Previous PageTable of ContentsNext Page

Materials
and accessories

Density of materials

SINKING MATERIALS

Metals

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
aluminium 2.5 0.60 +

0.59 +

brass 8.6 0.88 +

0.88 +

bronze 7.4 0.86 +

0.86 +

  to 8.9

0.89 +

to 0.88 +

cast iron 7.2

0.86 +

0.86 +

  to 7.8

0.87 +

0.87 +

copper 8.9

0.89 +

0.88 +

lead 11.4

0.91 +

0.91 +

steel 7.8

0.87 +

0.87 +

tin 7.2 0.86 + 0.86 +
zinc 6.9 0.86 +

0.85 +

Textiles

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
aramide (kevlar) 1.20 0.17 + 0.15 +
cotton 1.54 0.35 + 0.33 +
hemp 1.48 0.32 + 0.31 +
linen 1.50 0.33 + 0.32 +
manilla 1.48 0.32 + 0.32 +
polyamide (PA) 1.14 0.12 + 0.10 +
polyester (PES) 1.38 0.28 + 0.26 +
polyvinyl alcohol (PVA) 1.30 0.23 + 0.21 +
polyvinyl chloride (PVC) 1.37 0.27 + 0.25 +
polyvinylidene(PVD) 1.70 0.41 + 0.40 +
ramie 1.51 0.34 + 0.32 +
sisal 1.49 0.33 + 0.31 +

Other Materials

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
brick 1.9 0.47 +

0.46 +

chalk 2.4 0.58 + 0.57 +
concrete 1.8 0.44 +

0.43 +

  to   3.1 0.68 +

0.67 +

earthenware 2.2 0.55 + 0.53 +
glass 2.5 0.60 + 0.59 +
rubber 1.0 0.00 0.03 -
  to 1.5 0.33 + 0.32 +
sandstone 2.2 0.55 + 0.53 +
stone 2.5 0.60 + 0.59 +
ebony 1.25 0.20 + 0.18 +

* Multiplication  factor used to calculate the 'weight in water' of differnt materials, as shown on page 4.

FLOATING MATERIALS

Wood

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
bamboo 0.50 1.00 - 1.05 -
cedar, red

0.38

1.63 - 1.70 -
cedar, white 0.32 2.13 - 2.21 -
cork 0.25 3.00 - 3.10 -
cypress 0.48 1.08 - 1.14 -
fir

0.51

0.96 - 1.01 -
oak, dry 0.65 0.54 - 0.58 -
oak, green

0.95

0.05 - 0.08 -
pine 0.65

0.54 -

0.58 -
pine, Oregon 0.51 0.96 - 1.01 -
pine, poplar 0.41 1.44 - 1.50 -
oplar 0.48 1.08 - 1.14 -
spruce 0.40 1.50 - 1.57 -
teak

0.82

0.22 - 0.25 -
walnut 0.61 0.64 - 0.68 -

Fuel

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
petrol (normal or super) 0.72 0.39 -

0.43 -

petrol for lamps 0.79 0.27 -

0.30 -

diesel fuel 0.84 0.19 -

0.22 -

crude oil, heavy 0.86 0.16 - 0.19 -
crude oil, light 0.79 0.27 - 0.30 -
fuel oil, heavy 0.99 0.01 - 0.04 -
fuel oil,      
Intermediate (merchant vessels) 0.94 0.06- 0.09 -

Textiles

 

Density

Multiplication factor*

Type

(g/cc)

freshwater sea water
Polyethylene(PE) 0.95 0.05 - 0.08 -
Polypropylene(PP) 0.90 0.11 - 0.14 -
Polystyrene, expanded 0.10 9.00 - 9.26 -

Others

ice 0.95

0.11-

0.14-

Oil 0.90-0.95    

Examples of loss of buoyancy as a function of duration of immersion:

after

0 days 10 days 15 days
cork 4.5 kgf 4.0  
wood 2.0 kgf 1.0 0

Weight in water, with examples for materials and for a rigged gillnet

FISHERMAN'S WORKBOOK

where :
Ρ      = weight (kg) in water

A     = weight (kg) in air

DW = density (g/cc) of water (freshwater 1.00; sea water 1.026)

DM = density (g/cc) of material

* The term in brackets, the multiplication factor, has been calculated for the materials most commonly used in fisheries, with the results given in the tables on pages 2-3. The factor followed by a + sign indicates a sinking force. The factor followed by a - sign indicates a buoyant or floating force. To obtain the weight in water of a certain quantity of material, simply multiply its weight in air by the factor.

Example a:
1.5 kg of cork in air The table on page 3 gives the multiplication factor for cork:

FISHERMAN'S WORKBOOK

so,

1.5 x 3.00(-) = 4.5 kg flotation in freshwater

1.5 x 3.10H = 4.65 kg flotation in sea water

Example b :
24.6 kg of polyamide (nylon) in air The table on page 3 gives the multiplication factor for polyamide:

FISHERMAN'S WORKBOOK

so,

24.6 χ 0.12( + ) = 2.95 kg flotation in freshwater

24.6 χ 0.10( + ) = 2.46 kg flotation in sea water

Example c: Calculating the weight in water of a bottom gillnet

component weight(kg) weight(kg)
in air in sea water
ropes: 2 x 90 m PP Ø 6 mm 3.060 -0.430 -
netting: 900 x 11 meshes 140 mm stretched mesh PAR 450 tex with bolchlines 1.360 + 0.136 +
floats: 46 corks x 21 g (in air) (or 50 floats of 60 gf each) 0.970

- 3.000 -

sinkers: 180 lead sinkers, 80 g each (in air) (1) 14.400 + 13.100 +
or 111 stones, avg. weight 200 g (2) 22.200  
TOTAL (1) 19.790  
(2) 27.590 9.806 +

The weight of α gillnet in water is calculated by adding the weights of the different components, taking into account the sign of the factor. The sign of the total indicates the type of net we have made; thus, this gillnet with a + sign would be a bottom net with a sinking force of 9.806 kg.

STRENGTH OF HARDWARE

Safe working load, breaking load, safety factor

Definitions

—  Safe working load (SWL), is the maximum load that an item is certified to lift in service. Another equivalent term in use is Working load limit.

—   Breaking load (BL) is the maximum load that an item can hold with a static load before it breaks. Another equivalent term in use is Breaking strength.

—   Safety factor

FISHERMAN'S WORKBOOK

Very important : The loads used in these calculations are static loads. Dynamic or shock loads increase the stress considerably, and thus increase the possibility of breakage.

Values of the safety factor

(a) For ropes

Diameter (mm) 3-18 20-28 30-38 40-44 48-100
Safety factor 25 (est) 20 15 10 8

(b)  For wire ropes and metal hardware : safety factor about 5-6.

Safe working load

FISHERMAN'S WORKBOOK

SYNTHETIC FIBRES

Synthetic fibres and commercial names

Polyamide (PA)

Amilan (Jap)
Anid (USSR)
Anzalon (Neth)
Caprolan (USA)
Denderon (E. Ger)
Enkalon (Neth, UK)
Forlion (Itd)
Kapron (USSR)
Kenlon (UK)
Knoxlock (UK)
Lilion (Ital)
Nailon (Ital)
Nailonsix (Braz)
Nylon (many coun.)
Perlon (Ger)
Platil (Ger)
Relon (Roum)
Roblon (Den)
Silon (Czec)

Polyethylene (PE)

Akvaflex (Nor)
Cerfil (Port)
Corfiplaste (Port)
Courlene (UK)
Drylene 3 (UK)
Etylon (Jap)
Flotten (Fran)
Hiralon (Jap)
Hi-Zex (Jap)
Hostalen G (W. Ger)
Laveten (Swed)
Levilene (Ital)
Marlin PE (Ice)
Norfil (UK)
Northylen (Ger)
Nymplex (Neth)
Rigidex (UK)
Sainthene (Fran)
Trofil (Ger)
Velon PS (LP) (USA)
Vestolen A (Ger)

Polypropylene (PP)

