Previous Page Table of Contents


8. Trypanosome research


(a) Cultivation of trypanosomes

(b) Taxonomy, characterization of isolates

[See also 27: no. 12746.]

12771

Beverley, S.M., 2003. Protozomics: Trypanosomatid parasite genetics comes of age. Nature Reviews - Genetics, 4 (1): 11-19.


Beverley: Department of Molecular Microbiology, Washington University Medical School, St Louis, Missouri 63110, USA. [beverley.wustl.edu]

(c) Life cycle, morphology, biochemical and molecular studies

[See also 27: nos. 12690, 12699, 12748, 12759, 12761, 12768, 12771.]

12772

Agbo, E.C., Duim, B., Majiwa, P.A.O., Büscher, P., Claassen, E. & te Pas, M.F.W., 2003. Multiplex-endonuclease genotyping approach (MEGA): a tool for the fine-scale detection of unlinked polymorphic DNA markers. Chromosoma, 111 (8): 518-524.


Agbo: Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA. [eagbo@hmi.edu]



12773

Agbo, E.C., Majiwa, P.A.O., Büscher, P., Claassen, E. & te Pas, M.F.W., 2003. Trypanosoma brucei genomics and the challenge of identifying drug and vaccine targets. Trends in Microbiology, 11 (7): 322-329.


Agbo: Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA. [eagbo@hmi.edu]



12774

Allen, C.L., Goulding, D. & Field, M.C., 2003. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO Journal, 22 (19): 4991-5002.


Field: Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK.



12775

Al-Salabi, M.I., Wallace, L.J.M. & De Koning, H.P., 2003. A Leishmania major nucleobase transporter responsible for allopurinol uptake is a functional homolog of the Trypanosoma brucei H2 transporter. Molecular Pharmacology, 63 (4): 814-820.


De Koning: Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.



12776

Amiguet-Vercher, A., Perez-Morga, D., Pays, A., Poelvoorde, P., Van Xong, H., Tebabi, P., Vanhamme, L. & Pays, E., 2004. Loss of the mono-allelic control of the VSG expression sites during the development of Trypanosoma brucei in the bloodstream. Molecular Microbiology, 51 (6): 1577-1588.


Pays: Laboratory of Molecular Parasitology, IBMM, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium. [epays@ulb.ac.be]



12777

Asbeck, K., Kurath, U., Roditi, I. & Gibson, W., 2004. Trypanosoma (Nannomonas) simiae and T. (N.) godfreyi have genes encoding glutamic acid and alanine-rich proteins. Molecular and Biochemical Parasitology, 134 (1): 159-162.


Gibson: School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK. [w.gibson@bristol.ac.uk]



12778

Balogun, E.O. & Nok, A.J., 2004. Characterization of a sialidase in Trypanosoma congolense encephalopathy. Journal of Neurochemistry, 88 (Suppl.): 72.


Nok: Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria. [jandrew@skannet.com]



12779

Bannai, H., Sakurai, T., Inoue, N., Sugimoto, C. & Igarashi, I., 2003. Cloning and expression of mitochondrial heat shock protein 70 of Trypanosoma congolense and potential use as a diagnostic antigen. Clinical and Diagnostic Laboratory Immunology, 10 (5): 926-933.


Inoue: National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan. [ircpmi@obihiro.ac.jp]



12780

Barrett, B., LaCount, D.J. & Donelson, J.E., 2004. Trypanosoma brucei: a first-generation CRE-loxP site-specific recombination system. Experimental Parasitology, 106 (1-2): 37-44.


Donelson: Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA. [john-donelson@uiowa.edu]



12781

Bell, J.S., Harvey, T.I., Sims, A.-M. & McCulloch, R., 2003. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Molecular Microbiology, 51 (1): 159-173.


McCulloch: The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK. [rmc9z@udcf.gla.ac.uk]



12782

Bell, J.S. & McCulloch, R., 2003. Mismatch repair regulates homologous recombination, but has little influence on antigenic variation, in Trypanosoma brucei. Journal of Biological Chemistry, 278 (46): 45182-45188.


McCulloch: The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK. [rmc9z@udcf.gla.ac.uk]



12783

Bringmann, G., Hoerr, V., Holzgrabe, U. & Stich, A., 2003. Antitrypanosomal naphthylisoquinoline alkaloids and related compounds. [Review.] Pharmazie, 58 (5): 343-346.


Bringmann: Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97047 Würzburg, Germany. [bringmann@chmie.uni-wuerzburg.de]



12784

Bocedi, A., Gradoni, L., Menegatti, E. & Ascenzi, P., 2004. Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochemical and Biophysical Research Communications, 315 (3): 710-718.


Ascenzi: Dipartimento di Biologia, Università ‘Roma Tre’, Viale Guglielmo Marconi 446, I-00146 Rome, Italy. [ascenzi@uniroma3.it]



12785

Budde, H., Flohé, L., Hofmann, B. & Nimtz, M., 2003. Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS/MS. Biological Chemistry, 384 (9): 1305-1309.


Flohé: Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, 38124, Braunschweig, Germany.



12786

Burchmore, R.J.S., Wallace, L.J.M., Candlish, D., Al-Salabi, M.I., Beal, P.R., Barrett, M.P., Baldwin, S.A. & de Koning, H.P., 2003. Cloning, heterologous expression, and in situ characterization of the first high affinity nucleobase transporter from a protozoan. Journal of Biological Chemistry, 278 (26): 23502-23507.


de Koning: Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.



12787

Campbell, D.A., Thomas, S. & Sturm, N.R., 2003. Transcription in kinetoplastid protozoa: why be normal? Microbes and Infection, 5 (13): 1231-1240.


Campbell: Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA. [dc@ucla.edu]



12788

Campos-Neto, A., Suffia, I., Cavassani, K.A., Jen, S., Greeson, K., Ovendale, P., Silva, J.S., Reed, S.G. & Skeiky, Y.A.W., 2003. Cloning and characterization of a gene encoding an immunoglobulin-binding receptor on the cell surface of some members of the family Trypanosomatidae. Infection and Immunity, 71 (9): 5065-5076.


