box 1628, Accra, Ghana.
Télécopie: +233 21 665569;
mél.: Daniele.Salvini@fao.org ; ou
M. Miguel Trossero, à l’adresse indiquée sur la première page.


 

India

Health, climate and energy

The following new publications on health, climate and energy in India are now available for downloading from the Web site indicated below:

Smith, K.R. 2000. National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences, 97(24): 13286-13293.

Smith, K.R., Zhang, J., Uma, R., Kishore, V.V.N., Joshi, V. & Khalil, M.A.K. 2000. Greenhouse implications of household fuels: an analysis for India. Annual Review of Energy and Environment, 25: 741-763.

Smith, K.R., Uma, R., Kishore, VV.N., Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. & Khalil, M.A.K. 2000. Greenhouse gases from small-scale combustion devices in developing countries. Phase IIa. Household stoves in India. EPA-600/R-00-052, US Environmental Protection Agency, Office of Research and Development, Washington, DC. (June)

For more information, please contact:
Kirk Smith, Environmental Health Sciences, University of California at Berkeley, Berkeley, CA 94720, USA.
http://ehs.sph.berkeley.edu/krsmith/

 

Japan

Cheap ethanol

Nihon Shokuryo Corporation has developed a low-cost technology to mass-produce ethanol from urban and agricultural wastes. It is planning to build a plant using the new technology in the near future, with assistance from the Tokyo Metropolitan Government and the Ministry of Agriculture, Forestry and Fisheries.

The plant will have the capacity to process 10 tonnes of waste and produce 2.5 tonnes of ethanol per day. The price of the ethanol that will be produced from the new technology is expected to be only 50 percent of the US$862 that the government pays per kilolitre of industrial ethanol.

At present, the available technology employs a time-consuming and costly process to grind raw materials to produce ethanol. The new technology produced by Nihon Shokuryo can efficiently break down materials measuring several centimetres.

Besides ethanol, Nihon Shokuryo is planning to generate electricity using fuel cells, as hydrogen can be generated from biomass. (Source: Asian Energy News, February 2001.)

 

Kenya

Chardust is a Kenyan company that develops, produces and markets charcoal fuels, cooking stoves and water heaters. The company’s products are both environmentally friendly and attractively priced, aiming to offer consumers a realistic alternative to traditional lumpwood charcoal.

Chardust’s leading product, the Vendors’ Waste Briquette (VWB), is made using waste material from charcoal wholesalers. The fuel is cheaper by weight than urban lumpwood charcoal.

Chardust has also developed a system to carbonize loose biomass such as sugar-cane bagasse and sawdust. The bagasse product is known as CaneCoal™ and it is hoped that by mid-2001 a pilot production unit will have been established through a joint venture between Chardust and Kenya’s largest sugar company. The sawdust-based briquettes are at the experimental stage and seed funding is sought to complete the phase of technical development that will take this attractive product to full commercial fabrication.

Chardust also markets solid-fuel appliances for institutional cooking and water heating, for which the company’s various briquettes make the ideal fuel.

For more information, please contact:
Elsen L. Karstad, PO Box 24371, Nairobi, Kenya.
E-mail: elk@wananchi.com;
www.chardust.com/

 


Madagascar

Expérience en privatisation d’une activité de carbonisation à Madagascar suite à un projet FAO

Tout a commencé avec le démarrage des projets initiés par la FAO à Madagascar en matière de formation
en carbonisation: projets MAG/84/011 et MAG/89/016 (1988-1992),
financés par le PNUD; et projet UTF/MAG/069/MAG (1993-1994), financé par la Banque mondiale.

Le site retenu pour la formation se trouvait dans le périmètre de la FANALAMANGA, société forestière de 80 000 ha de Pinus kesiya, P. caribaea et P. elliottii.

Le public ciblé était composé en grande majorité de paysans charbonniers saisonniers qui produisaient du charbon selon des procédés traditionnels à faible rendement. La carbonisation ainsi réalisée était alimentée par des produits d’éclaircie, ce qui permettait de destiner les gros bois à d’autres usages (scierie, etc.).

Les principales difficultés rencontrées découlaient des qualités médiocres du charbon de pin, ce qui faisait que les ménagères préféraient toujours le charbon du bois d’eucalyptus.