Akvaflex PP (Nor)
Courlene PY (UK)
Danaflex (Den)
Drylene 6 (UK)
Hostalen PP (Ger)
Meraklon (Ital)
Multiflex (Den)
Nufil (UK)
Prolene (Arg)
Ribofil (UK)
Trofil P (Ger)
Ulstron (UK)
Velon P (USA)
Vestolen P (Ger)

Copolymers (PVD)

Clorene (Fran)
Dynel (USA)
Kurehalon (Jap)
Saran (Jap, USA)
Tiviron (Jap)
Velon (USA)
Wynene (Can)

Polyester (PES)

Dacron (USA)
Diolen (Ger)
Grisuten (E. Ger)
Tergal (Fran)
Terital (Ital)
Terlenka (Neth, UK)
Tetoron (Jap)
Terylene (UK)
Trevira (W. Ger)

Polyvinyl alcohol (PVA)

Cremona (Jap)
Kanebian (Jap)
Kuralon (Jap)
Kuremona (Jap)
Manryo (Jap)
Mewlon (Jap)
Trawlon (Jap)
Vinylon (Jap)

Commercial names of combined twines for netting

Kyokurin Cont. fil PA + Saran
Livlon Cont. fil PA + Saran
Marlon A Cont. fil PA + St. PVA
Marlon B Cont. fil PA + Saran
Marlon C Cont. fil PA + Cont. fil PVC
Marlon D Cont. fil PA + Saran
Marlon E St. PA + St. PVA (or PVC)
Marumoron Cont. fil. PA + St. PVA
Polex PE + Saran
Polysara PE + Saran
Polytex PE + cont. fil. PVC
Ryolon Cont. fil. PES + Cont. fil. PVC
Saran-N Cont. fil. PA + Saran
Tailon (Tylon P) Cont. fil. PA + St. PA
Temimew St. PVA + St. PVC
Cont. fil. = continuous fibres
St. = staple fibre

 Synthetic fibres : physical properties

Nylon, polyamide (PA) Sinks (density = 1.14)
Good breaking strength and resistance to abrasion
Very good elongation and elasticity
Polyester (PES) Sinks (density = 1.38)
Very good breaking strength
Good elasticity
Poor elongation (does not stretch)
Polyethylene (PE) Floats (density = 0.94-0.96)
Good resistance to abrasion
Good elasticity
Polypropylene (PP) Floats (density = 0.91-0.92)
Good breaking strength
Good resistance to abrasion
Polyvinyl alcohol (PVA) Sinks (density = 1.30-1.32)
Good resistance to abrasion
Good elongation

 Synthetic fibres : identification

Properties

PA PES PE PP
Floats No No Yes Yes
- Appearance        
- Continuous fibres X X - X
- Short (staple) fibres (X) (X) - (X)
- Monofilament (X) (X) X (X)
- Sheets - - (X) X
Combustion Melts following short duration of heatingforms molten droplets Melts and burns slowly with bright yellow flame Melts and burns slowly with pale blue flame Melts and burns slowly with pale blue flame
Smoke White Black with soot White White
Smell Celery-like fishy odour Hot oil faintly sweet Snuffed out candle Hot wax/burning asphalt
Residue Solid yellowish round droplets Solid blackish droplets Solid droplets Solid brown droplets
X = Commonly available
(X). = Material exists but is less common
- = Not available

TWINE

Twine : number, tex, denier, meters/kg, diameter

Simple fibres

Titre (denier)  : Td = weight (g) of 9000 m of fibre
Metric number : Nm = length (m) of 1 kg of fibre
English number for cotton : Nec = length (in multiples of 840 yd) per lb
International  system:  tex  =  weight (g) of 1000 m of fibre

Finished twine

Runnage, metres/kg : m/kg = length (m) of 1 kg of finished twine
Resultant tex : Rtex = weight (g) of 1000 m of finished twine

Equivalents and conversions

textile/system PA PP PE PES PVA
Titre/denier 210 190 400 250 267
International tex system 23 21 44 28 30

FISHERMAN'S WORKBOOK

Estimating the diameter of twine

In addition to precise measurements from instruments such as micrometer, magnifying glass and microscope, there exists a quick method of estimation. Roll 20 turns of the twine to be measured around a pencil and measure the total length of the turns.

Example :

FISHERMAN'S WORKBOOK

If 20 turns of the twine measure 6 cm, then the diameter of the twine  = 60 mm/20 turns = 3 mm

Note : The strength of twine or rope depends not only on its thickness, but also on the method ond degree of twisting or braiding its yarns.

Twine : calculation of tex

Calculation of Resultant tex (Rtex) of twine

Case 1 : When the structure of the twine is known

Example :
Netting twine made of nylon (polyamide), with 210 denier single yarns, 2 single yarns in each of the 3 folded yarns (strands) which make up the twine.

FISHERMAN'S WORKBOOK

To find the Resultant tex (Rtex) we have to apply a correction to the calculated value, taking into account the structure of the finished twine (twisted, braided, hard lay, degree of twist, etc.). A rough estimation of Rtex can be found by adding 10% to the value calculated above:

138 tex + 10% = R 152 tex (estimate)

FISHERMAN'S WORKBOOK

Note : In view of the complex structure of braided twines, it is the general practice in fisheries for the gear designer to use the Rtex value without going into detail.

Case 2: A sample of twine is available for evaluation

Example :
5 m of twine, placed on a percision scale, weigh 11.25 g.
We know that twine of R 1 tex weighs 1 g per 1000 m, and the weight per meter of the sample twine is 11.25/5 = 2.25 g/m. So, 1000 m of the sample would weigh 1000 x 2.25 = 2250g, or R 2250 tex

Note : The strength of twine or rope depends not only on its thickness, but also on the method and degree of twisting or braiding its yarns.

Twine : equivalents of numbering system

Eg.: twisted nylon (polyamide) twine

m/kg Rtex
g/1000m
yds/lb
ā/
20 000 50 9 921
13 500 75 6 696
10 000 100

4 960

6 450 155 3 199 
4 250 235 2 180
3 150 317

1 562 

2 500 450

1 240

2 100 476

1 041

1 800 556

893

1 600 625

794

1 420 704 704
1 250 800 620
1 150 870 570
1 060 943 526
980 1 020 486
910 1 099 451
850 1 176 422
790 1 266 392
630 1 587 313
530 1 887 263
400 2 500 198
360 2 778 179
310 3 226 154
260 3 846 129
238 4 202 118
225 4 444 112
200 5 000 99
180 5 556 89
155 6 452 77
130 7 692 64
100 10 000 50
a/ yds/lb = approx. (m/kg)/2
m/kg = approx. (yds/lb) x 2

 

No of yarns
denier
No. of denier
Td
Tex
210 x 2 420 47
3 630 70
4 840 93
6 1 260 140
9 1 890 210
12 2 520 280
15 3 150 350
18 3 780 420
21 4 410 490
24 5 040 559
27 5 670 629
30 6 300 699
33 6 930 769
36 7 560  839
39 8 190 909
42 8 820 979
45 9 450 1 049
48 10 080 1 119
60 12 600 1 399
72 15 120 1 678
96 20 160 2 238
108 22 680 2 517
120 25 200 2 797
144 30 240 3 357
156 32 760 3 636
168 35 280 3 916
192 40 320 4 476
216 45 360 5 035
240 50 440 5 594
264 55 440 6 154
360 75 600 8 392

Note : 210 denier = 23 Tex

Twine : nylon (polyamide PA), multifilament twisted or braided

A = breaking load, dry without knots (single twine)

B = breaking load, wet, knotted (single twine)