Campos-Neto: The Forsyth Institute, 140 the Fenway, Boston, MA 02115-3799, USA. [acampos@forsyth.org]



12789

Chaudhuri, M. & Nargang, F.E., 2003. Import and assembly of Neurospora crassa Tom40 into mitochondria of Trypanosoma brucei in vivo. Current Genetics, 44 (2): 85-94.


Chaudhuri: Department of Microbiology, Meharry Medical College, Nashville, 37208 TN, USA. [mchaudhuri@mail.mmc.edu]



12790

Choe, J., Moyersoen, J., Roach, C., Carter, T.L., Fan, E., Michels, P.A.M. & Hol, W.G.J., 2003. Analysis of the sequence motifs responsible for the interactions of peroxins 14 and 5, which are involved in glycosome biogenesis in Trypanosoma brucei. Biochemistry, 42 (37): 10915-10922.


Hol: Department of Biochemistry, University of Washington, Seattle, Washington, USA. [wghol@u.washington.edu]



12791

Claes, F., Agbo, E.C., Radwanska, M., Te Pas, M.F.W., Baltz, T., de Waal, D.T., Goddeeris, B.M., Claassen, E. & Büscher, P., 2003. How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by RAPD and multiplex-endonuclease genotyping approach. Parasitology, 126 (5): 425-431.


Büscher: Department of Parasitology, Prince Leopold Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerpen, Belgium.

The pathogenic trypanosomes Trypanosoma equiperdum, T. evansi as well as T. brucei are morphologically identical. In horses, these parasites are considered to cause respectively dourine, surra and nagana. Previous molecular attempts to differentiate these species were not successful for T. evansi and T. equiperdum; only T. b. brucei could be differentiated to a certain extent. In this study we analysed ten T. equiperdum, eight T. evansi and four T. b. brucei. The results obtained confirm the homogeneity of the T. evansi group tested. The T. b. brucei clustered out in a heterogenous group. For T. equiperdum the situation is more complex: eight out of ten T. equiperdum clustered together with the T. evansi group, while two T. equiperdum strains were more related to T. b. brucei. Hence, two hypotheses can be formulated: (i) only two T. equiperdum strains are genuine T. equiperdum causing dourine; all other T. equiperdum strains actually are T. evansi causing surra or (ii) T. equiperdum does not exist at all, in which case the different clinical outcome of horse infections with T. evansi or T. b. brucei is primarily related to the host immune response.

12792

Coller, S.P., Mansfield, J.M. & Paulnock, D.M., 2003. Glycosyl-inositolphosphate soluble variant surface glycoprotein inhibits IFN-gamma-induced nitric oxide production via reduction in STAT1 phosphorylation in African trypanosomiasis. Journal of Immunology, 171 (3): 1466-1472.


Paulnock: Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA. [paulnock@facstaff.wisc.edu]



12793

Coustou, V., Besteiro, S., Biran, M., Diolez, P., Bouchaud, V., Voisin, P., Michels, P.A.M., Canioni, P., Baltz, T. & Bringaud, F., 2003. ATP generation in the Trypanosoma brucei procyclic form - Cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation. Journal of Biological Chemistry, 278 (49): 49625-49635.


Bringaud: UMR-5162 CNRS Université Victor Segalen Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux cedex, France. [bringaud@u-bordeaux2.fr]



12794

Djikeng, A., Shi, H.F., Tschudi, C., Shen, S.Y. & Ullu, E., 2003. An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA, 9 (7): 802-808.


Ullu: Department of Internal Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06520-8022, USA. [elisabetta. ullu@yale.edu]



12795

Donkor, I.O., Huang, T.L., Tao, B., Rattendi, D., Lane, S., Vargas, M., Goldberg, B. & Bacchi, C., 2003. Trypanocidal activity of conformationally restricted pentamidine congeners. Journal of Medicinal Chemistry, 46 (6): 1041-1048.


Donkor: Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Avenue, Room 327E, Johnson Building, Memphis, Tennessee 38163, USA. [idonkor@utmem.edu]



12796

Drew, M.E., Morris, J.C., Wang, Z.F., Wells, L., Sanchez, M., Landfear, S.M. & Englund, P.T., 2003. The adenosine analog tubercidin inhibits glycolysis in Trypanosoma brucei as revealed by an RNA interference library. Journal of Biological Chemistry, 278 (47): 46596-46600.


Englund: Department of Biological Chemistry, John Hopkins School of Medicine, Baltimore, MD 21205 USA.



12797

El-Sayed, N.M.A., Ghedin, E., Song, J.M., MacLeod, A., Bringaud, F., Larkin, C., Wanless, D., Peterson, J., Hou, L.H., Taylor, S., Tweedie, A., Biteau, N., Khalak, H.G., Lin, X., Mason, T., Hannick, L., Caler, E., Blandin, G., Bartholomeu, D., Simpson, A.J., Kaul, S., Zhao, H., Pai, G., Van Aken, S., Utterback, T., Haas, B., Koo, H.L., Umayam, L., Suh, B., Gerrard, C., Leech, V., Qi, R., Zhou, S., Schwartz, D., Feldblyum, T., Salzberg, S., Tait, A., Turner, C.M.R., Ullu, E., White, O., Melville, S., Adams, M.D., Fraser, C.M. & Donelson, J.E., 2003. The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Research, 31 (16): 4856-4863.


El-Sayed: Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. [nelsayed@tigr.org]



12798

Esseiva, A.C., Chanez, A.L., Bochud-Allemann, N., Martinou, J.C., Hemphill, A. & Schneider, A., 2004. Temporal dissection of Bax-induced events leading to fission of the single mitochondrion in Trypanosoma brucei. EMBO Reports, 5 (3): 268-273.