Quinze ans plus tard, les mentalités ont progressivement changé et le charbon de bois de pin se vend mieux. C’est alors que des charbonniers formés dans le cadre des projets FAO ont été sollicités pour participer à un nouvel essai: récupérer les déchets de scierie d’une société privée TIB (Transformation industrielle du bois) travaillant le Pinus pour la carbonisation. Cela a nécessité un recyclage de quatre mois (encadrement dans la mise en place des meules améliorées).

Signalons que la plupart des techniques enseignées ont été retenues par les charbonniers. Nous pouvons citer par exemple la technique de pose des longerons, d’allumage, de conduite avec tirage semi-renversé en utilisant les évents de base de la meule comme entrée d’air et sortie de fumée.

Durant ces quatre mois les bois sont livrés gratuitement. Les charbonniers peuvent encore retirer du bois pour la vente directe (dosses, planches, etc.) et ils carbonisent le reste.

Nous avons cherché des débouchés pour écouler le charbon ainsi produit. On a trouvé des acheteurs vu le prix du charbon de pin très bas par rapport à celui de l’eucalyptus.

Au cinquième mois nous avons vendu chaque benne de déchets de scierie livrés aux charbonniers à FF 25. Les charbonniers peuvent en tirer 20 gros sacs de charbon vendu à FF 7 le sac en plus des dosses proposées à FF 2 la pièce (FF 7.5 = un dollar EU environ).

Résultats. Bon nombre de charbonniers sont devenus permanent, c’est à dire charbonniers professionnels (40 familles environ). Ils y trouvent leur compte et de plus la pression sur la forêt naturelle et d’eucalyptus environnant a considérablement diminué. La société TIB a pu valoriser ses déchets et la somme obtenue est utilisée pour la caisse sociale des ouvriers.

Le grand problème de la société TIB reste encore dans la valorisation de la sciure verte. Est-il possible de transformer un tel produit en compost? (Contribuée par: Claude Ramilison, Ingénieur Forestier, Madagascar.)

Pour plus de détails, veuillez contacter:
Claude Ramilison, BP 66, 514 Moramanga, Madagascar.
Mél.: tib.mora@dts.mg

 

Malaysia

Biomass to give 5 percent of power soon

The Government of Malaysia has targeted to derive 5 percent of power generation from renewable energy resources, particularly from biomass, by 2005. Biomass, particularly from utilizing palm oil waste, has been identified as one of the main resources that has the biggest immediate potential for renewable energy development.

The government has also approved a Palm Oil Biomass pilot project, aimed at removing the barriers in sustaining the development of biomass power generation. The project’s budget is US$40 million, and is expected to be operational by mid-2001. With a US$8 million grant-support from the Global Environment Facility (GEF), the project is being carried out in partnership with the United Nations Development Programme (UNDP).

The project is intended to ensure that the new form of energy from palm oil waste can be efficiently connected to the grid. It will also look at the ways to refine the cost factor involved as well as the environmental implications of waste disposal.

A study has indicated that biomass from palm oil waste can produce electricity at a cost of 13 to 17 cents per kilowatt-hour. (Source: The Malaysian Today, 28 February 2001.)

 

Namibia

Biomass-efficient stoves

About 93 percent of Namibian households depend on wood for cooking purposes. A biomass-efficient stove reduces wood consumption by about 60 percent and charcoal consumption by 80 percent. This means an average household saves about 730 kg of wood yearly.

The Tsotso stove

The fuel-efficient Tsotso (meaning "twigs" in Shona) stove:

    • is insulated and thus uses less wood than the traditional open fire because the flames go directly to the pot, while with the traditional open fire most of the heat is lost;
    • is safe to use in the homestead and near children;
    • is easily manufactured, using a few basic, technical skills;
    • is portable;
    • cooks faster than the traditional open fire, which means that the meal is prepared and served more quickly; and
    • can be placed in a sheltered place to prepare a meal when it is raining.
For more information, please contact:
Desert Research Foundation of Namibia (DRFN),
PO Box 20232, Windhoek,
Namibia. Fax: +264 61 230172;
e-mail: drfn@drfn.org.na ; or
Victor Mufita and Menete Hashipala, Regional Awareness Programme in Northern Namibia,
PO Box 2918, Oshakati,
Namibia. Fax: +264 65 231032;
e-mail: rap@drfn.org.na or rapdrfn@mweb.com.na

Biogas digesters

Ten biogas digesters have recently been installed throughout Namibia and will now be monitored for efficiency, fuel saving and acceptability.