Twisted, continuous filament

m/kg Rtex Diam.
mm
A
kgf
B
kgf
20 000 50 0.24 3.1

1.8

13 300 75 0.24 4.6

2.7

10 000 100 0.33 6.2

3.6

6 400 155 0.40 9

6

4 350 230 0.50 14

9

3 230 310 0.60 18

11

2 560 390 0.65 22

14

2 130

470

0.73 26

16

1 850 540 0.80 30

18

1 620 620 0.85 34

21

1 430 700 0.92 39

22

1 280 780 1.05 43

24

1 160 860 1.13 47

26

1 050 950 1.16 51

28

970 1 030 1.20 55

29

830 1 200 1.33 64

34

780 1 280 1.37 67

35

700 1 430 1.40 75

40

640 1 570 1.43 82

43

590 1 690 1.5 91

47

500 2 000 1.6 110

56

385 2 600 1.9 138 73
315 3 180 2.0 165 84
294 3 400 2.2 178 90
250 4 000 2.4 210 104
200 5 000 2.75 260 125
175 6 000 2.85 320 150
125 8 000 3.35 420 190
91 11 000 3.8

560

250

Braided, continuous filament

m/kg Rtex Diam.
approx.
mm
A
kgf
B
kgf
740 1 350 1.50 82 44
645 1 550 1.65 92 49
590 1 700 1.80 95 52
515 1 950 1.95 110 60
410 2 450 2.30 138 74
360 2 800 2.47 154 81
280 3 550 2.87 195 99
250 4 000 3.10 220 112
233 4 300 3.25 235 117
200 5 000 3.60 270 135
167 6 000 4.05 320 155
139 7 200 4.50 360 178
115 8 700 4.95 435 215
108 9 300 6.13 460 225
95 10 500 5.40 520 245
81 12 300 5.74 600 275
71 14 000 5.93 680 315
57 17 500 6.08 840 390

Twine, nylon (polyamide PA) monofilament and multimonofillament, japanese numbering system

A = breaking load, dry without knots (single twine)

B = breaking load, wet, knotted (single twine)

Diam.
mm
m/kg Tex* A
kgf
B
kgf
0.10 90 900 11 0.65 0.4
0.12 62 500 16 0.9 0.55
0.15 43 500 23 1.3 0.75
0.18 33 300 30 1.6 1.0
0.20 22 700 44 2.3 1.4
0.25 17 200 58 3.1 1.8
0.30 11 100 90 4.7 2.7
0.35 8 330 120 6.3 3.6
0.40 6 450 155 7.7 4.4
0.45 5 400 185 9.5 5.5
0.50 4 170 240 12 6.5
0.55 3 570 280 14 7.5
0.60 3 030 330 17 8.8
0.70 2 080 480 24 12.5
0.80 1 670 600 29 15
0.90 1 320 755 36 19
1.00 1 090 920 42 22
1.10 900 1 110 47 25
1.20 760 1 320 55 30
1.30 650 1 540 65 35
1.40 560 1 790 75 40
1.50 490 2 060 86 46
1.60 430 2 330 98 52
1.70 380 2 630 110 58
1.80 340 2 960 120 65
1.90 300 3 290 132 72
2.00 270 3 640 145 75
2.50 180 5 630 220 113

Japanese numbering system for Monofilament

N° Japan

 Diam.
(mm)
N° Japan diam.
(mm)
  0.20   0.55
2 - 12 -
  0.25   0.60
3   14 -
  0.30   0.70
4 - 18 -
  0.35   0.80
5 - 24 -
  0.40 30 0.90
6 -    
7 0.45    
8 -    
  0.50    
10 -    

Multimonofilament

Diameter*
(mm)

x number of filaments m/kg A
kgf
0.20 x 4 6 250 9
0.20 x 6 4 255 14
0.20 x 8 3 125 18
0.20 x 10 2 630 24
0.20 x 12 2120 26

* for monofilament, tex and Rtex are the same.

Twine : polyester (PES), polyethylene (PE), polypropylene (PP)           

A = breaking load, dry without knots (single twine)

B = breaking load, wet, knotted (single twine)

POLYESTER (PES)

twisted, continuous filaments

m/kg Rtex Diam.
mm
A
kgf
B
kgf
11 100 90  

5.3

2.8
5 550 180 0.40 10.5 5
3 640 275 0.50 16 7.3
2 700 370 0.60 21 9.3
2 180 460 0.70 27 12
1 800 555 0.75 32 14
1 500 670 0.80 37 16
1 330 750 0.85 42 18
1 200 830 0.90 46 20
1 080 925 0.95 50 22
1 020 980 1.00 54 24
900 1 110 1.05 60 26
830 1 200 1.10 63 28
775 1 290 1.15 68 29
725 1 380 1.20 73 30
665 1 500 1.25 78 32
540 1 850 1.35 96 40
270 3 700 1.95 180 78

POLYETHYLENE (PE)

twisted or braided thick filaments

m/kg Rtex Diam.
approx.
mm
A
kgf
B
kgf
5 260 190 0.50 7.5 5.5
2 700 370 0.78 10 7
1 430 700 1.12 27 19
950 1 050 1.42 36 24
710 1 410 1.64 49 35
570 1 760 1.83 60 84
460 2 170 2.04 75 54
360 2 800 2.33 93 67
294 3 400 2.56 116 83
225 4 440 2.92 135 97
190 5 300 3.19 170 125
130 7 680 3.68 218 160
100 10100 3.96 290 210

POLYPROPYLENE (PP)

twisted, continuous filaments

m/kg Rtex Diam.
approx.
mm
A
kgf
B
kgf
4 760 210 0.60 13 8
3 470 290 0.72 15 9
2 780 360 0.81 19 11
2 330 430 0.90 25 14
1 820 550 1.02 28 15
1 560 640 1.10 38 19
1 090 920 1.34 44 23
840 1 190 1.54 58 30
690 1 440 1.70 71 36
520 1 920 1.95 92 47
440 2 290 2.12 112 59
350 2 820

2.32

132 70
300 3 300 2.52 152 80
210 4 700

2.94

190 100
177 5 640 3.18 254 130

twisted staple fibres

m/kg Rtex Diam.
approx.
mm
A
kgf
B
kgf
4 760 210 0.60 9 6
3 330 300 0.73 13 9
2 560 390 0.85 18 12
1 250 800 1.22 32 22
1 010 990 1.36 38 24
720 1 390 1.62 57 36
530 1 900 1.94 73 46
420 2 360 2.18 86 54
325 3 070 2.48 100 59
240 4 100 2.90 150 88
185 5 400 3.38 215 120
150 6 660 3.82 300 170

ROPE

Vegetable fibre ropes*

Tarred Cotton
Diameter mm kg/100 m R kgf
3.0 1.056 45
3.5 1.188 55
4.0 1.320 66
4.5 1.585 77
5.0 1.915 88
5.5 2.448 100
6.0 2.905 113
6.5 3.300 127

 

Sisal
 

Diameter
mm**

Standard

Extra

kg/
100 m
R
kgf
kg/
100 m
R
kgf
6 2.3 192 3.3 336
8 3.5 290 4.7 505
10 6.4 487 6.4 619
11 8.4 598 9.0 924
13 10.9 800 11.0 1 027
14 12.5 915 14.0 1 285
16 17.0 1 100 17.2 1 550
19 24.5 1 630 25.3 2 230
21 28.1 1 760 29.0 2 390
24 38.3 2 720 39.5 3 425
29 54.5 3 370 56.0 4 640
32 68.0 4 0501 70.0 5 510
37 90.0 5 220 92.0 7 480
40        
48        
R= Breaking strength, dry
* Safe working load, see page 5

** In English-speaking countries the size of a rope is sometimes measured by its circumference in inches (in.) or by its diameter in inches Diameter of rope 0 (mm) = approx. 8 x c (inch)

Example: 0 (mm) of a rope of 2.25 inch circumference 0 (mm) = 2.25x8 = 18 mm (approximate)

Hemp

Diameter
mm**
Standard Extra
kg/
100 m
R
kgf
kg/
100 m
R
kgf
10 6.6

631

7.8

600
11 8.5

745

10.0

708
13 11.3

994

13.3

944
14 14.3

1 228

17.0

1 167
16 17.2 1 449

20.3

1 376
19 25.3 2017

29.8

1 916
21 30.0 2318

35.4

2 202
24 40.2 3 091

47.4

2 936
29 59.0 4 250

70.0

4 037
32 72.8 5 175

86.0

4 916
37 94.8 6 456

112.0

6 133
40 112.0 7 536

132.0

7 159
48 161.0 10 632 190.0 10 100

 