Schneider: Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. [andre.schneider@unifr.ch]



12799

Estévez, A.M., Haile, S., Steinbuchel, M., Quijada, L. & Clayton, C., 2004. Effects of depletion and overexpression of the Trypanosoma brucei ribonuclease L inhibitor homologue. Molecular and Biochemical Parasitology, 133 (1): 137-141.


Estévez: Instituto de Parasitologia y Biomedicina "Lopez-Neyra", CSIC. C/Ventanilla 11, 18001 Granada, Spain. [aestevez@ipb.csic.es]



12800

Fernandes, E.C., Granjeiro, J.M., Aoyama, H., Fonseca, F.V., Meyer-Fernandes, J.R. & Vercesi, A.E., 2003. A metallo phosphatase activity present on the surface of Trypanosoma brucei procyclic forms. Veterinary Parasitology, 118 (1-2): 19-28.


Meyer-Fernandes: Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitaria, Ilha do Fundão, 21541-590 Rio de Janeiro, RJ, Brazil. [meyer@bioqmed.ufrj.br]



12801

Friemann, R., Schmidt, H., Ramaswamy, S., Forstner, M., Krauth-Siegel, R.L. & Eklund, H., 2003. Structure of thioredoxin from Trypanosoma brucei brucei. FEBS Letters, 554 (3): 301-305.


Eklund: Department of Molecular Biosciences, Swedish University of Agricultural Sciences, Biomedical Center, Box 590, S-75124 Uppsala, Sweden. [hasse@xray.bmc.uu.se]



12802

Fukai, Y., Nihei, C., Kawai, K., Yabu, Y., Suzuki, T., Ohta, N., Minagawa, N., Nagai, K. & Kita, K., 2003. Overproduction of highly active trypanosome alternative oxidase in Escherichia coli heme-deficient mutant. Parasitology International, 52 (3): 237-241.


Kita: Department of Molecular Chemistry, Graduate School of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. [kitak@m.u-tokyo.ac.jp]



12803

Gao, G.-H. & Simpson, L., 2003. Is the Trypanosoma brucei REL1 RNA ligase specific for U-deletion RNA editing, and is the REL2 RNA ligase specific for U-insertion editing? Journal of Biological Chemistry, 278 (30): 27570-27574.


Simpson: UCLA, 6780 MacDonald Research Laboratories, 675 Charles Young Drive, S., Los Angeles, CA 90095, USA. [simpson@kdna.ucla.edu]



12804

García-Salcedo, J.A., Gijón, P., Amiguet-Vercher, A. & Pays, E., 2003. Searching for promoter activity in RIME/Ingi retrotransposons from Trypanosoma brucei: binding of a nuclear protein to their 5´ extremity. Experimental Parasitology, 104 (3-4): 140-148.


García-Salcedo: Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, Gosselies B-6041, Belgium. [jantonio@dbm.ulb.ac.be]



12805

García-Salcedo, J.A., Gijón, P., Nolan, D.P., Tebabi, P. & Pays, E., 2003. A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO Journal, 22 (21): 5851-5862.


García-Salcedo: Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium. [jantonio@dbm.ulb.ac.be]



12806

Gibson W. & Bailey M., 2003. The development of Trypanosoma brucei within the tsetse fly midgut using green fluorescent trypanosomes. Kinetoplastid Biology and Disease, 2: 1.


Gibson: School of Biological Sciences, University of Bristol, Woodlands Road, Bristol BS8 1UG, UK. [w.gibson@bristol.ac.uk]



12807

Gibson, W. & Ferris, V., 2003. Conservation of the genomic location of the human serum resistance associated gene in Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology, 130 (2): 159-162.


Gibson: School of Biological Sciences, University of Bristol, Woodlands Road, Bristol BS8 1UG, UK. [w.gibson@bristol.ac.uk]



12808

Gilinger, G., Luo, H. & Bellofatto, V., 2004. In vivo transcription analysis utilizing chromatin immunoprecipation reveals a role for trypanosome transcription factor PBP-1 in RNA polymerase III-dependent transcription. Molecular and Biochemical Parasitology, 134 (1): 169-173.


Bellofatto: Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07103, USA. [bellofat@umdnj.edu]



12809

Giotto, M.T. da S., Hannaert, V., Vertommen, D., Navarro, M.V. de A.S., Rider, M.H., Michels, P.A.M., Garratt, R.C. & Rigden, D.J., 2003. The crystal structure of Trypanosoma brucei enolase: Visualisation of the inhibitory metal binding site III and potential as target for selective, irreversible inhibition. Journal of Molecular Biology, 331 (3): 653-665.


Rigden: Embrapa Genetic Resources and Biotechnology Cenargen/Embrapa, Parque Estaçao Biológica, Final W5 Norte, Brasília-DF, 70770-900 Brazil. [daniel@cenargen.embrapa.br]



12810

Gong, C.-L., Martins, A. & Shuman, S., 2003. Structure-function analysis of Trypanosoma brucei RNA triphosphatase and evidence for a two-metal mechanism. Journal of Biological Chemistry, 278 (51): 50843-50852.


Shuman: Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA. [s-shuman@ski.mskc.org]



12811

Gopal, S., Cross, G.A.M. & Gaasterland, T., 2003. An organism-specific method to rank predicted coding regions in Trypanosoma brucei. Nucleic Acids Research, 31 (20): 5877-5885.


Gopal: Laboratory of Computational Genetics, The Rockefeller University, 1230 York Avenue, Box 250, New York, New York, NY 10021, USA. [shuba@genomes.rockefeller.edu]



12812

Göringer, H.U., Homann, M. & Lorger, M., 2003. In vitro selection of high-affinity nucleic acid ligands to parasite target molecules. International Journal for Parasitology, 33 (12): 1309-1317.


Göringer: Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany. [goringer@hrzpub.tu-darmstadt.de]



12813

Gull, K., 2003. Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Current Opinion in Microbiology, 6 (4): 365-370.