For more information, please contact:
Renewable Energy Information Network of Namibia (REINNAM), Private Bag 13388, Windhoek, Namibia.
Tel./Fax: +264 61 2072088;
e-mail: reinnam.project@iafrica.com.na;
www.polytechnic.edu.na/reinnam

[Please see under News and Notes for more information on stoves, and under Points of View for information on charcoal and health in Namibia.]

 

Philippines

Woodfuel-related issues in the Philippines are complex and heterogeneous and present policy-makers with major challenges because they are associated with a range of intricate problems, particularly involving small farmers and the landless poor. At the same time, however, the potential of wood energy extends beyond subsistence, providing sound and viable options for modern development and energy applications. The central questions are then: To what extent and in what manner can woodfuel be subject to policy-making? Who should make the policies? Whose priorities should they be based on?

The FAO-Regional Wood Energy Development Programme (RWEDP), together with the combined expertise of Dr L.L. Rebugio, Dean, and two senior researchers in the College of Forestry and Natural Resources at the University of the Philippines Los Baños, have made a critical analysis of the wood energy sector and identified the major woodfuel concerns in the Philippines. These are related to supply sources, government policies and programmes, the role of non-governmental organizations and the private sector, and economic aspects of wood energy development.

These concerns, plus numerous recommendations to address the identified issues, are included in The woodfuel scenario and policy issues in the Philippines, a recent publication from RWEDP.

For more information, please contact:
Regional Wood Energy Development Programme (RWEDP), FAO Regional Office for Asia and the Pacific, Maliwan Mansion, Phra Atit Road, Bangkok 10200, Thailand.
Fax: +66 2 2800445;
e-mail: RWEDP@field.fao.org;
www.rwedp.org

 

República dominicana

Propone instalar planta de 50 MWe con biomasa

En el semi,nario sobre ´Usos y aplicaciones rentables de las energías renovablesª, celebrado en Santo Domingo, el Ing. Jaime Yépez, consultor en materia energética y recursos naturales, presentó una propuesta bioenergética muy interesante durante su ponencia sobre ´La biomasa en el día de hoyª.

El Ing. Yépez propuso instalar una planta de producción de 50 MWe de electricidad mediante el uso de biomasa del bosque seco que no contaminaría el medio ambiente, crearía 345 empleos permanentes y ahorraría la importación de 536 000 barriles de petróleo por año.

Sugirió que el proyecto fuera localizado en bosques secos de las tierras áridas y semiáridas de la provincia Valverde, Mao. El consultor, también asesor técnico de la Secretaría de Medio Ambiente y Recursos Naturales, explicó que en la actualidad el país tiene cerca de 8 millones de tareas de tierras áridas y semiáridas disponibles para cultivos de biomasa, lo cual representa un potencial total equivalente a 800 MWe. Un potencial que equivale a un 50 por ciento del consumo nacional máximo de electricidad en el pasado año 2000.

En base a esa proyección resulta posible que con un esfuerzo moderado, el país pueda obtener a partir de la biomasa un 15 por ciento del consumo nacional de energía eléctrica, lo que conllevaría un ahorro anual de divisas al dejar de importar petróleo y sus derivados, y un reto para la ingeniería dominicana, los empresarios y el Estado.

El consultor explicó que la finca energética del proyecto tendría un área de 1,3 millones de tareas, la leña cultivada tendría una humedad inicial del 30 por ciento y una productividad biomásica media de 10 m3/h/año, con un contenido energético para la leña seca de 17 millones de BTU por tonelada. (Fuente: El Siglo, 12 de marzo de 2001.)


 

Thailand

Ethanol-diesel blend trials begin

The Petroleum Authority of Thailand (PTT) and the National Metal and Materials Technology Center (NMMTC) have started state-backed trials to develop ethanol-blended diesel oil. Under the programme, NMMTC will look into issues related to raw material sources, technical processes and ethanol applications for automotive fuel. NMMTC will bear all expenditures of the trial, while PTT is to provide its laboratories. Thailand Institute of Scientific and Technological Research (TISTR) will offer technical support.

NMMTC had earmarked B 8 million (US$190 000) to fund the programme during the first year and will extend the financial assistance depending on the progress of the project.

Initially, the three agencies will blend 13 percent ethanol, made from alcohol produced from sugar cane or cassava, with diesel oil as vehicle fuel. NMMTC aims to complete the formula tests this year and the technical programme will take another six months to ensure product purity and resolve all technical problems for diesel engines or environmental concerns. PTT will start the trial sales in its service stations in 2002 to test the market.