Manilla

Diameter
mm**

Standard Extra
kg/
100 m
R
kgf
kg/
100 m
R
kgf
10 6.2 619 6.2 776
11 9.15 924 9.25 1 159
13 11.2 1 027 12.4 1 470
14 14.2 1 285 15.0 1 795
16 17.5 1 550 18.5 2 125
19 25.5 2 230 26.65 2 970
21 29.7 2 520 30.5 3 330
24 40.5 3 425 41.6 4 780
29 58.4 4 800 59.9 6 380
32 72.0 5 670 74.0 7 450
37 95.3 7 670 98.0 9 770
40 112.5 8 600 115.8 11 120

48

       

Synthetic fibre rope*

Diameter
mm**

Polyamide
kg/100

(PA)
Rkgf

Polyethyene
kg/100

(PE)
Rkgf

Polyester
kg/100m

(PES)
R kgf

Polypropyene
Kg/100m

(PP)
R kgf

4 1.1 320     1.4 295 - -
6 2.4 750 1.7 400 3 565 1.7 550
8 4.2 1 350 3 685 5.1 1 020 3 960
10 6.5 2 080 4.7 1 010 8.1 1 590 4.5 1 425
12 9.4 3 000 6.7 1 450 11.6 2 270 6.5 2 030
14 12.8 4 100 9.1 1 950 15.7 3 180 9 2 790
16 16.6 5 300 12 2 520 20.5 4 060 11.5 3 500
18 21 6 700 15 3 020 26 5 080 14.8 4 450
20 26 8 300 18.6 3 720 32 6 350 18 5 370
22 31.5 10 000 22.5 4 500 38.4 7 620 22 6 500
24 37.5 12 000 27 5 250 46 9 140 26 7 600
26 44 14 000 31.5 6 130 53.7 10 700 30.5 8 900
28 51 15 800 36.5 7 080 63 12 200 35.5 10 100
30 58.5 17 800 42 8 050 71.9 13 700 40.5 11 500
32 66.5 20 000 47.6 9 150 82 15 700 46 12 800
36 84 24 800 60 11 400 104 19 300 58.5 1 6100
40 104 30 000 74.5 14 000 128 23 900 72 19 400

R = breaking strength, dry

Direction of twist of twines, ropes and cables

FISHERMAN'S WORKBOOK

* Safe working bad, see page 5
**Conversion inch-mm, seepage 15

Rope : joining knots and loops

Some knots are used more than others. In selecting which knot to use the following points should be considered : — the use of the knot — the type of rope — whether the knot will slip — whether the knot is permanent.

Joining two cords

Two cords of the same diameter, multifilament

FISHERMAN'S WORKBOOK

Two cords of same diameter, monofilament

FISHERMAN'S WORKBOOK

Two cords of different diameters or different types

FISHERMAN'S WORKBOOK

Sheet bends are also useful for joining two identical cords

Loops

Fixed loop

FISHERMAN'S WORKBOOK

Running loop

FISHERMAN'S WORKBOOK

Knots for stoppers and mooring

Some knots are used more than others. In selecting which knot to use the following points should be considered : — the use of the knot — the type of rope — whether the knot will slip — whether the knot is permanent.

For stopping a rope from running through a narrow space (i.e. sheave)

FISHERMAN'S WORKBOOK

Knots for mooring

FISHERMAN'S WORKBOOK

To close the codend of a trawl
(codend knot)

FISHERMAN'S WORKBOOK

To shorten a rope

FISHERMAN'S WORKBOOK

Knots for hitches and stoppers

Some knots are used more than others. In selecting which knot to use the following points should be considered : — the use of the knot — the type of rope — whether the knot will slip — whether the knot is permanent.

FISHERMAN'S WORKBOOK

Loss of breaking strength due to knots and splices

FISHERMAN'S WORKBOOK

Combination wire (1)*

Steel - Sisal 3 strands

  Untreated Tarred
Diameter
(mm)
kg/m Rkgf kg/m Rkgf
10 0.094 1 010 0.103

910

12 0.135 1 420 0.147

1 285

14 0.183 1 900 0.200

1 750

       

16 0.235 2 400 0.255

2 200

18 0.300 3 100 0.325

2 800

20 0.370 3 800 0.405 3 500
         
22 0.445 4 600 0.485

4 200

25 0.565 5 700 0.615

5 300

28 0.700 7 500 0.760

6 700

       

30 0.820 8 400 0.885

7 600

Steel - Sisal 4 strands

  Untreated Tarred
Diameter
(mm)
kg/m Rkgf kg/m Rkgf
12 0.135 1 420 0.147 1 285
14 0.183 1 900 0.200 1 750
16 0.235 2 400 0.255 2 200
         
18 0.300 3 100 0.325 2 800
20 0.370 3 800 0.405 3 500
22 0.445 4 600 0.485 4 200
         
25 0.565 5 700 0.615 5 300
28 0.700 7 200 0.760 6 400
30 0.775 8 400 0.840 7 600

R = Breaking strength dry

* Safe working loads, see page 5

Combination wire (2)*

Steel -Manilla B, 4 strands

  Untreated Tarred
Diameter
(mm)
kg/m Rkgf kg/m Rkgf
12 0.138 1 500 0.150 1 370
14 0.185 2 000 0.205 1 850
16 0.240 2 500 0.260 2 350
18 0.305 3 300 0.335 3 000
20 0.380 4 000 0.410 3 800
22 0.455 5 000 0.495 4 600
25 0.575 6 200 0.630 5 700
28 0.710 7 600 0.775 6 900
30 0.790 8 900 0.860 8 200
32 0.890 9 500

0.970

8 750
34 1.010 11 200 1.100 10 200
36 1.140 12 000 1.235 11 000
40 1.380 15 000 1.495 14 000
45 1.706 18 500 1.860 17 500
50 2.045 22 500 2.220 20 000

Steel - Polypropylene

Diameter
(mm)
Number of strands kg/m

Rkgf

10 3 0.105 1 230
12 3 0.120 1 345
14 3 0.140 1 540
16 3 0.165 2 070
18 3 0.240 3 000
14 6 0.250 4 000
16 6 0.275 4 400
18 6 0.350 5 300
20 6 0.430 6 400
22 6 0.480 7 200
24 6 0.520 7 800
26 6 0.640 9 700

R = Breaking strength dry

* Safe working loads, see page 5

Flatline and leadline

Floatline (with floats inside)

FISHERMAN'S WORKBOOK

Principal advantages (1) and disadvantages (2)

  1. Ease of rigging; less entanglement in the meshes.
  2. Need to calculate the rigging as a function of the distance between the floats; fragility of some types of float when passing through certain gillnet haulers.

Floatline (with floats inside)

Interval between 
floats     (cm)

Flotation
gf/100m

52 480
47 500
35 570
20 840
35 2 850
20 3 000

Leadline (with leads inside)

FISHERMAN'S WORKBOOK

Principal advantages (1) and disadvantages (2)

  1. Ease of rigging; uniform weight of leadline; better hanging; no entanglement in meshes.
  2. In the case of breaking, loss of leads; difficult to repair; high cost.