Gull: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. [keith.gull@pathology.ox.ac.uk]



12814

Güther, M.L.S., Prescott, A.R. & Ferguson, M.A.J., 2003. Deletion of the GPIdeAc gene alters the location and fate of glycosylphosphatidylinositol precursors in Trypanosoma brucei. Biochemistry, 42 (49): 14532-14540.


Ferguson: Division of Biological Chemistry and Molecular Microbiology, The Wellcome Trust Biocentre, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. [m.a.j.Ferguson@dundee.ac.uk]



12815

Haile, S., Estevez, A.M. & Clayton, C., 2003. A role for the exosome in the in vivo degradation of unstable mRNAs. RNA, 9 (12): 1491-1501.


Clayton: ZMBH, im Neuenheimer Feld 282, D-69120 Heidelberg, Germany. [cclayton@zmbh.uni-heidelberg.de]



12816

Hall, N., Berriman, M., Lennard, N.J., Harris, B.R., Hertz-Fowler, C., Bart-Delabesse, E.N., Gerrard, C.S., Atkin, R.J., Barron, A.J., Bowman, S., Bray-Allen, S.P., Bringaud, F., Clark, L.N., Corton, C.H., Cronin, A., Davies, R., Doggett, J., Fraser, A., Grüter, E., Hall, S., Harper, A.D., Kay, M.P., Leech, V., Mayes, R., Price, C., Quail, M.A., Rabbinowitsch, E., Reitter, C., Rutherford, K., Sasse, J., Sharp, S., Shownkeen, R., MacLeod, A., Taylor, S., Tweedie, A., Turner, C.M.R., Tait, A., Gull, K., Barrell, B. & Melville, S.E., 2003. The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism. Nucleic Acids Research, 31 (16): 4864-4873.


Melville: Sharen Bowman, Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK. [sm160@cam.ac.uk]



12817

Hannaert, V., Albert, M.-A., Rigden, D.J., Giotto, M.T. da S., Thiemann, O., Garratt, R.C., Van Roy, J., Opperdoes, F.R. & Michels, P.A.M., 2003. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. European Journal of Biochemistry, 270 (15): 3205-3213.


Hannaert: ICP-TROP 74-39 Avenue Hippocrate 74, B-1200 Brussels, Belgium. [hannaert@trop.ucl.ac.be]



12818

Hemerly, J.P., Oliveira, V., Nery, E. del, Morty, R.E., Andrews, N.W., Juliano, M.A. & Juliano, L., 2003. Subsite specificity (S3, S2, S1’, S2’ and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochemical Journal, 373 (3): 933-939.


Juliano: Department of Biophysics, Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo, SP 04044-020, Brazil. [juliano.biof@epm.br]



12819

Hendriks, E.F., Abdul-Razak, A. & Matthews, K.R., 2003. tbCPSF30 depletion by RNA interference disrupts polycistronic RNA processing in Trypanosoma brucei. Journal of Biological Chemistry, 278 (29): 26870-26878.


Matthews: School of Biological Sciences, Division of Biochemistry, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK. [keith.matthews@man.ac.uk]



12820

Henriques, C., Sanchez, M.A., Tryon, R. & Landfear, S.M., 2003. Molecular and functional characterization of the first nucleobase transporter gene from African trypanosomes. Molecular and Biochemical Parasitology, 130 (2): 101-110.


Landfear: Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA. [Landfear@ohsu.edu]



12821

Hong, M. & Simpson, L., 2003. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist, 154 (2): 265-279.


Simpson: Howard Hughes Medical Institute, UCLA, 6780 MacDonald Research Laboratories, 675 Charles E. Young Drive S., Los Angeles, CA 90095-1662, USA.



12822

Howarth, J. & Wilson, D., 2003. 1,4-Dihydroxy-2,3-dioxatricyclo[8.4.0.04,9]-tetradecane and derivatives with in vitro activity against Plasmodium falciparum, Trypanasoma brucei, Trypanasoma cruzi, and Leishmaniasis infantum. Bioorganic and Medicinal Chemistry Letters, 13 (12): 2013-2015.


Howarth: School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland. [joshua.howarth@dcu.ie]



12823

Hunter, W.N., Alphey, M.S., Bond, C.S. & Schüttelkopf, A.W., 2003. Targeting metabolic pathways in microbial pathogens: oxidative stress and anti-folate drug resistance in trypanosomatids. Biochemical Society Transactions, 31 (3): 607-610.


Hunter: Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. [w.n.hunter@dundee.ac.uk]



12824

Hutchinson, O.C., Smith, W., Jones, N.G., Chattopadhyay, A., Welburn, S.C. & Carrington, M., 2003. VSG structure: similar N-terminal domains can form functional VSGs with different types of C-terminal domain. Molecular and Biochemical Parasitology, 130 (2): 127-131.


Carrington: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. [mc115@cam.ac.uk]



12825

Huynh, T.T., Huynh, V.T., Harmon, M.A. & Phillips, M.A., 2003. Gene knockdown of g-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. Journal of Biological Chemistry, 278 (41): 39794-39800.


Phillips: Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9041, USA. [margaret.phillips@utsouthwestern.edu]



12826

Ihedioha, J.I., Chineme, C.N. & Okoye, J.O.A., 2003. The leucocytic and parasitaemic profiles and immune response of rats treated with retinyl palmitate before infection with Trypanosoma brucei. Journal of Comparative Pathology, 129 (4): 241-250.


Ihedioha: Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, PO Box 3236, Nsukka, Enugu State, Nigeria.



12827

Jonckers, T.H.M., Miert, S. van, Cimanga, K., Bailly, C., Colson, P., Pauw-Gillet, M.-C. de, Heuvel, H. van den, Claeys, M., Lemière, F., Esmans, E.L., Rozenski, J., Quirijnen, L., Maes, L., Dommisse, R., Lemière, G.L.F., Vlietinck, A. & Pieters, L., 2002. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. Journal of Medicinal Chemistry, 45 (16): 3497-3508.