Meanwhile, PTT has launched "gasohol", a blend of 10 percent ethanol and premium petrol, to test the domestic market. In addition, Bangchak Petroleum Plc, following the lead of PTT, started selling gasohol commercially in February 2001. (Source: Asian Energy News, February 2001.)

Charcoal kilns in Thailand

Biomass burning plays an important role in the global carbon cycle. Although complete combustion of biomass produces little more than CO2 and water, most actual combustion is done in circumstances that result in substantial diversion of biomass carbon into products of incomplete combustion (PIC). After CO2, the PIC, CH4, is the most important greenhouse gas (GHG). The other major PICs, CO and TNMOC, indirectly affect global warming through atmospheric chemical reactions that in turn affect GHG levels. A good characterization of biomass burning is therefore important for achieving scientific understanding of the potential for human activities to engender global warming, as well as informing the international political/economic discourses about what GHG mitigation measures are warranted and who should pay for them.

Combustion of biomass harvested or naturally regrown on a sustainable basis does not cause a net increase of CO2 in the atmosphere. Unfortunately, through deforestation and other non-renewable practices, much burned biomass is not replaced. Even with complete recycling of the carbon, however, a biomass fuel cycle can produce a net increase in the global warming commitment (GWC) because of the emitted PICs, which have, on average, a higher global warming potential (GWP) per kilogram of carbon than CO2.

The charcoal kiln measurements described in a recent report (Greenhouse gases from small-scale combustion devices in developing countries: Phase III) took place at the Charcoal Research Centre (CRC) in Saraburi, Thailand. This work is part of a multiyear international study of the greenhouse gas implications of small-scale combustion devices in developing countries. Although individually small, these devices are so numerous and their emission factors per unit of output are so significant that, in total, they can have an appreciable influence on global and national inventories of important greenhouse gases.

Thailand is the country with the largest charcoal production in the Asia region. Although challenging enough, conditions at CRC were more controllable than would be the case at a commercial kiln operating in the forest. Thus, it provides a good location for developing and validating methods to be used later in Africa and Latin America. (Source: Greenhouse gases from small-scale combustion devices in developing countries: Phase III, by Kirk R. Smith, David M. Pennise, Pojanie Khummongkol, Junfeng Zhang, Winai Panyathanya, R.A. Rasmussen and M.A.K. Khalil; www.energy.demon.nl/GHG/kilns.htm)



United kingdom

Future Energy, the first official United Kingdom accreditation scheme for green electricity, announces new figures for power from biomass sources.

Future Energy, which has recently decide to focus its efforts on the residential consumers market only (given the regulatory framework of the United Kingdom on green power) has decided to include industrial and municipal waste in its acceptance of biomass.

The share of biomass represents 66 percent of the total sales of Future Energy accredited power. Without the new addition, i.e. with biomass sources including only landfill gas and agricultural waste, this share was already 53 percent. (Source: Greenprices; www.greenprices.co.uk/uk/index.asp )

 

Zimbabwe

Biomass energy

ProBEC (the Programme for Biomass Energy Conservation in Southern Africa) is an initiative of the German technical cooperation organization GTZ, supported by the Southern African Development Community (SADC), the European Union and the German Ministry for Economic Cooperation and Development (BMZ).

A recent issue of the GTZ ProBEC newsletter focused on "Biomass Energy in Zimbabwe" and included reports of recent events, such as: the Fourth Regional ProBEC Workshop, held from 6 to 10 November 2000 in Mzuzu, Malawi and a Workshop on Zimbabwe Sustainable Biomass Energy Management, held on 18 January 2001. It also contains information on a forthcoming regional workshop on stove testing to be held in Zimbabwe. Special features include an article on Zimbabwe’s Demo Project and another on The link between biomass energy and health with a case study of Hurungwe District in Zimbabwe.

The newsletter is available for downloading from the downloads section of the HEDON Web site (http://ecoharmony.net/hedon/downloads.php). (Source: Listserv hedon@yahoogroups.com)

For more information, please contact:
Lasten Mika, Scientific & Industrial Research & Development Centre,
The Zimbabwe Technology Centre,
PO Box 6640, Harare, Zimbabwe.
Fax: +263 4 860350;
e-mail: lmika@sirdc.ac.zw or emaisvoreva@sirdc.ac.zw


[Contents]