Braided with a centre core of lead

Diameter
(mm)
kg/100 m

Rkgf

2 2.3 - 3.5 73
2.5 4.6  
3 6.5 - 7.1 100
3.5 9.1  
4 11.1 - 12.3 200
4.5 14.5  
5 15.2 - 18.1 300

 

Diameter
(mm)
kg/100 m

Rkgf

7.2 7.5 360
8 12.5 360
8 18.8 360
9.5 21.3 360
9.5 23.8 360
9.5 27.5 360
11.1 30.0 360
12.7 37.5 675

Rope with a lead core in three strands

Diameter kg/100 m

Rkgf

6 8.7 495
7 11.2 675
8 13.3 865
10 21.6 1 280
12 26.6 1 825
14 33.0 2 510

R = breaking strength

there are also leadlines of 0.75; 0.90; 1.2; 1.5; 1.8 kg/100m

WIRE ROPE

Steel wire rope : structure, diameter and use

Examples of common marine wire rope

Type

Structure and diameter

Example of Use

S

FISHERMAN'S WORKBOOK 7 x 7 (6/1)
central heart: steel Ø 12 to 28 mm
Standing rigging +
6 x 7 (6/1)
Central heart: textileØ 8 to 16 mm
Standing rigging
Warps for small trawlers
Small coastal vessels
+
6 x 12 (12/fibre)
Central heart, strand cores, fibre Ø 8 to 16 mm
Bridles and warps for small trawlers
moorings and running rigging
++
6 x 19 (9/9/1)
Central heart of steel or textileØ16 to 30 mm
Trawler warps +
6 x 19 (12/6/1)
Central heart of textile Ø 8 to 30 mm
Trawler's sweeps and warps
running rigging
+
6 x 24 (15/9/fibre)
Central heart and strand cores of textile Ø 8 ta 40 mm
Purse wire bridles and otter board strops, running rigging moorings and towing ++
6 x 37 (18/12/6/1)
Central heart of textile Ø 20 to 72 mm
Purse wire moorings and running rigging mooring ++

S = flexibility
+ = poor or average
++ = good

As a general rule, the greater the number of strancs, and the greater the number of filaments per strand, the greater the flexibility of the cable.

Galvanised steel wire rope : runnage, breaking strength*25

(for structure, see page 24) examples

6 x 7 (6/1)
diam.
mm
kg/
100 m
R
kgf
8 22.2 3 080
9 28.1 3 900
     
10 34.7 4 820
11 42.0 5 830
12 50.0 6 940
13 58.6 8 140
14 68.0 9 440
15 78.1 10 800
16 88.8 12 300

 

6 x 19 (9/9/1)
diam.
mm
kg/
100 m
R
kgf
16 92.6 12 300
17 105 13 900
18 117 15 500
19 131 17 300
     
20 145 19 200
21 160 21 200
22 175 23 200
23

191

25 400
24 208 27 600
     
25 226 30 000
26 245 32 400

 

6 x 24 (15/9/fibre)
diam.
mm
kg/
100 m
R
kgf
8 19.8 2 600
10 30.9 4 060
12 44.5 5 850
     
14 60.6 7 960
16 79.1 10 400
18 100 13 200
     
20 124 16 200
21 136 17 900
22 150 19 700
24 178 23 400
     
26 209 27 500

 

6 x 12 (12/fibre)
diam.
mm
kg/
100 m
R
kgf
6 9.9 1 100
     
8 15.6 1 940
9 19.7 2 450
10 24.3 3 020
     
12 35.0 4 350
14 47.7 5 930
16 62.3 7 740

 

6 x 19 (12/6/1)
diam.
mm
kg/
100 m
R
kgf
8 21.5 2 850
10 33.6 4 460
12 48.4 6 420
     
14 65.8 8 730
16 86.0 11 400
18 109 14 400
     
20 134 17 800
22 163 21 600
24 193 25 700

 

6 x 37 (18/12/6/1)
diam.
mm
kg/
100 m
R
kgf
20 134 17 100
22 163 20 700
24 193 24 600
     
26 227 28 900

R = Breaking strength
(steel 145 kgf/mm2)

*Safe Working Loads, see page 5

Handling wire rope

NO YES
FISHERMAN'S WORKBOOK  FISHERMAN'S WORKBOOK 

Winding onto a drum depending on the direction of lay in a wire.

FISHERMAN'S WORKBOOK

Matching wire ropes with drums and sheaves

Drums:
FISHERMAN'S WORKBOOK
the diameter of a drum (D) relative to the diameter of the wire rope (Ø) to be held on the drum — D/Ø depends on the structure of the wire rope, and depending on the particular situation, D should range from 20Ø to 48Ø. In practical use on board fishing vessels, depending on the space available, the following values are common :

D = 14Ø or more

 Sheaves :
FISHERMAN'S WORKBOOK
The diameter of a sheave (D) relative to the diameter of the wire rope (Ø) to be used with the sheave — D/Ø depends on the structure of the wire rope, and depending on the particular situation, D should range from 20Ø to 48Ø. In practical use on board fishing vessels, depending on the space available, the following values are common:

D = 9Ø or more

Width of sheave relative to the diameter of the wire rope

FISHERMAN'S WORKBOOK

Location of sheave relative to drum

FISHERMAN'S WORKBOOK

Maximum fleet angle of a steel wire between a fixed sheave and a drum with manual or automatic spooling gear:

L = C x 5 (or more); C x 11 is recommended

(In order to let a sheave shift with changing wire angles, it is often better to use a flexibly attached block rather than a fixed sheave.)

Cable clamps should be fastened with nuts on the standing part of the wire

FISHERMAN'S WORKBOOK

Steel wire rope, small diameter

Stainless steel, heat treated and painted (examples)

Construction

diam.
mm
R
kgf

FISHERMAN'S WORKBOOK

1.00 75
0.91 60
0.82 50
0.75 45
0.69 40
0.64 34
0.58 28
1.5 210
1.4 170
1.3 155
1.3 140
1.2 120
1.1 100
1.0 90
0.9 75
0.8 65
0.7 50
0.6 40
0.6 30
2.2 290
2.0 245
1.8 200
1.6 175
1.5 155
2.2 220
2.0 180
1.8 155
1.6 130
1.5 115
1.4 100
1.3 85
2.4 290
2.2 245
2.0 200
1.8 175
1.6 155
1.5 130
1.4 110
1.9 290
1.8 245
1.6 200
1.5 175
1.3 155
1.2 135
1.1 110

Galvanised steel, not lubricated

Diameter
mm

Number of  

Diameter of wires
mm

kg/m

R kgf
(steel 80 - 90 kgf/mm2)

Strands Wires
2 5 1 plus 6 0.25 0.016 125
3 6 1 plus 6 0.30 0.028 215
4 6 1 plus 6 0.40 0.049 380
5 6 7 0.50 0.081 600
6 6 9 0.50 0.110 775

R = breaking strength

NET WEBBING

Meshes : Definition

Types of mesh nets

FISHERMAN'S WORKBOOK

b - bar length

Dimension of mesh, stretched mesh (a), and mesh opening (OM)

FISHERMAN'S WORKBOOK

Meshes of metallic or plastic netting
see page 107

Systems of measuring net meshes in different countries

  SYSTEM PLACES USED TYPE OF MEASURE
a stretched mesh international distance (N direction) between the centres of the 2 opposite knots of a stretched mesh *
OM mesh opening international maximum inside measure (N direction) between the 2 opposite knots of a stretched mesh *
b bar length some European countries length of one bar of mesh
P pasada Spain, Portugal number of meshes per 200 mm
On omfar Norway, Iceland half the number of meshes per Alen (1 Alen = 628 mm)
Os omfar Sweden half the number of meshes per Alen (1 Alen = 594 mm)
R rows Netherlands, UK number of rows of knots per yard (1 yard = 910 mm)
N knots Spain, Portugal number of knots per metre
F Fushi or Setsu Japan number of knots per 6 inches (6 inches = 152 mm)
  Conversions

FISHERMAN'S WORKBOOK

* Note that stretched meshsize is not the same as mesh opening, which is considered in many fisheries regulations.

A simple method of measuring stretched meshsize is as follows: extend a panel of twine fully in the N direction (see page 32 for N direction), and measure the distance between the entres of 2 Knots (or connexions) separated by 10 meshes. Then divide this measure by 10.

Knots and edges or selvedges

Knots

FISHERMAN'S WORKBOOK

The height of the single knot is approximately equal to three times the diameter of the twine.