Pieters: Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.



12828

Keillor, J.W., Lherbet, C., Castonguay, R., Lapierre, D., Martinez-Oyanedel, J., Fothergill-Gilmore, L.A. & Walkinshaw, M.D., 2003. Expression, purification, crystallization and preliminary crystallographic analysis of Trypanosoma brucei phosphofructokinase. Acta Crystallographica Section D - Biological Crystallography, 59 (3): 532-534.


Walkinshaw: Structural Biochemistry Group, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK. [malcolm.walkinshaw@ed.ac.uk]



12829

Kessler, P., Furuya, T., Jardim, A., Crudder, C. & Parsons, M., 2002. Loss of glycosomal compartmentation makes glucose toxic to trypanosomes. Molecular Biology of the Cell, 13 (Nov. 2002): 403A.


Parsons: Seattle Biomedical Research Institute, Seattle, Washington, USA.



12830

Kohl, L., Robinson, D. & Bastin, P., 2003. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO Journal, 22 (20): 5336-5346.


Bastin: Laboratoire de Biophysique, Museum National d’Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France. [pbastin@mnhn.fr]



12831

Kolesnikov, A.A., Merzlyak, E.M., Bessolitsyna, E.A., Fedyakov, A.V. & Shonian, G., 2003. Reduction of the edited domain of the mitochondrial A6 gene for ATPase subunit 6 in Trypanosomatidae. Molecular Biology, 37 (4): 539-543.


Kolesnikov: Biological Faculty, Moscow State University, Moscow, 119992 Russia. [sacha@protein.bio.msu.su]



12832

Kunz, S., Kloeckner, T., Essen, L.O., Seebeck, T. & Boshart, M., 2004. TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei. European Journal of Biochemistry, 271 (3): 637-647.


Seebeck: Institute of Cell Biology, University of Bern, Switzerland. [thomas.seebeck@izb.unibe.ch]



12833

Lecaille, F., Weidauer, E., Juliano, M.A., Brömme, D. & Lalmanach, G., 2003. Probing cathepsin K activity with a selective substrate spanning its active site. [T. congolense.] Biochemical Journal, 375 (2): 307-312.


Lalmanach: INSERM EMI-U 00-10 'Protéases et Vectorisation', Laboratoire d'Enzymologie et Chimie des Protéines, Faculté de Médecine, Université François Rabelais, 2 bis, Boulevard Tonnellé, F-37032 Tours Cedex, France.



12834

Lemercier, G., Espiau, B., Ruiz, F.A., Vieira, M., Luo ShuHong, Baltz, T., Docampo, R. & Bakalara, N., 2004. A pyrophosphatase regulating polyphosphate metabolism in acidocalcisomes is essential for Trypanosoma brucei virulence in mice. Journal of Biological Chemistry, 279 (5): 3420-3425.


Bakalara: Laboratoire de Génomique Fonctionnelle des Trypanosomatides, UMR-CNRS 5162, 146, rue Leo Saignat, 33076 Bordeaux, France. [bakalara@u-bordeaux2.fr]



12835

Mandelboim, M., Barth, S., Biton, M., Liang, X.-H. & Michaeli, S., 2003. Silencing of Sm proteins in Trypanosoma brucei by RNA interference captured a novel cytoplasmic intermediate in spliced leader RNA biogenesis. Journal of Biological Chemistry, 278 (51): 51469-51478.


Michaeli: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. [michaes@mail.biu.ac.il]



12836

Matthews, K.R., Ellis, J.R. & Paterou, A., 2004. Molecular regulation of the life cycle of African trypanosomes. Trends in Parasitology, 20 (1): 40-47.


Matthews: School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. [keith.matthews@man.ac.uk]

Preventing the transmission of African trypanosomes between mammalian hosts has been one of the most effective mechanisms to date for the control of these important parasites. Hence, understanding the mechanisms through which they control their life cycle in molecular terms could provide valuable strategies for restricting the impact of sleeping sickness. Over the past two to three years, the study of the molecular cell biology of trypanosome life cycle progression has made considerable advances. Here, these advances are placed in the context of the biology of the parasite, to provide an integrated overview of developmental events in Trypanosoma brucei.

12837

McKean, P.G., 2003. Coordination of cell cycle and cytokinesis in Trypanosoma brucei. Current Opinion in Microbiology, 6 (6): 600-607. [Review.]


McKean: Department of Biological Sciences, The Lancaster Environmental Centre, Lancaster University, Lancaster, Lancashire LA1 4YQ, UK. [p.mckean@lancaster.ac.uk]

In common with all eukaryotic cells, trypanosomes must coordinate a complex series of morphogenetic events both temporally and spatially during the cell cycle. The structural and molecular cues that synchronise these events in trypanosomes have started to be elucidated, and intriguingly although similarities to cell cycle events in other eukaryotes can be identified, trypanosomes have also evolved novel solutions to the common challenges faced by dividing eukaryotic cells. Although cellular morphology is clearly pivotal for successful progression through the trypanosome cell cycle, most cytological studies to date have focused exclusively on procyclic form trypanosomes. These studies provide an excellent framework for understanding cell cycle events in trypanosomes, however recent data indicates that profound differences might exist between different life cycle stages in relation to the regulation of cell cycle and cytokinesis.

12838

Miller, M.M. & Read, L.K., 2003. Trypanosoma brucei: functions of RBP16 cold shock and RGG domains in macromolecular interactions. Experimental Parasitology, 105 (2): 140-148.


Read: Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo NY, USA. [lread@acsu.buffalo.edu]



12839

Milone, J., Wilusz, J. & Bellofatto, V., 2004. Characterization of deadenylation in trypanosome extracts and its inhibition by poly(A)-binding protein Pab1p. RNA, 10 (3): 448-457.


Bellofatto: Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA. [bellofat@umdnj.edu]



12840

Moreno, S.N.J. & Docampo, R., 2003. Calcium regulation in protozoan parasites. [T. brucei.] Current Opinion in Microbiology, 6 (4): 359-364. [Review.]


Moreno: Laboratory of Molecular Parasitology, Department of Patho-biology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA. [s-moreno@uiuc.edu]



12841

Motyka, S.A., Zhao, Z.X., Gull, K. & Englund, P.T., 2004. Integration of pZJM library plasmids into unexpected locations in the Trypanosoma brucei genome. Molecular and Biochemical Parasitology, 134 (1): 163-167.


Englund: Department of Biological Chemistry, John Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA. [penglund@jhmi.edu]



12842

Müller, S., Liebau, E., Walter, R.D. & Krauth-Siegel, R.L., 2003. Thiol-based redox metabolism of protozoan parasites. Trends in Parasitology, 19 (7): 320-328.


Krauth-Siegel: Biochemie-Zentrum Heidelberg, Universitat Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany. [Krauth-Siegel@urz.uni-heidelberg.de]



12843

Nagamune, K., Ohishi, K., Ashida, H., Hong, Y.C., Hino, J., Kangawa, K., Inoue, N., Maeda, Y. & Kinoshita, T., 2003. GPI transamidase of Trypanosoma brucei has two previously uncharacterized (trypanosomatid transamidase 1 and 2) and three common subunits. Proceedings of the National Academy of Sciences of the United States of America, 100 (19): 10682-10687.


Kinoshita: Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. [tkinoshi@biken.osaka-u.ac.jp]



12844

Neboháèová, M., Maslov, D.A., Falick, A.M. & Simpson, L., 2004. The effect of RNA interference down-regulation of RNA editing 3´-terminal uridylyl transferase (TUTase) 1 on mitochondrial de novo protein synthesis and stability of respiratory complexes in Trypanosoma brucei. Journal of Biological Chemistry, 279 (9): 7819-7825.


Simpson: Howard Hughes Medical Institute, 6780 MacDonald Research Laboratories, 675 Charles Young Drive South, Los Angeles, CA 90095-1662, USA. [simpson@kdna.ucla.edu]



12845

Ogbadoyi, E.O., Robinson, D.R. & Gull, K., 2003. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Molecular Biology of the Cell, 14 (5): 1769-1779.


Gull: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. [keith.gull@pathology.ox.ac.uk]



12846

O’Hearn, S.F., Huang, C.E., Hemann, M., Zhelonkina, A. & Sollner-Webb, B., 2003. Trypanosoma brucei RNA editing complex: Band II is structurally critical and maintains band V ligase, which is nonessential. Molecular and Cellular Biology, 23 (21): 7909-7919.


Sollner-Webb: Department of Biological Chemistry, John Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore MD 21205-2185, USA. [bsw@jhmi.edu]



12847

Oza, S.L., Ariyanayagam, M.R., Aitcheson, N. & Fairlamb, A.H., 2003. Properties of trypanothione synthetase from Trypanosoma brucei. Molecular and Biochemical Parasitology, 131 (1): 25-33.


Fairlamb: Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK. [a.h.fairlamb@dundee.ac.uk]



12848

Pal, A., Hall, B.S., Jeffries, T.R. & Field, M.C., 2003. Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal, 374 (2): 443-451.


Field: Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences and Centre for Molecular Microbiology and Infection, Imperial College, London, London SW7 2AY, UK. [mfield@ic.ac.uk]



12849

Panigrahi, A.K., Allen, T.E., Stuart, K., Haynes, P.A. & Gygi, S.P., 2003. Mass spectrometric analysis of the editosome and other multiprotein complexes in Trypanosoma brucei. Journal of the American Society for Mass Spectrometry, 14 (7): 728-735.


Stuart: Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109, USA. [kstuart@u.washington.edu]



12850

Panigrahi, A.K., Schnaufer, A., Ernst, N.L., Wang, B.B., Carmean, N., Salavati, R. & Stuart, K., 2003. Identification of novel components of Trypanosoma brucei editosomes. RNA 9 (4): 484-492.


Stuart: Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109, USA. [kstuart@u.washingtom.edu]



12851

Parthasarathy, S., Balaram, H., Balaram, P. & Murthy, M.R.N., 2003. Structures of Plasmodium falciparum triosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. [T. brucei.] Acta Crystallographica. Section D, Biological Crystallography, 58 (12): 1992-2000.


Murthy: Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.



12852

Pelletier, M. & Read, L.K., 2003. RBP16 is a multifunctional gene regulatory protein involved in editing and stabilization of specific mitochondrial mRNAs in Trypanosoma brucei. RNA, 9 (4): 457-468.


Read: Department of Microbiology, SUNY Buffalo School of Medicine, 138 Farber Hall, Buffalo, NY 14214, USA. [lread@acsu.buffalo.edu]



12853

Petrini, G.A., Altabe, S.G. & Uttaro, A.D., 2004. Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. European Journal of Biochemistry, 271 (6): 1079-1086.


Uttaro: Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departmento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas Nacional de Rosario, Suipacha 531, 2000-Rosario, Santa Fe, Argentina. [toniuttaro@yahoo.com.ar]



12854

Poelvoorde, P., Vanhamme, L., Van Den Abbeele, J., Switzer, W.M. & Pays, E., 2004. Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera. Molecular and Biochemical Parasitology, 134 (1): 155-157.


Pays: Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium. [epays@ulb.ac.be]



12855

Ravanal, M.C., Goldie, H. & Cardemil, E., 2003. Thermal stability of phosphoenolpyruvate carboxykinases from Escherichia coli, Trypanosoma brucei, and Saccharomyces cerevisiae. Journal of Protein Chemistry, 22 (4): 311-315.


Cardemil: Departamento de Ciencias Químicas, Facultad de Químicas y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile. [ecardemi@lauca.usach.cl]



12856

Rinehart, J., Horn, E.K., Wei, D., Söll, D. & Schneider, A., 2004. Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei. Journal of Biological Chemistry, 279 (2): 1161-1166.