FISHERMAN'S WORKBOOK

Edges and selvedges

FISHERMAN'S WORKBOOK

Definition of cuts

FISHERMAN'S WORKBOOK

Cutting rate

Cutting rate

FISHERMAN'S WORKBOOK

Values of the parts of a cut

  Bars Sideknots Meshes 1T2B 4N3B
 

B

N

T

   
           
Decrease in meshes D 0.5 0 1 1 +2x0.5 4x0 + 3x0.5
           
Height in meshes H 0.5 1 0 0 + 2x0.5 4x1 + 3x0.5
           
Value D/H 0.5/0.5 0/1 1/0 2/1 1.5/5.5=3/11

FISHERMAN'S WORKBOOK

Common cutting rates and tapers

Number of meshes decreasing (or increasing) in width

  1 2 3 4 5 6 7 8 9 10
1 AB 1Τ2Β 1T1B 3T2B 2T1B 5T2B 3T1B 7T2B 4T1B 9T2B
2 1Ν2Β AB 1T4B 12B 3T4B 1T1B 5T4B 3T2B 7T4B 2T1B
3 1MB 1N4B AB 1T6B 1T3B 1T2B 2T3B 5T6B 1T1B 7T6B
4 3Ν2Β 1N2B 1N6B AB 1T8B 1T4B 3T8B 1T2B 5T8B 3T4B
5 2MB 3N4B 1N3B 1N8B AB 1T10B 1T5B 3T10B 2T5B 1T2B
6 5Ν2Β 1MB 1N2B 1N4B 1N10B AB 1T12B 1T6B 1T4B 1T3B
7 3Ν1Β 5N4B  2N3B 3N8B 1N5B 1N12B AB 1T14B 1T7B 3T14B
8 7N2Β 3N2B 5N6B 1N2B 3N10B 1N6B 1M4B AB 1T16B 1T8B
9 4Ν1Β 7N4B 1N1B 5N8B 2N5B 1N4B 1N7B 1M6B AB 1T18B
10 9Ν2Β 2MB 7N6B 3N4B 1N2B 1N3B 3N14B 1N8B 1N18B AB
11 5Ν1Β 9N4B 4N3B 7N8B 3N5B 5N12B 2N7B 3N16B 1N9B 1N20B
12 11Ν2Β 5N2B 3N2B 1MB 7N10B 1N2B 5N14B 1N4B 1N6B 1N10B
13 6Ν1Β 11N4B 5N3B 9N8B 4N5B 7N12B 3N7B 5N16B 2N9B 3N20B
14 13Ν2Β 3N1B 11N6B 5N4B 9N10B 2N3B 1N2B 3N8B 5N18B 1N53
15 7MB 13N4B 2MB -1N8B 1MB 3N4B 4N7B 7N16B 1N3B 1N4B
16 15Ν2Β 7N2B 13N6B 3M2B 11N10B 5N6B 9N14B 1N2B 7N18B 3NB10B
17 ΒΝ1Β 15N4B 7N3B 13N8B 6N5B 11N12B 5N7B 9N16B 4N9B 7N20B
18 17Ν2Β 4N1B 5N2B 7N4B 13N10B 1N1B 11M4B 5N8B 1N2B 2N5B
19 9Ν1Β 17N4B 8N3B 15N8B 7N5B 13N12B 6N7B 11N16B 5N9B 9N20B

N = Sideknots
T = Meshes
B = Bars

Estimation of weight of netting

Knotless netting

FISHERMAN'S WORKBOOK

Knotted netting

FISHERMAN'S WORKBOOK

Where

W = estimated weight lg) of netting
H = number of rows of knots in the height of the netting 2 x number of meshes
L = Stretched length (m) of netting

Rtex and m/kg — the size of twine in the netting

K = knot correction factor to take into account the weignt of the knots (single knot); see table below

K = (knot correction factor) for different netting panels

Stretched
meshsize
(mm)
Twine diameter (d) in mm
0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00
20 1.20 1.40 1.60 1.80 - - - -
30 1.13 1.27 1.40 1.53 1.80 2.07 - -
40 1.10 1.20 1.30 1.40 1.60 1.80 - -
50 1.08 1.16 1.24 1.32 1.48 1.64 1.96 -
60 1.07 1.13 1.20 1.27 1.40 1.53 1.80 2.07
80 1.05 1.10 1.15 1.20 1.30 1.40 1.60 1.80
100 1.04 1.08 1.12 1.16 1.24 1.32 1.48 1.64
120 1.03 1.07 1.10 1.13 1.20 1.27 1.40 1.53
140 1.03 1.06 1.09 1.11 1.17 1.23 1.34 1.46
160 1.02 1.05 1.07 1.10 1.15 1.20 1.30 1.40
200 1.02 1.04 1.06 1.08 1.12 1.16 1.24 1.32
400 - 1.02 1.03 1.04 1.06 1.08 1.12 1.16
800 - - - 1.02 1.03 1.04 1.06 1.08
1600 - - - - - 1.02 1.03 1.04

Example : Knotted netting of twisted nylon twine, R1690 tex (590 m/kg), 100 mm bar length (200 mm stretched mesh length), height 50 meshes, length 100 meshes

50 meshes = 100 rows of knots in height

Stretched length = 100 meshes x 0.200 m = 20 m

Diameter of twisted polyamide twine 1690 Rtex = 1.5 mm (see page 12)

K in the table above = 1.12 (stretched mesh 200 mm; diameter 1.5 mm)

W = 100 x 20 x (1690/1000; x 1.12 = 3785 g = about 3.8 kg

Calculating twine surface area

The drag of a net is proportional to the number and type of meshes in the netting, and to the orientation of the net panel(s) in the water.

FISHERMAN'S WORKBOOK

Where

S

twine surface area (square metres)
N

number of meshes at the top of the panel
n

number of meshes at the bottom of the panel
H

number of meshes in the height of the panel
a

=

stretched mesh (mm)
= diameter of twine (mm)

Example : In the piece of netting shown above on the right, if N = 16; n = 6; H = 6; a = 80 mm; = 1.5 mm

FISHERMAN'S WORKBOOK

Calculating twine surface area of trawl

FISHERMAN'S WORKBOOK

NET WEBBING: CALCULATING TWINE SURFACE AREA OF A TRAWL

PANEL Surface No of Panels N+n/2 H N+n/2xH a (mm) (mm) 2(a x Ø) Twine Area
A 4 21 24 504 80 1.13 181 0.36
B 2 61 90 5490 80 1.13 181 1.99
C 1 279 30 8370 60 0.83 100 0.84
D 2 194 140 27160 60 0.83 100 5.43
E 2 136 100 13600 40 0.83 66 1.80
F 2 54 90 4860 80 1.13 181 1.76
G 2 97 30 2910 60 0.83 100 0.58
J 2 86 150 12900 40 1.13 90 2.32

Twine surface area without knots

TOTAL S = 15.08 m2

In order to compare the twine surface areas of two trawls, the trawls should be as nearly the same shape as possible. In the case of such comparisons the surfaces of the lengthening pieces and the codend (parts without oblique orientation), will cause no significant drag, and can be disregarded.

Hanging ratios, definition and calculation

Hanging ratio (E) is commonly defined as :

FISHERMAN'S WORKBOOK

Example : 200 meshes of 50 mm stretchea mesh size hung on a rope of 8 m

FISHERMAN'S WORKBOOK

Other expressions used for hanging ratio :

E=L/Lo Lo/L (Lo-L)/Lox100 (Lo-L)/Rx100

Estimate of the height as mounted % of stretched height

(hanging ratio)

(1) (2) (3)
0.10 10 % 10 90 % 900 % 99 %
0.20 20 % 5 80 % 400 % 98 %
0.30 30 % 3.33 70 % 233 % 95 %
0.40 40 % 2.5 60 % 150 % 92 %
0.45 45 % 2.22 55 % 122 % 89 %
0.50 50 % 2.00 50 % 100 % 87 %
0.55 55 % 1.82 45 % 82 % 84 %
0.60 60 % 1.56 40 % 67 % 80 %
0.65 65 % 1.54 35 % 54 % 76 %
0.71 71 % 1.41 29 % 41 % 71 %
0.75 75 % 1.33 25 % 33 % 66 %
0.80 80 % 1.25 20 % 25 % 60 %
0.85 85 % 1.18 15 % 18 % 53 %
0.90 90 % 1.11 10 % 11 % 44 %
0.95 95 % 1.05 5 % 5 % 31 %
0.98 98 % 1.02 2 % 2 % 20 %
  1. Also called external hanging co-efficient
  2. Also called percentage of hanging in — Setting in x 100— Looseress percentage of hanging — hang in (Asia, Japan)
  3. Also called Hang in ratio (Scandinavia)

Note : It is recommended that only the hanging ratio E be used

Surface covered at differnt hanging ratios

Examples of common horizontal hanging ratios

FISHERMAN'S WORKBOOK

Calculation of the surface covered by a piece of netting

FISHERMAN'S WORKBOOK

Where

S = surface covered by netting (in square metres)
E = hanging ratio (horizontal)
L = number of meshes in lengtn
H = number of meshes in height
a2 = (stretched mesh size in metres) squared

Example :

FISHERMAN'S WORKBOOK

Note : The surface covered ¡s at a maximum when E = 0.71, that is when each mesh forms a square

Mounted height of a net

Calculation of mounted height

The actual height of a mounted (rigged or hung) net depends on the stretched height and the hanging ratio.