Söll: Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA. [soll@trna.chem.yale.edu]



12857

Ryan, C.M., Militello, K.T. & Read, L.K., 2003. Polyadenylation regulates the stability of Trypanosoma brucei mitochondrial RNAs. Journal of Biological Chemistry, 278 (35): 32753-32762.


Read: Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA. [lread@acsu.buffalo.edu]



12858

Sanderson, S.J., Westrop, G.D., Scharfstein, J., Mottram, J.C. & Coombs, G.H., 2003. Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Letters, 542 (1-3): 12-16.


Coombs: Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK. [g.coombs@bio.gla.ac.uk]



12859

Savill, N.J. & Seed, J.R., 2004. Mathematical and statistical analysis of the Trypanosoma brucei slender to stumpy transition. Parasitology, 128 (1): 53-67.


Savill: Department of Zoology, Campbridge University, Downing Street, Cambridge CB2 3EJ, UK. [njs@zoo.cam.ac.uk]



12860

Saxowsky, T.T., Choudhary, G., Klingbeil, M.M. & Englund, P.T., 2003. Trypanosoma brucei has two distinct mitochondrial DNA polymerase b enzymes. Journal of Biological Chemistry, 278 (49): 49095-49101.


Englund: Department of Biological Chemistry, John Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA. [penglund@jhmi.edu]



12861

Schimanski, B., Laufer, G., Gontcharova, L. & Günzl, A., 2004. The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. Nucleic Acids Research, 32 (2): 700-709.


Günzl: Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3710, USA. [gunzl@uchc.edu]



12862

Schlaeppi, A.-C., Malherbe, T. & Bütikofer, P., 2003. Coordinate expression of GPEET procyclin and its membrane-associated kinase in Trypanosoma brucei procyclic forms. Journal of Biological Chemistry, 278 (50): 49980-49987.


Bütikofer: Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland. [peter.buetikofer@mci.unibe.ch]



12863

Schmidt, H. & Krauth-Siegel, R.L., 2003. Functional and physicochemical characterization of the thioredoxin system in Trypanosoma brucei. Journal of Biological Chemistry, 278 (47): 46329-46336.


Krauth-Siegel: Biochemie-Zentrum Heidelberg, Universitat Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany. [Krauth-Siegel@urz.uni-heidelberg.de]



12864

Schnaufer, A., Ernst, N.L., Palazzo, S.S., O’Rear, J., Salavati, R. & Stuart, K., 2003. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Molecular Cell, 12 (2): 307-319.


Stuart: Seattle biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, Washington 98109, USA. [kstuart@u.washington.edu]



12865

Shuaibu, M.N., Kanbara, H., Yanagi, T., Ichinose, A., Ameh, D.A., Bonire, J.J. & Nok, A.J., 2003. In vitro trypanocidal activity of dibutyltin dichloride and its fatty acid derivatives. Parasitology Research, 91 (1): 5-11.


Shuaibu: Protozoology Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi 852-8523, Japan.

Searching for new compounds against pathogenic trypanosomes has been substantially accelerated by the development of in vitro screening assays. In an attempt to explore the chemotherapeutic potential of organotin compounds and to broaden the search for newer trypanocides, fatty acid derivatives of dibutyltin dichloride were synthesized and their in vitro trypanocidal profiles studied on Trypanosoma brucei brucei, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. A 24-h time course experiment was conducted with various concentrations of the compounds using a 24-well microtiter plate technique. The compounds tested were trypanocidal in a dose-dependent fashion: inhibiting survival and growth, resulting in irreversible morphological deformation and the eventual death of the parasites. The minimum inhibitory concentrations of the tested diorganotins are at low micromolar ranges: from 0.15-0.75 mM for T. b. brucei, T. b. gambiense and T. b. rhodesiense. These observations suggest that organotin has chemotherapeutic potential.

12866

Shuaibu, M.N., Kanbara, H., Yanagi, T., Ichinose, A., Ameh, D.A., Bonire, J.J. & Nok, A.J., 2004. Effect of dibutyltin(IV) on the ultrastructure of African Trypanosoma spp. Parasitology Research, 92 (1): 65-73.


Shuaibu: Protozoology Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, 852-8523 Nagasaki-shi, Japan [nshuaibu@yahoo.com]



12867

Sherrer, R.L., Yermovsky-Kammerer, A.E. & Hajduk, S.L., 2003. A sequence motif within trypanosome precursor tRNAs influences abundance and mitochondrial localization. Molecular and Cellular Biology, 23 (24): 9061-9072.


Hajduk: The Josephine Bay Paul Center, Global infectious Disease Program, Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. [shajduk@mbl.edu]



12868

Shi, H.-F., Djikeng, A., Tschudi, C. & Ullu, E., 2004. Argonaute protein in the early divergent eukaryote Trypanosoma brucei: Control of small interfering RNA accumulation and retroposon transcript abundance. Molecular and Cellular Biology, 24 (1): 420-427.


Ullu: Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA. [elisabetta.ullu@yale.edu]



12869

Simpson, L., Aphasizhev, R., Gao, G.G. & Kang, X.-D., 2004. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA, 10 (2):159-170.


Simpson: Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA. [simpson@kdna.ucla.edu]



12870

Simpson, A.G.B. & Roger, A.J., 2004. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Molecular Phylogenetics and Evolution, 30 (1): 201-212.