The general formula permitting estimation in all cases is :

FISHERMAN'S WORKBOOK

where  E2 = horizontal hanging ratio multiplied by itself

Example : Given the piece of netting described on the preceding page with hanging ratio of 0.90 :

FISHERMAN'S WORKBOOK

Table for estimating mounted height

FISHERMAN'S WORKBOOK

Example :
Given the piece of netting described on the preceding page, mounted with the horizontal hanging ratio 0.90, we can deduce from the table above (E to A to H) that its mounted height is 44% of the stretched height.

Stretched height = 500 meshes of 30 mm = 500 x 30 mm = 15 m

Mounted height = 44% of 15 m = 6.6 m

Joining panels of netting

Netting with straight edges (i.e. AB, AT, and AN)

Netting having the same number of meshes, and meshes of the same size, or approximately the same size.

FISHERMAN'S WORKBOOK

Netting having a different number of meshes or meshes of a different size

FISHERMAN'S WORKBOOK

Netting cut obliquely with a combination of cuts B and N or Τ Pieces having a different number of meshes and different cuts

FISHERMAN'S WORKBOOK

Mounting (Hanging or rigging) panels of netting

Examples

FISHERMAN'S WORKBOOK

FISH HOOKS

Terms for describing fish hooks

FISHERMAN'S WORKBOOK

- Examples of fish hook characteristics

Regular hooks

Number

gap (mm)

Shank diam. (mm)

12

9.5

1

11

10

1

10

11

1

9

12.5

1.5

8

14

1.5

7

15

2

6

16

2

5

18

2.5

4

20

3

3

23

3

2

26.5

3.5

1

31

4

1/0

35

4.5

 

Forged hooks

Number

gap (mm)

Shank diam. (mm)

2 10 1
1 11 1
1/0 12 1
2/0 13 1.5
3/0 14.5 1.5
4/0 16.5 2
5/0 10 2.5
6/0 27 3
8/0 29 3.5
10/0 31 4
12/0 39 5
14/0 50 6

Principal types of fish hooks

Straight hooks 'J' shape, ring eye

FISHERMAN'S WORKBOOK

Kirbed (offset) hooks

FISHERMAN'S WORKBOOK

Reversed hooks

FISHERMAN'S WORKBOOK

Double and treble hooks

FISHERMAN'S WORKBOOK

Specialised hooks for particular species or fishing methods

Trolling

FISHERMAN'S WORKBOOK

Longlines

FISHERMAN'S WORKBOOK

Pole and line

FISHERMAN'S WORKBOOK

Lures, knots for fish hooks

Lures

FISHERMAN'S WORKBOOK

Knots for ring-eyed hooks

FISHERMAN'S WORKBOOK

Knots for flatted shank hooks

FISHERMAN'S WORKBOOK

LINE FISHING ACCESSORIES

Swivels, snaps, knots for longlines

Swivels

FISHERMAN'S WORKBOOK

Three-way swivels

FISHERMAN'S WORKBOOK

Snaps

FISHERMAN'S WORKBOOK

Knots for joining branditine or snood to mainline

FISHERMAN'S WORKBOOK

Knots for joining branditine to snood

FISHERMAN'S WORKBOOK

FLOATS

Floats for seines : examples

FISHERMAN'S WORKBOOK

There are a great variety of seine floats, with L ranging from 100 to 400 mm; Ø from 75 to 300 mm; and buoyancy from 300 to 22000 gf.

Durability is a most important characteristic of a seine float.

Examples : In expanded PVC, two types of manufacture

L Ø Ø Wt. (g) in air buoyancy kgf
195 150 28 350 2.2
203 152 28 412 2.2
203 175 28 515 3.0

 

L Ø Ø Wt. (g) in air buoyancy kgf
192 146 26 326 2.4
198 151 28 322 2.5
198 174 33 490 3.5

For the dimensions given, the buoyancy varies depending on the material.

Rough estimation of the buoyancy-may be found by measuring the float.

FISHERMAN'S WORKBOOK

Estimation of the number of floats necessary for a seine :

FISHERMAN'S WORKBOOK

Flats for gillnets and seines (1)

Examples

FISHERMAN'S WORKBOOK

Dimensions
(mm)
Buoyancy
(gf)
Ø x L Ø
30 x 50 6 30
50 x 30 8 50
50 x 40 8 67
65 x 20 8 55
65 x 40 8 110
70 x 20 12 63
70 x 30 12 95
80 x 20 12 88
80 x 30 12 131
80 x 40 12 175

80 x 75

12 330
85 x 140 12 720
100 x 40 14 275
100 x 50 14 355
100 x 75 14 530
100 x 90 14 614
100 x 100 14 690
125 x 100 19 1 060
150 x 100 25 1 523

Estimating the buoyancy from the size of the float :

buoyancy (in gf) = 0.67 x L (cm) x 2 =(cm)2

FISHERMAN'S WORKBOOK

Dimensions
(mm)
Buoyancy
(gf)
Ø x L Ø
76 x 44 8 70
88 x 51 8 100
101 x 57 10 160
140 x 89 16 560

 

Dimensions
(mm)
Buoyancy
(gf)
Ø x L Ø
76 x 45 8 70
89 x 51 8 100
102 x 57 10 160
140 x 89 16 560
158 x 46 8 180

Estimation of the buoyancy from the size of a float

buoyancy (in gf) = 0.5 x L (cm) x Ø2 (cm)2 Ø2 = external diameter multiplied by itself

Flats for gillnets and seines (2)

Examples

FISHERMAN'S WORKBOOK

L
(mm)
Ø
(mm)
Ø
(mm )
Buoyancy
(gf)
25 32 6 20
32 58 10 60
42 75 12 110
58 66 12 175
60 70 12 200
65 75 12 220

 

65 80 12 250

 

58 23   8
60 25   10
72 35   25
80 40   35
100 50   100

 

Ø
(mm)
Ø
(mm )
Buoyancy
(gf)
146 100 110
146 88 200
146 82 240
184 120 310
184 106 450
200 116 590
200 112 550

Spherical floats and trawl floats

Examples from suppliers' catalogues

  Diameter
(mm)
Volume
(litres)
Buoyancy
kgf
Maximum
depth (m)
FISHERMAN'S WORKBOOK 200 4 2.9 1 500
200 4 3.5 350
280 11 8.5 600
75 0.2 0.1 400
100 0.5 0.3 500
125 1 0.8 400-500
160 2 1.4 400-500
200 4 3.6 400-500
203 4.4 2.8 1 800
200 4 3.5 400
280 11-11.5 9 500-600
152 1.8 1.3 1 190
191 3.6 2.7 820
203 4.4 2.8 1 000
254 8.6 6.4 1 000

The table below shows that, for floats of equal diameter (200 mm in this case), the volume and buoyancy may vary a great deal, depending on the material and placement of holes or lugs.