Simpson: Canadian Institute for Advanced Research, Program in Evolutionary Biology, Dalhousie University, Halifax, Canada NS B3H 1X5, Canada. [simpson@hades.biochem.dal.ca]

The deepest-level relationships amongst Euglenozoa remain poorly resolved, despite a rich history of morphological examination and numerous molecular phylogenetic studies of small subunit ribosomal RNA (SSU rRNA) data. We address this question using two nuclear-encoded proteins, the cytosolic isoforms of heat shock protein 90 (hsp90) and heat shock protein 70 (hsp70). For both proteins we examined sequences from the three primary groups within Euglenozoa (euglenids, diplonemids, and kinetoplastids), and from their close relatives, Heterolobosea. Maximum likelihood (ML) and ML distance analyses of these proteins support a close relationship between diplonemids and kinetoplastids to the exclusion of the euglenid Euglena gracilis. In hsp90 and combined protein analyses bootstrap support is very strong and alternative topologies are generally rejected by ‘approximately unbiased’ (AU) tests. This result is consistent with recent molecular biological and morphological data, but contradicts early structural accounts and many SSU rRNA analyses that favour a closer relationship between diplonemids and euglenids. However, a re-examination of an important SSU rRNA data set highlights the instability of the inferences from this marker. The protein analyses also suggest that bodonids are paraphyletic, with trypanosomatids grouping with ‘clade 2’ and ‘clade 3’ bodonids to the exclusion of ‘clade 1’ bodonids.

12871

Simpson, L., Sbicego, S. & Aphasizhev, R., 2003. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. [Review.] RNA 9 (3): 265-276.


Simpson: Howard Hughes Medical Institute, UCLA, 6780 MRL, Los Angeles, CA 90095, USA. [simpson@kdna.ucla.edu]



12872

Stiles, J.K., Kucerova, Z., Sarfo, B., Meade, C.A., Thompson, W., Shah, P., Xue, L. & Meade, J.C., 2003. Identification of surface-membrane P-type ATPases resembling fungal K+- and Na+-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Annals of Tropical Medicine and Parasitology, 97 (4): 351-366.


Stiles: Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA. [stilesj@msm.edu]



12873

Stiles, J.K., Whittaker, J., Sarfo, B.Y., Thompson, W.E., Powell, M.D. & Bond, V.C., 2004. Trypanosome apoptotic factor mediates apoptosis in human brain vascular endothelial cells. Molecular and Biochemical Parasitology, 133 (2): 229-240.


Stiles: Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA. [stilesj@msm.edu]



12874

Subramanya, S., Armah, D.A. & Mensa-Wilmot, K.A., 2002. Repeated cell replication is vital for regulation of a phospholipase C during differentiation of Trypanosoma brucei. [Meeting abstract.] Molecular Biology of the Cell, 13 (Nov. 2002): 521a.


Mensa-Wilmot: Department of Cellular Biology, University of Georgia, Athens GA, USA.



12875

Tilley, A., Welburn, S.C., Fèvre, E.M., Feil, E.J. & Hide, G., 2003. Trypanosoma brucei: trypanosome strain typing using PCR analysis of mobile genetic elements (MGE-PCR). Experimental Parasitology, 104 (1-2): 26-32.


Tilley: Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK.



12876

Tiralongo, E., Martensen, I., Grötzinger, J., Tiralongo, J. & Schauer, R., 2003. Trans-sialidase-like sequences from Trypanosoma congolense conserve most of the critical active site residues found in other trans-sialidases. Biological Chemistry, 384 (8): 1203-1213.


Schauer: Biochemisches Institut, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.



12877

Tschudi, C., Djikeng, A., Shi, H.F. & Ullu, E., 2003. In vivo analysis of the RNA interference mechanism in Trypanosoma brucei. Methods, 30 (4): 304-312.


Ullu: Department of Internal Medicine, Yale University Medical School, 333 Cedqr Street, New Haven, Connecticut 06520-8022, USA. [elisabetta.ullu@yale.edu]



12878

Vandemeulebroucke, A., Versées, W., De Vos, S., Van Holsbeke, E. & Steyaert, J., 2003. Pre-steady-state analysis of the nucleoside hydrolase of Trypanosoma vivax. Evidence for half-of-the-sites reactivity and rate-limiting product release. Biochemistry, 42 (44): 12902-12908.


Vandemeulebroucke: Department of Infrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium. [avdemeul@vub.ac.be]



12879

Voncken, F., van Hellemond, J.J., Pfisterer, I., Maier, A., Hillmer, S. & Clayton, C., 2003. Depletion of GIM5 causes cellular fragility, a decreased glycosome number, and reduced levels of ether-linked phospholipids in trypanosomes. Journal of Biological Chemistry, 278 (37): 35299-35310.


Voncken: Zentrum fur Molekulare Biologie Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany. [voncken2001@yahoo.de]



12880

Wickstead, B., Ersfeld, K. & Gull, K., 2003. The mitotic stability of the minichromosomes of Trypanosoma brucei. Molecular and Biochemical Parasitology, 132 (2): 97-100.


Gull: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. [keith.gull@pathology.oxford.ac.uk]



12881

Wickstead, B., Ersfeld, K. & Gull, K., 2003. The frequency of gene targeting in Trypanosoma brucei is independent of target site copy number. Nucleic Acids Research, 31 (14): 3993-4000.


Gull: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. [keith.gull@pathology.oxford.ac.uk]

This review covers repetitive genomic elements in Plasmodium falciparum, Leishmania major, Trypanosoma brucei, T. cruzi and Giardia lamblia. Repeat elements are classified and attention drawn to the diversity of repetitive DNA, especially in the subtelomeric repeats. Many unanswered questions arise relating to the possible function of repeats and the reasons for their apparent success. Repeats play important roles in genomic evolution and may confer some useful genetic flexibility to their possessors.

12882

Wilkinson, S.R., Horn, D., Prathalingam, S.R. & Kelly, J.M., 2003. RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. Journal of Biological Chemistry, 278 (34): 31640-31646.


Wilkinson: Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Diseases, London WC1E 7HT, UK. [shane.wilkinson@lshtm.ac.uk]



12883

Worthey, E.A., Schnaufer, A., Mian, I.S., Stuart, K. & Salavati, R., 2003. Comparative analysis of editosome proteins in trypanosomatids. [T. brucei.] Nucleic Acids Research, 31 (22): 6392-6408.


Salavati: Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109, USA. [alavati@u.washington.edu]


Previous Page Top of Page