Ø 200 mm Plastic, center hole Plastic, side hole Plastic, with screw lug

Aluminium, with lugs

Volume 4 4 4 4 4.4
Buoyancy (kgf) 2.9 3.5 3.6 3.5 2.8

* Note : The maximum effective depth of a float depends on the manufacture, and should be specified by the supplier. It cannot be deduced from the appearance, shape or colour

Floats (buoys) for marking nets, lines and traps

Examples:

1/  Solid floats (PVC)

FISHERMAN'S WORKBOOK

Ø
(mm)
L (mm) Ø
(mm)
B (mm) C (mm) Buoyancy
(kgf)
125 300 25 200 90 2.9
150 530 25 380 100 7.8
150 600 25 450 100 9.2
150 680 25 530 100 10.4
150 760 25 580 100 11.5
200 430 45 290 110 10.5

 

L
(mm)
I
(mm)
H
 (mm)
Ø
(mm)
Buoyancy
(kgf)
300 300 200 35 12 - 15
180 180 180 25 4

2/ Inflatable floats

FISHERMAN'S WORKBOOK

Ø
(mm)
Ø
(mm)
Ø
(mm )
L
(mm)
L'
(mm)
Buoyancy
(kgf)
510 160 11 185 18 2
760 240 30 350 43 8
1 015 320 30 440 43 17
1 270 405 30 585 43 34
1 525 480 30 670 43 60
1 905 610 30 785 48 110
2 540 810 30 1 000 48 310

 

Ø
(mm)

Ø
(mm)
Ø
(mm )
L
(mm)

Buoyancy
(kgf)

760 240 38 340 7.5
1 015 320 38 400 17
1 270 405 51 520 33.5
1 525 480 51 570 59

SINKERS

Groundrope leads and rings

Examples

Leads for ropes

FISHERMAN'S WORKBOOK

L (mm) 25 38 38 32 32 32 25 45 45 45
Ø (mm) 16 16 13 10 8 6 6 5 5 6
G (g) 113 90 64 56 50 41 28 28 28 16

Leads for lines, examples of shapes

FISHERMAN'S WORKBOOK

Example of mould for leads

FISHERMAN'S WORKBOOK

Example of groundrope rings for a gillnet

FISHERMAN'S WORKBOOK

Ex:

Ø (mm) Ø (mm) Pg
210 5 105
220 6 128

HARDWARE

Chains and thimbles*

Chains

FISHERMAN'S WORKBOOK

Ø
(mm)
Approximate  Weight kg/m   Ø
mm
Approximate  weight kg/m
5 0.5 11 2.70
6 0.75 13 3.80
7 1.00 14 4.40
8 1.35 16 5.80
9 1.90 18 7.30
10 2.25 20 9.00

High tensile steel

Ø
mm
LxE
(mm)
S.W.L.
Ton.f
Breaking strength Ton.F Weight
kg/m
7 21 x 10.5 1.232 6.158 1.090
10 40 x 15 2.514 12.570 2.207
13 52 x 19.5 4.250 21.240 3.720
16 64 x 24 6.435 32.175 5.640
19 76 x 28.5 9.000 45.370 7.140

Thimbles

FISHERMAN'S WORKBOOK

Clips for wire rope

FISHERMAN'S WORKBOOK

* Safe Working Load see page 5

Steel accessories for joining : shackles, links and cilps*

Shackles

FISHERMAN'S WORKBOOK

Ø
mm
C
(mm)
O
(mm)
S.W.L.
Ton.f
B.S.
Ton.f
6 12 18 0.220 1.350
8 16 24 0.375 2.250
10 20 30 0.565 3.400
12 24 36 0.750 4.500
14 28 42 1.200 7.250
16 32 48 1.830 11.000
18 36 54 2.200 13.200
20 40 65 2.600 16.000
24 40 75 3.600

22.000

30 45 100 5.830

35.000

Links and Clips

FISHERMAN'S WORKBOOK

* Safe Working Load see page 5

Swivel

Swivel, forged steel

FISHERMAN'S WORKBOOK

Ø
mm
E
(mm)
Ø
mm
S.W.L.*
Ton.f
B.S.**
Ton.f
8 17 14 0.320 1.920
10 25 15 0.500 3.000
12 28 18 0.800 4.800
14 35 20 1.100 6.600
16 35 20 1.600 9.600
18 38 25 2.000 12.000
20 43 26 2.500 15.000
25 50 33 4.000 24.000
30 60 40 6.000 36.000

Swivel, tempered steel and hot galvanized

FISHERMAN'S WORKBOOK

Ø
mm
S.W.L.*
Ton.f
Weight
kg
8 0.570 0.17
16 2.360 1.12
22 4.540 2.61
32 8.170 7.14

Swivel, high tensile stainless steel

FISHERMAN'S WORKBOOK

A
(mm)
B
(mm)
C
(mm)
S.W.L.*
Ton.f
B.S.**
Ton.f
Weight
kg
146 48 20 3 15 1.3
174 55 27 5 25 2.1
200 62 34 6 30 2.8

* Safe working load see page 5
** Breaking strength, see page 5

Hooks and 'G' links*

FISHERMAN'S WORKBOOK

"G" link High tensile steel
F
mm
S.W.L.*
Ton.f
B.S.*
Ton.f
25 1.1 8
30 3.6 15
34 5.0 25
38 7.0 35

* Sale working load and breaking  strength see page 5

Spreaders, codend realease and purse rings

For trawl

FISHERMAN'S WORKBOOK

For seine : Opening purse clips or rings

FISHERMAN'S WORKBOOK

Interior Diam. mm
Exterior Width mm
Exterior Length mm
Thickness mm
Opening mm
Breaking strength Ton.f Weight kg
A B C D E    
86 128 180 22 34 0.400 1.3
107 172 244 32 47 3.800 4.0
107 187 262 32 52 5.400 5.0
110 187 262 37 53 6.500 6.0
75 128 200 19 40 1.800 2.0
94 150 231 25 47 2.200 3.0
103 169 253 28 50 3.000 4.0
103 169 262 35 53 3.500 5.0
106 175 264 38 53 3.600 6.0
25 65 111 17 17 5.000 0.5
38 80 140 15 25 6.000 0.65
36 90 153 19 29 12.000 1.1

FISHERMAN'S WORKBOOK

Elements of trawl groundropes : steel bobbins

Examples

FISHERMAN'S WORKBOOK

Ø L A B
mm mm Weight in air kg Weight in air kg
200 165 7.5 9.5
250 215 10 12.5
300 260 18 22
350 310 29 24
400 360 35 40

 

Ø L Ø A B
mm mm mm Weight in air kg Weight in air kg
200 380 30 12 14
250 570 32 15 17.5
300 610 35 25 29
350 660 60 42 46
400 715 60 51 56

FISHERMAN'S WORKBOOK

Elements of trawl groundropes : rubber bunts, bobbins, spacers and rings

Examples

Bunts

FISHERMAN'S WORKBOOK

Ø (mm) 229 305 356 406
Wt. in air (kg) per piece 4.40 9.10 11.80 19.50
Wt. in water (kg)  per piece 0.98 2.10 2.85 4.4
Bobbins

FISHERMAN'S WORKBOOK

Ø (mm) 305 356 406
Wt. in air (kg) per piece 5.10 8.00 11.50
Wt. in water (kg)  per piece 1.65 2.20 3.50
 

Spacers

FISHERMAN'S WORKBOOK

L(mm) 178 178
Ø (mm) 121 165
Ø (mm) 44 66
Wt. in air (kg) per piece 1.63 2.30
Wt. in water (kg)  per piece 0.36 0.57

Rings or "cookies" (made from old tyres)

FISHERMAN'S WORKBOOK

diameter ext. Ø (mm) 60 80 110
diameter int. Ø (mm) 25 30 30
Weight* (kg/m) 2.3 3.0 7.5

 

diameter ext. Ø (mm) 200 240 280
diameter int. Ø (mm) 45 45 45
Weight* per piece (kg) 5.0 7.0 10.5

* Weight in air

LIFTING

Silings and tackles

FISHERMAN'S WORKBOOK

Previous PageTop of PageNext Page